GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / scsi / aacraid / linit.c
1 /*
2  *      Adaptec AAC series RAID controller driver
3  *      (c) Copyright 2001 Red Hat Inc.
4  *
5  * based on the old aacraid driver that is..
6  * Adaptec aacraid device driver for Linux.
7  *
8  * Copyright (c) 2000-2010 Adaptec, Inc.
9  *               2010-2015 PMC-Sierra, Inc. (aacraid@pmc-sierra.com)
10  *               2016-2017 Microsemi Corp. (aacraid@microsemi.com)
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2, or (at your option)
15  * any later version.
16  *
17  * This program is distributed in the hope that it will be useful,
18  * but WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  * GNU General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; see the file COPYING.  If not, write to
24  * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
25  *
26  * Module Name:
27  *   linit.c
28  *
29  * Abstract: Linux Driver entry module for Adaptec RAID Array Controller
30  */
31
32
33 #include <linux/compat.h>
34 #include <linux/blkdev.h>
35 #include <linux/completion.h>
36 #include <linux/init.h>
37 #include <linux/interrupt.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/moduleparam.h>
41 #include <linux/pci.h>
42 #include <linux/aer.h>
43 #include <linux/pci-aspm.h>
44 #include <linux/slab.h>
45 #include <linux/mutex.h>
46 #include <linux/spinlock.h>
47 #include <linux/syscalls.h>
48 #include <linux/delay.h>
49 #include <linux/kthread.h>
50
51 #include <scsi/scsi.h>
52 #include <scsi/scsi_cmnd.h>
53 #include <scsi/scsi_device.h>
54 #include <scsi/scsi_host.h>
55 #include <scsi/scsi_tcq.h>
56 #include <scsi/scsicam.h>
57 #include <scsi/scsi_eh.h>
58
59 #include "aacraid.h"
60
61 #define AAC_DRIVER_VERSION              "1.2.1"
62 #ifndef AAC_DRIVER_BRANCH
63 #define AAC_DRIVER_BRANCH               ""
64 #endif
65 #define AAC_DRIVERNAME                  "aacraid"
66
67 #ifdef AAC_DRIVER_BUILD
68 #define _str(x) #x
69 #define str(x) _str(x)
70 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION "[" str(AAC_DRIVER_BUILD) "]" AAC_DRIVER_BRANCH
71 #else
72 #define AAC_DRIVER_FULL_VERSION AAC_DRIVER_VERSION AAC_DRIVER_BRANCH
73 #endif
74
75 MODULE_AUTHOR("Red Hat Inc and Adaptec");
76 MODULE_DESCRIPTION("Dell PERC2, 2/Si, 3/Si, 3/Di, "
77                    "Adaptec Advanced Raid Products, "
78                    "HP NetRAID-4M, IBM ServeRAID & ICP SCSI driver");
79 MODULE_LICENSE("GPL");
80 MODULE_VERSION(AAC_DRIVER_FULL_VERSION);
81
82 static DEFINE_MUTEX(aac_mutex);
83 static LIST_HEAD(aac_devices);
84 static int aac_cfg_major = AAC_CHARDEV_UNREGISTERED;
85 char aac_driver_version[] = AAC_DRIVER_FULL_VERSION;
86
87 /*
88  * Because of the way Linux names scsi devices, the order in this table has
89  * become important.  Check for on-board Raid first, add-in cards second.
90  *
91  * Note: The last field is used to index into aac_drivers below.
92  */
93 static const struct pci_device_id aac_pci_tbl[] = {
94         { 0x1028, 0x0001, 0x1028, 0x0001, 0, 0, 0 }, /* PERC 2/Si (Iguana/PERC2Si) */
95         { 0x1028, 0x0002, 0x1028, 0x0002, 0, 0, 1 }, /* PERC 3/Di (Opal/PERC3Di) */
96         { 0x1028, 0x0003, 0x1028, 0x0003, 0, 0, 2 }, /* PERC 3/Si (SlimFast/PERC3Si */
97         { 0x1028, 0x0004, 0x1028, 0x00d0, 0, 0, 3 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
98         { 0x1028, 0x0002, 0x1028, 0x00d1, 0, 0, 4 }, /* PERC 3/Di (Viper/PERC3DiV) */
99         { 0x1028, 0x0002, 0x1028, 0x00d9, 0, 0, 5 }, /* PERC 3/Di (Lexus/PERC3DiL) */
100         { 0x1028, 0x000a, 0x1028, 0x0106, 0, 0, 6 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
101         { 0x1028, 0x000a, 0x1028, 0x011b, 0, 0, 7 }, /* PERC 3/Di (Dagger/PERC3DiD) */
102         { 0x1028, 0x000a, 0x1028, 0x0121, 0, 0, 8 }, /* PERC 3/Di (Boxster/PERC3DiB) */
103         { 0x9005, 0x0283, 0x9005, 0x0283, 0, 0, 9 }, /* catapult */
104         { 0x9005, 0x0284, 0x9005, 0x0284, 0, 0, 10 }, /* tomcat */
105         { 0x9005, 0x0285, 0x9005, 0x0286, 0, 0, 11 }, /* Adaptec 2120S (Crusader) */
106         { 0x9005, 0x0285, 0x9005, 0x0285, 0, 0, 12 }, /* Adaptec 2200S (Vulcan) */
107         { 0x9005, 0x0285, 0x9005, 0x0287, 0, 0, 13 }, /* Adaptec 2200S (Vulcan-2m) */
108         { 0x9005, 0x0285, 0x17aa, 0x0286, 0, 0, 14 }, /* Legend S220 (Legend Crusader) */
109         { 0x9005, 0x0285, 0x17aa, 0x0287, 0, 0, 15 }, /* Legend S230 (Legend Vulcan) */
110
111         { 0x9005, 0x0285, 0x9005, 0x0288, 0, 0, 16 }, /* Adaptec 3230S (Harrier) */
112         { 0x9005, 0x0285, 0x9005, 0x0289, 0, 0, 17 }, /* Adaptec 3240S (Tornado) */
113         { 0x9005, 0x0285, 0x9005, 0x028a, 0, 0, 18 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
114         { 0x9005, 0x0285, 0x9005, 0x028b, 0, 0, 19 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
115         { 0x9005, 0x0286, 0x9005, 0x028c, 0, 0, 20 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
116         { 0x9005, 0x0286, 0x9005, 0x028d, 0, 0, 21 }, /* ASR-2130S (Lancer) */
117         { 0x9005, 0x0286, 0x9005, 0x029b, 0, 0, 22 }, /* AAR-2820SA (Intruder) */
118         { 0x9005, 0x0286, 0x9005, 0x029c, 0, 0, 23 }, /* AAR-2620SA (Intruder) */
119         { 0x9005, 0x0286, 0x9005, 0x029d, 0, 0, 24 }, /* AAR-2420SA (Intruder) */
120         { 0x9005, 0x0286, 0x9005, 0x029e, 0, 0, 25 }, /* ICP9024RO (Lancer) */
121         { 0x9005, 0x0286, 0x9005, 0x029f, 0, 0, 26 }, /* ICP9014RO (Lancer) */
122         { 0x9005, 0x0286, 0x9005, 0x02a0, 0, 0, 27 }, /* ICP9047MA (Lancer) */
123         { 0x9005, 0x0286, 0x9005, 0x02a1, 0, 0, 28 }, /* ICP9087MA (Lancer) */
124         { 0x9005, 0x0286, 0x9005, 0x02a3, 0, 0, 29 }, /* ICP5445AU (Hurricane44) */
125         { 0x9005, 0x0285, 0x9005, 0x02a4, 0, 0, 30 }, /* ICP9085LI (Marauder-X) */
126         { 0x9005, 0x0285, 0x9005, 0x02a5, 0, 0, 31 }, /* ICP5085BR (Marauder-E) */
127         { 0x9005, 0x0286, 0x9005, 0x02a6, 0, 0, 32 }, /* ICP9067MA (Intruder-6) */
128         { 0x9005, 0x0287, 0x9005, 0x0800, 0, 0, 33 }, /* Themisto Jupiter Platform */
129         { 0x9005, 0x0200, 0x9005, 0x0200, 0, 0, 33 }, /* Themisto Jupiter Platform */
130         { 0x9005, 0x0286, 0x9005, 0x0800, 0, 0, 34 }, /* Callisto Jupiter Platform */
131         { 0x9005, 0x0285, 0x9005, 0x028e, 0, 0, 35 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
132         { 0x9005, 0x0285, 0x9005, 0x028f, 0, 0, 36 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
133         { 0x9005, 0x0285, 0x9005, 0x0290, 0, 0, 37 }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
134         { 0x9005, 0x0285, 0x1028, 0x0291, 0, 0, 38 }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
135         { 0x9005, 0x0285, 0x9005, 0x0292, 0, 0, 39 }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
136         { 0x9005, 0x0285, 0x9005, 0x0293, 0, 0, 40 }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
137         { 0x9005, 0x0285, 0x9005, 0x0294, 0, 0, 41 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
138         { 0x9005, 0x0285, 0x103C, 0x3227, 0, 0, 42 }, /* AAR-2610SA PCI SATA 6ch */
139         { 0x9005, 0x0285, 0x9005, 0x0296, 0, 0, 43 }, /* ASR-2240S (SabreExpress) */
140         { 0x9005, 0x0285, 0x9005, 0x0297, 0, 0, 44 }, /* ASR-4005 */
141         { 0x9005, 0x0285, 0x1014, 0x02F2, 0, 0, 45 }, /* IBM 8i (AvonPark) */
142         { 0x9005, 0x0285, 0x1014, 0x0312, 0, 0, 45 }, /* IBM 8i (AvonPark Lite) */
143         { 0x9005, 0x0286, 0x1014, 0x9580, 0, 0, 46 }, /* IBM 8k/8k-l8 (Aurora) */
144         { 0x9005, 0x0286, 0x1014, 0x9540, 0, 0, 47 }, /* IBM 8k/8k-l4 (Aurora Lite) */
145         { 0x9005, 0x0285, 0x9005, 0x0298, 0, 0, 48 }, /* ASR-4000 (BlackBird) */
146         { 0x9005, 0x0285, 0x9005, 0x0299, 0, 0, 49 }, /* ASR-4800SAS (Marauder-X) */
147         { 0x9005, 0x0285, 0x9005, 0x029a, 0, 0, 50 }, /* ASR-4805SAS (Marauder-E) */
148         { 0x9005, 0x0286, 0x9005, 0x02a2, 0, 0, 51 }, /* ASR-3800 (Hurricane44) */
149
150         { 0x9005, 0x0285, 0x1028, 0x0287, 0, 0, 52 }, /* Perc 320/DC*/
151         { 0x1011, 0x0046, 0x9005, 0x0365, 0, 0, 53 }, /* Adaptec 5400S (Mustang)*/
152         { 0x1011, 0x0046, 0x9005, 0x0364, 0, 0, 54 }, /* Adaptec 5400S (Mustang)*/
153         { 0x1011, 0x0046, 0x9005, 0x1364, 0, 0, 55 }, /* Dell PERC2/QC */
154         { 0x1011, 0x0046, 0x103c, 0x10c2, 0, 0, 56 }, /* HP NetRAID-4M */
155
156         { 0x9005, 0x0285, 0x1028, PCI_ANY_ID, 0, 0, 57 }, /* Dell Catchall */
157         { 0x9005, 0x0285, 0x17aa, PCI_ANY_ID, 0, 0, 58 }, /* Legend Catchall */
158         { 0x9005, 0x0285, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 59 }, /* Adaptec Catch All */
159         { 0x9005, 0x0286, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 60 }, /* Adaptec Rocket Catch All */
160         { 0x9005, 0x0288, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 61 }, /* Adaptec NEMER/ARK Catch All */
161         { 0x9005, 0x028b, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 62 }, /* Adaptec PMC Series 6 (Tupelo) */
162         { 0x9005, 0x028c, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 63 }, /* Adaptec PMC Series 7 (Denali) */
163         { 0x9005, 0x028d, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 64 }, /* Adaptec PMC Series 8 */
164         { 0,}
165 };
166 MODULE_DEVICE_TABLE(pci, aac_pci_tbl);
167
168 /*
169  * dmb - For now we add the number of channels to this structure.
170  * In the future we should add a fib that reports the number of channels
171  * for the card.  At that time we can remove the channels from here
172  */
173 static struct aac_driver_ident aac_drivers[] = {
174         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 2/Si (Iguana/PERC2Si) */
175         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Opal/PERC3Di) */
176         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Si (SlimFast/PERC3Si */
177         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Iguana FlipChip/PERC3DiF */
178         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Viper/PERC3DiV) */
179         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Lexus/PERC3DiL) */
180         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Jaguar/PERC3DiJ) */
181         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Dagger/PERC3DiD) */
182         { aac_rx_init, "percraid", "DELL    ", "PERCRAID        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* PERC 3/Di (Boxster/PERC3DiB) */
183         { aac_rx_init, "aacraid",  "ADAPTEC ", "catapult        ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* catapult */
184         { aac_rx_init, "aacraid",  "ADAPTEC ", "tomcat          ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* tomcat */
185         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2120S   ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },                     /* Adaptec 2120S (Crusader) */
186         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG },                     /* Adaptec 2200S (Vulcan) */
187         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 2200S   ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Adaptec 2200S (Vulcan-2m) */
188         { aac_rx_init, "aacraid",  "Legend  ", "Legend S220     ", 1, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S220 (Legend Crusader) */
189         { aac_rx_init, "aacraid",  "Legend  ", "Legend S230     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend S230 (Legend Vulcan) */
190
191         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3230S   ", 2 }, /* Adaptec 3230S (Harrier) */
192         { aac_rx_init, "aacraid",  "ADAPTEC ", "Adaptec 3240S   ", 2 }, /* Adaptec 3240S (Tornado) */
193         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020ZCR     ", 2 }, /* ASR-2020ZCR SCSI PCI-X ZCR (Skyhawk) */
194         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025ZCR     ", 2 }, /* ASR-2025ZCR SCSI SO-DIMM PCI-X ZCR (Terminator) */
195         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2230S PCI-X ", 2 }, /* ASR-2230S + ASR-2230SLP PCI-X (Lancer) */
196         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-2130S PCI-X ", 1 }, /* ASR-2130S (Lancer) */
197         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2820SA      ", 1 }, /* AAR-2820SA (Intruder) */
198         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2620SA      ", 1 }, /* AAR-2620SA (Intruder) */
199         { aac_rkt_init, "aacraid",  "ADAPTEC ", "AAR-2420SA      ", 1 }, /* AAR-2420SA (Intruder) */
200         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9024RO       ", 2 }, /* ICP9024RO (Lancer) */
201         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9014RO       ", 1 }, /* ICP9014RO (Lancer) */
202         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9047MA       ", 1 }, /* ICP9047MA (Lancer) */
203         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9087MA       ", 1 }, /* ICP9087MA (Lancer) */
204         { aac_rkt_init, "aacraid",  "ICP     ", "ICP5445AU       ", 1 }, /* ICP5445AU (Hurricane44) */
205         { aac_rx_init, "aacraid",  "ICP     ", "ICP9085LI       ", 1 }, /* ICP9085LI (Marauder-X) */
206         { aac_rx_init, "aacraid",  "ICP     ", "ICP5085BR       ", 1 }, /* ICP5085BR (Marauder-E) */
207         { aac_rkt_init, "aacraid",  "ICP     ", "ICP9067MA       ", 1 }, /* ICP9067MA (Intruder-6) */
208         { NULL        , "aacraid",  "ADAPTEC ", "Themisto        ", 0, AAC_QUIRK_SLAVE }, /* Jupiter Platform */
209         { aac_rkt_init, "aacraid",  "ADAPTEC ", "Callisto        ", 2, AAC_QUIRK_MASTER }, /* Jupiter Platform */
210         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2020SA       ", 1 }, /* ASR-2020SA SATA PCI-X ZCR (Skyhawk) */
211         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2025SA       ", 1 }, /* ASR-2025SA SATA SO-DIMM PCI-X ZCR (Terminator) */
212         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2410SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2410SA PCI SATA 4ch (Jaguar II) */
213         { aac_rx_init, "aacraid",  "DELL    ", "CERC SR2        ", 1, AAC_QUIRK_17SG }, /* CERC SATA RAID 2 PCI SATA 6ch (DellCorsair) */
214         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2810SA SATA ", 1, AAC_QUIRK_17SG }, /* AAR-2810SA PCI SATA 8ch (Corsair-8) */
215         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-21610SA SATA", 1, AAC_QUIRK_17SG }, /* AAR-21610SA PCI SATA 16ch (Corsair-16) */
216         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2026ZCR     ", 1 }, /* ESD SO-DIMM PCI-X SATA ZCR (Prowler) */
217         { aac_rx_init, "aacraid",  "ADAPTEC ", "AAR-2610SA      ", 1 }, /* SATA 6Ch (Bearcat) */
218         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-2240S       ", 1 }, /* ASR-2240S (SabreExpress) */
219         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4005        ", 1 }, /* ASR-4005 */
220         { aac_rx_init, "ServeRAID","IBM     ", "ServeRAID 8i    ", 1 }, /* IBM 8i (AvonPark) */
221         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l8 ", 1 }, /* IBM 8k/8k-l8 (Aurora) */
222         { aac_rkt_init, "ServeRAID","IBM     ", "ServeRAID 8k-l4 ", 1 }, /* IBM 8k/8k-l4 (Aurora Lite) */
223         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4000        ", 1 }, /* ASR-4000 (BlackBird & AvonPark) */
224         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4800SAS     ", 1 }, /* ASR-4800SAS (Marauder-X) */
225         { aac_rx_init, "aacraid",  "ADAPTEC ", "ASR-4805SAS     ", 1 }, /* ASR-4805SAS (Marauder-E) */
226         { aac_rkt_init, "aacraid",  "ADAPTEC ", "ASR-3800        ", 1 }, /* ASR-3800 (Hurricane44) */
227
228         { aac_rx_init, "percraid", "DELL    ", "PERC 320/DC     ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG }, /* Perc 320/DC*/
229         { aac_sa_init, "aacraid",  "ADAPTEC ", "Adaptec 5400S   ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
230         { aac_sa_init, "aacraid",  "ADAPTEC ", "AAC-364         ", 4, AAC_QUIRK_34SG }, /* Adaptec 5400S (Mustang)*/
231         { aac_sa_init, "percraid", "DELL    ", "PERCRAID        ", 4, AAC_QUIRK_34SG }, /* Dell PERC2/QC */
232         { aac_sa_init, "hpnraid",  "HP      ", "NetRAID         ", 4, AAC_QUIRK_34SG }, /* HP NetRAID-4M */
233
234         { aac_rx_init, "aacraid",  "DELL    ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Dell Catchall */
235         { aac_rx_init, "aacraid",  "Legend  ", "RAID            ", 2, AAC_QUIRK_31BIT | AAC_QUIRK_34SG | AAC_QUIRK_SCSI_32 }, /* Legend Catchall */
236         { aac_rx_init, "aacraid",  "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Catch All */
237         { aac_rkt_init, "aacraid", "ADAPTEC ", "RAID            ", 2 }, /* Adaptec Rocket Catch All */
238         { aac_nark_init, "aacraid", "ADAPTEC ", "RAID           ", 2 }, /* Adaptec NEMER/ARK Catch All */
239         { aac_src_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 6 (Tupelo) */
240         { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 7 (Denali) */
241         { aac_srcv_init, "aacraid", "ADAPTEC ", "RAID            ", 2, AAC_QUIRK_SRC }, /* Adaptec PMC Series 8 */
242 };
243
244 /**
245  *      aac_queuecommand        -       queue a SCSI command
246  *      @cmd:           SCSI command to queue
247  *      @done:          Function to call on command completion
248  *
249  *      Queues a command for execution by the associated Host Adapter.
250  *
251  *      TODO: unify with aac_scsi_cmd().
252  */
253
254 static int aac_queuecommand(struct Scsi_Host *shost,
255                             struct scsi_cmnd *cmd)
256 {
257         int r = 0;
258         cmd->SCp.phase = AAC_OWNER_LOWLEVEL;
259         r = (aac_scsi_cmd(cmd) ? FAILED : 0);
260         return r;
261 }
262
263 /**
264  *      aac_info                -       Returns the host adapter name
265  *      @shost:         Scsi host to report on
266  *
267  *      Returns a static string describing the device in question
268  */
269
270 static const char *aac_info(struct Scsi_Host *shost)
271 {
272         struct aac_dev *dev = (struct aac_dev *)shost->hostdata;
273         return aac_drivers[dev->cardtype].name;
274 }
275
276 /**
277  *      aac_get_driver_ident
278  *      @devtype: index into lookup table
279  *
280  *      Returns a pointer to the entry in the driver lookup table.
281  */
282
283 struct aac_driver_ident* aac_get_driver_ident(int devtype)
284 {
285         return &aac_drivers[devtype];
286 }
287
288 /**
289  *      aac_biosparm    -       return BIOS parameters for disk
290  *      @sdev: The scsi device corresponding to the disk
291  *      @bdev: the block device corresponding to the disk
292  *      @capacity: the sector capacity of the disk
293  *      @geom: geometry block to fill in
294  *
295  *      Return the Heads/Sectors/Cylinders BIOS Disk Parameters for Disk.
296  *      The default disk geometry is 64 heads, 32 sectors, and the appropriate
297  *      number of cylinders so as not to exceed drive capacity.  In order for
298  *      disks equal to or larger than 1 GB to be addressable by the BIOS
299  *      without exceeding the BIOS limitation of 1024 cylinders, Extended
300  *      Translation should be enabled.   With Extended Translation enabled,
301  *      drives between 1 GB inclusive and 2 GB exclusive are given a disk
302  *      geometry of 128 heads and 32 sectors, and drives above 2 GB inclusive
303  *      are given a disk geometry of 255 heads and 63 sectors.  However, if
304  *      the BIOS detects that the Extended Translation setting does not match
305  *      the geometry in the partition table, then the translation inferred
306  *      from the partition table will be used by the BIOS, and a warning may
307  *      be displayed.
308  */
309
310 static int aac_biosparm(struct scsi_device *sdev, struct block_device *bdev,
311                         sector_t capacity, int *geom)
312 {
313         struct diskparm *param = (struct diskparm *)geom;
314         unsigned char *buf;
315
316         dprintk((KERN_DEBUG "aac_biosparm.\n"));
317
318         /*
319          *      Assuming extended translation is enabled - #REVISIT#
320          */
321         if (capacity >= 2 * 1024 * 1024) { /* 1 GB in 512 byte sectors */
322                 if(capacity >= 4 * 1024 * 1024) { /* 2 GB in 512 byte sectors */
323                         param->heads = 255;
324                         param->sectors = 63;
325                 } else {
326                         param->heads = 128;
327                         param->sectors = 32;
328                 }
329         } else {
330                 param->heads = 64;
331                 param->sectors = 32;
332         }
333
334         param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
335
336         /*
337          *      Read the first 1024 bytes from the disk device, if the boot
338          *      sector partition table is valid, search for a partition table
339          *      entry whose end_head matches one of the standard geometry
340          *      translations ( 64/32, 128/32, 255/63 ).
341          */
342         buf = scsi_bios_ptable(bdev);
343         if (!buf)
344                 return 0;
345         if(*(__le16 *)(buf + 0x40) == cpu_to_le16(0xaa55)) {
346                 struct partition *first = (struct partition * )buf;
347                 struct partition *entry = first;
348                 int saved_cylinders = param->cylinders;
349                 int num;
350                 unsigned char end_head, end_sec;
351
352                 for(num = 0; num < 4; num++) {
353                         end_head = entry->end_head;
354                         end_sec = entry->end_sector & 0x3f;
355
356                         if(end_head == 63) {
357                                 param->heads = 64;
358                                 param->sectors = 32;
359                                 break;
360                         } else if(end_head == 127) {
361                                 param->heads = 128;
362                                 param->sectors = 32;
363                                 break;
364                         } else if(end_head == 254) {
365                                 param->heads = 255;
366                                 param->sectors = 63;
367                                 break;
368                         }
369                         entry++;
370                 }
371
372                 if (num == 4) {
373                         end_head = first->end_head;
374                         end_sec = first->end_sector & 0x3f;
375                 }
376
377                 param->cylinders = cap_to_cyls(capacity, param->heads * param->sectors);
378                 if (num < 4 && end_sec == param->sectors) {
379                         if (param->cylinders != saved_cylinders)
380                                 dprintk((KERN_DEBUG "Adopting geometry: heads=%d, sectors=%d from partition table %d.\n",
381                                         param->heads, param->sectors, num));
382                 } else if (end_head > 0 || end_sec > 0) {
383                         dprintk((KERN_DEBUG "Strange geometry: heads=%d, sectors=%d in partition table %d.\n",
384                                 end_head + 1, end_sec, num));
385                         dprintk((KERN_DEBUG "Using geometry: heads=%d, sectors=%d.\n",
386                                         param->heads, param->sectors));
387                 }
388         }
389         kfree(buf);
390         return 0;
391 }
392
393 /**
394  *      aac_slave_configure             -       compute queue depths
395  *      @sdev:  SCSI device we are considering
396  *
397  *      Selects queue depths for each target device based on the host adapter's
398  *      total capacity and the queue depth supported by the target device.
399  *      A queue depth of one automatically disables tagged queueing.
400  */
401
402 static int aac_slave_configure(struct scsi_device *sdev)
403 {
404         struct aac_dev *aac = (struct aac_dev *)sdev->host->hostdata;
405         int chn, tid;
406         unsigned int depth = 0;
407         unsigned int set_timeout = 0;
408         bool set_qd_dev_type = false;
409         u8 devtype = 0;
410
411         chn = aac_logical_to_phys(sdev_channel(sdev));
412         tid = sdev_id(sdev);
413         if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS && aac->sa_firmware) {
414                 devtype = aac->hba_map[chn][tid].devtype;
415
416                 if (devtype == AAC_DEVTYPE_NATIVE_RAW) {
417                         depth = aac->hba_map[chn][tid].qd_limit;
418                         set_timeout = 1;
419                         goto common_config;
420                 }
421                 if (devtype == AAC_DEVTYPE_ARC_RAW) {
422                         set_qd_dev_type = true;
423                         set_timeout = 1;
424                         goto common_config;
425                 }
426         }
427
428         if (aac->jbod && (sdev->type == TYPE_DISK))
429                 sdev->removable = 1;
430
431         if (sdev->type == TYPE_DISK
432          && sdev_channel(sdev) != CONTAINER_CHANNEL
433          && (!aac->jbod || sdev->inq_periph_qual)
434          && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))) {
435
436                 if (expose_physicals == 0)
437                         return -ENXIO;
438
439                 if (expose_physicals < 0)
440                         sdev->no_uld_attach = 1;
441         }
442
443         if (sdev->tagged_supported
444          &&  sdev->type == TYPE_DISK
445          &&  (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
446          && !sdev->no_uld_attach) {
447
448                 struct scsi_device * dev;
449                 struct Scsi_Host *host = sdev->host;
450                 unsigned num_lsu = 0;
451                 unsigned num_one = 0;
452                 unsigned cid;
453
454                 set_timeout = 1;
455
456                 for (cid = 0; cid < aac->maximum_num_containers; ++cid)
457                         if (aac->fsa_dev[cid].valid)
458                                 ++num_lsu;
459
460                 __shost_for_each_device(dev, host) {
461                         if (dev->tagged_supported
462                          && dev->type == TYPE_DISK
463                          && (!aac->raid_scsi_mode || (sdev_channel(sdev) != 2))
464                          && !dev->no_uld_attach) {
465                                 if ((sdev_channel(dev) != CONTAINER_CHANNEL)
466                                  || !aac->fsa_dev[sdev_id(dev)].valid) {
467                                         ++num_lsu;
468                                 }
469                         } else {
470                                 ++num_one;
471                         }
472                 }
473
474                 if (num_lsu == 0)
475                         ++num_lsu;
476
477                 depth = (host->can_queue - num_one) / num_lsu;
478
479                 if (sdev_channel(sdev) != NATIVE_CHANNEL)
480                         goto common_config;
481
482                 set_qd_dev_type = true;
483
484         }
485
486 common_config:
487
488         /*
489          * Check if SATA drive
490          */
491         if (set_qd_dev_type) {
492                 if (strncmp(sdev->vendor, "ATA", 3) == 0)
493                         depth = 32;
494                 else
495                         depth = 64;
496         }
497
498         /*
499          * Firmware has an individual device recovery time typically
500          * of 35 seconds, give us a margin.
501          */
502         if (set_timeout && sdev->request_queue->rq_timeout < (45 * HZ))
503                 blk_queue_rq_timeout(sdev->request_queue, 45*HZ);
504
505         if (depth > 256)
506                 depth = 256;
507         else if (depth < 1)
508                 depth = 1;
509
510         scsi_change_queue_depth(sdev, depth);
511
512         sdev->tagged_supported = 1;
513
514         return 0;
515 }
516
517 /**
518  *      aac_change_queue_depth          -       alter queue depths
519  *      @sdev:  SCSI device we are considering
520  *      @depth: desired queue depth
521  *
522  *      Alters queue depths for target device based on the host adapter's
523  *      total capacity and the queue depth supported by the target device.
524  */
525
526 static int aac_change_queue_depth(struct scsi_device *sdev, int depth)
527 {
528         struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
529         int chn, tid, is_native_device = 0;
530
531         chn = aac_logical_to_phys(sdev_channel(sdev));
532         tid = sdev_id(sdev);
533         if (chn < AAC_MAX_BUSES && tid < AAC_MAX_TARGETS &&
534                 aac->hba_map[chn][tid].devtype == AAC_DEVTYPE_NATIVE_RAW)
535                 is_native_device = 1;
536
537         if (sdev->tagged_supported && (sdev->type == TYPE_DISK) &&
538             (sdev_channel(sdev) == CONTAINER_CHANNEL)) {
539                 struct scsi_device * dev;
540                 struct Scsi_Host *host = sdev->host;
541                 unsigned num = 0;
542
543                 __shost_for_each_device(dev, host) {
544                         if (dev->tagged_supported && (dev->type == TYPE_DISK) &&
545                             (sdev_channel(dev) == CONTAINER_CHANNEL))
546                                 ++num;
547                         ++num;
548                 }
549                 if (num >= host->can_queue)
550                         num = host->can_queue - 1;
551                 if (depth > (host->can_queue - num))
552                         depth = host->can_queue - num;
553                 if (depth > 256)
554                         depth = 256;
555                 else if (depth < 2)
556                         depth = 2;
557                 return scsi_change_queue_depth(sdev, depth);
558         } else if (is_native_device) {
559                 scsi_change_queue_depth(sdev, aac->hba_map[chn][tid].qd_limit);
560         } else {
561                 scsi_change_queue_depth(sdev, 1);
562         }
563         return sdev->queue_depth;
564 }
565
566 static ssize_t aac_show_raid_level(struct device *dev, struct device_attribute *attr, char *buf)
567 {
568         struct scsi_device *sdev = to_scsi_device(dev);
569         struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
570         if (sdev_channel(sdev) != CONTAINER_CHANNEL)
571                 return snprintf(buf, PAGE_SIZE, sdev->no_uld_attach
572                   ? "Hidden\n" :
573                   ((aac->jbod && (sdev->type == TYPE_DISK)) ? "JBOD\n" : ""));
574         return snprintf(buf, PAGE_SIZE, "%s\n",
575           get_container_type(aac->fsa_dev[sdev_id(sdev)].type));
576 }
577
578 static struct device_attribute aac_raid_level_attr = {
579         .attr = {
580                 .name = "level",
581                 .mode = S_IRUGO,
582         },
583         .show = aac_show_raid_level
584 };
585
586 static ssize_t aac_show_unique_id(struct device *dev,
587              struct device_attribute *attr, char *buf)
588 {
589         struct scsi_device *sdev = to_scsi_device(dev);
590         struct aac_dev *aac = (struct aac_dev *)(sdev->host->hostdata);
591         unsigned char sn[16];
592
593         memset(sn, 0, sizeof(sn));
594
595         if (sdev_channel(sdev) == CONTAINER_CHANNEL)
596                 memcpy(sn, aac->fsa_dev[sdev_id(sdev)].identifier, sizeof(sn));
597
598         return snprintf(buf, 16 * 2 + 2,
599                 "%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X%02X\n",
600                 sn[0], sn[1], sn[2], sn[3],
601                 sn[4], sn[5], sn[6], sn[7],
602                 sn[8], sn[9], sn[10], sn[11],
603                 sn[12], sn[13], sn[14], sn[15]);
604 }
605
606 static struct device_attribute aac_unique_id_attr = {
607         .attr = {
608                 .name = "unique_id",
609                 .mode = 0444,
610         },
611         .show = aac_show_unique_id
612 };
613
614
615
616 static struct device_attribute *aac_dev_attrs[] = {
617         &aac_raid_level_attr,
618         &aac_unique_id_attr,
619         NULL,
620 };
621
622 static int aac_ioctl(struct scsi_device *sdev, int cmd, void __user * arg)
623 {
624         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
625         if (!capable(CAP_SYS_RAWIO))
626                 return -EPERM;
627         return aac_do_ioctl(dev, cmd, arg);
628 }
629
630 static int get_num_of_incomplete_fibs(struct aac_dev *aac)
631 {
632
633         unsigned long flags;
634         struct scsi_device *sdev = NULL;
635         struct Scsi_Host *shost = aac->scsi_host_ptr;
636         struct scsi_cmnd *scmnd = NULL;
637         struct device *ctrl_dev;
638
639         int mlcnt  = 0;
640         int llcnt  = 0;
641         int ehcnt  = 0;
642         int fwcnt  = 0;
643         int krlcnt = 0;
644
645         __shost_for_each_device(sdev, shost) {
646                 spin_lock_irqsave(&sdev->list_lock, flags);
647                 list_for_each_entry(scmnd, &sdev->cmd_list, list) {
648                         switch (scmnd->SCp.phase) {
649                         case AAC_OWNER_FIRMWARE:
650                                 fwcnt++;
651                                 break;
652                         case AAC_OWNER_ERROR_HANDLER:
653                                 ehcnt++;
654                                 break;
655                         case AAC_OWNER_LOWLEVEL:
656                                 llcnt++;
657                                 break;
658                         case AAC_OWNER_MIDLEVEL:
659                                 mlcnt++;
660                                 break;
661                         default:
662                                 krlcnt++;
663                                 break;
664                         }
665                 }
666                 spin_unlock_irqrestore(&sdev->list_lock, flags);
667         }
668
669         ctrl_dev = &aac->pdev->dev;
670
671         dev_info(ctrl_dev, "outstanding cmd: midlevel-%d\n", mlcnt);
672         dev_info(ctrl_dev, "outstanding cmd: lowlevel-%d\n", llcnt);
673         dev_info(ctrl_dev, "outstanding cmd: error handler-%d\n", ehcnt);
674         dev_info(ctrl_dev, "outstanding cmd: firmware-%d\n", fwcnt);
675         dev_info(ctrl_dev, "outstanding cmd: kernel-%d\n", krlcnt);
676
677         return mlcnt + llcnt + ehcnt + fwcnt;
678 }
679
680 static int aac_eh_abort(struct scsi_cmnd* cmd)
681 {
682         struct scsi_device * dev = cmd->device;
683         struct Scsi_Host * host = dev->host;
684         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
685         int count, found;
686         u32 bus, cid;
687         int ret = FAILED;
688
689         if (aac_adapter_check_health(aac))
690                 return ret;
691
692         bus = aac_logical_to_phys(scmd_channel(cmd));
693         cid = scmd_id(cmd);
694         if (aac->hba_map[bus][cid].devtype == AAC_DEVTYPE_NATIVE_RAW) {
695                 struct fib *fib;
696                 struct aac_hba_tm_req *tmf;
697                 int status;
698                 u64 address;
699
700                 pr_err("%s: Host adapter abort request (%d,%d,%d,%d)\n",
701                  AAC_DRIVERNAME,
702                  host->host_no, sdev_channel(dev), sdev_id(dev), (int)dev->lun);
703
704                 found = 0;
705                 for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
706                         fib = &aac->fibs[count];
707                         if (*(u8 *)fib->hw_fib_va != 0 &&
708                                 (fib->flags & FIB_CONTEXT_FLAG_NATIVE_HBA) &&
709                                 (fib->callback_data == cmd)) {
710                                 found = 1;
711                                 break;
712                         }
713                 }
714                 if (!found)
715                         return ret;
716
717                 /* start a HBA_TMF_ABORT_TASK TMF request */
718                 fib = aac_fib_alloc(aac);
719                 if (!fib)
720                         return ret;
721
722                 tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
723                 memset(tmf, 0, sizeof(*tmf));
724                 tmf->tmf = HBA_TMF_ABORT_TASK;
725                 tmf->it_nexus = aac->hba_map[bus][cid].rmw_nexus;
726                 tmf->lun[1] = cmd->device->lun;
727
728                 address = (u64)fib->hw_error_pa;
729                 tmf->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
730                 tmf->error_ptr_lo = cpu_to_le32((u32)(address & 0xffffffff));
731                 tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
732
733                 fib->hbacmd_size = sizeof(*tmf);
734                 cmd->SCp.sent_command = 0;
735
736                 status = aac_hba_send(HBA_IU_TYPE_SCSI_TM_REQ, fib,
737                                   (fib_callback) aac_hba_callback,
738                                   (void *) cmd);
739                 if (status != -EINPROGRESS) {
740                         aac_fib_complete(fib);
741                         aac_fib_free(fib);
742                         return ret;
743                 }
744                 /* Wait up to 15 secs for completion */
745                 for (count = 0; count < 15; ++count) {
746                         if (cmd->SCp.sent_command) {
747                                 ret = SUCCESS;
748                                 break;
749                         }
750                         msleep(1000);
751                 }
752
753                 if (ret != SUCCESS)
754                         pr_err("%s: Host adapter abort request timed out\n",
755                         AAC_DRIVERNAME);
756         } else {
757                 pr_err(
758                         "%s: Host adapter abort request.\n"
759                         "%s: Outstanding commands on (%d,%d,%d,%d):\n",
760                         AAC_DRIVERNAME, AAC_DRIVERNAME,
761                         host->host_no, sdev_channel(dev), sdev_id(dev),
762                         (int)dev->lun);
763                 switch (cmd->cmnd[0]) {
764                 case SERVICE_ACTION_IN_16:
765                         if (!(aac->raw_io_interface) ||
766                             !(aac->raw_io_64) ||
767                             ((cmd->cmnd[1] & 0x1f) != SAI_READ_CAPACITY_16))
768                                 break;
769                 case INQUIRY:
770                 case READ_CAPACITY:
771                         /*
772                          * Mark associated FIB to not complete,
773                          * eh handler does this
774                          */
775                         for (count = 0;
776                                 count < (host->can_queue + AAC_NUM_MGT_FIB);
777                                 ++count) {
778                                 struct fib *fib = &aac->fibs[count];
779
780                                 if (fib->hw_fib_va->header.XferState &&
781                                 (fib->flags & FIB_CONTEXT_FLAG) &&
782                                 (fib->callback_data == cmd)) {
783                                         fib->flags |=
784                                                 FIB_CONTEXT_FLAG_TIMED_OUT;
785                                         cmd->SCp.phase =
786                                                 AAC_OWNER_ERROR_HANDLER;
787                                         ret = SUCCESS;
788                                 }
789                         }
790                         break;
791                 case TEST_UNIT_READY:
792                         /*
793                          * Mark associated FIB to not complete,
794                          * eh handler does this
795                          */
796                         for (count = 0;
797                                 count < (host->can_queue + AAC_NUM_MGT_FIB);
798                                 ++count) {
799                                 struct scsi_cmnd *command;
800                                 struct fib *fib = &aac->fibs[count];
801
802                                 command = fib->callback_data;
803
804                                 if ((fib->hw_fib_va->header.XferState &
805                                         cpu_to_le32
806                                         (Async | NoResponseExpected)) &&
807                                         (fib->flags & FIB_CONTEXT_FLAG) &&
808                                         ((command)) &&
809                                         (command->device == cmd->device)) {
810                                         fib->flags |=
811                                                 FIB_CONTEXT_FLAG_TIMED_OUT;
812                                         command->SCp.phase =
813                                                 AAC_OWNER_ERROR_HANDLER;
814                                         if (command == cmd)
815                                                 ret = SUCCESS;
816                                 }
817                         }
818                         break;
819                 }
820         }
821         return ret;
822 }
823
824 static u8 aac_eh_tmf_lun_reset_fib(struct aac_hba_map_info *info,
825                                    struct fib *fib, u64 tmf_lun)
826 {
827         struct aac_hba_tm_req *tmf;
828         u64 address;
829
830         /* start a HBA_TMF_LUN_RESET TMF request */
831         tmf = (struct aac_hba_tm_req *)fib->hw_fib_va;
832         memset(tmf, 0, sizeof(*tmf));
833         tmf->tmf = HBA_TMF_LUN_RESET;
834         tmf->it_nexus = info->rmw_nexus;
835         int_to_scsilun(tmf_lun, (struct scsi_lun *)tmf->lun);
836
837         address = (u64)fib->hw_error_pa;
838         tmf->error_ptr_hi = cpu_to_le32
839                 ((u32)(address >> 32));
840         tmf->error_ptr_lo = cpu_to_le32
841                 ((u32)(address & 0xffffffff));
842         tmf->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
843         fib->hbacmd_size = sizeof(*tmf);
844
845         return HBA_IU_TYPE_SCSI_TM_REQ;
846 }
847
848 static u8 aac_eh_tmf_hard_reset_fib(struct aac_hba_map_info *info,
849                                     struct fib *fib)
850 {
851         struct aac_hba_reset_req *rst;
852         u64 address;
853
854         /* already tried, start a hard reset now */
855         rst = (struct aac_hba_reset_req *)fib->hw_fib_va;
856         memset(rst, 0, sizeof(*rst));
857         rst->it_nexus = info->rmw_nexus;
858
859         address = (u64)fib->hw_error_pa;
860         rst->error_ptr_hi = cpu_to_le32((u32)(address >> 32));
861         rst->error_ptr_lo = cpu_to_le32
862                 ((u32)(address & 0xffffffff));
863         rst->error_length = cpu_to_le32(FW_ERROR_BUFFER_SIZE);
864         fib->hbacmd_size = sizeof(*rst);
865
866        return HBA_IU_TYPE_SATA_REQ;
867 }
868
869 void aac_tmf_callback(void *context, struct fib *fibptr)
870 {
871         struct aac_hba_resp *err =
872                 &((struct aac_native_hba *)fibptr->hw_fib_va)->resp.err;
873         struct aac_hba_map_info *info = context;
874         int res;
875
876         switch (err->service_response) {
877         case HBA_RESP_SVCRES_TMF_REJECTED:
878                 res = -1;
879                 break;
880         case HBA_RESP_SVCRES_TMF_LUN_INVALID:
881                 res = 0;
882                 break;
883         case HBA_RESP_SVCRES_TMF_COMPLETE:
884         case HBA_RESP_SVCRES_TMF_SUCCEEDED:
885                 res = 0;
886                 break;
887         default:
888                 res = -2;
889                 break;
890         }
891         aac_fib_complete(fibptr);
892
893         info->reset_state = res;
894 }
895
896 /*
897  *      aac_eh_dev_reset        - Device reset command handling
898  *      @scsi_cmd:      SCSI command block causing the reset
899  *
900  */
901 static int aac_eh_dev_reset(struct scsi_cmnd *cmd)
902 {
903         struct scsi_device * dev = cmd->device;
904         struct Scsi_Host * host = dev->host;
905         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
906         struct aac_hba_map_info *info;
907         int count;
908         u32 bus, cid;
909         struct fib *fib;
910         int ret = FAILED;
911         int status;
912         u8 command;
913
914         bus = aac_logical_to_phys(scmd_channel(cmd));
915         cid = scmd_id(cmd);
916
917         if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
918                 return FAILED;
919
920         info = &aac->hba_map[bus][cid];
921
922         if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW &&
923          !(info->reset_state > 0)))
924                 return FAILED;
925
926         pr_err("%s: Host device reset request. SCSI hang ?\n",
927                AAC_DRIVERNAME);
928
929         fib = aac_fib_alloc(aac);
930         if (!fib)
931                 return ret;
932
933         /* start a HBA_TMF_LUN_RESET TMF request */
934         command = aac_eh_tmf_lun_reset_fib(info, fib, dev->lun);
935
936         info->reset_state = 1;
937
938         status = aac_hba_send(command, fib,
939                               (fib_callback) aac_tmf_callback,
940                               (void *) info);
941         if (status != -EINPROGRESS) {
942                 info->reset_state = 0;
943                 aac_fib_complete(fib);
944                 aac_fib_free(fib);
945                 return ret;
946         }
947         /* Wait up to 15 seconds for completion */
948         for (count = 0; count < 15; ++count) {
949                 if (info->reset_state == 0) {
950                         ret = info->reset_state == 0 ? SUCCESS : FAILED;
951                         break;
952                 }
953                 msleep(1000);
954         }
955
956         return ret;
957 }
958
959 /*
960  *      aac_eh_target_reset     - Target reset command handling
961  *      @scsi_cmd:      SCSI command block causing the reset
962  *
963  */
964 static int aac_eh_target_reset(struct scsi_cmnd *cmd)
965 {
966         struct scsi_device * dev = cmd->device;
967         struct Scsi_Host * host = dev->host;
968         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
969         struct aac_hba_map_info *info;
970         int count;
971         u32 bus, cid;
972         int ret = FAILED;
973         struct fib *fib;
974         int status;
975         u8 command;
976
977         bus = aac_logical_to_phys(scmd_channel(cmd));
978         cid = scmd_id(cmd);
979
980         if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS)
981                 return FAILED;
982
983         info = &aac->hba_map[bus][cid];
984
985         if (!(info->devtype == AAC_DEVTYPE_NATIVE_RAW &&
986          !(info->reset_state > 0)))
987                 return FAILED;
988
989         pr_err("%s: Host target reset request. SCSI hang ?\n",
990                AAC_DRIVERNAME);
991
992         fib = aac_fib_alloc(aac);
993         if (!fib)
994                 return ret;
995
996
997         /* already tried, start a hard reset now */
998         command = aac_eh_tmf_hard_reset_fib(info, fib);
999
1000         info->reset_state = 2;
1001
1002         status = aac_hba_send(command, fib,
1003                               (fib_callback) aac_tmf_callback,
1004                               (void *) info);
1005
1006         if (status != -EINPROGRESS) {
1007                 info->reset_state = 0;
1008                 aac_fib_complete(fib);
1009                 aac_fib_free(fib);
1010                 return ret;
1011         }
1012
1013         /* Wait up to 15 seconds for completion */
1014         for (count = 0; count < 15; ++count) {
1015                 if (info->reset_state <= 0) {
1016                         ret = info->reset_state == 0 ? SUCCESS : FAILED;
1017                         break;
1018                 }
1019                 msleep(1000);
1020         }
1021
1022         return ret;
1023 }
1024
1025 /*
1026  *      aac_eh_bus_reset        - Bus reset command handling
1027  *      @scsi_cmd:      SCSI command block causing the reset
1028  *
1029  */
1030 static int aac_eh_bus_reset(struct scsi_cmnd* cmd)
1031 {
1032         struct scsi_device * dev = cmd->device;
1033         struct Scsi_Host * host = dev->host;
1034         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1035         int count;
1036         u32 cmd_bus;
1037         int status = 0;
1038
1039
1040         cmd_bus = aac_logical_to_phys(scmd_channel(cmd));
1041         /* Mark the assoc. FIB to not complete, eh handler does this */
1042         for (count = 0; count < (host->can_queue + AAC_NUM_MGT_FIB); ++count) {
1043                 struct fib *fib = &aac->fibs[count];
1044
1045                 if (fib->hw_fib_va->header.XferState &&
1046                     (fib->flags & FIB_CONTEXT_FLAG) &&
1047                     (fib->flags & FIB_CONTEXT_FLAG_SCSI_CMD)) {
1048                         struct aac_hba_map_info *info;
1049                         u32 bus, cid;
1050
1051                         cmd = (struct scsi_cmnd *)fib->callback_data;
1052                         bus = aac_logical_to_phys(scmd_channel(cmd));
1053                         if (bus != cmd_bus)
1054                                 continue;
1055                         cid = scmd_id(cmd);
1056                         info = &aac->hba_map[bus][cid];
1057                         if (bus >= AAC_MAX_BUSES || cid >= AAC_MAX_TARGETS ||
1058                             info->devtype != AAC_DEVTYPE_NATIVE_RAW) {
1059                                 fib->flags |= FIB_CONTEXT_FLAG_EH_RESET;
1060                                 cmd->SCp.phase = AAC_OWNER_ERROR_HANDLER;
1061                         }
1062                 }
1063         }
1064
1065         pr_err("%s: Host bus reset request. SCSI hang ?\n", AAC_DRIVERNAME);
1066
1067         /*
1068          * Check the health of the controller
1069          */
1070         status = aac_adapter_check_health(aac);
1071         if (status)
1072                 dev_err(&aac->pdev->dev, "Adapter health - %d\n", status);
1073
1074         count = get_num_of_incomplete_fibs(aac);
1075         return (count == 0) ? SUCCESS : FAILED;
1076 }
1077
1078 /*
1079  *      aac_eh_host_reset       - Host reset command handling
1080  *      @scsi_cmd:      SCSI command block causing the reset
1081  *
1082  */
1083 int aac_eh_host_reset(struct scsi_cmnd *cmd)
1084 {
1085         struct scsi_device * dev = cmd->device;
1086         struct Scsi_Host * host = dev->host;
1087         struct aac_dev * aac = (struct aac_dev *)host->hostdata;
1088         int ret = FAILED;
1089         __le32 supported_options2 = 0;
1090         bool is_mu_reset;
1091         bool is_ignore_reset;
1092         bool is_doorbell_reset;
1093
1094         /*
1095          * Check if reset is supported by the firmware
1096          */
1097         supported_options2 = aac->supplement_adapter_info.supported_options2;
1098         is_mu_reset = supported_options2 & AAC_OPTION_MU_RESET;
1099         is_doorbell_reset = supported_options2 & AAC_OPTION_DOORBELL_RESET;
1100         is_ignore_reset = supported_options2 & AAC_OPTION_IGNORE_RESET;
1101         /*
1102          * This adapter needs a blind reset, only do so for
1103          * Adapters that support a register, instead of a commanded,
1104          * reset.
1105          */
1106         if ((is_mu_reset || is_doorbell_reset)
1107          && aac_check_reset
1108          && (aac_check_reset != -1 || !is_ignore_reset)) {
1109                 /* Bypass wait for command quiesce */
1110                 if (aac_reset_adapter(aac, 2, IOP_HWSOFT_RESET) == 0)
1111                         ret = SUCCESS;
1112         }
1113         /*
1114          * Reset EH state
1115          */
1116         if (ret == SUCCESS) {
1117                 int bus, cid;
1118                 struct aac_hba_map_info *info;
1119
1120                 for (bus = 0; bus < AAC_MAX_BUSES; bus++) {
1121                         for (cid = 0; cid < AAC_MAX_TARGETS; cid++) {
1122                                 info = &aac->hba_map[bus][cid];
1123                                 if (info->devtype == AAC_DEVTYPE_NATIVE_RAW)
1124                                         info->reset_state = 0;
1125                         }
1126                 }
1127         }
1128         return ret;
1129 }
1130
1131 /**
1132  *      aac_cfg_open            -       open a configuration file
1133  *      @inode: inode being opened
1134  *      @file: file handle attached
1135  *
1136  *      Called when the configuration device is opened. Does the needed
1137  *      set up on the handle and then returns
1138  *
1139  *      Bugs: This needs extending to check a given adapter is present
1140  *      so we can support hot plugging, and to ref count adapters.
1141  */
1142
1143 static int aac_cfg_open(struct inode *inode, struct file *file)
1144 {
1145         struct aac_dev *aac;
1146         unsigned minor_number = iminor(inode);
1147         int err = -ENODEV;
1148
1149         mutex_lock(&aac_mutex);  /* BKL pushdown: nothing else protects this list */
1150         list_for_each_entry(aac, &aac_devices, entry) {
1151                 if (aac->id == minor_number) {
1152                         file->private_data = aac;
1153                         err = 0;
1154                         break;
1155                 }
1156         }
1157         mutex_unlock(&aac_mutex);
1158
1159         return err;
1160 }
1161
1162 /**
1163  *      aac_cfg_ioctl           -       AAC configuration request
1164  *      @inode: inode of device
1165  *      @file: file handle
1166  *      @cmd: ioctl command code
1167  *      @arg: argument
1168  *
1169  *      Handles a configuration ioctl. Currently this involves wrapping it
1170  *      up and feeding it into the nasty windowsalike glue layer.
1171  *
1172  *      Bugs: Needs locking against parallel ioctls lower down
1173  *      Bugs: Needs to handle hot plugging
1174  */
1175
1176 static long aac_cfg_ioctl(struct file *file,
1177                 unsigned int cmd, unsigned long arg)
1178 {
1179         struct aac_dev *aac = (struct aac_dev *)file->private_data;
1180
1181         if (!capable(CAP_SYS_RAWIO))
1182                 return -EPERM;
1183
1184         return aac_do_ioctl(aac, cmd, (void __user *)arg);
1185 }
1186
1187 #ifdef CONFIG_COMPAT
1188 static long aac_compat_do_ioctl(struct aac_dev *dev, unsigned cmd, unsigned long arg)
1189 {
1190         long ret;
1191         switch (cmd) {
1192         case FSACTL_MINIPORT_REV_CHECK:
1193         case FSACTL_SENDFIB:
1194         case FSACTL_OPEN_GET_ADAPTER_FIB:
1195         case FSACTL_CLOSE_GET_ADAPTER_FIB:
1196         case FSACTL_SEND_RAW_SRB:
1197         case FSACTL_GET_PCI_INFO:
1198         case FSACTL_QUERY_DISK:
1199         case FSACTL_DELETE_DISK:
1200         case FSACTL_FORCE_DELETE_DISK:
1201         case FSACTL_GET_CONTAINERS:
1202         case FSACTL_SEND_LARGE_FIB:
1203                 ret = aac_do_ioctl(dev, cmd, (void __user *)arg);
1204                 break;
1205
1206         case FSACTL_GET_NEXT_ADAPTER_FIB: {
1207                 struct fib_ioctl __user *f;
1208
1209                 f = compat_alloc_user_space(sizeof(*f));
1210                 ret = 0;
1211                 if (clear_user(f, sizeof(*f)))
1212                         ret = -EFAULT;
1213                 if (copy_in_user(f, (void __user *)arg, sizeof(struct fib_ioctl) - sizeof(u32)))
1214                         ret = -EFAULT;
1215                 if (!ret)
1216                         ret = aac_do_ioctl(dev, cmd, f);
1217                 break;
1218         }
1219
1220         default:
1221                 ret = -ENOIOCTLCMD;
1222                 break;
1223         }
1224         return ret;
1225 }
1226
1227 static int aac_compat_ioctl(struct scsi_device *sdev, int cmd, void __user *arg)
1228 {
1229         struct aac_dev *dev = (struct aac_dev *)sdev->host->hostdata;
1230         if (!capable(CAP_SYS_RAWIO))
1231                 return -EPERM;
1232         return aac_compat_do_ioctl(dev, cmd, (unsigned long)arg);
1233 }
1234
1235 static long aac_compat_cfg_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1236 {
1237         if (!capable(CAP_SYS_RAWIO))
1238                 return -EPERM;
1239         return aac_compat_do_ioctl(file->private_data, cmd, arg);
1240 }
1241 #endif
1242
1243 static ssize_t aac_show_model(struct device *device,
1244                               struct device_attribute *attr, char *buf)
1245 {
1246         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1247         int len;
1248
1249         if (dev->supplement_adapter_info.adapter_type_text[0]) {
1250                 char *cp = dev->supplement_adapter_info.adapter_type_text;
1251                 while (*cp && *cp != ' ')
1252                         ++cp;
1253                 while (*cp == ' ')
1254                         ++cp;
1255                 len = snprintf(buf, PAGE_SIZE, "%s\n", cp);
1256         } else
1257                 len = snprintf(buf, PAGE_SIZE, "%s\n",
1258                   aac_drivers[dev->cardtype].model);
1259         return len;
1260 }
1261
1262 static ssize_t aac_show_vendor(struct device *device,
1263                                struct device_attribute *attr, char *buf)
1264 {
1265         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1266         struct aac_supplement_adapter_info *sup_adap_info;
1267         int len;
1268
1269         sup_adap_info = &dev->supplement_adapter_info;
1270         if (sup_adap_info->adapter_type_text[0]) {
1271                 char *cp = sup_adap_info->adapter_type_text;
1272                 while (*cp && *cp != ' ')
1273                         ++cp;
1274                 len = snprintf(buf, PAGE_SIZE, "%.*s\n",
1275                         (int)(cp - (char *)sup_adap_info->adapter_type_text),
1276                                         sup_adap_info->adapter_type_text);
1277         } else
1278                 len = snprintf(buf, PAGE_SIZE, "%s\n",
1279                         aac_drivers[dev->cardtype].vname);
1280         return len;
1281 }
1282
1283 static ssize_t aac_show_flags(struct device *cdev,
1284                               struct device_attribute *attr, char *buf)
1285 {
1286         int len = 0;
1287         struct aac_dev *dev = (struct aac_dev*)class_to_shost(cdev)->hostdata;
1288
1289         if (nblank(dprintk(x)))
1290                 len = snprintf(buf, PAGE_SIZE, "dprintk\n");
1291 #ifdef AAC_DETAILED_STATUS_INFO
1292         len += snprintf(buf + len, PAGE_SIZE - len,
1293                         "AAC_DETAILED_STATUS_INFO\n");
1294 #endif
1295         if (dev->raw_io_interface && dev->raw_io_64)
1296                 len += snprintf(buf + len, PAGE_SIZE - len,
1297                                 "SAI_READ_CAPACITY_16\n");
1298         if (dev->jbod)
1299                 len += snprintf(buf + len, PAGE_SIZE - len, "SUPPORTED_JBOD\n");
1300         if (dev->supplement_adapter_info.supported_options2 &
1301                 AAC_OPTION_POWER_MANAGEMENT)
1302                 len += snprintf(buf + len, PAGE_SIZE - len,
1303                                 "SUPPORTED_POWER_MANAGEMENT\n");
1304         if (dev->msi)
1305                 len += snprintf(buf + len, PAGE_SIZE - len, "PCI_HAS_MSI\n");
1306         return len;
1307 }
1308
1309 static ssize_t aac_show_kernel_version(struct device *device,
1310                                        struct device_attribute *attr,
1311                                        char *buf)
1312 {
1313         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1314         int len, tmp;
1315
1316         tmp = le32_to_cpu(dev->adapter_info.kernelrev);
1317         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1318           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1319           le32_to_cpu(dev->adapter_info.kernelbuild));
1320         return len;
1321 }
1322
1323 static ssize_t aac_show_monitor_version(struct device *device,
1324                                         struct device_attribute *attr,
1325                                         char *buf)
1326 {
1327         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1328         int len, tmp;
1329
1330         tmp = le32_to_cpu(dev->adapter_info.monitorrev);
1331         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1332           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1333           le32_to_cpu(dev->adapter_info.monitorbuild));
1334         return len;
1335 }
1336
1337 static ssize_t aac_show_bios_version(struct device *device,
1338                                      struct device_attribute *attr,
1339                                      char *buf)
1340 {
1341         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1342         int len, tmp;
1343
1344         tmp = le32_to_cpu(dev->adapter_info.biosrev);
1345         len = snprintf(buf, PAGE_SIZE, "%d.%d-%d[%d]\n",
1346           tmp >> 24, (tmp >> 16) & 0xff, tmp & 0xff,
1347           le32_to_cpu(dev->adapter_info.biosbuild));
1348         return len;
1349 }
1350
1351 static ssize_t aac_show_driver_version(struct device *device,
1352                                         struct device_attribute *attr,
1353                                         char *buf)
1354 {
1355         return snprintf(buf, PAGE_SIZE, "%s\n", aac_driver_version);
1356 }
1357
1358 static ssize_t aac_show_serial_number(struct device *device,
1359                                struct device_attribute *attr, char *buf)
1360 {
1361         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1362         int len = 0;
1363
1364         if (le32_to_cpu(dev->adapter_info.serial[0]) != 0xBAD0)
1365                 len = snprintf(buf, 16, "%06X\n",
1366                   le32_to_cpu(dev->adapter_info.serial[0]));
1367         if (len &&
1368           !memcmp(&dev->supplement_adapter_info.mfg_pcba_serial_no[
1369             sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no)-len],
1370           buf, len-1))
1371                 len = snprintf(buf, 16, "%.*s\n",
1372                   (int)sizeof(dev->supplement_adapter_info.mfg_pcba_serial_no),
1373                   dev->supplement_adapter_info.mfg_pcba_serial_no);
1374
1375         return min(len, 16);
1376 }
1377
1378 static ssize_t aac_show_max_channel(struct device *device,
1379                                     struct device_attribute *attr, char *buf)
1380 {
1381         return snprintf(buf, PAGE_SIZE, "%d\n",
1382           class_to_shost(device)->max_channel);
1383 }
1384
1385 static ssize_t aac_show_max_id(struct device *device,
1386                                struct device_attribute *attr, char *buf)
1387 {
1388         return snprintf(buf, PAGE_SIZE, "%d\n",
1389           class_to_shost(device)->max_id);
1390 }
1391
1392 static ssize_t aac_store_reset_adapter(struct device *device,
1393                                        struct device_attribute *attr,
1394                                        const char *buf, size_t count)
1395 {
1396         int retval = -EACCES;
1397
1398         if (!capable(CAP_SYS_ADMIN))
1399                 return retval;
1400
1401         retval = aac_reset_adapter(shost_priv(class_to_shost(device)),
1402                                         buf[0] == '!', IOP_HWSOFT_RESET);
1403         if (retval >= 0)
1404                 retval = count;
1405
1406         return retval;
1407 }
1408
1409 static ssize_t aac_show_reset_adapter(struct device *device,
1410                                       struct device_attribute *attr,
1411                                       char *buf)
1412 {
1413         struct aac_dev *dev = (struct aac_dev*)class_to_shost(device)->hostdata;
1414         int len, tmp;
1415
1416         tmp = aac_adapter_check_health(dev);
1417         if ((tmp == 0) && dev->in_reset)
1418                 tmp = -EBUSY;
1419         len = snprintf(buf, PAGE_SIZE, "0x%x\n", tmp);
1420         return len;
1421 }
1422
1423 static struct device_attribute aac_model = {
1424         .attr = {
1425                 .name = "model",
1426                 .mode = S_IRUGO,
1427         },
1428         .show = aac_show_model,
1429 };
1430 static struct device_attribute aac_vendor = {
1431         .attr = {
1432                 .name = "vendor",
1433                 .mode = S_IRUGO,
1434         },
1435         .show = aac_show_vendor,
1436 };
1437 static struct device_attribute aac_flags = {
1438         .attr = {
1439                 .name = "flags",
1440                 .mode = S_IRUGO,
1441         },
1442         .show = aac_show_flags,
1443 };
1444 static struct device_attribute aac_kernel_version = {
1445         .attr = {
1446                 .name = "hba_kernel_version",
1447                 .mode = S_IRUGO,
1448         },
1449         .show = aac_show_kernel_version,
1450 };
1451 static struct device_attribute aac_monitor_version = {
1452         .attr = {
1453                 .name = "hba_monitor_version",
1454                 .mode = S_IRUGO,
1455         },
1456         .show = aac_show_monitor_version,
1457 };
1458 static struct device_attribute aac_bios_version = {
1459         .attr = {
1460                 .name = "hba_bios_version",
1461                 .mode = S_IRUGO,
1462         },
1463         .show = aac_show_bios_version,
1464 };
1465 static struct device_attribute aac_lld_version = {
1466         .attr = {
1467                 .name = "driver_version",
1468                 .mode = 0444,
1469         },
1470         .show = aac_show_driver_version,
1471 };
1472 static struct device_attribute aac_serial_number = {
1473         .attr = {
1474                 .name = "serial_number",
1475                 .mode = S_IRUGO,
1476         },
1477         .show = aac_show_serial_number,
1478 };
1479 static struct device_attribute aac_max_channel = {
1480         .attr = {
1481                 .name = "max_channel",
1482                 .mode = S_IRUGO,
1483         },
1484         .show = aac_show_max_channel,
1485 };
1486 static struct device_attribute aac_max_id = {
1487         .attr = {
1488                 .name = "max_id",
1489                 .mode = S_IRUGO,
1490         },
1491         .show = aac_show_max_id,
1492 };
1493 static struct device_attribute aac_reset = {
1494         .attr = {
1495                 .name = "reset_host",
1496                 .mode = S_IWUSR|S_IRUGO,
1497         },
1498         .store = aac_store_reset_adapter,
1499         .show = aac_show_reset_adapter,
1500 };
1501
1502 static struct device_attribute *aac_attrs[] = {
1503         &aac_model,
1504         &aac_vendor,
1505         &aac_flags,
1506         &aac_kernel_version,
1507         &aac_monitor_version,
1508         &aac_bios_version,
1509         &aac_lld_version,
1510         &aac_serial_number,
1511         &aac_max_channel,
1512         &aac_max_id,
1513         &aac_reset,
1514         NULL
1515 };
1516
1517 ssize_t aac_get_serial_number(struct device *device, char *buf)
1518 {
1519         return aac_show_serial_number(device, &aac_serial_number, buf);
1520 }
1521
1522 static const struct file_operations aac_cfg_fops = {
1523         .owner          = THIS_MODULE,
1524         .unlocked_ioctl = aac_cfg_ioctl,
1525 #ifdef CONFIG_COMPAT
1526         .compat_ioctl   = aac_compat_cfg_ioctl,
1527 #endif
1528         .open           = aac_cfg_open,
1529         .llseek         = noop_llseek,
1530 };
1531
1532 static struct scsi_host_template aac_driver_template = {
1533         .module                         = THIS_MODULE,
1534         .name                           = "AAC",
1535         .proc_name                      = AAC_DRIVERNAME,
1536         .info                           = aac_info,
1537         .ioctl                          = aac_ioctl,
1538 #ifdef CONFIG_COMPAT
1539         .compat_ioctl                   = aac_compat_ioctl,
1540 #endif
1541         .queuecommand                   = aac_queuecommand,
1542         .bios_param                     = aac_biosparm,
1543         .shost_attrs                    = aac_attrs,
1544         .slave_configure                = aac_slave_configure,
1545         .change_queue_depth             = aac_change_queue_depth,
1546         .sdev_attrs                     = aac_dev_attrs,
1547         .eh_abort_handler               = aac_eh_abort,
1548         .eh_device_reset_handler        = aac_eh_dev_reset,
1549         .eh_target_reset_handler        = aac_eh_target_reset,
1550         .eh_bus_reset_handler           = aac_eh_bus_reset,
1551         .eh_host_reset_handler          = aac_eh_host_reset,
1552         .can_queue                      = AAC_NUM_IO_FIB,
1553         .this_id                        = MAXIMUM_NUM_CONTAINERS,
1554         .sg_tablesize                   = 16,
1555         .max_sectors                    = 128,
1556 #if (AAC_NUM_IO_FIB > 256)
1557         .cmd_per_lun                    = 256,
1558 #else
1559         .cmd_per_lun                    = AAC_NUM_IO_FIB,
1560 #endif
1561         .use_clustering                 = ENABLE_CLUSTERING,
1562         .emulated                       = 1,
1563         .no_write_same                  = 1,
1564 };
1565
1566 static void __aac_shutdown(struct aac_dev * aac)
1567 {
1568         int i;
1569
1570         mutex_lock(&aac->ioctl_mutex);
1571         aac->adapter_shutdown = 1;
1572         mutex_unlock(&aac->ioctl_mutex);
1573
1574         if (aac->aif_thread) {
1575                 int i;
1576                 /* Clear out events first */
1577                 for (i = 0; i < (aac->scsi_host_ptr->can_queue + AAC_NUM_MGT_FIB); i++) {
1578                         struct fib *fib = &aac->fibs[i];
1579                         if (!(fib->hw_fib_va->header.XferState & cpu_to_le32(NoResponseExpected | Async)) &&
1580                             (fib->hw_fib_va->header.XferState & cpu_to_le32(ResponseExpected)))
1581                                 up(&fib->event_wait);
1582                 }
1583                 kthread_stop(aac->thread);
1584                 aac->thread = NULL;
1585         }
1586
1587         aac_send_shutdown(aac);
1588
1589         aac_adapter_disable_int(aac);
1590
1591         if (aac_is_src(aac)) {
1592                 if (aac->max_msix > 1) {
1593                         for (i = 0; i < aac->max_msix; i++) {
1594                                 free_irq(pci_irq_vector(aac->pdev, i),
1595                                          &(aac->aac_msix[i]));
1596                         }
1597                 } else {
1598                         free_irq(aac->pdev->irq,
1599                                  &(aac->aac_msix[0]));
1600                 }
1601         } else {
1602                 free_irq(aac->pdev->irq, aac);
1603         }
1604         if (aac->msi)
1605                 pci_disable_msi(aac->pdev);
1606         else if (aac->max_msix > 1)
1607                 pci_disable_msix(aac->pdev);
1608 }
1609 static void aac_init_char(void)
1610 {
1611         aac_cfg_major = register_chrdev(0, "aac", &aac_cfg_fops);
1612         if (aac_cfg_major < 0) {
1613                 pr_err("aacraid: unable to register \"aac\" device.\n");
1614         }
1615 }
1616
1617 static int aac_probe_one(struct pci_dev *pdev, const struct pci_device_id *id)
1618 {
1619         unsigned index = id->driver_data;
1620         struct Scsi_Host *shost;
1621         struct aac_dev *aac;
1622         struct list_head *insert = &aac_devices;
1623         int error;
1624         int unique_id = 0;
1625         u64 dmamask;
1626         int mask_bits = 0;
1627         extern int aac_sync_mode;
1628
1629         /*
1630          * Only series 7 needs freset.
1631          */
1632         if (pdev->device == PMC_DEVICE_S7)
1633                 pdev->needs_freset = 1;
1634
1635         list_for_each_entry(aac, &aac_devices, entry) {
1636                 if (aac->id > unique_id)
1637                         break;
1638                 insert = &aac->entry;
1639                 unique_id++;
1640         }
1641
1642         pci_disable_link_state(pdev, PCIE_LINK_STATE_L0S | PCIE_LINK_STATE_L1 |
1643                                PCIE_LINK_STATE_CLKPM);
1644
1645         error = pci_enable_device(pdev);
1646         if (error)
1647                 goto out;
1648
1649         if (!(aac_drivers[index].quirks & AAC_QUIRK_SRC)) {
1650                 error = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
1651                 if (error) {
1652                         dev_err(&pdev->dev, "PCI 32 BIT dma mask set failed");
1653                         goto out_disable_pdev;
1654                 }
1655         }
1656
1657         /*
1658          * If the quirk31 bit is set, the adapter needs adapter
1659          * to driver communication memory to be allocated below 2gig
1660          */
1661         if (aac_drivers[index].quirks & AAC_QUIRK_31BIT) {
1662                 dmamask = DMA_BIT_MASK(31);
1663                 mask_bits = 31;
1664         } else {
1665                 dmamask = DMA_BIT_MASK(32);
1666                 mask_bits = 32;
1667         }
1668
1669         error = pci_set_consistent_dma_mask(pdev, dmamask);
1670         if (error) {
1671                 dev_err(&pdev->dev, "PCI %d B consistent dma mask set failed\n"
1672                                 , mask_bits);
1673                 goto out_disable_pdev;
1674         }
1675
1676         pci_set_master(pdev);
1677
1678         shost = scsi_host_alloc(&aac_driver_template, sizeof(struct aac_dev));
1679         if (!shost) {
1680                 error = -ENOMEM;
1681                 goto out_disable_pdev;
1682         }
1683
1684         shost->irq = pdev->irq;
1685         shost->unique_id = unique_id;
1686         shost->max_cmd_len = 16;
1687         shost->use_cmd_list = 1;
1688
1689         if (aac_cfg_major == AAC_CHARDEV_NEEDS_REINIT)
1690                 aac_init_char();
1691
1692         aac = (struct aac_dev *)shost->hostdata;
1693         aac->base_start = pci_resource_start(pdev, 0);
1694         aac->scsi_host_ptr = shost;
1695         aac->pdev = pdev;
1696         aac->name = aac_driver_template.name;
1697         aac->id = shost->unique_id;
1698         aac->cardtype = index;
1699         INIT_LIST_HEAD(&aac->entry);
1700
1701         if (aac_reset_devices || reset_devices)
1702                 aac->init_reset = true;
1703
1704         aac->fibs = kcalloc(shost->can_queue + AAC_NUM_MGT_FIB,
1705                             sizeof(struct fib),
1706                             GFP_KERNEL);
1707         if (!aac->fibs) {
1708                 error = -ENOMEM;
1709                 goto out_free_host;
1710         }
1711
1712         spin_lock_init(&aac->fib_lock);
1713
1714         mutex_init(&aac->ioctl_mutex);
1715         mutex_init(&aac->scan_mutex);
1716
1717         INIT_DELAYED_WORK(&aac->safw_rescan_work, aac_safw_rescan_worker);
1718         /*
1719          *      Map in the registers from the adapter.
1720          */
1721         aac->base_size = AAC_MIN_FOOTPRINT_SIZE;
1722         if ((*aac_drivers[index].init)(aac)) {
1723                 error = -ENODEV;
1724                 goto out_unmap;
1725         }
1726
1727         if (aac->sync_mode) {
1728                 if (aac_sync_mode)
1729                         printk(KERN_INFO "%s%d: Sync. mode enforced "
1730                                 "by driver parameter. This will cause "
1731                                 "a significant performance decrease!\n",
1732                                 aac->name,
1733                                 aac->id);
1734                 else
1735                         printk(KERN_INFO "%s%d: Async. mode not supported "
1736                                 "by current driver, sync. mode enforced."
1737                                 "\nPlease update driver to get full performance.\n",
1738                                 aac->name,
1739                                 aac->id);
1740         }
1741
1742         /*
1743          *      Start any kernel threads needed
1744          */
1745         aac->thread = kthread_run(aac_command_thread, aac, AAC_DRIVERNAME);
1746         if (IS_ERR(aac->thread)) {
1747                 printk(KERN_ERR "aacraid: Unable to create command thread.\n");
1748                 error = PTR_ERR(aac->thread);
1749                 aac->thread = NULL;
1750                 goto out_deinit;
1751         }
1752
1753         aac->maximum_num_channels = aac_drivers[index].channels;
1754         error = aac_get_adapter_info(aac);
1755         if (error < 0)
1756                 goto out_deinit;
1757
1758         /*
1759          * Lets override negotiations and drop the maximum SG limit to 34
1760          */
1761         if ((aac_drivers[index].quirks & AAC_QUIRK_34SG) &&
1762                         (shost->sg_tablesize > 34)) {
1763                 shost->sg_tablesize = 34;
1764                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1765         }
1766
1767         if ((aac_drivers[index].quirks & AAC_QUIRK_17SG) &&
1768                         (shost->sg_tablesize > 17)) {
1769                 shost->sg_tablesize = 17;
1770                 shost->max_sectors = (shost->sg_tablesize * 8) + 112;
1771         }
1772
1773         error = pci_set_dma_max_seg_size(pdev,
1774                 (aac->adapter_info.options & AAC_OPT_NEW_COMM) ?
1775                         (shost->max_sectors << 9) : 65536);
1776         if (error)
1777                 goto out_deinit;
1778
1779         /*
1780          * Firmware printf works only with older firmware.
1781          */
1782         if (aac_drivers[index].quirks & AAC_QUIRK_34SG)
1783                 aac->printf_enabled = 1;
1784         else
1785                 aac->printf_enabled = 0;
1786
1787         /*
1788          * max channel will be the physical channels plus 1 virtual channel
1789          * all containers are on the virtual channel 0 (CONTAINER_CHANNEL)
1790          * physical channels are address by their actual physical number+1
1791          */
1792         if (aac->nondasd_support || expose_physicals || aac->jbod)
1793                 shost->max_channel = aac->maximum_num_channels;
1794         else
1795                 shost->max_channel = 0;
1796
1797         aac_get_config_status(aac, 0);
1798         aac_get_containers(aac);
1799         list_add(&aac->entry, insert);
1800
1801         shost->max_id = aac->maximum_num_containers;
1802         if (shost->max_id < aac->maximum_num_physicals)
1803                 shost->max_id = aac->maximum_num_physicals;
1804         if (shost->max_id < MAXIMUM_NUM_CONTAINERS)
1805                 shost->max_id = MAXIMUM_NUM_CONTAINERS;
1806         else
1807                 shost->this_id = shost->max_id;
1808
1809         if (!aac->sa_firmware && aac_drivers[index].quirks & AAC_QUIRK_SRC)
1810                 aac_intr_normal(aac, 0, 2, 0, NULL);
1811
1812         /*
1813          * dmb - we may need to move the setting of these parms somewhere else once
1814          * we get a fib that can report the actual numbers
1815          */
1816         shost->max_lun = AAC_MAX_LUN;
1817
1818         pci_set_drvdata(pdev, shost);
1819
1820         error = scsi_add_host(shost, &pdev->dev);
1821         if (error)
1822                 goto out_deinit;
1823
1824         aac_scan_host(aac);
1825
1826         pci_enable_pcie_error_reporting(pdev);
1827         pci_save_state(pdev);
1828
1829         return 0;
1830
1831  out_deinit:
1832         __aac_shutdown(aac);
1833  out_unmap:
1834         aac_fib_map_free(aac);
1835         if (aac->comm_addr)
1836                 dma_free_coherent(&aac->pdev->dev, aac->comm_size,
1837                                   aac->comm_addr, aac->comm_phys);
1838         kfree(aac->queues);
1839         aac_adapter_ioremap(aac, 0);
1840         kfree(aac->fibs);
1841         kfree(aac->fsa_dev);
1842  out_free_host:
1843         scsi_host_put(shost);
1844  out_disable_pdev:
1845         pci_disable_device(pdev);
1846  out:
1847         return error;
1848 }
1849
1850 static void aac_release_resources(struct aac_dev *aac)
1851 {
1852         aac_adapter_disable_int(aac);
1853         aac_free_irq(aac);
1854 }
1855
1856 static int aac_acquire_resources(struct aac_dev *dev)
1857 {
1858         unsigned long status;
1859         /*
1860          *      First clear out all interrupts.  Then enable the one's that we
1861          *      can handle.
1862          */
1863         while (!((status = src_readl(dev, MUnit.OMR)) & KERNEL_UP_AND_RUNNING)
1864                 || status == 0xffffffff)
1865                         msleep(20);
1866
1867         aac_adapter_disable_int(dev);
1868         aac_adapter_enable_int(dev);
1869
1870
1871         if (aac_is_src(dev))
1872                 aac_define_int_mode(dev);
1873
1874         if (dev->msi_enabled)
1875                 aac_src_access_devreg(dev, AAC_ENABLE_MSIX);
1876
1877         if (aac_acquire_irq(dev))
1878                 goto error_iounmap;
1879
1880         aac_adapter_enable_int(dev);
1881
1882         /*max msix may change  after EEH
1883          * Re-assign vectors to fibs
1884          */
1885         aac_fib_vector_assign(dev);
1886
1887         if (!dev->sync_mode) {
1888                 /* After EEH recovery or suspend resume, max_msix count
1889                  * may change, therefore updating in init as well.
1890                  */
1891                 dev->init->r7.no_of_msix_vectors = cpu_to_le32(dev->max_msix);
1892                 aac_adapter_start(dev);
1893         }
1894         return 0;
1895
1896 error_iounmap:
1897         return -1;
1898
1899 }
1900
1901 #if (defined(CONFIG_PM))
1902 static int aac_suspend(struct pci_dev *pdev, pm_message_t state)
1903 {
1904
1905         struct Scsi_Host *shost = pci_get_drvdata(pdev);
1906         struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1907
1908         scsi_block_requests(shost);
1909         aac_cancel_safw_rescan_worker(aac);
1910         aac_send_shutdown(aac);
1911
1912         aac_release_resources(aac);
1913
1914         pci_set_drvdata(pdev, shost);
1915         pci_save_state(pdev);
1916         pci_disable_device(pdev);
1917         pci_set_power_state(pdev, pci_choose_state(pdev, state));
1918
1919         return 0;
1920 }
1921
1922 static int aac_resume(struct pci_dev *pdev)
1923 {
1924         struct Scsi_Host *shost = pci_get_drvdata(pdev);
1925         struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1926         int r;
1927
1928         pci_set_power_state(pdev, PCI_D0);
1929         pci_enable_wake(pdev, PCI_D0, 0);
1930         pci_restore_state(pdev);
1931         r = pci_enable_device(pdev);
1932
1933         if (r)
1934                 goto fail_device;
1935
1936         pci_set_master(pdev);
1937         if (aac_acquire_resources(aac))
1938                 goto fail_device;
1939         /*
1940         * reset this flag to unblock ioctl() as it was set at
1941         * aac_send_shutdown() to block ioctls from upperlayer
1942         */
1943         aac->adapter_shutdown = 0;
1944         scsi_unblock_requests(shost);
1945
1946         return 0;
1947
1948 fail_device:
1949         printk(KERN_INFO "%s%d: resume failed.\n", aac->name, aac->id);
1950         scsi_host_put(shost);
1951         pci_disable_device(pdev);
1952         return -ENODEV;
1953 }
1954 #endif
1955
1956 static void aac_shutdown(struct pci_dev *dev)
1957 {
1958         struct Scsi_Host *shost = pci_get_drvdata(dev);
1959         scsi_block_requests(shost);
1960         __aac_shutdown((struct aac_dev *)shost->hostdata);
1961 }
1962
1963 static void aac_remove_one(struct pci_dev *pdev)
1964 {
1965         struct Scsi_Host *shost = pci_get_drvdata(pdev);
1966         struct aac_dev *aac = (struct aac_dev *)shost->hostdata;
1967
1968         aac_cancel_safw_rescan_worker(aac);
1969         scsi_remove_host(shost);
1970
1971         __aac_shutdown(aac);
1972         aac_fib_map_free(aac);
1973         dma_free_coherent(&aac->pdev->dev, aac->comm_size, aac->comm_addr,
1974                           aac->comm_phys);
1975         kfree(aac->queues);
1976
1977         aac_adapter_ioremap(aac, 0);
1978
1979         kfree(aac->fibs);
1980         kfree(aac->fsa_dev);
1981
1982         list_del(&aac->entry);
1983         scsi_host_put(shost);
1984         pci_disable_device(pdev);
1985         if (list_empty(&aac_devices)) {
1986                 unregister_chrdev(aac_cfg_major, "aac");
1987                 aac_cfg_major = AAC_CHARDEV_NEEDS_REINIT;
1988         }
1989 }
1990
1991 static void aac_flush_ios(struct aac_dev *aac)
1992 {
1993         int i;
1994         struct scsi_cmnd *cmd;
1995
1996         for (i = 0; i < aac->scsi_host_ptr->can_queue; i++) {
1997                 cmd = (struct scsi_cmnd *)aac->fibs[i].callback_data;
1998                 if (cmd && (cmd->SCp.phase == AAC_OWNER_FIRMWARE)) {
1999                         scsi_dma_unmap(cmd);
2000
2001                         if (aac->handle_pci_error)
2002                                 cmd->result = DID_NO_CONNECT << 16;
2003                         else
2004                                 cmd->result = DID_RESET << 16;
2005
2006                         cmd->scsi_done(cmd);
2007                 }
2008         }
2009 }
2010
2011 static pci_ers_result_t aac_pci_error_detected(struct pci_dev *pdev,
2012                                         enum pci_channel_state error)
2013 {
2014         struct Scsi_Host *shost = pci_get_drvdata(pdev);
2015         struct aac_dev *aac = shost_priv(shost);
2016
2017         dev_err(&pdev->dev, "aacraid: PCI error detected %x\n", error);
2018
2019         switch (error) {
2020         case pci_channel_io_normal:
2021                 return PCI_ERS_RESULT_CAN_RECOVER;
2022         case pci_channel_io_frozen:
2023                 aac->handle_pci_error = 1;
2024
2025                 scsi_block_requests(aac->scsi_host_ptr);
2026                 aac_cancel_safw_rescan_worker(aac);
2027                 aac_flush_ios(aac);
2028                 aac_release_resources(aac);
2029
2030                 pci_disable_pcie_error_reporting(pdev);
2031                 aac_adapter_ioremap(aac, 0);
2032
2033                 return PCI_ERS_RESULT_NEED_RESET;
2034         case pci_channel_io_perm_failure:
2035                 aac->handle_pci_error = 1;
2036
2037                 aac_flush_ios(aac);
2038                 return PCI_ERS_RESULT_DISCONNECT;
2039         }
2040
2041         return PCI_ERS_RESULT_NEED_RESET;
2042 }
2043
2044 static pci_ers_result_t aac_pci_mmio_enabled(struct pci_dev *pdev)
2045 {
2046         dev_err(&pdev->dev, "aacraid: PCI error - mmio enabled\n");
2047         return PCI_ERS_RESULT_NEED_RESET;
2048 }
2049
2050 static pci_ers_result_t aac_pci_slot_reset(struct pci_dev *pdev)
2051 {
2052         dev_err(&pdev->dev, "aacraid: PCI error - slot reset\n");
2053         pci_restore_state(pdev);
2054         if (pci_enable_device(pdev)) {
2055                 dev_warn(&pdev->dev,
2056                         "aacraid: failed to enable slave\n");
2057                 goto fail_device;
2058         }
2059
2060         pci_set_master(pdev);
2061
2062         if (pci_enable_device_mem(pdev)) {
2063                 dev_err(&pdev->dev, "pci_enable_device_mem failed\n");
2064                 goto fail_device;
2065         }
2066
2067         return PCI_ERS_RESULT_RECOVERED;
2068
2069 fail_device:
2070         dev_err(&pdev->dev, "aacraid: PCI error - slot reset failed\n");
2071         return PCI_ERS_RESULT_DISCONNECT;
2072 }
2073
2074
2075 static void aac_pci_resume(struct pci_dev *pdev)
2076 {
2077         struct Scsi_Host *shost = pci_get_drvdata(pdev);
2078         struct scsi_device *sdev = NULL;
2079         struct aac_dev *aac = (struct aac_dev *)shost_priv(shost);
2080
2081         pci_cleanup_aer_uncorrect_error_status(pdev);
2082
2083         if (aac_adapter_ioremap(aac, aac->base_size)) {
2084
2085                 dev_err(&pdev->dev, "aacraid: ioremap failed\n");
2086                 /* remap failed, go back ... */
2087                 aac->comm_interface = AAC_COMM_PRODUCER;
2088                 if (aac_adapter_ioremap(aac, AAC_MIN_FOOTPRINT_SIZE)) {
2089                         dev_warn(&pdev->dev,
2090                                 "aacraid: unable to map adapter.\n");
2091
2092                         return;
2093                 }
2094         }
2095
2096         msleep(10000);
2097
2098         aac_acquire_resources(aac);
2099
2100         /*
2101          * reset this flag to unblock ioctl() as it was set
2102          * at aac_send_shutdown() to block ioctls from upperlayer
2103          */
2104         aac->adapter_shutdown = 0;
2105         aac->handle_pci_error = 0;
2106
2107         shost_for_each_device(sdev, shost)
2108                 if (sdev->sdev_state == SDEV_OFFLINE)
2109                         sdev->sdev_state = SDEV_RUNNING;
2110         scsi_unblock_requests(aac->scsi_host_ptr);
2111         aac_scan_host(aac);
2112         pci_save_state(pdev);
2113
2114         dev_err(&pdev->dev, "aacraid: PCI error - resume\n");
2115 }
2116
2117 static struct pci_error_handlers aac_pci_err_handler = {
2118         .error_detected         = aac_pci_error_detected,
2119         .mmio_enabled           = aac_pci_mmio_enabled,
2120         .slot_reset             = aac_pci_slot_reset,
2121         .resume                 = aac_pci_resume,
2122 };
2123
2124 static struct pci_driver aac_pci_driver = {
2125         .name           = AAC_DRIVERNAME,
2126         .id_table       = aac_pci_tbl,
2127         .probe          = aac_probe_one,
2128         .remove         = aac_remove_one,
2129 #if (defined(CONFIG_PM))
2130         .suspend        = aac_suspend,
2131         .resume         = aac_resume,
2132 #endif
2133         .shutdown       = aac_shutdown,
2134         .err_handler    = &aac_pci_err_handler,
2135 };
2136
2137 static int __init aac_init(void)
2138 {
2139         int error;
2140
2141         printk(KERN_INFO "Adaptec %s driver %s\n",
2142           AAC_DRIVERNAME, aac_driver_version);
2143
2144         error = pci_register_driver(&aac_pci_driver);
2145         if (error < 0)
2146                 return error;
2147
2148         aac_init_char();
2149
2150
2151         return 0;
2152 }
2153
2154 static void __exit aac_exit(void)
2155 {
2156         if (aac_cfg_major > -1)
2157                 unregister_chrdev(aac_cfg_major, "aac");
2158         pci_unregister_driver(&aac_pci_driver);
2159 }
2160
2161 module_init(aac_init);
2162 module_exit(aac_exit);