GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
297         unsigned char scsi3addr[], u8 page);
298 static int hpsa_luns_changed(struct ctlr_info *h);
299 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
300                                struct hpsa_scsi_dev_t *dev,
301                                unsigned char *scsi3addr);
302
303 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
304 {
305         unsigned long *priv = shost_priv(sdev->host);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
310 {
311         unsigned long *priv = shost_priv(sh);
312         return (struct ctlr_info *) *priv;
313 }
314
315 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
316 {
317         return c->scsi_cmd == SCSI_CMD_IDLE;
318 }
319
320 static inline bool hpsa_is_pending_event(struct CommandList *c)
321 {
322         return c->abort_pending || c->reset_pending;
323 }
324
325 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
326 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
327                         u8 *sense_key, u8 *asc, u8 *ascq)
328 {
329         struct scsi_sense_hdr sshdr;
330         bool rc;
331
332         *sense_key = -1;
333         *asc = -1;
334         *ascq = -1;
335
336         if (sense_data_len < 1)
337                 return;
338
339         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
340         if (rc) {
341                 *sense_key = sshdr.sense_key;
342                 *asc = sshdr.asc;
343                 *ascq = sshdr.ascq;
344         }
345 }
346
347 static int check_for_unit_attention(struct ctlr_info *h,
348         struct CommandList *c)
349 {
350         u8 sense_key, asc, ascq;
351         int sense_len;
352
353         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
354                 sense_len = sizeof(c->err_info->SenseInfo);
355         else
356                 sense_len = c->err_info->SenseLen;
357
358         decode_sense_data(c->err_info->SenseInfo, sense_len,
359                                 &sense_key, &asc, &ascq);
360         if (sense_key != UNIT_ATTENTION || asc == 0xff)
361                 return 0;
362
363         switch (asc) {
364         case STATE_CHANGED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: a state change detected, command retried\n",
367                         h->devname);
368                 break;
369         case LUN_FAILED:
370                 dev_warn(&h->pdev->dev,
371                         "%s: LUN failure detected\n", h->devname);
372                 break;
373         case REPORT_LUNS_CHANGED:
374                 dev_warn(&h->pdev->dev,
375                         "%s: report LUN data changed\n", h->devname);
376         /*
377          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
378          * target (array) devices.
379          */
380                 break;
381         case POWER_OR_RESET:
382                 dev_warn(&h->pdev->dev,
383                         "%s: a power on or device reset detected\n",
384                         h->devname);
385                 break;
386         case UNIT_ATTENTION_CLEARED:
387                 dev_warn(&h->pdev->dev,
388                         "%s: unit attention cleared by another initiator\n",
389                         h->devname);
390                 break;
391         default:
392                 dev_warn(&h->pdev->dev,
393                         "%s: unknown unit attention detected\n",
394                         h->devname);
395                 break;
396         }
397         return 1;
398 }
399
400 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
401 {
402         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
403                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
404                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
405                 return 0;
406         dev_warn(&h->pdev->dev, HPSA "device busy");
407         return 1;
408 }
409
410 static u32 lockup_detected(struct ctlr_info *h);
411 static ssize_t host_show_lockup_detected(struct device *dev,
412                 struct device_attribute *attr, char *buf)
413 {
414         int ld;
415         struct ctlr_info *h;
416         struct Scsi_Host *shost = class_to_shost(dev);
417
418         h = shost_to_hba(shost);
419         ld = lockup_detected(h);
420
421         return sprintf(buf, "ld=%d\n", ld);
422 }
423
424 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
425                                          struct device_attribute *attr,
426                                          const char *buf, size_t count)
427 {
428         int status, len;
429         struct ctlr_info *h;
430         struct Scsi_Host *shost = class_to_shost(dev);
431         char tmpbuf[10];
432
433         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434                 return -EACCES;
435         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436         strncpy(tmpbuf, buf, len);
437         tmpbuf[len] = '\0';
438         if (sscanf(tmpbuf, "%d", &status) != 1)
439                 return -EINVAL;
440         h = shost_to_hba(shost);
441         h->acciopath_status = !!status;
442         dev_warn(&h->pdev->dev,
443                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
444                 h->acciopath_status ? "enabled" : "disabled");
445         return count;
446 }
447
448 static ssize_t host_store_raid_offload_debug(struct device *dev,
449                                          struct device_attribute *attr,
450                                          const char *buf, size_t count)
451 {
452         int debug_level, len;
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         char tmpbuf[10];
456
457         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458                 return -EACCES;
459         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460         strncpy(tmpbuf, buf, len);
461         tmpbuf[len] = '\0';
462         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
463                 return -EINVAL;
464         if (debug_level < 0)
465                 debug_level = 0;
466         h = shost_to_hba(shost);
467         h->raid_offload_debug = debug_level;
468         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
469                 h->raid_offload_debug);
470         return count;
471 }
472
473 static ssize_t host_store_rescan(struct device *dev,
474                                  struct device_attribute *attr,
475                                  const char *buf, size_t count)
476 {
477         struct ctlr_info *h;
478         struct Scsi_Host *shost = class_to_shost(dev);
479         h = shost_to_hba(shost);
480         hpsa_scan_start(h->scsi_host);
481         return count;
482 }
483
484 static ssize_t host_show_firmware_revision(struct device *dev,
485              struct device_attribute *attr, char *buf)
486 {
487         struct ctlr_info *h;
488         struct Scsi_Host *shost = class_to_shost(dev);
489         unsigned char *fwrev;
490
491         h = shost_to_hba(shost);
492         if (!h->hba_inquiry_data)
493                 return 0;
494         fwrev = &h->hba_inquiry_data[32];
495         return snprintf(buf, 20, "%c%c%c%c\n",
496                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
497 }
498
499 static ssize_t host_show_commands_outstanding(struct device *dev,
500              struct device_attribute *attr, char *buf)
501 {
502         struct Scsi_Host *shost = class_to_shost(dev);
503         struct ctlr_info *h = shost_to_hba(shost);
504
505         return snprintf(buf, 20, "%d\n",
506                         atomic_read(&h->commands_outstanding));
507 }
508
509 static ssize_t host_show_transport_mode(struct device *dev,
510         struct device_attribute *attr, char *buf)
511 {
512         struct ctlr_info *h;
513         struct Scsi_Host *shost = class_to_shost(dev);
514
515         h = shost_to_hba(shost);
516         return snprintf(buf, 20, "%s\n",
517                 h->transMethod & CFGTBL_Trans_Performant ?
518                         "performant" : "simple");
519 }
520
521 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
522         struct device_attribute *attr, char *buf)
523 {
524         struct ctlr_info *h;
525         struct Scsi_Host *shost = class_to_shost(dev);
526
527         h = shost_to_hba(shost);
528         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
529                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
530 }
531
532 /* List of controllers which cannot be hard reset on kexec with reset_devices */
533 static u32 unresettable_controller[] = {
534         0x324a103C, /* Smart Array P712m */
535         0x324b103C, /* Smart Array P711m */
536         0x3223103C, /* Smart Array P800 */
537         0x3234103C, /* Smart Array P400 */
538         0x3235103C, /* Smart Array P400i */
539         0x3211103C, /* Smart Array E200i */
540         0x3212103C, /* Smart Array E200 */
541         0x3213103C, /* Smart Array E200i */
542         0x3214103C, /* Smart Array E200i */
543         0x3215103C, /* Smart Array E200i */
544         0x3237103C, /* Smart Array E500 */
545         0x323D103C, /* Smart Array P700m */
546         0x40800E11, /* Smart Array 5i */
547         0x409C0E11, /* Smart Array 6400 */
548         0x409D0E11, /* Smart Array 6400 EM */
549         0x40700E11, /* Smart Array 5300 */
550         0x40820E11, /* Smart Array 532 */
551         0x40830E11, /* Smart Array 5312 */
552         0x409A0E11, /* Smart Array 641 */
553         0x409B0E11, /* Smart Array 642 */
554         0x40910E11, /* Smart Array 6i */
555 };
556
557 /* List of controllers which cannot even be soft reset */
558 static u32 soft_unresettable_controller[] = {
559         0x40800E11, /* Smart Array 5i */
560         0x40700E11, /* Smart Array 5300 */
561         0x40820E11, /* Smart Array 532 */
562         0x40830E11, /* Smart Array 5312 */
563         0x409A0E11, /* Smart Array 641 */
564         0x409B0E11, /* Smart Array 642 */
565         0x40910E11, /* Smart Array 6i */
566         /* Exclude 640x boards.  These are two pci devices in one slot
567          * which share a battery backed cache module.  One controls the
568          * cache, the other accesses the cache through the one that controls
569          * it.  If we reset the one controlling the cache, the other will
570          * likely not be happy.  Just forbid resetting this conjoined mess.
571          * The 640x isn't really supported by hpsa anyway.
572          */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575 };
576
577 static u32 needs_abort_tags_swizzled[] = {
578         0x323D103C, /* Smart Array P700m */
579         0x324a103C, /* Smart Array P712m */
580         0x324b103C, /* SmartArray P711m */
581 };
582
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585         int i;
586
587         for (i = 0; i < nelems; i++)
588                 if (a[i] == board_id)
589                         return 1;
590         return 0;
591 }
592
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595         return !board_id_in_array(unresettable_controller,
596                         ARRAY_SIZE(unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601         return !board_id_in_array(soft_unresettable_controller,
602                         ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604
605 static int ctlr_is_resettable(u32 board_id)
606 {
607         return ctlr_is_hard_resettable(board_id) ||
608                 ctlr_is_soft_resettable(board_id);
609 }
610
611 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
612 {
613         return board_id_in_array(needs_abort_tags_swizzled,
614                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
615 }
616
617 static ssize_t host_show_resettable(struct device *dev,
618         struct device_attribute *attr, char *buf)
619 {
620         struct ctlr_info *h;
621         struct Scsi_Host *shost = class_to_shost(dev);
622
623         h = shost_to_hba(shost);
624         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
625 }
626
627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
628 {
629         return (scsi3addr[3] & 0xC0) == 0x40;
630 }
631
632 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
633         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
634 };
635 #define HPSA_RAID_0     0
636 #define HPSA_RAID_4     1
637 #define HPSA_RAID_1     2       /* also used for RAID 10 */
638 #define HPSA_RAID_5     3       /* also used for RAID 50 */
639 #define HPSA_RAID_51    4
640 #define HPSA_RAID_6     5       /* also used for RAID 60 */
641 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
644
645 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
646 {
647         return !device->physical_device;
648 }
649
650 static ssize_t raid_level_show(struct device *dev,
651              struct device_attribute *attr, char *buf)
652 {
653         ssize_t l = 0;
654         unsigned char rlevel;
655         struct ctlr_info *h;
656         struct scsi_device *sdev;
657         struct hpsa_scsi_dev_t *hdev;
658         unsigned long flags;
659
660         sdev = to_scsi_device(dev);
661         h = sdev_to_hba(sdev);
662         spin_lock_irqsave(&h->lock, flags);
663         hdev = sdev->hostdata;
664         if (!hdev) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 return -ENODEV;
667         }
668
669         /* Is this even a logical drive? */
670         if (!is_logical_device(hdev)) {
671                 spin_unlock_irqrestore(&h->lock, flags);
672                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
673                 return l;
674         }
675
676         rlevel = hdev->raid_level;
677         spin_unlock_irqrestore(&h->lock, flags);
678         if (rlevel > RAID_UNKNOWN)
679                 rlevel = RAID_UNKNOWN;
680         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
681         return l;
682 }
683
684 static ssize_t lunid_show(struct device *dev,
685              struct device_attribute *attr, char *buf)
686 {
687         struct ctlr_info *h;
688         struct scsi_device *sdev;
689         struct hpsa_scsi_dev_t *hdev;
690         unsigned long flags;
691         unsigned char lunid[8];
692
693         sdev = to_scsi_device(dev);
694         h = sdev_to_hba(sdev);
695         spin_lock_irqsave(&h->lock, flags);
696         hdev = sdev->hostdata;
697         if (!hdev) {
698                 spin_unlock_irqrestore(&h->lock, flags);
699                 return -ENODEV;
700         }
701         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
702         spin_unlock_irqrestore(&h->lock, flags);
703         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
704                 lunid[0], lunid[1], lunid[2], lunid[3],
705                 lunid[4], lunid[5], lunid[6], lunid[7]);
706 }
707
708 static ssize_t unique_id_show(struct device *dev,
709              struct device_attribute *attr, char *buf)
710 {
711         struct ctlr_info *h;
712         struct scsi_device *sdev;
713         struct hpsa_scsi_dev_t *hdev;
714         unsigned long flags;
715         unsigned char sn[16];
716
717         sdev = to_scsi_device(dev);
718         h = sdev_to_hba(sdev);
719         spin_lock_irqsave(&h->lock, flags);
720         hdev = sdev->hostdata;
721         if (!hdev) {
722                 spin_unlock_irqrestore(&h->lock, flags);
723                 return -ENODEV;
724         }
725         memcpy(sn, hdev->device_id, sizeof(sn));
726         spin_unlock_irqrestore(&h->lock, flags);
727         return snprintf(buf, 16 * 2 + 2,
728                         "%02X%02X%02X%02X%02X%02X%02X%02X"
729                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
730                         sn[0], sn[1], sn[2], sn[3],
731                         sn[4], sn[5], sn[6], sn[7],
732                         sn[8], sn[9], sn[10], sn[11],
733                         sn[12], sn[13], sn[14], sn[15]);
734 }
735
736 static ssize_t sas_address_show(struct device *dev,
737               struct device_attribute *attr, char *buf)
738 {
739         struct ctlr_info *h;
740         struct scsi_device *sdev;
741         struct hpsa_scsi_dev_t *hdev;
742         unsigned long flags;
743         u64 sas_address;
744
745         sdev = to_scsi_device(dev);
746         h = sdev_to_hba(sdev);
747         spin_lock_irqsave(&h->lock, flags);
748         hdev = sdev->hostdata;
749         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
750                 spin_unlock_irqrestore(&h->lock, flags);
751                 return -ENODEV;
752         }
753         sas_address = hdev->sas_address;
754         spin_unlock_irqrestore(&h->lock, flags);
755
756         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
757 }
758
759 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
760              struct device_attribute *attr, char *buf)
761 {
762         struct ctlr_info *h;
763         struct scsi_device *sdev;
764         struct hpsa_scsi_dev_t *hdev;
765         unsigned long flags;
766         int offload_enabled;
767
768         sdev = to_scsi_device(dev);
769         h = sdev_to_hba(sdev);
770         spin_lock_irqsave(&h->lock, flags);
771         hdev = sdev->hostdata;
772         if (!hdev) {
773                 spin_unlock_irqrestore(&h->lock, flags);
774                 return -ENODEV;
775         }
776         offload_enabled = hdev->offload_enabled;
777         spin_unlock_irqrestore(&h->lock, flags);
778         return snprintf(buf, 20, "%d\n", offload_enabled);
779 }
780
781 #define MAX_PATHS 8
782 static ssize_t path_info_show(struct device *dev,
783              struct device_attribute *attr, char *buf)
784 {
785         struct ctlr_info *h;
786         struct scsi_device *sdev;
787         struct hpsa_scsi_dev_t *hdev;
788         unsigned long flags;
789         int i;
790         int output_len = 0;
791         u8 box;
792         u8 bay;
793         u8 path_map_index = 0;
794         char *active;
795         unsigned char phys_connector[2];
796
797         sdev = to_scsi_device(dev);
798         h = sdev_to_hba(sdev);
799         spin_lock_irqsave(&h->devlock, flags);
800         hdev = sdev->hostdata;
801         if (!hdev) {
802                 spin_unlock_irqrestore(&h->devlock, flags);
803                 return -ENODEV;
804         }
805
806         bay = hdev->bay;
807         for (i = 0; i < MAX_PATHS; i++) {
808                 path_map_index = 1<<i;
809                 if (i == hdev->active_path_index)
810                         active = "Active";
811                 else if (hdev->path_map & path_map_index)
812                         active = "Inactive";
813                 else
814                         continue;
815
816                 output_len += scnprintf(buf + output_len,
817                                 PAGE_SIZE - output_len,
818                                 "[%d:%d:%d:%d] %20.20s ",
819                                 h->scsi_host->host_no,
820                                 hdev->bus, hdev->target, hdev->lun,
821                                 scsi_device_type(hdev->devtype));
822
823                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
824                         output_len += scnprintf(buf + output_len,
825                                                 PAGE_SIZE - output_len,
826                                                 "%s\n", active);
827                         continue;
828                 }
829
830                 box = hdev->box[i];
831                 memcpy(&phys_connector, &hdev->phys_connector[i],
832                         sizeof(phys_connector));
833                 if (phys_connector[0] < '0')
834                         phys_connector[0] = '0';
835                 if (phys_connector[1] < '0')
836                         phys_connector[1] = '0';
837                 output_len += scnprintf(buf + output_len,
838                                 PAGE_SIZE - output_len,
839                                 "PORT: %.2s ",
840                                 phys_connector);
841                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
842                         hdev->expose_device) {
843                         if (box == 0 || box == 0xFF) {
844                                 output_len += scnprintf(buf + output_len,
845                                         PAGE_SIZE - output_len,
846                                         "BAY: %hhu %s\n",
847                                         bay, active);
848                         } else {
849                                 output_len += scnprintf(buf + output_len,
850                                         PAGE_SIZE - output_len,
851                                         "BOX: %hhu BAY: %hhu %s\n",
852                                         box, bay, active);
853                         }
854                 } else if (box != 0 && box != 0xFF) {
855                         output_len += scnprintf(buf + output_len,
856                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
857                                 box, active);
858                 } else
859                         output_len += scnprintf(buf + output_len,
860                                 PAGE_SIZE - output_len, "%s\n", active);
861         }
862
863         spin_unlock_irqrestore(&h->devlock, flags);
864         return output_len;
865 }
866
867 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
868 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
869 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
870 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
871 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
872 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
873                         host_show_hp_ssd_smart_path_enabled, NULL);
874 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
875 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
876                 host_show_hp_ssd_smart_path_status,
877                 host_store_hp_ssd_smart_path_status);
878 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
879                         host_store_raid_offload_debug);
880 static DEVICE_ATTR(firmware_revision, S_IRUGO,
881         host_show_firmware_revision, NULL);
882 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
883         host_show_commands_outstanding, NULL);
884 static DEVICE_ATTR(transport_mode, S_IRUGO,
885         host_show_transport_mode, NULL);
886 static DEVICE_ATTR(resettable, S_IRUGO,
887         host_show_resettable, NULL);
888 static DEVICE_ATTR(lockup_detected, S_IRUGO,
889         host_show_lockup_detected, NULL);
890
891 static struct device_attribute *hpsa_sdev_attrs[] = {
892         &dev_attr_raid_level,
893         &dev_attr_lunid,
894         &dev_attr_unique_id,
895         &dev_attr_hp_ssd_smart_path_enabled,
896         &dev_attr_path_info,
897         &dev_attr_sas_address,
898         NULL,
899 };
900
901 static struct device_attribute *hpsa_shost_attrs[] = {
902         &dev_attr_rescan,
903         &dev_attr_firmware_revision,
904         &dev_attr_commands_outstanding,
905         &dev_attr_transport_mode,
906         &dev_attr_resettable,
907         &dev_attr_hp_ssd_smart_path_status,
908         &dev_attr_raid_offload_debug,
909         &dev_attr_lockup_detected,
910         NULL,
911 };
912
913 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
914                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
915
916 static struct scsi_host_template hpsa_driver_template = {
917         .module                 = THIS_MODULE,
918         .name                   = HPSA,
919         .proc_name              = HPSA,
920         .queuecommand           = hpsa_scsi_queue_command,
921         .scan_start             = hpsa_scan_start,
922         .scan_finished          = hpsa_scan_finished,
923         .change_queue_depth     = hpsa_change_queue_depth,
924         .this_id                = -1,
925         .use_clustering         = ENABLE_CLUSTERING,
926         .eh_abort_handler       = hpsa_eh_abort_handler,
927         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
928         .ioctl                  = hpsa_ioctl,
929         .slave_alloc            = hpsa_slave_alloc,
930         .slave_configure        = hpsa_slave_configure,
931         .slave_destroy          = hpsa_slave_destroy,
932 #ifdef CONFIG_COMPAT
933         .compat_ioctl           = hpsa_compat_ioctl,
934 #endif
935         .sdev_attrs = hpsa_sdev_attrs,
936         .shost_attrs = hpsa_shost_attrs,
937         .max_sectors = 8192,
938         .no_write_same = 1,
939 };
940
941 static inline u32 next_command(struct ctlr_info *h, u8 q)
942 {
943         u32 a;
944         struct reply_queue_buffer *rq = &h->reply_queue[q];
945
946         if (h->transMethod & CFGTBL_Trans_io_accel1)
947                 return h->access.command_completed(h, q);
948
949         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
950                 return h->access.command_completed(h, q);
951
952         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
953                 a = rq->head[rq->current_entry];
954                 rq->current_entry++;
955                 atomic_dec(&h->commands_outstanding);
956         } else {
957                 a = FIFO_EMPTY;
958         }
959         /* Check for wraparound */
960         if (rq->current_entry == h->max_commands) {
961                 rq->current_entry = 0;
962                 rq->wraparound ^= 1;
963         }
964         return a;
965 }
966
967 /*
968  * There are some special bits in the bus address of the
969  * command that we have to set for the controller to know
970  * how to process the command:
971  *
972  * Normal performant mode:
973  * bit 0: 1 means performant mode, 0 means simple mode.
974  * bits 1-3 = block fetch table entry
975  * bits 4-6 = command type (== 0)
976  *
977  * ioaccel1 mode:
978  * bit 0 = "performant mode" bit.
979  * bits 1-3 = block fetch table entry
980  * bits 4-6 = command type (== 110)
981  * (command type is needed because ioaccel1 mode
982  * commands are submitted through the same register as normal
983  * mode commands, so this is how the controller knows whether
984  * the command is normal mode or ioaccel1 mode.)
985  *
986  * ioaccel2 mode:
987  * bit 0 = "performant mode" bit.
988  * bits 1-4 = block fetch table entry (note extra bit)
989  * bits 4-6 = not needed, because ioaccel2 mode has
990  * a separate special register for submitting commands.
991  */
992
993 /*
994  * set_performant_mode: Modify the tag for cciss performant
995  * set bit 0 for pull model, bits 3-1 for block fetch
996  * register number
997  */
998 #define DEFAULT_REPLY_QUEUE (-1)
999 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1000                                         int reply_queue)
1001 {
1002         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1003                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1004                 if (unlikely(!h->msix_vector))
1005                         return;
1006                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007                         c->Header.ReplyQueue =
1008                                 raw_smp_processor_id() % h->nreply_queues;
1009                 else
1010                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1011         }
1012 }
1013
1014 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1015                                                 struct CommandList *c,
1016                                                 int reply_queue)
1017 {
1018         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1019
1020         /*
1021          * Tell the controller to post the reply to the queue for this
1022          * processor.  This seems to give the best I/O throughput.
1023          */
1024         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1026         else
1027                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1028         /*
1029          * Set the bits in the address sent down to include:
1030          *  - performant mode bit (bit 0)
1031          *  - pull count (bits 1-3)
1032          *  - command type (bits 4-6)
1033          */
1034         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1035                                         IOACCEL1_BUSADDR_CMDTYPE;
1036 }
1037
1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1039                                                 struct CommandList *c,
1040                                                 int reply_queue)
1041 {
1042         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1043                 &h->ioaccel2_cmd_pool[c->cmdindex];
1044
1045         /* Tell the controller to post the reply to the queue for this
1046          * processor.  This seems to give the best I/O throughput.
1047          */
1048         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1050         else
1051                 cp->reply_queue = reply_queue % h->nreply_queues;
1052         /* Set the bits in the address sent down to include:
1053          *  - performant mode bit not used in ioaccel mode 2
1054          *  - pull count (bits 0-3)
1055          *  - command type isn't needed for ioaccel2
1056          */
1057         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1058 }
1059
1060 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1061                                                 struct CommandList *c,
1062                                                 int reply_queue)
1063 {
1064         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1065
1066         /*
1067          * Tell the controller to post the reply to the queue for this
1068          * processor.  This seems to give the best I/O throughput.
1069          */
1070         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1071                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1072         else
1073                 cp->reply_queue = reply_queue % h->nreply_queues;
1074         /*
1075          * Set the bits in the address sent down to include:
1076          *  - performant mode bit not used in ioaccel mode 2
1077          *  - pull count (bits 0-3)
1078          *  - command type isn't needed for ioaccel2
1079          */
1080         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1081 }
1082
1083 static int is_firmware_flash_cmd(u8 *cdb)
1084 {
1085         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1086 }
1087
1088 /*
1089  * During firmware flash, the heartbeat register may not update as frequently
1090  * as it should.  So we dial down lockup detection during firmware flash. and
1091  * dial it back up when firmware flash completes.
1092  */
1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1096                 struct CommandList *c)
1097 {
1098         if (!is_firmware_flash_cmd(c->Request.CDB))
1099                 return;
1100         atomic_inc(&h->firmware_flash_in_progress);
1101         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1102 }
1103
1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1105                 struct CommandList *c)
1106 {
1107         if (is_firmware_flash_cmd(c->Request.CDB) &&
1108                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1109                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1110 }
1111
1112 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1113         struct CommandList *c, int reply_queue)
1114 {
1115         dial_down_lockup_detection_during_fw_flash(h, c);
1116         atomic_inc(&h->commands_outstanding);
1117         switch (c->cmd_type) {
1118         case CMD_IOACCEL1:
1119                 set_ioaccel1_performant_mode(h, c, reply_queue);
1120                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1121                 break;
1122         case CMD_IOACCEL2:
1123                 set_ioaccel2_performant_mode(h, c, reply_queue);
1124                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1125                 break;
1126         case IOACCEL2_TMF:
1127                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1128                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1129                 break;
1130         default:
1131                 set_performant_mode(h, c, reply_queue);
1132                 h->access.submit_command(h, c);
1133         }
1134 }
1135
1136 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1137 {
1138         if (unlikely(hpsa_is_pending_event(c)))
1139                 return finish_cmd(c);
1140
1141         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1142 }
1143
1144 static inline int is_hba_lunid(unsigned char scsi3addr[])
1145 {
1146         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1147 }
1148
1149 static inline int is_scsi_rev_5(struct ctlr_info *h)
1150 {
1151         if (!h->hba_inquiry_data)
1152                 return 0;
1153         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1154                 return 1;
1155         return 0;
1156 }
1157
1158 static int hpsa_find_target_lun(struct ctlr_info *h,
1159         unsigned char scsi3addr[], int bus, int *target, int *lun)
1160 {
1161         /* finds an unused bus, target, lun for a new physical device
1162          * assumes h->devlock is held
1163          */
1164         int i, found = 0;
1165         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1166
1167         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1168
1169         for (i = 0; i < h->ndevices; i++) {
1170                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1171                         __set_bit(h->dev[i]->target, lun_taken);
1172         }
1173
1174         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1175         if (i < HPSA_MAX_DEVICES) {
1176                 /* *bus = 1; */
1177                 *target = i;
1178                 *lun = 0;
1179                 found = 1;
1180         }
1181         return !found;
1182 }
1183
1184 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1185         struct hpsa_scsi_dev_t *dev, char *description)
1186 {
1187 #define LABEL_SIZE 25
1188         char label[LABEL_SIZE];
1189
1190         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1191                 return;
1192
1193         switch (dev->devtype) {
1194         case TYPE_RAID:
1195                 snprintf(label, LABEL_SIZE, "controller");
1196                 break;
1197         case TYPE_ENCLOSURE:
1198                 snprintf(label, LABEL_SIZE, "enclosure");
1199                 break;
1200         case TYPE_DISK:
1201         case TYPE_ZBC:
1202                 if (dev->external)
1203                         snprintf(label, LABEL_SIZE, "external");
1204                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1205                         snprintf(label, LABEL_SIZE, "%s",
1206                                 raid_label[PHYSICAL_DRIVE]);
1207                 else
1208                         snprintf(label, LABEL_SIZE, "RAID-%s",
1209                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1210                                 raid_label[dev->raid_level]);
1211                 break;
1212         case TYPE_ROM:
1213                 snprintf(label, LABEL_SIZE, "rom");
1214                 break;
1215         case TYPE_TAPE:
1216                 snprintf(label, LABEL_SIZE, "tape");
1217                 break;
1218         case TYPE_MEDIUM_CHANGER:
1219                 snprintf(label, LABEL_SIZE, "changer");
1220                 break;
1221         default:
1222                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1223                 break;
1224         }
1225
1226         dev_printk(level, &h->pdev->dev,
1227                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1228                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1229                         description,
1230                         scsi_device_type(dev->devtype),
1231                         dev->vendor,
1232                         dev->model,
1233                         label,
1234                         dev->offload_config ? '+' : '-',
1235                         dev->offload_enabled ? '+' : '-',
1236                         dev->expose_device);
1237 }
1238
1239 /* Add an entry into h->dev[] array. */
1240 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1241                 struct hpsa_scsi_dev_t *device,
1242                 struct hpsa_scsi_dev_t *added[], int *nadded)
1243 {
1244         /* assumes h->devlock is held */
1245         int n = h->ndevices;
1246         int i;
1247         unsigned char addr1[8], addr2[8];
1248         struct hpsa_scsi_dev_t *sd;
1249
1250         if (n >= HPSA_MAX_DEVICES) {
1251                 dev_err(&h->pdev->dev, "too many devices, some will be "
1252                         "inaccessible.\n");
1253                 return -1;
1254         }
1255
1256         /* physical devices do not have lun or target assigned until now. */
1257         if (device->lun != -1)
1258                 /* Logical device, lun is already assigned. */
1259                 goto lun_assigned;
1260
1261         /* If this device a non-zero lun of a multi-lun device
1262          * byte 4 of the 8-byte LUN addr will contain the logical
1263          * unit no, zero otherwise.
1264          */
1265         if (device->scsi3addr[4] == 0) {
1266                 /* This is not a non-zero lun of a multi-lun device */
1267                 if (hpsa_find_target_lun(h, device->scsi3addr,
1268                         device->bus, &device->target, &device->lun) != 0)
1269                         return -1;
1270                 goto lun_assigned;
1271         }
1272
1273         /* This is a non-zero lun of a multi-lun device.
1274          * Search through our list and find the device which
1275          * has the same 8 byte LUN address, excepting byte 4 and 5.
1276          * Assign the same bus and target for this new LUN.
1277          * Use the logical unit number from the firmware.
1278          */
1279         memcpy(addr1, device->scsi3addr, 8);
1280         addr1[4] = 0;
1281         addr1[5] = 0;
1282         for (i = 0; i < n; i++) {
1283                 sd = h->dev[i];
1284                 memcpy(addr2, sd->scsi3addr, 8);
1285                 addr2[4] = 0;
1286                 addr2[5] = 0;
1287                 /* differ only in byte 4 and 5? */
1288                 if (memcmp(addr1, addr2, 8) == 0) {
1289                         device->bus = sd->bus;
1290                         device->target = sd->target;
1291                         device->lun = device->scsi3addr[4];
1292                         break;
1293                 }
1294         }
1295         if (device->lun == -1) {
1296                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1297                         " suspect firmware bug or unsupported hardware "
1298                         "configuration.\n");
1299                         return -1;
1300         }
1301
1302 lun_assigned:
1303
1304         h->dev[n] = device;
1305         h->ndevices++;
1306         added[*nadded] = device;
1307         (*nadded)++;
1308         hpsa_show_dev_msg(KERN_INFO, h, device,
1309                 device->expose_device ? "added" : "masked");
1310         device->offload_to_be_enabled = device->offload_enabled;
1311         device->offload_enabled = 0;
1312         return 0;
1313 }
1314
1315 /* Update an entry in h->dev[] array. */
1316 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1317         int entry, struct hpsa_scsi_dev_t *new_entry)
1318 {
1319         int offload_enabled;
1320         /* assumes h->devlock is held */
1321         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1322
1323         /* Raid level changed. */
1324         h->dev[entry]->raid_level = new_entry->raid_level;
1325
1326         /* Raid offload parameters changed.  Careful about the ordering. */
1327         if (new_entry->offload_config && new_entry->offload_enabled) {
1328                 /*
1329                  * if drive is newly offload_enabled, we want to copy the
1330                  * raid map data first.  If previously offload_enabled and
1331                  * offload_config were set, raid map data had better be
1332                  * the same as it was before.  if raid map data is changed
1333                  * then it had better be the case that
1334                  * h->dev[entry]->offload_enabled is currently 0.
1335                  */
1336                 h->dev[entry]->raid_map = new_entry->raid_map;
1337                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1338         }
1339         if (new_entry->hba_ioaccel_enabled) {
1340                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1341                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1342         }
1343         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1344         h->dev[entry]->offload_config = new_entry->offload_config;
1345         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1346         h->dev[entry]->queue_depth = new_entry->queue_depth;
1347
1348         /*
1349          * We can turn off ioaccel offload now, but need to delay turning
1350          * it on until we can update h->dev[entry]->phys_disk[], but we
1351          * can't do that until all the devices are updated.
1352          */
1353         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1354         if (!new_entry->offload_enabled)
1355                 h->dev[entry]->offload_enabled = 0;
1356
1357         offload_enabled = h->dev[entry]->offload_enabled;
1358         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1359         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1360         h->dev[entry]->offload_enabled = offload_enabled;
1361 }
1362
1363 /* Replace an entry from h->dev[] array. */
1364 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1365         int entry, struct hpsa_scsi_dev_t *new_entry,
1366         struct hpsa_scsi_dev_t *added[], int *nadded,
1367         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1368 {
1369         /* assumes h->devlock is held */
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371         removed[*nremoved] = h->dev[entry];
1372         (*nremoved)++;
1373
1374         /*
1375          * New physical devices won't have target/lun assigned yet
1376          * so we need to preserve the values in the slot we are replacing.
1377          */
1378         if (new_entry->target == -1) {
1379                 new_entry->target = h->dev[entry]->target;
1380                 new_entry->lun = h->dev[entry]->lun;
1381         }
1382
1383         h->dev[entry] = new_entry;
1384         added[*nadded] = new_entry;
1385         (*nadded)++;
1386         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1387         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1388         new_entry->offload_enabled = 0;
1389 }
1390
1391 /* Remove an entry from h->dev[] array. */
1392 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1393         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1394 {
1395         /* assumes h->devlock is held */
1396         int i;
1397         struct hpsa_scsi_dev_t *sd;
1398
1399         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1400
1401         sd = h->dev[entry];
1402         removed[*nremoved] = h->dev[entry];
1403         (*nremoved)++;
1404
1405         for (i = entry; i < h->ndevices-1; i++)
1406                 h->dev[i] = h->dev[i+1];
1407         h->ndevices--;
1408         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1409 }
1410
1411 #define SCSI3ADDR_EQ(a, b) ( \
1412         (a)[7] == (b)[7] && \
1413         (a)[6] == (b)[6] && \
1414         (a)[5] == (b)[5] && \
1415         (a)[4] == (b)[4] && \
1416         (a)[3] == (b)[3] && \
1417         (a)[2] == (b)[2] && \
1418         (a)[1] == (b)[1] && \
1419         (a)[0] == (b)[0])
1420
1421 static void fixup_botched_add(struct ctlr_info *h,
1422         struct hpsa_scsi_dev_t *added)
1423 {
1424         /* called when scsi_add_device fails in order to re-adjust
1425          * h->dev[] to match the mid layer's view.
1426          */
1427         unsigned long flags;
1428         int i, j;
1429
1430         spin_lock_irqsave(&h->lock, flags);
1431         for (i = 0; i < h->ndevices; i++) {
1432                 if (h->dev[i] == added) {
1433                         for (j = i; j < h->ndevices-1; j++)
1434                                 h->dev[j] = h->dev[j+1];
1435                         h->ndevices--;
1436                         break;
1437                 }
1438         }
1439         spin_unlock_irqrestore(&h->lock, flags);
1440         kfree(added);
1441 }
1442
1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1444         struct hpsa_scsi_dev_t *dev2)
1445 {
1446         /* we compare everything except lun and target as these
1447          * are not yet assigned.  Compare parts likely
1448          * to differ first
1449          */
1450         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1451                 sizeof(dev1->scsi3addr)) != 0)
1452                 return 0;
1453         if (memcmp(dev1->device_id, dev2->device_id,
1454                 sizeof(dev1->device_id)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1457                 return 0;
1458         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1459                 return 0;
1460         if (dev1->devtype != dev2->devtype)
1461                 return 0;
1462         if (dev1->bus != dev2->bus)
1463                 return 0;
1464         return 1;
1465 }
1466
1467 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1468         struct hpsa_scsi_dev_t *dev2)
1469 {
1470         /* Device attributes that can change, but don't mean
1471          * that the device is a different device, nor that the OS
1472          * needs to be told anything about the change.
1473          */
1474         if (dev1->raid_level != dev2->raid_level)
1475                 return 1;
1476         if (dev1->offload_config != dev2->offload_config)
1477                 return 1;
1478         if (dev1->offload_enabled != dev2->offload_enabled)
1479                 return 1;
1480         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1481                 if (dev1->queue_depth != dev2->queue_depth)
1482                         return 1;
1483         return 0;
1484 }
1485
1486 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1487  * and return needle location in *index.  If scsi3addr matches, but not
1488  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1489  * location in *index.
1490  * In the case of a minor device attribute change, such as RAID level, just
1491  * return DEVICE_UPDATED, along with the updated device's location in index.
1492  * If needle not found, return DEVICE_NOT_FOUND.
1493  */
1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1495         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1496         int *index)
1497 {
1498         int i;
1499 #define DEVICE_NOT_FOUND 0
1500 #define DEVICE_CHANGED 1
1501 #define DEVICE_SAME 2
1502 #define DEVICE_UPDATED 3
1503         if (needle == NULL)
1504                 return DEVICE_NOT_FOUND;
1505
1506         for (i = 0; i < haystack_size; i++) {
1507                 if (haystack[i] == NULL) /* previously removed. */
1508                         continue;
1509                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1510                         *index = i;
1511                         if (device_is_the_same(needle, haystack[i])) {
1512                                 if (device_updated(needle, haystack[i]))
1513                                         return DEVICE_UPDATED;
1514                                 return DEVICE_SAME;
1515                         } else {
1516                                 /* Keep offline devices offline */
1517                                 if (needle->volume_offline)
1518                                         return DEVICE_NOT_FOUND;
1519                                 return DEVICE_CHANGED;
1520                         }
1521                 }
1522         }
1523         *index = -1;
1524         return DEVICE_NOT_FOUND;
1525 }
1526
1527 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1528                                         unsigned char scsi3addr[])
1529 {
1530         struct offline_device_entry *device;
1531         unsigned long flags;
1532
1533         /* Check to see if device is already on the list */
1534         spin_lock_irqsave(&h->offline_device_lock, flags);
1535         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1536                 if (memcmp(device->scsi3addr, scsi3addr,
1537                         sizeof(device->scsi3addr)) == 0) {
1538                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1539                         return;
1540                 }
1541         }
1542         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1543
1544         /* Device is not on the list, add it. */
1545         device = kmalloc(sizeof(*device), GFP_KERNEL);
1546         if (!device) {
1547                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1548                 return;
1549         }
1550         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1551         spin_lock_irqsave(&h->offline_device_lock, flags);
1552         list_add_tail(&device->offline_list, &h->offline_device_list);
1553         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1554 }
1555
1556 /* Print a message explaining various offline volume states */
1557 static void hpsa_show_volume_status(struct ctlr_info *h,
1558         struct hpsa_scsi_dev_t *sd)
1559 {
1560         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1561                 dev_info(&h->pdev->dev,
1562                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1563                         h->scsi_host->host_no,
1564                         sd->bus, sd->target, sd->lun);
1565         switch (sd->volume_offline) {
1566         case HPSA_LV_OK:
1567                 break;
1568         case HPSA_LV_UNDERGOING_ERASE:
1569                 dev_info(&h->pdev->dev,
1570                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1571                         h->scsi_host->host_no,
1572                         sd->bus, sd->target, sd->lun);
1573                 break;
1574         case HPSA_LV_NOT_AVAILABLE:
1575                 dev_info(&h->pdev->dev,
1576                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1577                         h->scsi_host->host_no,
1578                         sd->bus, sd->target, sd->lun);
1579                 break;
1580         case HPSA_LV_UNDERGOING_RPI:
1581                 dev_info(&h->pdev->dev,
1582                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1583                         h->scsi_host->host_no,
1584                         sd->bus, sd->target, sd->lun);
1585                 break;
1586         case HPSA_LV_PENDING_RPI:
1587                 dev_info(&h->pdev->dev,
1588                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1589                         h->scsi_host->host_no,
1590                         sd->bus, sd->target, sd->lun);
1591                 break;
1592         case HPSA_LV_ENCRYPTED_NO_KEY:
1593                 dev_info(&h->pdev->dev,
1594                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1595                         h->scsi_host->host_no,
1596                         sd->bus, sd->target, sd->lun);
1597                 break;
1598         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1599                 dev_info(&h->pdev->dev,
1600                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1601                         h->scsi_host->host_no,
1602                         sd->bus, sd->target, sd->lun);
1603                 break;
1604         case HPSA_LV_UNDERGOING_ENCRYPTION:
1605                 dev_info(&h->pdev->dev,
1606                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1607                         h->scsi_host->host_no,
1608                         sd->bus, sd->target, sd->lun);
1609                 break;
1610         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1611                 dev_info(&h->pdev->dev,
1612                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1613                         h->scsi_host->host_no,
1614                         sd->bus, sd->target, sd->lun);
1615                 break;
1616         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_PENDING_ENCRYPTION:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         }
1635 }
1636
1637 /*
1638  * Figure the list of physical drive pointers for a logical drive with
1639  * raid offload configured.
1640  */
1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1642                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1643                                 struct hpsa_scsi_dev_t *logical_drive)
1644 {
1645         struct raid_map_data *map = &logical_drive->raid_map;
1646         struct raid_map_disk_data *dd = &map->data[0];
1647         int i, j;
1648         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1649                                 le16_to_cpu(map->metadata_disks_per_row);
1650         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1651                                 le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1654                                 total_disks_per_row;
1655         int qdepth;
1656
1657         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1658                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1659
1660         logical_drive->nphysical_disks = nraid_map_entries;
1661
1662         qdepth = 0;
1663         for (i = 0; i < nraid_map_entries; i++) {
1664                 logical_drive->phys_disk[i] = NULL;
1665                 if (!logical_drive->offload_config)
1666                         continue;
1667                 for (j = 0; j < ndevices; j++) {
1668                         if (dev[j] == NULL)
1669                                 continue;
1670                         if (dev[j]->devtype != TYPE_DISK &&
1671                             dev[j]->devtype != TYPE_ZBC)
1672                                 continue;
1673                         if (is_logical_device(dev[j]))
1674                                 continue;
1675                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1676                                 continue;
1677
1678                         logical_drive->phys_disk[i] = dev[j];
1679                         if (i < nphys_disk)
1680                                 qdepth = min(h->nr_cmds, qdepth +
1681                                     logical_drive->phys_disk[i]->queue_depth);
1682                         break;
1683                 }
1684
1685                 /*
1686                  * This can happen if a physical drive is removed and
1687                  * the logical drive is degraded.  In that case, the RAID
1688                  * map data will refer to a physical disk which isn't actually
1689                  * present.  And in that case offload_enabled should already
1690                  * be 0, but we'll turn it off here just in case
1691                  */
1692                 if (!logical_drive->phys_disk[i]) {
1693                         logical_drive->offload_enabled = 0;
1694                         logical_drive->offload_to_be_enabled = 0;
1695                         logical_drive->queue_depth = 8;
1696                 }
1697         }
1698         if (nraid_map_entries)
1699                 /*
1700                  * This is correct for reads, too high for full stripe writes,
1701                  * way too high for partial stripe writes
1702                  */
1703                 logical_drive->queue_depth = qdepth;
1704         else
1705                 logical_drive->queue_depth = h->nr_cmds;
1706 }
1707
1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1709                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1710 {
1711         int i;
1712
1713         for (i = 0; i < ndevices; i++) {
1714                 if (dev[i] == NULL)
1715                         continue;
1716                 if (dev[i]->devtype != TYPE_DISK &&
1717                     dev[i]->devtype != TYPE_ZBC)
1718                         continue;
1719                 if (!is_logical_device(dev[i]))
1720                         continue;
1721
1722                 /*
1723                  * If offload is currently enabled, the RAID map and
1724                  * phys_disk[] assignment *better* not be changing
1725                  * and since it isn't changing, we do not need to
1726                  * update it.
1727                  */
1728                 if (dev[i]->offload_enabled)
1729                         continue;
1730
1731                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1732         }
1733 }
1734
1735 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1736 {
1737         int rc = 0;
1738
1739         if (!h->scsi_host)
1740                 return 1;
1741
1742         if (is_logical_device(device)) /* RAID */
1743                 rc = scsi_add_device(h->scsi_host, device->bus,
1744                                         device->target, device->lun);
1745         else /* HBA */
1746                 rc = hpsa_add_sas_device(h->sas_host, device);
1747
1748         return rc;
1749 }
1750
1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1752                                                 struct hpsa_scsi_dev_t *dev)
1753 {
1754         int i;
1755         int count = 0;
1756
1757         for (i = 0; i < h->nr_cmds; i++) {
1758                 struct CommandList *c = h->cmd_pool + i;
1759                 int refcount = atomic_inc_return(&c->refcount);
1760
1761                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1762                                 dev->scsi3addr)) {
1763                         unsigned long flags;
1764
1765                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1766                         if (!hpsa_is_cmd_idle(c))
1767                                 ++count;
1768                         spin_unlock_irqrestore(&h->lock, flags);
1769                 }
1770
1771                 cmd_free(h, c);
1772         }
1773
1774         return count;
1775 }
1776
1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1778                                                 struct hpsa_scsi_dev_t *device)
1779 {
1780         int cmds = 0;
1781         int waits = 0;
1782
1783         while (1) {
1784                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1785                 if (cmds == 0)
1786                         break;
1787                 if (++waits > 20)
1788                         break;
1789                 dev_warn(&h->pdev->dev,
1790                         "%s: removing device with %d outstanding commands!\n",
1791                         __func__, cmds);
1792                 msleep(1000);
1793         }
1794 }
1795
1796 static void hpsa_remove_device(struct ctlr_info *h,
1797                         struct hpsa_scsi_dev_t *device)
1798 {
1799         struct scsi_device *sdev = NULL;
1800
1801         if (!h->scsi_host)
1802                 return;
1803
1804         if (is_logical_device(device)) { /* RAID */
1805                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1806                                                 device->target, device->lun);
1807                 if (sdev) {
1808                         scsi_remove_device(sdev);
1809                         scsi_device_put(sdev);
1810                 } else {
1811                         /*
1812                          * We don't expect to get here.  Future commands
1813                          * to this device will get a selection timeout as
1814                          * if the device were gone.
1815                          */
1816                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1817                                         "didn't find device for removal.");
1818                 }
1819         } else { /* HBA */
1820
1821                 device->removed = 1;
1822                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1823
1824                 hpsa_remove_sas_device(device);
1825         }
1826 }
1827
1828 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1829         struct hpsa_scsi_dev_t *sd[], int nsds)
1830 {
1831         /* sd contains scsi3 addresses and devtypes, and inquiry
1832          * data.  This function takes what's in sd to be the current
1833          * reality and updates h->dev[] to reflect that reality.
1834          */
1835         int i, entry, device_change, changes = 0;
1836         struct hpsa_scsi_dev_t *csd;
1837         unsigned long flags;
1838         struct hpsa_scsi_dev_t **added, **removed;
1839         int nadded, nremoved;
1840
1841         /*
1842          * A reset can cause a device status to change
1843          * re-schedule the scan to see what happened.
1844          */
1845         if (h->reset_in_progress) {
1846                 h->drv_req_rescan = 1;
1847                 return;
1848         }
1849
1850         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1851         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1852
1853         if (!added || !removed) {
1854                 dev_warn(&h->pdev->dev, "out of memory in "
1855                         "adjust_hpsa_scsi_table\n");
1856                 goto free_and_out;
1857         }
1858
1859         spin_lock_irqsave(&h->devlock, flags);
1860
1861         /* find any devices in h->dev[] that are not in
1862          * sd[] and remove them from h->dev[], and for any
1863          * devices which have changed, remove the old device
1864          * info and add the new device info.
1865          * If minor device attributes change, just update
1866          * the existing device structure.
1867          */
1868         i = 0;
1869         nremoved = 0;
1870         nadded = 0;
1871         while (i < h->ndevices) {
1872                 csd = h->dev[i];
1873                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1874                 if (device_change == DEVICE_NOT_FOUND) {
1875                         changes++;
1876                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1877                         continue; /* remove ^^^, hence i not incremented */
1878                 } else if (device_change == DEVICE_CHANGED) {
1879                         changes++;
1880                         hpsa_scsi_replace_entry(h, i, sd[entry],
1881                                 added, &nadded, removed, &nremoved);
1882                         /* Set it to NULL to prevent it from being freed
1883                          * at the bottom of hpsa_update_scsi_devices()
1884                          */
1885                         sd[entry] = NULL;
1886                 } else if (device_change == DEVICE_UPDATED) {
1887                         hpsa_scsi_update_entry(h, i, sd[entry]);
1888                 }
1889                 i++;
1890         }
1891
1892         /* Now, make sure every device listed in sd[] is also
1893          * listed in h->dev[], adding them if they aren't found
1894          */
1895
1896         for (i = 0; i < nsds; i++) {
1897                 if (!sd[i]) /* if already added above. */
1898                         continue;
1899
1900                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1901                  * as the SCSI mid-layer does not handle such devices well.
1902                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1903                  * at 160Hz, and prevents the system from coming up.
1904                  */
1905                 if (sd[i]->volume_offline) {
1906                         hpsa_show_volume_status(h, sd[i]);
1907                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1908                         continue;
1909                 }
1910
1911                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1912                                         h->ndevices, &entry);
1913                 if (device_change == DEVICE_NOT_FOUND) {
1914                         changes++;
1915                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1916                                 break;
1917                         sd[i] = NULL; /* prevent from being freed later. */
1918                 } else if (device_change == DEVICE_CHANGED) {
1919                         /* should never happen... */
1920                         changes++;
1921                         dev_warn(&h->pdev->dev,
1922                                 "device unexpectedly changed.\n");
1923                         /* but if it does happen, we just ignore that device */
1924                 }
1925         }
1926         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1927
1928         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1929          * any logical drives that need it enabled.
1930          */
1931         for (i = 0; i < h->ndevices; i++) {
1932                 if (h->dev[i] == NULL)
1933                         continue;
1934                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1935         }
1936
1937         spin_unlock_irqrestore(&h->devlock, flags);
1938
1939         /* Monitor devices which are in one of several NOT READY states to be
1940          * brought online later. This must be done without holding h->devlock,
1941          * so don't touch h->dev[]
1942          */
1943         for (i = 0; i < nsds; i++) {
1944                 if (!sd[i]) /* if already added above. */
1945                         continue;
1946                 if (sd[i]->volume_offline)
1947                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1948         }
1949
1950         /* Don't notify scsi mid layer of any changes the first time through
1951          * (or if there are no changes) scsi_scan_host will do it later the
1952          * first time through.
1953          */
1954         if (!changes)
1955                 goto free_and_out;
1956
1957         /* Notify scsi mid layer of any removed devices */
1958         for (i = 0; i < nremoved; i++) {
1959                 if (removed[i] == NULL)
1960                         continue;
1961                 if (removed[i]->expose_device)
1962                         hpsa_remove_device(h, removed[i]);
1963                 kfree(removed[i]);
1964                 removed[i] = NULL;
1965         }
1966
1967         /* Notify scsi mid layer of any added devices */
1968         for (i = 0; i < nadded; i++) {
1969                 int rc = 0;
1970
1971                 if (added[i] == NULL)
1972                         continue;
1973                 if (!(added[i]->expose_device))
1974                         continue;
1975                 rc = hpsa_add_device(h, added[i]);
1976                 if (!rc)
1977                         continue;
1978                 dev_warn(&h->pdev->dev,
1979                         "addition failed %d, device not added.", rc);
1980                 /* now we have to remove it from h->dev,
1981                  * since it didn't get added to scsi mid layer
1982                  */
1983                 fixup_botched_add(h, added[i]);
1984                 h->drv_req_rescan = 1;
1985         }
1986
1987 free_and_out:
1988         kfree(added);
1989         kfree(removed);
1990 }
1991
1992 /*
1993  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1994  * Assume's h->devlock is held.
1995  */
1996 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1997         int bus, int target, int lun)
1998 {
1999         int i;
2000         struct hpsa_scsi_dev_t *sd;
2001
2002         for (i = 0; i < h->ndevices; i++) {
2003                 sd = h->dev[i];
2004                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2005                         return sd;
2006         }
2007         return NULL;
2008 }
2009
2010 static int hpsa_slave_alloc(struct scsi_device *sdev)
2011 {
2012         struct hpsa_scsi_dev_t *sd = NULL;
2013         unsigned long flags;
2014         struct ctlr_info *h;
2015
2016         h = sdev_to_hba(sdev);
2017         spin_lock_irqsave(&h->devlock, flags);
2018         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2019                 struct scsi_target *starget;
2020                 struct sas_rphy *rphy;
2021
2022                 starget = scsi_target(sdev);
2023                 rphy = target_to_rphy(starget);
2024                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2025                 if (sd) {
2026                         sd->target = sdev_id(sdev);
2027                         sd->lun = sdev->lun;
2028                 }
2029         }
2030         if (!sd)
2031                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2032                                         sdev_id(sdev), sdev->lun);
2033
2034         if (sd && sd->expose_device) {
2035                 atomic_set(&sd->ioaccel_cmds_out, 0);
2036                 sdev->hostdata = sd;
2037         } else
2038                 sdev->hostdata = NULL;
2039         spin_unlock_irqrestore(&h->devlock, flags);
2040         return 0;
2041 }
2042
2043 /* configure scsi device based on internal per-device structure */
2044 static int hpsa_slave_configure(struct scsi_device *sdev)
2045 {
2046         struct hpsa_scsi_dev_t *sd;
2047         int queue_depth;
2048
2049         sd = sdev->hostdata;
2050         sdev->no_uld_attach = !sd || !sd->expose_device;
2051
2052         if (sd)
2053                 queue_depth = sd->queue_depth != 0 ?
2054                         sd->queue_depth : sdev->host->can_queue;
2055         else
2056                 queue_depth = sdev->host->can_queue;
2057
2058         scsi_change_queue_depth(sdev, queue_depth);
2059
2060         return 0;
2061 }
2062
2063 static void hpsa_slave_destroy(struct scsi_device *sdev)
2064 {
2065         /* nothing to do. */
2066 }
2067
2068 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2069 {
2070         int i;
2071
2072         if (!h->ioaccel2_cmd_sg_list)
2073                 return;
2074         for (i = 0; i < h->nr_cmds; i++) {
2075                 kfree(h->ioaccel2_cmd_sg_list[i]);
2076                 h->ioaccel2_cmd_sg_list[i] = NULL;
2077         }
2078         kfree(h->ioaccel2_cmd_sg_list);
2079         h->ioaccel2_cmd_sg_list = NULL;
2080 }
2081
2082 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2083 {
2084         int i;
2085
2086         if (h->chainsize <= 0)
2087                 return 0;
2088
2089         h->ioaccel2_cmd_sg_list =
2090                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2091                                         GFP_KERNEL);
2092         if (!h->ioaccel2_cmd_sg_list)
2093                 return -ENOMEM;
2094         for (i = 0; i < h->nr_cmds; i++) {
2095                 h->ioaccel2_cmd_sg_list[i] =
2096                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2097                                         h->maxsgentries, GFP_KERNEL);
2098                 if (!h->ioaccel2_cmd_sg_list[i])
2099                         goto clean;
2100         }
2101         return 0;
2102
2103 clean:
2104         hpsa_free_ioaccel2_sg_chain_blocks(h);
2105         return -ENOMEM;
2106 }
2107
2108 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2109 {
2110         int i;
2111
2112         if (!h->cmd_sg_list)
2113                 return;
2114         for (i = 0; i < h->nr_cmds; i++) {
2115                 kfree(h->cmd_sg_list[i]);
2116                 h->cmd_sg_list[i] = NULL;
2117         }
2118         kfree(h->cmd_sg_list);
2119         h->cmd_sg_list = NULL;
2120 }
2121
2122 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2123 {
2124         int i;
2125
2126         if (h->chainsize <= 0)
2127                 return 0;
2128
2129         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2130                                 GFP_KERNEL);
2131         if (!h->cmd_sg_list) {
2132                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2133                 return -ENOMEM;
2134         }
2135         for (i = 0; i < h->nr_cmds; i++) {
2136                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2137                                                 h->chainsize, GFP_KERNEL);
2138                 if (!h->cmd_sg_list[i]) {
2139                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2140                         goto clean;
2141                 }
2142         }
2143         return 0;
2144
2145 clean:
2146         hpsa_free_sg_chain_blocks(h);
2147         return -ENOMEM;
2148 }
2149
2150 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2151         struct io_accel2_cmd *cp, struct CommandList *c)
2152 {
2153         struct ioaccel2_sg_element *chain_block;
2154         u64 temp64;
2155         u32 chain_size;
2156
2157         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2158         chain_size = le32_to_cpu(cp->sg[0].length);
2159         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2160                                 PCI_DMA_TODEVICE);
2161         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2162                 /* prevent subsequent unmapping */
2163                 cp->sg->address = 0;
2164                 return -1;
2165         }
2166         cp->sg->address = cpu_to_le64(temp64);
2167         return 0;
2168 }
2169
2170 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2171         struct io_accel2_cmd *cp)
2172 {
2173         struct ioaccel2_sg_element *chain_sg;
2174         u64 temp64;
2175         u32 chain_size;
2176
2177         chain_sg = cp->sg;
2178         temp64 = le64_to_cpu(chain_sg->address);
2179         chain_size = le32_to_cpu(cp->sg[0].length);
2180         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2181 }
2182
2183 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2184         struct CommandList *c)
2185 {
2186         struct SGDescriptor *chain_sg, *chain_block;
2187         u64 temp64;
2188         u32 chain_len;
2189
2190         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2191         chain_block = h->cmd_sg_list[c->cmdindex];
2192         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2193         chain_len = sizeof(*chain_sg) *
2194                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2195         chain_sg->Len = cpu_to_le32(chain_len);
2196         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2197                                 PCI_DMA_TODEVICE);
2198         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2199                 /* prevent subsequent unmapping */
2200                 chain_sg->Addr = cpu_to_le64(0);
2201                 return -1;
2202         }
2203         chain_sg->Addr = cpu_to_le64(temp64);
2204         return 0;
2205 }
2206
2207 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2208         struct CommandList *c)
2209 {
2210         struct SGDescriptor *chain_sg;
2211
2212         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2213                 return;
2214
2215         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2216         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2217                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2218 }
2219
2220
2221 /* Decode the various types of errors on ioaccel2 path.
2222  * Return 1 for any error that should generate a RAID path retry.
2223  * Return 0 for errors that don't require a RAID path retry.
2224  */
2225 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2226                                         struct CommandList *c,
2227                                         struct scsi_cmnd *cmd,
2228                                         struct io_accel2_cmd *c2,
2229                                         struct hpsa_scsi_dev_t *dev)
2230 {
2231         int data_len;
2232         int retry = 0;
2233         u32 ioaccel2_resid = 0;
2234
2235         switch (c2->error_data.serv_response) {
2236         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2237                 switch (c2->error_data.status) {
2238                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2239                         if (cmd)
2240                                 cmd->result = 0;
2241                         break;
2242                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2243                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2244                         if (c2->error_data.data_present !=
2245                                         IOACCEL2_SENSE_DATA_PRESENT) {
2246                                 memset(cmd->sense_buffer, 0,
2247                                         SCSI_SENSE_BUFFERSIZE);
2248                                 break;
2249                         }
2250                         /* copy the sense data */
2251                         data_len = c2->error_data.sense_data_len;
2252                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2253                                 data_len = SCSI_SENSE_BUFFERSIZE;
2254                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2255                                 data_len =
2256                                         sizeof(c2->error_data.sense_data_buff);
2257                         memcpy(cmd->sense_buffer,
2258                                 c2->error_data.sense_data_buff, data_len);
2259                         retry = 1;
2260                         break;
2261                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2262                         retry = 1;
2263                         break;
2264                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2265                         retry = 1;
2266                         break;
2267                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2268                         retry = 1;
2269                         break;
2270                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2271                         retry = 1;
2272                         break;
2273                 default:
2274                         retry = 1;
2275                         break;
2276                 }
2277                 break;
2278         case IOACCEL2_SERV_RESPONSE_FAILURE:
2279                 switch (c2->error_data.status) {
2280                 case IOACCEL2_STATUS_SR_IO_ERROR:
2281                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2282                 case IOACCEL2_STATUS_SR_OVERRUN:
2283                         retry = 1;
2284                         break;
2285                 case IOACCEL2_STATUS_SR_UNDERRUN:
2286                         cmd->result = (DID_OK << 16);           /* host byte */
2287                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2288                         ioaccel2_resid = get_unaligned_le32(
2289                                                 &c2->error_data.resid_cnt[0]);
2290                         scsi_set_resid(cmd, ioaccel2_resid);
2291                         break;
2292                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2293                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2294                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2295                         /*
2296                          * Did an HBA disk disappear? We will eventually
2297                          * get a state change event from the controller but
2298                          * in the meantime, we need to tell the OS that the
2299                          * HBA disk is no longer there and stop I/O
2300                          * from going down. This allows the potential re-insert
2301                          * of the disk to get the same device node.
2302                          */
2303                         if (dev->physical_device && dev->expose_device) {
2304                                 cmd->result = DID_NO_CONNECT << 16;
2305                                 dev->removed = 1;
2306                                 h->drv_req_rescan = 1;
2307                                 dev_warn(&h->pdev->dev,
2308                                         "%s: device is gone!\n", __func__);
2309                         } else
2310                                 /*
2311                                  * Retry by sending down the RAID path.
2312                                  * We will get an event from ctlr to
2313                                  * trigger rescan regardless.
2314                                  */
2315                                 retry = 1;
2316                         break;
2317                 default:
2318                         retry = 1;
2319                 }
2320                 break;
2321         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2322                 break;
2323         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2324                 break;
2325         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2326                 retry = 1;
2327                 break;
2328         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2329                 break;
2330         default:
2331                 retry = 1;
2332                 break;
2333         }
2334
2335         return retry;   /* retry on raid path? */
2336 }
2337
2338 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2339                 struct CommandList *c)
2340 {
2341         bool do_wake = false;
2342
2343         /*
2344          * Prevent the following race in the abort handler:
2345          *
2346          * 1. LLD is requested to abort a SCSI command
2347          * 2. The SCSI command completes
2348          * 3. The struct CommandList associated with step 2 is made available
2349          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2350          * 5. Abort handler follows scsi_cmnd->host_scribble and
2351          *    finds struct CommandList and tries to aborts it
2352          * Now we have aborted the wrong command.
2353          *
2354          * Reset c->scsi_cmd here so that the abort or reset handler will know
2355          * this command has completed.  Then, check to see if the handler is
2356          * waiting for this command, and, if so, wake it.
2357          */
2358         c->scsi_cmd = SCSI_CMD_IDLE;
2359         mb();   /* Declare command idle before checking for pending events. */
2360         if (c->abort_pending) {
2361                 do_wake = true;
2362                 c->abort_pending = false;
2363         }
2364         if (c->reset_pending) {
2365                 unsigned long flags;
2366                 struct hpsa_scsi_dev_t *dev;
2367
2368                 /*
2369                  * There appears to be a reset pending; lock the lock and
2370                  * reconfirm.  If so, then decrement the count of outstanding
2371                  * commands and wake the reset command if this is the last one.
2372                  */
2373                 spin_lock_irqsave(&h->lock, flags);
2374                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2375                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2376                         do_wake = true;
2377                 c->reset_pending = NULL;
2378                 spin_unlock_irqrestore(&h->lock, flags);
2379         }
2380
2381         if (do_wake)
2382                 wake_up_all(&h->event_sync_wait_queue);
2383 }
2384
2385 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2386                                       struct CommandList *c)
2387 {
2388         hpsa_cmd_resolve_events(h, c);
2389         cmd_tagged_free(h, c);
2390 }
2391
2392 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2393                 struct CommandList *c, struct scsi_cmnd *cmd)
2394 {
2395         hpsa_cmd_resolve_and_free(h, c);
2396         if (cmd && cmd->scsi_done)
2397                 cmd->scsi_done(cmd);
2398 }
2399
2400 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2401 {
2402         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2403         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2404 }
2405
2406 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2407 {
2408         cmd->result = DID_ABORT << 16;
2409 }
2410
2411 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2412                                     struct scsi_cmnd *cmd)
2413 {
2414         hpsa_set_scsi_cmd_aborted(cmd);
2415         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2416                          c->Request.CDB, c->err_info->ScsiStatus);
2417         hpsa_cmd_resolve_and_free(h, c);
2418 }
2419
2420 static void process_ioaccel2_completion(struct ctlr_info *h,
2421                 struct CommandList *c, struct scsi_cmnd *cmd,
2422                 struct hpsa_scsi_dev_t *dev)
2423 {
2424         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2425
2426         /* check for good status */
2427         if (likely(c2->error_data.serv_response == 0 &&
2428                         c2->error_data.status == 0)) {
2429                 cmd->result = 0;
2430                 return hpsa_cmd_free_and_done(h, c, cmd);
2431         }
2432
2433         /*
2434          * Any RAID offload error results in retry which will use
2435          * the normal I/O path so the controller can handle whatever's
2436          * wrong.
2437          */
2438         if (is_logical_device(dev) &&
2439                 c2->error_data.serv_response ==
2440                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2441                 if (c2->error_data.status ==
2442                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2443                         dev->offload_enabled = 0;
2444                         dev->offload_to_be_enabled = 0;
2445                 }
2446
2447                 return hpsa_retry_cmd(h, c);
2448         }
2449
2450         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2451                 return hpsa_retry_cmd(h, c);
2452
2453         return hpsa_cmd_free_and_done(h, c, cmd);
2454 }
2455
2456 /* Returns 0 on success, < 0 otherwise. */
2457 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2458                                         struct CommandList *cp)
2459 {
2460         u8 tmf_status = cp->err_info->ScsiStatus;
2461
2462         switch (tmf_status) {
2463         case CISS_TMF_COMPLETE:
2464                 /*
2465                  * CISS_TMF_COMPLETE never happens, instead,
2466                  * ei->CommandStatus == 0 for this case.
2467                  */
2468         case CISS_TMF_SUCCESS:
2469                 return 0;
2470         case CISS_TMF_INVALID_FRAME:
2471         case CISS_TMF_NOT_SUPPORTED:
2472         case CISS_TMF_FAILED:
2473         case CISS_TMF_WRONG_LUN:
2474         case CISS_TMF_OVERLAPPED_TAG:
2475                 break;
2476         default:
2477                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2478                                 tmf_status);
2479                 break;
2480         }
2481         return -tmf_status;
2482 }
2483
2484 static void complete_scsi_command(struct CommandList *cp)
2485 {
2486         struct scsi_cmnd *cmd;
2487         struct ctlr_info *h;
2488         struct ErrorInfo *ei;
2489         struct hpsa_scsi_dev_t *dev;
2490         struct io_accel2_cmd *c2;
2491
2492         u8 sense_key;
2493         u8 asc;      /* additional sense code */
2494         u8 ascq;     /* additional sense code qualifier */
2495         unsigned long sense_data_size;
2496
2497         ei = cp->err_info;
2498         cmd = cp->scsi_cmd;
2499         h = cp->h;
2500
2501         if (!cmd->device) {
2502                 cmd->result = DID_NO_CONNECT << 16;
2503                 return hpsa_cmd_free_and_done(h, cp, cmd);
2504         }
2505
2506         dev = cmd->device->hostdata;
2507         if (!dev) {
2508                 cmd->result = DID_NO_CONNECT << 16;
2509                 return hpsa_cmd_free_and_done(h, cp, cmd);
2510         }
2511         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2512
2513         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2514         if ((cp->cmd_type == CMD_SCSI) &&
2515                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2516                 hpsa_unmap_sg_chain_block(h, cp);
2517
2518         if ((cp->cmd_type == CMD_IOACCEL2) &&
2519                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2520                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2521
2522         cmd->result = (DID_OK << 16);           /* host byte */
2523         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2524
2525         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2526                 if (dev->physical_device && dev->expose_device &&
2527                         dev->removed) {
2528                         cmd->result = DID_NO_CONNECT << 16;
2529                         return hpsa_cmd_free_and_done(h, cp, cmd);
2530                 }
2531                 if (likely(cp->phys_disk != NULL))
2532                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2533         }
2534
2535         /*
2536          * We check for lockup status here as it may be set for
2537          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2538          * fail_all_oustanding_cmds()
2539          */
2540         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2541                 /* DID_NO_CONNECT will prevent a retry */
2542                 cmd->result = DID_NO_CONNECT << 16;
2543                 return hpsa_cmd_free_and_done(h, cp, cmd);
2544         }
2545
2546         if ((unlikely(hpsa_is_pending_event(cp)))) {
2547                 if (cp->reset_pending)
2548                         return hpsa_cmd_resolve_and_free(h, cp);
2549                 if (cp->abort_pending)
2550                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2551         }
2552
2553         if (cp->cmd_type == CMD_IOACCEL2)
2554                 return process_ioaccel2_completion(h, cp, cmd, dev);
2555
2556         scsi_set_resid(cmd, ei->ResidualCnt);
2557         if (ei->CommandStatus == 0)
2558                 return hpsa_cmd_free_and_done(h, cp, cmd);
2559
2560         /* For I/O accelerator commands, copy over some fields to the normal
2561          * CISS header used below for error handling.
2562          */
2563         if (cp->cmd_type == CMD_IOACCEL1) {
2564                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2565                 cp->Header.SGList = scsi_sg_count(cmd);
2566                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2567                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2568                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2569                 cp->Header.tag = c->tag;
2570                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2571                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2572
2573                 /* Any RAID offload error results in retry which will use
2574                  * the normal I/O path so the controller can handle whatever's
2575                  * wrong.
2576                  */
2577                 if (is_logical_device(dev)) {
2578                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2579                                 dev->offload_enabled = 0;
2580                         return hpsa_retry_cmd(h, cp);
2581                 }
2582         }
2583
2584         /* an error has occurred */
2585         switch (ei->CommandStatus) {
2586
2587         case CMD_TARGET_STATUS:
2588                 cmd->result |= ei->ScsiStatus;
2589                 /* copy the sense data */
2590                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2591                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2592                 else
2593                         sense_data_size = sizeof(ei->SenseInfo);
2594                 if (ei->SenseLen < sense_data_size)
2595                         sense_data_size = ei->SenseLen;
2596                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2597                 if (ei->ScsiStatus)
2598                         decode_sense_data(ei->SenseInfo, sense_data_size,
2599                                 &sense_key, &asc, &ascq);
2600                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2601                         if (sense_key == ABORTED_COMMAND) {
2602                                 cmd->result |= DID_SOFT_ERROR << 16;
2603                                 break;
2604                         }
2605                         break;
2606                 }
2607                 /* Problem was not a check condition
2608                  * Pass it up to the upper layers...
2609                  */
2610                 if (ei->ScsiStatus) {
2611                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2612                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2613                                 "Returning result: 0x%x\n",
2614                                 cp, ei->ScsiStatus,
2615                                 sense_key, asc, ascq,
2616                                 cmd->result);
2617                 } else {  /* scsi status is zero??? How??? */
2618                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2619                                 "Returning no connection.\n", cp),
2620
2621                         /* Ordinarily, this case should never happen,
2622                          * but there is a bug in some released firmware
2623                          * revisions that allows it to happen if, for
2624                          * example, a 4100 backplane loses power and
2625                          * the tape drive is in it.  We assume that
2626                          * it's a fatal error of some kind because we
2627                          * can't show that it wasn't. We will make it
2628                          * look like selection timeout since that is
2629                          * the most common reason for this to occur,
2630                          * and it's severe enough.
2631                          */
2632
2633                         cmd->result = DID_NO_CONNECT << 16;
2634                 }
2635                 break;
2636
2637         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2638                 break;
2639         case CMD_DATA_OVERRUN:
2640                 dev_warn(&h->pdev->dev,
2641                         "CDB %16phN data overrun\n", cp->Request.CDB);
2642                 break;
2643         case CMD_INVALID: {
2644                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2645                 print_cmd(cp); */
2646                 /* We get CMD_INVALID if you address a non-existent device
2647                  * instead of a selection timeout (no response).  You will
2648                  * see this if you yank out a drive, then try to access it.
2649                  * This is kind of a shame because it means that any other
2650                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2651                  * missing target. */
2652                 cmd->result = DID_NO_CONNECT << 16;
2653         }
2654                 break;
2655         case CMD_PROTOCOL_ERR:
2656                 cmd->result = DID_ERROR << 16;
2657                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2658                                 cp->Request.CDB);
2659                 break;
2660         case CMD_HARDWARE_ERR:
2661                 cmd->result = DID_ERROR << 16;
2662                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2663                         cp->Request.CDB);
2664                 break;
2665         case CMD_CONNECTION_LOST:
2666                 cmd->result = DID_ERROR << 16;
2667                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2668                         cp->Request.CDB);
2669                 break;
2670         case CMD_ABORTED:
2671                 /* Return now to avoid calling scsi_done(). */
2672                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2673         case CMD_ABORT_FAILED:
2674                 cmd->result = DID_ERROR << 16;
2675                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2676                         cp->Request.CDB);
2677                 break;
2678         case CMD_UNSOLICITED_ABORT:
2679                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2680                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2681                         cp->Request.CDB);
2682                 break;
2683         case CMD_TIMEOUT:
2684                 cmd->result = DID_TIME_OUT << 16;
2685                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2686                         cp->Request.CDB);
2687                 break;
2688         case CMD_UNABORTABLE:
2689                 cmd->result = DID_ERROR << 16;
2690                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2691                 break;
2692         case CMD_TMF_STATUS:
2693                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2694                         cmd->result = DID_ERROR << 16;
2695                 break;
2696         case CMD_IOACCEL_DISABLED:
2697                 /* This only handles the direct pass-through case since RAID
2698                  * offload is handled above.  Just attempt a retry.
2699                  */
2700                 cmd->result = DID_SOFT_ERROR << 16;
2701                 dev_warn(&h->pdev->dev,
2702                                 "cp %p had HP SSD Smart Path error\n", cp);
2703                 break;
2704         default:
2705                 cmd->result = DID_ERROR << 16;
2706                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2707                                 cp, ei->CommandStatus);
2708         }
2709
2710         return hpsa_cmd_free_and_done(h, cp, cmd);
2711 }
2712
2713 static void hpsa_pci_unmap(struct pci_dev *pdev,
2714         struct CommandList *c, int sg_used, int data_direction)
2715 {
2716         int i;
2717
2718         for (i = 0; i < sg_used; i++)
2719                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2720                                 le32_to_cpu(c->SG[i].Len),
2721                                 data_direction);
2722 }
2723
2724 static int hpsa_map_one(struct pci_dev *pdev,
2725                 struct CommandList *cp,
2726                 unsigned char *buf,
2727                 size_t buflen,
2728                 int data_direction)
2729 {
2730         u64 addr64;
2731
2732         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2733                 cp->Header.SGList = 0;
2734                 cp->Header.SGTotal = cpu_to_le16(0);
2735                 return 0;
2736         }
2737
2738         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2739         if (dma_mapping_error(&pdev->dev, addr64)) {
2740                 /* Prevent subsequent unmap of something never mapped */
2741                 cp->Header.SGList = 0;
2742                 cp->Header.SGTotal = cpu_to_le16(0);
2743                 return -1;
2744         }
2745         cp->SG[0].Addr = cpu_to_le64(addr64);
2746         cp->SG[0].Len = cpu_to_le32(buflen);
2747         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2748         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2749         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2750         return 0;
2751 }
2752
2753 #define NO_TIMEOUT ((unsigned long) -1)
2754 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2755 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2756         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2757 {
2758         DECLARE_COMPLETION_ONSTACK(wait);
2759
2760         c->waiting = &wait;
2761         __enqueue_cmd_and_start_io(h, c, reply_queue);
2762         if (timeout_msecs == NO_TIMEOUT) {
2763                 /* TODO: get rid of this no-timeout thing */
2764                 wait_for_completion_io(&wait);
2765                 return IO_OK;
2766         }
2767         if (!wait_for_completion_io_timeout(&wait,
2768                                         msecs_to_jiffies(timeout_msecs))) {
2769                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2770                 return -ETIMEDOUT;
2771         }
2772         return IO_OK;
2773 }
2774
2775 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2776                                    int reply_queue, unsigned long timeout_msecs)
2777 {
2778         if (unlikely(lockup_detected(h))) {
2779                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2780                 return IO_OK;
2781         }
2782         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2783 }
2784
2785 static u32 lockup_detected(struct ctlr_info *h)
2786 {
2787         int cpu;
2788         u32 rc, *lockup_detected;
2789
2790         cpu = get_cpu();
2791         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2792         rc = *lockup_detected;
2793         put_cpu();
2794         return rc;
2795 }
2796
2797 #define MAX_DRIVER_CMD_RETRIES 25
2798 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2799         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2800 {
2801         int backoff_time = 10, retry_count = 0;
2802         int rc;
2803
2804         do {
2805                 memset(c->err_info, 0, sizeof(*c->err_info));
2806                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2807                                                   timeout_msecs);
2808                 if (rc)
2809                         break;
2810                 retry_count++;
2811                 if (retry_count > 3) {
2812                         msleep(backoff_time);
2813                         if (backoff_time < 1000)
2814                                 backoff_time *= 2;
2815                 }
2816         } while ((check_for_unit_attention(h, c) ||
2817                         check_for_busy(h, c)) &&
2818                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2819         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2820         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2821                 rc = -EIO;
2822         return rc;
2823 }
2824
2825 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2826                                 struct CommandList *c)
2827 {
2828         const u8 *cdb = c->Request.CDB;
2829         const u8 *lun = c->Header.LUN.LunAddrBytes;
2830
2831         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2832         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2833                 txt, lun[0], lun[1], lun[2], lun[3],
2834                 lun[4], lun[5], lun[6], lun[7],
2835                 cdb[0], cdb[1], cdb[2], cdb[3],
2836                 cdb[4], cdb[5], cdb[6], cdb[7],
2837                 cdb[8], cdb[9], cdb[10], cdb[11],
2838                 cdb[12], cdb[13], cdb[14], cdb[15]);
2839 }
2840
2841 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2842                         struct CommandList *cp)
2843 {
2844         const struct ErrorInfo *ei = cp->err_info;
2845         struct device *d = &cp->h->pdev->dev;
2846         u8 sense_key, asc, ascq;
2847         int sense_len;
2848
2849         switch (ei->CommandStatus) {
2850         case CMD_TARGET_STATUS:
2851                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2852                         sense_len = sizeof(ei->SenseInfo);
2853                 else
2854                         sense_len = ei->SenseLen;
2855                 decode_sense_data(ei->SenseInfo, sense_len,
2856                                         &sense_key, &asc, &ascq);
2857                 hpsa_print_cmd(h, "SCSI status", cp);
2858                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2859                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2860                                 sense_key, asc, ascq);
2861                 else
2862                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2863                 if (ei->ScsiStatus == 0)
2864                         dev_warn(d, "SCSI status is abnormally zero.  "
2865                         "(probably indicates selection timeout "
2866                         "reported incorrectly due to a known "
2867                         "firmware bug, circa July, 2001.)\n");
2868                 break;
2869         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2870                 break;
2871         case CMD_DATA_OVERRUN:
2872                 hpsa_print_cmd(h, "overrun condition", cp);
2873                 break;
2874         case CMD_INVALID: {
2875                 /* controller unfortunately reports SCSI passthru's
2876                  * to non-existent targets as invalid commands.
2877                  */
2878                 hpsa_print_cmd(h, "invalid command", cp);
2879                 dev_warn(d, "probably means device no longer present\n");
2880                 }
2881                 break;
2882         case CMD_PROTOCOL_ERR:
2883                 hpsa_print_cmd(h, "protocol error", cp);
2884                 break;
2885         case CMD_HARDWARE_ERR:
2886                 hpsa_print_cmd(h, "hardware error", cp);
2887                 break;
2888         case CMD_CONNECTION_LOST:
2889                 hpsa_print_cmd(h, "connection lost", cp);
2890                 break;
2891         case CMD_ABORTED:
2892                 hpsa_print_cmd(h, "aborted", cp);
2893                 break;
2894         case CMD_ABORT_FAILED:
2895                 hpsa_print_cmd(h, "abort failed", cp);
2896                 break;
2897         case CMD_UNSOLICITED_ABORT:
2898                 hpsa_print_cmd(h, "unsolicited abort", cp);
2899                 break;
2900         case CMD_TIMEOUT:
2901                 hpsa_print_cmd(h, "timed out", cp);
2902                 break;
2903         case CMD_UNABORTABLE:
2904                 hpsa_print_cmd(h, "unabortable", cp);
2905                 break;
2906         case CMD_CTLR_LOCKUP:
2907                 hpsa_print_cmd(h, "controller lockup detected", cp);
2908                 break;
2909         default:
2910                 hpsa_print_cmd(h, "unknown status", cp);
2911                 dev_warn(d, "Unknown command status %x\n",
2912                                 ei->CommandStatus);
2913         }
2914 }
2915
2916 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2917                         u16 page, unsigned char *buf,
2918                         unsigned char bufsize)
2919 {
2920         int rc = IO_OK;
2921         struct CommandList *c;
2922         struct ErrorInfo *ei;
2923
2924         c = cmd_alloc(h);
2925
2926         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2927                         page, scsi3addr, TYPE_CMD)) {
2928                 rc = -1;
2929                 goto out;
2930         }
2931         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2932                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2933         if (rc)
2934                 goto out;
2935         ei = c->err_info;
2936         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2937                 hpsa_scsi_interpret_error(h, c);
2938                 rc = -1;
2939         }
2940 out:
2941         cmd_free(h, c);
2942         return rc;
2943 }
2944
2945 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2946         u8 reset_type, int reply_queue)
2947 {
2948         int rc = IO_OK;
2949         struct CommandList *c;
2950         struct ErrorInfo *ei;
2951
2952         c = cmd_alloc(h);
2953
2954
2955         /* fill_cmd can't fail here, no data buffer to map. */
2956         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2957                         scsi3addr, TYPE_MSG);
2958         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2959         if (rc) {
2960                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2961                 goto out;
2962         }
2963         /* no unmap needed here because no data xfer. */
2964
2965         ei = c->err_info;
2966         if (ei->CommandStatus != 0) {
2967                 hpsa_scsi_interpret_error(h, c);
2968                 rc = -1;
2969         }
2970 out:
2971         cmd_free(h, c);
2972         return rc;
2973 }
2974
2975 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2976                                struct hpsa_scsi_dev_t *dev,
2977                                unsigned char *scsi3addr)
2978 {
2979         int i;
2980         bool match = false;
2981         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2982         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2983
2984         if (hpsa_is_cmd_idle(c))
2985                 return false;
2986
2987         switch (c->cmd_type) {
2988         case CMD_SCSI:
2989         case CMD_IOCTL_PEND:
2990                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2991                                 sizeof(c->Header.LUN.LunAddrBytes));
2992                 break;
2993
2994         case CMD_IOACCEL1:
2995         case CMD_IOACCEL2:
2996                 if (c->phys_disk == dev) {
2997                         /* HBA mode match */
2998                         match = true;
2999                 } else {
3000                         /* Possible RAID mode -- check each phys dev. */
3001                         /* FIXME:  Do we need to take out a lock here?  If
3002                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
3003                          * instead. */
3004                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3005                                 /* FIXME: an alternate test might be
3006                                  *
3007                                  * match = dev->phys_disk[i]->ioaccel_handle
3008                                  *              == c2->scsi_nexus;      */
3009                                 match = dev->phys_disk[i] == c->phys_disk;
3010                         }
3011                 }
3012                 break;
3013
3014         case IOACCEL2_TMF:
3015                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3016                         match = dev->phys_disk[i]->ioaccel_handle ==
3017                                         le32_to_cpu(ac->it_nexus);
3018                 }
3019                 break;
3020
3021         case 0:         /* The command is in the middle of being initialized. */
3022                 match = false;
3023                 break;
3024
3025         default:
3026                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3027                         c->cmd_type);
3028                 BUG();
3029         }
3030
3031         return match;
3032 }
3033
3034 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3035         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3036 {
3037         int i;
3038         int rc = 0;
3039
3040         /* We can really only handle one reset at a time */
3041         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3042                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3043                 return -EINTR;
3044         }
3045
3046         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3047
3048         for (i = 0; i < h->nr_cmds; i++) {
3049                 struct CommandList *c = h->cmd_pool + i;
3050                 int refcount = atomic_inc_return(&c->refcount);
3051
3052                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3053                         unsigned long flags;
3054
3055                         /*
3056                          * Mark the target command as having a reset pending,
3057                          * then lock a lock so that the command cannot complete
3058                          * while we're considering it.  If the command is not
3059                          * idle then count it; otherwise revoke the event.
3060                          */
3061                         c->reset_pending = dev;
3062                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3063                         if (!hpsa_is_cmd_idle(c))
3064                                 atomic_inc(&dev->reset_cmds_out);
3065                         else
3066                                 c->reset_pending = NULL;
3067                         spin_unlock_irqrestore(&h->lock, flags);
3068                 }
3069
3070                 cmd_free(h, c);
3071         }
3072
3073         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3074         if (!rc)
3075                 wait_event(h->event_sync_wait_queue,
3076                         atomic_read(&dev->reset_cmds_out) == 0 ||
3077                         lockup_detected(h));
3078
3079         if (unlikely(lockup_detected(h))) {
3080                 dev_warn(&h->pdev->dev,
3081                          "Controller lockup detected during reset wait\n");
3082                 rc = -ENODEV;
3083         }
3084
3085         if (unlikely(rc))
3086                 atomic_set(&dev->reset_cmds_out, 0);
3087
3088         mutex_unlock(&h->reset_mutex);
3089         return rc;
3090 }
3091
3092 static void hpsa_get_raid_level(struct ctlr_info *h,
3093         unsigned char *scsi3addr, unsigned char *raid_level)
3094 {
3095         int rc;
3096         unsigned char *buf;
3097
3098         *raid_level = RAID_UNKNOWN;
3099         buf = kzalloc(64, GFP_KERNEL);
3100         if (!buf)
3101                 return;
3102
3103         if (!hpsa_vpd_page_supported(h, scsi3addr,
3104                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3105                 goto exit;
3106
3107         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3108                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3109
3110         if (rc == 0)
3111                 *raid_level = buf[8];
3112         if (*raid_level > RAID_UNKNOWN)
3113                 *raid_level = RAID_UNKNOWN;
3114 exit:
3115         kfree(buf);
3116         return;
3117 }
3118
3119 #define HPSA_MAP_DEBUG
3120 #ifdef HPSA_MAP_DEBUG
3121 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3122                                 struct raid_map_data *map_buff)
3123 {
3124         struct raid_map_disk_data *dd = &map_buff->data[0];
3125         int map, row, col;
3126         u16 map_cnt, row_cnt, disks_per_row;
3127
3128         if (rc != 0)
3129                 return;
3130
3131         /* Show details only if debugging has been activated. */
3132         if (h->raid_offload_debug < 2)
3133                 return;
3134
3135         dev_info(&h->pdev->dev, "structure_size = %u\n",
3136                                 le32_to_cpu(map_buff->structure_size));
3137         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3138                         le32_to_cpu(map_buff->volume_blk_size));
3139         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3140                         le64_to_cpu(map_buff->volume_blk_cnt));
3141         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3142                         map_buff->phys_blk_shift);
3143         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3144                         map_buff->parity_rotation_shift);
3145         dev_info(&h->pdev->dev, "strip_size = %u\n",
3146                         le16_to_cpu(map_buff->strip_size));
3147         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3148                         le64_to_cpu(map_buff->disk_starting_blk));
3149         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3150                         le64_to_cpu(map_buff->disk_blk_cnt));
3151         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3152                         le16_to_cpu(map_buff->data_disks_per_row));
3153         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3154                         le16_to_cpu(map_buff->metadata_disks_per_row));
3155         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3156                         le16_to_cpu(map_buff->row_cnt));
3157         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3158                         le16_to_cpu(map_buff->layout_map_count));
3159         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3160                         le16_to_cpu(map_buff->flags));
3161         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3162                         le16_to_cpu(map_buff->flags) &
3163                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3164         dev_info(&h->pdev->dev, "dekindex = %u\n",
3165                         le16_to_cpu(map_buff->dekindex));
3166         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3167         for (map = 0; map < map_cnt; map++) {
3168                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3169                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3170                 for (row = 0; row < row_cnt; row++) {
3171                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3172                         disks_per_row =
3173                                 le16_to_cpu(map_buff->data_disks_per_row);
3174                         for (col = 0; col < disks_per_row; col++, dd++)
3175                                 dev_info(&h->pdev->dev,
3176                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3177                                         col, dd->ioaccel_handle,
3178                                         dd->xor_mult[0], dd->xor_mult[1]);
3179                         disks_per_row =
3180                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3181                         for (col = 0; col < disks_per_row; col++, dd++)
3182                                 dev_info(&h->pdev->dev,
3183                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3184                                         col, dd->ioaccel_handle,
3185                                         dd->xor_mult[0], dd->xor_mult[1]);
3186                 }
3187         }
3188 }
3189 #else
3190 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3191                         __attribute__((unused)) int rc,
3192                         __attribute__((unused)) struct raid_map_data *map_buff)
3193 {
3194 }
3195 #endif
3196
3197 static int hpsa_get_raid_map(struct ctlr_info *h,
3198         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3199 {
3200         int rc = 0;
3201         struct CommandList *c;
3202         struct ErrorInfo *ei;
3203
3204         c = cmd_alloc(h);
3205
3206         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3207                         sizeof(this_device->raid_map), 0,
3208                         scsi3addr, TYPE_CMD)) {
3209                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3210                 cmd_free(h, c);
3211                 return -1;
3212         }
3213         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3214                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3215         if (rc)
3216                 goto out;
3217         ei = c->err_info;
3218         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3219                 hpsa_scsi_interpret_error(h, c);
3220                 rc = -1;
3221                 goto out;
3222         }
3223         cmd_free(h, c);
3224
3225         /* @todo in the future, dynamically allocate RAID map memory */
3226         if (le32_to_cpu(this_device->raid_map.structure_size) >
3227                                 sizeof(this_device->raid_map)) {
3228                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3229                 rc = -1;
3230         }
3231         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3232         return rc;
3233 out:
3234         cmd_free(h, c);
3235         return rc;
3236 }
3237
3238 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3239                 unsigned char scsi3addr[], u16 bmic_device_index,
3240                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3241 {
3242         int rc = IO_OK;
3243         struct CommandList *c;
3244         struct ErrorInfo *ei;
3245
3246         c = cmd_alloc(h);
3247
3248         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3249                 0, RAID_CTLR_LUNID, TYPE_CMD);
3250         if (rc)
3251                 goto out;
3252
3253         c->Request.CDB[2] = bmic_device_index & 0xff;
3254         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3255
3256         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3257                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3258         if (rc)
3259                 goto out;
3260         ei = c->err_info;
3261         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3262                 hpsa_scsi_interpret_error(h, c);
3263                 rc = -1;
3264         }
3265 out:
3266         cmd_free(h, c);
3267         return rc;
3268 }
3269
3270 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3271         struct bmic_identify_controller *buf, size_t bufsize)
3272 {
3273         int rc = IO_OK;
3274         struct CommandList *c;
3275         struct ErrorInfo *ei;
3276
3277         c = cmd_alloc(h);
3278
3279         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3280                 0, RAID_CTLR_LUNID, TYPE_CMD);
3281         if (rc)
3282                 goto out;
3283
3284         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3285                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3286         if (rc)
3287                 goto out;
3288         ei = c->err_info;
3289         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3290                 hpsa_scsi_interpret_error(h, c);
3291                 rc = -1;
3292         }
3293 out:
3294         cmd_free(h, c);
3295         return rc;
3296 }
3297
3298 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3299                 unsigned char scsi3addr[], u16 bmic_device_index,
3300                 struct bmic_identify_physical_device *buf, size_t bufsize)
3301 {
3302         int rc = IO_OK;
3303         struct CommandList *c;
3304         struct ErrorInfo *ei;
3305
3306         c = cmd_alloc(h);
3307         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3308                 0, RAID_CTLR_LUNID, TYPE_CMD);
3309         if (rc)
3310                 goto out;
3311
3312         c->Request.CDB[2] = bmic_device_index & 0xff;
3313         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3314
3315         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3316                                                 DEFAULT_TIMEOUT);
3317         ei = c->err_info;
3318         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3319                 hpsa_scsi_interpret_error(h, c);
3320                 rc = -1;
3321         }
3322 out:
3323         cmd_free(h, c);
3324
3325         return rc;
3326 }
3327
3328 /*
3329  * get enclosure information
3330  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3331  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3332  * Uses id_physical_device to determine the box_index.
3333  */
3334 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3335                         unsigned char *scsi3addr,
3336                         struct ReportExtendedLUNdata *rlep, int rle_index,
3337                         struct hpsa_scsi_dev_t *encl_dev)
3338 {
3339         int rc = -1;
3340         struct CommandList *c = NULL;
3341         struct ErrorInfo *ei = NULL;
3342         struct bmic_sense_storage_box_params *bssbp = NULL;
3343         struct bmic_identify_physical_device *id_phys = NULL;
3344         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3345         u16 bmic_device_index = 0;
3346
3347         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3348
3349         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3350                 rc = IO_OK;
3351                 goto out;
3352         }
3353
3354         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3355         if (!bssbp)
3356                 goto out;
3357
3358         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3359         if (!id_phys)
3360                 goto out;
3361
3362         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3363                                                 id_phys, sizeof(*id_phys));
3364         if (rc) {
3365                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3366                         __func__, encl_dev->external, bmic_device_index);
3367                 goto out;
3368         }
3369
3370         c = cmd_alloc(h);
3371
3372         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3373                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3374
3375         if (rc)
3376                 goto out;
3377
3378         if (id_phys->phys_connector[1] == 'E')
3379                 c->Request.CDB[5] = id_phys->box_index;
3380         else
3381                 c->Request.CDB[5] = 0;
3382
3383         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3384                                                 DEFAULT_TIMEOUT);
3385         if (rc)
3386                 goto out;
3387
3388         ei = c->err_info;
3389         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3390                 rc = -1;
3391                 goto out;
3392         }
3393
3394         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3395         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3396                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3397
3398         rc = IO_OK;
3399 out:
3400         kfree(bssbp);
3401         kfree(id_phys);
3402
3403         if (c)
3404                 cmd_free(h, c);
3405
3406         if (rc != IO_OK)
3407                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3408                         "Error, could not get enclosure information\n");
3409 }
3410
3411 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3412                                                 unsigned char *scsi3addr)
3413 {
3414         struct ReportExtendedLUNdata *physdev;
3415         u32 nphysicals;
3416         u64 sa = 0;
3417         int i;
3418
3419         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3420         if (!physdev)
3421                 return 0;
3422
3423         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3424                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3425                 kfree(physdev);
3426                 return 0;
3427         }
3428         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3429
3430         for (i = 0; i < nphysicals; i++)
3431                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3432                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3433                         break;
3434                 }
3435
3436         kfree(physdev);
3437
3438         return sa;
3439 }
3440
3441 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3442                                         struct hpsa_scsi_dev_t *dev)
3443 {
3444         int rc;
3445         u64 sa = 0;
3446
3447         if (is_hba_lunid(scsi3addr)) {
3448                 struct bmic_sense_subsystem_info *ssi;
3449
3450                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3451                 if (ssi == NULL) {
3452                         dev_warn(&h->pdev->dev,
3453                                 "%s: out of memory\n", __func__);
3454                         return;
3455                 }
3456
3457                 rc = hpsa_bmic_sense_subsystem_information(h,
3458                                         scsi3addr, 0, ssi, sizeof(*ssi));
3459                 if (rc == 0) {
3460                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3461                         h->sas_address = sa;
3462                 }
3463
3464                 kfree(ssi);
3465         } else
3466                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3467
3468         dev->sas_address = sa;
3469 }
3470
3471 /* Get a device id from inquiry page 0x83 */
3472 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3473         unsigned char scsi3addr[], u8 page)
3474 {
3475         int rc;
3476         int i;
3477         int pages;
3478         unsigned char *buf, bufsize;
3479
3480         buf = kzalloc(256, GFP_KERNEL);
3481         if (!buf)
3482                 return false;
3483
3484         /* Get the size of the page list first */
3485         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3486                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3487                                 buf, HPSA_VPD_HEADER_SZ);
3488         if (rc != 0)
3489                 goto exit_unsupported;
3490         pages = buf[3];
3491         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3492                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3493         else
3494                 bufsize = 255;
3495
3496         /* Get the whole VPD page list */
3497         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3498                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3499                                 buf, bufsize);
3500         if (rc != 0)
3501                 goto exit_unsupported;
3502
3503         pages = buf[3];
3504         for (i = 1; i <= pages; i++)
3505                 if (buf[3 + i] == page)
3506                         goto exit_supported;
3507 exit_unsupported:
3508         kfree(buf);
3509         return false;
3510 exit_supported:
3511         kfree(buf);
3512         return true;
3513 }
3514
3515 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3516         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3517 {
3518         int rc;
3519         unsigned char *buf;
3520         u8 ioaccel_status;
3521
3522         this_device->offload_config = 0;
3523         this_device->offload_enabled = 0;
3524         this_device->offload_to_be_enabled = 0;
3525
3526         buf = kzalloc(64, GFP_KERNEL);
3527         if (!buf)
3528                 return;
3529         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3530                 goto out;
3531         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3532                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3533         if (rc != 0)
3534                 goto out;
3535
3536 #define IOACCEL_STATUS_BYTE 4
3537 #define OFFLOAD_CONFIGURED_BIT 0x01
3538 #define OFFLOAD_ENABLED_BIT 0x02
3539         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3540         this_device->offload_config =
3541                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3542         if (this_device->offload_config) {
3543                 this_device->offload_enabled =
3544                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3545                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3546                         this_device->offload_enabled = 0;
3547         }
3548         this_device->offload_to_be_enabled = this_device->offload_enabled;
3549 out:
3550         kfree(buf);
3551         return;
3552 }
3553
3554 /* Get the device id from inquiry page 0x83 */
3555 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3556         unsigned char *device_id, int index, int buflen)
3557 {
3558         int rc;
3559         unsigned char *buf;
3560
3561         /* Does controller have VPD for device id? */
3562         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3563                 return 1; /* not supported */
3564
3565         buf = kzalloc(64, GFP_KERNEL);
3566         if (!buf)
3567                 return -ENOMEM;
3568
3569         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3570                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3571         if (rc == 0) {
3572                 if (buflen > 16)
3573                         buflen = 16;
3574                 memcpy(device_id, &buf[8], buflen);
3575         }
3576
3577         kfree(buf);
3578
3579         return rc; /*0 - got id,  otherwise, didn't */
3580 }
3581
3582 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3583                 void *buf, int bufsize,
3584                 int extended_response)
3585 {
3586         int rc = IO_OK;
3587         struct CommandList *c;
3588         unsigned char scsi3addr[8];
3589         struct ErrorInfo *ei;
3590
3591         c = cmd_alloc(h);
3592
3593         /* address the controller */
3594         memset(scsi3addr, 0, sizeof(scsi3addr));
3595         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3596                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3597                 rc = -1;
3598                 goto out;
3599         }
3600         if (extended_response)
3601                 c->Request.CDB[1] = extended_response;
3602         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3603                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3604         if (rc)
3605                 goto out;
3606         ei = c->err_info;
3607         if (ei->CommandStatus != 0 &&
3608             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3609                 hpsa_scsi_interpret_error(h, c);
3610                 rc = -1;
3611         } else {
3612                 struct ReportLUNdata *rld = buf;
3613
3614                 if (rld->extended_response_flag != extended_response) {
3615                         dev_err(&h->pdev->dev,
3616                                 "report luns requested format %u, got %u\n",
3617                                 extended_response,
3618                                 rld->extended_response_flag);
3619                         rc = -1;
3620                 }
3621         }
3622 out:
3623         cmd_free(h, c);
3624         return rc;
3625 }
3626
3627 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3628                 struct ReportExtendedLUNdata *buf, int bufsize)
3629 {
3630         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3631                                                 HPSA_REPORT_PHYS_EXTENDED);
3632 }
3633
3634 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3635                 struct ReportLUNdata *buf, int bufsize)
3636 {
3637         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3638 }
3639
3640 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3641         int bus, int target, int lun)
3642 {
3643         device->bus = bus;
3644         device->target = target;
3645         device->lun = lun;
3646 }
3647
3648 /* Use VPD inquiry to get details of volume status */
3649 static int hpsa_get_volume_status(struct ctlr_info *h,
3650                                         unsigned char scsi3addr[])
3651 {
3652         int rc;
3653         int status;
3654         int size;
3655         unsigned char *buf;
3656
3657         buf = kzalloc(64, GFP_KERNEL);
3658         if (!buf)
3659                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3660
3661         /* Does controller have VPD for logical volume status? */
3662         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3663                 goto exit_failed;
3664
3665         /* Get the size of the VPD return buffer */
3666         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3667                                         buf, HPSA_VPD_HEADER_SZ);
3668         if (rc != 0)
3669                 goto exit_failed;
3670         size = buf[3];
3671
3672         /* Now get the whole VPD buffer */
3673         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3674                                         buf, size + HPSA_VPD_HEADER_SZ);
3675         if (rc != 0)
3676                 goto exit_failed;
3677         status = buf[4]; /* status byte */
3678
3679         kfree(buf);
3680         return status;
3681 exit_failed:
3682         kfree(buf);
3683         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3684 }
3685
3686 /* Determine offline status of a volume.
3687  * Return either:
3688  *  0 (not offline)
3689  *  0xff (offline for unknown reasons)
3690  *  # (integer code indicating one of several NOT READY states
3691  *     describing why a volume is to be kept offline)
3692  */
3693 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3694                                         unsigned char scsi3addr[])
3695 {
3696         struct CommandList *c;
3697         unsigned char *sense;
3698         u8 sense_key, asc, ascq;
3699         int sense_len;
3700         int rc, ldstat = 0;
3701         u16 cmd_status;
3702         u8 scsi_status;
3703 #define ASC_LUN_NOT_READY 0x04
3704 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3705 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3706
3707         c = cmd_alloc(h);
3708
3709         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3710         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3711                                         DEFAULT_TIMEOUT);
3712         if (rc) {
3713                 cmd_free(h, c);
3714                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3715         }
3716         sense = c->err_info->SenseInfo;
3717         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3718                 sense_len = sizeof(c->err_info->SenseInfo);
3719         else
3720                 sense_len = c->err_info->SenseLen;
3721         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3722         cmd_status = c->err_info->CommandStatus;
3723         scsi_status = c->err_info->ScsiStatus;
3724         cmd_free(h, c);
3725
3726         /* Determine the reason for not ready state */
3727         ldstat = hpsa_get_volume_status(h, scsi3addr);
3728
3729         /* Keep volume offline in certain cases: */
3730         switch (ldstat) {
3731         case HPSA_LV_FAILED:
3732         case HPSA_LV_UNDERGOING_ERASE:
3733         case HPSA_LV_NOT_AVAILABLE:
3734         case HPSA_LV_UNDERGOING_RPI:
3735         case HPSA_LV_PENDING_RPI:
3736         case HPSA_LV_ENCRYPTED_NO_KEY:
3737         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3738         case HPSA_LV_UNDERGOING_ENCRYPTION:
3739         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3740         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3741                 return ldstat;
3742         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3743                 /* If VPD status page isn't available,
3744                  * use ASC/ASCQ to determine state
3745                  */
3746                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3747                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3748                         return ldstat;
3749                 break;
3750         default:
3751                 break;
3752         }
3753         return HPSA_LV_OK;
3754 }
3755
3756 /*
3757  * Find out if a logical device supports aborts by simply trying one.
3758  * Smart Array may claim not to support aborts on logical drives, but
3759  * if a MSA2000 * is connected, the drives on that will be presented
3760  * by the Smart Array as logical drives, and aborts may be sent to
3761  * those devices successfully.  So the simplest way to find out is
3762  * to simply try an abort and see how the device responds.
3763  */
3764 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3765                                         unsigned char *scsi3addr)
3766 {
3767         struct CommandList *c;
3768         struct ErrorInfo *ei;
3769         int rc = 0;
3770
3771         u64 tag = (u64) -1; /* bogus tag */
3772
3773         /* Assume that physical devices support aborts */
3774         if (!is_logical_dev_addr_mode(scsi3addr))
3775                 return 1;
3776
3777         c = cmd_alloc(h);
3778
3779         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3780         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3781                                         DEFAULT_TIMEOUT);
3782         /* no unmap needed here because no data xfer. */
3783         ei = c->err_info;
3784         switch (ei->CommandStatus) {
3785         case CMD_INVALID:
3786                 rc = 0;
3787                 break;
3788         case CMD_UNABORTABLE:
3789         case CMD_ABORT_FAILED:
3790                 rc = 1;
3791                 break;
3792         case CMD_TMF_STATUS:
3793                 rc = hpsa_evaluate_tmf_status(h, c);
3794                 break;
3795         default:
3796                 rc = 0;
3797                 break;
3798         }
3799         cmd_free(h, c);
3800         return rc;
3801 }
3802
3803 static int hpsa_update_device_info(struct ctlr_info *h,
3804         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3805         unsigned char *is_OBDR_device)
3806 {
3807
3808 #define OBDR_SIG_OFFSET 43
3809 #define OBDR_TAPE_SIG "$DR-10"
3810 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3811 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3812
3813         unsigned char *inq_buff;
3814         unsigned char *obdr_sig;
3815         int rc = 0;
3816
3817         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3818         if (!inq_buff) {
3819                 rc = -ENOMEM;
3820                 goto bail_out;
3821         }
3822
3823         /* Do an inquiry to the device to see what it is. */
3824         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3825                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3826                 dev_err(&h->pdev->dev,
3827                         "%s: inquiry failed, device will be skipped.\n",
3828                         __func__);
3829                 rc = HPSA_INQUIRY_FAILED;
3830                 goto bail_out;
3831         }
3832
3833         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3834         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3835
3836         this_device->devtype = (inq_buff[0] & 0x1f);
3837         memcpy(this_device->scsi3addr, scsi3addr, 8);
3838         memcpy(this_device->vendor, &inq_buff[8],
3839                 sizeof(this_device->vendor));
3840         memcpy(this_device->model, &inq_buff[16],
3841                 sizeof(this_device->model));
3842         this_device->rev = inq_buff[2];
3843         memset(this_device->device_id, 0,
3844                 sizeof(this_device->device_id));
3845         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3846                 sizeof(this_device->device_id)))
3847                 dev_err(&h->pdev->dev,
3848                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3849                         h->ctlr, __func__,
3850                         h->scsi_host->host_no,
3851                         this_device->target, this_device->lun,
3852                         scsi_device_type(this_device->devtype),
3853                         this_device->model);
3854
3855         if ((this_device->devtype == TYPE_DISK ||
3856                 this_device->devtype == TYPE_ZBC) &&
3857                 is_logical_dev_addr_mode(scsi3addr)) {
3858                 unsigned char volume_offline;
3859
3860                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3861                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3862                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3863                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3864                 this_device->volume_offline = volume_offline;
3865                 if (volume_offline == HPSA_LV_FAILED) {
3866                         rc = HPSA_LV_FAILED;
3867                         dev_err(&h->pdev->dev,
3868                                 "%s: LV failed, device will be skipped.\n",
3869                                 __func__);
3870                         goto bail_out;
3871                 }
3872         } else {
3873                 this_device->raid_level = RAID_UNKNOWN;
3874                 this_device->offload_config = 0;
3875                 this_device->offload_enabled = 0;
3876                 this_device->offload_to_be_enabled = 0;
3877                 this_device->hba_ioaccel_enabled = 0;
3878                 this_device->volume_offline = 0;
3879                 this_device->queue_depth = h->nr_cmds;
3880         }
3881
3882         if (is_OBDR_device) {
3883                 /* See if this is a One-Button-Disaster-Recovery device
3884                  * by looking for "$DR-10" at offset 43 in inquiry data.
3885                  */
3886                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3887                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3888                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3889                                                 OBDR_SIG_LEN) == 0);
3890         }
3891         kfree(inq_buff);
3892         return 0;
3893
3894 bail_out:
3895         kfree(inq_buff);
3896         return rc;
3897 }
3898
3899 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3900                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3901 {
3902         unsigned long flags;
3903         int rc, entry;
3904         /*
3905          * See if this device supports aborts.  If we already know
3906          * the device, we already know if it supports aborts, otherwise
3907          * we have to find out if it supports aborts by trying one.
3908          */
3909         spin_lock_irqsave(&h->devlock, flags);
3910         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3911         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3912                 entry >= 0 && entry < h->ndevices) {
3913                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3914                 spin_unlock_irqrestore(&h->devlock, flags);
3915         } else {
3916                 spin_unlock_irqrestore(&h->devlock, flags);
3917                 dev->supports_aborts =
3918                                 hpsa_device_supports_aborts(h, scsi3addr);
3919                 if (dev->supports_aborts < 0)
3920                         dev->supports_aborts = 0;
3921         }
3922 }
3923
3924 /*
3925  * Helper function to assign bus, target, lun mapping of devices.
3926  * Logical drive target and lun are assigned at this time, but
3927  * physical device lun and target assignment are deferred (assigned
3928  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3929 */
3930 static void figure_bus_target_lun(struct ctlr_info *h,
3931         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3932 {
3933         u32 lunid = get_unaligned_le32(lunaddrbytes);
3934
3935         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3936                 /* physical device, target and lun filled in later */
3937                 if (is_hba_lunid(lunaddrbytes)) {
3938                         int bus = HPSA_HBA_BUS;
3939
3940                         if (!device->rev)
3941                                 bus = HPSA_LEGACY_HBA_BUS;
3942                         hpsa_set_bus_target_lun(device,
3943                                         bus, 0, lunid & 0x3fff);
3944                 } else
3945                         /* defer target, lun assignment for physical devices */
3946                         hpsa_set_bus_target_lun(device,
3947                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3948                 return;
3949         }
3950         /* It's a logical device */
3951         if (device->external) {
3952                 hpsa_set_bus_target_lun(device,
3953                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3954                         lunid & 0x00ff);
3955                 return;
3956         }
3957         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3958                                 0, lunid & 0x3fff);
3959 }
3960
3961
3962 /*
3963  * Get address of physical disk used for an ioaccel2 mode command:
3964  *      1. Extract ioaccel2 handle from the command.
3965  *      2. Find a matching ioaccel2 handle from list of physical disks.
3966  *      3. Return:
3967  *              1 and set scsi3addr to address of matching physical
3968  *              0 if no matching physical disk was found.
3969  */
3970 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3971         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3972 {
3973         struct io_accel2_cmd *c2 =
3974                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3975         unsigned long flags;
3976         int i;
3977
3978         spin_lock_irqsave(&h->devlock, flags);
3979         for (i = 0; i < h->ndevices; i++)
3980                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3981                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3982                                 sizeof(h->dev[i]->scsi3addr));
3983                         spin_unlock_irqrestore(&h->devlock, flags);
3984                         return 1;
3985                 }
3986         spin_unlock_irqrestore(&h->devlock, flags);
3987         return 0;
3988 }
3989
3990 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3991         int i, int nphysicals, int nlocal_logicals)
3992 {
3993         /* In report logicals, local logicals are listed first,
3994         * then any externals.
3995         */
3996         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3997
3998         if (i == raid_ctlr_position)
3999                 return 0;
4000
4001         if (i < logicals_start)
4002                 return 0;
4003
4004         /* i is in logicals range, but still within local logicals */
4005         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4006                 return 0;
4007
4008         return 1; /* it's an external lun */
4009 }
4010
4011 /*
4012  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4013  * logdev.  The number of luns in physdev and logdev are returned in
4014  * *nphysicals and *nlogicals, respectively.
4015  * Returns 0 on success, -1 otherwise.
4016  */
4017 static int hpsa_gather_lun_info(struct ctlr_info *h,
4018         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4019         struct ReportLUNdata *logdev, u32 *nlogicals)
4020 {
4021         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4022                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4023                 return -1;
4024         }
4025         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4026         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4027                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4028                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4029                 *nphysicals = HPSA_MAX_PHYS_LUN;
4030         }
4031         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4032                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4033                 return -1;
4034         }
4035         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4036         /* Reject Logicals in excess of our max capability. */
4037         if (*nlogicals > HPSA_MAX_LUN) {
4038                 dev_warn(&h->pdev->dev,
4039                         "maximum logical LUNs (%d) exceeded.  "
4040                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4041                         *nlogicals - HPSA_MAX_LUN);
4042                         *nlogicals = HPSA_MAX_LUN;
4043         }
4044         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4045                 dev_warn(&h->pdev->dev,
4046                         "maximum logical + physical LUNs (%d) exceeded. "
4047                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4048                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4049                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4050         }
4051         return 0;
4052 }
4053
4054 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4055         int i, int nphysicals, int nlogicals,
4056         struct ReportExtendedLUNdata *physdev_list,
4057         struct ReportLUNdata *logdev_list)
4058 {
4059         /* Helper function, figure out where the LUN ID info is coming from
4060          * given index i, lists of physical and logical devices, where in
4061          * the list the raid controller is supposed to appear (first or last)
4062          */
4063
4064         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4065         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4066
4067         if (i == raid_ctlr_position)
4068                 return RAID_CTLR_LUNID;
4069
4070         if (i < logicals_start)
4071                 return &physdev_list->LUN[i -
4072                                 (raid_ctlr_position == 0)].lunid[0];
4073
4074         if (i < last_device)
4075                 return &logdev_list->LUN[i - nphysicals -
4076                         (raid_ctlr_position == 0)][0];
4077         BUG();
4078         return NULL;
4079 }
4080
4081 /* get physical drive ioaccel handle and queue depth */
4082 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4083                 struct hpsa_scsi_dev_t *dev,
4084                 struct ReportExtendedLUNdata *rlep, int rle_index,
4085                 struct bmic_identify_physical_device *id_phys)
4086 {
4087         int rc;
4088         struct ext_report_lun_entry *rle;
4089
4090         /*
4091          * external targets don't support BMIC
4092          */
4093         if (dev->external) {
4094                 dev->queue_depth = 7;
4095                 return;
4096         }
4097
4098         rle = &rlep->LUN[rle_index];
4099
4100         dev->ioaccel_handle = rle->ioaccel_handle;
4101         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4102                 dev->hba_ioaccel_enabled = 1;
4103         memset(id_phys, 0, sizeof(*id_phys));
4104         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4105                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4106                         sizeof(*id_phys));
4107         if (!rc)
4108                 /* Reserve space for FW operations */
4109 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4110 #define DRIVE_QUEUE_DEPTH 7
4111                 dev->queue_depth =
4112                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4113                                 DRIVE_CMDS_RESERVED_FOR_FW;
4114         else
4115                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4116 }
4117
4118 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4119         struct ReportExtendedLUNdata *rlep, int rle_index,
4120         struct bmic_identify_physical_device *id_phys)
4121 {
4122         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4123
4124         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4125                 this_device->hba_ioaccel_enabled = 1;
4126
4127         memcpy(&this_device->active_path_index,
4128                 &id_phys->active_path_number,
4129                 sizeof(this_device->active_path_index));
4130         memcpy(&this_device->path_map,
4131                 &id_phys->redundant_path_present_map,
4132                 sizeof(this_device->path_map));
4133         memcpy(&this_device->box,
4134                 &id_phys->alternate_paths_phys_box_on_port,
4135                 sizeof(this_device->box));
4136         memcpy(&this_device->phys_connector,
4137                 &id_phys->alternate_paths_phys_connector,
4138                 sizeof(this_device->phys_connector));
4139         memcpy(&this_device->bay,
4140                 &id_phys->phys_bay_in_box,
4141                 sizeof(this_device->bay));
4142 }
4143
4144 /* get number of local logical disks. */
4145 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4146         struct bmic_identify_controller *id_ctlr,
4147         u32 *nlocals)
4148 {
4149         int rc;
4150
4151         if (!id_ctlr) {
4152                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4153                         __func__);
4154                 return -ENOMEM;
4155         }
4156         memset(id_ctlr, 0, sizeof(*id_ctlr));
4157         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4158         if (!rc)
4159                 if (id_ctlr->configured_logical_drive_count < 256)
4160                         *nlocals = id_ctlr->configured_logical_drive_count;
4161                 else
4162                         *nlocals = le16_to_cpu(
4163                                         id_ctlr->extended_logical_unit_count);
4164         else
4165                 *nlocals = -1;
4166         return rc;
4167 }
4168
4169 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4170 {
4171         struct bmic_identify_physical_device *id_phys;
4172         bool is_spare = false;
4173         int rc;
4174
4175         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4176         if (!id_phys)
4177                 return false;
4178
4179         rc = hpsa_bmic_id_physical_device(h,
4180                                         lunaddrbytes,
4181                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4182                                         id_phys, sizeof(*id_phys));
4183         if (rc == 0)
4184                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4185
4186         kfree(id_phys);
4187         return is_spare;
4188 }
4189
4190 #define RPL_DEV_FLAG_NON_DISK                           0x1
4191 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4192 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4193
4194 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4195
4196 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4197                                 struct ext_report_lun_entry *rle)
4198 {
4199         u8 device_flags;
4200         u8 device_type;
4201
4202         if (!MASKED_DEVICE(lunaddrbytes))
4203                 return false;
4204
4205         device_flags = rle->device_flags;
4206         device_type = rle->device_type;
4207
4208         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4209                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4210                         return false;
4211                 return true;
4212         }
4213
4214         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4215                 return false;
4216
4217         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4218                 return false;
4219
4220         /*
4221          * Spares may be spun down, we do not want to
4222          * do an Inquiry to a RAID set spare drive as
4223          * that would have them spun up, that is a
4224          * performance hit because I/O to the RAID device
4225          * stops while the spin up occurs which can take
4226          * over 50 seconds.
4227          */
4228         if (hpsa_is_disk_spare(h, lunaddrbytes))
4229                 return true;
4230
4231         return false;
4232 }
4233
4234 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4235 {
4236         /* the idea here is we could get notified
4237          * that some devices have changed, so we do a report
4238          * physical luns and report logical luns cmd, and adjust
4239          * our list of devices accordingly.
4240          *
4241          * The scsi3addr's of devices won't change so long as the
4242          * adapter is not reset.  That means we can rescan and
4243          * tell which devices we already know about, vs. new
4244          * devices, vs.  disappearing devices.
4245          */
4246         struct ReportExtendedLUNdata *physdev_list = NULL;
4247         struct ReportLUNdata *logdev_list = NULL;
4248         struct bmic_identify_physical_device *id_phys = NULL;
4249         struct bmic_identify_controller *id_ctlr = NULL;
4250         u32 nphysicals = 0;
4251         u32 nlogicals = 0;
4252         u32 nlocal_logicals = 0;
4253         u32 ndev_allocated = 0;
4254         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4255         int ncurrent = 0;
4256         int i, n_ext_target_devs, ndevs_to_allocate;
4257         int raid_ctlr_position;
4258         bool physical_device;
4259         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4260
4261         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4262         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4263         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4264         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4265         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4266         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4267
4268         if (!currentsd || !physdev_list || !logdev_list ||
4269                 !tmpdevice || !id_phys || !id_ctlr) {
4270                 dev_err(&h->pdev->dev, "out of memory\n");
4271                 goto out;
4272         }
4273         memset(lunzerobits, 0, sizeof(lunzerobits));
4274
4275         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4276
4277         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4278                         logdev_list, &nlogicals)) {
4279                 h->drv_req_rescan = 1;
4280                 goto out;
4281         }
4282
4283         /* Set number of local logicals (non PTRAID) */
4284         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4285                 dev_warn(&h->pdev->dev,
4286                         "%s: Can't determine number of local logical devices.\n",
4287                         __func__);
4288         }
4289
4290         /* We might see up to the maximum number of logical and physical disks
4291          * plus external target devices, and a device for the local RAID
4292          * controller.
4293          */
4294         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4295
4296         /* Allocate the per device structures */
4297         for (i = 0; i < ndevs_to_allocate; i++) {
4298                 if (i >= HPSA_MAX_DEVICES) {
4299                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4300                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4301                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4302                         break;
4303                 }
4304
4305                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4306                 if (!currentsd[i]) {
4307                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4308                                 __FILE__, __LINE__);
4309                         h->drv_req_rescan = 1;
4310                         goto out;
4311                 }
4312                 ndev_allocated++;
4313         }
4314
4315         if (is_scsi_rev_5(h))
4316                 raid_ctlr_position = 0;
4317         else
4318                 raid_ctlr_position = nphysicals + nlogicals;
4319
4320         /* adjust our table of devices */
4321         n_ext_target_devs = 0;
4322         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4323                 u8 *lunaddrbytes, is_OBDR = 0;
4324                 int rc = 0;
4325                 int phys_dev_index = i - (raid_ctlr_position == 0);
4326                 bool skip_device = false;
4327
4328                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4329
4330                 /* Figure out where the LUN ID info is coming from */
4331                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4332                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4333
4334                 /* Determine if this is a lun from an external target array */
4335                 tmpdevice->external =
4336                         figure_external_status(h, raid_ctlr_position, i,
4337                                                 nphysicals, nlocal_logicals);
4338
4339                 /*
4340                  * Skip over some devices such as a spare.
4341                  */
4342                 if (!tmpdevice->external && physical_device) {
4343                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4344                                         &physdev_list->LUN[phys_dev_index]);
4345                         if (skip_device)
4346                                 continue;
4347                 }
4348
4349                 /* Get device type, vendor, model, device id */
4350                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4351                                                         &is_OBDR);
4352                 if (rc == -ENOMEM) {
4353                         dev_warn(&h->pdev->dev,
4354                                 "Out of memory, rescan deferred.\n");
4355                         h->drv_req_rescan = 1;
4356                         goto out;
4357                 }
4358                 if (rc) {
4359                         h->drv_req_rescan = 1;
4360                         continue;
4361                 }
4362
4363                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4364                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4365                 this_device = currentsd[ncurrent];
4366
4367                 /* Turn on discovery_polling if there are ext target devices.
4368                  * Event-based change notification is unreliable for those.
4369                  */
4370                 if (!h->discovery_polling) {
4371                         if (tmpdevice->external) {
4372                                 h->discovery_polling = 1;
4373                                 dev_info(&h->pdev->dev,
4374                                         "External target, activate discovery polling.\n");
4375                         }
4376                 }
4377
4378
4379                 *this_device = *tmpdevice;
4380                 this_device->physical_device = physical_device;
4381
4382                 /*
4383                  * Expose all devices except for physical devices that
4384                  * are masked.
4385                  */
4386                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4387                         this_device->expose_device = 0;
4388                 else
4389                         this_device->expose_device = 1;
4390
4391
4392                 /*
4393                  * Get the SAS address for physical devices that are exposed.
4394                  */
4395                 if (this_device->physical_device && this_device->expose_device)
4396                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4397
4398                 switch (this_device->devtype) {
4399                 case TYPE_ROM:
4400                         /* We don't *really* support actual CD-ROM devices,
4401                          * just "One Button Disaster Recovery" tape drive
4402                          * which temporarily pretends to be a CD-ROM drive.
4403                          * So we check that the device is really an OBDR tape
4404                          * device by checking for "$DR-10" in bytes 43-48 of
4405                          * the inquiry data.
4406                          */
4407                         if (is_OBDR)
4408                                 ncurrent++;
4409                         break;
4410                 case TYPE_DISK:
4411                 case TYPE_ZBC:
4412                         if (this_device->physical_device) {
4413                                 /* The disk is in HBA mode. */
4414                                 /* Never use RAID mapper in HBA mode. */
4415                                 this_device->offload_enabled = 0;
4416                                 hpsa_get_ioaccel_drive_info(h, this_device,
4417                                         physdev_list, phys_dev_index, id_phys);
4418                                 hpsa_get_path_info(this_device,
4419                                         physdev_list, phys_dev_index, id_phys);
4420                         }
4421                         ncurrent++;
4422                         break;
4423                 case TYPE_TAPE:
4424                 case TYPE_MEDIUM_CHANGER:
4425                         ncurrent++;
4426                         break;
4427                 case TYPE_ENCLOSURE:
4428                         if (!this_device->external)
4429                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4430                                                 physdev_list, phys_dev_index,
4431                                                 this_device);
4432                         ncurrent++;
4433                         break;
4434                 case TYPE_RAID:
4435                         /* Only present the Smartarray HBA as a RAID controller.
4436                          * If it's a RAID controller other than the HBA itself
4437                          * (an external RAID controller, MSA500 or similar)
4438                          * don't present it.
4439                          */
4440                         if (!is_hba_lunid(lunaddrbytes))
4441                                 break;
4442                         ncurrent++;
4443                         break;
4444                 default:
4445                         break;
4446                 }
4447                 if (ncurrent >= HPSA_MAX_DEVICES)
4448                         break;
4449         }
4450
4451         if (h->sas_host == NULL) {
4452                 int rc = 0;
4453
4454                 rc = hpsa_add_sas_host(h);
4455                 if (rc) {
4456                         dev_warn(&h->pdev->dev,
4457                                 "Could not add sas host %d\n", rc);
4458                         goto out;
4459                 }
4460         }
4461
4462         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4463 out:
4464         kfree(tmpdevice);
4465         for (i = 0; i < ndev_allocated; i++)
4466                 kfree(currentsd[i]);
4467         kfree(currentsd);
4468         kfree(physdev_list);
4469         kfree(logdev_list);
4470         kfree(id_ctlr);
4471         kfree(id_phys);
4472 }
4473
4474 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4475                                    struct scatterlist *sg)
4476 {
4477         u64 addr64 = (u64) sg_dma_address(sg);
4478         unsigned int len = sg_dma_len(sg);
4479
4480         desc->Addr = cpu_to_le64(addr64);
4481         desc->Len = cpu_to_le32(len);
4482         desc->Ext = 0;
4483 }
4484
4485 /*
4486  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4487  * dma mapping  and fills in the scatter gather entries of the
4488  * hpsa command, cp.
4489  */
4490 static int hpsa_scatter_gather(struct ctlr_info *h,
4491                 struct CommandList *cp,
4492                 struct scsi_cmnd *cmd)
4493 {
4494         struct scatterlist *sg;
4495         int use_sg, i, sg_limit, chained, last_sg;
4496         struct SGDescriptor *curr_sg;
4497
4498         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4499
4500         use_sg = scsi_dma_map(cmd);
4501         if (use_sg < 0)
4502                 return use_sg;
4503
4504         if (!use_sg)
4505                 goto sglist_finished;
4506
4507         /*
4508          * If the number of entries is greater than the max for a single list,
4509          * then we have a chained list; we will set up all but one entry in the
4510          * first list (the last entry is saved for link information);
4511          * otherwise, we don't have a chained list and we'll set up at each of
4512          * the entries in the one list.
4513          */
4514         curr_sg = cp->SG;
4515         chained = use_sg > h->max_cmd_sg_entries;
4516         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4517         last_sg = scsi_sg_count(cmd) - 1;
4518         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4519                 hpsa_set_sg_descriptor(curr_sg, sg);
4520                 curr_sg++;
4521         }
4522
4523         if (chained) {
4524                 /*
4525                  * Continue with the chained list.  Set curr_sg to the chained
4526                  * list.  Modify the limit to the total count less the entries
4527                  * we've already set up.  Resume the scan at the list entry
4528                  * where the previous loop left off.
4529                  */
4530                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4531                 sg_limit = use_sg - sg_limit;
4532                 for_each_sg(sg, sg, sg_limit, i) {
4533                         hpsa_set_sg_descriptor(curr_sg, sg);
4534                         curr_sg++;
4535                 }
4536         }
4537
4538         /* Back the pointer up to the last entry and mark it as "last". */
4539         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4540
4541         if (use_sg + chained > h->maxSG)
4542                 h->maxSG = use_sg + chained;
4543
4544         if (chained) {
4545                 cp->Header.SGList = h->max_cmd_sg_entries;
4546                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4547                 if (hpsa_map_sg_chain_block(h, cp)) {
4548                         scsi_dma_unmap(cmd);
4549                         return -1;
4550                 }
4551                 return 0;
4552         }
4553
4554 sglist_finished:
4555
4556         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4557         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4558         return 0;
4559 }
4560
4561 #define IO_ACCEL_INELIGIBLE (1)
4562 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4563 {
4564         int is_write = 0;
4565         u32 block;
4566         u32 block_cnt;
4567
4568         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4569         switch (cdb[0]) {
4570         case WRITE_6:
4571         case WRITE_12:
4572                 is_write = 1;
4573         case READ_6:
4574         case READ_12:
4575                 if (*cdb_len == 6) {
4576                         block = (((cdb[1] & 0x1F) << 16) |
4577                                 (cdb[2] << 8) |
4578                                 cdb[3]);
4579                         block_cnt = cdb[4];
4580                         if (block_cnt == 0)
4581                                 block_cnt = 256;
4582                 } else {
4583                         BUG_ON(*cdb_len != 12);
4584                         block = get_unaligned_be32(&cdb[2]);
4585                         block_cnt = get_unaligned_be32(&cdb[6]);
4586                 }
4587                 if (block_cnt > 0xffff)
4588                         return IO_ACCEL_INELIGIBLE;
4589
4590                 cdb[0] = is_write ? WRITE_10 : READ_10;
4591                 cdb[1] = 0;
4592                 cdb[2] = (u8) (block >> 24);
4593                 cdb[3] = (u8) (block >> 16);
4594                 cdb[4] = (u8) (block >> 8);
4595                 cdb[5] = (u8) (block);
4596                 cdb[6] = 0;
4597                 cdb[7] = (u8) (block_cnt >> 8);
4598                 cdb[8] = (u8) (block_cnt);
4599                 cdb[9] = 0;
4600                 *cdb_len = 10;
4601                 break;
4602         }
4603         return 0;
4604 }
4605
4606 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4607         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4608         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4609 {
4610         struct scsi_cmnd *cmd = c->scsi_cmd;
4611         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4612         unsigned int len;
4613         unsigned int total_len = 0;
4614         struct scatterlist *sg;
4615         u64 addr64;
4616         int use_sg, i;
4617         struct SGDescriptor *curr_sg;
4618         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4619
4620         /* TODO: implement chaining support */
4621         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4622                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4623                 return IO_ACCEL_INELIGIBLE;
4624         }
4625
4626         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4627
4628         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4629                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4630                 return IO_ACCEL_INELIGIBLE;
4631         }
4632
4633         c->cmd_type = CMD_IOACCEL1;
4634
4635         /* Adjust the DMA address to point to the accelerated command buffer */
4636         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4637                                 (c->cmdindex * sizeof(*cp));
4638         BUG_ON(c->busaddr & 0x0000007F);
4639
4640         use_sg = scsi_dma_map(cmd);
4641         if (use_sg < 0) {
4642                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4643                 return use_sg;
4644         }
4645
4646         if (use_sg) {
4647                 curr_sg = cp->SG;
4648                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4649                         addr64 = (u64) sg_dma_address(sg);
4650                         len  = sg_dma_len(sg);
4651                         total_len += len;
4652                         curr_sg->Addr = cpu_to_le64(addr64);
4653                         curr_sg->Len = cpu_to_le32(len);
4654                         curr_sg->Ext = cpu_to_le32(0);
4655                         curr_sg++;
4656                 }
4657                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4658
4659                 switch (cmd->sc_data_direction) {
4660                 case DMA_TO_DEVICE:
4661                         control |= IOACCEL1_CONTROL_DATA_OUT;
4662                         break;
4663                 case DMA_FROM_DEVICE:
4664                         control |= IOACCEL1_CONTROL_DATA_IN;
4665                         break;
4666                 case DMA_NONE:
4667                         control |= IOACCEL1_CONTROL_NODATAXFER;
4668                         break;
4669                 default:
4670                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4671                         cmd->sc_data_direction);
4672                         BUG();
4673                         break;
4674                 }
4675         } else {
4676                 control |= IOACCEL1_CONTROL_NODATAXFER;
4677         }
4678
4679         c->Header.SGList = use_sg;
4680         /* Fill out the command structure to submit */
4681         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4682         cp->transfer_len = cpu_to_le32(total_len);
4683         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4684                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4685         cp->control = cpu_to_le32(control);
4686         memcpy(cp->CDB, cdb, cdb_len);
4687         memcpy(cp->CISS_LUN, scsi3addr, 8);
4688         /* Tag was already set at init time. */
4689         enqueue_cmd_and_start_io(h, c);
4690         return 0;
4691 }
4692
4693 /*
4694  * Queue a command directly to a device behind the controller using the
4695  * I/O accelerator path.
4696  */
4697 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4698         struct CommandList *c)
4699 {
4700         struct scsi_cmnd *cmd = c->scsi_cmd;
4701         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4702
4703         if (!dev)
4704                 return -1;
4705
4706         c->phys_disk = dev;
4707
4708         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4709                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4710 }
4711
4712 /*
4713  * Set encryption parameters for the ioaccel2 request
4714  */
4715 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4716         struct CommandList *c, struct io_accel2_cmd *cp)
4717 {
4718         struct scsi_cmnd *cmd = c->scsi_cmd;
4719         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4720         struct raid_map_data *map = &dev->raid_map;
4721         u64 first_block;
4722
4723         /* Are we doing encryption on this device */
4724         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4725                 return;
4726         /* Set the data encryption key index. */
4727         cp->dekindex = map->dekindex;
4728
4729         /* Set the encryption enable flag, encoded into direction field. */
4730         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4731
4732         /* Set encryption tweak values based on logical block address
4733          * If block size is 512, tweak value is LBA.
4734          * For other block sizes, tweak is (LBA * block size)/ 512)
4735          */
4736         switch (cmd->cmnd[0]) {
4737         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4738         case READ_6:
4739         case WRITE_6:
4740                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4741                                 (cmd->cmnd[2] << 8) |
4742                                 cmd->cmnd[3]);
4743                 break;
4744         case WRITE_10:
4745         case READ_10:
4746         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4747         case WRITE_12:
4748         case READ_12:
4749                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4750                 break;
4751         case WRITE_16:
4752         case READ_16:
4753                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4754                 break;
4755         default:
4756                 dev_err(&h->pdev->dev,
4757                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4758                         __func__, cmd->cmnd[0]);
4759                 BUG();
4760                 break;
4761         }
4762
4763         if (le32_to_cpu(map->volume_blk_size) != 512)
4764                 first_block = first_block *
4765                                 le32_to_cpu(map->volume_blk_size)/512;
4766
4767         cp->tweak_lower = cpu_to_le32(first_block);
4768         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4769 }
4770
4771 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4772         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4773         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4774 {
4775         struct scsi_cmnd *cmd = c->scsi_cmd;
4776         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4777         struct ioaccel2_sg_element *curr_sg;
4778         int use_sg, i;
4779         struct scatterlist *sg;
4780         u64 addr64;
4781         u32 len;
4782         u32 total_len = 0;
4783
4784         if (!cmd->device)
4785                 return -1;
4786
4787         if (!cmd->device->hostdata)
4788                 return -1;
4789
4790         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4791
4792         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4793                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4794                 return IO_ACCEL_INELIGIBLE;
4795         }
4796
4797         c->cmd_type = CMD_IOACCEL2;
4798         /* Adjust the DMA address to point to the accelerated command buffer */
4799         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4800                                 (c->cmdindex * sizeof(*cp));
4801         BUG_ON(c->busaddr & 0x0000007F);
4802
4803         memset(cp, 0, sizeof(*cp));
4804         cp->IU_type = IOACCEL2_IU_TYPE;
4805
4806         use_sg = scsi_dma_map(cmd);
4807         if (use_sg < 0) {
4808                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4809                 return use_sg;
4810         }
4811
4812         if (use_sg) {
4813                 curr_sg = cp->sg;
4814                 if (use_sg > h->ioaccel_maxsg) {
4815                         addr64 = le64_to_cpu(
4816                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4817                         curr_sg->address = cpu_to_le64(addr64);
4818                         curr_sg->length = 0;
4819                         curr_sg->reserved[0] = 0;
4820                         curr_sg->reserved[1] = 0;
4821                         curr_sg->reserved[2] = 0;
4822                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4823
4824                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4825                 }
4826                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4827                         addr64 = (u64) sg_dma_address(sg);
4828                         len  = sg_dma_len(sg);
4829                         total_len += len;
4830                         curr_sg->address = cpu_to_le64(addr64);
4831                         curr_sg->length = cpu_to_le32(len);
4832                         curr_sg->reserved[0] = 0;
4833                         curr_sg->reserved[1] = 0;
4834                         curr_sg->reserved[2] = 0;
4835                         curr_sg->chain_indicator = 0;
4836                         curr_sg++;
4837                 }
4838
4839                 /*
4840                  * Set the last s/g element bit
4841                  */
4842                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4843
4844                 switch (cmd->sc_data_direction) {
4845                 case DMA_TO_DEVICE:
4846                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4847                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4848                         break;
4849                 case DMA_FROM_DEVICE:
4850                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4851                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4852                         break;
4853                 case DMA_NONE:
4854                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4855                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4856                         break;
4857                 default:
4858                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4859                                 cmd->sc_data_direction);
4860                         BUG();
4861                         break;
4862                 }
4863         } else {
4864                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4865                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4866         }
4867
4868         /* Set encryption parameters, if necessary */
4869         set_encrypt_ioaccel2(h, c, cp);
4870
4871         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4872         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4873         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4874
4875         cp->data_len = cpu_to_le32(total_len);
4876         cp->err_ptr = cpu_to_le64(c->busaddr +
4877                         offsetof(struct io_accel2_cmd, error_data));
4878         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4879
4880         /* fill in sg elements */
4881         if (use_sg > h->ioaccel_maxsg) {
4882                 cp->sg_count = 1;
4883                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4884                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4885                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4886                         scsi_dma_unmap(cmd);
4887                         return -1;
4888                 }
4889         } else
4890                 cp->sg_count = (u8) use_sg;
4891
4892         enqueue_cmd_and_start_io(h, c);
4893         return 0;
4894 }
4895
4896 /*
4897  * Queue a command to the correct I/O accelerator path.
4898  */
4899 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4900         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4901         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4902 {
4903         if (!c->scsi_cmd->device)
4904                 return -1;
4905
4906         if (!c->scsi_cmd->device->hostdata)
4907                 return -1;
4908
4909         /* Try to honor the device's queue depth */
4910         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4911                                         phys_disk->queue_depth) {
4912                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4913                 return IO_ACCEL_INELIGIBLE;
4914         }
4915         if (h->transMethod & CFGTBL_Trans_io_accel1)
4916                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4917                                                 cdb, cdb_len, scsi3addr,
4918                                                 phys_disk);
4919         else
4920                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4921                                                 cdb, cdb_len, scsi3addr,
4922                                                 phys_disk);
4923 }
4924
4925 static void raid_map_helper(struct raid_map_data *map,
4926                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4927 {
4928         if (offload_to_mirror == 0)  {
4929                 /* use physical disk in the first mirrored group. */
4930                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4931                 return;
4932         }
4933         do {
4934                 /* determine mirror group that *map_index indicates */
4935                 *current_group = *map_index /
4936                         le16_to_cpu(map->data_disks_per_row);
4937                 if (offload_to_mirror == *current_group)
4938                         continue;
4939                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4940                         /* select map index from next group */
4941                         *map_index += le16_to_cpu(map->data_disks_per_row);
4942                         (*current_group)++;
4943                 } else {
4944                         /* select map index from first group */
4945                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4946                         *current_group = 0;
4947                 }
4948         } while (offload_to_mirror != *current_group);
4949 }
4950
4951 /*
4952  * Attempt to perform offload RAID mapping for a logical volume I/O.
4953  */
4954 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4955         struct CommandList *c)
4956 {
4957         struct scsi_cmnd *cmd = c->scsi_cmd;
4958         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4959         struct raid_map_data *map = &dev->raid_map;
4960         struct raid_map_disk_data *dd = &map->data[0];
4961         int is_write = 0;
4962         u32 map_index;
4963         u64 first_block, last_block;
4964         u32 block_cnt;
4965         u32 blocks_per_row;
4966         u64 first_row, last_row;
4967         u32 first_row_offset, last_row_offset;
4968         u32 first_column, last_column;
4969         u64 r0_first_row, r0_last_row;
4970         u32 r5or6_blocks_per_row;
4971         u64 r5or6_first_row, r5or6_last_row;
4972         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4973         u32 r5or6_first_column, r5or6_last_column;
4974         u32 total_disks_per_row;
4975         u32 stripesize;
4976         u32 first_group, last_group, current_group;
4977         u32 map_row;
4978         u32 disk_handle;
4979         u64 disk_block;
4980         u32 disk_block_cnt;
4981         u8 cdb[16];
4982         u8 cdb_len;
4983         u16 strip_size;
4984 #if BITS_PER_LONG == 32
4985         u64 tmpdiv;
4986 #endif
4987         int offload_to_mirror;
4988
4989         if (!dev)
4990                 return -1;
4991
4992         /* check for valid opcode, get LBA and block count */
4993         switch (cmd->cmnd[0]) {
4994         case WRITE_6:
4995                 is_write = 1;
4996         case READ_6:
4997                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4998                                 (cmd->cmnd[2] << 8) |
4999                                 cmd->cmnd[3]);
5000                 block_cnt = cmd->cmnd[4];
5001                 if (block_cnt == 0)
5002                         block_cnt = 256;
5003                 break;
5004         case WRITE_10:
5005                 is_write = 1;
5006         case READ_10:
5007                 first_block =
5008                         (((u64) cmd->cmnd[2]) << 24) |
5009                         (((u64) cmd->cmnd[3]) << 16) |
5010                         (((u64) cmd->cmnd[4]) << 8) |
5011                         cmd->cmnd[5];
5012                 block_cnt =
5013                         (((u32) cmd->cmnd[7]) << 8) |
5014                         cmd->cmnd[8];
5015                 break;
5016         case WRITE_12:
5017                 is_write = 1;
5018         case READ_12:
5019                 first_block =
5020                         (((u64) cmd->cmnd[2]) << 24) |
5021                         (((u64) cmd->cmnd[3]) << 16) |
5022                         (((u64) cmd->cmnd[4]) << 8) |
5023                         cmd->cmnd[5];
5024                 block_cnt =
5025                         (((u32) cmd->cmnd[6]) << 24) |
5026                         (((u32) cmd->cmnd[7]) << 16) |
5027                         (((u32) cmd->cmnd[8]) << 8) |
5028                 cmd->cmnd[9];
5029                 break;
5030         case WRITE_16:
5031                 is_write = 1;
5032         case READ_16:
5033                 first_block =
5034                         (((u64) cmd->cmnd[2]) << 56) |
5035                         (((u64) cmd->cmnd[3]) << 48) |
5036                         (((u64) cmd->cmnd[4]) << 40) |
5037                         (((u64) cmd->cmnd[5]) << 32) |
5038                         (((u64) cmd->cmnd[6]) << 24) |
5039                         (((u64) cmd->cmnd[7]) << 16) |
5040                         (((u64) cmd->cmnd[8]) << 8) |
5041                         cmd->cmnd[9];
5042                 block_cnt =
5043                         (((u32) cmd->cmnd[10]) << 24) |
5044                         (((u32) cmd->cmnd[11]) << 16) |
5045                         (((u32) cmd->cmnd[12]) << 8) |
5046                         cmd->cmnd[13];
5047                 break;
5048         default:
5049                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5050         }
5051         last_block = first_block + block_cnt - 1;
5052
5053         /* check for write to non-RAID-0 */
5054         if (is_write && dev->raid_level != 0)
5055                 return IO_ACCEL_INELIGIBLE;
5056
5057         /* check for invalid block or wraparound */
5058         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5059                 last_block < first_block)
5060                 return IO_ACCEL_INELIGIBLE;
5061
5062         /* calculate stripe information for the request */
5063         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5064                                 le16_to_cpu(map->strip_size);
5065         strip_size = le16_to_cpu(map->strip_size);
5066 #if BITS_PER_LONG == 32
5067         tmpdiv = first_block;
5068         (void) do_div(tmpdiv, blocks_per_row);
5069         first_row = tmpdiv;
5070         tmpdiv = last_block;
5071         (void) do_div(tmpdiv, blocks_per_row);
5072         last_row = tmpdiv;
5073         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5074         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5075         tmpdiv = first_row_offset;
5076         (void) do_div(tmpdiv, strip_size);
5077         first_column = tmpdiv;
5078         tmpdiv = last_row_offset;
5079         (void) do_div(tmpdiv, strip_size);
5080         last_column = tmpdiv;
5081 #else
5082         first_row = first_block / blocks_per_row;
5083         last_row = last_block / blocks_per_row;
5084         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5085         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5086         first_column = first_row_offset / strip_size;
5087         last_column = last_row_offset / strip_size;
5088 #endif
5089
5090         /* if this isn't a single row/column then give to the controller */
5091         if ((first_row != last_row) || (first_column != last_column))
5092                 return IO_ACCEL_INELIGIBLE;
5093
5094         /* proceeding with driver mapping */
5095         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5096                                 le16_to_cpu(map->metadata_disks_per_row);
5097         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5098                                 le16_to_cpu(map->row_cnt);
5099         map_index = (map_row * total_disks_per_row) + first_column;
5100
5101         switch (dev->raid_level) {
5102         case HPSA_RAID_0:
5103                 break; /* nothing special to do */
5104         case HPSA_RAID_1:
5105                 /* Handles load balance across RAID 1 members.
5106                  * (2-drive R1 and R10 with even # of drives.)
5107                  * Appropriate for SSDs, not optimal for HDDs
5108                  */
5109                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5110                 if (dev->offload_to_mirror)
5111                         map_index += le16_to_cpu(map->data_disks_per_row);
5112                 dev->offload_to_mirror = !dev->offload_to_mirror;
5113                 break;
5114         case HPSA_RAID_ADM:
5115                 /* Handles N-way mirrors  (R1-ADM)
5116                  * and R10 with # of drives divisible by 3.)
5117                  */
5118                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5119
5120                 offload_to_mirror = dev->offload_to_mirror;
5121                 raid_map_helper(map, offload_to_mirror,
5122                                 &map_index, &current_group);
5123                 /* set mirror group to use next time */
5124                 offload_to_mirror =
5125                         (offload_to_mirror >=
5126                         le16_to_cpu(map->layout_map_count) - 1)
5127                         ? 0 : offload_to_mirror + 1;
5128                 dev->offload_to_mirror = offload_to_mirror;
5129                 /* Avoid direct use of dev->offload_to_mirror within this
5130                  * function since multiple threads might simultaneously
5131                  * increment it beyond the range of dev->layout_map_count -1.
5132                  */
5133                 break;
5134         case HPSA_RAID_5:
5135         case HPSA_RAID_6:
5136                 if (le16_to_cpu(map->layout_map_count) <= 1)
5137                         break;
5138
5139                 /* Verify first and last block are in same RAID group */
5140                 r5or6_blocks_per_row =
5141                         le16_to_cpu(map->strip_size) *
5142                         le16_to_cpu(map->data_disks_per_row);
5143                 BUG_ON(r5or6_blocks_per_row == 0);
5144                 stripesize = r5or6_blocks_per_row *
5145                         le16_to_cpu(map->layout_map_count);
5146 #if BITS_PER_LONG == 32
5147                 tmpdiv = first_block;
5148                 first_group = do_div(tmpdiv, stripesize);
5149                 tmpdiv = first_group;
5150                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5151                 first_group = tmpdiv;
5152                 tmpdiv = last_block;
5153                 last_group = do_div(tmpdiv, stripesize);
5154                 tmpdiv = last_group;
5155                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5156                 last_group = tmpdiv;
5157 #else
5158                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5159                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5160 #endif
5161                 if (first_group != last_group)
5162                         return IO_ACCEL_INELIGIBLE;
5163
5164                 /* Verify request is in a single row of RAID 5/6 */
5165 #if BITS_PER_LONG == 32
5166                 tmpdiv = first_block;
5167                 (void) do_div(tmpdiv, stripesize);
5168                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5169                 tmpdiv = last_block;
5170                 (void) do_div(tmpdiv, stripesize);
5171                 r5or6_last_row = r0_last_row = tmpdiv;
5172 #else
5173                 first_row = r5or6_first_row = r0_first_row =
5174                                                 first_block / stripesize;
5175                 r5or6_last_row = r0_last_row = last_block / stripesize;
5176 #endif
5177                 if (r5or6_first_row != r5or6_last_row)
5178                         return IO_ACCEL_INELIGIBLE;
5179
5180
5181                 /* Verify request is in a single column */
5182 #if BITS_PER_LONG == 32
5183                 tmpdiv = first_block;
5184                 first_row_offset = do_div(tmpdiv, stripesize);
5185                 tmpdiv = first_row_offset;
5186                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5187                 r5or6_first_row_offset = first_row_offset;
5188                 tmpdiv = last_block;
5189                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5190                 tmpdiv = r5or6_last_row_offset;
5191                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5192                 tmpdiv = r5or6_first_row_offset;
5193                 (void) do_div(tmpdiv, map->strip_size);
5194                 first_column = r5or6_first_column = tmpdiv;
5195                 tmpdiv = r5or6_last_row_offset;
5196                 (void) do_div(tmpdiv, map->strip_size);
5197                 r5or6_last_column = tmpdiv;
5198 #else
5199                 first_row_offset = r5or6_first_row_offset =
5200                         (u32)((first_block % stripesize) %
5201                                                 r5or6_blocks_per_row);
5202
5203                 r5or6_last_row_offset =
5204                         (u32)((last_block % stripesize) %
5205                                                 r5or6_blocks_per_row);
5206
5207                 first_column = r5or6_first_column =
5208                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5209                 r5or6_last_column =
5210                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5211 #endif
5212                 if (r5or6_first_column != r5or6_last_column)
5213                         return IO_ACCEL_INELIGIBLE;
5214
5215                 /* Request is eligible */
5216                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5217                         le16_to_cpu(map->row_cnt);
5218
5219                 map_index = (first_group *
5220                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5221                         (map_row * total_disks_per_row) + first_column;
5222                 break;
5223         default:
5224                 return IO_ACCEL_INELIGIBLE;
5225         }
5226
5227         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5228                 return IO_ACCEL_INELIGIBLE;
5229
5230         c->phys_disk = dev->phys_disk[map_index];
5231         if (!c->phys_disk)
5232                 return IO_ACCEL_INELIGIBLE;
5233
5234         disk_handle = dd[map_index].ioaccel_handle;
5235         disk_block = le64_to_cpu(map->disk_starting_blk) +
5236                         first_row * le16_to_cpu(map->strip_size) +
5237                         (first_row_offset - first_column *
5238                         le16_to_cpu(map->strip_size));
5239         disk_block_cnt = block_cnt;
5240
5241         /* handle differing logical/physical block sizes */
5242         if (map->phys_blk_shift) {
5243                 disk_block <<= map->phys_blk_shift;
5244                 disk_block_cnt <<= map->phys_blk_shift;
5245         }
5246         BUG_ON(disk_block_cnt > 0xffff);
5247
5248         /* build the new CDB for the physical disk I/O */
5249         if (disk_block > 0xffffffff) {
5250                 cdb[0] = is_write ? WRITE_16 : READ_16;
5251                 cdb[1] = 0;
5252                 cdb[2] = (u8) (disk_block >> 56);
5253                 cdb[3] = (u8) (disk_block >> 48);
5254                 cdb[4] = (u8) (disk_block >> 40);
5255                 cdb[5] = (u8) (disk_block >> 32);
5256                 cdb[6] = (u8) (disk_block >> 24);
5257                 cdb[7] = (u8) (disk_block >> 16);
5258                 cdb[8] = (u8) (disk_block >> 8);
5259                 cdb[9] = (u8) (disk_block);
5260                 cdb[10] = (u8) (disk_block_cnt >> 24);
5261                 cdb[11] = (u8) (disk_block_cnt >> 16);
5262                 cdb[12] = (u8) (disk_block_cnt >> 8);
5263                 cdb[13] = (u8) (disk_block_cnt);
5264                 cdb[14] = 0;
5265                 cdb[15] = 0;
5266                 cdb_len = 16;
5267         } else {
5268                 cdb[0] = is_write ? WRITE_10 : READ_10;
5269                 cdb[1] = 0;
5270                 cdb[2] = (u8) (disk_block >> 24);
5271                 cdb[3] = (u8) (disk_block >> 16);
5272                 cdb[4] = (u8) (disk_block >> 8);
5273                 cdb[5] = (u8) (disk_block);
5274                 cdb[6] = 0;
5275                 cdb[7] = (u8) (disk_block_cnt >> 8);
5276                 cdb[8] = (u8) (disk_block_cnt);
5277                 cdb[9] = 0;
5278                 cdb_len = 10;
5279         }
5280         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5281                                                 dev->scsi3addr,
5282                                                 dev->phys_disk[map_index]);
5283 }
5284
5285 /*
5286  * Submit commands down the "normal" RAID stack path
5287  * All callers to hpsa_ciss_submit must check lockup_detected
5288  * beforehand, before (opt.) and after calling cmd_alloc
5289  */
5290 static int hpsa_ciss_submit(struct ctlr_info *h,
5291         struct CommandList *c, struct scsi_cmnd *cmd,
5292         unsigned char scsi3addr[])
5293 {
5294         cmd->host_scribble = (unsigned char *) c;
5295         c->cmd_type = CMD_SCSI;
5296         c->scsi_cmd = cmd;
5297         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5298         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5299         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5300
5301         /* Fill in the request block... */
5302
5303         c->Request.Timeout = 0;
5304         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5305         c->Request.CDBLen = cmd->cmd_len;
5306         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5307         switch (cmd->sc_data_direction) {
5308         case DMA_TO_DEVICE:
5309                 c->Request.type_attr_dir =
5310                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5311                 break;
5312         case DMA_FROM_DEVICE:
5313                 c->Request.type_attr_dir =
5314                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5315                 break;
5316         case DMA_NONE:
5317                 c->Request.type_attr_dir =
5318                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5319                 break;
5320         case DMA_BIDIRECTIONAL:
5321                 /* This can happen if a buggy application does a scsi passthru
5322                  * and sets both inlen and outlen to non-zero. ( see
5323                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5324                  */
5325
5326                 c->Request.type_attr_dir =
5327                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5328                 /* This is technically wrong, and hpsa controllers should
5329                  * reject it with CMD_INVALID, which is the most correct
5330                  * response, but non-fibre backends appear to let it
5331                  * slide by, and give the same results as if this field
5332                  * were set correctly.  Either way is acceptable for
5333                  * our purposes here.
5334                  */
5335
5336                 break;
5337
5338         default:
5339                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5340                         cmd->sc_data_direction);
5341                 BUG();
5342                 break;
5343         }
5344
5345         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5346                 hpsa_cmd_resolve_and_free(h, c);
5347                 return SCSI_MLQUEUE_HOST_BUSY;
5348         }
5349         enqueue_cmd_and_start_io(h, c);
5350         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5351         return 0;
5352 }
5353
5354 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5355                                 struct CommandList *c)
5356 {
5357         dma_addr_t cmd_dma_handle, err_dma_handle;
5358
5359         /* Zero out all of commandlist except the last field, refcount */
5360         memset(c, 0, offsetof(struct CommandList, refcount));
5361         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5362         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5363         c->err_info = h->errinfo_pool + index;
5364         memset(c->err_info, 0, sizeof(*c->err_info));
5365         err_dma_handle = h->errinfo_pool_dhandle
5366             + index * sizeof(*c->err_info);
5367         c->cmdindex = index;
5368         c->busaddr = (u32) cmd_dma_handle;
5369         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5370         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5371         c->h = h;
5372         c->scsi_cmd = SCSI_CMD_IDLE;
5373 }
5374
5375 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5376 {
5377         int i;
5378
5379         for (i = 0; i < h->nr_cmds; i++) {
5380                 struct CommandList *c = h->cmd_pool + i;
5381
5382                 hpsa_cmd_init(h, i, c);
5383                 atomic_set(&c->refcount, 0);
5384         }
5385 }
5386
5387 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5388                                 struct CommandList *c)
5389 {
5390         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5391
5392         BUG_ON(c->cmdindex != index);
5393
5394         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5395         memset(c->err_info, 0, sizeof(*c->err_info));
5396         c->busaddr = (u32) cmd_dma_handle;
5397 }
5398
5399 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5400                 struct CommandList *c, struct scsi_cmnd *cmd,
5401                 unsigned char *scsi3addr)
5402 {
5403         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5404         int rc = IO_ACCEL_INELIGIBLE;
5405
5406         if (!dev)
5407                 return SCSI_MLQUEUE_HOST_BUSY;
5408
5409         cmd->host_scribble = (unsigned char *) c;
5410
5411         if (dev->offload_enabled) {
5412                 hpsa_cmd_init(h, c->cmdindex, c);
5413                 c->cmd_type = CMD_SCSI;
5414                 c->scsi_cmd = cmd;
5415                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5416                 if (rc < 0)     /* scsi_dma_map failed. */
5417                         rc = SCSI_MLQUEUE_HOST_BUSY;
5418         } else if (dev->hba_ioaccel_enabled) {
5419                 hpsa_cmd_init(h, c->cmdindex, c);
5420                 c->cmd_type = CMD_SCSI;
5421                 c->scsi_cmd = cmd;
5422                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5423                 if (rc < 0)     /* scsi_dma_map failed. */
5424                         rc = SCSI_MLQUEUE_HOST_BUSY;
5425         }
5426         return rc;
5427 }
5428
5429 static void hpsa_command_resubmit_worker(struct work_struct *work)
5430 {
5431         struct scsi_cmnd *cmd;
5432         struct hpsa_scsi_dev_t *dev;
5433         struct CommandList *c = container_of(work, struct CommandList, work);
5434
5435         cmd = c->scsi_cmd;
5436         dev = cmd->device->hostdata;
5437         if (!dev) {
5438                 cmd->result = DID_NO_CONNECT << 16;
5439                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5440         }
5441         if (c->reset_pending)
5442                 return hpsa_cmd_resolve_and_free(c->h, c);
5443         if (c->abort_pending)
5444                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5445         if (c->cmd_type == CMD_IOACCEL2) {
5446                 struct ctlr_info *h = c->h;
5447                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5448                 int rc;
5449
5450                 if (c2->error_data.serv_response ==
5451                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5452                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5453                         if (rc == 0)
5454                                 return;
5455                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5456                                 /*
5457                                  * If we get here, it means dma mapping failed.
5458                                  * Try again via scsi mid layer, which will
5459                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5460                                  */
5461                                 cmd->result = DID_IMM_RETRY << 16;
5462                                 return hpsa_cmd_free_and_done(h, c, cmd);
5463                         }
5464                         /* else, fall thru and resubmit down CISS path */
5465                 }
5466         }
5467         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5468         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5469                 /*
5470                  * If we get here, it means dma mapping failed. Try
5471                  * again via scsi mid layer, which will then get
5472                  * SCSI_MLQUEUE_HOST_BUSY.
5473                  *
5474                  * hpsa_ciss_submit will have already freed c
5475                  * if it encountered a dma mapping failure.
5476                  */
5477                 cmd->result = DID_IMM_RETRY << 16;
5478                 cmd->scsi_done(cmd);
5479         }
5480 }
5481
5482 /* Running in struct Scsi_Host->host_lock less mode */
5483 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5484 {
5485         struct ctlr_info *h;
5486         struct hpsa_scsi_dev_t *dev;
5487         unsigned char scsi3addr[8];
5488         struct CommandList *c;
5489         int rc = 0;
5490
5491         /* Get the ptr to our adapter structure out of cmd->host. */
5492         h = sdev_to_hba(cmd->device);
5493
5494         BUG_ON(cmd->request->tag < 0);
5495
5496         dev = cmd->device->hostdata;
5497         if (!dev) {
5498                 cmd->result = NOT_READY << 16; /* host byte */
5499                 cmd->scsi_done(cmd);
5500                 return 0;
5501         }
5502
5503         if (dev->removed) {
5504                 cmd->result = DID_NO_CONNECT << 16;
5505                 cmd->scsi_done(cmd);
5506                 return 0;
5507         }
5508
5509         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5510
5511         if (unlikely(lockup_detected(h))) {
5512                 cmd->result = DID_NO_CONNECT << 16;
5513                 cmd->scsi_done(cmd);
5514                 return 0;
5515         }
5516         c = cmd_tagged_alloc(h, cmd);
5517
5518         /*
5519          * This is necessary because the SML doesn't zero out this field during
5520          * error recovery.
5521          */
5522         cmd->result = 0;
5523
5524         /*
5525          * Call alternate submit routine for I/O accelerated commands.
5526          * Retries always go down the normal I/O path.
5527          */
5528         if (likely(cmd->retries == 0 &&
5529                 cmd->request->cmd_type == REQ_TYPE_FS &&
5530                 h->acciopath_status)) {
5531                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5532                 if (rc == 0)
5533                         return 0;
5534                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5535                         hpsa_cmd_resolve_and_free(h, c);
5536                         return SCSI_MLQUEUE_HOST_BUSY;
5537                 }
5538         }
5539         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5540 }
5541
5542 static void hpsa_scan_complete(struct ctlr_info *h)
5543 {
5544         unsigned long flags;
5545
5546         spin_lock_irqsave(&h->scan_lock, flags);
5547         h->scan_finished = 1;
5548         wake_up(&h->scan_wait_queue);
5549         spin_unlock_irqrestore(&h->scan_lock, flags);
5550 }
5551
5552 static void hpsa_scan_start(struct Scsi_Host *sh)
5553 {
5554         struct ctlr_info *h = shost_to_hba(sh);
5555         unsigned long flags;
5556
5557         /*
5558          * Don't let rescans be initiated on a controller known to be locked
5559          * up.  If the controller locks up *during* a rescan, that thread is
5560          * probably hosed, but at least we can prevent new rescan threads from
5561          * piling up on a locked up controller.
5562          */
5563         if (unlikely(lockup_detected(h)))
5564                 return hpsa_scan_complete(h);
5565
5566         /*
5567          * If a scan is already waiting to run, no need to add another
5568          */
5569         spin_lock_irqsave(&h->scan_lock, flags);
5570         if (h->scan_waiting) {
5571                 spin_unlock_irqrestore(&h->scan_lock, flags);
5572                 return;
5573         }
5574
5575         spin_unlock_irqrestore(&h->scan_lock, flags);
5576
5577         /* wait until any scan already in progress is finished. */
5578         while (1) {
5579                 spin_lock_irqsave(&h->scan_lock, flags);
5580                 if (h->scan_finished)
5581                         break;
5582                 h->scan_waiting = 1;
5583                 spin_unlock_irqrestore(&h->scan_lock, flags);
5584                 wait_event(h->scan_wait_queue, h->scan_finished);
5585                 /* Note: We don't need to worry about a race between this
5586                  * thread and driver unload because the midlayer will
5587                  * have incremented the reference count, so unload won't
5588                  * happen if we're in here.
5589                  */
5590         }
5591         h->scan_finished = 0; /* mark scan as in progress */
5592         h->scan_waiting = 0;
5593         spin_unlock_irqrestore(&h->scan_lock, flags);
5594
5595         if (unlikely(lockup_detected(h)))
5596                 return hpsa_scan_complete(h);
5597
5598         hpsa_update_scsi_devices(h);
5599
5600         hpsa_scan_complete(h);
5601 }
5602
5603 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5604 {
5605         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5606
5607         if (!logical_drive)
5608                 return -ENODEV;
5609
5610         if (qdepth < 1)
5611                 qdepth = 1;
5612         else if (qdepth > logical_drive->queue_depth)
5613                 qdepth = logical_drive->queue_depth;
5614
5615         return scsi_change_queue_depth(sdev, qdepth);
5616 }
5617
5618 static int hpsa_scan_finished(struct Scsi_Host *sh,
5619         unsigned long elapsed_time)
5620 {
5621         struct ctlr_info *h = shost_to_hba(sh);
5622         unsigned long flags;
5623         int finished;
5624
5625         spin_lock_irqsave(&h->scan_lock, flags);
5626         finished = h->scan_finished;
5627         spin_unlock_irqrestore(&h->scan_lock, flags);
5628         return finished;
5629 }
5630
5631 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5632 {
5633         struct Scsi_Host *sh;
5634
5635         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5636         if (sh == NULL) {
5637                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5638                 return -ENOMEM;
5639         }
5640
5641         sh->io_port = 0;
5642         sh->n_io_port = 0;
5643         sh->this_id = -1;
5644         sh->max_channel = 3;
5645         sh->max_cmd_len = MAX_COMMAND_SIZE;
5646         sh->max_lun = HPSA_MAX_LUN;
5647         sh->max_id = HPSA_MAX_LUN;
5648         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5649         sh->cmd_per_lun = sh->can_queue;
5650         sh->sg_tablesize = h->maxsgentries;
5651         sh->transportt = hpsa_sas_transport_template;
5652         sh->hostdata[0] = (unsigned long) h;
5653         sh->irq = h->intr[h->intr_mode];
5654         sh->unique_id = sh->irq;
5655
5656         h->scsi_host = sh;
5657         return 0;
5658 }
5659
5660 static int hpsa_scsi_add_host(struct ctlr_info *h)
5661 {
5662         int rv;
5663
5664         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5665         if (rv) {
5666                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5667                 return rv;
5668         }
5669         scsi_scan_host(h->scsi_host);
5670         return 0;
5671 }
5672
5673 /*
5674  * The block layer has already gone to the trouble of picking out a unique,
5675  * small-integer tag for this request.  We use an offset from that value as
5676  * an index to select our command block.  (The offset allows us to reserve the
5677  * low-numbered entries for our own uses.)
5678  */
5679 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5680 {
5681         int idx = scmd->request->tag;
5682
5683         if (idx < 0)
5684                 return idx;
5685
5686         /* Offset to leave space for internal cmds. */
5687         return idx += HPSA_NRESERVED_CMDS;
5688 }
5689
5690 /*
5691  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5692  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5693  */
5694 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5695                                 struct CommandList *c, unsigned char lunaddr[],
5696                                 int reply_queue)
5697 {
5698         int rc;
5699
5700         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5701         (void) fill_cmd(c, TEST_UNIT_READY, h,
5702                         NULL, 0, 0, lunaddr, TYPE_CMD);
5703         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5704         if (rc)
5705                 return rc;
5706         /* no unmap needed here because no data xfer. */
5707
5708         /* Check if the unit is already ready. */
5709         if (c->err_info->CommandStatus == CMD_SUCCESS)
5710                 return 0;
5711
5712         /*
5713          * The first command sent after reset will receive "unit attention" to
5714          * indicate that the LUN has been reset...this is actually what we're
5715          * looking for (but, success is good too).
5716          */
5717         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5718                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5719                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5720                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5721                 return 0;
5722
5723         return 1;
5724 }
5725
5726 /*
5727  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5728  * returns zero when the unit is ready, and non-zero when giving up.
5729  */
5730 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5731                                 struct CommandList *c,
5732                                 unsigned char lunaddr[], int reply_queue)
5733 {
5734         int rc;
5735         int count = 0;
5736         int waittime = 1; /* seconds */
5737
5738         /* Send test unit ready until device ready, or give up. */
5739         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5740
5741                 /*
5742                  * Wait for a bit.  do this first, because if we send
5743                  * the TUR right away, the reset will just abort it.
5744                  */
5745                 msleep(1000 * waittime);
5746
5747                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5748                 if (!rc)
5749                         break;
5750
5751                 /* Increase wait time with each try, up to a point. */
5752                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5753                         waittime *= 2;
5754
5755                 dev_warn(&h->pdev->dev,
5756                          "waiting %d secs for device to become ready.\n",
5757                          waittime);
5758         }
5759
5760         return rc;
5761 }
5762
5763 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5764                                            unsigned char lunaddr[],
5765                                            int reply_queue)
5766 {
5767         int first_queue;
5768         int last_queue;
5769         int rq;
5770         int rc = 0;
5771         struct CommandList *c;
5772
5773         c = cmd_alloc(h);
5774
5775         /*
5776          * If no specific reply queue was requested, then send the TUR
5777          * repeatedly, requesting a reply on each reply queue; otherwise execute
5778          * the loop exactly once using only the specified queue.
5779          */
5780         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5781                 first_queue = 0;
5782                 last_queue = h->nreply_queues - 1;
5783         } else {
5784                 first_queue = reply_queue;
5785                 last_queue = reply_queue;
5786         }
5787
5788         for (rq = first_queue; rq <= last_queue; rq++) {
5789                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5790                 if (rc)
5791                         break;
5792         }
5793
5794         if (rc)
5795                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5796         else
5797                 dev_warn(&h->pdev->dev, "device is ready.\n");
5798
5799         cmd_free(h, c);
5800         return rc;
5801 }
5802
5803 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5804  * complaining.  Doing a host- or bus-reset can't do anything good here.
5805  */
5806 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5807 {
5808         int rc;
5809         struct ctlr_info *h;
5810         struct hpsa_scsi_dev_t *dev;
5811         u8 reset_type;
5812         char msg[48];
5813
5814         /* find the controller to which the command to be aborted was sent */
5815         h = sdev_to_hba(scsicmd->device);
5816         if (h == NULL) /* paranoia */
5817                 return FAILED;
5818
5819         if (lockup_detected(h))
5820                 return FAILED;
5821
5822         dev = scsicmd->device->hostdata;
5823         if (!dev) {
5824                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5825                 return FAILED;
5826         }
5827
5828         /* if controller locked up, we can guarantee command won't complete */
5829         if (lockup_detected(h)) {
5830                 snprintf(msg, sizeof(msg),
5831                          "cmd %d RESET FAILED, lockup detected",
5832                          hpsa_get_cmd_index(scsicmd));
5833                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5834                 return FAILED;
5835         }
5836
5837         /* this reset request might be the result of a lockup; check */
5838         if (detect_controller_lockup(h)) {
5839                 snprintf(msg, sizeof(msg),
5840                          "cmd %d RESET FAILED, new lockup detected",
5841                          hpsa_get_cmd_index(scsicmd));
5842                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5843                 return FAILED;
5844         }
5845
5846         /* Do not attempt on controller */
5847         if (is_hba_lunid(dev->scsi3addr))
5848                 return SUCCESS;
5849
5850         if (is_logical_dev_addr_mode(dev->scsi3addr))
5851                 reset_type = HPSA_DEVICE_RESET_MSG;
5852         else
5853                 reset_type = HPSA_PHYS_TARGET_RESET;
5854
5855         sprintf(msg, "resetting %s",
5856                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5857         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5858
5859         h->reset_in_progress = 1;
5860
5861         /* send a reset to the SCSI LUN which the command was sent to */
5862         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5863                            DEFAULT_REPLY_QUEUE);
5864         sprintf(msg, "reset %s %s",
5865                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5866                 rc == 0 ? "completed successfully" : "failed");
5867         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5868         h->reset_in_progress = 0;
5869         return rc == 0 ? SUCCESS : FAILED;
5870 }
5871
5872 static void swizzle_abort_tag(u8 *tag)
5873 {
5874         u8 original_tag[8];
5875
5876         memcpy(original_tag, tag, 8);
5877         tag[0] = original_tag[3];
5878         tag[1] = original_tag[2];
5879         tag[2] = original_tag[1];
5880         tag[3] = original_tag[0];
5881         tag[4] = original_tag[7];
5882         tag[5] = original_tag[6];
5883         tag[6] = original_tag[5];
5884         tag[7] = original_tag[4];
5885 }
5886
5887 static void hpsa_get_tag(struct ctlr_info *h,
5888         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5889 {
5890         u64 tag;
5891         if (c->cmd_type == CMD_IOACCEL1) {
5892                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5893                         &h->ioaccel_cmd_pool[c->cmdindex];
5894                 tag = le64_to_cpu(cm1->tag);
5895                 *tagupper = cpu_to_le32(tag >> 32);
5896                 *taglower = cpu_to_le32(tag);
5897                 return;
5898         }
5899         if (c->cmd_type == CMD_IOACCEL2) {
5900                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5901                         &h->ioaccel2_cmd_pool[c->cmdindex];
5902                 /* upper tag not used in ioaccel2 mode */
5903                 memset(tagupper, 0, sizeof(*tagupper));
5904                 *taglower = cm2->Tag;
5905                 return;
5906         }
5907         tag = le64_to_cpu(c->Header.tag);
5908         *tagupper = cpu_to_le32(tag >> 32);
5909         *taglower = cpu_to_le32(tag);
5910 }
5911
5912 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5913         struct CommandList *abort, int reply_queue)
5914 {
5915         int rc = IO_OK;
5916         struct CommandList *c;
5917         struct ErrorInfo *ei;
5918         __le32 tagupper, taglower;
5919
5920         c = cmd_alloc(h);
5921
5922         /* fill_cmd can't fail here, no buffer to map */
5923         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5924                 0, 0, scsi3addr, TYPE_MSG);
5925         if (h->needs_abort_tags_swizzled)
5926                 swizzle_abort_tag(&c->Request.CDB[4]);
5927         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5928         hpsa_get_tag(h, abort, &taglower, &tagupper);
5929         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5930                 __func__, tagupper, taglower);
5931         /* no unmap needed here because no data xfer. */
5932
5933         ei = c->err_info;
5934         switch (ei->CommandStatus) {
5935         case CMD_SUCCESS:
5936                 break;
5937         case CMD_TMF_STATUS:
5938                 rc = hpsa_evaluate_tmf_status(h, c);
5939                 break;
5940         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5941                 rc = -1;
5942                 break;
5943         default:
5944                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5945                         __func__, tagupper, taglower);
5946                 hpsa_scsi_interpret_error(h, c);
5947                 rc = -1;
5948                 break;
5949         }
5950         cmd_free(h, c);
5951         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5952                 __func__, tagupper, taglower);
5953         return rc;
5954 }
5955
5956 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5957         struct CommandList *command_to_abort, int reply_queue)
5958 {
5959         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5960         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5961         struct io_accel2_cmd *c2a =
5962                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5963         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5964         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5965
5966         if (!dev)
5967                 return;
5968
5969         /*
5970          * We're overlaying struct hpsa_tmf_struct on top of something which
5971          * was allocated as a struct io_accel2_cmd, so we better be sure it
5972          * actually fits, and doesn't overrun the error info space.
5973          */
5974         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5975                         sizeof(struct io_accel2_cmd));
5976         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5977                         offsetof(struct hpsa_tmf_struct, error_len) +
5978                                 sizeof(ac->error_len));
5979
5980         c->cmd_type = IOACCEL2_TMF;
5981         c->scsi_cmd = SCSI_CMD_BUSY;
5982
5983         /* Adjust the DMA address to point to the accelerated command buffer */
5984         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5985                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5986         BUG_ON(c->busaddr & 0x0000007F);
5987
5988         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5989         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5990         ac->reply_queue = reply_queue;
5991         ac->tmf = IOACCEL2_TMF_ABORT;
5992         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5993         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5994         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5995         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5996         ac->error_ptr = cpu_to_le64(c->busaddr +
5997                         offsetof(struct io_accel2_cmd, error_data));
5998         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5999 }
6000
6001 /* ioaccel2 path firmware cannot handle abort task requests.
6002  * Change abort requests to physical target reset, and send to the
6003  * address of the physical disk used for the ioaccel 2 command.
6004  * Return 0 on success (IO_OK)
6005  *       -1 on failure
6006  */
6007
6008 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
6009         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
6010 {
6011         int rc = IO_OK;
6012         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
6013         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
6014         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
6015         unsigned char *psa = &phys_scsi3addr[0];
6016
6017         /* Get a pointer to the hpsa logical device. */
6018         scmd = abort->scsi_cmd;
6019         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
6020         if (dev == NULL) {
6021                 dev_warn(&h->pdev->dev,
6022                         "Cannot abort: no device pointer for command.\n");
6023                         return -1; /* not abortable */
6024         }
6025
6026         if (h->raid_offload_debug > 0)
6027                 dev_info(&h->pdev->dev,
6028                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6029                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6030                         "Reset as abort",
6031                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
6032                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
6033
6034         if (!dev->offload_enabled) {
6035                 dev_warn(&h->pdev->dev,
6036                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6037                 return -1; /* not abortable */
6038         }
6039
6040         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6041         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6042                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6043                 return -1; /* not abortable */
6044         }
6045
6046         /* send the reset */
6047         if (h->raid_offload_debug > 0)
6048                 dev_info(&h->pdev->dev,
6049                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6050                         psa[0], psa[1], psa[2], psa[3],
6051                         psa[4], psa[5], psa[6], psa[7]);
6052         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6053         if (rc != 0) {
6054                 dev_warn(&h->pdev->dev,
6055                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6056                         psa[0], psa[1], psa[2], psa[3],
6057                         psa[4], psa[5], psa[6], psa[7]);
6058                 return rc; /* failed to reset */
6059         }
6060
6061         /* wait for device to recover */
6062         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6063                 dev_warn(&h->pdev->dev,
6064                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6065                         psa[0], psa[1], psa[2], psa[3],
6066                         psa[4], psa[5], psa[6], psa[7]);
6067                 return -1;  /* failed to recover */
6068         }
6069
6070         /* device recovered */
6071         dev_info(&h->pdev->dev,
6072                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6073                 psa[0], psa[1], psa[2], psa[3],
6074                 psa[4], psa[5], psa[6], psa[7]);
6075
6076         return rc; /* success */
6077 }
6078
6079 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6080         struct CommandList *abort, int reply_queue)
6081 {
6082         int rc = IO_OK;
6083         struct CommandList *c;
6084         __le32 taglower, tagupper;
6085         struct hpsa_scsi_dev_t *dev;
6086         struct io_accel2_cmd *c2;
6087
6088         dev = abort->scsi_cmd->device->hostdata;
6089         if (!dev)
6090                 return -1;
6091
6092         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6093                 return -1;
6094
6095         c = cmd_alloc(h);
6096         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6097         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6098         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6099         hpsa_get_tag(h, abort, &taglower, &tagupper);
6100         dev_dbg(&h->pdev->dev,
6101                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6102                 __func__, tagupper, taglower);
6103         /* no unmap needed here because no data xfer. */
6104
6105         dev_dbg(&h->pdev->dev,
6106                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6107                 __func__, tagupper, taglower, c2->error_data.serv_response);
6108         switch (c2->error_data.serv_response) {
6109         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6110         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6111                 rc = 0;
6112                 break;
6113         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6114         case IOACCEL2_SERV_RESPONSE_FAILURE:
6115         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6116                 rc = -1;
6117                 break;
6118         default:
6119                 dev_warn(&h->pdev->dev,
6120                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6121                         __func__, tagupper, taglower,
6122                         c2->error_data.serv_response);
6123                 rc = -1;
6124         }
6125         cmd_free(h, c);
6126         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6127                 tagupper, taglower);
6128         return rc;
6129 }
6130
6131 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6132         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6133 {
6134         /*
6135          * ioccelerator mode 2 commands should be aborted via the
6136          * accelerated path, since RAID path is unaware of these commands,
6137          * but not all underlying firmware can handle abort TMF.
6138          * Change abort to physical device reset when abort TMF is unsupported.
6139          */
6140         if (abort->cmd_type == CMD_IOACCEL2) {
6141                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6142                         dev->physical_device)
6143                         return hpsa_send_abort_ioaccel2(h, abort,
6144                                                 reply_queue);
6145                 else
6146                         return hpsa_send_reset_as_abort_ioaccel2(h,
6147                                                         dev->scsi3addr,
6148                                                         abort, reply_queue);
6149         }
6150         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6151 }
6152
6153 /* Find out which reply queue a command was meant to return on */
6154 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6155                                         struct CommandList *c)
6156 {
6157         if (c->cmd_type == CMD_IOACCEL2)
6158                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6159         return c->Header.ReplyQueue;
6160 }
6161
6162 /*
6163  * Limit concurrency of abort commands to prevent
6164  * over-subscription of commands
6165  */
6166 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6167 {
6168 #define ABORT_CMD_WAIT_MSECS 5000
6169         return !wait_event_timeout(h->abort_cmd_wait_queue,
6170                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6171                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6172 }
6173
6174 /* Send an abort for the specified command.
6175  *      If the device and controller support it,
6176  *              send a task abort request.
6177  */
6178 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6179 {
6180
6181         int rc;
6182         struct ctlr_info *h;
6183         struct hpsa_scsi_dev_t *dev;
6184         struct CommandList *abort; /* pointer to command to be aborted */
6185         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6186         char msg[256];          /* For debug messaging. */
6187         int ml = 0;
6188         __le32 tagupper, taglower;
6189         int refcount, reply_queue;
6190
6191         if (sc == NULL)
6192                 return FAILED;
6193
6194         if (sc->device == NULL)
6195                 return FAILED;
6196
6197         /* Find the controller of the command to be aborted */
6198         h = sdev_to_hba(sc->device);
6199         if (h == NULL)
6200                 return FAILED;
6201
6202         /* Find the device of the command to be aborted */
6203         dev = sc->device->hostdata;
6204         if (!dev) {
6205                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6206                                 msg);
6207                 return FAILED;
6208         }
6209
6210         /* If controller locked up, we can guarantee command won't complete */
6211         if (lockup_detected(h)) {
6212                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6213                                         "ABORT FAILED, lockup detected");
6214                 return FAILED;
6215         }
6216
6217         /* This is a good time to check if controller lockup has occurred */
6218         if (detect_controller_lockup(h)) {
6219                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6220                                         "ABORT FAILED, new lockup detected");
6221                 return FAILED;
6222         }
6223
6224         /* Check that controller supports some kind of task abort */
6225         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6226                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6227                 return FAILED;
6228
6229         memset(msg, 0, sizeof(msg));
6230         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6231                 h->scsi_host->host_no, sc->device->channel,
6232                 sc->device->id, sc->device->lun,
6233                 "Aborting command", sc);
6234
6235         /* Get SCSI command to be aborted */
6236         abort = (struct CommandList *) sc->host_scribble;
6237         if (abort == NULL) {
6238                 /* This can happen if the command already completed. */
6239                 return SUCCESS;
6240         }
6241         refcount = atomic_inc_return(&abort->refcount);
6242         if (refcount == 1) { /* Command is done already. */
6243                 cmd_free(h, abort);
6244                 return SUCCESS;
6245         }
6246
6247         /* Don't bother trying the abort if we know it won't work. */
6248         if (abort->cmd_type != CMD_IOACCEL2 &&
6249                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6250                 cmd_free(h, abort);
6251                 return FAILED;
6252         }
6253
6254         /*
6255          * Check that we're aborting the right command.
6256          * It's possible the CommandList already completed and got re-used.
6257          */
6258         if (abort->scsi_cmd != sc) {
6259                 cmd_free(h, abort);
6260                 return SUCCESS;
6261         }
6262
6263         abort->abort_pending = true;
6264         hpsa_get_tag(h, abort, &taglower, &tagupper);
6265         reply_queue = hpsa_extract_reply_queue(h, abort);
6266         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6267         as  = abort->scsi_cmd;
6268         if (as != NULL)
6269                 ml += sprintf(msg+ml,
6270                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6271                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6272                         as->serial_number);
6273         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6274         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6275
6276         /*
6277          * Command is in flight, or possibly already completed
6278          * by the firmware (but not to the scsi mid layer) but we can't
6279          * distinguish which.  Send the abort down.
6280          */
6281         if (wait_for_available_abort_cmd(h)) {
6282                 dev_warn(&h->pdev->dev,
6283                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6284                         msg);
6285                 cmd_free(h, abort);
6286                 return FAILED;
6287         }
6288         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6289         atomic_inc(&h->abort_cmds_available);
6290         wake_up_all(&h->abort_cmd_wait_queue);
6291         if (rc != 0) {
6292                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6293                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6294                                 "FAILED to abort command");
6295                 cmd_free(h, abort);
6296                 return FAILED;
6297         }
6298         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6299         wait_event(h->event_sync_wait_queue,
6300                    abort->scsi_cmd != sc || lockup_detected(h));
6301         cmd_free(h, abort);
6302         return !lockup_detected(h) ? SUCCESS : FAILED;
6303 }
6304
6305 /*
6306  * For operations with an associated SCSI command, a command block is allocated
6307  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6308  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6309  * the complement, although cmd_free() may be called instead.
6310  */
6311 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6312                                             struct scsi_cmnd *scmd)
6313 {
6314         int idx = hpsa_get_cmd_index(scmd);
6315         struct CommandList *c = h->cmd_pool + idx;
6316
6317         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6318                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6319                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6320                 /* The index value comes from the block layer, so if it's out of
6321                  * bounds, it's probably not our bug.
6322                  */
6323                 BUG();
6324         }
6325
6326         atomic_inc(&c->refcount);
6327         if (unlikely(!hpsa_is_cmd_idle(c))) {
6328                 /*
6329                  * We expect that the SCSI layer will hand us a unique tag
6330                  * value.  Thus, there should never be a collision here between
6331                  * two requests...because if the selected command isn't idle
6332                  * then someone is going to be very disappointed.
6333                  */
6334                 dev_err(&h->pdev->dev,
6335                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6336                         idx);
6337                 if (c->scsi_cmd != NULL)
6338                         scsi_print_command(c->scsi_cmd);
6339                 scsi_print_command(scmd);
6340         }
6341
6342         hpsa_cmd_partial_init(h, idx, c);
6343         return c;
6344 }
6345
6346 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6347 {
6348         /*
6349          * Release our reference to the block.  We don't need to do anything
6350          * else to free it, because it is accessed by index.  (There's no point
6351          * in checking the result of the decrement, since we cannot guarantee
6352          * that there isn't a concurrent abort which is also accessing it.)
6353          */
6354         (void)atomic_dec(&c->refcount);
6355 }
6356
6357 /*
6358  * For operations that cannot sleep, a command block is allocated at init,
6359  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6360  * which ones are free or in use.  Lock must be held when calling this.
6361  * cmd_free() is the complement.
6362  * This function never gives up and returns NULL.  If it hangs,
6363  * another thread must call cmd_free() to free some tags.
6364  */
6365
6366 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6367 {
6368         struct CommandList *c;
6369         int refcount, i;
6370         int offset = 0;
6371
6372         /*
6373          * There is some *extremely* small but non-zero chance that that
6374          * multiple threads could get in here, and one thread could
6375          * be scanning through the list of bits looking for a free
6376          * one, but the free ones are always behind him, and other
6377          * threads sneak in behind him and eat them before he can
6378          * get to them, so that while there is always a free one, a
6379          * very unlucky thread might be starved anyway, never able to
6380          * beat the other threads.  In reality, this happens so
6381          * infrequently as to be indistinguishable from never.
6382          *
6383          * Note that we start allocating commands before the SCSI host structure
6384          * is initialized.  Since the search starts at bit zero, this
6385          * all works, since we have at least one command structure available;
6386          * however, it means that the structures with the low indexes have to be
6387          * reserved for driver-initiated requests, while requests from the block
6388          * layer will use the higher indexes.
6389          */
6390
6391         for (;;) {
6392                 i = find_next_zero_bit(h->cmd_pool_bits,
6393                                         HPSA_NRESERVED_CMDS,
6394                                         offset);
6395                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6396                         offset = 0;
6397                         continue;
6398                 }
6399                 c = h->cmd_pool + i;
6400                 refcount = atomic_inc_return(&c->refcount);
6401                 if (unlikely(refcount > 1)) {
6402                         cmd_free(h, c); /* already in use */
6403                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6404                         continue;
6405                 }
6406                 set_bit(i & (BITS_PER_LONG - 1),
6407                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6408                 break; /* it's ours now. */
6409         }
6410         hpsa_cmd_partial_init(h, i, c);
6411         return c;
6412 }
6413
6414 /*
6415  * This is the complementary operation to cmd_alloc().  Note, however, in some
6416  * corner cases it may also be used to free blocks allocated by
6417  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6418  * the clear-bit is harmless.
6419  */
6420 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6421 {
6422         if (atomic_dec_and_test(&c->refcount)) {
6423                 int i;
6424
6425                 i = c - h->cmd_pool;
6426                 clear_bit(i & (BITS_PER_LONG - 1),
6427                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6428         }
6429 }
6430
6431 #ifdef CONFIG_COMPAT
6432
6433 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6434         void __user *arg)
6435 {
6436         IOCTL32_Command_struct __user *arg32 =
6437             (IOCTL32_Command_struct __user *) arg;
6438         IOCTL_Command_struct arg64;
6439         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6440         int err;
6441         u32 cp;
6442
6443         memset(&arg64, 0, sizeof(arg64));
6444         err = 0;
6445         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6446                            sizeof(arg64.LUN_info));
6447         err |= copy_from_user(&arg64.Request, &arg32->Request,
6448                            sizeof(arg64.Request));
6449         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6450                            sizeof(arg64.error_info));
6451         err |= get_user(arg64.buf_size, &arg32->buf_size);
6452         err |= get_user(cp, &arg32->buf);
6453         arg64.buf = compat_ptr(cp);
6454         err |= copy_to_user(p, &arg64, sizeof(arg64));
6455
6456         if (err)
6457                 return -EFAULT;
6458
6459         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6460         if (err)
6461                 return err;
6462         err |= copy_in_user(&arg32->error_info, &p->error_info,
6463                          sizeof(arg32->error_info));
6464         if (err)
6465                 return -EFAULT;
6466         return err;
6467 }
6468
6469 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6470         int cmd, void __user *arg)
6471 {
6472         BIG_IOCTL32_Command_struct __user *arg32 =
6473             (BIG_IOCTL32_Command_struct __user *) arg;
6474         BIG_IOCTL_Command_struct arg64;
6475         BIG_IOCTL_Command_struct __user *p =
6476             compat_alloc_user_space(sizeof(arg64));
6477         int err;
6478         u32 cp;
6479
6480         memset(&arg64, 0, sizeof(arg64));
6481         err = 0;
6482         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6483                            sizeof(arg64.LUN_info));
6484         err |= copy_from_user(&arg64.Request, &arg32->Request,
6485                            sizeof(arg64.Request));
6486         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6487                            sizeof(arg64.error_info));
6488         err |= get_user(arg64.buf_size, &arg32->buf_size);
6489         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6490         err |= get_user(cp, &arg32->buf);
6491         arg64.buf = compat_ptr(cp);
6492         err |= copy_to_user(p, &arg64, sizeof(arg64));
6493
6494         if (err)
6495                 return -EFAULT;
6496
6497         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6498         if (err)
6499                 return err;
6500         err |= copy_in_user(&arg32->error_info, &p->error_info,
6501                          sizeof(arg32->error_info));
6502         if (err)
6503                 return -EFAULT;
6504         return err;
6505 }
6506
6507 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6508 {
6509         switch (cmd) {
6510         case CCISS_GETPCIINFO:
6511         case CCISS_GETINTINFO:
6512         case CCISS_SETINTINFO:
6513         case CCISS_GETNODENAME:
6514         case CCISS_SETNODENAME:
6515         case CCISS_GETHEARTBEAT:
6516         case CCISS_GETBUSTYPES:
6517         case CCISS_GETFIRMVER:
6518         case CCISS_GETDRIVVER:
6519         case CCISS_REVALIDVOLS:
6520         case CCISS_DEREGDISK:
6521         case CCISS_REGNEWDISK:
6522         case CCISS_REGNEWD:
6523         case CCISS_RESCANDISK:
6524         case CCISS_GETLUNINFO:
6525                 return hpsa_ioctl(dev, cmd, arg);
6526
6527         case CCISS_PASSTHRU32:
6528                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6529         case CCISS_BIG_PASSTHRU32:
6530                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6531
6532         default:
6533                 return -ENOIOCTLCMD;
6534         }
6535 }
6536 #endif
6537
6538 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6539 {
6540         struct hpsa_pci_info pciinfo;
6541
6542         if (!argp)
6543                 return -EINVAL;
6544         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6545         pciinfo.bus = h->pdev->bus->number;
6546         pciinfo.dev_fn = h->pdev->devfn;
6547         pciinfo.board_id = h->board_id;
6548         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6549                 return -EFAULT;
6550         return 0;
6551 }
6552
6553 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6554 {
6555         DriverVer_type DriverVer;
6556         unsigned char vmaj, vmin, vsubmin;
6557         int rc;
6558
6559         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6560                 &vmaj, &vmin, &vsubmin);
6561         if (rc != 3) {
6562                 dev_info(&h->pdev->dev, "driver version string '%s' "
6563                         "unrecognized.", HPSA_DRIVER_VERSION);
6564                 vmaj = 0;
6565                 vmin = 0;
6566                 vsubmin = 0;
6567         }
6568         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6569         if (!argp)
6570                 return -EINVAL;
6571         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6572                 return -EFAULT;
6573         return 0;
6574 }
6575
6576 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6577 {
6578         IOCTL_Command_struct iocommand;
6579         struct CommandList *c;
6580         char *buff = NULL;
6581         u64 temp64;
6582         int rc = 0;
6583
6584         if (!argp)
6585                 return -EINVAL;
6586         if (!capable(CAP_SYS_RAWIO))
6587                 return -EPERM;
6588         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6589                 return -EFAULT;
6590         if ((iocommand.buf_size < 1) &&
6591             (iocommand.Request.Type.Direction != XFER_NONE)) {
6592                 return -EINVAL;
6593         }
6594         if (iocommand.buf_size > 0) {
6595                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6596                 if (buff == NULL)
6597                         return -ENOMEM;
6598                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6599                         /* Copy the data into the buffer we created */
6600                         if (copy_from_user(buff, iocommand.buf,
6601                                 iocommand.buf_size)) {
6602                                 rc = -EFAULT;
6603                                 goto out_kfree;
6604                         }
6605                 } else {
6606                         memset(buff, 0, iocommand.buf_size);
6607                 }
6608         }
6609         c = cmd_alloc(h);
6610
6611         /* Fill in the command type */
6612         c->cmd_type = CMD_IOCTL_PEND;
6613         c->scsi_cmd = SCSI_CMD_BUSY;
6614         /* Fill in Command Header */
6615         c->Header.ReplyQueue = 0; /* unused in simple mode */
6616         if (iocommand.buf_size > 0) {   /* buffer to fill */
6617                 c->Header.SGList = 1;
6618                 c->Header.SGTotal = cpu_to_le16(1);
6619         } else  { /* no buffers to fill */
6620                 c->Header.SGList = 0;
6621                 c->Header.SGTotal = cpu_to_le16(0);
6622         }
6623         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6624
6625         /* Fill in Request block */
6626         memcpy(&c->Request, &iocommand.Request,
6627                 sizeof(c->Request));
6628
6629         /* Fill in the scatter gather information */
6630         if (iocommand.buf_size > 0) {
6631                 temp64 = pci_map_single(h->pdev, buff,
6632                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6633                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6634                         c->SG[0].Addr = cpu_to_le64(0);
6635                         c->SG[0].Len = cpu_to_le32(0);
6636                         rc = -ENOMEM;
6637                         goto out;
6638                 }
6639                 c->SG[0].Addr = cpu_to_le64(temp64);
6640                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6641                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6642         }
6643         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6644                                         NO_TIMEOUT);
6645         if (iocommand.buf_size > 0)
6646                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6647         check_ioctl_unit_attention(h, c);
6648         if (rc) {
6649                 rc = -EIO;
6650                 goto out;
6651         }
6652
6653         /* Copy the error information out */
6654         memcpy(&iocommand.error_info, c->err_info,
6655                 sizeof(iocommand.error_info));
6656         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6657                 rc = -EFAULT;
6658                 goto out;
6659         }
6660         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6661                 iocommand.buf_size > 0) {
6662                 /* Copy the data out of the buffer we created */
6663                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6664                         rc = -EFAULT;
6665                         goto out;
6666                 }
6667         }
6668 out:
6669         cmd_free(h, c);
6670 out_kfree:
6671         kfree(buff);
6672         return rc;
6673 }
6674
6675 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6676 {
6677         BIG_IOCTL_Command_struct *ioc;
6678         struct CommandList *c;
6679         unsigned char **buff = NULL;
6680         int *buff_size = NULL;
6681         u64 temp64;
6682         BYTE sg_used = 0;
6683         int status = 0;
6684         u32 left;
6685         u32 sz;
6686         BYTE __user *data_ptr;
6687
6688         if (!argp)
6689                 return -EINVAL;
6690         if (!capable(CAP_SYS_RAWIO))
6691                 return -EPERM;
6692         ioc = (BIG_IOCTL_Command_struct *)
6693             kmalloc(sizeof(*ioc), GFP_KERNEL);
6694         if (!ioc) {
6695                 status = -ENOMEM;
6696                 goto cleanup1;
6697         }
6698         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6699                 status = -EFAULT;
6700                 goto cleanup1;
6701         }
6702         if ((ioc->buf_size < 1) &&
6703             (ioc->Request.Type.Direction != XFER_NONE)) {
6704                 status = -EINVAL;
6705                 goto cleanup1;
6706         }
6707         /* Check kmalloc limits  using all SGs */
6708         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6709                 status = -EINVAL;
6710                 goto cleanup1;
6711         }
6712         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6713                 status = -EINVAL;
6714                 goto cleanup1;
6715         }
6716         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6717         if (!buff) {
6718                 status = -ENOMEM;
6719                 goto cleanup1;
6720         }
6721         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6722         if (!buff_size) {
6723                 status = -ENOMEM;
6724                 goto cleanup1;
6725         }
6726         left = ioc->buf_size;
6727         data_ptr = ioc->buf;
6728         while (left) {
6729                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6730                 buff_size[sg_used] = sz;
6731                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6732                 if (buff[sg_used] == NULL) {
6733                         status = -ENOMEM;
6734                         goto cleanup1;
6735                 }
6736                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6737                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6738                                 status = -EFAULT;
6739                                 goto cleanup1;
6740                         }
6741                 } else
6742                         memset(buff[sg_used], 0, sz);
6743                 left -= sz;
6744                 data_ptr += sz;
6745                 sg_used++;
6746         }
6747         c = cmd_alloc(h);
6748
6749         c->cmd_type = CMD_IOCTL_PEND;
6750         c->scsi_cmd = SCSI_CMD_BUSY;
6751         c->Header.ReplyQueue = 0;
6752         c->Header.SGList = (u8) sg_used;
6753         c->Header.SGTotal = cpu_to_le16(sg_used);
6754         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6755         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6756         if (ioc->buf_size > 0) {
6757                 int i;
6758                 for (i = 0; i < sg_used; i++) {
6759                         temp64 = pci_map_single(h->pdev, buff[i],
6760                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6761                         if (dma_mapping_error(&h->pdev->dev,
6762                                                         (dma_addr_t) temp64)) {
6763                                 c->SG[i].Addr = cpu_to_le64(0);
6764                                 c->SG[i].Len = cpu_to_le32(0);
6765                                 hpsa_pci_unmap(h->pdev, c, i,
6766                                         PCI_DMA_BIDIRECTIONAL);
6767                                 status = -ENOMEM;
6768                                 goto cleanup0;
6769                         }
6770                         c->SG[i].Addr = cpu_to_le64(temp64);
6771                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6772                         c->SG[i].Ext = cpu_to_le32(0);
6773                 }
6774                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6775         }
6776         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6777                                                 NO_TIMEOUT);
6778         if (sg_used)
6779                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6780         check_ioctl_unit_attention(h, c);
6781         if (status) {
6782                 status = -EIO;
6783                 goto cleanup0;
6784         }
6785
6786         /* Copy the error information out */
6787         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6788         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6789                 status = -EFAULT;
6790                 goto cleanup0;
6791         }
6792         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6793                 int i;
6794
6795                 /* Copy the data out of the buffer we created */
6796                 BYTE __user *ptr = ioc->buf;
6797                 for (i = 0; i < sg_used; i++) {
6798                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6799                                 status = -EFAULT;
6800                                 goto cleanup0;
6801                         }
6802                         ptr += buff_size[i];
6803                 }
6804         }
6805         status = 0;
6806 cleanup0:
6807         cmd_free(h, c);
6808 cleanup1:
6809         if (buff) {
6810                 int i;
6811
6812                 for (i = 0; i < sg_used; i++)
6813                         kfree(buff[i]);
6814                 kfree(buff);
6815         }
6816         kfree(buff_size);
6817         kfree(ioc);
6818         return status;
6819 }
6820
6821 static void check_ioctl_unit_attention(struct ctlr_info *h,
6822         struct CommandList *c)
6823 {
6824         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6825                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6826                 (void) check_for_unit_attention(h, c);
6827 }
6828
6829 /*
6830  * ioctl
6831  */
6832 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6833 {
6834         struct ctlr_info *h;
6835         void __user *argp = (void __user *)arg;
6836         int rc;
6837
6838         h = sdev_to_hba(dev);
6839
6840         switch (cmd) {
6841         case CCISS_DEREGDISK:
6842         case CCISS_REGNEWDISK:
6843         case CCISS_REGNEWD:
6844                 hpsa_scan_start(h->scsi_host);
6845                 return 0;
6846         case CCISS_GETPCIINFO:
6847                 return hpsa_getpciinfo_ioctl(h, argp);
6848         case CCISS_GETDRIVVER:
6849                 return hpsa_getdrivver_ioctl(h, argp);
6850         case CCISS_PASSTHRU:
6851                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6852                         return -EAGAIN;
6853                 rc = hpsa_passthru_ioctl(h, argp);
6854                 atomic_inc(&h->passthru_cmds_avail);
6855                 return rc;
6856         case CCISS_BIG_PASSTHRU:
6857                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6858                         return -EAGAIN;
6859                 rc = hpsa_big_passthru_ioctl(h, argp);
6860                 atomic_inc(&h->passthru_cmds_avail);
6861                 return rc;
6862         default:
6863                 return -ENOTTY;
6864         }
6865 }
6866
6867 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6868                                 u8 reset_type)
6869 {
6870         struct CommandList *c;
6871
6872         c = cmd_alloc(h);
6873
6874         /* fill_cmd can't fail here, no data buffer to map */
6875         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6876                 RAID_CTLR_LUNID, TYPE_MSG);
6877         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6878         c->waiting = NULL;
6879         enqueue_cmd_and_start_io(h, c);
6880         /* Don't wait for completion, the reset won't complete.  Don't free
6881          * the command either.  This is the last command we will send before
6882          * re-initializing everything, so it doesn't matter and won't leak.
6883          */
6884         return;
6885 }
6886
6887 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6888         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6889         int cmd_type)
6890 {
6891         int pci_dir = XFER_NONE;
6892         u64 tag; /* for commands to be aborted */
6893
6894         c->cmd_type = CMD_IOCTL_PEND;
6895         c->scsi_cmd = SCSI_CMD_BUSY;
6896         c->Header.ReplyQueue = 0;
6897         if (buff != NULL && size > 0) {
6898                 c->Header.SGList = 1;
6899                 c->Header.SGTotal = cpu_to_le16(1);
6900         } else {
6901                 c->Header.SGList = 0;
6902                 c->Header.SGTotal = cpu_to_le16(0);
6903         }
6904         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6905
6906         if (cmd_type == TYPE_CMD) {
6907                 switch (cmd) {
6908                 case HPSA_INQUIRY:
6909                         /* are we trying to read a vital product page */
6910                         if (page_code & VPD_PAGE) {
6911                                 c->Request.CDB[1] = 0x01;
6912                                 c->Request.CDB[2] = (page_code & 0xff);
6913                         }
6914                         c->Request.CDBLen = 6;
6915                         c->Request.type_attr_dir =
6916                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6917                         c->Request.Timeout = 0;
6918                         c->Request.CDB[0] = HPSA_INQUIRY;
6919                         c->Request.CDB[4] = size & 0xFF;
6920                         break;
6921                 case HPSA_REPORT_LOG:
6922                 case HPSA_REPORT_PHYS:
6923                         /* Talking to controller so It's a physical command
6924                            mode = 00 target = 0.  Nothing to write.
6925                          */
6926                         c->Request.CDBLen = 12;
6927                         c->Request.type_attr_dir =
6928                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6929                         c->Request.Timeout = 0;
6930                         c->Request.CDB[0] = cmd;
6931                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6932                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6933                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6934                         c->Request.CDB[9] = size & 0xFF;
6935                         break;
6936                 case BMIC_SENSE_DIAG_OPTIONS:
6937                         c->Request.CDBLen = 16;
6938                         c->Request.type_attr_dir =
6939                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6940                         c->Request.Timeout = 0;
6941                         /* Spec says this should be BMIC_WRITE */
6942                         c->Request.CDB[0] = BMIC_READ;
6943                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6944                         break;
6945                 case BMIC_SET_DIAG_OPTIONS:
6946                         c->Request.CDBLen = 16;
6947                         c->Request.type_attr_dir =
6948                                         TYPE_ATTR_DIR(cmd_type,
6949                                                 ATTR_SIMPLE, XFER_WRITE);
6950                         c->Request.Timeout = 0;
6951                         c->Request.CDB[0] = BMIC_WRITE;
6952                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6953                         break;
6954                 case HPSA_CACHE_FLUSH:
6955                         c->Request.CDBLen = 12;
6956                         c->Request.type_attr_dir =
6957                                         TYPE_ATTR_DIR(cmd_type,
6958                                                 ATTR_SIMPLE, XFER_WRITE);
6959                         c->Request.Timeout = 0;
6960                         c->Request.CDB[0] = BMIC_WRITE;
6961                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6962                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6963                         c->Request.CDB[8] = size & 0xFF;
6964                         break;
6965                 case TEST_UNIT_READY:
6966                         c->Request.CDBLen = 6;
6967                         c->Request.type_attr_dir =
6968                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6969                         c->Request.Timeout = 0;
6970                         break;
6971                 case HPSA_GET_RAID_MAP:
6972                         c->Request.CDBLen = 12;
6973                         c->Request.type_attr_dir =
6974                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6975                         c->Request.Timeout = 0;
6976                         c->Request.CDB[0] = HPSA_CISS_READ;
6977                         c->Request.CDB[1] = cmd;
6978                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6979                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6980                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6981                         c->Request.CDB[9] = size & 0xFF;
6982                         break;
6983                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6984                         c->Request.CDBLen = 10;
6985                         c->Request.type_attr_dir =
6986                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6987                         c->Request.Timeout = 0;
6988                         c->Request.CDB[0] = BMIC_READ;
6989                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6990                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6991                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6992                         break;
6993                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6994                         c->Request.CDBLen = 10;
6995                         c->Request.type_attr_dir =
6996                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6997                         c->Request.Timeout = 0;
6998                         c->Request.CDB[0] = BMIC_READ;
6999                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
7000                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7001                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7002                         break;
7003                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
7004                         c->Request.CDBLen = 10;
7005                         c->Request.type_attr_dir =
7006                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7007                         c->Request.Timeout = 0;
7008                         c->Request.CDB[0] = BMIC_READ;
7009                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
7010                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7011                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7012                         break;
7013                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
7014                         c->Request.CDBLen = 10;
7015                         c->Request.type_attr_dir =
7016                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7017                         c->Request.Timeout = 0;
7018                         c->Request.CDB[0] = BMIC_READ;
7019                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
7020                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7021                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7022                         break;
7023                 case BMIC_IDENTIFY_CONTROLLER:
7024                         c->Request.CDBLen = 10;
7025                         c->Request.type_attr_dir =
7026                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7027                         c->Request.Timeout = 0;
7028                         c->Request.CDB[0] = BMIC_READ;
7029                         c->Request.CDB[1] = 0;
7030                         c->Request.CDB[2] = 0;
7031                         c->Request.CDB[3] = 0;
7032                         c->Request.CDB[4] = 0;
7033                         c->Request.CDB[5] = 0;
7034                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7035                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7036                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7037                         c->Request.CDB[9] = 0;
7038                         break;
7039                 default:
7040                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7041                         BUG();
7042                         return -1;
7043                 }
7044         } else if (cmd_type == TYPE_MSG) {
7045                 switch (cmd) {
7046
7047                 case  HPSA_PHYS_TARGET_RESET:
7048                         c->Request.CDBLen = 16;
7049                         c->Request.type_attr_dir =
7050                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7051                         c->Request.Timeout = 0; /* Don't time out */
7052                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7053                         c->Request.CDB[0] = HPSA_RESET;
7054                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7055                         /* Physical target reset needs no control bytes 4-7*/
7056                         c->Request.CDB[4] = 0x00;
7057                         c->Request.CDB[5] = 0x00;
7058                         c->Request.CDB[6] = 0x00;
7059                         c->Request.CDB[7] = 0x00;
7060                         break;
7061                 case  HPSA_DEVICE_RESET_MSG:
7062                         c->Request.CDBLen = 16;
7063                         c->Request.type_attr_dir =
7064                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7065                         c->Request.Timeout = 0; /* Don't time out */
7066                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7067                         c->Request.CDB[0] =  cmd;
7068                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7069                         /* If bytes 4-7 are zero, it means reset the */
7070                         /* LunID device */
7071                         c->Request.CDB[4] = 0x00;
7072                         c->Request.CDB[5] = 0x00;
7073                         c->Request.CDB[6] = 0x00;
7074                         c->Request.CDB[7] = 0x00;
7075                         break;
7076                 case  HPSA_ABORT_MSG:
7077                         memcpy(&tag, buff, sizeof(tag));
7078                         dev_dbg(&h->pdev->dev,
7079                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7080                                 tag, c->Header.tag);
7081                         c->Request.CDBLen = 16;
7082                         c->Request.type_attr_dir =
7083                                         TYPE_ATTR_DIR(cmd_type,
7084                                                 ATTR_SIMPLE, XFER_WRITE);
7085                         c->Request.Timeout = 0; /* Don't time out */
7086                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7087                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7088                         c->Request.CDB[2] = 0x00; /* reserved */
7089                         c->Request.CDB[3] = 0x00; /* reserved */
7090                         /* Tag to abort goes in CDB[4]-CDB[11] */
7091                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7092                         c->Request.CDB[12] = 0x00; /* reserved */
7093                         c->Request.CDB[13] = 0x00; /* reserved */
7094                         c->Request.CDB[14] = 0x00; /* reserved */
7095                         c->Request.CDB[15] = 0x00; /* reserved */
7096                 break;
7097                 default:
7098                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7099                                 cmd);
7100                         BUG();
7101                 }
7102         } else {
7103                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7104                 BUG();
7105         }
7106
7107         switch (GET_DIR(c->Request.type_attr_dir)) {
7108         case XFER_READ:
7109                 pci_dir = PCI_DMA_FROMDEVICE;
7110                 break;
7111         case XFER_WRITE:
7112                 pci_dir = PCI_DMA_TODEVICE;
7113                 break;
7114         case XFER_NONE:
7115                 pci_dir = PCI_DMA_NONE;
7116                 break;
7117         default:
7118                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7119         }
7120         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7121                 return -1;
7122         return 0;
7123 }
7124
7125 /*
7126  * Map (physical) PCI mem into (virtual) kernel space
7127  */
7128 static void __iomem *remap_pci_mem(ulong base, ulong size)
7129 {
7130         ulong page_base = ((ulong) base) & PAGE_MASK;
7131         ulong page_offs = ((ulong) base) - page_base;
7132         void __iomem *page_remapped = ioremap_nocache(page_base,
7133                 page_offs + size);
7134
7135         return page_remapped ? (page_remapped + page_offs) : NULL;
7136 }
7137
7138 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7139 {
7140         return h->access.command_completed(h, q);
7141 }
7142
7143 static inline bool interrupt_pending(struct ctlr_info *h)
7144 {
7145         return h->access.intr_pending(h);
7146 }
7147
7148 static inline long interrupt_not_for_us(struct ctlr_info *h)
7149 {
7150         return (h->access.intr_pending(h) == 0) ||
7151                 (h->interrupts_enabled == 0);
7152 }
7153
7154 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7155         u32 raw_tag)
7156 {
7157         if (unlikely(tag_index >= h->nr_cmds)) {
7158                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7159                 return 1;
7160         }
7161         return 0;
7162 }
7163
7164 static inline void finish_cmd(struct CommandList *c)
7165 {
7166         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7167         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7168                         || c->cmd_type == CMD_IOACCEL2))
7169                 complete_scsi_command(c);
7170         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7171                 complete(c->waiting);
7172 }
7173
7174 /* process completion of an indexed ("direct lookup") command */
7175 static inline void process_indexed_cmd(struct ctlr_info *h,
7176         u32 raw_tag)
7177 {
7178         u32 tag_index;
7179         struct CommandList *c;
7180
7181         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7182         if (!bad_tag(h, tag_index, raw_tag)) {
7183                 c = h->cmd_pool + tag_index;
7184                 finish_cmd(c);
7185         }
7186 }
7187
7188 /* Some controllers, like p400, will give us one interrupt
7189  * after a soft reset, even if we turned interrupts off.
7190  * Only need to check for this in the hpsa_xxx_discard_completions
7191  * functions.
7192  */
7193 static int ignore_bogus_interrupt(struct ctlr_info *h)
7194 {
7195         if (likely(!reset_devices))
7196                 return 0;
7197
7198         if (likely(h->interrupts_enabled))
7199                 return 0;
7200
7201         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7202                 "(known firmware bug.)  Ignoring.\n");
7203
7204         return 1;
7205 }
7206
7207 /*
7208  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7209  * Relies on (h-q[x] == x) being true for x such that
7210  * 0 <= x < MAX_REPLY_QUEUES.
7211  */
7212 static struct ctlr_info *queue_to_hba(u8 *queue)
7213 {
7214         return container_of((queue - *queue), struct ctlr_info, q[0]);
7215 }
7216
7217 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7218 {
7219         struct ctlr_info *h = queue_to_hba(queue);
7220         u8 q = *(u8 *) queue;
7221         u32 raw_tag;
7222
7223         if (ignore_bogus_interrupt(h))
7224                 return IRQ_NONE;
7225
7226         if (interrupt_not_for_us(h))
7227                 return IRQ_NONE;
7228         h->last_intr_timestamp = get_jiffies_64();
7229         while (interrupt_pending(h)) {
7230                 raw_tag = get_next_completion(h, q);
7231                 while (raw_tag != FIFO_EMPTY)
7232                         raw_tag = next_command(h, q);
7233         }
7234         return IRQ_HANDLED;
7235 }
7236
7237 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7238 {
7239         struct ctlr_info *h = queue_to_hba(queue);
7240         u32 raw_tag;
7241         u8 q = *(u8 *) queue;
7242
7243         if (ignore_bogus_interrupt(h))
7244                 return IRQ_NONE;
7245
7246         h->last_intr_timestamp = get_jiffies_64();
7247         raw_tag = get_next_completion(h, q);
7248         while (raw_tag != FIFO_EMPTY)
7249                 raw_tag = next_command(h, q);
7250         return IRQ_HANDLED;
7251 }
7252
7253 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7254 {
7255         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7256         u32 raw_tag;
7257         u8 q = *(u8 *) queue;
7258
7259         if (interrupt_not_for_us(h))
7260                 return IRQ_NONE;
7261         h->last_intr_timestamp = get_jiffies_64();
7262         while (interrupt_pending(h)) {
7263                 raw_tag = get_next_completion(h, q);
7264                 while (raw_tag != FIFO_EMPTY) {
7265                         process_indexed_cmd(h, raw_tag);
7266                         raw_tag = next_command(h, q);
7267                 }
7268         }
7269         return IRQ_HANDLED;
7270 }
7271
7272 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7273 {
7274         struct ctlr_info *h = queue_to_hba(queue);
7275         u32 raw_tag;
7276         u8 q = *(u8 *) queue;
7277
7278         h->last_intr_timestamp = get_jiffies_64();
7279         raw_tag = get_next_completion(h, q);
7280         while (raw_tag != FIFO_EMPTY) {
7281                 process_indexed_cmd(h, raw_tag);
7282                 raw_tag = next_command(h, q);
7283         }
7284         return IRQ_HANDLED;
7285 }
7286
7287 /* Send a message CDB to the firmware. Careful, this only works
7288  * in simple mode, not performant mode due to the tag lookup.
7289  * We only ever use this immediately after a controller reset.
7290  */
7291 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7292                         unsigned char type)
7293 {
7294         struct Command {
7295                 struct CommandListHeader CommandHeader;
7296                 struct RequestBlock Request;
7297                 struct ErrDescriptor ErrorDescriptor;
7298         };
7299         struct Command *cmd;
7300         static const size_t cmd_sz = sizeof(*cmd) +
7301                                         sizeof(cmd->ErrorDescriptor);
7302         dma_addr_t paddr64;
7303         __le32 paddr32;
7304         u32 tag;
7305         void __iomem *vaddr;
7306         int i, err;
7307
7308         vaddr = pci_ioremap_bar(pdev, 0);
7309         if (vaddr == NULL)
7310                 return -ENOMEM;
7311
7312         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7313          * CCISS commands, so they must be allocated from the lower 4GiB of
7314          * memory.
7315          */
7316         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7317         if (err) {
7318                 iounmap(vaddr);
7319                 return err;
7320         }
7321
7322         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7323         if (cmd == NULL) {
7324                 iounmap(vaddr);
7325                 return -ENOMEM;
7326         }
7327
7328         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7329          * although there's no guarantee, we assume that the address is at
7330          * least 4-byte aligned (most likely, it's page-aligned).
7331          */
7332         paddr32 = cpu_to_le32(paddr64);
7333
7334         cmd->CommandHeader.ReplyQueue = 0;
7335         cmd->CommandHeader.SGList = 0;
7336         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7337         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7338         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7339
7340         cmd->Request.CDBLen = 16;
7341         cmd->Request.type_attr_dir =
7342                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7343         cmd->Request.Timeout = 0; /* Don't time out */
7344         cmd->Request.CDB[0] = opcode;
7345         cmd->Request.CDB[1] = type;
7346         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7347         cmd->ErrorDescriptor.Addr =
7348                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7349         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7350
7351         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7352
7353         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7354                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7355                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7356                         break;
7357                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7358         }
7359
7360         iounmap(vaddr);
7361
7362         /* we leak the DMA buffer here ... no choice since the controller could
7363          *  still complete the command.
7364          */
7365         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7366                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7367                         opcode, type);
7368                 return -ETIMEDOUT;
7369         }
7370
7371         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7372
7373         if (tag & HPSA_ERROR_BIT) {
7374                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7375                         opcode, type);
7376                 return -EIO;
7377         }
7378
7379         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7380                 opcode, type);
7381         return 0;
7382 }
7383
7384 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7385
7386 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7387         void __iomem *vaddr, u32 use_doorbell)
7388 {
7389
7390         if (use_doorbell) {
7391                 /* For everything after the P600, the PCI power state method
7392                  * of resetting the controller doesn't work, so we have this
7393                  * other way using the doorbell register.
7394                  */
7395                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7396                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7397
7398                 /* PMC hardware guys tell us we need a 10 second delay after
7399                  * doorbell reset and before any attempt to talk to the board
7400                  * at all to ensure that this actually works and doesn't fall
7401                  * over in some weird corner cases.
7402                  */
7403                 msleep(10000);
7404         } else { /* Try to do it the PCI power state way */
7405
7406                 /* Quoting from the Open CISS Specification: "The Power
7407                  * Management Control/Status Register (CSR) controls the power
7408                  * state of the device.  The normal operating state is D0,
7409                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7410                  * the controller, place the interface device in D3 then to D0,
7411                  * this causes a secondary PCI reset which will reset the
7412                  * controller." */
7413
7414                 int rc = 0;
7415
7416                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7417
7418                 /* enter the D3hot power management state */
7419                 rc = pci_set_power_state(pdev, PCI_D3hot);
7420                 if (rc)
7421                         return rc;
7422
7423                 msleep(500);
7424
7425                 /* enter the D0 power management state */
7426                 rc = pci_set_power_state(pdev, PCI_D0);
7427                 if (rc)
7428                         return rc;
7429
7430                 /*
7431                  * The P600 requires a small delay when changing states.
7432                  * Otherwise we may think the board did not reset and we bail.
7433                  * This for kdump only and is particular to the P600.
7434                  */
7435                 msleep(500);
7436         }
7437         return 0;
7438 }
7439
7440 static void init_driver_version(char *driver_version, int len)
7441 {
7442         memset(driver_version, 0, len);
7443         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7444 }
7445
7446 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7447 {
7448         char *driver_version;
7449         int i, size = sizeof(cfgtable->driver_version);
7450
7451         driver_version = kmalloc(size, GFP_KERNEL);
7452         if (!driver_version)
7453                 return -ENOMEM;
7454
7455         init_driver_version(driver_version, size);
7456         for (i = 0; i < size; i++)
7457                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7458         kfree(driver_version);
7459         return 0;
7460 }
7461
7462 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7463                                           unsigned char *driver_ver)
7464 {
7465         int i;
7466
7467         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7468                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7469 }
7470
7471 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7472 {
7473
7474         char *driver_ver, *old_driver_ver;
7475         int rc, size = sizeof(cfgtable->driver_version);
7476
7477         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7478         if (!old_driver_ver)
7479                 return -ENOMEM;
7480         driver_ver = old_driver_ver + size;
7481
7482         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7483          * should have been changed, otherwise we know the reset failed.
7484          */
7485         init_driver_version(old_driver_ver, size);
7486         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7487         rc = !memcmp(driver_ver, old_driver_ver, size);
7488         kfree(old_driver_ver);
7489         return rc;
7490 }
7491 /* This does a hard reset of the controller using PCI power management
7492  * states or the using the doorbell register.
7493  */
7494 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7495 {
7496         u64 cfg_offset;
7497         u32 cfg_base_addr;
7498         u64 cfg_base_addr_index;
7499         void __iomem *vaddr;
7500         unsigned long paddr;
7501         u32 misc_fw_support;
7502         int rc;
7503         struct CfgTable __iomem *cfgtable;
7504         u32 use_doorbell;
7505         u16 command_register;
7506
7507         /* For controllers as old as the P600, this is very nearly
7508          * the same thing as
7509          *
7510          * pci_save_state(pci_dev);
7511          * pci_set_power_state(pci_dev, PCI_D3hot);
7512          * pci_set_power_state(pci_dev, PCI_D0);
7513          * pci_restore_state(pci_dev);
7514          *
7515          * For controllers newer than the P600, the pci power state
7516          * method of resetting doesn't work so we have another way
7517          * using the doorbell register.
7518          */
7519
7520         if (!ctlr_is_resettable(board_id)) {
7521                 dev_warn(&pdev->dev, "Controller not resettable\n");
7522                 return -ENODEV;
7523         }
7524
7525         /* if controller is soft- but not hard resettable... */
7526         if (!ctlr_is_hard_resettable(board_id))
7527                 return -ENOTSUPP; /* try soft reset later. */
7528
7529         /* Save the PCI command register */
7530         pci_read_config_word(pdev, 4, &command_register);
7531         pci_save_state(pdev);
7532
7533         /* find the first memory BAR, so we can find the cfg table */
7534         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7535         if (rc)
7536                 return rc;
7537         vaddr = remap_pci_mem(paddr, 0x250);
7538         if (!vaddr)
7539                 return -ENOMEM;
7540
7541         /* find cfgtable in order to check if reset via doorbell is supported */
7542         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7543                                         &cfg_base_addr_index, &cfg_offset);
7544         if (rc)
7545                 goto unmap_vaddr;
7546         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7547                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7548         if (!cfgtable) {
7549                 rc = -ENOMEM;
7550                 goto unmap_vaddr;
7551         }
7552         rc = write_driver_ver_to_cfgtable(cfgtable);
7553         if (rc)
7554                 goto unmap_cfgtable;
7555
7556         /* If reset via doorbell register is supported, use that.
7557          * There are two such methods.  Favor the newest method.
7558          */
7559         misc_fw_support = readl(&cfgtable->misc_fw_support);
7560         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7561         if (use_doorbell) {
7562                 use_doorbell = DOORBELL_CTLR_RESET2;
7563         } else {
7564                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7565                 if (use_doorbell) {
7566                         dev_warn(&pdev->dev,
7567                                 "Soft reset not supported. Firmware update is required.\n");
7568                         rc = -ENOTSUPP; /* try soft reset */
7569                         goto unmap_cfgtable;
7570                 }
7571         }
7572
7573         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7574         if (rc)
7575                 goto unmap_cfgtable;
7576
7577         pci_restore_state(pdev);
7578         pci_write_config_word(pdev, 4, command_register);
7579
7580         /* Some devices (notably the HP Smart Array 5i Controller)
7581            need a little pause here */
7582         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7583
7584         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7585         if (rc) {
7586                 dev_warn(&pdev->dev,
7587                         "Failed waiting for board to become ready after hard reset\n");
7588                 goto unmap_cfgtable;
7589         }
7590
7591         rc = controller_reset_failed(vaddr);
7592         if (rc < 0)
7593                 goto unmap_cfgtable;
7594         if (rc) {
7595                 dev_warn(&pdev->dev, "Unable to successfully reset "
7596                         "controller. Will try soft reset.\n");
7597                 rc = -ENOTSUPP;
7598         } else {
7599                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7600         }
7601
7602 unmap_cfgtable:
7603         iounmap(cfgtable);
7604
7605 unmap_vaddr:
7606         iounmap(vaddr);
7607         return rc;
7608 }
7609
7610 /*
7611  *  We cannot read the structure directly, for portability we must use
7612  *   the io functions.
7613  *   This is for debug only.
7614  */
7615 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7616 {
7617 #ifdef HPSA_DEBUG
7618         int i;
7619         char temp_name[17];
7620
7621         dev_info(dev, "Controller Configuration information\n");
7622         dev_info(dev, "------------------------------------\n");
7623         for (i = 0; i < 4; i++)
7624                 temp_name[i] = readb(&(tb->Signature[i]));
7625         temp_name[4] = '\0';
7626         dev_info(dev, "   Signature = %s\n", temp_name);
7627         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7628         dev_info(dev, "   Transport methods supported = 0x%x\n",
7629                readl(&(tb->TransportSupport)));
7630         dev_info(dev, "   Transport methods active = 0x%x\n",
7631                readl(&(tb->TransportActive)));
7632         dev_info(dev, "   Requested transport Method = 0x%x\n",
7633                readl(&(tb->HostWrite.TransportRequest)));
7634         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7635                readl(&(tb->HostWrite.CoalIntDelay)));
7636         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7637                readl(&(tb->HostWrite.CoalIntCount)));
7638         dev_info(dev, "   Max outstanding commands = %d\n",
7639                readl(&(tb->CmdsOutMax)));
7640         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7641         for (i = 0; i < 16; i++)
7642                 temp_name[i] = readb(&(tb->ServerName[i]));
7643         temp_name[16] = '\0';
7644         dev_info(dev, "   Server Name = %s\n", temp_name);
7645         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7646                 readl(&(tb->HeartBeat)));
7647 #endif                          /* HPSA_DEBUG */
7648 }
7649
7650 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7651 {
7652         int i, offset, mem_type, bar_type;
7653
7654         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7655                 return 0;
7656         offset = 0;
7657         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7658                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7659                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7660                         offset += 4;
7661                 else {
7662                         mem_type = pci_resource_flags(pdev, i) &
7663                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7664                         switch (mem_type) {
7665                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7666                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7667                                 offset += 4;    /* 32 bit */
7668                                 break;
7669                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7670                                 offset += 8;
7671                                 break;
7672                         default:        /* reserved in PCI 2.2 */
7673                                 dev_warn(&pdev->dev,
7674                                        "base address is invalid\n");
7675                                 return -1;
7676                                 break;
7677                         }
7678                 }
7679                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7680                         return i + 1;
7681         }
7682         return -1;
7683 }
7684
7685 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7686 {
7687         if (h->msix_vector) {
7688                 if (h->pdev->msix_enabled)
7689                         pci_disable_msix(h->pdev);
7690                 h->msix_vector = 0;
7691         } else if (h->msi_vector) {
7692                 if (h->pdev->msi_enabled)
7693                         pci_disable_msi(h->pdev);
7694                 h->msi_vector = 0;
7695         }
7696 }
7697
7698 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7699  * controllers that are capable. If not, we use legacy INTx mode.
7700  */
7701 static void hpsa_interrupt_mode(struct ctlr_info *h)
7702 {
7703 #ifdef CONFIG_PCI_MSI
7704         int err, i;
7705         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7706
7707         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7708                 hpsa_msix_entries[i].vector = 0;
7709                 hpsa_msix_entries[i].entry = i;
7710         }
7711
7712         /* Some boards advertise MSI but don't really support it */
7713         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7714             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7715                 goto default_int_mode;
7716         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7717                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7718                 h->msix_vector = MAX_REPLY_QUEUES;
7719                 if (h->msix_vector > num_online_cpus())
7720                         h->msix_vector = num_online_cpus();
7721                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7722                                             1, h->msix_vector);
7723                 if (err < 0) {
7724                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7725                         h->msix_vector = 0;
7726                         goto single_msi_mode;
7727                 } else if (err < h->msix_vector) {
7728                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7729                                "available\n", err);
7730                 }
7731                 h->msix_vector = err;
7732                 for (i = 0; i < h->msix_vector; i++)
7733                         h->intr[i] = hpsa_msix_entries[i].vector;
7734                 return;
7735         }
7736 single_msi_mode:
7737         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7738                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7739                 if (!pci_enable_msi(h->pdev))
7740                         h->msi_vector = 1;
7741                 else
7742                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7743         }
7744 default_int_mode:
7745 #endif                          /* CONFIG_PCI_MSI */
7746         /* if we get here we're going to use the default interrupt mode */
7747         h->intr[h->intr_mode] = h->pdev->irq;
7748 }
7749
7750 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7751 {
7752         int i;
7753         u32 subsystem_vendor_id, subsystem_device_id;
7754
7755         subsystem_vendor_id = pdev->subsystem_vendor;
7756         subsystem_device_id = pdev->subsystem_device;
7757         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7758                     subsystem_vendor_id;
7759
7760         for (i = 0; i < ARRAY_SIZE(products); i++)
7761                 if (*board_id == products[i].board_id)
7762                         return i;
7763
7764         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7765                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7766                 !hpsa_allow_any) {
7767                 dev_warn(&pdev->dev, "unrecognized board ID: "
7768                         "0x%08x, ignoring.\n", *board_id);
7769                         return -ENODEV;
7770         }
7771         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7772 }
7773
7774 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7775                                     unsigned long *memory_bar)
7776 {
7777         int i;
7778
7779         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7780                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7781                         /* addressing mode bits already removed */
7782                         *memory_bar = pci_resource_start(pdev, i);
7783                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7784                                 *memory_bar);
7785                         return 0;
7786                 }
7787         dev_warn(&pdev->dev, "no memory BAR found\n");
7788         return -ENODEV;
7789 }
7790
7791 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7792                                      int wait_for_ready)
7793 {
7794         int i, iterations;
7795         u32 scratchpad;
7796         if (wait_for_ready)
7797                 iterations = HPSA_BOARD_READY_ITERATIONS;
7798         else
7799                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7800
7801         for (i = 0; i < iterations; i++) {
7802                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7803                 if (wait_for_ready) {
7804                         if (scratchpad == HPSA_FIRMWARE_READY)
7805                                 return 0;
7806                 } else {
7807                         if (scratchpad != HPSA_FIRMWARE_READY)
7808                                 return 0;
7809                 }
7810                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7811         }
7812         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7813         return -ENODEV;
7814 }
7815
7816 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7817                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7818                                u64 *cfg_offset)
7819 {
7820         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7821         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7822         *cfg_base_addr &= (u32) 0x0000ffff;
7823         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7824         if (*cfg_base_addr_index == -1) {
7825                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7826                 return -ENODEV;
7827         }
7828         return 0;
7829 }
7830
7831 static void hpsa_free_cfgtables(struct ctlr_info *h)
7832 {
7833         if (h->transtable) {
7834                 iounmap(h->transtable);
7835                 h->transtable = NULL;
7836         }
7837         if (h->cfgtable) {
7838                 iounmap(h->cfgtable);
7839                 h->cfgtable = NULL;
7840         }
7841 }
7842
7843 /* Find and map CISS config table and transfer table
7844 + * several items must be unmapped (freed) later
7845 + * */
7846 static int hpsa_find_cfgtables(struct ctlr_info *h)
7847 {
7848         u64 cfg_offset;
7849         u32 cfg_base_addr;
7850         u64 cfg_base_addr_index;
7851         u32 trans_offset;
7852         int rc;
7853
7854         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7855                 &cfg_base_addr_index, &cfg_offset);
7856         if (rc)
7857                 return rc;
7858         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7859                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7860         if (!h->cfgtable) {
7861                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7862                 return -ENOMEM;
7863         }
7864         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7865         if (rc)
7866                 return rc;
7867         /* Find performant mode table. */
7868         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7869         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7870                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7871                                 sizeof(*h->transtable));
7872         if (!h->transtable) {
7873                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7874                 hpsa_free_cfgtables(h);
7875                 return -ENOMEM;
7876         }
7877         return 0;
7878 }
7879
7880 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7881 {
7882 #define MIN_MAX_COMMANDS 16
7883         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7884
7885         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7886
7887         /* Limit commands in memory limited kdump scenario. */
7888         if (reset_devices && h->max_commands > 32)
7889                 h->max_commands = 32;
7890
7891         if (h->max_commands < MIN_MAX_COMMANDS) {
7892                 dev_warn(&h->pdev->dev,
7893                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7894                         h->max_commands,
7895                         MIN_MAX_COMMANDS);
7896                 h->max_commands = MIN_MAX_COMMANDS;
7897         }
7898 }
7899
7900 /* If the controller reports that the total max sg entries is greater than 512,
7901  * then we know that chained SG blocks work.  (Original smart arrays did not
7902  * support chained SG blocks and would return zero for max sg entries.)
7903  */
7904 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7905 {
7906         return h->maxsgentries > 512;
7907 }
7908
7909 /* Interrogate the hardware for some limits:
7910  * max commands, max SG elements without chaining, and with chaining,
7911  * SG chain block size, etc.
7912  */
7913 static void hpsa_find_board_params(struct ctlr_info *h)
7914 {
7915         hpsa_get_max_perf_mode_cmds(h);
7916         h->nr_cmds = h->max_commands;
7917         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7918         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7919         if (hpsa_supports_chained_sg_blocks(h)) {
7920                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7921                 h->max_cmd_sg_entries = 32;
7922                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7923                 h->maxsgentries--; /* save one for chain pointer */
7924         } else {
7925                 /*
7926                  * Original smart arrays supported at most 31 s/g entries
7927                  * embedded inline in the command (trying to use more
7928                  * would lock up the controller)
7929                  */
7930                 h->max_cmd_sg_entries = 31;
7931                 h->maxsgentries = 31; /* default to traditional values */
7932                 h->chainsize = 0;
7933         }
7934
7935         /* Find out what task management functions are supported and cache */
7936         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7937         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7938                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7939         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7940                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7941         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7942                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7943 }
7944
7945 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7946 {
7947         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7948                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7949                 return false;
7950         }
7951         return true;
7952 }
7953
7954 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7955 {
7956         u32 driver_support;
7957
7958         driver_support = readl(&(h->cfgtable->driver_support));
7959         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7960 #ifdef CONFIG_X86
7961         driver_support |= ENABLE_SCSI_PREFETCH;
7962 #endif
7963         driver_support |= ENABLE_UNIT_ATTN;
7964         writel(driver_support, &(h->cfgtable->driver_support));
7965 }
7966
7967 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7968  * in a prefetch beyond physical memory.
7969  */
7970 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7971 {
7972         u32 dma_prefetch;
7973
7974         if (h->board_id != 0x3225103C)
7975                 return;
7976         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7977         dma_prefetch |= 0x8000;
7978         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7979 }
7980
7981 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7982 {
7983         int i;
7984         u32 doorbell_value;
7985         unsigned long flags;
7986         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7987         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7988                 spin_lock_irqsave(&h->lock, flags);
7989                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7990                 spin_unlock_irqrestore(&h->lock, flags);
7991                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7992                         goto done;
7993                 /* delay and try again */
7994                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7995         }
7996         return -ENODEV;
7997 done:
7998         return 0;
7999 }
8000
8001 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
8002 {
8003         int i;
8004         u32 doorbell_value;
8005         unsigned long flags;
8006
8007         /* under certain very rare conditions, this can take awhile.
8008          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
8009          * as we enter this code.)
8010          */
8011         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
8012                 if (h->remove_in_progress)
8013                         goto done;
8014                 spin_lock_irqsave(&h->lock, flags);
8015                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
8016                 spin_unlock_irqrestore(&h->lock, flags);
8017                 if (!(doorbell_value & CFGTBL_ChangeReq))
8018                         goto done;
8019                 /* delay and try again */
8020                 msleep(MODE_CHANGE_WAIT_INTERVAL);
8021         }
8022         return -ENODEV;
8023 done:
8024         return 0;
8025 }
8026
8027 /* return -ENODEV or other reason on error, 0 on success */
8028 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8029 {
8030         u32 trans_support;
8031
8032         trans_support = readl(&(h->cfgtable->TransportSupport));
8033         if (!(trans_support & SIMPLE_MODE))
8034                 return -ENOTSUPP;
8035
8036         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8037
8038         /* Update the field, and then ring the doorbell */
8039         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8040         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8041         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8042         if (hpsa_wait_for_mode_change_ack(h))
8043                 goto error;
8044         print_cfg_table(&h->pdev->dev, h->cfgtable);
8045         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8046                 goto error;
8047         h->transMethod = CFGTBL_Trans_Simple;
8048         return 0;
8049 error:
8050         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8051         return -ENODEV;
8052 }
8053
8054 /* free items allocated or mapped by hpsa_pci_init */
8055 static void hpsa_free_pci_init(struct ctlr_info *h)
8056 {
8057         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8058         iounmap(h->vaddr);                      /* pci_init 3 */
8059         h->vaddr = NULL;
8060         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8061         /*
8062          * call pci_disable_device before pci_release_regions per
8063          * Documentation/PCI/pci.txt
8064          */
8065         pci_disable_device(h->pdev);            /* pci_init 1 */
8066         pci_release_regions(h->pdev);           /* pci_init 2 */
8067 }
8068
8069 /* several items must be freed later */
8070 static int hpsa_pci_init(struct ctlr_info *h)
8071 {
8072         int prod_index, err;
8073
8074         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8075         if (prod_index < 0)
8076                 return prod_index;
8077         h->product_name = products[prod_index].product_name;
8078         h->access = *(products[prod_index].access);
8079
8080         h->needs_abort_tags_swizzled =
8081                 ctlr_needs_abort_tags_swizzled(h->board_id);
8082
8083         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8084                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8085
8086         err = pci_enable_device(h->pdev);
8087         if (err) {
8088                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8089                 pci_disable_device(h->pdev);
8090                 return err;
8091         }
8092
8093         err = pci_request_regions(h->pdev, HPSA);
8094         if (err) {
8095                 dev_err(&h->pdev->dev,
8096                         "failed to obtain PCI resources\n");
8097                 pci_disable_device(h->pdev);
8098                 return err;
8099         }
8100
8101         pci_set_master(h->pdev);
8102
8103         hpsa_interrupt_mode(h);
8104         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8105         if (err)
8106                 goto clean2;    /* intmode+region, pci */
8107         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8108         if (!h->vaddr) {
8109                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8110                 err = -ENOMEM;
8111                 goto clean2;    /* intmode+region, pci */
8112         }
8113         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8114         if (err)
8115                 goto clean3;    /* vaddr, intmode+region, pci */
8116         err = hpsa_find_cfgtables(h);
8117         if (err)
8118                 goto clean3;    /* vaddr, intmode+region, pci */
8119         hpsa_find_board_params(h);
8120
8121         if (!hpsa_CISS_signature_present(h)) {
8122                 err = -ENODEV;
8123                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8124         }
8125         hpsa_set_driver_support_bits(h);
8126         hpsa_p600_dma_prefetch_quirk(h);
8127         err = hpsa_enter_simple_mode(h);
8128         if (err)
8129                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8130         return 0;
8131
8132 clean4: /* cfgtables, vaddr, intmode+region, pci */
8133         hpsa_free_cfgtables(h);
8134 clean3: /* vaddr, intmode+region, pci */
8135         iounmap(h->vaddr);
8136         h->vaddr = NULL;
8137 clean2: /* intmode+region, pci */
8138         hpsa_disable_interrupt_mode(h);
8139         /*
8140          * call pci_disable_device before pci_release_regions per
8141          * Documentation/PCI/pci.txt
8142          */
8143         pci_disable_device(h->pdev);
8144         pci_release_regions(h->pdev);
8145         return err;
8146 }
8147
8148 static void hpsa_hba_inquiry(struct ctlr_info *h)
8149 {
8150         int rc;
8151
8152 #define HBA_INQUIRY_BYTE_COUNT 64
8153         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8154         if (!h->hba_inquiry_data)
8155                 return;
8156         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8157                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8158         if (rc != 0) {
8159                 kfree(h->hba_inquiry_data);
8160                 h->hba_inquiry_data = NULL;
8161         }
8162 }
8163
8164 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8165 {
8166         int rc, i;
8167         void __iomem *vaddr;
8168
8169         if (!reset_devices)
8170                 return 0;
8171
8172         /* kdump kernel is loading, we don't know in which state is
8173          * the pci interface. The dev->enable_cnt is equal zero
8174          * so we call enable+disable, wait a while and switch it on.
8175          */
8176         rc = pci_enable_device(pdev);
8177         if (rc) {
8178                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8179                 return -ENODEV;
8180         }
8181         pci_disable_device(pdev);
8182         msleep(260);                    /* a randomly chosen number */
8183         rc = pci_enable_device(pdev);
8184         if (rc) {
8185                 dev_warn(&pdev->dev, "failed to enable device.\n");
8186                 return -ENODEV;
8187         }
8188
8189         pci_set_master(pdev);
8190
8191         vaddr = pci_ioremap_bar(pdev, 0);
8192         if (vaddr == NULL) {
8193                 rc = -ENOMEM;
8194                 goto out_disable;
8195         }
8196         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8197         iounmap(vaddr);
8198
8199         /* Reset the controller with a PCI power-cycle or via doorbell */
8200         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8201
8202         /* -ENOTSUPP here means we cannot reset the controller
8203          * but it's already (and still) up and running in
8204          * "performant mode".  Or, it might be 640x, which can't reset
8205          * due to concerns about shared bbwc between 6402/6404 pair.
8206          */
8207         if (rc)
8208                 goto out_disable;
8209
8210         /* Now try to get the controller to respond to a no-op */
8211         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8212         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8213                 if (hpsa_noop(pdev) == 0)
8214                         break;
8215                 else
8216                         dev_warn(&pdev->dev, "no-op failed%s\n",
8217                                         (i < 11 ? "; re-trying" : ""));
8218         }
8219
8220 out_disable:
8221
8222         pci_disable_device(pdev);
8223         return rc;
8224 }
8225
8226 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8227 {
8228         kfree(h->cmd_pool_bits);
8229         h->cmd_pool_bits = NULL;
8230         if (h->cmd_pool) {
8231                 pci_free_consistent(h->pdev,
8232                                 h->nr_cmds * sizeof(struct CommandList),
8233                                 h->cmd_pool,
8234                                 h->cmd_pool_dhandle);
8235                 h->cmd_pool = NULL;
8236                 h->cmd_pool_dhandle = 0;
8237         }
8238         if (h->errinfo_pool) {
8239                 pci_free_consistent(h->pdev,
8240                                 h->nr_cmds * sizeof(struct ErrorInfo),
8241                                 h->errinfo_pool,
8242                                 h->errinfo_pool_dhandle);
8243                 h->errinfo_pool = NULL;
8244                 h->errinfo_pool_dhandle = 0;
8245         }
8246 }
8247
8248 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8249 {
8250         h->cmd_pool_bits = kzalloc(
8251                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8252                 sizeof(unsigned long), GFP_KERNEL);
8253         h->cmd_pool = pci_alloc_consistent(h->pdev,
8254                     h->nr_cmds * sizeof(*h->cmd_pool),
8255                     &(h->cmd_pool_dhandle));
8256         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8257                     h->nr_cmds * sizeof(*h->errinfo_pool),
8258                     &(h->errinfo_pool_dhandle));
8259         if ((h->cmd_pool_bits == NULL)
8260             || (h->cmd_pool == NULL)
8261             || (h->errinfo_pool == NULL)) {
8262                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8263                 goto clean_up;
8264         }
8265         hpsa_preinitialize_commands(h);
8266         return 0;
8267 clean_up:
8268         hpsa_free_cmd_pool(h);
8269         return -ENOMEM;
8270 }
8271
8272 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8273 {
8274         int i, cpu;
8275
8276         cpu = cpumask_first(cpu_online_mask);
8277         for (i = 0; i < h->msix_vector; i++) {
8278                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8279                 cpu = cpumask_next(cpu, cpu_online_mask);
8280         }
8281 }
8282
8283 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8284 static void hpsa_free_irqs(struct ctlr_info *h)
8285 {
8286         int i;
8287
8288         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8289                 /* Single reply queue, only one irq to free */
8290                 i = h->intr_mode;
8291                 irq_set_affinity_hint(h->intr[i], NULL);
8292                 free_irq(h->intr[i], &h->q[i]);
8293                 h->q[i] = 0;
8294                 return;
8295         }
8296
8297         for (i = 0; i < h->msix_vector; i++) {
8298                 irq_set_affinity_hint(h->intr[i], NULL);
8299                 free_irq(h->intr[i], &h->q[i]);
8300                 h->q[i] = 0;
8301         }
8302         for (; i < MAX_REPLY_QUEUES; i++)
8303                 h->q[i] = 0;
8304 }
8305
8306 /* returns 0 on success; cleans up and returns -Enn on error */
8307 static int hpsa_request_irqs(struct ctlr_info *h,
8308         irqreturn_t (*msixhandler)(int, void *),
8309         irqreturn_t (*intxhandler)(int, void *))
8310 {
8311         int rc, i;
8312
8313         /*
8314          * initialize h->q[x] = x so that interrupt handlers know which
8315          * queue to process.
8316          */
8317         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8318                 h->q[i] = (u8) i;
8319
8320         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8321                 /* If performant mode and MSI-X, use multiple reply queues */
8322                 for (i = 0; i < h->msix_vector; i++) {
8323                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8324                         rc = request_irq(h->intr[i], msixhandler,
8325                                         0, h->intrname[i],
8326                                         &h->q[i]);
8327                         if (rc) {
8328                                 int j;
8329
8330                                 dev_err(&h->pdev->dev,
8331                                         "failed to get irq %d for %s\n",
8332                                        h->intr[i], h->devname);
8333                                 for (j = 0; j < i; j++) {
8334                                         free_irq(h->intr[j], &h->q[j]);
8335                                         h->q[j] = 0;
8336                                 }
8337                                 for (; j < MAX_REPLY_QUEUES; j++)
8338                                         h->q[j] = 0;
8339                                 return rc;
8340                         }
8341                 }
8342                 hpsa_irq_affinity_hints(h);
8343         } else {
8344                 /* Use single reply pool */
8345                 if (h->msix_vector > 0 || h->msi_vector) {
8346                         if (h->msix_vector)
8347                                 sprintf(h->intrname[h->intr_mode],
8348                                         "%s-msix", h->devname);
8349                         else
8350                                 sprintf(h->intrname[h->intr_mode],
8351                                         "%s-msi", h->devname);
8352                         rc = request_irq(h->intr[h->intr_mode],
8353                                 msixhandler, 0,
8354                                 h->intrname[h->intr_mode],
8355                                 &h->q[h->intr_mode]);
8356                 } else {
8357                         sprintf(h->intrname[h->intr_mode],
8358                                 "%s-intx", h->devname);
8359                         rc = request_irq(h->intr[h->intr_mode],
8360                                 intxhandler, IRQF_SHARED,
8361                                 h->intrname[h->intr_mode],
8362                                 &h->q[h->intr_mode]);
8363                 }
8364                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8365         }
8366         if (rc) {
8367                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8368                        h->intr[h->intr_mode], h->devname);
8369                 hpsa_free_irqs(h);
8370                 return -ENODEV;
8371         }
8372         return 0;
8373 }
8374
8375 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8376 {
8377         int rc;
8378         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8379
8380         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8381         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8382         if (rc) {
8383                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8384                 return rc;
8385         }
8386
8387         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8388         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8389         if (rc) {
8390                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8391                         "after soft reset.\n");
8392                 return rc;
8393         }
8394
8395         return 0;
8396 }
8397
8398 static void hpsa_free_reply_queues(struct ctlr_info *h)
8399 {
8400         int i;
8401
8402         for (i = 0; i < h->nreply_queues; i++) {
8403                 if (!h->reply_queue[i].head)
8404                         continue;
8405                 pci_free_consistent(h->pdev,
8406                                         h->reply_queue_size,
8407                                         h->reply_queue[i].head,
8408                                         h->reply_queue[i].busaddr);
8409                 h->reply_queue[i].head = NULL;
8410                 h->reply_queue[i].busaddr = 0;
8411         }
8412         h->reply_queue_size = 0;
8413 }
8414
8415 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8416 {
8417         hpsa_free_performant_mode(h);           /* init_one 7 */
8418         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8419         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8420         hpsa_free_irqs(h);                      /* init_one 4 */
8421         scsi_host_put(h->scsi_host);            /* init_one 3 */
8422         h->scsi_host = NULL;                    /* init_one 3 */
8423         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8424         free_percpu(h->lockup_detected);        /* init_one 2 */
8425         h->lockup_detected = NULL;              /* init_one 2 */
8426         if (h->resubmit_wq) {
8427                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8428                 h->resubmit_wq = NULL;
8429         }
8430         if (h->rescan_ctlr_wq) {
8431                 destroy_workqueue(h->rescan_ctlr_wq);
8432                 h->rescan_ctlr_wq = NULL;
8433         }
8434         kfree(h);                               /* init_one 1 */
8435 }
8436
8437 /* Called when controller lockup detected. */
8438 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8439 {
8440         int i, refcount;
8441         struct CommandList *c;
8442         int failcount = 0;
8443
8444         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8445         for (i = 0; i < h->nr_cmds; i++) {
8446                 c = h->cmd_pool + i;
8447                 refcount = atomic_inc_return(&c->refcount);
8448                 if (refcount > 1) {
8449                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8450                         finish_cmd(c);
8451                         atomic_dec(&h->commands_outstanding);
8452                         failcount++;
8453                 }
8454                 cmd_free(h, c);
8455         }
8456         dev_warn(&h->pdev->dev,
8457                 "failed %d commands in fail_all\n", failcount);
8458 }
8459
8460 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8461 {
8462         int cpu;
8463
8464         for_each_online_cpu(cpu) {
8465                 u32 *lockup_detected;
8466                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8467                 *lockup_detected = value;
8468         }
8469         wmb(); /* be sure the per-cpu variables are out to memory */
8470 }
8471
8472 static void controller_lockup_detected(struct ctlr_info *h)
8473 {
8474         unsigned long flags;
8475         u32 lockup_detected;
8476
8477         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8478         spin_lock_irqsave(&h->lock, flags);
8479         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8480         if (!lockup_detected) {
8481                 /* no heartbeat, but controller gave us a zero. */
8482                 dev_warn(&h->pdev->dev,
8483                         "lockup detected after %d but scratchpad register is zero\n",
8484                         h->heartbeat_sample_interval / HZ);
8485                 lockup_detected = 0xffffffff;
8486         }
8487         set_lockup_detected_for_all_cpus(h, lockup_detected);
8488         spin_unlock_irqrestore(&h->lock, flags);
8489         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8490                         lockup_detected, h->heartbeat_sample_interval / HZ);
8491         pci_disable_device(h->pdev);
8492         fail_all_outstanding_cmds(h);
8493 }
8494
8495 static int detect_controller_lockup(struct ctlr_info *h)
8496 {
8497         u64 now;
8498         u32 heartbeat;
8499         unsigned long flags;
8500
8501         now = get_jiffies_64();
8502         /* If we've received an interrupt recently, we're ok. */
8503         if (time_after64(h->last_intr_timestamp +
8504                                 (h->heartbeat_sample_interval), now))
8505                 return false;
8506
8507         /*
8508          * If we've already checked the heartbeat recently, we're ok.
8509          * This could happen if someone sends us a signal. We
8510          * otherwise don't care about signals in this thread.
8511          */
8512         if (time_after64(h->last_heartbeat_timestamp +
8513                                 (h->heartbeat_sample_interval), now))
8514                 return false;
8515
8516         /* If heartbeat has not changed since we last looked, we're not ok. */
8517         spin_lock_irqsave(&h->lock, flags);
8518         heartbeat = readl(&h->cfgtable->HeartBeat);
8519         spin_unlock_irqrestore(&h->lock, flags);
8520         if (h->last_heartbeat == heartbeat) {
8521                 controller_lockup_detected(h);
8522                 return true;
8523         }
8524
8525         /* We're ok. */
8526         h->last_heartbeat = heartbeat;
8527         h->last_heartbeat_timestamp = now;
8528         return false;
8529 }
8530
8531 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8532 {
8533         int i;
8534         char *event_type;
8535
8536         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8537                 return;
8538
8539         /* Ask the controller to clear the events we're handling. */
8540         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8541                         | CFGTBL_Trans_io_accel2)) &&
8542                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8543                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8544
8545                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8546                         event_type = "state change";
8547                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8548                         event_type = "configuration change";
8549                 /* Stop sending new RAID offload reqs via the IO accelerator */
8550                 scsi_block_requests(h->scsi_host);
8551                 for (i = 0; i < h->ndevices; i++) {
8552                         h->dev[i]->offload_enabled = 0;
8553                         h->dev[i]->offload_to_be_enabled = 0;
8554                 }
8555                 hpsa_drain_accel_commands(h);
8556                 /* Set 'accelerator path config change' bit */
8557                 dev_warn(&h->pdev->dev,
8558                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8559                         h->events, event_type);
8560                 writel(h->events, &(h->cfgtable->clear_event_notify));
8561                 /* Set the "clear event notify field update" bit 6 */
8562                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8563                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8564                 hpsa_wait_for_clear_event_notify_ack(h);
8565                 scsi_unblock_requests(h->scsi_host);
8566         } else {
8567                 /* Acknowledge controller notification events. */
8568                 writel(h->events, &(h->cfgtable->clear_event_notify));
8569                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8570                 hpsa_wait_for_clear_event_notify_ack(h);
8571 #if 0
8572                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8573                 hpsa_wait_for_mode_change_ack(h);
8574 #endif
8575         }
8576         return;
8577 }
8578
8579 /* Check a register on the controller to see if there are configuration
8580  * changes (added/changed/removed logical drives, etc.) which mean that
8581  * we should rescan the controller for devices.
8582  * Also check flag for driver-initiated rescan.
8583  */
8584 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8585 {
8586         if (h->drv_req_rescan) {
8587                 h->drv_req_rescan = 0;
8588                 return 1;
8589         }
8590
8591         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8592                 return 0;
8593
8594         h->events = readl(&(h->cfgtable->event_notify));
8595         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8596 }
8597
8598 /*
8599  * Check if any of the offline devices have become ready
8600  */
8601 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8602 {
8603         unsigned long flags;
8604         struct offline_device_entry *d;
8605         struct list_head *this, *tmp;
8606
8607         spin_lock_irqsave(&h->offline_device_lock, flags);
8608         list_for_each_safe(this, tmp, &h->offline_device_list) {
8609                 d = list_entry(this, struct offline_device_entry,
8610                                 offline_list);
8611                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8612                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8613                         spin_lock_irqsave(&h->offline_device_lock, flags);
8614                         list_del(&d->offline_list);
8615                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8616                         return 1;
8617                 }
8618                 spin_lock_irqsave(&h->offline_device_lock, flags);
8619         }
8620         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8621         return 0;
8622 }
8623
8624 static int hpsa_luns_changed(struct ctlr_info *h)
8625 {
8626         int rc = 1; /* assume there are changes */
8627         struct ReportLUNdata *logdev = NULL;
8628
8629         /* if we can't find out if lun data has changed,
8630          * assume that it has.
8631          */
8632
8633         if (!h->lastlogicals)
8634                 goto out;
8635
8636         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8637         if (!logdev) {
8638                 dev_warn(&h->pdev->dev,
8639                         "Out of memory, can't track lun changes.\n");
8640                 goto out;
8641         }
8642         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8643                 dev_warn(&h->pdev->dev,
8644                         "report luns failed, can't track lun changes.\n");
8645                 goto out;
8646         }
8647         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8648                 dev_info(&h->pdev->dev,
8649                         "Lun changes detected.\n");
8650                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8651                 goto out;
8652         } else
8653                 rc = 0; /* no changes detected. */
8654 out:
8655         kfree(logdev);
8656         return rc;
8657 }
8658
8659 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8660 {
8661         unsigned long flags;
8662         struct ctlr_info *h = container_of(to_delayed_work(work),
8663                                         struct ctlr_info, rescan_ctlr_work);
8664
8665
8666         if (h->remove_in_progress)
8667                 return;
8668
8669         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8670                 scsi_host_get(h->scsi_host);
8671                 hpsa_ack_ctlr_events(h);
8672                 hpsa_scan_start(h->scsi_host);
8673                 scsi_host_put(h->scsi_host);
8674         } else if (h->discovery_polling) {
8675                 hpsa_disable_rld_caching(h);
8676                 if (hpsa_luns_changed(h)) {
8677                         struct Scsi_Host *sh = NULL;
8678
8679                         dev_info(&h->pdev->dev,
8680                                 "driver discovery polling rescan.\n");
8681                         sh = scsi_host_get(h->scsi_host);
8682                         if (sh != NULL) {
8683                                 hpsa_scan_start(sh);
8684                                 scsi_host_put(sh);
8685                         }
8686                 }
8687         }
8688         spin_lock_irqsave(&h->lock, flags);
8689         if (!h->remove_in_progress)
8690                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8691                                 h->heartbeat_sample_interval);
8692         spin_unlock_irqrestore(&h->lock, flags);
8693 }
8694
8695 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8696 {
8697         unsigned long flags;
8698         struct ctlr_info *h = container_of(to_delayed_work(work),
8699                                         struct ctlr_info, monitor_ctlr_work);
8700
8701         detect_controller_lockup(h);
8702         if (lockup_detected(h))
8703                 return;
8704
8705         spin_lock_irqsave(&h->lock, flags);
8706         if (!h->remove_in_progress)
8707                 schedule_delayed_work(&h->monitor_ctlr_work,
8708                                 h->heartbeat_sample_interval);
8709         spin_unlock_irqrestore(&h->lock, flags);
8710 }
8711
8712 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8713                                                 char *name)
8714 {
8715         struct workqueue_struct *wq = NULL;
8716
8717         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8718         if (!wq)
8719                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8720
8721         return wq;
8722 }
8723
8724 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8725 {
8726         int dac, rc;
8727         struct ctlr_info *h;
8728         int try_soft_reset = 0;
8729         unsigned long flags;
8730         u32 board_id;
8731
8732         if (number_of_controllers == 0)
8733                 printk(KERN_INFO DRIVER_NAME "\n");
8734
8735         rc = hpsa_lookup_board_id(pdev, &board_id);
8736         if (rc < 0) {
8737                 dev_warn(&pdev->dev, "Board ID not found\n");
8738                 return rc;
8739         }
8740
8741         rc = hpsa_init_reset_devices(pdev, board_id);
8742         if (rc) {
8743                 if (rc != -ENOTSUPP)
8744                         return rc;
8745                 /* If the reset fails in a particular way (it has no way to do
8746                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8747                  * a soft reset once we get the controller configured up to the
8748                  * point that it can accept a command.
8749                  */
8750                 try_soft_reset = 1;
8751                 rc = 0;
8752         }
8753
8754 reinit_after_soft_reset:
8755
8756         /* Command structures must be aligned on a 32-byte boundary because
8757          * the 5 lower bits of the address are used by the hardware. and by
8758          * the driver.  See comments in hpsa.h for more info.
8759          */
8760         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8761         h = kzalloc(sizeof(*h), GFP_KERNEL);
8762         if (!h) {
8763                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8764                 return -ENOMEM;
8765         }
8766
8767         h->pdev = pdev;
8768
8769         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8770         INIT_LIST_HEAD(&h->offline_device_list);
8771         spin_lock_init(&h->lock);
8772         spin_lock_init(&h->offline_device_lock);
8773         spin_lock_init(&h->scan_lock);
8774         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8775         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8776
8777         /* Allocate and clear per-cpu variable lockup_detected */
8778         h->lockup_detected = alloc_percpu(u32);
8779         if (!h->lockup_detected) {
8780                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8781                 rc = -ENOMEM;
8782                 goto clean1;    /* aer/h */
8783         }
8784         set_lockup_detected_for_all_cpus(h, 0);
8785
8786         rc = hpsa_pci_init(h);
8787         if (rc)
8788                 goto clean2;    /* lu, aer/h */
8789
8790         /* relies on h-> settings made by hpsa_pci_init, including
8791          * interrupt_mode h->intr */
8792         rc = hpsa_scsi_host_alloc(h);
8793         if (rc)
8794                 goto clean2_5;  /* pci, lu, aer/h */
8795
8796         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8797         h->ctlr = number_of_controllers;
8798         number_of_controllers++;
8799
8800         /* configure PCI DMA stuff */
8801         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8802         if (rc == 0) {
8803                 dac = 1;
8804         } else {
8805                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8806                 if (rc == 0) {
8807                         dac = 0;
8808                 } else {
8809                         dev_err(&pdev->dev, "no suitable DMA available\n");
8810                         goto clean3;    /* shost, pci, lu, aer/h */
8811                 }
8812         }
8813
8814         /* make sure the board interrupts are off */
8815         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8816
8817         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8818         if (rc)
8819                 goto clean3;    /* shost, pci, lu, aer/h */
8820         rc = hpsa_alloc_cmd_pool(h);
8821         if (rc)
8822                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8823         rc = hpsa_alloc_sg_chain_blocks(h);
8824         if (rc)
8825                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8826         init_waitqueue_head(&h->scan_wait_queue);
8827         init_waitqueue_head(&h->abort_cmd_wait_queue);
8828         init_waitqueue_head(&h->event_sync_wait_queue);
8829         mutex_init(&h->reset_mutex);
8830         h->scan_finished = 1; /* no scan currently in progress */
8831         h->scan_waiting = 0;
8832
8833         pci_set_drvdata(pdev, h);
8834         h->ndevices = 0;
8835
8836         spin_lock_init(&h->devlock);
8837         rc = hpsa_put_ctlr_into_performant_mode(h);
8838         if (rc)
8839                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8840
8841         /* create the resubmit workqueue */
8842         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8843         if (!h->rescan_ctlr_wq) {
8844                 rc = -ENOMEM;
8845                 goto clean7;
8846         }
8847
8848         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8849         if (!h->resubmit_wq) {
8850                 rc = -ENOMEM;
8851                 goto clean7;    /* aer/h */
8852         }
8853
8854         /*
8855          * At this point, the controller is ready to take commands.
8856          * Now, if reset_devices and the hard reset didn't work, try
8857          * the soft reset and see if that works.
8858          */
8859         if (try_soft_reset) {
8860
8861                 /* This is kind of gross.  We may or may not get a completion
8862                  * from the soft reset command, and if we do, then the value
8863                  * from the fifo may or may not be valid.  So, we wait 10 secs
8864                  * after the reset throwing away any completions we get during
8865                  * that time.  Unregister the interrupt handler and register
8866                  * fake ones to scoop up any residual completions.
8867                  */
8868                 spin_lock_irqsave(&h->lock, flags);
8869                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8870                 spin_unlock_irqrestore(&h->lock, flags);
8871                 hpsa_free_irqs(h);
8872                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8873                                         hpsa_intx_discard_completions);
8874                 if (rc) {
8875                         dev_warn(&h->pdev->dev,
8876                                 "Failed to request_irq after soft reset.\n");
8877                         /*
8878                          * cannot goto clean7 or free_irqs will be called
8879                          * again. Instead, do its work
8880                          */
8881                         hpsa_free_performant_mode(h);   /* clean7 */
8882                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8883                         hpsa_free_cmd_pool(h);          /* clean5 */
8884                         /*
8885                          * skip hpsa_free_irqs(h) clean4 since that
8886                          * was just called before request_irqs failed
8887                          */
8888                         goto clean3;
8889                 }
8890
8891                 rc = hpsa_kdump_soft_reset(h);
8892                 if (rc)
8893                         /* Neither hard nor soft reset worked, we're hosed. */
8894                         goto clean7;
8895
8896                 dev_info(&h->pdev->dev, "Board READY.\n");
8897                 dev_info(&h->pdev->dev,
8898                         "Waiting for stale completions to drain.\n");
8899                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8900                 msleep(10000);
8901                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8902
8903                 rc = controller_reset_failed(h->cfgtable);
8904                 if (rc)
8905                         dev_info(&h->pdev->dev,
8906                                 "Soft reset appears to have failed.\n");
8907
8908                 /* since the controller's reset, we have to go back and re-init
8909                  * everything.  Easiest to just forget what we've done and do it
8910                  * all over again.
8911                  */
8912                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8913                 try_soft_reset = 0;
8914                 if (rc)
8915                         /* don't goto clean, we already unallocated */
8916                         return -ENODEV;
8917
8918                 goto reinit_after_soft_reset;
8919         }
8920
8921         /* Enable Accelerated IO path at driver layer */
8922         h->acciopath_status = 1;
8923         /* Disable discovery polling.*/
8924         h->discovery_polling = 0;
8925
8926
8927         /* Turn the interrupts on so we can service requests */
8928         h->access.set_intr_mask(h, HPSA_INTR_ON);
8929
8930         hpsa_hba_inquiry(h);
8931
8932         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8933         if (!h->lastlogicals)
8934                 dev_info(&h->pdev->dev,
8935                         "Can't track change to report lun data\n");
8936
8937         /* hook into SCSI subsystem */
8938         rc = hpsa_scsi_add_host(h);
8939         if (rc)
8940                 goto clean8; /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8941
8942         /* Monitor the controller for firmware lockups */
8943         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8944         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8945         schedule_delayed_work(&h->monitor_ctlr_work,
8946                                 h->heartbeat_sample_interval);
8947         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8948         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8949                                 h->heartbeat_sample_interval);
8950         return 0;
8951
8952 clean8: /* lastlogicals, perf, sg, cmd, irq, shost, pci, lu, aer/h */
8953         kfree(h->lastlogicals);
8954 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8955         hpsa_free_performant_mode(h);
8956         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8957 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8958         hpsa_free_sg_chain_blocks(h);
8959 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8960         hpsa_free_cmd_pool(h);
8961 clean4: /* irq, shost, pci, lu, aer/h */
8962         hpsa_free_irqs(h);
8963 clean3: /* shost, pci, lu, aer/h */
8964         scsi_host_put(h->scsi_host);
8965         h->scsi_host = NULL;
8966 clean2_5: /* pci, lu, aer/h */
8967         hpsa_free_pci_init(h);
8968 clean2: /* lu, aer/h */
8969         if (h->lockup_detected) {
8970                 free_percpu(h->lockup_detected);
8971                 h->lockup_detected = NULL;
8972         }
8973 clean1: /* wq/aer/h */
8974         if (h->resubmit_wq) {
8975                 destroy_workqueue(h->resubmit_wq);
8976                 h->resubmit_wq = NULL;
8977         }
8978         if (h->rescan_ctlr_wq) {
8979                 destroy_workqueue(h->rescan_ctlr_wq);
8980                 h->rescan_ctlr_wq = NULL;
8981         }
8982         kfree(h);
8983         return rc;
8984 }
8985
8986 static void hpsa_flush_cache(struct ctlr_info *h)
8987 {
8988         char *flush_buf;
8989         struct CommandList *c;
8990         int rc;
8991
8992         if (unlikely(lockup_detected(h)))
8993                 return;
8994         flush_buf = kzalloc(4, GFP_KERNEL);
8995         if (!flush_buf)
8996                 return;
8997
8998         c = cmd_alloc(h);
8999
9000         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
9001                 RAID_CTLR_LUNID, TYPE_CMD)) {
9002                 goto out;
9003         }
9004         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9005                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9006         if (rc)
9007                 goto out;
9008         if (c->err_info->CommandStatus != 0)
9009 out:
9010                 dev_warn(&h->pdev->dev,
9011                         "error flushing cache on controller\n");
9012         cmd_free(h, c);
9013         kfree(flush_buf);
9014 }
9015
9016 /* Make controller gather fresh report lun data each time we
9017  * send down a report luns request
9018  */
9019 static void hpsa_disable_rld_caching(struct ctlr_info *h)
9020 {
9021         u32 *options;
9022         struct CommandList *c;
9023         int rc;
9024
9025         /* Don't bother trying to set diag options if locked up */
9026         if (unlikely(h->lockup_detected))
9027                 return;
9028
9029         options = kzalloc(sizeof(*options), GFP_KERNEL);
9030         if (!options) {
9031                 dev_err(&h->pdev->dev,
9032                         "Error: failed to disable rld caching, during alloc.\n");
9033                 return;
9034         }
9035
9036         c = cmd_alloc(h);
9037
9038         /* first, get the current diag options settings */
9039         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9040                 RAID_CTLR_LUNID, TYPE_CMD))
9041                 goto errout;
9042
9043         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9044                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9045         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9046                 goto errout;
9047
9048         /* Now, set the bit for disabling the RLD caching */
9049         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9050
9051         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9052                 RAID_CTLR_LUNID, TYPE_CMD))
9053                 goto errout;
9054
9055         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9056                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9057         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9058                 goto errout;
9059
9060         /* Now verify that it got set: */
9061         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9062                 RAID_CTLR_LUNID, TYPE_CMD))
9063                 goto errout;
9064
9065         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9066                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9067         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9068                 goto errout;
9069
9070         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9071                 goto out;
9072
9073 errout:
9074         dev_err(&h->pdev->dev,
9075                         "Error: failed to disable report lun data caching.\n");
9076 out:
9077         cmd_free(h, c);
9078         kfree(options);
9079 }
9080
9081 static void hpsa_shutdown(struct pci_dev *pdev)
9082 {
9083         struct ctlr_info *h;
9084
9085         h = pci_get_drvdata(pdev);
9086         /* Turn board interrupts off  and send the flush cache command
9087          * sendcmd will turn off interrupt, and send the flush...
9088          * To write all data in the battery backed cache to disks
9089          */
9090         hpsa_flush_cache(h);
9091         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9092         hpsa_free_irqs(h);                      /* init_one 4 */
9093         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9094 }
9095
9096 static void hpsa_free_device_info(struct ctlr_info *h)
9097 {
9098         int i;
9099
9100         for (i = 0; i < h->ndevices; i++) {
9101                 kfree(h->dev[i]);
9102                 h->dev[i] = NULL;
9103         }
9104 }
9105
9106 static void hpsa_remove_one(struct pci_dev *pdev)
9107 {
9108         struct ctlr_info *h;
9109         unsigned long flags;
9110
9111         if (pci_get_drvdata(pdev) == NULL) {
9112                 dev_err(&pdev->dev, "unable to remove device\n");
9113                 return;
9114         }
9115         h = pci_get_drvdata(pdev);
9116
9117         /* Get rid of any controller monitoring work items */
9118         spin_lock_irqsave(&h->lock, flags);
9119         h->remove_in_progress = 1;
9120         spin_unlock_irqrestore(&h->lock, flags);
9121         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9122         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9123         destroy_workqueue(h->rescan_ctlr_wq);
9124         destroy_workqueue(h->resubmit_wq);
9125
9126         hpsa_delete_sas_host(h);
9127
9128         /*
9129          * Call before disabling interrupts.
9130          * scsi_remove_host can trigger I/O operations especially
9131          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9132          * operations which cannot complete and will hang the system.
9133          */
9134         if (h->scsi_host)
9135                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9136         /* includes hpsa_free_irqs - init_one 4 */
9137         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9138         hpsa_shutdown(pdev);
9139
9140         hpsa_free_device_info(h);               /* scan */
9141
9142         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9143         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9144         hpsa_free_ioaccel2_sg_chain_blocks(h);
9145         hpsa_free_performant_mode(h);                   /* init_one 7 */
9146         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9147         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9148         kfree(h->lastlogicals);
9149
9150         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9151
9152         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9153         h->scsi_host = NULL;                            /* init_one 3 */
9154
9155         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9156         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9157
9158         free_percpu(h->lockup_detected);                /* init_one 2 */
9159         h->lockup_detected = NULL;                      /* init_one 2 */
9160         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9161
9162         kfree(h);                                       /* init_one 1 */
9163 }
9164
9165 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9166         __attribute__((unused)) pm_message_t state)
9167 {
9168         return -ENOSYS;
9169 }
9170
9171 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9172 {
9173         return -ENOSYS;
9174 }
9175
9176 static struct pci_driver hpsa_pci_driver = {
9177         .name = HPSA,
9178         .probe = hpsa_init_one,
9179         .remove = hpsa_remove_one,
9180         .id_table = hpsa_pci_device_id, /* id_table */
9181         .shutdown = hpsa_shutdown,
9182         .suspend = hpsa_suspend,
9183         .resume = hpsa_resume,
9184 };
9185
9186 /* Fill in bucket_map[], given nsgs (the max number of
9187  * scatter gather elements supported) and bucket[],
9188  * which is an array of 8 integers.  The bucket[] array
9189  * contains 8 different DMA transfer sizes (in 16
9190  * byte increments) which the controller uses to fetch
9191  * commands.  This function fills in bucket_map[], which
9192  * maps a given number of scatter gather elements to one of
9193  * the 8 DMA transfer sizes.  The point of it is to allow the
9194  * controller to only do as much DMA as needed to fetch the
9195  * command, with the DMA transfer size encoded in the lower
9196  * bits of the command address.
9197  */
9198 static void  calc_bucket_map(int bucket[], int num_buckets,
9199         int nsgs, int min_blocks, u32 *bucket_map)
9200 {
9201         int i, j, b, size;
9202
9203         /* Note, bucket_map must have nsgs+1 entries. */
9204         for (i = 0; i <= nsgs; i++) {
9205                 /* Compute size of a command with i SG entries */
9206                 size = i + min_blocks;
9207                 b = num_buckets; /* Assume the biggest bucket */
9208                 /* Find the bucket that is just big enough */
9209                 for (j = 0; j < num_buckets; j++) {
9210                         if (bucket[j] >= size) {
9211                                 b = j;
9212                                 break;
9213                         }
9214                 }
9215                 /* for a command with i SG entries, use bucket b. */
9216                 bucket_map[i] = b;
9217         }
9218 }
9219
9220 /*
9221  * return -ENODEV on err, 0 on success (or no action)
9222  * allocates numerous items that must be freed later
9223  */
9224 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9225 {
9226         int i;
9227         unsigned long register_value;
9228         unsigned long transMethod = CFGTBL_Trans_Performant |
9229                         (trans_support & CFGTBL_Trans_use_short_tags) |
9230                                 CFGTBL_Trans_enable_directed_msix |
9231                         (trans_support & (CFGTBL_Trans_io_accel1 |
9232                                 CFGTBL_Trans_io_accel2));
9233         struct access_method access = SA5_performant_access;
9234
9235         /* This is a bit complicated.  There are 8 registers on
9236          * the controller which we write to to tell it 8 different
9237          * sizes of commands which there may be.  It's a way of
9238          * reducing the DMA done to fetch each command.  Encoded into
9239          * each command's tag are 3 bits which communicate to the controller
9240          * which of the eight sizes that command fits within.  The size of
9241          * each command depends on how many scatter gather entries there are.
9242          * Each SG entry requires 16 bytes.  The eight registers are programmed
9243          * with the number of 16-byte blocks a command of that size requires.
9244          * The smallest command possible requires 5 such 16 byte blocks.
9245          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9246          * blocks.  Note, this only extends to the SG entries contained
9247          * within the command block, and does not extend to chained blocks
9248          * of SG elements.   bft[] contains the eight values we write to
9249          * the registers.  They are not evenly distributed, but have more
9250          * sizes for small commands, and fewer sizes for larger commands.
9251          */
9252         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9253 #define MIN_IOACCEL2_BFT_ENTRY 5
9254 #define HPSA_IOACCEL2_HEADER_SZ 4
9255         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9256                         13, 14, 15, 16, 17, 18, 19,
9257                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9258         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9259         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9260         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9261                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9262         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9263         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9264         /*  5 = 1 s/g entry or 4k
9265          *  6 = 2 s/g entry or 8k
9266          *  8 = 4 s/g entry or 16k
9267          * 10 = 6 s/g entry or 24k
9268          */
9269
9270         /* If the controller supports either ioaccel method then
9271          * we can also use the RAID stack submit path that does not
9272          * perform the superfluous readl() after each command submission.
9273          */
9274         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9275                 access = SA5_performant_access_no_read;
9276
9277         /* Controller spec: zero out this buffer. */
9278         for (i = 0; i < h->nreply_queues; i++)
9279                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9280
9281         bft[7] = SG_ENTRIES_IN_CMD + 4;
9282         calc_bucket_map(bft, ARRAY_SIZE(bft),
9283                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9284         for (i = 0; i < 8; i++)
9285                 writel(bft[i], &h->transtable->BlockFetch[i]);
9286
9287         /* size of controller ring buffer */
9288         writel(h->max_commands, &h->transtable->RepQSize);
9289         writel(h->nreply_queues, &h->transtable->RepQCount);
9290         writel(0, &h->transtable->RepQCtrAddrLow32);
9291         writel(0, &h->transtable->RepQCtrAddrHigh32);
9292
9293         for (i = 0; i < h->nreply_queues; i++) {
9294                 writel(0, &h->transtable->RepQAddr[i].upper);
9295                 writel(h->reply_queue[i].busaddr,
9296                         &h->transtable->RepQAddr[i].lower);
9297         }
9298
9299         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9300         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9301         /*
9302          * enable outbound interrupt coalescing in accelerator mode;
9303          */
9304         if (trans_support & CFGTBL_Trans_io_accel1) {
9305                 access = SA5_ioaccel_mode1_access;
9306                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9307                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9308         } else {
9309                 if (trans_support & CFGTBL_Trans_io_accel2) {
9310                         access = SA5_ioaccel_mode2_access;
9311                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9312                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9313                 }
9314         }
9315         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9316         if (hpsa_wait_for_mode_change_ack(h)) {
9317                 dev_err(&h->pdev->dev,
9318                         "performant mode problem - doorbell timeout\n");
9319                 return -ENODEV;
9320         }
9321         register_value = readl(&(h->cfgtable->TransportActive));
9322         if (!(register_value & CFGTBL_Trans_Performant)) {
9323                 dev_err(&h->pdev->dev,
9324                         "performant mode problem - transport not active\n");
9325                 return -ENODEV;
9326         }
9327         /* Change the access methods to the performant access methods */
9328         h->access = access;
9329         h->transMethod = transMethod;
9330
9331         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9332                 (trans_support & CFGTBL_Trans_io_accel2)))
9333                 return 0;
9334
9335         if (trans_support & CFGTBL_Trans_io_accel1) {
9336                 /* Set up I/O accelerator mode */
9337                 for (i = 0; i < h->nreply_queues; i++) {
9338                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9339                         h->reply_queue[i].current_entry =
9340                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9341                 }
9342                 bft[7] = h->ioaccel_maxsg + 8;
9343                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9344                                 h->ioaccel1_blockFetchTable);
9345
9346                 /* initialize all reply queue entries to unused */
9347                 for (i = 0; i < h->nreply_queues; i++)
9348                         memset(h->reply_queue[i].head,
9349                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9350                                 h->reply_queue_size);
9351
9352                 /* set all the constant fields in the accelerator command
9353                  * frames once at init time to save CPU cycles later.
9354                  */
9355                 for (i = 0; i < h->nr_cmds; i++) {
9356                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9357
9358                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9359                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9360                                         (i * sizeof(struct ErrorInfo)));
9361                         cp->err_info_len = sizeof(struct ErrorInfo);
9362                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9363                         cp->host_context_flags =
9364                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9365                         cp->timeout_sec = 0;
9366                         cp->ReplyQueue = 0;
9367                         cp->tag =
9368                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9369                         cp->host_addr =
9370                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9371                                         (i * sizeof(struct io_accel1_cmd)));
9372                 }
9373         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9374                 u64 cfg_offset, cfg_base_addr_index;
9375                 u32 bft2_offset, cfg_base_addr;
9376                 int rc;
9377
9378                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9379                         &cfg_base_addr_index, &cfg_offset);
9380                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9381                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9382                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9383                                 4, h->ioaccel2_blockFetchTable);
9384                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9385                 BUILD_BUG_ON(offsetof(struct CfgTable,
9386                                 io_accel_request_size_offset) != 0xb8);
9387                 h->ioaccel2_bft2_regs =
9388                         remap_pci_mem(pci_resource_start(h->pdev,
9389                                         cfg_base_addr_index) +
9390                                         cfg_offset + bft2_offset,
9391                                         ARRAY_SIZE(bft2) *
9392                                         sizeof(*h->ioaccel2_bft2_regs));
9393                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9394                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9395         }
9396         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9397         if (hpsa_wait_for_mode_change_ack(h)) {
9398                 dev_err(&h->pdev->dev,
9399                         "performant mode problem - enabling ioaccel mode\n");
9400                 return -ENODEV;
9401         }
9402         return 0;
9403 }
9404
9405 /* Free ioaccel1 mode command blocks and block fetch table */
9406 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9407 {
9408         if (h->ioaccel_cmd_pool) {
9409                 pci_free_consistent(h->pdev,
9410                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9411                         h->ioaccel_cmd_pool,
9412                         h->ioaccel_cmd_pool_dhandle);
9413                 h->ioaccel_cmd_pool = NULL;
9414                 h->ioaccel_cmd_pool_dhandle = 0;
9415         }
9416         kfree(h->ioaccel1_blockFetchTable);
9417         h->ioaccel1_blockFetchTable = NULL;
9418 }
9419
9420 /* Allocate ioaccel1 mode command blocks and block fetch table */
9421 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9422 {
9423         h->ioaccel_maxsg =
9424                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9425         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9426                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9427
9428         /* Command structures must be aligned on a 128-byte boundary
9429          * because the 7 lower bits of the address are used by the
9430          * hardware.
9431          */
9432         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9433                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9434         h->ioaccel_cmd_pool =
9435                 pci_alloc_consistent(h->pdev,
9436                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9437                         &(h->ioaccel_cmd_pool_dhandle));
9438
9439         h->ioaccel1_blockFetchTable =
9440                 kmalloc(((h->ioaccel_maxsg + 1) *
9441                                 sizeof(u32)), GFP_KERNEL);
9442
9443         if ((h->ioaccel_cmd_pool == NULL) ||
9444                 (h->ioaccel1_blockFetchTable == NULL))
9445                 goto clean_up;
9446
9447         memset(h->ioaccel_cmd_pool, 0,
9448                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9449         return 0;
9450
9451 clean_up:
9452         hpsa_free_ioaccel1_cmd_and_bft(h);
9453         return -ENOMEM;
9454 }
9455
9456 /* Free ioaccel2 mode command blocks and block fetch table */
9457 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9458 {
9459         hpsa_free_ioaccel2_sg_chain_blocks(h);
9460
9461         if (h->ioaccel2_cmd_pool) {
9462                 pci_free_consistent(h->pdev,
9463                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9464                         h->ioaccel2_cmd_pool,
9465                         h->ioaccel2_cmd_pool_dhandle);
9466                 h->ioaccel2_cmd_pool = NULL;
9467                 h->ioaccel2_cmd_pool_dhandle = 0;
9468         }
9469         kfree(h->ioaccel2_blockFetchTable);
9470         h->ioaccel2_blockFetchTable = NULL;
9471 }
9472
9473 /* Allocate ioaccel2 mode command blocks and block fetch table */
9474 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9475 {
9476         int rc;
9477
9478         /* Allocate ioaccel2 mode command blocks and block fetch table */
9479
9480         h->ioaccel_maxsg =
9481                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9482         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9483                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9484
9485         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9486                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9487         h->ioaccel2_cmd_pool =
9488                 pci_alloc_consistent(h->pdev,
9489                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9490                         &(h->ioaccel2_cmd_pool_dhandle));
9491
9492         h->ioaccel2_blockFetchTable =
9493                 kmalloc(((h->ioaccel_maxsg + 1) *
9494                                 sizeof(u32)), GFP_KERNEL);
9495
9496         if ((h->ioaccel2_cmd_pool == NULL) ||
9497                 (h->ioaccel2_blockFetchTable == NULL)) {
9498                 rc = -ENOMEM;
9499                 goto clean_up;
9500         }
9501
9502         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9503         if (rc)
9504                 goto clean_up;
9505
9506         memset(h->ioaccel2_cmd_pool, 0,
9507                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9508         return 0;
9509
9510 clean_up:
9511         hpsa_free_ioaccel2_cmd_and_bft(h);
9512         return rc;
9513 }
9514
9515 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9516 static void hpsa_free_performant_mode(struct ctlr_info *h)
9517 {
9518         kfree(h->blockFetchTable);
9519         h->blockFetchTable = NULL;
9520         hpsa_free_reply_queues(h);
9521         hpsa_free_ioaccel1_cmd_and_bft(h);
9522         hpsa_free_ioaccel2_cmd_and_bft(h);
9523 }
9524
9525 /* return -ENODEV on error, 0 on success (or no action)
9526  * allocates numerous items that must be freed later
9527  */
9528 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9529 {
9530         u32 trans_support;
9531         unsigned long transMethod = CFGTBL_Trans_Performant |
9532                                         CFGTBL_Trans_use_short_tags;
9533         int i, rc;
9534
9535         if (hpsa_simple_mode)
9536                 return 0;
9537
9538         trans_support = readl(&(h->cfgtable->TransportSupport));
9539         if (!(trans_support & PERFORMANT_MODE))
9540                 return 0;
9541
9542         /* Check for I/O accelerator mode support */
9543         if (trans_support & CFGTBL_Trans_io_accel1) {
9544                 transMethod |= CFGTBL_Trans_io_accel1 |
9545                                 CFGTBL_Trans_enable_directed_msix;
9546                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9547                 if (rc)
9548                         return rc;
9549         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9550                 transMethod |= CFGTBL_Trans_io_accel2 |
9551                                 CFGTBL_Trans_enable_directed_msix;
9552                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9553                 if (rc)
9554                         return rc;
9555         }
9556
9557         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9558         hpsa_get_max_perf_mode_cmds(h);
9559         /* Performant mode ring buffer and supporting data structures */
9560         h->reply_queue_size = h->max_commands * sizeof(u64);
9561
9562         for (i = 0; i < h->nreply_queues; i++) {
9563                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9564                                                 h->reply_queue_size,
9565                                                 &(h->reply_queue[i].busaddr));
9566                 if (!h->reply_queue[i].head) {
9567                         rc = -ENOMEM;
9568                         goto clean1;    /* rq, ioaccel */
9569                 }
9570                 h->reply_queue[i].size = h->max_commands;
9571                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9572                 h->reply_queue[i].current_entry = 0;
9573         }
9574
9575         /* Need a block fetch table for performant mode */
9576         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9577                                 sizeof(u32)), GFP_KERNEL);
9578         if (!h->blockFetchTable) {
9579                 rc = -ENOMEM;
9580                 goto clean1;    /* rq, ioaccel */
9581         }
9582
9583         rc = hpsa_enter_performant_mode(h, trans_support);
9584         if (rc)
9585                 goto clean2;    /* bft, rq, ioaccel */
9586         return 0;
9587
9588 clean2: /* bft, rq, ioaccel */
9589         kfree(h->blockFetchTable);
9590         h->blockFetchTable = NULL;
9591 clean1: /* rq, ioaccel */
9592         hpsa_free_reply_queues(h);
9593         hpsa_free_ioaccel1_cmd_and_bft(h);
9594         hpsa_free_ioaccel2_cmd_and_bft(h);
9595         return rc;
9596 }
9597
9598 static int is_accelerated_cmd(struct CommandList *c)
9599 {
9600         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9601 }
9602
9603 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9604 {
9605         struct CommandList *c = NULL;
9606         int i, accel_cmds_out;
9607         int refcount;
9608
9609         do { /* wait for all outstanding ioaccel commands to drain out */
9610                 accel_cmds_out = 0;
9611                 for (i = 0; i < h->nr_cmds; i++) {
9612                         c = h->cmd_pool + i;
9613                         refcount = atomic_inc_return(&c->refcount);
9614                         if (refcount > 1) /* Command is allocated */
9615                                 accel_cmds_out += is_accelerated_cmd(c);
9616                         cmd_free(h, c);
9617                 }
9618                 if (accel_cmds_out <= 0)
9619                         break;
9620                 msleep(100);
9621         } while (1);
9622 }
9623
9624 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9625                                 struct hpsa_sas_port *hpsa_sas_port)
9626 {
9627         struct hpsa_sas_phy *hpsa_sas_phy;
9628         struct sas_phy *phy;
9629
9630         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9631         if (!hpsa_sas_phy)
9632                 return NULL;
9633
9634         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9635                 hpsa_sas_port->next_phy_index);
9636         if (!phy) {
9637                 kfree(hpsa_sas_phy);
9638                 return NULL;
9639         }
9640
9641         hpsa_sas_port->next_phy_index++;
9642         hpsa_sas_phy->phy = phy;
9643         hpsa_sas_phy->parent_port = hpsa_sas_port;
9644
9645         return hpsa_sas_phy;
9646 }
9647
9648 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9649 {
9650         struct sas_phy *phy = hpsa_sas_phy->phy;
9651
9652         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9653         if (hpsa_sas_phy->added_to_port)
9654                 list_del(&hpsa_sas_phy->phy_list_entry);
9655         sas_phy_delete(phy);
9656         kfree(hpsa_sas_phy);
9657 }
9658
9659 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9660 {
9661         int rc;
9662         struct hpsa_sas_port *hpsa_sas_port;
9663         struct sas_phy *phy;
9664         struct sas_identify *identify;
9665
9666         hpsa_sas_port = hpsa_sas_phy->parent_port;
9667         phy = hpsa_sas_phy->phy;
9668
9669         identify = &phy->identify;
9670         memset(identify, 0, sizeof(*identify));
9671         identify->sas_address = hpsa_sas_port->sas_address;
9672         identify->device_type = SAS_END_DEVICE;
9673         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9674         identify->target_port_protocols = SAS_PROTOCOL_STP;
9675         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9676         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9677         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9678         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9679         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9680
9681         rc = sas_phy_add(hpsa_sas_phy->phy);
9682         if (rc)
9683                 return rc;
9684
9685         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9686         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9687                         &hpsa_sas_port->phy_list_head);
9688         hpsa_sas_phy->added_to_port = true;
9689
9690         return 0;
9691 }
9692
9693 static int
9694         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9695                                 struct sas_rphy *rphy)
9696 {
9697         struct sas_identify *identify;
9698
9699         identify = &rphy->identify;
9700         identify->sas_address = hpsa_sas_port->sas_address;
9701         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9702         identify->target_port_protocols = SAS_PROTOCOL_STP;
9703
9704         return sas_rphy_add(rphy);
9705 }
9706
9707 static struct hpsa_sas_port
9708         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9709                                 u64 sas_address)
9710 {
9711         int rc;
9712         struct hpsa_sas_port *hpsa_sas_port;
9713         struct sas_port *port;
9714
9715         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9716         if (!hpsa_sas_port)
9717                 return NULL;
9718
9719         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9720         hpsa_sas_port->parent_node = hpsa_sas_node;
9721
9722         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9723         if (!port)
9724                 goto free_hpsa_port;
9725
9726         rc = sas_port_add(port);
9727         if (rc)
9728                 goto free_sas_port;
9729
9730         hpsa_sas_port->port = port;
9731         hpsa_sas_port->sas_address = sas_address;
9732         list_add_tail(&hpsa_sas_port->port_list_entry,
9733                         &hpsa_sas_node->port_list_head);
9734
9735         return hpsa_sas_port;
9736
9737 free_sas_port:
9738         sas_port_free(port);
9739 free_hpsa_port:
9740         kfree(hpsa_sas_port);
9741
9742         return NULL;
9743 }
9744
9745 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9746 {
9747         struct hpsa_sas_phy *hpsa_sas_phy;
9748         struct hpsa_sas_phy *next;
9749
9750         list_for_each_entry_safe(hpsa_sas_phy, next,
9751                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9752                 hpsa_free_sas_phy(hpsa_sas_phy);
9753
9754         sas_port_delete(hpsa_sas_port->port);
9755         list_del(&hpsa_sas_port->port_list_entry);
9756         kfree(hpsa_sas_port);
9757 }
9758
9759 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9760 {
9761         struct hpsa_sas_node *hpsa_sas_node;
9762
9763         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9764         if (hpsa_sas_node) {
9765                 hpsa_sas_node->parent_dev = parent_dev;
9766                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9767         }
9768
9769         return hpsa_sas_node;
9770 }
9771
9772 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9773 {
9774         struct hpsa_sas_port *hpsa_sas_port;
9775         struct hpsa_sas_port *next;
9776
9777         if (!hpsa_sas_node)
9778                 return;
9779
9780         list_for_each_entry_safe(hpsa_sas_port, next,
9781                         &hpsa_sas_node->port_list_head, port_list_entry)
9782                 hpsa_free_sas_port(hpsa_sas_port);
9783
9784         kfree(hpsa_sas_node);
9785 }
9786
9787 static struct hpsa_scsi_dev_t
9788         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9789                                         struct sas_rphy *rphy)
9790 {
9791         int i;
9792         struct hpsa_scsi_dev_t *device;
9793
9794         for (i = 0; i < h->ndevices; i++) {
9795                 device = h->dev[i];
9796                 if (!device->sas_port)
9797                         continue;
9798                 if (device->sas_port->rphy == rphy)
9799                         return device;
9800         }
9801
9802         return NULL;
9803 }
9804
9805 static int hpsa_add_sas_host(struct ctlr_info *h)
9806 {
9807         int rc;
9808         struct device *parent_dev;
9809         struct hpsa_sas_node *hpsa_sas_node;
9810         struct hpsa_sas_port *hpsa_sas_port;
9811         struct hpsa_sas_phy *hpsa_sas_phy;
9812
9813         parent_dev = &h->scsi_host->shost_gendev;
9814
9815         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9816         if (!hpsa_sas_node)
9817                 return -ENOMEM;
9818
9819         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9820         if (!hpsa_sas_port) {
9821                 rc = -ENODEV;
9822                 goto free_sas_node;
9823         }
9824
9825         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9826         if (!hpsa_sas_phy) {
9827                 rc = -ENODEV;
9828                 goto free_sas_port;
9829         }
9830
9831         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9832         if (rc)
9833                 goto free_sas_phy;
9834
9835         h->sas_host = hpsa_sas_node;
9836
9837         return 0;
9838
9839 free_sas_phy:
9840         hpsa_free_sas_phy(hpsa_sas_phy);
9841 free_sas_port:
9842         hpsa_free_sas_port(hpsa_sas_port);
9843 free_sas_node:
9844         hpsa_free_sas_node(hpsa_sas_node);
9845
9846         return rc;
9847 }
9848
9849 static void hpsa_delete_sas_host(struct ctlr_info *h)
9850 {
9851         hpsa_free_sas_node(h->sas_host);
9852 }
9853
9854 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9855                                 struct hpsa_scsi_dev_t *device)
9856 {
9857         int rc;
9858         struct hpsa_sas_port *hpsa_sas_port;
9859         struct sas_rphy *rphy;
9860
9861         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9862         if (!hpsa_sas_port)
9863                 return -ENOMEM;
9864
9865         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9866         if (!rphy) {
9867                 rc = -ENODEV;
9868                 goto free_sas_port;
9869         }
9870
9871         hpsa_sas_port->rphy = rphy;
9872         device->sas_port = hpsa_sas_port;
9873
9874         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9875         if (rc)
9876                 goto free_sas_port;
9877
9878         return 0;
9879
9880 free_sas_port:
9881         hpsa_free_sas_port(hpsa_sas_port);
9882         device->sas_port = NULL;
9883
9884         return rc;
9885 }
9886
9887 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9888 {
9889         if (device->sas_port) {
9890                 hpsa_free_sas_port(device->sas_port);
9891                 device->sas_port = NULL;
9892         }
9893 }
9894
9895 static int
9896 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9897 {
9898         return 0;
9899 }
9900
9901 static int
9902 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9903 {
9904         *identifier = 0;
9905         return 0;
9906 }
9907
9908 static int
9909 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9910 {
9911         return -ENXIO;
9912 }
9913
9914 static int
9915 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9916 {
9917         return 0;
9918 }
9919
9920 static int
9921 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9922 {
9923         return 0;
9924 }
9925
9926 static int
9927 hpsa_sas_phy_setup(struct sas_phy *phy)
9928 {
9929         return 0;
9930 }
9931
9932 static void
9933 hpsa_sas_phy_release(struct sas_phy *phy)
9934 {
9935 }
9936
9937 static int
9938 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9939 {
9940         return -EINVAL;
9941 }
9942
9943 /* SMP = Serial Management Protocol */
9944 static int
9945 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9946 struct request *req)
9947 {
9948         return -EINVAL;
9949 }
9950
9951 static struct sas_function_template hpsa_sas_transport_functions = {
9952         .get_linkerrors = hpsa_sas_get_linkerrors,
9953         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9954         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9955         .phy_reset = hpsa_sas_phy_reset,
9956         .phy_enable = hpsa_sas_phy_enable,
9957         .phy_setup = hpsa_sas_phy_setup,
9958         .phy_release = hpsa_sas_phy_release,
9959         .set_phy_speed = hpsa_sas_phy_speed,
9960         .smp_handler = hpsa_sas_smp_handler,
9961 };
9962
9963 /*
9964  *  This is it.  Register the PCI driver information for the cards we control
9965  *  the OS will call our registered routines when it finds one of our cards.
9966  */
9967 static int __init hpsa_init(void)
9968 {
9969         int rc;
9970
9971         hpsa_sas_transport_template =
9972                 sas_attach_transport(&hpsa_sas_transport_functions);
9973         if (!hpsa_sas_transport_template)
9974                 return -ENODEV;
9975
9976         rc = pci_register_driver(&hpsa_pci_driver);
9977
9978         if (rc)
9979                 sas_release_transport(hpsa_sas_transport_template);
9980
9981         return rc;
9982 }
9983
9984 static void __exit hpsa_cleanup(void)
9985 {
9986         pci_unregister_driver(&hpsa_pci_driver);
9987         sas_release_transport(hpsa_sas_transport_template);
9988 }
9989
9990 static void __attribute__((unused)) verify_offsets(void)
9991 {
9992 #define VERIFY_OFFSET(member, offset) \
9993         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9994
9995         VERIFY_OFFSET(structure_size, 0);
9996         VERIFY_OFFSET(volume_blk_size, 4);
9997         VERIFY_OFFSET(volume_blk_cnt, 8);
9998         VERIFY_OFFSET(phys_blk_shift, 16);
9999         VERIFY_OFFSET(parity_rotation_shift, 17);
10000         VERIFY_OFFSET(strip_size, 18);
10001         VERIFY_OFFSET(disk_starting_blk, 20);
10002         VERIFY_OFFSET(disk_blk_cnt, 28);
10003         VERIFY_OFFSET(data_disks_per_row, 36);
10004         VERIFY_OFFSET(metadata_disks_per_row, 38);
10005         VERIFY_OFFSET(row_cnt, 40);
10006         VERIFY_OFFSET(layout_map_count, 42);
10007         VERIFY_OFFSET(flags, 44);
10008         VERIFY_OFFSET(dekindex, 46);
10009         /* VERIFY_OFFSET(reserved, 48 */
10010         VERIFY_OFFSET(data, 64);
10011
10012 #undef VERIFY_OFFSET
10013
10014 #define VERIFY_OFFSET(member, offset) \
10015         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
10016
10017         VERIFY_OFFSET(IU_type, 0);
10018         VERIFY_OFFSET(direction, 1);
10019         VERIFY_OFFSET(reply_queue, 2);
10020         /* VERIFY_OFFSET(reserved1, 3);  */
10021         VERIFY_OFFSET(scsi_nexus, 4);
10022         VERIFY_OFFSET(Tag, 8);
10023         VERIFY_OFFSET(cdb, 16);
10024         VERIFY_OFFSET(cciss_lun, 32);
10025         VERIFY_OFFSET(data_len, 40);
10026         VERIFY_OFFSET(cmd_priority_task_attr, 44);
10027         VERIFY_OFFSET(sg_count, 45);
10028         /* VERIFY_OFFSET(reserved3 */
10029         VERIFY_OFFSET(err_ptr, 48);
10030         VERIFY_OFFSET(err_len, 56);
10031         /* VERIFY_OFFSET(reserved4  */
10032         VERIFY_OFFSET(sg, 64);
10033
10034 #undef VERIFY_OFFSET
10035
10036 #define VERIFY_OFFSET(member, offset) \
10037         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10038
10039         VERIFY_OFFSET(dev_handle, 0x00);
10040         VERIFY_OFFSET(reserved1, 0x02);
10041         VERIFY_OFFSET(function, 0x03);
10042         VERIFY_OFFSET(reserved2, 0x04);
10043         VERIFY_OFFSET(err_info, 0x0C);
10044         VERIFY_OFFSET(reserved3, 0x10);
10045         VERIFY_OFFSET(err_info_len, 0x12);
10046         VERIFY_OFFSET(reserved4, 0x13);
10047         VERIFY_OFFSET(sgl_offset, 0x14);
10048         VERIFY_OFFSET(reserved5, 0x15);
10049         VERIFY_OFFSET(transfer_len, 0x1C);
10050         VERIFY_OFFSET(reserved6, 0x20);
10051         VERIFY_OFFSET(io_flags, 0x24);
10052         VERIFY_OFFSET(reserved7, 0x26);
10053         VERIFY_OFFSET(LUN, 0x34);
10054         VERIFY_OFFSET(control, 0x3C);
10055         VERIFY_OFFSET(CDB, 0x40);
10056         VERIFY_OFFSET(reserved8, 0x50);
10057         VERIFY_OFFSET(host_context_flags, 0x60);
10058         VERIFY_OFFSET(timeout_sec, 0x62);
10059         VERIFY_OFFSET(ReplyQueue, 0x64);
10060         VERIFY_OFFSET(reserved9, 0x65);
10061         VERIFY_OFFSET(tag, 0x68);
10062         VERIFY_OFFSET(host_addr, 0x70);
10063         VERIFY_OFFSET(CISS_LUN, 0x78);
10064         VERIFY_OFFSET(SG, 0x78 + 8);
10065 #undef VERIFY_OFFSET
10066 }
10067
10068 module_init(hpsa_init);
10069 module_exit(hpsa_cleanup);