GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / scsi / csiostor / csio_hw.c
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49
50 int csio_dbg_level = 0xFEFF;
51 unsigned int csio_port_mask = 0xf;
52
53 /* Default FW event queue entries. */
54 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
55
56 /* Default MSI param level */
57 int csio_msi = 2;
58
59 /* FCoE function instances */
60 static int dev_num;
61
62 /* FCoE Adapter types & its description */
63 static const struct csio_adap_desc csio_t5_fcoe_adapters[] = {
64         {"T580-Dbg 10G", "Chelsio T580-Dbg 10G [FCoE]"},
65         {"T520-CR 10G", "Chelsio T520-CR 10G [FCoE]"},
66         {"T522-CR 10G/1G", "Chelsio T522-CR 10G/1G [FCoE]"},
67         {"T540-CR 10G", "Chelsio T540-CR 10G [FCoE]"},
68         {"T520-BCH 10G", "Chelsio T520-BCH 10G [FCoE]"},
69         {"T540-BCH 10G", "Chelsio T540-BCH 10G [FCoE]"},
70         {"T540-CH 10G", "Chelsio T540-CH 10G [FCoE]"},
71         {"T520-SO 10G", "Chelsio T520-SO 10G [FCoE]"},
72         {"T520-CX4 10G", "Chelsio T520-CX4 10G [FCoE]"},
73         {"T520-BT 10G", "Chelsio T520-BT 10G [FCoE]"},
74         {"T504-BT 1G", "Chelsio T504-BT 1G [FCoE]"},
75         {"B520-SR 10G", "Chelsio B520-SR 10G [FCoE]"},
76         {"B504-BT 1G", "Chelsio B504-BT 1G [FCoE]"},
77         {"T580-CR 10G", "Chelsio T580-CR 10G [FCoE]"},
78         {"T540-LP-CR 10G", "Chelsio T540-LP-CR 10G [FCoE]"},
79         {"AMSTERDAM 10G", "Chelsio AMSTERDAM 10G [FCoE]"},
80         {"T580-LP-CR 40G", "Chelsio T580-LP-CR 40G [FCoE]"},
81         {"T520-LL-CR 10G", "Chelsio T520-LL-CR 10G [FCoE]"},
82         {"T560-CR 40G", "Chelsio T560-CR 40G [FCoE]"},
83         {"T580-CR 40G", "Chelsio T580-CR 40G [FCoE]"},
84         {"T580-SO 40G", "Chelsio T580-SO 40G [FCoE]"},
85         {"T502-BT 1G", "Chelsio T502-BT 1G [FCoE]"}
86 };
87
88 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
89 static void csio_hw_mbm_cleanup(struct csio_hw *);
90
91 /* State machine forward declarations */
92 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
96 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
97 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
98 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
99 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
100 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
101
102 static void csio_hw_initialize(struct csio_hw *hw);
103 static void csio_evtq_stop(struct csio_hw *hw);
104 static void csio_evtq_start(struct csio_hw *hw);
105
106 int csio_is_hw_ready(struct csio_hw *hw)
107 {
108         return csio_match_state(hw, csio_hws_ready);
109 }
110
111 int csio_is_hw_removing(struct csio_hw *hw)
112 {
113         return csio_match_state(hw, csio_hws_removing);
114 }
115
116
117 /*
118  *      csio_hw_wait_op_done_val - wait until an operation is completed
119  *      @hw: the HW module
120  *      @reg: the register to check for completion
121  *      @mask: a single-bit field within @reg that indicates completion
122  *      @polarity: the value of the field when the operation is completed
123  *      @attempts: number of check iterations
124  *      @delay: delay in usecs between iterations
125  *      @valp: where to store the value of the register at completion time
126  *
127  *      Wait until an operation is completed by checking a bit in a register
128  *      up to @attempts times.  If @valp is not NULL the value of the register
129  *      at the time it indicated completion is stored there.  Returns 0 if the
130  *      operation completes and -EAGAIN otherwise.
131  */
132 int
133 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
134                          int polarity, int attempts, int delay, uint32_t *valp)
135 {
136         uint32_t val;
137         while (1) {
138                 val = csio_rd_reg32(hw, reg);
139
140                 if (!!(val & mask) == polarity) {
141                         if (valp)
142                                 *valp = val;
143                         return 0;
144                 }
145
146                 if (--attempts == 0)
147                         return -EAGAIN;
148                 if (delay)
149                         udelay(delay);
150         }
151 }
152
153 /*
154  *      csio_hw_tp_wr_bits_indirect - set/clear bits in an indirect TP register
155  *      @hw: the adapter
156  *      @addr: the indirect TP register address
157  *      @mask: specifies the field within the register to modify
158  *      @val: new value for the field
159  *
160  *      Sets a field of an indirect TP register to the given value.
161  */
162 void
163 csio_hw_tp_wr_bits_indirect(struct csio_hw *hw, unsigned int addr,
164                         unsigned int mask, unsigned int val)
165 {
166         csio_wr_reg32(hw, addr, TP_PIO_ADDR_A);
167         val |= csio_rd_reg32(hw, TP_PIO_DATA_A) & ~mask;
168         csio_wr_reg32(hw, val, TP_PIO_DATA_A);
169 }
170
171 void
172 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
173                    uint32_t value)
174 {
175         uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
176
177         csio_wr_reg32(hw, val | value, reg);
178         /* Flush */
179         csio_rd_reg32(hw, reg);
180
181 }
182
183 static int
184 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
185 {
186         return hw->chip_ops->chip_memory_rw(hw, MEMWIN_CSIOSTOR, mtype,
187                                             addr, len, buf, 0);
188 }
189
190 /*
191  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
192  */
193 #define EEPROM_MAX_RD_POLL      40
194 #define EEPROM_MAX_WR_POLL      6
195 #define EEPROM_STAT_ADDR        0x7bfc
196 #define VPD_BASE                0x400
197 #define VPD_BASE_OLD            0
198 #define VPD_LEN                 1024
199 #define VPD_INFO_FLD_HDR_SIZE   3
200
201 /*
202  *      csio_hw_seeprom_read - read a serial EEPROM location
203  *      @hw: hw to read
204  *      @addr: EEPROM virtual address
205  *      @data: where to store the read data
206  *
207  *      Read a 32-bit word from a location in serial EEPROM using the card's PCI
208  *      VPD capability.  Note that this function must be called with a virtual
209  *      address.
210  */
211 static int
212 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
213 {
214         uint16_t val = 0;
215         int attempts = EEPROM_MAX_RD_POLL;
216         uint32_t base = hw->params.pci.vpd_cap_addr;
217
218         if (addr >= EEPROMVSIZE || (addr & 3))
219                 return -EINVAL;
220
221         pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
222
223         do {
224                 udelay(10);
225                 pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
226         } while (!(val & PCI_VPD_ADDR_F) && --attempts);
227
228         if (!(val & PCI_VPD_ADDR_F)) {
229                 csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
230                 return -EINVAL;
231         }
232
233         pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
234         *data = le32_to_cpu(*(__le32 *)data);
235
236         return 0;
237 }
238
239 /*
240  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
241  * VPD-R sections.
242  */
243 struct t4_vpd_hdr {
244         u8  id_tag;
245         u8  id_len[2];
246         u8  id_data[ID_LEN];
247         u8  vpdr_tag;
248         u8  vpdr_len[2];
249 };
250
251 /*
252  *      csio_hw_get_vpd_keyword_val - Locates an information field keyword in
253  *                                    the VPD
254  *      @v: Pointer to buffered vpd data structure
255  *      @kw: The keyword to search for
256  *
257  *      Returns the value of the information field keyword or
258  *      -EINVAL otherwise.
259  */
260 static int
261 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
262 {
263         int32_t i;
264         int32_t offset , len;
265         const uint8_t *buf = &v->id_tag;
266         const uint8_t *vpdr_len = &v->vpdr_tag;
267         offset = sizeof(struct t4_vpd_hdr);
268         len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
269
270         if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
271                 return -EINVAL;
272
273         for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
274                 if (memcmp(buf + i , kw, 2) == 0) {
275                         i += VPD_INFO_FLD_HDR_SIZE;
276                         return i;
277                 }
278
279                 i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
280         }
281
282         return -EINVAL;
283 }
284
285 static int
286 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
287 {
288         *pos = pci_find_capability(pdev, cap);
289         if (*pos)
290                 return 0;
291
292         return -1;
293 }
294
295 /*
296  *      csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
297  *      @hw: HW module
298  *      @p: where to store the parameters
299  *
300  *      Reads card parameters stored in VPD EEPROM.
301  */
302 static int
303 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
304 {
305         int i, ret, ec, sn, addr;
306         uint8_t *vpd, csum;
307         const struct t4_vpd_hdr *v;
308         /* To get around compilation warning from strstrip */
309         char *s;
310
311         if (csio_is_valid_vpd(hw))
312                 return 0;
313
314         ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
315                                   &hw->params.pci.vpd_cap_addr);
316         if (ret)
317                 return -EINVAL;
318
319         vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
320         if (vpd == NULL)
321                 return -ENOMEM;
322
323         /*
324          * Card information normally starts at VPD_BASE but early cards had
325          * it at 0.
326          */
327         ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
328         addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
329
330         for (i = 0; i < VPD_LEN; i += 4) {
331                 ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
332                 if (ret) {
333                         kfree(vpd);
334                         return ret;
335                 }
336         }
337
338         /* Reset the VPD flag! */
339         hw->flags &= (~CSIO_HWF_VPD_VALID);
340
341         v = (const struct t4_vpd_hdr *)vpd;
342
343 #define FIND_VPD_KW(var, name) do { \
344         var = csio_hw_get_vpd_keyword_val(v, name); \
345         if (var < 0) { \
346                 csio_err(hw, "missing VPD keyword " name "\n"); \
347                 kfree(vpd); \
348                 return -EINVAL; \
349         } \
350 } while (0)
351
352         FIND_VPD_KW(i, "RV");
353         for (csum = 0; i >= 0; i--)
354                 csum += vpd[i];
355
356         if (csum) {
357                 csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
358                 kfree(vpd);
359                 return -EINVAL;
360         }
361         FIND_VPD_KW(ec, "EC");
362         FIND_VPD_KW(sn, "SN");
363 #undef FIND_VPD_KW
364
365         memcpy(p->id, v->id_data, ID_LEN);
366         s = strstrip(p->id);
367         memcpy(p->ec, vpd + ec, EC_LEN);
368         s = strstrip(p->ec);
369         i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
370         memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
371         s = strstrip(p->sn);
372
373         csio_valid_vpd_copied(hw);
374
375         kfree(vpd);
376         return 0;
377 }
378
379 /*
380  *      csio_hw_sf1_read - read data from the serial flash
381  *      @hw: the HW module
382  *      @byte_cnt: number of bytes to read
383  *      @cont: whether another operation will be chained
384  *      @lock: whether to lock SF for PL access only
385  *      @valp: where to store the read data
386  *
387  *      Reads up to 4 bytes of data from the serial flash.  The location of
388  *      the read needs to be specified prior to calling this by issuing the
389  *      appropriate commands to the serial flash.
390  */
391 static int
392 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
393                  int32_t lock, uint32_t *valp)
394 {
395         int ret;
396
397         if (!byte_cnt || byte_cnt > 4)
398                 return -EINVAL;
399         if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
400                 return -EBUSY;
401
402         csio_wr_reg32(hw,  SF_LOCK_V(lock) | SF_CONT_V(cont) |
403                       BYTECNT_V(byte_cnt - 1), SF_OP_A);
404         ret = csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
405                                        10, NULL);
406         if (!ret)
407                 *valp = csio_rd_reg32(hw, SF_DATA_A);
408         return ret;
409 }
410
411 /*
412  *      csio_hw_sf1_write - write data to the serial flash
413  *      @hw: the HW module
414  *      @byte_cnt: number of bytes to write
415  *      @cont: whether another operation will be chained
416  *      @lock: whether to lock SF for PL access only
417  *      @val: value to write
418  *
419  *      Writes up to 4 bytes of data to the serial flash.  The location of
420  *      the write needs to be specified prior to calling this by issuing the
421  *      appropriate commands to the serial flash.
422  */
423 static int
424 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
425                   int32_t lock, uint32_t val)
426 {
427         if (!byte_cnt || byte_cnt > 4)
428                 return -EINVAL;
429         if (csio_rd_reg32(hw, SF_OP_A) & SF_BUSY_F)
430                 return -EBUSY;
431
432         csio_wr_reg32(hw, val, SF_DATA_A);
433         csio_wr_reg32(hw, SF_CONT_V(cont) | BYTECNT_V(byte_cnt - 1) |
434                       OP_V(1) | SF_LOCK_V(lock), SF_OP_A);
435
436         return csio_hw_wait_op_done_val(hw, SF_OP_A, SF_BUSY_F, 0, SF_ATTEMPTS,
437                                         10, NULL);
438 }
439
440 /*
441  *      csio_hw_flash_wait_op - wait for a flash operation to complete
442  *      @hw: the HW module
443  *      @attempts: max number of polls of the status register
444  *      @delay: delay between polls in ms
445  *
446  *      Wait for a flash operation to complete by polling the status register.
447  */
448 static int
449 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
450 {
451         int ret;
452         uint32_t status;
453
454         while (1) {
455                 ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
456                 if (ret != 0)
457                         return ret;
458
459                 ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
460                 if (ret != 0)
461                         return ret;
462
463                 if (!(status & 1))
464                         return 0;
465                 if (--attempts == 0)
466                         return -EAGAIN;
467                 if (delay)
468                         msleep(delay);
469         }
470 }
471
472 /*
473  *      csio_hw_read_flash - read words from serial flash
474  *      @hw: the HW module
475  *      @addr: the start address for the read
476  *      @nwords: how many 32-bit words to read
477  *      @data: where to store the read data
478  *      @byte_oriented: whether to store data as bytes or as words
479  *
480  *      Read the specified number of 32-bit words from the serial flash.
481  *      If @byte_oriented is set the read data is stored as a byte array
482  *      (i.e., big-endian), otherwise as 32-bit words in the platform's
483  *      natural endianess.
484  */
485 static int
486 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
487                   uint32_t *data, int32_t byte_oriented)
488 {
489         int ret;
490
491         if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
492                 return -EINVAL;
493
494         addr = swab32(addr) | SF_RD_DATA_FAST;
495
496         ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
497         if (ret != 0)
498                 return ret;
499
500         ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
501         if (ret != 0)
502                 return ret;
503
504         for ( ; nwords; nwords--, data++) {
505                 ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
506                 if (nwords == 1)
507                         csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
508                 if (ret)
509                         return ret;
510                 if (byte_oriented)
511                         *data = (__force __u32) htonl(*data);
512         }
513         return 0;
514 }
515
516 /*
517  *      csio_hw_write_flash - write up to a page of data to the serial flash
518  *      @hw: the hw
519  *      @addr: the start address to write
520  *      @n: length of data to write in bytes
521  *      @data: the data to write
522  *
523  *      Writes up to a page of data (256 bytes) to the serial flash starting
524  *      at the given address.  All the data must be written to the same page.
525  */
526 static int
527 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
528                     uint32_t n, const uint8_t *data)
529 {
530         int ret = -EINVAL;
531         uint32_t buf[64];
532         uint32_t i, c, left, val, offset = addr & 0xff;
533
534         if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
535                 return -EINVAL;
536
537         val = swab32(addr) | SF_PROG_PAGE;
538
539         ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
540         if (ret != 0)
541                 goto unlock;
542
543         ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
544         if (ret != 0)
545                 goto unlock;
546
547         for (left = n; left; left -= c) {
548                 c = min(left, 4U);
549                 for (val = 0, i = 0; i < c; ++i)
550                         val = (val << 8) + *data++;
551
552                 ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
553                 if (ret)
554                         goto unlock;
555         }
556         ret = csio_hw_flash_wait_op(hw, 8, 1);
557         if (ret)
558                 goto unlock;
559
560         csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
561
562         /* Read the page to verify the write succeeded */
563         ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
564         if (ret)
565                 return ret;
566
567         if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
568                 csio_err(hw,
569                          "failed to correctly write the flash page at %#x\n",
570                          addr);
571                 return -EINVAL;
572         }
573
574         return 0;
575
576 unlock:
577         csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
578         return ret;
579 }
580
581 /*
582  *      csio_hw_flash_erase_sectors - erase a range of flash sectors
583  *      @hw: the HW module
584  *      @start: the first sector to erase
585  *      @end: the last sector to erase
586  *
587  *      Erases the sectors in the given inclusive range.
588  */
589 static int
590 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
591 {
592         int ret = 0;
593
594         while (start <= end) {
595
596                 ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
597                 if (ret != 0)
598                         goto out;
599
600                 ret = csio_hw_sf1_write(hw, 4, 0, 1,
601                                         SF_ERASE_SECTOR | (start << 8));
602                 if (ret != 0)
603                         goto out;
604
605                 ret = csio_hw_flash_wait_op(hw, 14, 500);
606                 if (ret != 0)
607                         goto out;
608
609                 start++;
610         }
611 out:
612         if (ret)
613                 csio_err(hw, "erase of flash sector %d failed, error %d\n",
614                          start, ret);
615         csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
616         return 0;
617 }
618
619 static void
620 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
621 {
622         csio_info(hw, "%s: %u.%u.%u.%u\n", str,
623                     FW_HDR_FW_VER_MAJOR_G(hw->fwrev),
624                     FW_HDR_FW_VER_MINOR_G(hw->fwrev),
625                     FW_HDR_FW_VER_MICRO_G(hw->fwrev),
626                     FW_HDR_FW_VER_BUILD_G(hw->fwrev));
627 }
628
629 /*
630  * csio_hw_get_fw_version - read the firmware version
631  * @hw: HW module
632  * @vers: where to place the version
633  *
634  * Reads the FW version from flash.
635  */
636 static int
637 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
638 {
639         return csio_hw_read_flash(hw, FLASH_FW_START +
640                                   offsetof(struct fw_hdr, fw_ver), 1,
641                                   vers, 0);
642 }
643
644 /*
645  *      csio_hw_get_tp_version - read the TP microcode version
646  *      @hw: HW module
647  *      @vers: where to place the version
648  *
649  *      Reads the TP microcode version from flash.
650  */
651 static int
652 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
653 {
654         return csio_hw_read_flash(hw, FLASH_FW_START +
655                         offsetof(struct fw_hdr, tp_microcode_ver), 1,
656                         vers, 0);
657 }
658
659 /*
660  * csio_hw_fw_dload - download firmware.
661  * @hw: HW module
662  * @fw_data: firmware image to write.
663  * @size: image size
664  *
665  * Write the supplied firmware image to the card's serial flash.
666  */
667 static int
668 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
669 {
670         uint32_t csum;
671         int32_t addr;
672         int ret;
673         uint32_t i;
674         uint8_t first_page[SF_PAGE_SIZE];
675         const __be32 *p = (const __be32 *)fw_data;
676         struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
677         uint32_t sf_sec_size;
678
679         if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
680                 csio_err(hw, "Serial Flash data invalid\n");
681                 return -EINVAL;
682         }
683
684         if (!size) {
685                 csio_err(hw, "FW image has no data\n");
686                 return -EINVAL;
687         }
688
689         if (size & 511) {
690                 csio_err(hw, "FW image size not multiple of 512 bytes\n");
691                 return -EINVAL;
692         }
693
694         if (ntohs(hdr->len512) * 512 != size) {
695                 csio_err(hw, "FW image size differs from size in FW header\n");
696                 return -EINVAL;
697         }
698
699         if (size > FLASH_FW_MAX_SIZE) {
700                 csio_err(hw, "FW image too large, max is %u bytes\n",
701                             FLASH_FW_MAX_SIZE);
702                 return -EINVAL;
703         }
704
705         for (csum = 0, i = 0; i < size / sizeof(csum); i++)
706                 csum += ntohl(p[i]);
707
708         if (csum != 0xffffffff) {
709                 csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
710                 return -EINVAL;
711         }
712
713         sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
714         i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
715
716         csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
717                           FLASH_FW_START_SEC, FLASH_FW_START_SEC + i - 1);
718
719         ret = csio_hw_flash_erase_sectors(hw, FLASH_FW_START_SEC,
720                                           FLASH_FW_START_SEC + i - 1);
721         if (ret) {
722                 csio_err(hw, "Flash Erase failed\n");
723                 goto out;
724         }
725
726         /*
727          * We write the correct version at the end so the driver can see a bad
728          * version if the FW write fails.  Start by writing a copy of the
729          * first page with a bad version.
730          */
731         memcpy(first_page, fw_data, SF_PAGE_SIZE);
732         ((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
733         ret = csio_hw_write_flash(hw, FLASH_FW_START, SF_PAGE_SIZE, first_page);
734         if (ret)
735                 goto out;
736
737         csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
738                     FW_IMG_START, FW_IMG_START + size);
739
740         addr = FLASH_FW_START;
741         for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
742                 addr += SF_PAGE_SIZE;
743                 fw_data += SF_PAGE_SIZE;
744                 ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
745                 if (ret)
746                         goto out;
747         }
748
749         ret = csio_hw_write_flash(hw,
750                                   FLASH_FW_START +
751                                         offsetof(struct fw_hdr, fw_ver),
752                                   sizeof(hdr->fw_ver),
753                                   (const uint8_t *)&hdr->fw_ver);
754
755 out:
756         if (ret)
757                 csio_err(hw, "firmware download failed, error %d\n", ret);
758         return ret;
759 }
760
761 static int
762 csio_hw_get_flash_params(struct csio_hw *hw)
763 {
764         /* Table for non-Numonix supported flash parts.  Numonix parts are left
765          * to the preexisting code.  All flash parts have 64KB sectors.
766          */
767         static struct flash_desc {
768                 u32 vendor_and_model_id;
769                 u32 size_mb;
770         } supported_flash[] = {
771                 { 0x150201, 4 << 20 },       /* Spansion 4MB S25FL032P */
772         };
773
774         u32 part, manufacturer;
775         u32 density, size = 0;
776         u32 flashid = 0;
777         int ret;
778
779         ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
780         if (!ret)
781                 ret = csio_hw_sf1_read(hw, 3, 0, 1, &flashid);
782         csio_wr_reg32(hw, 0, SF_OP_A);    /* unlock SF */
783         if (ret)
784                 return ret;
785
786         /* Check to see if it's one of our non-standard supported Flash parts.
787          */
788         for (part = 0; part < ARRAY_SIZE(supported_flash); part++)
789                 if (supported_flash[part].vendor_and_model_id == flashid) {
790                         hw->params.sf_size = supported_flash[part].size_mb;
791                         hw->params.sf_nsec =
792                                 hw->params.sf_size / SF_SEC_SIZE;
793                         goto found;
794                 }
795
796         /* Decode Flash part size.  The code below looks repetative with
797          * common encodings, but that's not guaranteed in the JEDEC
798          * specification for the Read JADEC ID command.  The only thing that
799          * we're guaranteed by the JADEC specification is where the
800          * Manufacturer ID is in the returned result.  After that each
801          * Manufacturer ~could~ encode things completely differently.
802          * Note, all Flash parts must have 64KB sectors.
803          */
804         manufacturer = flashid & 0xff;
805         switch (manufacturer) {
806         case 0x20: { /* Micron/Numonix */
807                 /* This Density -> Size decoding table is taken from Micron
808                  * Data Sheets.
809                  */
810                 density = (flashid >> 16) & 0xff;
811                 switch (density) {
812                 case 0x14 ... 0x19: /* 1MB - 32MB */
813                         size = 1 << density;
814                         break;
815                 case 0x20: /* 64MB */
816                         size = 1 << 26;
817                         break;
818                 case 0x21: /* 128MB */
819                         size = 1 << 27;
820                         break;
821                 case 0x22: /* 256MB */
822                         size = 1 << 28;
823                 }
824                 break;
825         }
826         case 0x9d: { /* ISSI -- Integrated Silicon Solution, Inc. */
827                 /* This Density -> Size decoding table is taken from ISSI
828                  * Data Sheets.
829                  */
830                 density = (flashid >> 16) & 0xff;
831                 switch (density) {
832                 case 0x16: /* 32 MB */
833                         size = 1 << 25;
834                         break;
835                 case 0x17: /* 64MB */
836                         size = 1 << 26;
837                 }
838                 break;
839         }
840         case 0xc2: /* Macronix */
841         case 0xef: /* Winbond */ {
842                 /* This Density -> Size decoding table is taken from
843                  * Macronix and Winbond Data Sheets.
844                  */
845                 density = (flashid >> 16) & 0xff;
846                 switch (density) {
847                 case 0x17: /* 8MB */
848                 case 0x18: /* 16MB */
849                         size = 1 << density;
850                 }
851         }
852         }
853
854         /* If we didn't recognize the FLASH part, that's no real issue: the
855          * Hardware/Software contract says that Hardware will _*ALWAYS*_
856          * use a FLASH part which is at least 4MB in size and has 64KB
857          * sectors.  The unrecognized FLASH part is likely to be much larger
858          * than 4MB, but that's all we really need.
859          */
860         if (size == 0) {
861                 csio_warn(hw, "Unknown Flash Part, ID = %#x, assuming 4MB\n",
862                           flashid);
863                 size = 1 << 22;
864         }
865
866         /* Store decoded Flash size */
867         hw->params.sf_size = size;
868         hw->params.sf_nsec = size / SF_SEC_SIZE;
869
870 found:
871         if (hw->params.sf_size < FLASH_MIN_SIZE)
872                 csio_warn(hw, "WARNING: Flash Part ID %#x, size %#x < %#x\n",
873                           flashid, hw->params.sf_size, FLASH_MIN_SIZE);
874         return 0;
875 }
876
877 /*****************************************************************************/
878 /* HW State machine assists                                                  */
879 /*****************************************************************************/
880
881 static int
882 csio_hw_dev_ready(struct csio_hw *hw)
883 {
884         uint32_t reg;
885         int cnt = 6;
886         int src_pf;
887
888         while (((reg = csio_rd_reg32(hw, PL_WHOAMI_A)) == 0xFFFFFFFF) &&
889                (--cnt != 0))
890                 mdelay(100);
891
892         if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
893                 src_pf = SOURCEPF_G(reg);
894         else
895                 src_pf = T6_SOURCEPF_G(reg);
896
897         if ((cnt == 0) && (((int32_t)(src_pf) < 0) ||
898                            (src_pf >= CSIO_MAX_PFN))) {
899                 csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
900                 return -EIO;
901         }
902
903         hw->pfn = src_pf;
904
905         return 0;
906 }
907
908 /*
909  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
910  * @hw: HW module
911  * @state: Device state
912  *
913  * FW_HELLO_CMD has to be polled for completion.
914  */
915 static int
916 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
917 {
918         struct csio_mb  *mbp;
919         int     rv = 0;
920         enum fw_retval retval;
921         uint8_t mpfn;
922         char state_str[16];
923         int retries = FW_CMD_HELLO_RETRIES;
924
925         memset(state_str, 0, sizeof(state_str));
926
927         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
928         if (!mbp) {
929                 rv = -ENOMEM;
930                 CSIO_INC_STATS(hw, n_err_nomem);
931                 goto out;
932         }
933
934 retry:
935         csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
936                       hw->pfn, CSIO_MASTER_MAY, NULL);
937
938         rv = csio_mb_issue(hw, mbp);
939         if (rv) {
940                 csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
941                 goto out_free_mb;
942         }
943
944         csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
945         if (retval != FW_SUCCESS) {
946                 csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
947                 rv = -EINVAL;
948                 goto out_free_mb;
949         }
950
951         /* Firmware has designated us to be master */
952         if (hw->pfn == mpfn) {
953                 hw->flags |= CSIO_HWF_MASTER;
954         } else if (*state == CSIO_DEV_STATE_UNINIT) {
955                 /*
956                  * If we're not the Master PF then we need to wait around for
957                  * the Master PF Driver to finish setting up the adapter.
958                  *
959                  * Note that we also do this wait if we're a non-Master-capable
960                  * PF and there is no current Master PF; a Master PF may show up
961                  * momentarily and we wouldn't want to fail pointlessly.  (This
962                  * can happen when an OS loads lots of different drivers rapidly
963                  * at the same time). In this case, the Master PF returned by
964                  * the firmware will be PCIE_FW_MASTER_MASK so the test below
965                  * will work ...
966                  */
967
968                 int waiting = FW_CMD_HELLO_TIMEOUT;
969
970                 /*
971                  * Wait for the firmware to either indicate an error or
972                  * initialized state.  If we see either of these we bail out
973                  * and report the issue to the caller.  If we exhaust the
974                  * "hello timeout" and we haven't exhausted our retries, try
975                  * again.  Otherwise bail with a timeout error.
976                  */
977                 for (;;) {
978                         uint32_t pcie_fw;
979
980                         spin_unlock_irq(&hw->lock);
981                         msleep(50);
982                         spin_lock_irq(&hw->lock);
983                         waiting -= 50;
984
985                         /*
986                          * If neither Error nor Initialialized are indicated
987                          * by the firmware keep waiting till we exaust our
988                          * timeout ... and then retry if we haven't exhausted
989                          * our retries ...
990                          */
991                         pcie_fw = csio_rd_reg32(hw, PCIE_FW_A);
992                         if (!(pcie_fw & (PCIE_FW_ERR_F|PCIE_FW_INIT_F))) {
993                                 if (waiting <= 0) {
994                                         if (retries-- > 0)
995                                                 goto retry;
996
997                                         rv = -ETIMEDOUT;
998                                         break;
999                                 }
1000                                 continue;
1001                         }
1002
1003                         /*
1004                          * We either have an Error or Initialized condition
1005                          * report errors preferentially.
1006                          */
1007                         if (state) {
1008                                 if (pcie_fw & PCIE_FW_ERR_F) {
1009                                         *state = CSIO_DEV_STATE_ERR;
1010                                         rv = -ETIMEDOUT;
1011                                 } else if (pcie_fw & PCIE_FW_INIT_F)
1012                                         *state = CSIO_DEV_STATE_INIT;
1013                         }
1014
1015                         /*
1016                          * If we arrived before a Master PF was selected and
1017                          * there's not a valid Master PF, grab its identity
1018                          * for our caller.
1019                          */
1020                         if (mpfn == PCIE_FW_MASTER_M &&
1021                             (pcie_fw & PCIE_FW_MASTER_VLD_F))
1022                                 mpfn = PCIE_FW_MASTER_G(pcie_fw);
1023                         break;
1024                 }
1025                 hw->flags &= ~CSIO_HWF_MASTER;
1026         }
1027
1028         switch (*state) {
1029         case CSIO_DEV_STATE_UNINIT:
1030                 strcpy(state_str, "Initializing");
1031                 break;
1032         case CSIO_DEV_STATE_INIT:
1033                 strcpy(state_str, "Initialized");
1034                 break;
1035         case CSIO_DEV_STATE_ERR:
1036                 strcpy(state_str, "Error");
1037                 break;
1038         default:
1039                 strcpy(state_str, "Unknown");
1040                 break;
1041         }
1042
1043         if (hw->pfn == mpfn)
1044                 csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1045                         hw->pfn, state_str);
1046         else
1047                 csio_info(hw,
1048                     "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1049                     hw->pfn, mpfn, state_str);
1050
1051 out_free_mb:
1052         mempool_free(mbp, hw->mb_mempool);
1053 out:
1054         return rv;
1055 }
1056
1057 /*
1058  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1059  * @hw: HW module
1060  *
1061  */
1062 static int
1063 csio_do_bye(struct csio_hw *hw)
1064 {
1065         struct csio_mb  *mbp;
1066         enum fw_retval retval;
1067
1068         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1069         if (!mbp) {
1070                 CSIO_INC_STATS(hw, n_err_nomem);
1071                 return -ENOMEM;
1072         }
1073
1074         csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1075
1076         if (csio_mb_issue(hw, mbp)) {
1077                 csio_err(hw, "Issue of BYE command failed\n");
1078                 mempool_free(mbp, hw->mb_mempool);
1079                 return -EINVAL;
1080         }
1081
1082         retval = csio_mb_fw_retval(mbp);
1083         if (retval != FW_SUCCESS) {
1084                 mempool_free(mbp, hw->mb_mempool);
1085                 return -EINVAL;
1086         }
1087
1088         mempool_free(mbp, hw->mb_mempool);
1089
1090         return 0;
1091 }
1092
1093 /*
1094  * csio_do_reset- Perform the device reset.
1095  * @hw: HW module
1096  * @fw_rst: FW reset
1097  *
1098  * If fw_rst is set, issues FW reset mbox cmd otherwise
1099  * does PIO reset.
1100  * Performs reset of the function.
1101  */
1102 static int
1103 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1104 {
1105         struct csio_mb  *mbp;
1106         enum fw_retval retval;
1107
1108         if (!fw_rst) {
1109                 /* PIO reset */
1110                 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1111                 mdelay(2000);
1112                 return 0;
1113         }
1114
1115         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1116         if (!mbp) {
1117                 CSIO_INC_STATS(hw, n_err_nomem);
1118                 return -ENOMEM;
1119         }
1120
1121         csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1122                       PIORSTMODE_F | PIORST_F, 0, NULL);
1123
1124         if (csio_mb_issue(hw, mbp)) {
1125                 csio_err(hw, "Issue of RESET command failed.n");
1126                 mempool_free(mbp, hw->mb_mempool);
1127                 return -EINVAL;
1128         }
1129
1130         retval = csio_mb_fw_retval(mbp);
1131         if (retval != FW_SUCCESS) {
1132                 csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1133                 mempool_free(mbp, hw->mb_mempool);
1134                 return -EINVAL;
1135         }
1136
1137         mempool_free(mbp, hw->mb_mempool);
1138
1139         return 0;
1140 }
1141
1142 static int
1143 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1144 {
1145         struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1146         uint16_t caps;
1147
1148         caps = ntohs(rsp->fcoecaps);
1149
1150         if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1151                 csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1152                 return -EINVAL;
1153         }
1154
1155         if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1156                 csio_err(hw, "No FCoE Control Offload capability\n");
1157                 return -EINVAL;
1158         }
1159
1160         return 0;
1161 }
1162
1163 /*
1164  *      csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1165  *      @hw: the HW module
1166  *      @mbox: mailbox to use for the FW RESET command (if desired)
1167  *      @force: force uP into RESET even if FW RESET command fails
1168  *
1169  *      Issues a RESET command to firmware (if desired) with a HALT indication
1170  *      and then puts the microprocessor into RESET state.  The RESET command
1171  *      will only be issued if a legitimate mailbox is provided (mbox <=
1172  *      PCIE_FW_MASTER_MASK).
1173  *
1174  *      This is generally used in order for the host to safely manipulate the
1175  *      adapter without fear of conflicting with whatever the firmware might
1176  *      be doing.  The only way out of this state is to RESTART the firmware
1177  *      ...
1178  */
1179 static int
1180 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1181 {
1182         enum fw_retval retval = 0;
1183
1184         /*
1185          * If a legitimate mailbox is provided, issue a RESET command
1186          * with a HALT indication.
1187          */
1188         if (mbox <= PCIE_FW_MASTER_M) {
1189                 struct csio_mb  *mbp;
1190
1191                 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1192                 if (!mbp) {
1193                         CSIO_INC_STATS(hw, n_err_nomem);
1194                         return -ENOMEM;
1195                 }
1196
1197                 csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1198                               PIORSTMODE_F | PIORST_F, FW_RESET_CMD_HALT_F,
1199                               NULL);
1200
1201                 if (csio_mb_issue(hw, mbp)) {
1202                         csio_err(hw, "Issue of RESET command failed!\n");
1203                         mempool_free(mbp, hw->mb_mempool);
1204                         return -EINVAL;
1205                 }
1206
1207                 retval = csio_mb_fw_retval(mbp);
1208                 mempool_free(mbp, hw->mb_mempool);
1209         }
1210
1211         /*
1212          * Normally we won't complete the operation if the firmware RESET
1213          * command fails but if our caller insists we'll go ahead and put the
1214          * uP into RESET.  This can be useful if the firmware is hung or even
1215          * missing ...  We'll have to take the risk of putting the uP into
1216          * RESET without the cooperation of firmware in that case.
1217          *
1218          * We also force the firmware's HALT flag to be on in case we bypassed
1219          * the firmware RESET command above or we're dealing with old firmware
1220          * which doesn't have the HALT capability.  This will serve as a flag
1221          * for the incoming firmware to know that it's coming out of a HALT
1222          * rather than a RESET ... if it's new enough to understand that ...
1223          */
1224         if (retval == 0 || force) {
1225                 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, UPCRST_F);
1226                 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F,
1227                                    PCIE_FW_HALT_F);
1228         }
1229
1230         /*
1231          * And we always return the result of the firmware RESET command
1232          * even when we force the uP into RESET ...
1233          */
1234         return retval ? -EINVAL : 0;
1235 }
1236
1237 /*
1238  *      csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1239  *      @hw: the HW module
1240  *      @reset: if we want to do a RESET to restart things
1241  *
1242  *      Restart firmware previously halted by csio_hw_fw_halt().  On successful
1243  *      return the previous PF Master remains as the new PF Master and there
1244  *      is no need to issue a new HELLO command, etc.
1245  *
1246  *      We do this in two ways:
1247  *
1248  *       1. If we're dealing with newer firmware we'll simply want to take
1249  *          the chip's microprocessor out of RESET.  This will cause the
1250  *          firmware to start up from its start vector.  And then we'll loop
1251  *          until the firmware indicates it's started again (PCIE_FW.HALT
1252  *          reset to 0) or we timeout.
1253  *
1254  *       2. If we're dealing with older firmware then we'll need to RESET
1255  *          the chip since older firmware won't recognize the PCIE_FW.HALT
1256  *          flag and automatically RESET itself on startup.
1257  */
1258 static int
1259 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1260 {
1261         if (reset) {
1262                 /*
1263                  * Since we're directing the RESET instead of the firmware
1264                  * doing it automatically, we need to clear the PCIE_FW.HALT
1265                  * bit.
1266                  */
1267                 csio_set_reg_field(hw, PCIE_FW_A, PCIE_FW_HALT_F, 0);
1268
1269                 /*
1270                  * If we've been given a valid mailbox, first try to get the
1271                  * firmware to do the RESET.  If that works, great and we can
1272                  * return success.  Otherwise, if we haven't been given a
1273                  * valid mailbox or the RESET command failed, fall back to
1274                  * hitting the chip with a hammer.
1275                  */
1276                 if (mbox <= PCIE_FW_MASTER_M) {
1277                         csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1278                         msleep(100);
1279                         if (csio_do_reset(hw, true) == 0)
1280                                 return 0;
1281                 }
1282
1283                 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
1284                 msleep(2000);
1285         } else {
1286                 int ms;
1287
1288                 csio_set_reg_field(hw, CIM_BOOT_CFG_A, UPCRST_F, 0);
1289                 for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1290                         if (!(csio_rd_reg32(hw, PCIE_FW_A) & PCIE_FW_HALT_F))
1291                                 return 0;
1292                         msleep(100);
1293                         ms += 100;
1294                 }
1295                 return -ETIMEDOUT;
1296         }
1297         return 0;
1298 }
1299
1300 /*
1301  *      csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1302  *      @hw: the HW module
1303  *      @mbox: mailbox to use for the FW RESET command (if desired)
1304  *      @fw_data: the firmware image to write
1305  *      @size: image size
1306  *      @force: force upgrade even if firmware doesn't cooperate
1307  *
1308  *      Perform all of the steps necessary for upgrading an adapter's
1309  *      firmware image.  Normally this requires the cooperation of the
1310  *      existing firmware in order to halt all existing activities
1311  *      but if an invalid mailbox token is passed in we skip that step
1312  *      (though we'll still put the adapter microprocessor into RESET in
1313  *      that case).
1314  *
1315  *      On successful return the new firmware will have been loaded and
1316  *      the adapter will have been fully RESET losing all previous setup
1317  *      state.  On unsuccessful return the adapter may be completely hosed ...
1318  *      positive errno indicates that the adapter is ~probably~ intact, a
1319  *      negative errno indicates that things are looking bad ...
1320  */
1321 static int
1322 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1323                   const u8 *fw_data, uint32_t size, int32_t force)
1324 {
1325         const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1326         int reset, ret;
1327
1328         ret = csio_hw_fw_halt(hw, mbox, force);
1329         if (ret != 0 && !force)
1330                 return ret;
1331
1332         ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1333         if (ret != 0)
1334                 return ret;
1335
1336         /*
1337          * Older versions of the firmware don't understand the new
1338          * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1339          * restart.  So for newly loaded older firmware we'll have to do the
1340          * RESET for it so it starts up on a clean slate.  We can tell if
1341          * the newly loaded firmware will handle this right by checking
1342          * its header flags to see if it advertises the capability.
1343          */
1344         reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1345         return csio_hw_fw_restart(hw, mbox, reset);
1346 }
1347
1348 /*
1349  * csio_get_device_params - Get device parameters.
1350  * @hw: HW module
1351  *
1352  */
1353 static int
1354 csio_get_device_params(struct csio_hw *hw)
1355 {
1356         struct csio_wrm *wrm    = csio_hw_to_wrm(hw);
1357         struct csio_mb  *mbp;
1358         enum fw_retval retval;
1359         u32 param[6];
1360         int i, j = 0;
1361
1362         /* Initialize portids to -1 */
1363         for (i = 0; i < CSIO_MAX_PPORTS; i++)
1364                 hw->pport[i].portid = -1;
1365
1366         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1367         if (!mbp) {
1368                 CSIO_INC_STATS(hw, n_err_nomem);
1369                 return -ENOMEM;
1370         }
1371
1372         /* Get port vec information. */
1373         param[0] = FW_PARAM_DEV(PORTVEC);
1374
1375         /* Get Core clock. */
1376         param[1] = FW_PARAM_DEV(CCLK);
1377
1378         /* Get EQ id start and end. */
1379         param[2] = FW_PARAM_PFVF(EQ_START);
1380         param[3] = FW_PARAM_PFVF(EQ_END);
1381
1382         /* Get IQ id start and end. */
1383         param[4] = FW_PARAM_PFVF(IQFLINT_START);
1384         param[5] = FW_PARAM_PFVF(IQFLINT_END);
1385
1386         csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1387                        ARRAY_SIZE(param), param, NULL, false, NULL);
1388         if (csio_mb_issue(hw, mbp)) {
1389                 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1390                 mempool_free(mbp, hw->mb_mempool);
1391                 return -EINVAL;
1392         }
1393
1394         csio_mb_process_read_params_rsp(hw, mbp, &retval,
1395                         ARRAY_SIZE(param), param);
1396         if (retval != FW_SUCCESS) {
1397                 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1398                                 retval);
1399                 mempool_free(mbp, hw->mb_mempool);
1400                 return -EINVAL;
1401         }
1402
1403         /* cache the information. */
1404         hw->port_vec = param[0];
1405         hw->vpd.cclk = param[1];
1406         wrm->fw_eq_start = param[2];
1407         wrm->fw_iq_start = param[4];
1408
1409         /* Using FW configured max iqs & eqs */
1410         if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1411                 !csio_is_hw_master(hw)) {
1412                 hw->cfg_niq = param[5] - param[4] + 1;
1413                 hw->cfg_neq = param[3] - param[2] + 1;
1414                 csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1415                         hw->cfg_niq, hw->cfg_neq);
1416         }
1417
1418         hw->port_vec &= csio_port_mask;
1419
1420         hw->num_pports  = hweight32(hw->port_vec);
1421
1422         csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1423                     hw->port_vec, hw->num_pports);
1424
1425         for (i = 0; i < hw->num_pports; i++) {
1426                 while ((hw->port_vec & (1 << j)) == 0)
1427                         j++;
1428                 hw->pport[i].portid = j++;
1429                 csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1430         }
1431         mempool_free(mbp, hw->mb_mempool);
1432
1433         return 0;
1434 }
1435
1436
1437 /*
1438  * csio_config_device_caps - Get and set device capabilities.
1439  * @hw: HW module
1440  *
1441  */
1442 static int
1443 csio_config_device_caps(struct csio_hw *hw)
1444 {
1445         struct csio_mb  *mbp;
1446         enum fw_retval retval;
1447         int rv = -EINVAL;
1448
1449         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1450         if (!mbp) {
1451                 CSIO_INC_STATS(hw, n_err_nomem);
1452                 return -ENOMEM;
1453         }
1454
1455         /* Get device capabilities */
1456         csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1457
1458         if (csio_mb_issue(hw, mbp)) {
1459                 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1460                 goto out;
1461         }
1462
1463         retval = csio_mb_fw_retval(mbp);
1464         if (retval != FW_SUCCESS) {
1465                 csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1466                 goto out;
1467         }
1468
1469         /* Validate device capabilities */
1470         rv = csio_hw_validate_caps(hw, mbp);
1471         if (rv != 0)
1472                 goto out;
1473
1474         /* Don't config device capabilities if already configured */
1475         if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1476                 rv = 0;
1477                 goto out;
1478         }
1479
1480         /* Write back desired device capabilities */
1481         csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1482                             false, true, NULL);
1483
1484         if (csio_mb_issue(hw, mbp)) {
1485                 csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1486                 goto out;
1487         }
1488
1489         retval = csio_mb_fw_retval(mbp);
1490         if (retval != FW_SUCCESS) {
1491                 csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1492                 goto out;
1493         }
1494
1495         rv = 0;
1496 out:
1497         mempool_free(mbp, hw->mb_mempool);
1498         return rv;
1499 }
1500
1501 static inline enum cc_fec fwcap_to_cc_fec(fw_port_cap32_t fw_fec)
1502 {
1503         enum cc_fec cc_fec = 0;
1504
1505         if (fw_fec & FW_PORT_CAP32_FEC_RS)
1506                 cc_fec |= FEC_RS;
1507         if (fw_fec & FW_PORT_CAP32_FEC_BASER_RS)
1508                 cc_fec |= FEC_BASER_RS;
1509
1510         return cc_fec;
1511 }
1512
1513 static inline fw_port_cap32_t cc_to_fwcap_pause(enum cc_pause cc_pause)
1514 {
1515         fw_port_cap32_t fw_pause = 0;
1516
1517         if (cc_pause & PAUSE_RX)
1518                 fw_pause |= FW_PORT_CAP32_FC_RX;
1519         if (cc_pause & PAUSE_TX)
1520                 fw_pause |= FW_PORT_CAP32_FC_TX;
1521
1522         return fw_pause;
1523 }
1524
1525 static inline fw_port_cap32_t cc_to_fwcap_fec(enum cc_fec cc_fec)
1526 {
1527         fw_port_cap32_t fw_fec = 0;
1528
1529         if (cc_fec & FEC_RS)
1530                 fw_fec |= FW_PORT_CAP32_FEC_RS;
1531         if (cc_fec & FEC_BASER_RS)
1532                 fw_fec |= FW_PORT_CAP32_FEC_BASER_RS;
1533
1534         return fw_fec;
1535 }
1536
1537 /**
1538  * fwcap_to_fwspeed - return highest speed in Port Capabilities
1539  * @acaps: advertised Port Capabilities
1540  *
1541  * Get the highest speed for the port from the advertised Port
1542  * Capabilities.
1543  */
1544 fw_port_cap32_t fwcap_to_fwspeed(fw_port_cap32_t acaps)
1545 {
1546         #define TEST_SPEED_RETURN(__caps_speed) \
1547                 do { \
1548                         if (acaps & FW_PORT_CAP32_SPEED_##__caps_speed) \
1549                                 return FW_PORT_CAP32_SPEED_##__caps_speed; \
1550                 } while (0)
1551
1552         TEST_SPEED_RETURN(400G);
1553         TEST_SPEED_RETURN(200G);
1554         TEST_SPEED_RETURN(100G);
1555         TEST_SPEED_RETURN(50G);
1556         TEST_SPEED_RETURN(40G);
1557         TEST_SPEED_RETURN(25G);
1558         TEST_SPEED_RETURN(10G);
1559         TEST_SPEED_RETURN(1G);
1560         TEST_SPEED_RETURN(100M);
1561
1562         #undef TEST_SPEED_RETURN
1563
1564         return 0;
1565 }
1566
1567 /**
1568  *      fwcaps16_to_caps32 - convert 16-bit Port Capabilities to 32-bits
1569  *      @caps16: a 16-bit Port Capabilities value
1570  *
1571  *      Returns the equivalent 32-bit Port Capabilities value.
1572  */
1573 fw_port_cap32_t fwcaps16_to_caps32(fw_port_cap16_t caps16)
1574 {
1575         fw_port_cap32_t caps32 = 0;
1576
1577         #define CAP16_TO_CAP32(__cap) \
1578                 do { \
1579                         if (caps16 & FW_PORT_CAP_##__cap) \
1580                                 caps32 |= FW_PORT_CAP32_##__cap; \
1581                 } while (0)
1582
1583         CAP16_TO_CAP32(SPEED_100M);
1584         CAP16_TO_CAP32(SPEED_1G);
1585         CAP16_TO_CAP32(SPEED_25G);
1586         CAP16_TO_CAP32(SPEED_10G);
1587         CAP16_TO_CAP32(SPEED_40G);
1588         CAP16_TO_CAP32(SPEED_100G);
1589         CAP16_TO_CAP32(FC_RX);
1590         CAP16_TO_CAP32(FC_TX);
1591         CAP16_TO_CAP32(ANEG);
1592         CAP16_TO_CAP32(MDIAUTO);
1593         CAP16_TO_CAP32(MDISTRAIGHT);
1594         CAP16_TO_CAP32(FEC_RS);
1595         CAP16_TO_CAP32(FEC_BASER_RS);
1596         CAP16_TO_CAP32(802_3_PAUSE);
1597         CAP16_TO_CAP32(802_3_ASM_DIR);
1598
1599         #undef CAP16_TO_CAP32
1600
1601         return caps32;
1602 }
1603
1604 /**
1605  *      fwcaps32_to_caps16 - convert 32-bit Port Capabilities to 16-bits
1606  *      @caps32: a 32-bit Port Capabilities value
1607  *
1608  *      Returns the equivalent 16-bit Port Capabilities value.  Note that
1609  *      not all 32-bit Port Capabilities can be represented in the 16-bit
1610  *      Port Capabilities and some fields/values may not make it.
1611  */
1612 fw_port_cap16_t fwcaps32_to_caps16(fw_port_cap32_t caps32)
1613 {
1614         fw_port_cap16_t caps16 = 0;
1615
1616         #define CAP32_TO_CAP16(__cap) \
1617                 do { \
1618                         if (caps32 & FW_PORT_CAP32_##__cap) \
1619                                 caps16 |= FW_PORT_CAP_##__cap; \
1620                 } while (0)
1621
1622         CAP32_TO_CAP16(SPEED_100M);
1623         CAP32_TO_CAP16(SPEED_1G);
1624         CAP32_TO_CAP16(SPEED_10G);
1625         CAP32_TO_CAP16(SPEED_25G);
1626         CAP32_TO_CAP16(SPEED_40G);
1627         CAP32_TO_CAP16(SPEED_100G);
1628         CAP32_TO_CAP16(FC_RX);
1629         CAP32_TO_CAP16(FC_TX);
1630         CAP32_TO_CAP16(802_3_PAUSE);
1631         CAP32_TO_CAP16(802_3_ASM_DIR);
1632         CAP32_TO_CAP16(ANEG);
1633         CAP32_TO_CAP16(FORCE_PAUSE);
1634         CAP32_TO_CAP16(MDIAUTO);
1635         CAP32_TO_CAP16(MDISTRAIGHT);
1636         CAP32_TO_CAP16(FEC_RS);
1637         CAP32_TO_CAP16(FEC_BASER_RS);
1638
1639         #undef CAP32_TO_CAP16
1640
1641         return caps16;
1642 }
1643
1644 /**
1645  *      lstatus_to_fwcap - translate old lstatus to 32-bit Port Capabilities
1646  *      @lstatus: old FW_PORT_ACTION_GET_PORT_INFO lstatus value
1647  *
1648  *      Translates old FW_PORT_ACTION_GET_PORT_INFO lstatus field into new
1649  *      32-bit Port Capabilities value.
1650  */
1651 fw_port_cap32_t lstatus_to_fwcap(u32 lstatus)
1652 {
1653         fw_port_cap32_t linkattr = 0;
1654
1655         /* The format of the Link Status in the old
1656          * 16-bit Port Information message isn't the same as the
1657          * 16-bit Port Capabilities bitfield used everywhere else.
1658          */
1659         if (lstatus & FW_PORT_CMD_RXPAUSE_F)
1660                 linkattr |= FW_PORT_CAP32_FC_RX;
1661         if (lstatus & FW_PORT_CMD_TXPAUSE_F)
1662                 linkattr |= FW_PORT_CAP32_FC_TX;
1663         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100M))
1664                 linkattr |= FW_PORT_CAP32_SPEED_100M;
1665         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_1G))
1666                 linkattr |= FW_PORT_CAP32_SPEED_1G;
1667         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_10G))
1668                 linkattr |= FW_PORT_CAP32_SPEED_10G;
1669         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_25G))
1670                 linkattr |= FW_PORT_CAP32_SPEED_25G;
1671         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_40G))
1672                 linkattr |= FW_PORT_CAP32_SPEED_40G;
1673         if (lstatus & FW_PORT_CMD_LSPEED_V(FW_PORT_CAP_SPEED_100G))
1674                 linkattr |= FW_PORT_CAP32_SPEED_100G;
1675
1676         return linkattr;
1677 }
1678
1679 /**
1680  *      csio_init_link_config - initialize a link's SW state
1681  *      @lc: pointer to structure holding the link state
1682  *      @pcaps: link Port Capabilities
1683  *      @acaps: link current Advertised Port Capabilities
1684  *
1685  *      Initializes the SW state maintained for each link, including the link's
1686  *      capabilities and default speed/flow-control/autonegotiation settings.
1687  */
1688 static void csio_init_link_config(struct link_config *lc, fw_port_cap32_t pcaps,
1689                                   fw_port_cap32_t acaps)
1690 {
1691         lc->pcaps = pcaps;
1692         lc->def_acaps = acaps;
1693         lc->lpacaps = 0;
1694         lc->speed_caps = 0;
1695         lc->speed = 0;
1696         lc->requested_fc = PAUSE_RX | PAUSE_TX;
1697         lc->fc = lc->requested_fc;
1698
1699         /*
1700          * For Forward Error Control, we default to whatever the Firmware
1701          * tells us the Link is currently advertising.
1702          */
1703         lc->requested_fec = FEC_AUTO;
1704         lc->fec = fwcap_to_cc_fec(lc->def_acaps);
1705
1706         /* If the Port is capable of Auto-Negtotiation, initialize it as
1707          * "enabled" and copy over all of the Physical Port Capabilities
1708          * to the Advertised Port Capabilities.  Otherwise mark it as
1709          * Auto-Negotiate disabled and select the highest supported speed
1710          * for the link.  Note parallel structure in t4_link_l1cfg_core()
1711          * and t4_handle_get_port_info().
1712          */
1713         if (lc->pcaps & FW_PORT_CAP32_ANEG) {
1714                 lc->acaps = lc->pcaps & ADVERT_MASK;
1715                 lc->autoneg = AUTONEG_ENABLE;
1716                 lc->requested_fc |= PAUSE_AUTONEG;
1717         } else {
1718                 lc->acaps = 0;
1719                 lc->autoneg = AUTONEG_DISABLE;
1720         }
1721 }
1722
1723 static void csio_link_l1cfg(struct link_config *lc, uint16_t fw_caps,
1724                             uint32_t *rcaps)
1725 {
1726         unsigned int fw_mdi = FW_PORT_CAP32_MDI_V(FW_PORT_CAP32_MDI_AUTO);
1727         fw_port_cap32_t fw_fc, cc_fec, fw_fec, lrcap;
1728
1729         lc->link_ok = 0;
1730
1731         /*
1732          * Convert driver coding of Pause Frame Flow Control settings into the
1733          * Firmware's API.
1734          */
1735         fw_fc = cc_to_fwcap_pause(lc->requested_fc);
1736
1737         /*
1738          * Convert Common Code Forward Error Control settings into the
1739          * Firmware's API.  If the current Requested FEC has "Automatic"
1740          * (IEEE 802.3) specified, then we use whatever the Firmware
1741          * sent us as part of it's IEEE 802.3-based interpratation of
1742          * the Transceiver Module EPROM FEC parameters.  Otherwise we
1743          * use whatever is in the current Requested FEC settings.
1744          */
1745         if (lc->requested_fec & FEC_AUTO)
1746                 cc_fec = fwcap_to_cc_fec(lc->def_acaps);
1747         else
1748                 cc_fec = lc->requested_fec;
1749         fw_fec = cc_to_fwcap_fec(cc_fec);
1750
1751         /* Figure out what our Requested Port Capabilities are going to be.
1752          * Note parallel structure in t4_handle_get_port_info() and
1753          * init_link_config().
1754          */
1755         if (!(lc->pcaps & FW_PORT_CAP32_ANEG)) {
1756                 lrcap = (lc->pcaps & ADVERT_MASK) | fw_fc | fw_fec;
1757                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1758                 lc->fec = cc_fec;
1759         } else if (lc->autoneg == AUTONEG_DISABLE) {
1760                 lrcap = lc->speed_caps | fw_fc | fw_fec | fw_mdi;
1761                 lc->fc = lc->requested_fc & ~PAUSE_AUTONEG;
1762                 lc->fec = cc_fec;
1763         } else {
1764                 lrcap = lc->acaps | fw_fc | fw_fec | fw_mdi;
1765         }
1766
1767         *rcaps = lrcap;
1768 }
1769
1770 /*
1771  * csio_enable_ports - Bring up all available ports.
1772  * @hw: HW module.
1773  *
1774  */
1775 static int
1776 csio_enable_ports(struct csio_hw *hw)
1777 {
1778         struct csio_mb  *mbp;
1779         u16 fw_caps = FW_CAPS_UNKNOWN;
1780         enum fw_retval retval;
1781         uint8_t portid;
1782         fw_port_cap32_t pcaps, acaps, rcaps;
1783         int i;
1784
1785         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1786         if (!mbp) {
1787                 CSIO_INC_STATS(hw, n_err_nomem);
1788                 return -ENOMEM;
1789         }
1790
1791         for (i = 0; i < hw->num_pports; i++) {
1792                 portid = hw->pport[i].portid;
1793
1794                 if (fw_caps == FW_CAPS_UNKNOWN) {
1795                         u32 param, val;
1796
1797                         param = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_PFVF) |
1798                          FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_PFVF_PORT_CAPS32));
1799                         val = 1;
1800
1801                         csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO,
1802                                        hw->pfn, 0, 1, &param, &val, true,
1803                                        NULL);
1804
1805                         if (csio_mb_issue(hw, mbp)) {
1806                                 csio_err(hw, "failed to issue FW_PARAMS_CMD(r) port:%d\n",
1807                                          portid);
1808                                 mempool_free(mbp, hw->mb_mempool);
1809                                 return -EINVAL;
1810                         }
1811
1812                         csio_mb_process_read_params_rsp(hw, mbp, &retval,
1813                                                         0, NULL);
1814                         fw_caps = retval ? FW_CAPS16 : FW_CAPS32;
1815                 }
1816
1817                 /* Read PORT information */
1818                 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1819                              false, 0, fw_caps, NULL);
1820
1821                 if (csio_mb_issue(hw, mbp)) {
1822                         csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1823                                  portid);
1824                         mempool_free(mbp, hw->mb_mempool);
1825                         return -EINVAL;
1826                 }
1827
1828                 csio_mb_process_read_port_rsp(hw, mbp, &retval, fw_caps,
1829                                               &pcaps, &acaps);
1830                 if (retval != FW_SUCCESS) {
1831                         csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1832                                  portid, retval);
1833                         mempool_free(mbp, hw->mb_mempool);
1834                         return -EINVAL;
1835                 }
1836
1837                 csio_init_link_config(&hw->pport[i].link_cfg, pcaps, acaps);
1838
1839                 csio_link_l1cfg(&hw->pport[i].link_cfg, fw_caps, &rcaps);
1840
1841                 /* Write back PORT information */
1842                 csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1843                              true, rcaps, fw_caps, NULL);
1844
1845                 if (csio_mb_issue(hw, mbp)) {
1846                         csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1847                                  portid);
1848                         mempool_free(mbp, hw->mb_mempool);
1849                         return -EINVAL;
1850                 }
1851
1852                 retval = csio_mb_fw_retval(mbp);
1853                 if (retval != FW_SUCCESS) {
1854                         csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
1855                                  portid, retval);
1856                         mempool_free(mbp, hw->mb_mempool);
1857                         return -EINVAL;
1858                 }
1859
1860         } /* For all ports */
1861
1862         mempool_free(mbp, hw->mb_mempool);
1863
1864         return 0;
1865 }
1866
1867 /*
1868  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
1869  * @hw: HW module
1870  * Issued with lock held.
1871  */
1872 static int
1873 csio_get_fcoe_resinfo(struct csio_hw *hw)
1874 {
1875         struct csio_fcoe_res_info *res_info = &hw->fres_info;
1876         struct fw_fcoe_res_info_cmd *rsp;
1877         struct csio_mb  *mbp;
1878         enum fw_retval retval;
1879
1880         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1881         if (!mbp) {
1882                 CSIO_INC_STATS(hw, n_err_nomem);
1883                 return -ENOMEM;
1884         }
1885
1886         /* Get FCoE FW resource information */
1887         csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1888
1889         if (csio_mb_issue(hw, mbp)) {
1890                 csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
1891                 mempool_free(mbp, hw->mb_mempool);
1892                 return -EINVAL;
1893         }
1894
1895         rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
1896         retval = FW_CMD_RETVAL_G(ntohl(rsp->retval_len16));
1897         if (retval != FW_SUCCESS) {
1898                 csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
1899                          retval);
1900                 mempool_free(mbp, hw->mb_mempool);
1901                 return -EINVAL;
1902         }
1903
1904         res_info->e_d_tov = ntohs(rsp->e_d_tov);
1905         res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
1906         res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
1907         res_info->r_r_tov = ntohs(rsp->r_r_tov);
1908         res_info->max_xchgs = ntohl(rsp->max_xchgs);
1909         res_info->max_ssns = ntohl(rsp->max_ssns);
1910         res_info->used_xchgs = ntohl(rsp->used_xchgs);
1911         res_info->used_ssns = ntohl(rsp->used_ssns);
1912         res_info->max_fcfs = ntohl(rsp->max_fcfs);
1913         res_info->max_vnps = ntohl(rsp->max_vnps);
1914         res_info->used_fcfs = ntohl(rsp->used_fcfs);
1915         res_info->used_vnps = ntohl(rsp->used_vnps);
1916
1917         csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
1918                                                   res_info->max_xchgs);
1919         mempool_free(mbp, hw->mb_mempool);
1920
1921         return 0;
1922 }
1923
1924 static int
1925 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
1926 {
1927         struct csio_mb  *mbp;
1928         enum fw_retval retval;
1929         u32 _param[1];
1930
1931         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1932         if (!mbp) {
1933                 CSIO_INC_STATS(hw, n_err_nomem);
1934                 return -ENOMEM;
1935         }
1936
1937         /*
1938          * Find out whether we're dealing with a version of
1939          * the firmware which has configuration file support.
1940          */
1941         _param[0] = (FW_PARAMS_MNEM_V(FW_PARAMS_MNEM_DEV) |
1942                      FW_PARAMS_PARAM_X_V(FW_PARAMS_PARAM_DEV_CF));
1943
1944         csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1945                        ARRAY_SIZE(_param), _param, NULL, false, NULL);
1946         if (csio_mb_issue(hw, mbp)) {
1947                 csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1948                 mempool_free(mbp, hw->mb_mempool);
1949                 return -EINVAL;
1950         }
1951
1952         csio_mb_process_read_params_rsp(hw, mbp, &retval,
1953                         ARRAY_SIZE(_param), _param);
1954         if (retval != FW_SUCCESS) {
1955                 csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1956                                 retval);
1957                 mempool_free(mbp, hw->mb_mempool);
1958                 return -EINVAL;
1959         }
1960
1961         mempool_free(mbp, hw->mb_mempool);
1962         *param = _param[0];
1963
1964         return 0;
1965 }
1966
1967 static int
1968 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
1969 {
1970         int ret = 0;
1971         const struct firmware *cf;
1972         struct pci_dev *pci_dev = hw->pdev;
1973         struct device *dev = &pci_dev->dev;
1974         unsigned int mtype = 0, maddr = 0;
1975         uint32_t *cfg_data;
1976         int value_to_add = 0;
1977         const char *fw_cfg_file;
1978
1979         if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
1980                 fw_cfg_file = FW_CFG_NAME_T5;
1981         else
1982                 fw_cfg_file = FW_CFG_NAME_T6;
1983
1984         if (reject_firmware(&cf, fw_cfg_file, dev) < 0) {
1985                 csio_err(hw, "could not find config file %s, err: %d\n",
1986                          fw_cfg_file, ret);
1987                 return -ENOENT;
1988         }
1989
1990         if (cf->size%4 != 0)
1991                 value_to_add = 4 - (cf->size % 4);
1992
1993         cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
1994         if (cfg_data == NULL) {
1995                 ret = -ENOMEM;
1996                 goto leave;
1997         }
1998
1999         memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2000         if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
2001                 ret = -EINVAL;
2002                 goto leave;
2003         }
2004
2005         mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2006         maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2007
2008         ret = csio_memory_write(hw, mtype, maddr,
2009                                 cf->size + value_to_add, cfg_data);
2010
2011         if ((ret == 0) && (value_to_add != 0)) {
2012                 union {
2013                         u32 word;
2014                         char buf[4];
2015                 } last;
2016                 size_t size = cf->size & ~0x3;
2017                 int i;
2018
2019                 last.word = cfg_data[size >> 2];
2020                 for (i = value_to_add; i < 4; i++)
2021                         last.buf[i] = 0;
2022                 ret = csio_memory_write(hw, mtype, maddr + size, 4, &last.word);
2023         }
2024         if (ret == 0) {
2025                 csio_info(hw, "config file upgraded to %s\n", fw_cfg_file);
2026                 snprintf(path, 64, "%s%s", "/lib/firmware/", fw_cfg_file);
2027         }
2028
2029 leave:
2030         kfree(cfg_data);
2031         release_firmware(cf);
2032         return ret;
2033 }
2034
2035 /*
2036  * HW initialization: contact FW, obtain config, perform basic init.
2037  *
2038  * If the firmware we're dealing with has Configuration File support, then
2039  * we use that to perform all configuration -- either using the configuration
2040  * file stored in flash on the adapter or using a filesystem-local file
2041  * if available.
2042  *
2043  * If we don't have configuration file support in the firmware, then we'll
2044  * have to set things up the old fashioned way with hard-coded register
2045  * writes and firmware commands ...
2046  */
2047
2048 /*
2049  * Attempt to initialize the HW via a Firmware Configuration File.
2050  */
2051 static int
2052 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2053 {
2054         struct csio_mb  *mbp = NULL;
2055         struct fw_caps_config_cmd *caps_cmd;
2056         unsigned int mtype, maddr;
2057         int rv = -EINVAL;
2058         uint32_t finiver = 0, finicsum = 0, cfcsum = 0;
2059         char path[64];
2060         char *config_name = NULL;
2061
2062         /*
2063          * Reset device if necessary
2064          */
2065         if (reset) {
2066                 rv = csio_do_reset(hw, true);
2067                 if (rv != 0)
2068                         goto bye;
2069         }
2070
2071         /*
2072          * If we have a configuration file in host ,
2073          * then use that.  Otherwise, use the configuration file stored
2074          * in the HW flash ...
2075          */
2076         spin_unlock_irq(&hw->lock);
2077         rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2078         spin_lock_irq(&hw->lock);
2079         if (rv != 0) {
2080                 /*
2081                  * config file was not found. Use default
2082                  * config file from flash.
2083                  */
2084                 config_name = "On FLASH";
2085                 mtype = FW_MEMTYPE_CF_FLASH;
2086                 maddr = hw->chip_ops->chip_flash_cfg_addr(hw);
2087         } else {
2088                 config_name = path;
2089                 mtype = FW_PARAMS_PARAM_Y_G(*fw_cfg_param);
2090                 maddr = FW_PARAMS_PARAM_Z_G(*fw_cfg_param) << 16;
2091         }
2092
2093         mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2094         if (!mbp) {
2095                 CSIO_INC_STATS(hw, n_err_nomem);
2096                 return -ENOMEM;
2097         }
2098         /*
2099          * Tell the firmware to process the indicated Configuration File.
2100          * If there are no errors and the caller has provided return value
2101          * pointers for the [fini] section version, checksum and computed
2102          * checksum, pass those back to the caller.
2103          */
2104         caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
2105         CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2106         caps_cmd->op_to_write =
2107                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2108                       FW_CMD_REQUEST_F |
2109                       FW_CMD_READ_F);
2110         caps_cmd->cfvalid_to_len16 =
2111                 htonl(FW_CAPS_CONFIG_CMD_CFVALID_F |
2112                       FW_CAPS_CONFIG_CMD_MEMTYPE_CF_V(mtype) |
2113                       FW_CAPS_CONFIG_CMD_MEMADDR64K_CF_V(maddr >> 16) |
2114                       FW_LEN16(*caps_cmd));
2115
2116         if (csio_mb_issue(hw, mbp)) {
2117                 rv = -EINVAL;
2118                 goto bye;
2119         }
2120
2121         rv = csio_mb_fw_retval(mbp);
2122          /* If the CAPS_CONFIG failed with an ENOENT (for a Firmware
2123           * Configuration File in FLASH), our last gasp effort is to use the
2124           * Firmware Configuration File which is embedded in the
2125           * firmware.  A very few early versions of the firmware didn't
2126           * have one embedded but we can ignore those.
2127           */
2128         if (rv == ENOENT) {
2129                 CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
2130                 caps_cmd->op_to_write = htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2131                                               FW_CMD_REQUEST_F |
2132                                               FW_CMD_READ_F);
2133                 caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2134
2135                 if (csio_mb_issue(hw, mbp)) {
2136                         rv = -EINVAL;
2137                         goto bye;
2138                 }
2139
2140                 rv = csio_mb_fw_retval(mbp);
2141                 config_name = "Firmware Default";
2142         }
2143         if (rv != FW_SUCCESS)
2144                 goto bye;
2145
2146         finiver = ntohl(caps_cmd->finiver);
2147         finicsum = ntohl(caps_cmd->finicsum);
2148         cfcsum = ntohl(caps_cmd->cfcsum);
2149
2150         /*
2151          * And now tell the firmware to use the configuration we just loaded.
2152          */
2153         caps_cmd->op_to_write =
2154                 htonl(FW_CMD_OP_V(FW_CAPS_CONFIG_CMD) |
2155                       FW_CMD_REQUEST_F |
2156                       FW_CMD_WRITE_F);
2157         caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
2158
2159         if (csio_mb_issue(hw, mbp)) {
2160                 rv = -EINVAL;
2161                 goto bye;
2162         }
2163
2164         rv = csio_mb_fw_retval(mbp);
2165         if (rv != FW_SUCCESS) {
2166                 csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
2167                 goto bye;
2168         }
2169
2170         if (finicsum != cfcsum) {
2171                 csio_warn(hw,
2172                       "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2173                       finicsum, cfcsum);
2174         }
2175
2176         /* Validate device capabilities */
2177         rv = csio_hw_validate_caps(hw, mbp);
2178         if (rv != 0)
2179                 goto bye;
2180
2181         mempool_free(mbp, hw->mb_mempool);
2182         mbp = NULL;
2183
2184         /*
2185          * Note that we're operating with parameters
2186          * not supplied by the driver, rather than from hard-wired
2187          * initialization constants buried in the driver.
2188          */
2189         hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2190
2191         /* device parameters */
2192         rv = csio_get_device_params(hw);
2193         if (rv != 0)
2194                 goto bye;
2195
2196         /* Configure SGE */
2197         csio_wr_sge_init(hw);
2198
2199         /*
2200          * And finally tell the firmware to initialize itself using the
2201          * parameters from the Configuration File.
2202          */
2203         /* Post event to notify completion of configuration */
2204         csio_post_event(&hw->sm, CSIO_HWE_INIT);
2205
2206         csio_info(hw, "Successfully configure using Firmware "
2207                   "Configuration File %s, version %#x, computed checksum %#x\n",
2208                   config_name, finiver, cfcsum);
2209         return 0;
2210
2211         /*
2212          * Something bad happened.  Return the error ...
2213          */
2214 bye:
2215         if (mbp)
2216                 mempool_free(mbp, hw->mb_mempool);
2217         hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2218         csio_warn(hw, "Configuration file error %d\n", rv);
2219         return rv;
2220 }
2221
2222 /* Is the given firmware API compatible with the one the driver was compiled
2223  * with?
2224  */
2225 static int fw_compatible(const struct fw_hdr *hdr1, const struct fw_hdr *hdr2)
2226 {
2227
2228         /* short circuit if it's the exact same firmware version */
2229         if (hdr1->chip == hdr2->chip && hdr1->fw_ver == hdr2->fw_ver)
2230                 return 1;
2231
2232 #define SAME_INTF(x) (hdr1->intfver_##x == hdr2->intfver_##x)
2233         if (hdr1->chip == hdr2->chip && SAME_INTF(nic) && SAME_INTF(vnic) &&
2234             SAME_INTF(ri) && SAME_INTF(iscsi) && SAME_INTF(fcoe))
2235                 return 1;
2236 #undef SAME_INTF
2237
2238         return 0;
2239 }
2240
2241 /* The firmware in the filesystem is usable, but should it be installed?
2242  * This routine explains itself in detail if it indicates the filesystem
2243  * firmware should be installed.
2244  */
2245 static int csio_should_install_fs_fw(struct csio_hw *hw, int card_fw_usable,
2246                                 int k, int c)
2247 {
2248         const char *reason;
2249
2250         if (!card_fw_usable) {
2251                 reason = "incompatible or unusable";
2252                 goto install;
2253         }
2254
2255         if (k > c) {
2256                 reason = "older than the version supported with this driver";
2257                 goto install;
2258         }
2259
2260         return 0;
2261
2262 install:
2263         csio_err(hw, "firmware on card (%u.%u.%u.%u) is %s, "
2264                 "installing firmware %u.%u.%u.%u on card.\n",
2265                 FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2266                 FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c), reason,
2267                 FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2268                 FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2269
2270         return 1;
2271 }
2272
2273 static struct fw_info fw_info_array[] = {
2274         {
2275                 .chip = CHELSIO_T5,
2276                 .fs_name = FW_CFG_NAME_T5,
2277                 .fw_mod_name = FW_FNAME_T5,
2278                 .fw_hdr = {
2279                         .chip = FW_HDR_CHIP_T5,
2280                         .fw_ver = __cpu_to_be32(FW_VERSION(T5)),
2281                         .intfver_nic = FW_INTFVER(T5, NIC),
2282                         .intfver_vnic = FW_INTFVER(T5, VNIC),
2283                         .intfver_ri = FW_INTFVER(T5, RI),
2284                         .intfver_iscsi = FW_INTFVER(T5, ISCSI),
2285                         .intfver_fcoe = FW_INTFVER(T5, FCOE),
2286                 },
2287         }, {
2288                 .chip = CHELSIO_T6,
2289                 .fs_name = FW_CFG_NAME_T6,
2290                 .fw_mod_name = FW_FNAME_T6,
2291                 .fw_hdr = {
2292                         .chip = FW_HDR_CHIP_T6,
2293                         .fw_ver = __cpu_to_be32(FW_VERSION(T6)),
2294                         .intfver_nic = FW_INTFVER(T6, NIC),
2295                         .intfver_vnic = FW_INTFVER(T6, VNIC),
2296                         .intfver_ri = FW_INTFVER(T6, RI),
2297                         .intfver_iscsi = FW_INTFVER(T6, ISCSI),
2298                         .intfver_fcoe = FW_INTFVER(T6, FCOE),
2299                 },
2300         }
2301 };
2302
2303 static struct fw_info *find_fw_info(int chip)
2304 {
2305         int i;
2306
2307         for (i = 0; i < ARRAY_SIZE(fw_info_array); i++) {
2308                 if (fw_info_array[i].chip == chip)
2309                         return &fw_info_array[i];
2310         }
2311         return NULL;
2312 }
2313
2314 static int csio_hw_prep_fw(struct csio_hw *hw, struct fw_info *fw_info,
2315                const u8 *fw_data, unsigned int fw_size,
2316                struct fw_hdr *card_fw, enum csio_dev_state state,
2317                int *reset)
2318 {
2319         int ret, card_fw_usable, fs_fw_usable;
2320         const struct fw_hdr *fs_fw;
2321         const struct fw_hdr *drv_fw;
2322
2323         drv_fw = &fw_info->fw_hdr;
2324
2325         /* Read the header of the firmware on the card */
2326         ret = csio_hw_read_flash(hw, FLASH_FW_START,
2327                             sizeof(*card_fw) / sizeof(uint32_t),
2328                             (uint32_t *)card_fw, 1);
2329         if (ret == 0) {
2330                 card_fw_usable = fw_compatible(drv_fw, (const void *)card_fw);
2331         } else {
2332                 csio_err(hw,
2333                         "Unable to read card's firmware header: %d\n", ret);
2334                 card_fw_usable = 0;
2335         }
2336
2337         if (fw_data != NULL) {
2338                 fs_fw = (const void *)fw_data;
2339                 fs_fw_usable = fw_compatible(drv_fw, fs_fw);
2340         } else {
2341                 fs_fw = NULL;
2342                 fs_fw_usable = 0;
2343         }
2344
2345         if (card_fw_usable && card_fw->fw_ver == drv_fw->fw_ver &&
2346             (!fs_fw_usable || fs_fw->fw_ver == drv_fw->fw_ver)) {
2347                 /* Common case: the firmware on the card is an exact match and
2348                  * the filesystem one is an exact match too, or the filesystem
2349                  * one is absent/incompatible.
2350                  */
2351         } else if (fs_fw_usable && state == CSIO_DEV_STATE_UNINIT &&
2352                    csio_should_install_fs_fw(hw, card_fw_usable,
2353                                         be32_to_cpu(fs_fw->fw_ver),
2354                                         be32_to_cpu(card_fw->fw_ver))) {
2355                 ret = csio_hw_fw_upgrade(hw, hw->pfn, fw_data,
2356                                      fw_size, 0);
2357                 if (ret != 0) {
2358                         csio_err(hw,
2359                                 "failed to install firmware: %d\n", ret);
2360                         goto bye;
2361                 }
2362
2363                 /* Installed successfully, update the cached header too. */
2364                 memcpy(card_fw, fs_fw, sizeof(*card_fw));
2365                 card_fw_usable = 1;
2366                 *reset = 0;     /* already reset as part of load_fw */
2367         }
2368
2369         if (!card_fw_usable) {
2370                 uint32_t d, c, k;
2371
2372                 d = be32_to_cpu(drv_fw->fw_ver);
2373                 c = be32_to_cpu(card_fw->fw_ver);
2374                 k = fs_fw ? be32_to_cpu(fs_fw->fw_ver) : 0;
2375
2376                 csio_err(hw, "Cannot find a usable firmware: "
2377                         "chip state %d, "
2378                         "driver compiled with %d.%d.%d.%d, "
2379                         "card has %d.%d.%d.%d, filesystem has %d.%d.%d.%d\n",
2380                         state,
2381                         FW_HDR_FW_VER_MAJOR_G(d), FW_HDR_FW_VER_MINOR_G(d),
2382                         FW_HDR_FW_VER_MICRO_G(d), FW_HDR_FW_VER_BUILD_G(d),
2383                         FW_HDR_FW_VER_MAJOR_G(c), FW_HDR_FW_VER_MINOR_G(c),
2384                         FW_HDR_FW_VER_MICRO_G(c), FW_HDR_FW_VER_BUILD_G(c),
2385                         FW_HDR_FW_VER_MAJOR_G(k), FW_HDR_FW_VER_MINOR_G(k),
2386                         FW_HDR_FW_VER_MICRO_G(k), FW_HDR_FW_VER_BUILD_G(k));
2387                 ret = -EINVAL;
2388                 goto bye;
2389         }
2390
2391         /* We're using whatever's on the card and it's known to be good. */
2392         hw->fwrev = be32_to_cpu(card_fw->fw_ver);
2393         hw->tp_vers = be32_to_cpu(card_fw->tp_microcode_ver);
2394
2395 bye:
2396         return ret;
2397 }
2398
2399 /*
2400  * Returns -EINVAL if attempts to flash the firmware failed,
2401  * -ENOMEM if memory allocation failed else returns 0,
2402  * if flashing was not attempted because the card had the
2403  * latest firmware ECANCELED is returned
2404  */
2405 static int
2406 csio_hw_flash_fw(struct csio_hw *hw, int *reset)
2407 {
2408         int ret = -ECANCELED;
2409         const struct firmware *fw;
2410         struct fw_info *fw_info;
2411         struct fw_hdr *card_fw;
2412         struct pci_dev *pci_dev = hw->pdev;
2413         struct device *dev = &pci_dev->dev ;
2414         const u8 *fw_data = NULL;
2415         unsigned int fw_size = 0;
2416         const char *fw_bin_file;
2417
2418         /* This is the firmware whose headers the driver was compiled
2419          * against
2420          */
2421         fw_info = find_fw_info(CHELSIO_CHIP_VERSION(hw->chip_id));
2422         if (fw_info == NULL) {
2423                 csio_err(hw,
2424                         "unable to get firmware info for chip %d.\n",
2425                         CHELSIO_CHIP_VERSION(hw->chip_id));
2426                 return -EINVAL;
2427         }
2428
2429         /* allocate memory to read the header of the firmware on the
2430          * card
2431          */
2432         card_fw = kmalloc(sizeof(*card_fw), GFP_KERNEL);
2433         if (!card_fw)
2434                 return -ENOMEM;
2435
2436         if (csio_is_t5(pci_dev->device & CSIO_HW_CHIP_MASK))
2437                 fw_bin_file = FW_FNAME_T5;
2438         else
2439                 fw_bin_file = FW_FNAME_T6;
2440
2441         if (reject_firmware(&fw, fw_bin_file, dev) < 0) {
2442                 csio_err(hw, "could not find firmware image %s, err: %d\n",
2443                          fw_bin_file, ret);
2444         } else {
2445                 fw_data = fw->data;
2446                 fw_size = fw->size;
2447         }
2448
2449         /* upgrade FW logic */
2450         ret = csio_hw_prep_fw(hw, fw_info, fw_data, fw_size, card_fw,
2451                          hw->fw_state, reset);
2452
2453         /* Cleaning up */
2454         if (fw != NULL)
2455                 release_firmware(fw);
2456         kfree(card_fw);
2457         return ret;
2458 }
2459
2460 static int csio_hw_check_fwver(struct csio_hw *hw)
2461 {
2462         if (csio_is_t6(hw->pdev->device & CSIO_HW_CHIP_MASK) &&
2463             (hw->fwrev < CSIO_MIN_T6_FW)) {
2464                 csio_hw_print_fw_version(hw, "T6 unsupported fw");
2465                 return -1;
2466         }
2467
2468         return 0;
2469 }
2470
2471 /*
2472  * csio_hw_configure - Configure HW
2473  * @hw - HW module
2474  *
2475  */
2476 static void
2477 csio_hw_configure(struct csio_hw *hw)
2478 {
2479         int reset = 1;
2480         int rv;
2481         u32 param[1];
2482
2483         rv = csio_hw_dev_ready(hw);
2484         if (rv != 0) {
2485                 CSIO_INC_STATS(hw, n_err_fatal);
2486                 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2487                 goto out;
2488         }
2489
2490         /* HW version */
2491         hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV_A);
2492
2493         /* Needed for FW download */
2494         rv = csio_hw_get_flash_params(hw);
2495         if (rv != 0) {
2496                 csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2497                 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2498                 goto out;
2499         }
2500
2501         /* Set PCIe completion timeout to 4 seconds */
2502         if (pci_is_pcie(hw->pdev))
2503                 pcie_capability_clear_and_set_word(hw->pdev, PCI_EXP_DEVCTL2,
2504                                 PCI_EXP_DEVCTL2_COMP_TIMEOUT, 0xd);
2505
2506         hw->chip_ops->chip_set_mem_win(hw, MEMWIN_CSIOSTOR);
2507
2508         rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2509         if (rv != 0)
2510                 goto out;
2511
2512         csio_hw_print_fw_version(hw, "Firmware revision");
2513
2514         rv = csio_do_hello(hw, &hw->fw_state);
2515         if (rv != 0) {
2516                 CSIO_INC_STATS(hw, n_err_fatal);
2517                 csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2518                 goto out;
2519         }
2520
2521         /* Read vpd */
2522         rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2523         if (rv != 0)
2524                 goto out;
2525
2526         csio_hw_get_fw_version(hw, &hw->fwrev);
2527         csio_hw_get_tp_version(hw, &hw->tp_vers);
2528         if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2529
2530                         /* Do firmware update */
2531                 spin_unlock_irq(&hw->lock);
2532                 rv = csio_hw_flash_fw(hw, &reset);
2533                 spin_lock_irq(&hw->lock);
2534
2535                 if (rv != 0)
2536                         goto out;
2537
2538                 rv = csio_hw_check_fwver(hw);
2539                 if (rv < 0)
2540                         goto out;
2541
2542                 /* If the firmware doesn't support Configuration Files,
2543                  * return an error.
2544                  */
2545                 rv = csio_hw_check_fwconfig(hw, param);
2546                 if (rv != 0) {
2547                         csio_info(hw, "Firmware doesn't support "
2548                                   "Firmware Configuration files\n");
2549                         goto out;
2550                 }
2551
2552                 /* The firmware provides us with a memory buffer where we can
2553                  * load a Configuration File from the host if we want to
2554                  * override the Configuration File in flash.
2555                  */
2556                 rv = csio_hw_use_fwconfig(hw, reset, param);
2557                 if (rv == -ENOENT) {
2558                         csio_info(hw, "Could not initialize "
2559                                   "adapter, error%d\n", rv);
2560                         goto out;
2561                 }
2562                 if (rv != 0) {
2563                         csio_info(hw, "Could not initialize "
2564                                   "adapter, error%d\n", rv);
2565                         goto out;
2566                 }
2567
2568         } else {
2569                 rv = csio_hw_check_fwver(hw);
2570                 if (rv < 0)
2571                         goto out;
2572
2573                 if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2574
2575                         hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2576
2577                         /* device parameters */
2578                         rv = csio_get_device_params(hw);
2579                         if (rv != 0)
2580                                 goto out;
2581
2582                         /* Get device capabilities */
2583                         rv = csio_config_device_caps(hw);
2584                         if (rv != 0)
2585                                 goto out;
2586
2587                         /* Configure SGE */
2588                         csio_wr_sge_init(hw);
2589
2590                         /* Post event to notify completion of configuration */
2591                         csio_post_event(&hw->sm, CSIO_HWE_INIT);
2592                         goto out;
2593                 }
2594         } /* if not master */
2595
2596 out:
2597         return;
2598 }
2599
2600 /*
2601  * csio_hw_initialize - Initialize HW
2602  * @hw - HW module
2603  *
2604  */
2605 static void
2606 csio_hw_initialize(struct csio_hw *hw)
2607 {
2608         struct csio_mb  *mbp;
2609         enum fw_retval retval;
2610         int rv;
2611         int i;
2612
2613         if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2614                 mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2615                 if (!mbp)
2616                         goto out;
2617
2618                 csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2619
2620                 if (csio_mb_issue(hw, mbp)) {
2621                         csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2622                         goto free_and_out;
2623                 }
2624
2625                 retval = csio_mb_fw_retval(mbp);
2626                 if (retval != FW_SUCCESS) {
2627                         csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2628                                  retval);
2629                         goto free_and_out;
2630                 }
2631
2632                 mempool_free(mbp, hw->mb_mempool);
2633         }
2634
2635         rv = csio_get_fcoe_resinfo(hw);
2636         if (rv != 0) {
2637                 csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2638                 goto out;
2639         }
2640
2641         spin_unlock_irq(&hw->lock);
2642         rv = csio_config_queues(hw);
2643         spin_lock_irq(&hw->lock);
2644
2645         if (rv != 0) {
2646                 csio_err(hw, "Config of queues failed!: %d\n", rv);
2647                 goto out;
2648         }
2649
2650         for (i = 0; i < hw->num_pports; i++)
2651                 hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2652
2653         if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2654                 rv = csio_enable_ports(hw);
2655                 if (rv != 0) {
2656                         csio_err(hw, "Failed to enable ports: %d\n", rv);
2657                         goto out;
2658                 }
2659         }
2660
2661         csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2662         return;
2663
2664 free_and_out:
2665         mempool_free(mbp, hw->mb_mempool);
2666 out:
2667         return;
2668 }
2669
2670 #define PF_INTR_MASK (PFSW_F | PFCIM_F)
2671
2672 /*
2673  * csio_hw_intr_enable - Enable HW interrupts
2674  * @hw: Pointer to HW module.
2675  *
2676  * Enable interrupts in HW registers.
2677  */
2678 static void
2679 csio_hw_intr_enable(struct csio_hw *hw)
2680 {
2681         uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2682         u32 pf = 0;
2683         uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE_A);
2684
2685         if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2686                 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2687         else
2688                 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2689
2690         /*
2691          * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2692          * by FW, so do nothing for INTX.
2693          */
2694         if (hw->intr_mode == CSIO_IM_MSIX)
2695                 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2696                                    AIVEC_V(AIVEC_M), vec);
2697         else if (hw->intr_mode == CSIO_IM_MSI)
2698                 csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG_A),
2699                                    AIVEC_V(AIVEC_M), 0);
2700
2701         csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE_A));
2702
2703         /* Turn on MB interrupts - this will internally flush PIO as well */
2704         csio_mb_intr_enable(hw);
2705
2706         /* These are common registers - only a master can modify them */
2707         if (csio_is_hw_master(hw)) {
2708                 /*
2709                  * Disable the Serial FLASH interrupt, if enabled!
2710                  */
2711                 pl &= (~SF_F);
2712                 csio_wr_reg32(hw, pl, PL_INT_ENABLE_A);
2713
2714                 csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE_F |
2715                               EGRESS_SIZE_ERR_F | ERR_INVALID_CIDX_INC_F |
2716                               ERR_CPL_OPCODE_0_F | ERR_DROPPED_DB_F |
2717                               ERR_DATA_CPL_ON_HIGH_QID1_F |
2718                               ERR_DATA_CPL_ON_HIGH_QID0_F | ERR_BAD_DB_PIDX3_F |
2719                               ERR_BAD_DB_PIDX2_F | ERR_BAD_DB_PIDX1_F |
2720                               ERR_BAD_DB_PIDX0_F | ERR_ING_CTXT_PRIO_F |
2721                               ERR_EGR_CTXT_PRIO_F | INGRESS_SIZE_ERR_F,
2722                               SGE_INT_ENABLE3_A);
2723                 csio_set_reg_field(hw, PL_INT_MAP0_A, 0, 1 << pf);
2724         }
2725
2726         hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2727
2728 }
2729
2730 /*
2731  * csio_hw_intr_disable - Disable HW interrupts
2732  * @hw: Pointer to HW module.
2733  *
2734  * Turn off Mailbox and PCI_PF_CFG interrupts.
2735  */
2736 void
2737 csio_hw_intr_disable(struct csio_hw *hw)
2738 {
2739         u32 pf = 0;
2740
2741         if (csio_is_t5(hw->pdev->device & CSIO_HW_CHIP_MASK))
2742                 pf = SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2743         else
2744                 pf = T6_SOURCEPF_G(csio_rd_reg32(hw, PL_WHOAMI_A));
2745
2746         if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2747                 return;
2748
2749         hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2750
2751         csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE_A));
2752         if (csio_is_hw_master(hw))
2753                 csio_set_reg_field(hw, PL_INT_MAP0_A, 1 << pf, 0);
2754
2755         /* Turn off MB interrupts */
2756         csio_mb_intr_disable(hw);
2757
2758 }
2759
2760 void
2761 csio_hw_fatal_err(struct csio_hw *hw)
2762 {
2763         csio_set_reg_field(hw, SGE_CONTROL_A, GLOBALENABLE_F, 0);
2764         csio_hw_intr_disable(hw);
2765
2766         /* Do not reset HW, we may need FW state for debugging */
2767         csio_fatal(hw, "HW Fatal error encountered!\n");
2768 }
2769
2770 /*****************************************************************************/
2771 /* START: HW SM                                                              */
2772 /*****************************************************************************/
2773 /*
2774  * csio_hws_uninit - Uninit state
2775  * @hw - HW module
2776  * @evt - Event
2777  *
2778  */
2779 static void
2780 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2781 {
2782         hw->prev_evt = hw->cur_evt;
2783         hw->cur_evt = evt;
2784         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2785
2786         switch (evt) {
2787         case CSIO_HWE_CFG:
2788                 csio_set_state(&hw->sm, csio_hws_configuring);
2789                 csio_hw_configure(hw);
2790                 break;
2791
2792         default:
2793                 CSIO_INC_STATS(hw, n_evt_unexp);
2794                 break;
2795         }
2796 }
2797
2798 /*
2799  * csio_hws_configuring - Configuring state
2800  * @hw - HW module
2801  * @evt - Event
2802  *
2803  */
2804 static void
2805 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2806 {
2807         hw->prev_evt = hw->cur_evt;
2808         hw->cur_evt = evt;
2809         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2810
2811         switch (evt) {
2812         case CSIO_HWE_INIT:
2813                 csio_set_state(&hw->sm, csio_hws_initializing);
2814                 csio_hw_initialize(hw);
2815                 break;
2816
2817         case CSIO_HWE_INIT_DONE:
2818                 csio_set_state(&hw->sm, csio_hws_ready);
2819                 /* Fan out event to all lnode SMs */
2820                 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2821                 break;
2822
2823         case CSIO_HWE_FATAL:
2824                 csio_set_state(&hw->sm, csio_hws_uninit);
2825                 break;
2826
2827         case CSIO_HWE_PCI_REMOVE:
2828                 csio_do_bye(hw);
2829                 break;
2830         default:
2831                 CSIO_INC_STATS(hw, n_evt_unexp);
2832                 break;
2833         }
2834 }
2835
2836 /*
2837  * csio_hws_initializing - Initialiazing state
2838  * @hw - HW module
2839  * @evt - Event
2840  *
2841  */
2842 static void
2843 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2844 {
2845         hw->prev_evt = hw->cur_evt;
2846         hw->cur_evt = evt;
2847         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2848
2849         switch (evt) {
2850         case CSIO_HWE_INIT_DONE:
2851                 csio_set_state(&hw->sm, csio_hws_ready);
2852
2853                 /* Fan out event to all lnode SMs */
2854                 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2855
2856                 /* Enable interrupts */
2857                 csio_hw_intr_enable(hw);
2858                 break;
2859
2860         case CSIO_HWE_FATAL:
2861                 csio_set_state(&hw->sm, csio_hws_uninit);
2862                 break;
2863
2864         case CSIO_HWE_PCI_REMOVE:
2865                 csio_do_bye(hw);
2866                 break;
2867
2868         default:
2869                 CSIO_INC_STATS(hw, n_evt_unexp);
2870                 break;
2871         }
2872 }
2873
2874 /*
2875  * csio_hws_ready - Ready state
2876  * @hw - HW module
2877  * @evt - Event
2878  *
2879  */
2880 static void
2881 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2882 {
2883         /* Remember the event */
2884         hw->evtflag = evt;
2885
2886         hw->prev_evt = hw->cur_evt;
2887         hw->cur_evt = evt;
2888         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2889
2890         switch (evt) {
2891         case CSIO_HWE_HBA_RESET:
2892         case CSIO_HWE_FW_DLOAD:
2893         case CSIO_HWE_SUSPEND:
2894         case CSIO_HWE_PCI_REMOVE:
2895         case CSIO_HWE_PCIERR_DETECTED:
2896                 csio_set_state(&hw->sm, csio_hws_quiescing);
2897                 /* cleanup all outstanding cmds */
2898                 if (evt == CSIO_HWE_HBA_RESET ||
2899                     evt == CSIO_HWE_PCIERR_DETECTED)
2900                         csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2901                 else
2902                         csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2903
2904                 csio_hw_intr_disable(hw);
2905                 csio_hw_mbm_cleanup(hw);
2906                 csio_evtq_stop(hw);
2907                 csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2908                 csio_evtq_flush(hw);
2909                 csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2910                 csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2911                 break;
2912
2913         case CSIO_HWE_FATAL:
2914                 csio_set_state(&hw->sm, csio_hws_uninit);
2915                 break;
2916
2917         default:
2918                 CSIO_INC_STATS(hw, n_evt_unexp);
2919                 break;
2920         }
2921 }
2922
2923 /*
2924  * csio_hws_quiescing - Quiescing state
2925  * @hw - HW module
2926  * @evt - Event
2927  *
2928  */
2929 static void
2930 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2931 {
2932         hw->prev_evt = hw->cur_evt;
2933         hw->cur_evt = evt;
2934         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2935
2936         switch (evt) {
2937         case CSIO_HWE_QUIESCED:
2938                 switch (hw->evtflag) {
2939                 case CSIO_HWE_FW_DLOAD:
2940                         csio_set_state(&hw->sm, csio_hws_resetting);
2941                         /* Download firmware */
2942                         /* Fall through */
2943
2944                 case CSIO_HWE_HBA_RESET:
2945                         csio_set_state(&hw->sm, csio_hws_resetting);
2946                         /* Start reset of the HBA */
2947                         csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2948                         csio_wr_destroy_queues(hw, false);
2949                         csio_do_reset(hw, false);
2950                         csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2951                         break;
2952
2953                 case CSIO_HWE_PCI_REMOVE:
2954                         csio_set_state(&hw->sm, csio_hws_removing);
2955                         csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2956                         csio_wr_destroy_queues(hw, true);
2957                         /* Now send the bye command */
2958                         csio_do_bye(hw);
2959                         break;
2960
2961                 case CSIO_HWE_SUSPEND:
2962                         csio_set_state(&hw->sm, csio_hws_quiesced);
2963                         break;
2964
2965                 case CSIO_HWE_PCIERR_DETECTED:
2966                         csio_set_state(&hw->sm, csio_hws_pcierr);
2967                         csio_wr_destroy_queues(hw, false);
2968                         break;
2969
2970                 default:
2971                         CSIO_INC_STATS(hw, n_evt_unexp);
2972                         break;
2973
2974                 }
2975                 break;
2976
2977         default:
2978                 CSIO_INC_STATS(hw, n_evt_unexp);
2979                 break;
2980         }
2981 }
2982
2983 /*
2984  * csio_hws_quiesced - Quiesced state
2985  * @hw - HW module
2986  * @evt - Event
2987  *
2988  */
2989 static void
2990 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2991 {
2992         hw->prev_evt = hw->cur_evt;
2993         hw->cur_evt = evt;
2994         CSIO_INC_STATS(hw, n_evt_sm[evt]);
2995
2996         switch (evt) {
2997         case CSIO_HWE_RESUME:
2998                 csio_set_state(&hw->sm, csio_hws_configuring);
2999                 csio_hw_configure(hw);
3000                 break;
3001
3002         default:
3003                 CSIO_INC_STATS(hw, n_evt_unexp);
3004                 break;
3005         }
3006 }
3007
3008 /*
3009  * csio_hws_resetting - HW Resetting state
3010  * @hw - HW module
3011  * @evt - Event
3012  *
3013  */
3014 static void
3015 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
3016 {
3017         hw->prev_evt = hw->cur_evt;
3018         hw->cur_evt = evt;
3019         CSIO_INC_STATS(hw, n_evt_sm[evt]);
3020
3021         switch (evt) {
3022         case CSIO_HWE_HBA_RESET_DONE:
3023                 csio_evtq_start(hw);
3024                 csio_set_state(&hw->sm, csio_hws_configuring);
3025                 csio_hw_configure(hw);
3026                 break;
3027
3028         default:
3029                 CSIO_INC_STATS(hw, n_evt_unexp);
3030                 break;
3031         }
3032 }
3033
3034 /*
3035  * csio_hws_removing - PCI Hotplug removing state
3036  * @hw - HW module
3037  * @evt - Event
3038  *
3039  */
3040 static void
3041 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
3042 {
3043         hw->prev_evt = hw->cur_evt;
3044         hw->cur_evt = evt;
3045         CSIO_INC_STATS(hw, n_evt_sm[evt]);
3046
3047         switch (evt) {
3048         case CSIO_HWE_HBA_RESET:
3049                 if (!csio_is_hw_master(hw))
3050                         break;
3051                 /*
3052                  * The BYE should have alerady been issued, so we cant
3053                  * use the mailbox interface. Hence we use the PL_RST
3054                  * register directly.
3055                  */
3056                 csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
3057                 csio_wr_reg32(hw, PIORSTMODE_F | PIORST_F, PL_RST_A);
3058                 mdelay(2000);
3059                 break;
3060
3061         /* Should never receive any new events */
3062         default:
3063                 CSIO_INC_STATS(hw, n_evt_unexp);
3064                 break;
3065
3066         }
3067 }
3068
3069 /*
3070  * csio_hws_pcierr - PCI Error state
3071  * @hw - HW module
3072  * @evt - Event
3073  *
3074  */
3075 static void
3076 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
3077 {
3078         hw->prev_evt = hw->cur_evt;
3079         hw->cur_evt = evt;
3080         CSIO_INC_STATS(hw, n_evt_sm[evt]);
3081
3082         switch (evt) {
3083         case CSIO_HWE_PCIERR_SLOT_RESET:
3084                 csio_evtq_start(hw);
3085                 csio_set_state(&hw->sm, csio_hws_configuring);
3086                 csio_hw_configure(hw);
3087                 break;
3088
3089         default:
3090                 CSIO_INC_STATS(hw, n_evt_unexp);
3091                 break;
3092         }
3093 }
3094
3095 /*****************************************************************************/
3096 /* END: HW SM                                                                */
3097 /*****************************************************************************/
3098
3099 /*
3100  *      csio_handle_intr_status - table driven interrupt handler
3101  *      @hw: HW instance
3102  *      @reg: the interrupt status register to process
3103  *      @acts: table of interrupt actions
3104  *
3105  *      A table driven interrupt handler that applies a set of masks to an
3106  *      interrupt status word and performs the corresponding actions if the
3107  *      interrupts described by the mask have occured.  The actions include
3108  *      optionally emitting a warning or alert message. The table is terminated
3109  *      by an entry specifying mask 0.  Returns the number of fatal interrupt
3110  *      conditions.
3111  */
3112 int
3113 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3114                                  const struct intr_info *acts)
3115 {
3116         int fatal = 0;
3117         unsigned int mask = 0;
3118         unsigned int status = csio_rd_reg32(hw, reg);
3119
3120         for ( ; acts->mask; ++acts) {
3121                 if (!(status & acts->mask))
3122                         continue;
3123                 if (acts->fatal) {
3124                         fatal++;
3125                         csio_fatal(hw, "Fatal %s (0x%x)\n",
3126                                     acts->msg, status & acts->mask);
3127                 } else if (acts->msg)
3128                         csio_info(hw, "%s (0x%x)\n",
3129                                     acts->msg, status & acts->mask);
3130                 mask |= acts->mask;
3131         }
3132         status &= mask;
3133         if (status)                           /* clear processed interrupts */
3134                 csio_wr_reg32(hw, status, reg);
3135         return fatal;
3136 }
3137
3138 /*
3139  * TP interrupt handler.
3140  */
3141 static void csio_tp_intr_handler(struct csio_hw *hw)
3142 {
3143         static struct intr_info tp_intr_info[] = {
3144                 { 0x3fffffff, "TP parity error", -1, 1 },
3145                 { FLMTXFLSTEMPTY_F, "TP out of Tx pages", -1, 1 },
3146                 { 0, NULL, 0, 0 }
3147         };
3148
3149         if (csio_handle_intr_status(hw, TP_INT_CAUSE_A, tp_intr_info))
3150                 csio_hw_fatal_err(hw);
3151 }
3152
3153 /*
3154  * SGE interrupt handler.
3155  */
3156 static void csio_sge_intr_handler(struct csio_hw *hw)
3157 {
3158         uint64_t v;
3159
3160         static struct intr_info sge_intr_info[] = {
3161                 { ERR_CPL_EXCEED_IQE_SIZE_F,
3162                   "SGE received CPL exceeding IQE size", -1, 1 },
3163                 { ERR_INVALID_CIDX_INC_F,
3164                   "SGE GTS CIDX increment too large", -1, 0 },
3165                 { ERR_CPL_OPCODE_0_F, "SGE received 0-length CPL", -1, 0 },
3166                 { ERR_DROPPED_DB_F, "SGE doorbell dropped", -1, 0 },
3167                 { ERR_DATA_CPL_ON_HIGH_QID1_F | ERR_DATA_CPL_ON_HIGH_QID0_F,
3168                   "SGE IQID > 1023 received CPL for FL", -1, 0 },
3169                 { ERR_BAD_DB_PIDX3_F, "SGE DBP 3 pidx increment too large", -1,
3170                   0 },
3171                 { ERR_BAD_DB_PIDX2_F, "SGE DBP 2 pidx increment too large", -1,
3172                   0 },
3173                 { ERR_BAD_DB_PIDX1_F, "SGE DBP 1 pidx increment too large", -1,
3174                   0 },
3175                 { ERR_BAD_DB_PIDX0_F, "SGE DBP 0 pidx increment too large", -1,
3176                   0 },
3177                 { ERR_ING_CTXT_PRIO_F,
3178                   "SGE too many priority ingress contexts", -1, 0 },
3179                 { ERR_EGR_CTXT_PRIO_F,
3180                   "SGE too many priority egress contexts", -1, 0 },
3181                 { INGRESS_SIZE_ERR_F, "SGE illegal ingress QID", -1, 0 },
3182                 { EGRESS_SIZE_ERR_F, "SGE illegal egress QID", -1, 0 },
3183                 { 0, NULL, 0, 0 }
3184         };
3185
3186         v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1_A) |
3187             ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2_A) << 32);
3188         if (v) {
3189                 csio_fatal(hw, "SGE parity error (%#llx)\n",
3190                             (unsigned long long)v);
3191                 csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3192                                                 SGE_INT_CAUSE1_A);
3193                 csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2_A);
3194         }
3195
3196         v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info);
3197
3198         if (csio_handle_intr_status(hw, SGE_INT_CAUSE3_A, sge_intr_info) ||
3199             v != 0)
3200                 csio_hw_fatal_err(hw);
3201 }
3202
3203 #define CIM_OBQ_INTR (OBQULP0PARERR_F | OBQULP1PARERR_F | OBQULP2PARERR_F |\
3204                       OBQULP3PARERR_F | OBQSGEPARERR_F | OBQNCSIPARERR_F)
3205 #define CIM_IBQ_INTR (IBQTP0PARERR_F | IBQTP1PARERR_F | IBQULPPARERR_F |\
3206                       IBQSGEHIPARERR_F | IBQSGELOPARERR_F | IBQNCSIPARERR_F)
3207
3208 /*
3209  * CIM interrupt handler.
3210  */
3211 static void csio_cim_intr_handler(struct csio_hw *hw)
3212 {
3213         static struct intr_info cim_intr_info[] = {
3214                 { PREFDROPINT_F, "CIM control register prefetch drop", -1, 1 },
3215                 { CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3216                 { CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3217                 { MBUPPARERR_F, "CIM mailbox uP parity error", -1, 1 },
3218                 { MBHOSTPARERR_F, "CIM mailbox host parity error", -1, 1 },
3219                 { TIEQINPARERRINT_F, "CIM TIEQ outgoing parity error", -1, 1 },
3220                 { TIEQOUTPARERRINT_F, "CIM TIEQ incoming parity error", -1, 1 },
3221                 { 0, NULL, 0, 0 }
3222         };
3223         static struct intr_info cim_upintr_info[] = {
3224                 { RSVDSPACEINT_F, "CIM reserved space access", -1, 1 },
3225                 { ILLTRANSINT_F, "CIM illegal transaction", -1, 1 },
3226                 { ILLWRINT_F, "CIM illegal write", -1, 1 },
3227                 { ILLRDINT_F, "CIM illegal read", -1, 1 },
3228                 { ILLRDBEINT_F, "CIM illegal read BE", -1, 1 },
3229                 { ILLWRBEINT_F, "CIM illegal write BE", -1, 1 },
3230                 { SGLRDBOOTINT_F, "CIM single read from boot space", -1, 1 },
3231                 { SGLWRBOOTINT_F, "CIM single write to boot space", -1, 1 },
3232                 { BLKWRBOOTINT_F, "CIM block write to boot space", -1, 1 },
3233                 { SGLRDFLASHINT_F, "CIM single read from flash space", -1, 1 },
3234                 { SGLWRFLASHINT_F, "CIM single write to flash space", -1, 1 },
3235                 { BLKWRFLASHINT_F, "CIM block write to flash space", -1, 1 },
3236                 { SGLRDEEPROMINT_F, "CIM single EEPROM read", -1, 1 },
3237                 { SGLWREEPROMINT_F, "CIM single EEPROM write", -1, 1 },
3238                 { BLKRDEEPROMINT_F, "CIM block EEPROM read", -1, 1 },
3239                 { BLKWREEPROMINT_F, "CIM block EEPROM write", -1, 1 },
3240                 { SGLRDCTLINT_F, "CIM single read from CTL space", -1, 1 },
3241                 { SGLWRCTLINT_F, "CIM single write to CTL space", -1, 1 },
3242                 { BLKRDCTLINT_F, "CIM block read from CTL space", -1, 1 },
3243                 { BLKWRCTLINT_F, "CIM block write to CTL space", -1, 1 },
3244                 { SGLRDPLINT_F, "CIM single read from PL space", -1, 1 },
3245                 { SGLWRPLINT_F, "CIM single write to PL space", -1, 1 },
3246                 { BLKRDPLINT_F, "CIM block read from PL space", -1, 1 },
3247                 { BLKWRPLINT_F, "CIM block write to PL space", -1, 1 },
3248                 { REQOVRLOOKUPINT_F, "CIM request FIFO overwrite", -1, 1 },
3249                 { RSPOVRLOOKUPINT_F, "CIM response FIFO overwrite", -1, 1 },
3250                 { TIMEOUTINT_F, "CIM PIF timeout", -1, 1 },
3251                 { TIMEOUTMAINT_F, "CIM PIF MA timeout", -1, 1 },
3252                 { 0, NULL, 0, 0 }
3253         };
3254
3255         int fat;
3256
3257         fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE_A,
3258                                       cim_intr_info) +
3259               csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE_A,
3260                                       cim_upintr_info);
3261         if (fat)
3262                 csio_hw_fatal_err(hw);
3263 }
3264
3265 /*
3266  * ULP RX interrupt handler.
3267  */
3268 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3269 {
3270         static struct intr_info ulprx_intr_info[] = {
3271                 { 0x1800000, "ULPRX context error", -1, 1 },
3272                 { 0x7fffff, "ULPRX parity error", -1, 1 },
3273                 { 0, NULL, 0, 0 }
3274         };
3275
3276         if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE_A, ulprx_intr_info))
3277                 csio_hw_fatal_err(hw);
3278 }
3279
3280 /*
3281  * ULP TX interrupt handler.
3282  */
3283 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3284 {
3285         static struct intr_info ulptx_intr_info[] = {
3286                 { PBL_BOUND_ERR_CH3_F, "ULPTX channel 3 PBL out of bounds", -1,
3287                   0 },
3288                 { PBL_BOUND_ERR_CH2_F, "ULPTX channel 2 PBL out of bounds", -1,
3289                   0 },
3290                 { PBL_BOUND_ERR_CH1_F, "ULPTX channel 1 PBL out of bounds", -1,
3291                   0 },
3292                 { PBL_BOUND_ERR_CH0_F, "ULPTX channel 0 PBL out of bounds", -1,
3293                   0 },
3294                 { 0xfffffff, "ULPTX parity error", -1, 1 },
3295                 { 0, NULL, 0, 0 }
3296         };
3297
3298         if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE_A, ulptx_intr_info))
3299                 csio_hw_fatal_err(hw);
3300 }
3301
3302 /*
3303  * PM TX interrupt handler.
3304  */
3305 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3306 {
3307         static struct intr_info pmtx_intr_info[] = {
3308                 { PCMD_LEN_OVFL0_F, "PMTX channel 0 pcmd too large", -1, 1 },
3309                 { PCMD_LEN_OVFL1_F, "PMTX channel 1 pcmd too large", -1, 1 },
3310                 { PCMD_LEN_OVFL2_F, "PMTX channel 2 pcmd too large", -1, 1 },
3311                 { ZERO_C_CMD_ERROR_F, "PMTX 0-length pcmd", -1, 1 },
3312                 { 0xffffff0, "PMTX framing error", -1, 1 },
3313                 { OESPI_PAR_ERROR_F, "PMTX oespi parity error", -1, 1 },
3314                 { DB_OPTIONS_PAR_ERROR_F, "PMTX db_options parity error", -1,
3315                   1 },
3316                 { ICSPI_PAR_ERROR_F, "PMTX icspi parity error", -1, 1 },
3317                 { PMTX_C_PCMD_PAR_ERROR_F, "PMTX c_pcmd parity error", -1, 1},
3318                 { 0, NULL, 0, 0 }
3319         };
3320
3321         if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE_A, pmtx_intr_info))
3322                 csio_hw_fatal_err(hw);
3323 }
3324
3325 /*
3326  * PM RX interrupt handler.
3327  */
3328 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3329 {
3330         static struct intr_info pmrx_intr_info[] = {
3331                 { ZERO_E_CMD_ERROR_F, "PMRX 0-length pcmd", -1, 1 },
3332                 { 0x3ffff0, "PMRX framing error", -1, 1 },
3333                 { OCSPI_PAR_ERROR_F, "PMRX ocspi parity error", -1, 1 },
3334                 { DB_OPTIONS_PAR_ERROR_F, "PMRX db_options parity error", -1,
3335                   1 },
3336                 { IESPI_PAR_ERROR_F, "PMRX iespi parity error", -1, 1 },
3337                 { PMRX_E_PCMD_PAR_ERROR_F, "PMRX e_pcmd parity error", -1, 1},
3338                 { 0, NULL, 0, 0 }
3339         };
3340
3341         if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE_A, pmrx_intr_info))
3342                 csio_hw_fatal_err(hw);
3343 }
3344
3345 /*
3346  * CPL switch interrupt handler.
3347  */
3348 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3349 {
3350         static struct intr_info cplsw_intr_info[] = {
3351                 { CIM_OP_MAP_PERR_F, "CPLSW CIM op_map parity error", -1, 1 },
3352                 { CIM_OVFL_ERROR_F, "CPLSW CIM overflow", -1, 1 },
3353                 { TP_FRAMING_ERROR_F, "CPLSW TP framing error", -1, 1 },
3354                 { SGE_FRAMING_ERROR_F, "CPLSW SGE framing error", -1, 1 },
3355                 { CIM_FRAMING_ERROR_F, "CPLSW CIM framing error", -1, 1 },
3356                 { ZERO_SWITCH_ERROR_F, "CPLSW no-switch error", -1, 1 },
3357                 { 0, NULL, 0, 0 }
3358         };
3359
3360         if (csio_handle_intr_status(hw, CPL_INTR_CAUSE_A, cplsw_intr_info))
3361                 csio_hw_fatal_err(hw);
3362 }
3363
3364 /*
3365  * LE interrupt handler.
3366  */
3367 static void csio_le_intr_handler(struct csio_hw *hw)
3368 {
3369         enum chip_type chip = CHELSIO_CHIP_VERSION(hw->chip_id);
3370
3371         static struct intr_info le_intr_info[] = {
3372                 { LIPMISS_F, "LE LIP miss", -1, 0 },
3373                 { LIP0_F, "LE 0 LIP error", -1, 0 },
3374                 { PARITYERR_F, "LE parity error", -1, 1 },
3375                 { UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3376                 { REQQPARERR_F, "LE request queue parity error", -1, 1 },
3377                 { 0, NULL, 0, 0 }
3378         };
3379
3380         static struct intr_info t6_le_intr_info[] = {
3381                 { T6_LIPMISS_F, "LE LIP miss", -1, 0 },
3382                 { T6_LIP0_F, "LE 0 LIP error", -1, 0 },
3383                 { TCAMINTPERR_F, "LE parity error", -1, 1 },
3384                 { T6_UNKNOWNCMD_F, "LE unknown command", -1, 1 },
3385                 { SSRAMINTPERR_F, "LE request queue parity error", -1, 1 },
3386                 { 0, NULL, 0, 0 }
3387         };
3388
3389         if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE_A,
3390                                     (chip == CHELSIO_T5) ?
3391                                     le_intr_info : t6_le_intr_info))
3392                 csio_hw_fatal_err(hw);
3393 }
3394
3395 /*
3396  * MPS interrupt handler.
3397  */
3398 static void csio_mps_intr_handler(struct csio_hw *hw)
3399 {
3400         static struct intr_info mps_rx_intr_info[] = {
3401                 { 0xffffff, "MPS Rx parity error", -1, 1 },
3402                 { 0, NULL, 0, 0 }
3403         };
3404         static struct intr_info mps_tx_intr_info[] = {
3405                 { TPFIFO_V(TPFIFO_M), "MPS Tx TP FIFO parity error", -1, 1 },
3406                 { NCSIFIFO_F, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3407                 { TXDATAFIFO_V(TXDATAFIFO_M), "MPS Tx data FIFO parity error",
3408                   -1, 1 },
3409                 { TXDESCFIFO_V(TXDESCFIFO_M), "MPS Tx desc FIFO parity error",
3410                   -1, 1 },
3411                 { BUBBLE_F, "MPS Tx underflow", -1, 1 },
3412                 { SECNTERR_F, "MPS Tx SOP/EOP error", -1, 1 },
3413                 { FRMERR_F, "MPS Tx framing error", -1, 1 },
3414                 { 0, NULL, 0, 0 }
3415         };
3416         static struct intr_info mps_trc_intr_info[] = {
3417                 { FILTMEM_V(FILTMEM_M), "MPS TRC filter parity error", -1, 1 },
3418                 { PKTFIFO_V(PKTFIFO_M), "MPS TRC packet FIFO parity error",
3419                   -1, 1 },
3420                 { MISCPERR_F, "MPS TRC misc parity error", -1, 1 },
3421                 { 0, NULL, 0, 0 }
3422         };
3423         static struct intr_info mps_stat_sram_intr_info[] = {
3424                 { 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3425                 { 0, NULL, 0, 0 }
3426         };
3427         static struct intr_info mps_stat_tx_intr_info[] = {
3428                 { 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3429                 { 0, NULL, 0, 0 }
3430         };
3431         static struct intr_info mps_stat_rx_intr_info[] = {
3432                 { 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3433                 { 0, NULL, 0, 0 }
3434         };
3435         static struct intr_info mps_cls_intr_info[] = {
3436                 { MATCHSRAM_F, "MPS match SRAM parity error", -1, 1 },
3437                 { MATCHTCAM_F, "MPS match TCAM parity error", -1, 1 },
3438                 { HASHSRAM_F, "MPS hash SRAM parity error", -1, 1 },
3439                 { 0, NULL, 0, 0 }
3440         };
3441
3442         int fat;
3443
3444         fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE_A,
3445                                       mps_rx_intr_info) +
3446               csio_handle_intr_status(hw, MPS_TX_INT_CAUSE_A,
3447                                       mps_tx_intr_info) +
3448               csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE_A,
3449                                       mps_trc_intr_info) +
3450               csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM_A,
3451                                       mps_stat_sram_intr_info) +
3452               csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO_A,
3453                                       mps_stat_tx_intr_info) +
3454               csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO_A,
3455                                       mps_stat_rx_intr_info) +
3456               csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE_A,
3457                                       mps_cls_intr_info);
3458
3459         csio_wr_reg32(hw, 0, MPS_INT_CAUSE_A);
3460         csio_rd_reg32(hw, MPS_INT_CAUSE_A);                    /* flush */
3461         if (fat)
3462                 csio_hw_fatal_err(hw);
3463 }
3464
3465 #define MEM_INT_MASK (PERR_INT_CAUSE_F | ECC_CE_INT_CAUSE_F | \
3466                       ECC_UE_INT_CAUSE_F)
3467
3468 /*
3469  * EDC/MC interrupt handler.
3470  */
3471 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3472 {
3473         static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3474
3475         unsigned int addr, cnt_addr, v;
3476
3477         if (idx <= MEM_EDC1) {
3478                 addr = EDC_REG(EDC_INT_CAUSE_A, idx);
3479                 cnt_addr = EDC_REG(EDC_ECC_STATUS_A, idx);
3480         } else {
3481                 addr = MC_INT_CAUSE_A;
3482                 cnt_addr = MC_ECC_STATUS_A;
3483         }
3484
3485         v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3486         if (v & PERR_INT_CAUSE_F)
3487                 csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3488         if (v & ECC_CE_INT_CAUSE_F) {
3489                 uint32_t cnt = ECC_CECNT_G(csio_rd_reg32(hw, cnt_addr));
3490
3491                 csio_wr_reg32(hw, ECC_CECNT_V(ECC_CECNT_M), cnt_addr);
3492                 csio_warn(hw, "%u %s correctable ECC data error%s\n",
3493                             cnt, name[idx], cnt > 1 ? "s" : "");
3494         }
3495         if (v & ECC_UE_INT_CAUSE_F)
3496                 csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3497
3498         csio_wr_reg32(hw, v, addr);
3499         if (v & (PERR_INT_CAUSE_F | ECC_UE_INT_CAUSE_F))
3500                 csio_hw_fatal_err(hw);
3501 }
3502
3503 /*
3504  * MA interrupt handler.
3505  */
3506 static void csio_ma_intr_handler(struct csio_hw *hw)
3507 {
3508         uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE_A);
3509
3510         if (status & MEM_PERR_INT_CAUSE_F)
3511                 csio_fatal(hw, "MA parity error, parity status %#x\n",
3512                             csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS_A));
3513         if (status & MEM_WRAP_INT_CAUSE_F) {
3514                 v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS_A);
3515                 csio_fatal(hw,
3516                    "MA address wrap-around error by client %u to address %#x\n",
3517                    MEM_WRAP_CLIENT_NUM_G(v), MEM_WRAP_ADDRESS_G(v) << 4);
3518         }
3519         csio_wr_reg32(hw, status, MA_INT_CAUSE_A);
3520         csio_hw_fatal_err(hw);
3521 }
3522
3523 /*
3524  * SMB interrupt handler.
3525  */
3526 static void csio_smb_intr_handler(struct csio_hw *hw)
3527 {
3528         static struct intr_info smb_intr_info[] = {
3529                 { MSTTXFIFOPARINT_F, "SMB master Tx FIFO parity error", -1, 1 },
3530                 { MSTRXFIFOPARINT_F, "SMB master Rx FIFO parity error", -1, 1 },
3531                 { SLVFIFOPARINT_F, "SMB slave FIFO parity error", -1, 1 },
3532                 { 0, NULL, 0, 0 }
3533         };
3534
3535         if (csio_handle_intr_status(hw, SMB_INT_CAUSE_A, smb_intr_info))
3536                 csio_hw_fatal_err(hw);
3537 }
3538
3539 /*
3540  * NC-SI interrupt handler.
3541  */
3542 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3543 {
3544         static struct intr_info ncsi_intr_info[] = {
3545                 { CIM_DM_PRTY_ERR_F, "NC-SI CIM parity error", -1, 1 },
3546                 { MPS_DM_PRTY_ERR_F, "NC-SI MPS parity error", -1, 1 },
3547                 { TXFIFO_PRTY_ERR_F, "NC-SI Tx FIFO parity error", -1, 1 },
3548                 { RXFIFO_PRTY_ERR_F, "NC-SI Rx FIFO parity error", -1, 1 },
3549                 { 0, NULL, 0, 0 }
3550         };
3551
3552         if (csio_handle_intr_status(hw, NCSI_INT_CAUSE_A, ncsi_intr_info))
3553                 csio_hw_fatal_err(hw);
3554 }
3555
3556 /*
3557  * XGMAC interrupt handler.
3558  */
3559 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3560 {
3561         uint32_t v = csio_rd_reg32(hw, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3562
3563         v &= TXFIFO_PRTY_ERR_F | RXFIFO_PRTY_ERR_F;
3564         if (!v)
3565                 return;
3566
3567         if (v & TXFIFO_PRTY_ERR_F)
3568                 csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3569         if (v & RXFIFO_PRTY_ERR_F)
3570                 csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3571         csio_wr_reg32(hw, v, T5_PORT_REG(port, MAC_PORT_INT_CAUSE_A));
3572         csio_hw_fatal_err(hw);
3573 }
3574
3575 /*
3576  * PL interrupt handler.
3577  */
3578 static void csio_pl_intr_handler(struct csio_hw *hw)
3579 {
3580         static struct intr_info pl_intr_info[] = {
3581                 { FATALPERR_F, "T4 fatal parity error", -1, 1 },
3582                 { PERRVFID_F, "PL VFID_MAP parity error", -1, 1 },
3583                 { 0, NULL, 0, 0 }
3584         };
3585
3586         if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE_A, pl_intr_info))
3587                 csio_hw_fatal_err(hw);
3588 }
3589
3590 /*
3591  *      csio_hw_slow_intr_handler - control path interrupt handler
3592  *      @hw: HW module
3593  *
3594  *      Interrupt handler for non-data global interrupt events, e.g., errors.
3595  *      The designation 'slow' is because it involves register reads, while
3596  *      data interrupts typically don't involve any MMIOs.
3597  */
3598 int
3599 csio_hw_slow_intr_handler(struct csio_hw *hw)
3600 {
3601         uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE_A);
3602
3603         if (!(cause & CSIO_GLBL_INTR_MASK)) {
3604                 CSIO_INC_STATS(hw, n_plint_unexp);
3605                 return 0;
3606         }
3607
3608         csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3609
3610         CSIO_INC_STATS(hw, n_plint_cnt);
3611
3612         if (cause & CIM_F)
3613                 csio_cim_intr_handler(hw);
3614
3615         if (cause & MPS_F)
3616                 csio_mps_intr_handler(hw);
3617
3618         if (cause & NCSI_F)
3619                 csio_ncsi_intr_handler(hw);
3620
3621         if (cause & PL_F)
3622                 csio_pl_intr_handler(hw);
3623
3624         if (cause & SMB_F)
3625                 csio_smb_intr_handler(hw);
3626
3627         if (cause & XGMAC0_F)
3628                 csio_xgmac_intr_handler(hw, 0);
3629
3630         if (cause & XGMAC1_F)
3631                 csio_xgmac_intr_handler(hw, 1);
3632
3633         if (cause & XGMAC_KR0_F)
3634                 csio_xgmac_intr_handler(hw, 2);
3635
3636         if (cause & XGMAC_KR1_F)
3637                 csio_xgmac_intr_handler(hw, 3);
3638
3639         if (cause & PCIE_F)
3640                 hw->chip_ops->chip_pcie_intr_handler(hw);
3641
3642         if (cause & MC_F)
3643                 csio_mem_intr_handler(hw, MEM_MC);
3644
3645         if (cause & EDC0_F)
3646                 csio_mem_intr_handler(hw, MEM_EDC0);
3647
3648         if (cause & EDC1_F)
3649                 csio_mem_intr_handler(hw, MEM_EDC1);
3650
3651         if (cause & LE_F)
3652                 csio_le_intr_handler(hw);
3653
3654         if (cause & TP_F)
3655                 csio_tp_intr_handler(hw);
3656
3657         if (cause & MA_F)
3658                 csio_ma_intr_handler(hw);
3659
3660         if (cause & PM_TX_F)
3661                 csio_pmtx_intr_handler(hw);
3662
3663         if (cause & PM_RX_F)
3664                 csio_pmrx_intr_handler(hw);
3665
3666         if (cause & ULP_RX_F)
3667                 csio_ulprx_intr_handler(hw);
3668
3669         if (cause & CPL_SWITCH_F)
3670                 csio_cplsw_intr_handler(hw);
3671
3672         if (cause & SGE_F)
3673                 csio_sge_intr_handler(hw);
3674
3675         if (cause & ULP_TX_F)
3676                 csio_ulptx_intr_handler(hw);
3677
3678         /* Clear the interrupts just processed for which we are the master. */
3679         csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE_A);
3680         csio_rd_reg32(hw, PL_INT_CAUSE_A); /* flush */
3681
3682         return 1;
3683 }
3684
3685 /*****************************************************************************
3686  * HW <--> mailbox interfacing routines.
3687  ****************************************************************************/
3688 /*
3689  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3690  *
3691  * @data: Private data pointer.
3692  *
3693  * Called from worker thread context.
3694  */
3695 static void
3696 csio_mberr_worker(void *data)
3697 {
3698         struct csio_hw *hw = (struct csio_hw *)data;
3699         struct csio_mbm *mbm = &hw->mbm;
3700         LIST_HEAD(cbfn_q);
3701         struct csio_mb *mbp_next;
3702         int rv;
3703
3704         del_timer_sync(&mbm->timer);
3705
3706         spin_lock_irq(&hw->lock);
3707         if (list_empty(&mbm->cbfn_q)) {
3708                 spin_unlock_irq(&hw->lock);
3709                 return;
3710         }
3711
3712         list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3713         mbm->stats.n_cbfnq = 0;
3714
3715         /* Try to start waiting mailboxes */
3716         if (!list_empty(&mbm->req_q)) {
3717                 mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3718                 list_del_init(&mbp_next->list);
3719
3720                 rv = csio_mb_issue(hw, mbp_next);
3721                 if (rv != 0)
3722                         list_add_tail(&mbp_next->list, &mbm->req_q);
3723                 else
3724                         CSIO_DEC_STATS(mbm, n_activeq);
3725         }
3726         spin_unlock_irq(&hw->lock);
3727
3728         /* Now callback completions */
3729         csio_mb_completions(hw, &cbfn_q);
3730 }
3731
3732 /*
3733  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3734  *
3735  * @data: private data pointer
3736  *
3737  **/
3738 static void
3739 csio_hw_mb_timer(struct timer_list *t)
3740 {
3741         struct csio_mbm *mbm = from_timer(mbm, t, timer);
3742         struct csio_hw *hw = mbm->hw;
3743         struct csio_mb *mbp = NULL;
3744
3745         spin_lock_irq(&hw->lock);
3746         mbp = csio_mb_tmo_handler(hw);
3747         spin_unlock_irq(&hw->lock);
3748
3749         /* Call back the function for the timed-out Mailbox */
3750         if (mbp)
3751                 mbp->mb_cbfn(hw, mbp);
3752
3753 }
3754
3755 /*
3756  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3757  * @hw: HW module
3758  *
3759  * Called with lock held, should exit with lock held.
3760  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3761  * into a local queue. Drops lock and calls the completions. Holds
3762  * lock and returns.
3763  */
3764 static void
3765 csio_hw_mbm_cleanup(struct csio_hw *hw)
3766 {
3767         LIST_HEAD(cbfn_q);
3768
3769         csio_mb_cancel_all(hw, &cbfn_q);
3770
3771         spin_unlock_irq(&hw->lock);
3772         csio_mb_completions(hw, &cbfn_q);
3773         spin_lock_irq(&hw->lock);
3774 }
3775
3776 /*****************************************************************************
3777  * Event handling
3778  ****************************************************************************/
3779 int
3780 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3781                         uint16_t len)
3782 {
3783         struct csio_evt_msg *evt_entry = NULL;
3784
3785         if (type >= CSIO_EVT_MAX)
3786                 return -EINVAL;
3787
3788         if (len > CSIO_EVT_MSG_SIZE)
3789                 return -EINVAL;
3790
3791         if (hw->flags & CSIO_HWF_FWEVT_STOP)
3792                 return -EINVAL;
3793
3794         if (list_empty(&hw->evt_free_q)) {
3795                 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3796                          type, len);
3797                 return -ENOMEM;
3798         }
3799
3800         evt_entry = list_first_entry(&hw->evt_free_q,
3801                                      struct csio_evt_msg, list);
3802         list_del_init(&evt_entry->list);
3803
3804         /* copy event msg and queue the event */
3805         evt_entry->type = type;
3806         memcpy((void *)evt_entry->data, evt_msg, len);
3807         list_add_tail(&evt_entry->list, &hw->evt_active_q);
3808
3809         CSIO_DEC_STATS(hw, n_evt_freeq);
3810         CSIO_INC_STATS(hw, n_evt_activeq);
3811
3812         return 0;
3813 }
3814
3815 static int
3816 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3817                         uint16_t len, bool msg_sg)
3818 {
3819         struct csio_evt_msg *evt_entry = NULL;
3820         struct csio_fl_dma_buf *fl_sg;
3821         uint32_t off = 0;
3822         unsigned long flags;
3823         int n, ret = 0;
3824
3825         if (type >= CSIO_EVT_MAX)
3826                 return -EINVAL;
3827
3828         if (len > CSIO_EVT_MSG_SIZE)
3829                 return -EINVAL;
3830
3831         spin_lock_irqsave(&hw->lock, flags);
3832         if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3833                 ret = -EINVAL;
3834                 goto out;
3835         }
3836
3837         if (list_empty(&hw->evt_free_q)) {
3838                 csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3839                          type, len);
3840                 ret = -ENOMEM;
3841                 goto out;
3842         }
3843
3844         evt_entry = list_first_entry(&hw->evt_free_q,
3845                                      struct csio_evt_msg, list);
3846         list_del_init(&evt_entry->list);
3847
3848         /* copy event msg and queue the event */
3849         evt_entry->type = type;
3850
3851         /* If Payload in SG list*/
3852         if (msg_sg) {
3853                 fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3854                 for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3855                         memcpy((void *)((uintptr_t)evt_entry->data + off),
3856                                 fl_sg->flbufs[n].vaddr,
3857                                 fl_sg->flbufs[n].len);
3858                         off += fl_sg->flbufs[n].len;
3859                 }
3860         } else
3861                 memcpy((void *)evt_entry->data, evt_msg, len);
3862
3863         list_add_tail(&evt_entry->list, &hw->evt_active_q);
3864         CSIO_DEC_STATS(hw, n_evt_freeq);
3865         CSIO_INC_STATS(hw, n_evt_activeq);
3866 out:
3867         spin_unlock_irqrestore(&hw->lock, flags);
3868         return ret;
3869 }
3870
3871 static void
3872 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3873 {
3874         if (evt_entry) {
3875                 spin_lock_irq(&hw->lock);
3876                 list_del_init(&evt_entry->list);
3877                 list_add_tail(&evt_entry->list, &hw->evt_free_q);
3878                 CSIO_DEC_STATS(hw, n_evt_activeq);
3879                 CSIO_INC_STATS(hw, n_evt_freeq);
3880                 spin_unlock_irq(&hw->lock);
3881         }
3882 }
3883
3884 void
3885 csio_evtq_flush(struct csio_hw *hw)
3886 {
3887         uint32_t count;
3888         count = 30;
3889         while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3890                 spin_unlock_irq(&hw->lock);
3891                 msleep(2000);
3892                 spin_lock_irq(&hw->lock);
3893         }
3894
3895         CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3896 }
3897
3898 static void
3899 csio_evtq_stop(struct csio_hw *hw)
3900 {
3901         hw->flags |= CSIO_HWF_FWEVT_STOP;
3902 }
3903
3904 static void
3905 csio_evtq_start(struct csio_hw *hw)
3906 {
3907         hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3908 }
3909
3910 static void
3911 csio_evtq_cleanup(struct csio_hw *hw)
3912 {
3913         struct list_head *evt_entry, *next_entry;
3914
3915         /* Release outstanding events from activeq to freeq*/
3916         if (!list_empty(&hw->evt_active_q))
3917                 list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3918
3919         hw->stats.n_evt_activeq = 0;
3920         hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3921
3922         /* Freeup event entry */
3923         list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3924                 kfree(evt_entry);
3925                 CSIO_DEC_STATS(hw, n_evt_freeq);
3926         }
3927
3928         hw->stats.n_evt_freeq = 0;
3929 }
3930
3931
3932 static void
3933 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3934                           struct csio_fl_dma_buf *flb, void *priv)
3935 {
3936         __u8 op;
3937         void *msg = NULL;
3938         uint32_t msg_len = 0;
3939         bool msg_sg = 0;
3940
3941         op = ((struct rss_header *) wr)->opcode;
3942         if (op == CPL_FW6_PLD) {
3943                 CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3944                 if (!flb || !flb->totlen) {
3945                         CSIO_INC_STATS(hw, n_cpl_unexp);
3946                         return;
3947                 }
3948
3949                 msg = (void *) flb;
3950                 msg_len = flb->totlen;
3951                 msg_sg = 1;
3952         } else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3953
3954                 CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3955                 /* skip RSS header */
3956                 msg = (void *)((uintptr_t)wr + sizeof(__be64));
3957                 msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3958                            sizeof(struct cpl_fw4_msg);
3959         } else {
3960                 csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3961                 CSIO_INC_STATS(hw, n_cpl_unexp);
3962                 return;
3963         }
3964
3965         /*
3966          * Enqueue event to EventQ. Events processing happens
3967          * in Event worker thread context
3968          */
3969         if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3970                                   (uint16_t)msg_len, msg_sg))
3971                 CSIO_INC_STATS(hw, n_evt_drop);
3972 }
3973
3974 void
3975 csio_evtq_worker(struct work_struct *work)
3976 {
3977         struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3978         struct list_head *evt_entry, *next_entry;
3979         LIST_HEAD(evt_q);
3980         struct csio_evt_msg     *evt_msg;
3981         struct cpl_fw6_msg *msg;
3982         struct csio_rnode *rn;
3983         int rv = 0;
3984         uint8_t evtq_stop = 0;
3985
3986         csio_dbg(hw, "event worker thread active evts#%d\n",
3987                  hw->stats.n_evt_activeq);
3988
3989         spin_lock_irq(&hw->lock);
3990         while (!list_empty(&hw->evt_active_q)) {
3991                 list_splice_tail_init(&hw->evt_active_q, &evt_q);
3992                 spin_unlock_irq(&hw->lock);
3993
3994                 list_for_each_safe(evt_entry, next_entry, &evt_q) {
3995                         evt_msg = (struct csio_evt_msg *) evt_entry;
3996
3997                         /* Drop events if queue is STOPPED */
3998                         spin_lock_irq(&hw->lock);
3999                         if (hw->flags & CSIO_HWF_FWEVT_STOP)
4000                                 evtq_stop = 1;
4001                         spin_unlock_irq(&hw->lock);
4002                         if (evtq_stop) {
4003                                 CSIO_INC_STATS(hw, n_evt_drop);
4004                                 goto free_evt;
4005                         }
4006
4007                         switch (evt_msg->type) {
4008                         case CSIO_EVT_FW:
4009                                 msg = (struct cpl_fw6_msg *)(evt_msg->data);
4010
4011                                 if ((msg->opcode == CPL_FW6_MSG ||
4012                                      msg->opcode == CPL_FW4_MSG) &&
4013                                     !msg->type) {
4014                                         rv = csio_mb_fwevt_handler(hw,
4015                                                                 msg->data);
4016                                         if (!rv)
4017                                                 break;
4018                                         /* Handle any remaining fw events */
4019                                         csio_fcoe_fwevt_handler(hw,
4020                                                         msg->opcode, msg->data);
4021                                 } else if (msg->opcode == CPL_FW6_PLD) {
4022
4023                                         csio_fcoe_fwevt_handler(hw,
4024                                                         msg->opcode, msg->data);
4025                                 } else {
4026                                         csio_warn(hw,
4027                                              "Unhandled FW msg op %x type %x\n",
4028                                                   msg->opcode, msg->type);
4029                                         CSIO_INC_STATS(hw, n_evt_drop);
4030                                 }
4031                                 break;
4032
4033                         case CSIO_EVT_MBX:
4034                                 csio_mberr_worker(hw);
4035                                 break;
4036
4037                         case CSIO_EVT_DEV_LOSS:
4038                                 memcpy(&rn, evt_msg->data, sizeof(rn));
4039                                 csio_rnode_devloss_handler(rn);
4040                                 break;
4041
4042                         default:
4043                                 csio_warn(hw, "Unhandled event %x on evtq\n",
4044                                           evt_msg->type);
4045                                 CSIO_INC_STATS(hw, n_evt_unexp);
4046                                 break;
4047                         }
4048 free_evt:
4049                         csio_free_evt(hw, evt_msg);
4050                 }
4051
4052                 spin_lock_irq(&hw->lock);
4053         }
4054         hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4055         spin_unlock_irq(&hw->lock);
4056 }
4057
4058 int
4059 csio_fwevtq_handler(struct csio_hw *hw)
4060 {
4061         int rv;
4062
4063         if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4064                 CSIO_INC_STATS(hw, n_int_stray);
4065                 return -EINVAL;
4066         }
4067
4068         rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4069                            csio_process_fwevtq_entry, NULL);
4070         return rv;
4071 }
4072
4073 /****************************************************************************
4074  * Entry points
4075  ****************************************************************************/
4076
4077 /* Management module */
4078 /*
4079  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4080  * mgmt - mgmt module
4081  * @io_req - io request
4082  *
4083  * Return - 0:if given IO Req exists in active Q.
4084  *          -EINVAL  :if lookup fails.
4085  */
4086 int
4087 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4088 {
4089         struct list_head *tmp;
4090
4091         /* Lookup ioreq in the ACTIVEQ */
4092         list_for_each(tmp, &mgmtm->active_q) {
4093                 if (io_req == (struct csio_ioreq *)tmp)
4094                         return 0;
4095         }
4096         return -EINVAL;
4097 }
4098
4099 #define ECM_MIN_TMO     1000    /* Minimum timeout value for req */
4100
4101 /*
4102  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4103  * @data - Event data.
4104  *
4105  * Return - none.
4106  */
4107 static void
4108 csio_mgmt_tmo_handler(struct timer_list *t)
4109 {
4110         struct csio_mgmtm *mgmtm = from_timer(mgmtm, t, mgmt_timer);
4111         struct list_head *tmp;
4112         struct csio_ioreq *io_req;
4113
4114         csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4115
4116         spin_lock_irq(&mgmtm->hw->lock);
4117
4118         list_for_each(tmp, &mgmtm->active_q) {
4119                 io_req = (struct csio_ioreq *) tmp;
4120                 io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4121
4122                 if (!io_req->tmo) {
4123                         /* Dequeue the request from retry Q. */
4124                         tmp = csio_list_prev(tmp);
4125                         list_del_init(&io_req->sm.sm_list);
4126                         if (io_req->io_cbfn) {
4127                                 /* io_req will be freed by completion handler */
4128                                 io_req->wr_status = -ETIMEDOUT;
4129                                 io_req->io_cbfn(mgmtm->hw, io_req);
4130                         } else {
4131                                 CSIO_DB_ASSERT(0);
4132                         }
4133                 }
4134         }
4135
4136         /* If retry queue is not empty, re-arm timer */
4137         if (!list_empty(&mgmtm->active_q))
4138                 mod_timer(&mgmtm->mgmt_timer,
4139                           jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4140         spin_unlock_irq(&mgmtm->hw->lock);
4141 }
4142
4143 static void
4144 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4145 {
4146         struct csio_hw *hw = mgmtm->hw;
4147         struct csio_ioreq *io_req;
4148         struct list_head *tmp;
4149         uint32_t count;
4150
4151         count = 30;
4152         /* Wait for all outstanding req to complete gracefully */
4153         while ((!list_empty(&mgmtm->active_q)) && count--) {
4154                 spin_unlock_irq(&hw->lock);
4155                 msleep(2000);
4156                 spin_lock_irq(&hw->lock);
4157         }
4158
4159         /* release outstanding req from ACTIVEQ */
4160         list_for_each(tmp, &mgmtm->active_q) {
4161                 io_req = (struct csio_ioreq *) tmp;
4162                 tmp = csio_list_prev(tmp);
4163                 list_del_init(&io_req->sm.sm_list);
4164                 mgmtm->stats.n_active--;
4165                 if (io_req->io_cbfn) {
4166                         /* io_req will be freed by completion handler */
4167                         io_req->wr_status = -ETIMEDOUT;
4168                         io_req->io_cbfn(mgmtm->hw, io_req);
4169                 }
4170         }
4171 }
4172
4173 /*
4174  * csio_mgmt_init - Mgmt module init entry point
4175  * @mgmtsm - mgmt module
4176  * @hw   - HW module
4177  *
4178  * Initialize mgmt timer, resource wait queue, active queue,
4179  * completion q. Allocate Egress and Ingress
4180  * WR queues and save off the queue index returned by the WR
4181  * module for future use. Allocate and save off mgmt reqs in the
4182  * mgmt_req_freelist for future use. Make sure their SM is initialized
4183  * to uninit state.
4184  * Returns: 0 - on success
4185  *          -ENOMEM   - on error.
4186  */
4187 static int
4188 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4189 {
4190         timer_setup(&mgmtm->mgmt_timer, csio_mgmt_tmo_handler, 0);
4191
4192         INIT_LIST_HEAD(&mgmtm->active_q);
4193         INIT_LIST_HEAD(&mgmtm->cbfn_q);
4194
4195         mgmtm->hw = hw;
4196         /*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4197
4198         return 0;
4199 }
4200
4201 /*
4202  * csio_mgmtm_exit - MGMT module exit entry point
4203  * @mgmtsm - mgmt module
4204  *
4205  * This function called during MGMT module uninit.
4206  * Stop timers, free ioreqs allocated.
4207  * Returns: None
4208  *
4209  */
4210 static void
4211 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4212 {
4213         del_timer_sync(&mgmtm->mgmt_timer);
4214 }
4215
4216
4217 /**
4218  * csio_hw_start - Kicks off the HW State machine
4219  * @hw:         Pointer to HW module.
4220  *
4221  * It is assumed that the initialization is a synchronous operation.
4222  * So when we return afer posting the event, the HW SM should be in
4223  * the ready state, if there were no errors during init.
4224  */
4225 int
4226 csio_hw_start(struct csio_hw *hw)
4227 {
4228         spin_lock_irq(&hw->lock);
4229         csio_post_event(&hw->sm, CSIO_HWE_CFG);
4230         spin_unlock_irq(&hw->lock);
4231
4232         if (csio_is_hw_ready(hw))
4233                 return 0;
4234         else if (csio_match_state(hw, csio_hws_uninit))
4235                 return -EINVAL;
4236         else
4237                 return -ENODEV;
4238 }
4239
4240 int
4241 csio_hw_stop(struct csio_hw *hw)
4242 {
4243         csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4244
4245         if (csio_is_hw_removing(hw))
4246                 return 0;
4247         else
4248                 return -EINVAL;
4249 }
4250
4251 /* Max reset retries */
4252 #define CSIO_MAX_RESET_RETRIES  3
4253
4254 /**
4255  * csio_hw_reset - Reset the hardware
4256  * @hw:         HW module.
4257  *
4258  * Caller should hold lock across this function.
4259  */
4260 int
4261 csio_hw_reset(struct csio_hw *hw)
4262 {
4263         if (!csio_is_hw_master(hw))
4264                 return -EPERM;
4265
4266         if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4267                 csio_dbg(hw, "Max hw reset attempts reached..");
4268                 return -EINVAL;
4269         }
4270
4271         hw->rst_retries++;
4272         csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4273
4274         if (csio_is_hw_ready(hw)) {
4275                 hw->rst_retries = 0;
4276                 hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4277                 return 0;
4278         } else
4279                 return -EINVAL;
4280 }
4281
4282 /*
4283  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4284  * @hw: HW module.
4285  */
4286 static void
4287 csio_hw_get_device_id(struct csio_hw *hw)
4288 {
4289         /* Is the adapter device id cached already ?*/
4290         if (csio_is_dev_id_cached(hw))
4291                 return;
4292
4293         /* Get the PCI vendor & device id */
4294         pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4295                              &hw->params.pci.vendor_id);
4296         pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4297                              &hw->params.pci.device_id);
4298
4299         csio_dev_id_cached(hw);
4300         hw->chip_id = (hw->params.pci.device_id & CSIO_HW_CHIP_MASK);
4301
4302 } /* csio_hw_get_device_id */
4303
4304 /*
4305  * csio_hw_set_description - Set the model, description of the hw.
4306  * @hw: HW module.
4307  * @ven_id: PCI Vendor ID
4308  * @dev_id: PCI Device ID
4309  */
4310 static void
4311 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4312 {
4313         uint32_t adap_type, prot_type;
4314
4315         if (ven_id == CSIO_VENDOR_ID) {
4316                 prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4317                 adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4318
4319                 if (prot_type == CSIO_T5_FCOE_ASIC) {
4320                         memcpy(hw->hw_ver,
4321                                csio_t5_fcoe_adapters[adap_type].model_no, 16);
4322                         memcpy(hw->model_desc,
4323                                csio_t5_fcoe_adapters[adap_type].description,
4324                                32);
4325                 } else {
4326                         char tempName[32] = "Chelsio FCoE Controller";
4327                         memcpy(hw->model_desc, tempName, 32);
4328                 }
4329         }
4330 } /* csio_hw_set_description */
4331
4332 /**
4333  * csio_hw_init - Initialize HW module.
4334  * @hw:         Pointer to HW module.
4335  *
4336  * Initialize the members of the HW module.
4337  */
4338 int
4339 csio_hw_init(struct csio_hw *hw)
4340 {
4341         int rv = -EINVAL;
4342         uint32_t i;
4343         uint16_t ven_id, dev_id;
4344         struct csio_evt_msg     *evt_entry;
4345
4346         INIT_LIST_HEAD(&hw->sm.sm_list);
4347         csio_init_state(&hw->sm, csio_hws_uninit);
4348         spin_lock_init(&hw->lock);
4349         INIT_LIST_HEAD(&hw->sln_head);
4350
4351         /* Get the PCI vendor & device id */
4352         csio_hw_get_device_id(hw);
4353
4354         strcpy(hw->name, CSIO_HW_NAME);
4355
4356         /* Initialize the HW chip ops T5 specific ops */
4357         hw->chip_ops = &t5_ops;
4358
4359         /* Set the model & its description */
4360
4361         ven_id = hw->params.pci.vendor_id;
4362         dev_id = hw->params.pci.device_id;
4363
4364         csio_hw_set_description(hw, ven_id, dev_id);
4365
4366         /* Initialize default log level */
4367         hw->params.log_level = (uint32_t) csio_dbg_level;
4368
4369         csio_set_fwevt_intr_idx(hw, -1);
4370         csio_set_nondata_intr_idx(hw, -1);
4371
4372         /* Init all the modules: Mailbox, WorkRequest and Transport */
4373         if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4374                 goto err;
4375
4376         rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4377         if (rv)
4378                 goto err_mbm_exit;
4379
4380         rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4381         if (rv)
4382                 goto err_wrm_exit;
4383
4384         rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4385         if (rv)
4386                 goto err_scsim_exit;
4387         /* Pre-allocate evtq and initialize them */
4388         INIT_LIST_HEAD(&hw->evt_active_q);
4389         INIT_LIST_HEAD(&hw->evt_free_q);
4390         for (i = 0; i < csio_evtq_sz; i++) {
4391
4392                 evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4393                 if (!evt_entry) {
4394                         rv = -ENOMEM;
4395                         csio_err(hw, "Failed to initialize eventq");
4396                         goto err_evtq_cleanup;
4397                 }
4398
4399                 list_add_tail(&evt_entry->list, &hw->evt_free_q);
4400                 CSIO_INC_STATS(hw, n_evt_freeq);
4401         }
4402
4403         hw->dev_num = dev_num;
4404         dev_num++;
4405
4406         return 0;
4407
4408 err_evtq_cleanup:
4409         csio_evtq_cleanup(hw);
4410         csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4411 err_scsim_exit:
4412         csio_scsim_exit(csio_hw_to_scsim(hw));
4413 err_wrm_exit:
4414         csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4415 err_mbm_exit:
4416         csio_mbm_exit(csio_hw_to_mbm(hw));
4417 err:
4418         return rv;
4419 }
4420
4421 /**
4422  * csio_hw_exit - Un-initialize HW module.
4423  * @hw:         Pointer to HW module.
4424  *
4425  */
4426 void
4427 csio_hw_exit(struct csio_hw *hw)
4428 {
4429         csio_evtq_cleanup(hw);
4430         csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4431         csio_scsim_exit(csio_hw_to_scsim(hw));
4432         csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4433         csio_mbm_exit(csio_hw_to_mbm(hw));
4434 }