GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2016 Microsemi Corporation
4  *    Copyright 2014-2015 PMC-Sierra, Inc.
5  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
6  *
7  *    This program is free software; you can redistribute it and/or modify
8  *    it under the terms of the GNU General Public License as published by
9  *    the Free Software Foundation; version 2 of the License.
10  *
11  *    This program is distributed in the hope that it will be useful,
12  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
13  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
14  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
15  *
16  *    Questions/Comments/Bugfixes to esc.storagedev@microsemi.com
17  *
18  */
19
20 #include <linux/module.h>
21 #include <linux/interrupt.h>
22 #include <linux/types.h>
23 #include <linux/pci.h>
24 #include <linux/pci-aspm.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/delay.h>
28 #include <linux/fs.h>
29 #include <linux/timer.h>
30 #include <linux/init.h>
31 #include <linux/spinlock.h>
32 #include <linux/compat.h>
33 #include <linux/blktrace_api.h>
34 #include <linux/uaccess.h>
35 #include <linux/io.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/completion.h>
38 #include <linux/moduleparam.h>
39 #include <scsi/scsi.h>
40 #include <scsi/scsi_cmnd.h>
41 #include <scsi/scsi_device.h>
42 #include <scsi/scsi_host.h>
43 #include <scsi/scsi_tcq.h>
44 #include <scsi/scsi_eh.h>
45 #include <scsi/scsi_transport_sas.h>
46 #include <scsi/scsi_dbg.h>
47 #include <linux/cciss_ioctl.h>
48 #include <linux/string.h>
49 #include <linux/bitmap.h>
50 #include <linux/atomic.h>
51 #include <linux/jiffies.h>
52 #include <linux/percpu-defs.h>
53 #include <linux/percpu.h>
54 #include <asm/unaligned.h>
55 #include <asm/div64.h>
56 #include "hpsa_cmd.h"
57 #include "hpsa.h"
58
59 /*
60  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
61  * with an optional trailing '-' followed by a byte value (0-255).
62  */
63 #define HPSA_DRIVER_VERSION "3.4.16-0"
64 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
65 #define HPSA "hpsa"
66
67 /* How long to wait for CISS doorbell communication */
68 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
69 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
70 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
71 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
72 #define MAX_IOCTL_CONFIG_WAIT 1000
73
74 /*define how many times we will try a command because of bus resets */
75 #define MAX_CMD_RETRIES 3
76
77 /* Embedded module documentation macros - see modules.h */
78 MODULE_AUTHOR("Hewlett-Packard Company");
79 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
80         HPSA_DRIVER_VERSION);
81 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
82 MODULE_VERSION(HPSA_DRIVER_VERSION);
83 MODULE_LICENSE("GPL");
84
85 static int hpsa_allow_any;
86 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
87 MODULE_PARM_DESC(hpsa_allow_any,
88                 "Allow hpsa driver to access unknown HP Smart Array hardware");
89 static int hpsa_simple_mode;
90 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
91 MODULE_PARM_DESC(hpsa_simple_mode,
92         "Use 'simple mode' rather than 'performant mode'");
93
94 /* define the PCI info for the cards we can control */
95 static const struct pci_device_id hpsa_pci_device_id[] = {
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
135         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
141         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
145         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
146         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
147         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
148                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
149         {0,}
150 };
151
152 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
153
154 /*  board_id = Subsystem Device ID & Vendor ID
155  *  product = Marketing Name for the board
156  *  access = Address of the struct of function pointers
157  */
158 static struct board_type products[] = {
159         {0x3241103C, "Smart Array P212", &SA5_access},
160         {0x3243103C, "Smart Array P410", &SA5_access},
161         {0x3245103C, "Smart Array P410i", &SA5_access},
162         {0x3247103C, "Smart Array P411", &SA5_access},
163         {0x3249103C, "Smart Array P812", &SA5_access},
164         {0x324A103C, "Smart Array P712m", &SA5_access},
165         {0x324B103C, "Smart Array P711m", &SA5_access},
166         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
167         {0x3350103C, "Smart Array P222", &SA5_access},
168         {0x3351103C, "Smart Array P420", &SA5_access},
169         {0x3352103C, "Smart Array P421", &SA5_access},
170         {0x3353103C, "Smart Array P822", &SA5_access},
171         {0x3354103C, "Smart Array P420i", &SA5_access},
172         {0x3355103C, "Smart Array P220i", &SA5_access},
173         {0x3356103C, "Smart Array P721m", &SA5_access},
174         {0x1921103C, "Smart Array P830i", &SA5_access},
175         {0x1922103C, "Smart Array P430", &SA5_access},
176         {0x1923103C, "Smart Array P431", &SA5_access},
177         {0x1924103C, "Smart Array P830", &SA5_access},
178         {0x1926103C, "Smart Array P731m", &SA5_access},
179         {0x1928103C, "Smart Array P230i", &SA5_access},
180         {0x1929103C, "Smart Array P530", &SA5_access},
181         {0x21BD103C, "Smart Array P244br", &SA5_access},
182         {0x21BE103C, "Smart Array P741m", &SA5_access},
183         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
184         {0x21C0103C, "Smart Array P440ar", &SA5_access},
185         {0x21C1103C, "Smart Array P840ar", &SA5_access},
186         {0x21C2103C, "Smart Array P440", &SA5_access},
187         {0x21C3103C, "Smart Array P441", &SA5_access},
188         {0x21C4103C, "Smart Array", &SA5_access},
189         {0x21C5103C, "Smart Array P841", &SA5_access},
190         {0x21C6103C, "Smart HBA H244br", &SA5_access},
191         {0x21C7103C, "Smart HBA H240", &SA5_access},
192         {0x21C8103C, "Smart HBA H241", &SA5_access},
193         {0x21C9103C, "Smart Array", &SA5_access},
194         {0x21CA103C, "Smart Array P246br", &SA5_access},
195         {0x21CB103C, "Smart Array P840", &SA5_access},
196         {0x21CC103C, "Smart Array", &SA5_access},
197         {0x21CD103C, "Smart Array", &SA5_access},
198         {0x21CE103C, "Smart HBA", &SA5_access},
199         {0x05809005, "SmartHBA-SA", &SA5_access},
200         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
201         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
202         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
203         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
204         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
205         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
206         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
207         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
208         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
209         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
210         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
211 };
212
213 static struct scsi_transport_template *hpsa_sas_transport_template;
214 static int hpsa_add_sas_host(struct ctlr_info *h);
215 static void hpsa_delete_sas_host(struct ctlr_info *h);
216 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
217                         struct hpsa_scsi_dev_t *device);
218 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
219 static struct hpsa_scsi_dev_t
220         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
221                 struct sas_rphy *rphy);
222
223 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
224 static const struct scsi_cmnd hpsa_cmd_busy;
225 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
226 static const struct scsi_cmnd hpsa_cmd_idle;
227 static int number_of_controllers;
228
229 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
230 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
231 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
232
233 #ifdef CONFIG_COMPAT
234 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
235         void __user *arg);
236 #endif
237
238 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
239 static struct CommandList *cmd_alloc(struct ctlr_info *h);
240 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
241 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
242                                             struct scsi_cmnd *scmd);
243 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
244         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
245         int cmd_type);
246 static void hpsa_free_cmd_pool(struct ctlr_info *h);
247 #define VPD_PAGE (1 << 8)
248 #define HPSA_SIMPLE_ERROR_BITS 0x03
249
250 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
251 static void hpsa_scan_start(struct Scsi_Host *);
252 static int hpsa_scan_finished(struct Scsi_Host *sh,
253         unsigned long elapsed_time);
254 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
255
256 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
258 static int hpsa_slave_alloc(struct scsi_device *sdev);
259 static int hpsa_slave_configure(struct scsi_device *sdev);
260 static void hpsa_slave_destroy(struct scsi_device *sdev);
261
262 static void hpsa_update_scsi_devices(struct ctlr_info *h);
263 static int check_for_unit_attention(struct ctlr_info *h,
264         struct CommandList *c);
265 static void check_ioctl_unit_attention(struct ctlr_info *h,
266         struct CommandList *c);
267 /* performant mode helper functions */
268 static void calc_bucket_map(int *bucket, int num_buckets,
269         int nsgs, int min_blocks, u32 *bucket_map);
270 static void hpsa_free_performant_mode(struct ctlr_info *h);
271 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
272 static inline u32 next_command(struct ctlr_info *h, u8 q);
273 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
274                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
275                                u64 *cfg_offset);
276 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
277                                     unsigned long *memory_bar);
278 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
279 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
280                                      int wait_for_ready);
281 static inline void finish_cmd(struct CommandList *c);
282 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
283 #define BOARD_NOT_READY 0
284 #define BOARD_READY 1
285 static void hpsa_drain_accel_commands(struct ctlr_info *h);
286 static void hpsa_flush_cache(struct ctlr_info *h);
287 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
288         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
289         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
290 static void hpsa_command_resubmit_worker(struct work_struct *work);
291 static u32 lockup_detected(struct ctlr_info *h);
292 static int detect_controller_lockup(struct ctlr_info *h);
293 static void hpsa_disable_rld_caching(struct ctlr_info *h);
294 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
295         struct ReportExtendedLUNdata *buf, int bufsize);
296 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
297         unsigned char scsi3addr[], u8 page);
298 static int hpsa_luns_changed(struct ctlr_info *h);
299 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
300                                struct hpsa_scsi_dev_t *dev,
301                                unsigned char *scsi3addr);
302
303 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
304 {
305         unsigned long *priv = shost_priv(sdev->host);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
310 {
311         unsigned long *priv = shost_priv(sh);
312         return (struct ctlr_info *) *priv;
313 }
314
315 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
316 {
317         return c->scsi_cmd == SCSI_CMD_IDLE;
318 }
319
320 static inline bool hpsa_is_pending_event(struct CommandList *c)
321 {
322         return c->abort_pending || c->reset_pending;
323 }
324
325 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
326 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
327                         u8 *sense_key, u8 *asc, u8 *ascq)
328 {
329         struct scsi_sense_hdr sshdr;
330         bool rc;
331
332         *sense_key = -1;
333         *asc = -1;
334         *ascq = -1;
335
336         if (sense_data_len < 1)
337                 return;
338
339         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
340         if (rc) {
341                 *sense_key = sshdr.sense_key;
342                 *asc = sshdr.asc;
343                 *ascq = sshdr.ascq;
344         }
345 }
346
347 static int check_for_unit_attention(struct ctlr_info *h,
348         struct CommandList *c)
349 {
350         u8 sense_key, asc, ascq;
351         int sense_len;
352
353         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
354                 sense_len = sizeof(c->err_info->SenseInfo);
355         else
356                 sense_len = c->err_info->SenseLen;
357
358         decode_sense_data(c->err_info->SenseInfo, sense_len,
359                                 &sense_key, &asc, &ascq);
360         if (sense_key != UNIT_ATTENTION || asc == 0xff)
361                 return 0;
362
363         switch (asc) {
364         case STATE_CHANGED:
365                 dev_warn(&h->pdev->dev,
366                         "%s: a state change detected, command retried\n",
367                         h->devname);
368                 break;
369         case LUN_FAILED:
370                 dev_warn(&h->pdev->dev,
371                         "%s: LUN failure detected\n", h->devname);
372                 break;
373         case REPORT_LUNS_CHANGED:
374                 dev_warn(&h->pdev->dev,
375                         "%s: report LUN data changed\n", h->devname);
376         /*
377          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
378          * target (array) devices.
379          */
380                 break;
381         case POWER_OR_RESET:
382                 dev_warn(&h->pdev->dev,
383                         "%s: a power on or device reset detected\n",
384                         h->devname);
385                 break;
386         case UNIT_ATTENTION_CLEARED:
387                 dev_warn(&h->pdev->dev,
388                         "%s: unit attention cleared by another initiator\n",
389                         h->devname);
390                 break;
391         default:
392                 dev_warn(&h->pdev->dev,
393                         "%s: unknown unit attention detected\n",
394                         h->devname);
395                 break;
396         }
397         return 1;
398 }
399
400 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
401 {
402         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
403                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
404                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
405                 return 0;
406         dev_warn(&h->pdev->dev, HPSA "device busy");
407         return 1;
408 }
409
410 static u32 lockup_detected(struct ctlr_info *h);
411 static ssize_t host_show_lockup_detected(struct device *dev,
412                 struct device_attribute *attr, char *buf)
413 {
414         int ld;
415         struct ctlr_info *h;
416         struct Scsi_Host *shost = class_to_shost(dev);
417
418         h = shost_to_hba(shost);
419         ld = lockup_detected(h);
420
421         return sprintf(buf, "ld=%d\n", ld);
422 }
423
424 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
425                                          struct device_attribute *attr,
426                                          const char *buf, size_t count)
427 {
428         int status, len;
429         struct ctlr_info *h;
430         struct Scsi_Host *shost = class_to_shost(dev);
431         char tmpbuf[10];
432
433         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
434                 return -EACCES;
435         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
436         strncpy(tmpbuf, buf, len);
437         tmpbuf[len] = '\0';
438         if (sscanf(tmpbuf, "%d", &status) != 1)
439                 return -EINVAL;
440         h = shost_to_hba(shost);
441         h->acciopath_status = !!status;
442         dev_warn(&h->pdev->dev,
443                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
444                 h->acciopath_status ? "enabled" : "disabled");
445         return count;
446 }
447
448 static ssize_t host_store_raid_offload_debug(struct device *dev,
449                                          struct device_attribute *attr,
450                                          const char *buf, size_t count)
451 {
452         int debug_level, len;
453         struct ctlr_info *h;
454         struct Scsi_Host *shost = class_to_shost(dev);
455         char tmpbuf[10];
456
457         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
458                 return -EACCES;
459         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
460         strncpy(tmpbuf, buf, len);
461         tmpbuf[len] = '\0';
462         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
463                 return -EINVAL;
464         if (debug_level < 0)
465                 debug_level = 0;
466         h = shost_to_hba(shost);
467         h->raid_offload_debug = debug_level;
468         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
469                 h->raid_offload_debug);
470         return count;
471 }
472
473 static ssize_t host_store_rescan(struct device *dev,
474                                  struct device_attribute *attr,
475                                  const char *buf, size_t count)
476 {
477         struct ctlr_info *h;
478         struct Scsi_Host *shost = class_to_shost(dev);
479         h = shost_to_hba(shost);
480         hpsa_scan_start(h->scsi_host);
481         return count;
482 }
483
484 static ssize_t host_show_firmware_revision(struct device *dev,
485              struct device_attribute *attr, char *buf)
486 {
487         struct ctlr_info *h;
488         struct Scsi_Host *shost = class_to_shost(dev);
489         unsigned char *fwrev;
490
491         h = shost_to_hba(shost);
492         if (!h->hba_inquiry_data)
493                 return 0;
494         fwrev = &h->hba_inquiry_data[32];
495         return snprintf(buf, 20, "%c%c%c%c\n",
496                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
497 }
498
499 static ssize_t host_show_commands_outstanding(struct device *dev,
500              struct device_attribute *attr, char *buf)
501 {
502         struct Scsi_Host *shost = class_to_shost(dev);
503         struct ctlr_info *h = shost_to_hba(shost);
504
505         return snprintf(buf, 20, "%d\n",
506                         atomic_read(&h->commands_outstanding));
507 }
508
509 static ssize_t host_show_transport_mode(struct device *dev,
510         struct device_attribute *attr, char *buf)
511 {
512         struct ctlr_info *h;
513         struct Scsi_Host *shost = class_to_shost(dev);
514
515         h = shost_to_hba(shost);
516         return snprintf(buf, 20, "%s\n",
517                 h->transMethod & CFGTBL_Trans_Performant ?
518                         "performant" : "simple");
519 }
520
521 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
522         struct device_attribute *attr, char *buf)
523 {
524         struct ctlr_info *h;
525         struct Scsi_Host *shost = class_to_shost(dev);
526
527         h = shost_to_hba(shost);
528         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
529                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
530 }
531
532 /* List of controllers which cannot be hard reset on kexec with reset_devices */
533 static u32 unresettable_controller[] = {
534         0x324a103C, /* Smart Array P712m */
535         0x324b103C, /* Smart Array P711m */
536         0x3223103C, /* Smart Array P800 */
537         0x3234103C, /* Smart Array P400 */
538         0x3235103C, /* Smart Array P400i */
539         0x3211103C, /* Smart Array E200i */
540         0x3212103C, /* Smart Array E200 */
541         0x3213103C, /* Smart Array E200i */
542         0x3214103C, /* Smart Array E200i */
543         0x3215103C, /* Smart Array E200i */
544         0x3237103C, /* Smart Array E500 */
545         0x323D103C, /* Smart Array P700m */
546         0x40800E11, /* Smart Array 5i */
547         0x409C0E11, /* Smart Array 6400 */
548         0x409D0E11, /* Smart Array 6400 EM */
549         0x40700E11, /* Smart Array 5300 */
550         0x40820E11, /* Smart Array 532 */
551         0x40830E11, /* Smart Array 5312 */
552         0x409A0E11, /* Smart Array 641 */
553         0x409B0E11, /* Smart Array 642 */
554         0x40910E11, /* Smart Array 6i */
555 };
556
557 /* List of controllers which cannot even be soft reset */
558 static u32 soft_unresettable_controller[] = {
559         0x40800E11, /* Smart Array 5i */
560         0x40700E11, /* Smart Array 5300 */
561         0x40820E11, /* Smart Array 532 */
562         0x40830E11, /* Smart Array 5312 */
563         0x409A0E11, /* Smart Array 641 */
564         0x409B0E11, /* Smart Array 642 */
565         0x40910E11, /* Smart Array 6i */
566         /* Exclude 640x boards.  These are two pci devices in one slot
567          * which share a battery backed cache module.  One controls the
568          * cache, the other accesses the cache through the one that controls
569          * it.  If we reset the one controlling the cache, the other will
570          * likely not be happy.  Just forbid resetting this conjoined mess.
571          * The 640x isn't really supported by hpsa anyway.
572          */
573         0x409C0E11, /* Smart Array 6400 */
574         0x409D0E11, /* Smart Array 6400 EM */
575 };
576
577 static u32 needs_abort_tags_swizzled[] = {
578         0x323D103C, /* Smart Array P700m */
579         0x324a103C, /* Smart Array P712m */
580         0x324b103C, /* SmartArray P711m */
581 };
582
583 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
584 {
585         int i;
586
587         for (i = 0; i < nelems; i++)
588                 if (a[i] == board_id)
589                         return 1;
590         return 0;
591 }
592
593 static int ctlr_is_hard_resettable(u32 board_id)
594 {
595         return !board_id_in_array(unresettable_controller,
596                         ARRAY_SIZE(unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_soft_resettable(u32 board_id)
600 {
601         return !board_id_in_array(soft_unresettable_controller,
602                         ARRAY_SIZE(soft_unresettable_controller), board_id);
603 }
604
605 static int ctlr_is_resettable(u32 board_id)
606 {
607         return ctlr_is_hard_resettable(board_id) ||
608                 ctlr_is_soft_resettable(board_id);
609 }
610
611 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
612 {
613         return board_id_in_array(needs_abort_tags_swizzled,
614                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
615 }
616
617 static ssize_t host_show_resettable(struct device *dev,
618         struct device_attribute *attr, char *buf)
619 {
620         struct ctlr_info *h;
621         struct Scsi_Host *shost = class_to_shost(dev);
622
623         h = shost_to_hba(shost);
624         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
625 }
626
627 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
628 {
629         return (scsi3addr[3] & 0xC0) == 0x40;
630 }
631
632 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
633         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
634 };
635 #define HPSA_RAID_0     0
636 #define HPSA_RAID_4     1
637 #define HPSA_RAID_1     2       /* also used for RAID 10 */
638 #define HPSA_RAID_5     3       /* also used for RAID 50 */
639 #define HPSA_RAID_51    4
640 #define HPSA_RAID_6     5       /* also used for RAID 60 */
641 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
642 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
643 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
644
645 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
646 {
647         return !device->physical_device;
648 }
649
650 static ssize_t raid_level_show(struct device *dev,
651              struct device_attribute *attr, char *buf)
652 {
653         ssize_t l = 0;
654         unsigned char rlevel;
655         struct ctlr_info *h;
656         struct scsi_device *sdev;
657         struct hpsa_scsi_dev_t *hdev;
658         unsigned long flags;
659
660         sdev = to_scsi_device(dev);
661         h = sdev_to_hba(sdev);
662         spin_lock_irqsave(&h->lock, flags);
663         hdev = sdev->hostdata;
664         if (!hdev) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 return -ENODEV;
667         }
668
669         /* Is this even a logical drive? */
670         if (!is_logical_device(hdev)) {
671                 spin_unlock_irqrestore(&h->lock, flags);
672                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
673                 return l;
674         }
675
676         rlevel = hdev->raid_level;
677         spin_unlock_irqrestore(&h->lock, flags);
678         if (rlevel > RAID_UNKNOWN)
679                 rlevel = RAID_UNKNOWN;
680         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
681         return l;
682 }
683
684 static ssize_t lunid_show(struct device *dev,
685              struct device_attribute *attr, char *buf)
686 {
687         struct ctlr_info *h;
688         struct scsi_device *sdev;
689         struct hpsa_scsi_dev_t *hdev;
690         unsigned long flags;
691         unsigned char lunid[8];
692
693         sdev = to_scsi_device(dev);
694         h = sdev_to_hba(sdev);
695         spin_lock_irqsave(&h->lock, flags);
696         hdev = sdev->hostdata;
697         if (!hdev) {
698                 spin_unlock_irqrestore(&h->lock, flags);
699                 return -ENODEV;
700         }
701         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
702         spin_unlock_irqrestore(&h->lock, flags);
703         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
704                 lunid[0], lunid[1], lunid[2], lunid[3],
705                 lunid[4], lunid[5], lunid[6], lunid[7]);
706 }
707
708 static ssize_t unique_id_show(struct device *dev,
709              struct device_attribute *attr, char *buf)
710 {
711         struct ctlr_info *h;
712         struct scsi_device *sdev;
713         struct hpsa_scsi_dev_t *hdev;
714         unsigned long flags;
715         unsigned char sn[16];
716
717         sdev = to_scsi_device(dev);
718         h = sdev_to_hba(sdev);
719         spin_lock_irqsave(&h->lock, flags);
720         hdev = sdev->hostdata;
721         if (!hdev) {
722                 spin_unlock_irqrestore(&h->lock, flags);
723                 return -ENODEV;
724         }
725         memcpy(sn, hdev->device_id, sizeof(sn));
726         spin_unlock_irqrestore(&h->lock, flags);
727         return snprintf(buf, 16 * 2 + 2,
728                         "%02X%02X%02X%02X%02X%02X%02X%02X"
729                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
730                         sn[0], sn[1], sn[2], sn[3],
731                         sn[4], sn[5], sn[6], sn[7],
732                         sn[8], sn[9], sn[10], sn[11],
733                         sn[12], sn[13], sn[14], sn[15]);
734 }
735
736 static ssize_t sas_address_show(struct device *dev,
737               struct device_attribute *attr, char *buf)
738 {
739         struct ctlr_info *h;
740         struct scsi_device *sdev;
741         struct hpsa_scsi_dev_t *hdev;
742         unsigned long flags;
743         u64 sas_address;
744
745         sdev = to_scsi_device(dev);
746         h = sdev_to_hba(sdev);
747         spin_lock_irqsave(&h->lock, flags);
748         hdev = sdev->hostdata;
749         if (!hdev || is_logical_device(hdev) || !hdev->expose_device) {
750                 spin_unlock_irqrestore(&h->lock, flags);
751                 return -ENODEV;
752         }
753         sas_address = hdev->sas_address;
754         spin_unlock_irqrestore(&h->lock, flags);
755
756         return snprintf(buf, PAGE_SIZE, "0x%016llx\n", sas_address);
757 }
758
759 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
760              struct device_attribute *attr, char *buf)
761 {
762         struct ctlr_info *h;
763         struct scsi_device *sdev;
764         struct hpsa_scsi_dev_t *hdev;
765         unsigned long flags;
766         int offload_enabled;
767
768         sdev = to_scsi_device(dev);
769         h = sdev_to_hba(sdev);
770         spin_lock_irqsave(&h->lock, flags);
771         hdev = sdev->hostdata;
772         if (!hdev) {
773                 spin_unlock_irqrestore(&h->lock, flags);
774                 return -ENODEV;
775         }
776         offload_enabled = hdev->offload_enabled;
777         spin_unlock_irqrestore(&h->lock, flags);
778         return snprintf(buf, 20, "%d\n", offload_enabled);
779 }
780
781 #define MAX_PATHS 8
782 static ssize_t path_info_show(struct device *dev,
783              struct device_attribute *attr, char *buf)
784 {
785         struct ctlr_info *h;
786         struct scsi_device *sdev;
787         struct hpsa_scsi_dev_t *hdev;
788         unsigned long flags;
789         int i;
790         int output_len = 0;
791         u8 box;
792         u8 bay;
793         u8 path_map_index = 0;
794         char *active;
795         unsigned char phys_connector[2];
796
797         sdev = to_scsi_device(dev);
798         h = sdev_to_hba(sdev);
799         spin_lock_irqsave(&h->devlock, flags);
800         hdev = sdev->hostdata;
801         if (!hdev) {
802                 spin_unlock_irqrestore(&h->devlock, flags);
803                 return -ENODEV;
804         }
805
806         bay = hdev->bay;
807         for (i = 0; i < MAX_PATHS; i++) {
808                 path_map_index = 1<<i;
809                 if (i == hdev->active_path_index)
810                         active = "Active";
811                 else if (hdev->path_map & path_map_index)
812                         active = "Inactive";
813                 else
814                         continue;
815
816                 output_len += scnprintf(buf + output_len,
817                                 PAGE_SIZE - output_len,
818                                 "[%d:%d:%d:%d] %20.20s ",
819                                 h->scsi_host->host_no,
820                                 hdev->bus, hdev->target, hdev->lun,
821                                 scsi_device_type(hdev->devtype));
822
823                 if (hdev->devtype == TYPE_RAID || is_logical_device(hdev)) {
824                         output_len += scnprintf(buf + output_len,
825                                                 PAGE_SIZE - output_len,
826                                                 "%s\n", active);
827                         continue;
828                 }
829
830                 box = hdev->box[i];
831                 memcpy(&phys_connector, &hdev->phys_connector[i],
832                         sizeof(phys_connector));
833                 if (phys_connector[0] < '0')
834                         phys_connector[0] = '0';
835                 if (phys_connector[1] < '0')
836                         phys_connector[1] = '0';
837                 output_len += scnprintf(buf + output_len,
838                                 PAGE_SIZE - output_len,
839                                 "PORT: %.2s ",
840                                 phys_connector);
841                 if ((hdev->devtype == TYPE_DISK || hdev->devtype == TYPE_ZBC) &&
842                         hdev->expose_device) {
843                         if (box == 0 || box == 0xFF) {
844                                 output_len += scnprintf(buf + output_len,
845                                         PAGE_SIZE - output_len,
846                                         "BAY: %hhu %s\n",
847                                         bay, active);
848                         } else {
849                                 output_len += scnprintf(buf + output_len,
850                                         PAGE_SIZE - output_len,
851                                         "BOX: %hhu BAY: %hhu %s\n",
852                                         box, bay, active);
853                         }
854                 } else if (box != 0 && box != 0xFF) {
855                         output_len += scnprintf(buf + output_len,
856                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
857                                 box, active);
858                 } else
859                         output_len += scnprintf(buf + output_len,
860                                 PAGE_SIZE - output_len, "%s\n", active);
861         }
862
863         spin_unlock_irqrestore(&h->devlock, flags);
864         return output_len;
865 }
866
867 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
868 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
869 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
870 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
871 static DEVICE_ATTR(sas_address, S_IRUGO, sas_address_show, NULL);
872 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
873                         host_show_hp_ssd_smart_path_enabled, NULL);
874 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
875 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
876                 host_show_hp_ssd_smart_path_status,
877                 host_store_hp_ssd_smart_path_status);
878 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
879                         host_store_raid_offload_debug);
880 static DEVICE_ATTR(firmware_revision, S_IRUGO,
881         host_show_firmware_revision, NULL);
882 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
883         host_show_commands_outstanding, NULL);
884 static DEVICE_ATTR(transport_mode, S_IRUGO,
885         host_show_transport_mode, NULL);
886 static DEVICE_ATTR(resettable, S_IRUGO,
887         host_show_resettable, NULL);
888 static DEVICE_ATTR(lockup_detected, S_IRUGO,
889         host_show_lockup_detected, NULL);
890
891 static struct device_attribute *hpsa_sdev_attrs[] = {
892         &dev_attr_raid_level,
893         &dev_attr_lunid,
894         &dev_attr_unique_id,
895         &dev_attr_hp_ssd_smart_path_enabled,
896         &dev_attr_path_info,
897         &dev_attr_sas_address,
898         NULL,
899 };
900
901 static struct device_attribute *hpsa_shost_attrs[] = {
902         &dev_attr_rescan,
903         &dev_attr_firmware_revision,
904         &dev_attr_commands_outstanding,
905         &dev_attr_transport_mode,
906         &dev_attr_resettable,
907         &dev_attr_hp_ssd_smart_path_status,
908         &dev_attr_raid_offload_debug,
909         &dev_attr_lockup_detected,
910         NULL,
911 };
912
913 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
914                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
915
916 static struct scsi_host_template hpsa_driver_template = {
917         .module                 = THIS_MODULE,
918         .name                   = HPSA,
919         .proc_name              = HPSA,
920         .queuecommand           = hpsa_scsi_queue_command,
921         .scan_start             = hpsa_scan_start,
922         .scan_finished          = hpsa_scan_finished,
923         .change_queue_depth     = hpsa_change_queue_depth,
924         .this_id                = -1,
925         .use_clustering         = ENABLE_CLUSTERING,
926         .eh_abort_handler       = hpsa_eh_abort_handler,
927         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
928         .ioctl                  = hpsa_ioctl,
929         .slave_alloc            = hpsa_slave_alloc,
930         .slave_configure        = hpsa_slave_configure,
931         .slave_destroy          = hpsa_slave_destroy,
932 #ifdef CONFIG_COMPAT
933         .compat_ioctl           = hpsa_compat_ioctl,
934 #endif
935         .sdev_attrs = hpsa_sdev_attrs,
936         .shost_attrs = hpsa_shost_attrs,
937         .max_sectors = 8192,
938         .no_write_same = 1,
939 };
940
941 static inline u32 next_command(struct ctlr_info *h, u8 q)
942 {
943         u32 a;
944         struct reply_queue_buffer *rq = &h->reply_queue[q];
945
946         if (h->transMethod & CFGTBL_Trans_io_accel1)
947                 return h->access.command_completed(h, q);
948
949         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
950                 return h->access.command_completed(h, q);
951
952         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
953                 a = rq->head[rq->current_entry];
954                 rq->current_entry++;
955                 atomic_dec(&h->commands_outstanding);
956         } else {
957                 a = FIFO_EMPTY;
958         }
959         /* Check for wraparound */
960         if (rq->current_entry == h->max_commands) {
961                 rq->current_entry = 0;
962                 rq->wraparound ^= 1;
963         }
964         return a;
965 }
966
967 /*
968  * There are some special bits in the bus address of the
969  * command that we have to set for the controller to know
970  * how to process the command:
971  *
972  * Normal performant mode:
973  * bit 0: 1 means performant mode, 0 means simple mode.
974  * bits 1-3 = block fetch table entry
975  * bits 4-6 = command type (== 0)
976  *
977  * ioaccel1 mode:
978  * bit 0 = "performant mode" bit.
979  * bits 1-3 = block fetch table entry
980  * bits 4-6 = command type (== 110)
981  * (command type is needed because ioaccel1 mode
982  * commands are submitted through the same register as normal
983  * mode commands, so this is how the controller knows whether
984  * the command is normal mode or ioaccel1 mode.)
985  *
986  * ioaccel2 mode:
987  * bit 0 = "performant mode" bit.
988  * bits 1-4 = block fetch table entry (note extra bit)
989  * bits 4-6 = not needed, because ioaccel2 mode has
990  * a separate special register for submitting commands.
991  */
992
993 /*
994  * set_performant_mode: Modify the tag for cciss performant
995  * set bit 0 for pull model, bits 3-1 for block fetch
996  * register number
997  */
998 #define DEFAULT_REPLY_QUEUE (-1)
999 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
1000                                         int reply_queue)
1001 {
1002         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
1003                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
1004                 if (unlikely(!h->msix_vector))
1005                         return;
1006                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1007                         c->Header.ReplyQueue =
1008                                 raw_smp_processor_id() % h->nreply_queues;
1009                 else
1010                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
1011         }
1012 }
1013
1014 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
1015                                                 struct CommandList *c,
1016                                                 int reply_queue)
1017 {
1018         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
1019
1020         /*
1021          * Tell the controller to post the reply to the queue for this
1022          * processor.  This seems to give the best I/O throughput.
1023          */
1024         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1025                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
1026         else
1027                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1028         /*
1029          * Set the bits in the address sent down to include:
1030          *  - performant mode bit (bit 0)
1031          *  - pull count (bits 1-3)
1032          *  - command type (bits 4-6)
1033          */
1034         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1035                                         IOACCEL1_BUSADDR_CMDTYPE;
1036 }
1037
1038 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1039                                                 struct CommandList *c,
1040                                                 int reply_queue)
1041 {
1042         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1043                 &h->ioaccel2_cmd_pool[c->cmdindex];
1044
1045         /* Tell the controller to post the reply to the queue for this
1046          * processor.  This seems to give the best I/O throughput.
1047          */
1048         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1049                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1050         else
1051                 cp->reply_queue = reply_queue % h->nreply_queues;
1052         /* Set the bits in the address sent down to include:
1053          *  - performant mode bit not used in ioaccel mode 2
1054          *  - pull count (bits 0-3)
1055          *  - command type isn't needed for ioaccel2
1056          */
1057         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1058 }
1059
1060 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1061                                                 struct CommandList *c,
1062                                                 int reply_queue)
1063 {
1064         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1065
1066         /*
1067          * Tell the controller to post the reply to the queue for this
1068          * processor.  This seems to give the best I/O throughput.
1069          */
1070         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1071                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1072         else
1073                 cp->reply_queue = reply_queue % h->nreply_queues;
1074         /*
1075          * Set the bits in the address sent down to include:
1076          *  - performant mode bit not used in ioaccel mode 2
1077          *  - pull count (bits 0-3)
1078          *  - command type isn't needed for ioaccel2
1079          */
1080         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1081 }
1082
1083 static int is_firmware_flash_cmd(u8 *cdb)
1084 {
1085         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1086 }
1087
1088 /*
1089  * During firmware flash, the heartbeat register may not update as frequently
1090  * as it should.  So we dial down lockup detection during firmware flash. and
1091  * dial it back up when firmware flash completes.
1092  */
1093 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1094 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1095 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1096                 struct CommandList *c)
1097 {
1098         if (!is_firmware_flash_cmd(c->Request.CDB))
1099                 return;
1100         atomic_inc(&h->firmware_flash_in_progress);
1101         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1102 }
1103
1104 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1105                 struct CommandList *c)
1106 {
1107         if (is_firmware_flash_cmd(c->Request.CDB) &&
1108                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1109                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1110 }
1111
1112 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1113         struct CommandList *c, int reply_queue)
1114 {
1115         dial_down_lockup_detection_during_fw_flash(h, c);
1116         atomic_inc(&h->commands_outstanding);
1117         switch (c->cmd_type) {
1118         case CMD_IOACCEL1:
1119                 set_ioaccel1_performant_mode(h, c, reply_queue);
1120                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1121                 break;
1122         case CMD_IOACCEL2:
1123                 set_ioaccel2_performant_mode(h, c, reply_queue);
1124                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1125                 break;
1126         case IOACCEL2_TMF:
1127                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1128                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1129                 break;
1130         default:
1131                 set_performant_mode(h, c, reply_queue);
1132                 h->access.submit_command(h, c);
1133         }
1134 }
1135
1136 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1137 {
1138         if (unlikely(hpsa_is_pending_event(c)))
1139                 return finish_cmd(c);
1140
1141         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1142 }
1143
1144 static inline int is_hba_lunid(unsigned char scsi3addr[])
1145 {
1146         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1147 }
1148
1149 static inline int is_scsi_rev_5(struct ctlr_info *h)
1150 {
1151         if (!h->hba_inquiry_data)
1152                 return 0;
1153         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1154                 return 1;
1155         return 0;
1156 }
1157
1158 static int hpsa_find_target_lun(struct ctlr_info *h,
1159         unsigned char scsi3addr[], int bus, int *target, int *lun)
1160 {
1161         /* finds an unused bus, target, lun for a new physical device
1162          * assumes h->devlock is held
1163          */
1164         int i, found = 0;
1165         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1166
1167         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1168
1169         for (i = 0; i < h->ndevices; i++) {
1170                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1171                         __set_bit(h->dev[i]->target, lun_taken);
1172         }
1173
1174         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1175         if (i < HPSA_MAX_DEVICES) {
1176                 /* *bus = 1; */
1177                 *target = i;
1178                 *lun = 0;
1179                 found = 1;
1180         }
1181         return !found;
1182 }
1183
1184 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1185         struct hpsa_scsi_dev_t *dev, char *description)
1186 {
1187 #define LABEL_SIZE 25
1188         char label[LABEL_SIZE];
1189
1190         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1191                 return;
1192
1193         switch (dev->devtype) {
1194         case TYPE_RAID:
1195                 snprintf(label, LABEL_SIZE, "controller");
1196                 break;
1197         case TYPE_ENCLOSURE:
1198                 snprintf(label, LABEL_SIZE, "enclosure");
1199                 break;
1200         case TYPE_DISK:
1201         case TYPE_ZBC:
1202                 if (dev->external)
1203                         snprintf(label, LABEL_SIZE, "external");
1204                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1205                         snprintf(label, LABEL_SIZE, "%s",
1206                                 raid_label[PHYSICAL_DRIVE]);
1207                 else
1208                         snprintf(label, LABEL_SIZE, "RAID-%s",
1209                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1210                                 raid_label[dev->raid_level]);
1211                 break;
1212         case TYPE_ROM:
1213                 snprintf(label, LABEL_SIZE, "rom");
1214                 break;
1215         case TYPE_TAPE:
1216                 snprintf(label, LABEL_SIZE, "tape");
1217                 break;
1218         case TYPE_MEDIUM_CHANGER:
1219                 snprintf(label, LABEL_SIZE, "changer");
1220                 break;
1221         default:
1222                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1223                 break;
1224         }
1225
1226         dev_printk(level, &h->pdev->dev,
1227                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1228                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1229                         description,
1230                         scsi_device_type(dev->devtype),
1231                         dev->vendor,
1232                         dev->model,
1233                         label,
1234                         dev->offload_config ? '+' : '-',
1235                         dev->offload_enabled ? '+' : '-',
1236                         dev->expose_device);
1237 }
1238
1239 /* Add an entry into h->dev[] array. */
1240 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1241                 struct hpsa_scsi_dev_t *device,
1242                 struct hpsa_scsi_dev_t *added[], int *nadded)
1243 {
1244         /* assumes h->devlock is held */
1245         int n = h->ndevices;
1246         int i;
1247         unsigned char addr1[8], addr2[8];
1248         struct hpsa_scsi_dev_t *sd;
1249
1250         if (n >= HPSA_MAX_DEVICES) {
1251                 dev_err(&h->pdev->dev, "too many devices, some will be "
1252                         "inaccessible.\n");
1253                 return -1;
1254         }
1255
1256         /* physical devices do not have lun or target assigned until now. */
1257         if (device->lun != -1)
1258                 /* Logical device, lun is already assigned. */
1259                 goto lun_assigned;
1260
1261         /* If this device a non-zero lun of a multi-lun device
1262          * byte 4 of the 8-byte LUN addr will contain the logical
1263          * unit no, zero otherwise.
1264          */
1265         if (device->scsi3addr[4] == 0) {
1266                 /* This is not a non-zero lun of a multi-lun device */
1267                 if (hpsa_find_target_lun(h, device->scsi3addr,
1268                         device->bus, &device->target, &device->lun) != 0)
1269                         return -1;
1270                 goto lun_assigned;
1271         }
1272
1273         /* This is a non-zero lun of a multi-lun device.
1274          * Search through our list and find the device which
1275          * has the same 8 byte LUN address, excepting byte 4 and 5.
1276          * Assign the same bus and target for this new LUN.
1277          * Use the logical unit number from the firmware.
1278          */
1279         memcpy(addr1, device->scsi3addr, 8);
1280         addr1[4] = 0;
1281         addr1[5] = 0;
1282         for (i = 0; i < n; i++) {
1283                 sd = h->dev[i];
1284                 memcpy(addr2, sd->scsi3addr, 8);
1285                 addr2[4] = 0;
1286                 addr2[5] = 0;
1287                 /* differ only in byte 4 and 5? */
1288                 if (memcmp(addr1, addr2, 8) == 0) {
1289                         device->bus = sd->bus;
1290                         device->target = sd->target;
1291                         device->lun = device->scsi3addr[4];
1292                         break;
1293                 }
1294         }
1295         if (device->lun == -1) {
1296                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1297                         " suspect firmware bug or unsupported hardware "
1298                         "configuration.\n");
1299                         return -1;
1300         }
1301
1302 lun_assigned:
1303
1304         h->dev[n] = device;
1305         h->ndevices++;
1306         added[*nadded] = device;
1307         (*nadded)++;
1308         hpsa_show_dev_msg(KERN_INFO, h, device,
1309                 device->expose_device ? "added" : "masked");
1310         device->offload_to_be_enabled = device->offload_enabled;
1311         device->offload_enabled = 0;
1312         return 0;
1313 }
1314
1315 /* Update an entry in h->dev[] array. */
1316 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1317         int entry, struct hpsa_scsi_dev_t *new_entry)
1318 {
1319         int offload_enabled;
1320         /* assumes h->devlock is held */
1321         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1322
1323         /* Raid level changed. */
1324         h->dev[entry]->raid_level = new_entry->raid_level;
1325
1326         /* Raid offload parameters changed.  Careful about the ordering. */
1327         if (new_entry->offload_config && new_entry->offload_enabled) {
1328                 /*
1329                  * if drive is newly offload_enabled, we want to copy the
1330                  * raid map data first.  If previously offload_enabled and
1331                  * offload_config were set, raid map data had better be
1332                  * the same as it was before.  if raid map data is changed
1333                  * then it had better be the case that
1334                  * h->dev[entry]->offload_enabled is currently 0.
1335                  */
1336                 h->dev[entry]->raid_map = new_entry->raid_map;
1337                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1338         }
1339         if (new_entry->hba_ioaccel_enabled) {
1340                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1341                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1342         }
1343         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1344         h->dev[entry]->offload_config = new_entry->offload_config;
1345         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1346         h->dev[entry]->queue_depth = new_entry->queue_depth;
1347
1348         /*
1349          * We can turn off ioaccel offload now, but need to delay turning
1350          * it on until we can update h->dev[entry]->phys_disk[], but we
1351          * can't do that until all the devices are updated.
1352          */
1353         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1354         if (!new_entry->offload_enabled)
1355                 h->dev[entry]->offload_enabled = 0;
1356
1357         offload_enabled = h->dev[entry]->offload_enabled;
1358         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1359         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1360         h->dev[entry]->offload_enabled = offload_enabled;
1361 }
1362
1363 /* Replace an entry from h->dev[] array. */
1364 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1365         int entry, struct hpsa_scsi_dev_t *new_entry,
1366         struct hpsa_scsi_dev_t *added[], int *nadded,
1367         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1368 {
1369         /* assumes h->devlock is held */
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371         removed[*nremoved] = h->dev[entry];
1372         (*nremoved)++;
1373
1374         /*
1375          * New physical devices won't have target/lun assigned yet
1376          * so we need to preserve the values in the slot we are replacing.
1377          */
1378         if (new_entry->target == -1) {
1379                 new_entry->target = h->dev[entry]->target;
1380                 new_entry->lun = h->dev[entry]->lun;
1381         }
1382
1383         h->dev[entry] = new_entry;
1384         added[*nadded] = new_entry;
1385         (*nadded)++;
1386         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1387         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1388         new_entry->offload_enabled = 0;
1389 }
1390
1391 /* Remove an entry from h->dev[] array. */
1392 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1393         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1394 {
1395         /* assumes h->devlock is held */
1396         int i;
1397         struct hpsa_scsi_dev_t *sd;
1398
1399         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1400
1401         sd = h->dev[entry];
1402         removed[*nremoved] = h->dev[entry];
1403         (*nremoved)++;
1404
1405         for (i = entry; i < h->ndevices-1; i++)
1406                 h->dev[i] = h->dev[i+1];
1407         h->ndevices--;
1408         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1409 }
1410
1411 #define SCSI3ADDR_EQ(a, b) ( \
1412         (a)[7] == (b)[7] && \
1413         (a)[6] == (b)[6] && \
1414         (a)[5] == (b)[5] && \
1415         (a)[4] == (b)[4] && \
1416         (a)[3] == (b)[3] && \
1417         (a)[2] == (b)[2] && \
1418         (a)[1] == (b)[1] && \
1419         (a)[0] == (b)[0])
1420
1421 static void fixup_botched_add(struct ctlr_info *h,
1422         struct hpsa_scsi_dev_t *added)
1423 {
1424         /* called when scsi_add_device fails in order to re-adjust
1425          * h->dev[] to match the mid layer's view.
1426          */
1427         unsigned long flags;
1428         int i, j;
1429
1430         spin_lock_irqsave(&h->lock, flags);
1431         for (i = 0; i < h->ndevices; i++) {
1432                 if (h->dev[i] == added) {
1433                         for (j = i; j < h->ndevices-1; j++)
1434                                 h->dev[j] = h->dev[j+1];
1435                         h->ndevices--;
1436                         break;
1437                 }
1438         }
1439         spin_unlock_irqrestore(&h->lock, flags);
1440         kfree(added);
1441 }
1442
1443 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1444         struct hpsa_scsi_dev_t *dev2)
1445 {
1446         /* we compare everything except lun and target as these
1447          * are not yet assigned.  Compare parts likely
1448          * to differ first
1449          */
1450         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1451                 sizeof(dev1->scsi3addr)) != 0)
1452                 return 0;
1453         if (memcmp(dev1->device_id, dev2->device_id,
1454                 sizeof(dev1->device_id)) != 0)
1455                 return 0;
1456         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1457                 return 0;
1458         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1459                 return 0;
1460         if (dev1->devtype != dev2->devtype)
1461                 return 0;
1462         if (dev1->bus != dev2->bus)
1463                 return 0;
1464         return 1;
1465 }
1466
1467 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1468         struct hpsa_scsi_dev_t *dev2)
1469 {
1470         /* Device attributes that can change, but don't mean
1471          * that the device is a different device, nor that the OS
1472          * needs to be told anything about the change.
1473          */
1474         if (dev1->raid_level != dev2->raid_level)
1475                 return 1;
1476         if (dev1->offload_config != dev2->offload_config)
1477                 return 1;
1478         if (dev1->offload_enabled != dev2->offload_enabled)
1479                 return 1;
1480         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1481                 if (dev1->queue_depth != dev2->queue_depth)
1482                         return 1;
1483         return 0;
1484 }
1485
1486 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1487  * and return needle location in *index.  If scsi3addr matches, but not
1488  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1489  * location in *index.
1490  * In the case of a minor device attribute change, such as RAID level, just
1491  * return DEVICE_UPDATED, along with the updated device's location in index.
1492  * If needle not found, return DEVICE_NOT_FOUND.
1493  */
1494 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1495         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1496         int *index)
1497 {
1498         int i;
1499 #define DEVICE_NOT_FOUND 0
1500 #define DEVICE_CHANGED 1
1501 #define DEVICE_SAME 2
1502 #define DEVICE_UPDATED 3
1503         if (needle == NULL)
1504                 return DEVICE_NOT_FOUND;
1505
1506         for (i = 0; i < haystack_size; i++) {
1507                 if (haystack[i] == NULL) /* previously removed. */
1508                         continue;
1509                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1510                         *index = i;
1511                         if (device_is_the_same(needle, haystack[i])) {
1512                                 if (device_updated(needle, haystack[i]))
1513                                         return DEVICE_UPDATED;
1514                                 return DEVICE_SAME;
1515                         } else {
1516                                 /* Keep offline devices offline */
1517                                 if (needle->volume_offline)
1518                                         return DEVICE_NOT_FOUND;
1519                                 return DEVICE_CHANGED;
1520                         }
1521                 }
1522         }
1523         *index = -1;
1524         return DEVICE_NOT_FOUND;
1525 }
1526
1527 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1528                                         unsigned char scsi3addr[])
1529 {
1530         struct offline_device_entry *device;
1531         unsigned long flags;
1532
1533         /* Check to see if device is already on the list */
1534         spin_lock_irqsave(&h->offline_device_lock, flags);
1535         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1536                 if (memcmp(device->scsi3addr, scsi3addr,
1537                         sizeof(device->scsi3addr)) == 0) {
1538                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1539                         return;
1540                 }
1541         }
1542         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1543
1544         /* Device is not on the list, add it. */
1545         device = kmalloc(sizeof(*device), GFP_KERNEL);
1546         if (!device) {
1547                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1548                 return;
1549         }
1550         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1551         spin_lock_irqsave(&h->offline_device_lock, flags);
1552         list_add_tail(&device->offline_list, &h->offline_device_list);
1553         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1554 }
1555
1556 /* Print a message explaining various offline volume states */
1557 static void hpsa_show_volume_status(struct ctlr_info *h,
1558         struct hpsa_scsi_dev_t *sd)
1559 {
1560         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1561                 dev_info(&h->pdev->dev,
1562                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1563                         h->scsi_host->host_no,
1564                         sd->bus, sd->target, sd->lun);
1565         switch (sd->volume_offline) {
1566         case HPSA_LV_OK:
1567                 break;
1568         case HPSA_LV_UNDERGOING_ERASE:
1569                 dev_info(&h->pdev->dev,
1570                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1571                         h->scsi_host->host_no,
1572                         sd->bus, sd->target, sd->lun);
1573                 break;
1574         case HPSA_LV_NOT_AVAILABLE:
1575                 dev_info(&h->pdev->dev,
1576                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1577                         h->scsi_host->host_no,
1578                         sd->bus, sd->target, sd->lun);
1579                 break;
1580         case HPSA_LV_UNDERGOING_RPI:
1581                 dev_info(&h->pdev->dev,
1582                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1583                         h->scsi_host->host_no,
1584                         sd->bus, sd->target, sd->lun);
1585                 break;
1586         case HPSA_LV_PENDING_RPI:
1587                 dev_info(&h->pdev->dev,
1588                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1589                         h->scsi_host->host_no,
1590                         sd->bus, sd->target, sd->lun);
1591                 break;
1592         case HPSA_LV_ENCRYPTED_NO_KEY:
1593                 dev_info(&h->pdev->dev,
1594                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1595                         h->scsi_host->host_no,
1596                         sd->bus, sd->target, sd->lun);
1597                 break;
1598         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1599                 dev_info(&h->pdev->dev,
1600                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1601                         h->scsi_host->host_no,
1602                         sd->bus, sd->target, sd->lun);
1603                 break;
1604         case HPSA_LV_UNDERGOING_ENCRYPTION:
1605                 dev_info(&h->pdev->dev,
1606                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1607                         h->scsi_host->host_no,
1608                         sd->bus, sd->target, sd->lun);
1609                 break;
1610         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1611                 dev_info(&h->pdev->dev,
1612                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1613                         h->scsi_host->host_no,
1614                         sd->bus, sd->target, sd->lun);
1615                 break;
1616         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1617                 dev_info(&h->pdev->dev,
1618                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1619                         h->scsi_host->host_no,
1620                         sd->bus, sd->target, sd->lun);
1621                 break;
1622         case HPSA_LV_PENDING_ENCRYPTION:
1623                 dev_info(&h->pdev->dev,
1624                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1625                         h->scsi_host->host_no,
1626                         sd->bus, sd->target, sd->lun);
1627                 break;
1628         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1629                 dev_info(&h->pdev->dev,
1630                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1631                         h->scsi_host->host_no,
1632                         sd->bus, sd->target, sd->lun);
1633                 break;
1634         }
1635 }
1636
1637 /*
1638  * Figure the list of physical drive pointers for a logical drive with
1639  * raid offload configured.
1640  */
1641 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1642                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1643                                 struct hpsa_scsi_dev_t *logical_drive)
1644 {
1645         struct raid_map_data *map = &logical_drive->raid_map;
1646         struct raid_map_disk_data *dd = &map->data[0];
1647         int i, j;
1648         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1649                                 le16_to_cpu(map->metadata_disks_per_row);
1650         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1651                                 le16_to_cpu(map->layout_map_count) *
1652                                 total_disks_per_row;
1653         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1654                                 total_disks_per_row;
1655         int qdepth;
1656
1657         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1658                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1659
1660         logical_drive->nphysical_disks = nraid_map_entries;
1661
1662         qdepth = 0;
1663         for (i = 0; i < nraid_map_entries; i++) {
1664                 logical_drive->phys_disk[i] = NULL;
1665                 if (!logical_drive->offload_config)
1666                         continue;
1667                 for (j = 0; j < ndevices; j++) {
1668                         if (dev[j] == NULL)
1669                                 continue;
1670                         if (dev[j]->devtype != TYPE_DISK &&
1671                             dev[j]->devtype != TYPE_ZBC)
1672                                 continue;
1673                         if (is_logical_device(dev[j]))
1674                                 continue;
1675                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1676                                 continue;
1677
1678                         logical_drive->phys_disk[i] = dev[j];
1679                         if (i < nphys_disk)
1680                                 qdepth = min(h->nr_cmds, qdepth +
1681                                     logical_drive->phys_disk[i]->queue_depth);
1682                         break;
1683                 }
1684
1685                 /*
1686                  * This can happen if a physical drive is removed and
1687                  * the logical drive is degraded.  In that case, the RAID
1688                  * map data will refer to a physical disk which isn't actually
1689                  * present.  And in that case offload_enabled should already
1690                  * be 0, but we'll turn it off here just in case
1691                  */
1692                 if (!logical_drive->phys_disk[i]) {
1693                         logical_drive->offload_enabled = 0;
1694                         logical_drive->offload_to_be_enabled = 0;
1695                         logical_drive->queue_depth = 8;
1696                 }
1697         }
1698         if (nraid_map_entries)
1699                 /*
1700                  * This is correct for reads, too high for full stripe writes,
1701                  * way too high for partial stripe writes
1702                  */
1703                 logical_drive->queue_depth = qdepth;
1704         else
1705                 logical_drive->queue_depth = h->nr_cmds;
1706 }
1707
1708 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1709                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1710 {
1711         int i;
1712
1713         for (i = 0; i < ndevices; i++) {
1714                 if (dev[i] == NULL)
1715                         continue;
1716                 if (dev[i]->devtype != TYPE_DISK &&
1717                     dev[i]->devtype != TYPE_ZBC)
1718                         continue;
1719                 if (!is_logical_device(dev[i]))
1720                         continue;
1721
1722                 /*
1723                  * If offload is currently enabled, the RAID map and
1724                  * phys_disk[] assignment *better* not be changing
1725                  * and since it isn't changing, we do not need to
1726                  * update it.
1727                  */
1728                 if (dev[i]->offload_enabled)
1729                         continue;
1730
1731                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1732         }
1733 }
1734
1735 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1736 {
1737         int rc = 0;
1738
1739         if (!h->scsi_host)
1740                 return 1;
1741
1742         if (is_logical_device(device)) /* RAID */
1743                 rc = scsi_add_device(h->scsi_host, device->bus,
1744                                         device->target, device->lun);
1745         else /* HBA */
1746                 rc = hpsa_add_sas_device(h->sas_host, device);
1747
1748         return rc;
1749 }
1750
1751 static int hpsa_find_outstanding_commands_for_dev(struct ctlr_info *h,
1752                                                 struct hpsa_scsi_dev_t *dev)
1753 {
1754         int i;
1755         int count = 0;
1756
1757         for (i = 0; i < h->nr_cmds; i++) {
1758                 struct CommandList *c = h->cmd_pool + i;
1759                 int refcount = atomic_inc_return(&c->refcount);
1760
1761                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev,
1762                                 dev->scsi3addr)) {
1763                         unsigned long flags;
1764
1765                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
1766                         if (!hpsa_is_cmd_idle(c))
1767                                 ++count;
1768                         spin_unlock_irqrestore(&h->lock, flags);
1769                 }
1770
1771                 cmd_free(h, c);
1772         }
1773
1774         return count;
1775 }
1776
1777 static void hpsa_wait_for_outstanding_commands_for_dev(struct ctlr_info *h,
1778                                                 struct hpsa_scsi_dev_t *device)
1779 {
1780         int cmds = 0;
1781         int waits = 0;
1782
1783         while (1) {
1784                 cmds = hpsa_find_outstanding_commands_for_dev(h, device);
1785                 if (cmds == 0)
1786                         break;
1787                 if (++waits > 20)
1788                         break;
1789                 dev_warn(&h->pdev->dev,
1790                         "%s: removing device with %d outstanding commands!\n",
1791                         __func__, cmds);
1792                 msleep(1000);
1793         }
1794 }
1795
1796 static void hpsa_remove_device(struct ctlr_info *h,
1797                         struct hpsa_scsi_dev_t *device)
1798 {
1799         struct scsi_device *sdev = NULL;
1800
1801         if (!h->scsi_host)
1802                 return;
1803
1804         if (is_logical_device(device)) { /* RAID */
1805                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1806                                                 device->target, device->lun);
1807                 if (sdev) {
1808                         scsi_remove_device(sdev);
1809                         scsi_device_put(sdev);
1810                 } else {
1811                         /*
1812                          * We don't expect to get here.  Future commands
1813                          * to this device will get a selection timeout as
1814                          * if the device were gone.
1815                          */
1816                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1817                                         "didn't find device for removal.");
1818                 }
1819         } else { /* HBA */
1820
1821                 device->removed = 1;
1822                 hpsa_wait_for_outstanding_commands_for_dev(h, device);
1823
1824                 hpsa_remove_sas_device(device);
1825         }
1826 }
1827
1828 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1829         struct hpsa_scsi_dev_t *sd[], int nsds)
1830 {
1831         /* sd contains scsi3 addresses and devtypes, and inquiry
1832          * data.  This function takes what's in sd to be the current
1833          * reality and updates h->dev[] to reflect that reality.
1834          */
1835         int i, entry, device_change, changes = 0;
1836         struct hpsa_scsi_dev_t *csd;
1837         unsigned long flags;
1838         struct hpsa_scsi_dev_t **added, **removed;
1839         int nadded, nremoved;
1840
1841         /*
1842          * A reset can cause a device status to change
1843          * re-schedule the scan to see what happened.
1844          */
1845         if (h->reset_in_progress) {
1846                 h->drv_req_rescan = 1;
1847                 return;
1848         }
1849
1850         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1851         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1852
1853         if (!added || !removed) {
1854                 dev_warn(&h->pdev->dev, "out of memory in "
1855                         "adjust_hpsa_scsi_table\n");
1856                 goto free_and_out;
1857         }
1858
1859         spin_lock_irqsave(&h->devlock, flags);
1860
1861         /* find any devices in h->dev[] that are not in
1862          * sd[] and remove them from h->dev[], and for any
1863          * devices which have changed, remove the old device
1864          * info and add the new device info.
1865          * If minor device attributes change, just update
1866          * the existing device structure.
1867          */
1868         i = 0;
1869         nremoved = 0;
1870         nadded = 0;
1871         while (i < h->ndevices) {
1872                 csd = h->dev[i];
1873                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1874                 if (device_change == DEVICE_NOT_FOUND) {
1875                         changes++;
1876                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1877                         continue; /* remove ^^^, hence i not incremented */
1878                 } else if (device_change == DEVICE_CHANGED) {
1879                         changes++;
1880                         hpsa_scsi_replace_entry(h, i, sd[entry],
1881                                 added, &nadded, removed, &nremoved);
1882                         /* Set it to NULL to prevent it from being freed
1883                          * at the bottom of hpsa_update_scsi_devices()
1884                          */
1885                         sd[entry] = NULL;
1886                 } else if (device_change == DEVICE_UPDATED) {
1887                         hpsa_scsi_update_entry(h, i, sd[entry]);
1888                 }
1889                 i++;
1890         }
1891
1892         /* Now, make sure every device listed in sd[] is also
1893          * listed in h->dev[], adding them if they aren't found
1894          */
1895
1896         for (i = 0; i < nsds; i++) {
1897                 if (!sd[i]) /* if already added above. */
1898                         continue;
1899
1900                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1901                  * as the SCSI mid-layer does not handle such devices well.
1902                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1903                  * at 160Hz, and prevents the system from coming up.
1904                  */
1905                 if (sd[i]->volume_offline) {
1906                         hpsa_show_volume_status(h, sd[i]);
1907                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1908                         continue;
1909                 }
1910
1911                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1912                                         h->ndevices, &entry);
1913                 if (device_change == DEVICE_NOT_FOUND) {
1914                         changes++;
1915                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1916                                 break;
1917                         sd[i] = NULL; /* prevent from being freed later. */
1918                 } else if (device_change == DEVICE_CHANGED) {
1919                         /* should never happen... */
1920                         changes++;
1921                         dev_warn(&h->pdev->dev,
1922                                 "device unexpectedly changed.\n");
1923                         /* but if it does happen, we just ignore that device */
1924                 }
1925         }
1926         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1927
1928         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1929          * any logical drives that need it enabled.
1930          */
1931         for (i = 0; i < h->ndevices; i++) {
1932                 if (h->dev[i] == NULL)
1933                         continue;
1934                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1935         }
1936
1937         spin_unlock_irqrestore(&h->devlock, flags);
1938
1939         /* Monitor devices which are in one of several NOT READY states to be
1940          * brought online later. This must be done without holding h->devlock,
1941          * so don't touch h->dev[]
1942          */
1943         for (i = 0; i < nsds; i++) {
1944                 if (!sd[i]) /* if already added above. */
1945                         continue;
1946                 if (sd[i]->volume_offline)
1947                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1948         }
1949
1950         /* Don't notify scsi mid layer of any changes the first time through
1951          * (or if there are no changes) scsi_scan_host will do it later the
1952          * first time through.
1953          */
1954         if (!changes)
1955                 goto free_and_out;
1956
1957         /* Notify scsi mid layer of any removed devices */
1958         for (i = 0; i < nremoved; i++) {
1959                 if (removed[i] == NULL)
1960                         continue;
1961                 if (removed[i]->expose_device)
1962                         hpsa_remove_device(h, removed[i]);
1963                 kfree(removed[i]);
1964                 removed[i] = NULL;
1965         }
1966
1967         /* Notify scsi mid layer of any added devices */
1968         for (i = 0; i < nadded; i++) {
1969                 int rc = 0;
1970
1971                 if (added[i] == NULL)
1972                         continue;
1973                 if (!(added[i]->expose_device))
1974                         continue;
1975                 rc = hpsa_add_device(h, added[i]);
1976                 if (!rc)
1977                         continue;
1978                 dev_warn(&h->pdev->dev,
1979                         "addition failed %d, device not added.", rc);
1980                 /* now we have to remove it from h->dev,
1981                  * since it didn't get added to scsi mid layer
1982                  */
1983                 fixup_botched_add(h, added[i]);
1984                 h->drv_req_rescan = 1;
1985         }
1986
1987 free_and_out:
1988         kfree(added);
1989         kfree(removed);
1990 }
1991
1992 /*
1993  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1994  * Assume's h->devlock is held.
1995  */
1996 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1997         int bus, int target, int lun)
1998 {
1999         int i;
2000         struct hpsa_scsi_dev_t *sd;
2001
2002         for (i = 0; i < h->ndevices; i++) {
2003                 sd = h->dev[i];
2004                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
2005                         return sd;
2006         }
2007         return NULL;
2008 }
2009
2010 static int hpsa_slave_alloc(struct scsi_device *sdev)
2011 {
2012         struct hpsa_scsi_dev_t *sd = NULL;
2013         unsigned long flags;
2014         struct ctlr_info *h;
2015
2016         h = sdev_to_hba(sdev);
2017         spin_lock_irqsave(&h->devlock, flags);
2018         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
2019                 struct scsi_target *starget;
2020                 struct sas_rphy *rphy;
2021
2022                 starget = scsi_target(sdev);
2023                 rphy = target_to_rphy(starget);
2024                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
2025                 if (sd) {
2026                         sd->target = sdev_id(sdev);
2027                         sd->lun = sdev->lun;
2028                 }
2029         }
2030         if (!sd)
2031                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
2032                                         sdev_id(sdev), sdev->lun);
2033
2034         if (sd && sd->expose_device) {
2035                 atomic_set(&sd->ioaccel_cmds_out, 0);
2036                 sdev->hostdata = sd;
2037         } else
2038                 sdev->hostdata = NULL;
2039         spin_unlock_irqrestore(&h->devlock, flags);
2040         return 0;
2041 }
2042
2043 /* configure scsi device based on internal per-device structure */
2044 static int hpsa_slave_configure(struct scsi_device *sdev)
2045 {
2046         struct hpsa_scsi_dev_t *sd;
2047         int queue_depth;
2048
2049         sd = sdev->hostdata;
2050         sdev->no_uld_attach = !sd || !sd->expose_device;
2051
2052         if (sd)
2053                 queue_depth = sd->queue_depth != 0 ?
2054                         sd->queue_depth : sdev->host->can_queue;
2055         else
2056                 queue_depth = sdev->host->can_queue;
2057
2058         scsi_change_queue_depth(sdev, queue_depth);
2059
2060         return 0;
2061 }
2062
2063 static void hpsa_slave_destroy(struct scsi_device *sdev)
2064 {
2065         /* nothing to do. */
2066 }
2067
2068 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2069 {
2070         int i;
2071
2072         if (!h->ioaccel2_cmd_sg_list)
2073                 return;
2074         for (i = 0; i < h->nr_cmds; i++) {
2075                 kfree(h->ioaccel2_cmd_sg_list[i]);
2076                 h->ioaccel2_cmd_sg_list[i] = NULL;
2077         }
2078         kfree(h->ioaccel2_cmd_sg_list);
2079         h->ioaccel2_cmd_sg_list = NULL;
2080 }
2081
2082 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2083 {
2084         int i;
2085
2086         if (h->chainsize <= 0)
2087                 return 0;
2088
2089         h->ioaccel2_cmd_sg_list =
2090                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2091                                         GFP_KERNEL);
2092         if (!h->ioaccel2_cmd_sg_list)
2093                 return -ENOMEM;
2094         for (i = 0; i < h->nr_cmds; i++) {
2095                 h->ioaccel2_cmd_sg_list[i] =
2096                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2097                                         h->maxsgentries, GFP_KERNEL);
2098                 if (!h->ioaccel2_cmd_sg_list[i])
2099                         goto clean;
2100         }
2101         return 0;
2102
2103 clean:
2104         hpsa_free_ioaccel2_sg_chain_blocks(h);
2105         return -ENOMEM;
2106 }
2107
2108 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2109 {
2110         int i;
2111
2112         if (!h->cmd_sg_list)
2113                 return;
2114         for (i = 0; i < h->nr_cmds; i++) {
2115                 kfree(h->cmd_sg_list[i]);
2116                 h->cmd_sg_list[i] = NULL;
2117         }
2118         kfree(h->cmd_sg_list);
2119         h->cmd_sg_list = NULL;
2120 }
2121
2122 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2123 {
2124         int i;
2125
2126         if (h->chainsize <= 0)
2127                 return 0;
2128
2129         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2130                                 GFP_KERNEL);
2131         if (!h->cmd_sg_list) {
2132                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2133                 return -ENOMEM;
2134         }
2135         for (i = 0; i < h->nr_cmds; i++) {
2136                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2137                                                 h->chainsize, GFP_KERNEL);
2138                 if (!h->cmd_sg_list[i]) {
2139                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2140                         goto clean;
2141                 }
2142         }
2143         return 0;
2144
2145 clean:
2146         hpsa_free_sg_chain_blocks(h);
2147         return -ENOMEM;
2148 }
2149
2150 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2151         struct io_accel2_cmd *cp, struct CommandList *c)
2152 {
2153         struct ioaccel2_sg_element *chain_block;
2154         u64 temp64;
2155         u32 chain_size;
2156
2157         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2158         chain_size = le32_to_cpu(cp->sg[0].length);
2159         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2160                                 PCI_DMA_TODEVICE);
2161         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2162                 /* prevent subsequent unmapping */
2163                 cp->sg->address = 0;
2164                 return -1;
2165         }
2166         cp->sg->address = cpu_to_le64(temp64);
2167         return 0;
2168 }
2169
2170 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2171         struct io_accel2_cmd *cp)
2172 {
2173         struct ioaccel2_sg_element *chain_sg;
2174         u64 temp64;
2175         u32 chain_size;
2176
2177         chain_sg = cp->sg;
2178         temp64 = le64_to_cpu(chain_sg->address);
2179         chain_size = le32_to_cpu(cp->sg[0].length);
2180         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2181 }
2182
2183 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2184         struct CommandList *c)
2185 {
2186         struct SGDescriptor *chain_sg, *chain_block;
2187         u64 temp64;
2188         u32 chain_len;
2189
2190         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2191         chain_block = h->cmd_sg_list[c->cmdindex];
2192         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2193         chain_len = sizeof(*chain_sg) *
2194                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2195         chain_sg->Len = cpu_to_le32(chain_len);
2196         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2197                                 PCI_DMA_TODEVICE);
2198         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2199                 /* prevent subsequent unmapping */
2200                 chain_sg->Addr = cpu_to_le64(0);
2201                 return -1;
2202         }
2203         chain_sg->Addr = cpu_to_le64(temp64);
2204         return 0;
2205 }
2206
2207 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2208         struct CommandList *c)
2209 {
2210         struct SGDescriptor *chain_sg;
2211
2212         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2213                 return;
2214
2215         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2216         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2217                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2218 }
2219
2220
2221 /* Decode the various types of errors on ioaccel2 path.
2222  * Return 1 for any error that should generate a RAID path retry.
2223  * Return 0 for errors that don't require a RAID path retry.
2224  */
2225 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2226                                         struct CommandList *c,
2227                                         struct scsi_cmnd *cmd,
2228                                         struct io_accel2_cmd *c2,
2229                                         struct hpsa_scsi_dev_t *dev)
2230 {
2231         int data_len;
2232         int retry = 0;
2233         u32 ioaccel2_resid = 0;
2234
2235         switch (c2->error_data.serv_response) {
2236         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2237                 switch (c2->error_data.status) {
2238                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2239                         break;
2240                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2241                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2242                         if (c2->error_data.data_present !=
2243                                         IOACCEL2_SENSE_DATA_PRESENT) {
2244                                 memset(cmd->sense_buffer, 0,
2245                                         SCSI_SENSE_BUFFERSIZE);
2246                                 break;
2247                         }
2248                         /* copy the sense data */
2249                         data_len = c2->error_data.sense_data_len;
2250                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2251                                 data_len = SCSI_SENSE_BUFFERSIZE;
2252                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2253                                 data_len =
2254                                         sizeof(c2->error_data.sense_data_buff);
2255                         memcpy(cmd->sense_buffer,
2256                                 c2->error_data.sense_data_buff, data_len);
2257                         retry = 1;
2258                         break;
2259                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2260                         retry = 1;
2261                         break;
2262                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2263                         retry = 1;
2264                         break;
2265                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2266                         retry = 1;
2267                         break;
2268                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2269                         retry = 1;
2270                         break;
2271                 default:
2272                         retry = 1;
2273                         break;
2274                 }
2275                 break;
2276         case IOACCEL2_SERV_RESPONSE_FAILURE:
2277                 switch (c2->error_data.status) {
2278                 case IOACCEL2_STATUS_SR_IO_ERROR:
2279                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2280                 case IOACCEL2_STATUS_SR_OVERRUN:
2281                         retry = 1;
2282                         break;
2283                 case IOACCEL2_STATUS_SR_UNDERRUN:
2284                         cmd->result = (DID_OK << 16);           /* host byte */
2285                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2286                         ioaccel2_resid = get_unaligned_le32(
2287                                                 &c2->error_data.resid_cnt[0]);
2288                         scsi_set_resid(cmd, ioaccel2_resid);
2289                         break;
2290                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2291                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2292                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2293                         /*
2294                          * Did an HBA disk disappear? We will eventually
2295                          * get a state change event from the controller but
2296                          * in the meantime, we need to tell the OS that the
2297                          * HBA disk is no longer there and stop I/O
2298                          * from going down. This allows the potential re-insert
2299                          * of the disk to get the same device node.
2300                          */
2301                         if (dev->physical_device && dev->expose_device) {
2302                                 cmd->result = DID_NO_CONNECT << 16;
2303                                 dev->removed = 1;
2304                                 h->drv_req_rescan = 1;
2305                                 dev_warn(&h->pdev->dev,
2306                                         "%s: device is gone!\n", __func__);
2307                         } else
2308                                 /*
2309                                  * Retry by sending down the RAID path.
2310                                  * We will get an event from ctlr to
2311                                  * trigger rescan regardless.
2312                                  */
2313                                 retry = 1;
2314                         break;
2315                 default:
2316                         retry = 1;
2317                 }
2318                 break;
2319         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2320                 break;
2321         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2322                 break;
2323         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2324                 retry = 1;
2325                 break;
2326         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2327                 break;
2328         default:
2329                 retry = 1;
2330                 break;
2331         }
2332
2333         return retry;   /* retry on raid path? */
2334 }
2335
2336 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2337                 struct CommandList *c)
2338 {
2339         bool do_wake = false;
2340
2341         /*
2342          * Prevent the following race in the abort handler:
2343          *
2344          * 1. LLD is requested to abort a SCSI command
2345          * 2. The SCSI command completes
2346          * 3. The struct CommandList associated with step 2 is made available
2347          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2348          * 5. Abort handler follows scsi_cmnd->host_scribble and
2349          *    finds struct CommandList and tries to aborts it
2350          * Now we have aborted the wrong command.
2351          *
2352          * Reset c->scsi_cmd here so that the abort or reset handler will know
2353          * this command has completed.  Then, check to see if the handler is
2354          * waiting for this command, and, if so, wake it.
2355          */
2356         c->scsi_cmd = SCSI_CMD_IDLE;
2357         mb();   /* Declare command idle before checking for pending events. */
2358         if (c->abort_pending) {
2359                 do_wake = true;
2360                 c->abort_pending = false;
2361         }
2362         if (c->reset_pending) {
2363                 unsigned long flags;
2364                 struct hpsa_scsi_dev_t *dev;
2365
2366                 /*
2367                  * There appears to be a reset pending; lock the lock and
2368                  * reconfirm.  If so, then decrement the count of outstanding
2369                  * commands and wake the reset command if this is the last one.
2370                  */
2371                 spin_lock_irqsave(&h->lock, flags);
2372                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2373                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2374                         do_wake = true;
2375                 c->reset_pending = NULL;
2376                 spin_unlock_irqrestore(&h->lock, flags);
2377         }
2378
2379         if (do_wake)
2380                 wake_up_all(&h->event_sync_wait_queue);
2381 }
2382
2383 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2384                                       struct CommandList *c)
2385 {
2386         hpsa_cmd_resolve_events(h, c);
2387         cmd_tagged_free(h, c);
2388 }
2389
2390 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2391                 struct CommandList *c, struct scsi_cmnd *cmd)
2392 {
2393         hpsa_cmd_resolve_and_free(h, c);
2394         if (cmd && cmd->scsi_done)
2395                 cmd->scsi_done(cmd);
2396 }
2397
2398 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2399 {
2400         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2401         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2402 }
2403
2404 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2405 {
2406         cmd->result = DID_ABORT << 16;
2407 }
2408
2409 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2410                                     struct scsi_cmnd *cmd)
2411 {
2412         hpsa_set_scsi_cmd_aborted(cmd);
2413         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2414                          c->Request.CDB, c->err_info->ScsiStatus);
2415         hpsa_cmd_resolve_and_free(h, c);
2416 }
2417
2418 static void process_ioaccel2_completion(struct ctlr_info *h,
2419                 struct CommandList *c, struct scsi_cmnd *cmd,
2420                 struct hpsa_scsi_dev_t *dev)
2421 {
2422         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2423
2424         /* check for good status */
2425         if (likely(c2->error_data.serv_response == 0 &&
2426                         c2->error_data.status == 0))
2427                 return hpsa_cmd_free_and_done(h, c, cmd);
2428
2429         /*
2430          * Any RAID offload error results in retry which will use
2431          * the normal I/O path so the controller can handle whatever's
2432          * wrong.
2433          */
2434         if (is_logical_device(dev) &&
2435                 c2->error_data.serv_response ==
2436                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2437                 if (c2->error_data.status ==
2438                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED) {
2439                         dev->offload_enabled = 0;
2440                         dev->offload_to_be_enabled = 0;
2441                 }
2442
2443                 return hpsa_retry_cmd(h, c);
2444         }
2445
2446         if (handle_ioaccel_mode2_error(h, c, cmd, c2, dev))
2447                 return hpsa_retry_cmd(h, c);
2448
2449         return hpsa_cmd_free_and_done(h, c, cmd);
2450 }
2451
2452 /* Returns 0 on success, < 0 otherwise. */
2453 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2454                                         struct CommandList *cp)
2455 {
2456         u8 tmf_status = cp->err_info->ScsiStatus;
2457
2458         switch (tmf_status) {
2459         case CISS_TMF_COMPLETE:
2460                 /*
2461                  * CISS_TMF_COMPLETE never happens, instead,
2462                  * ei->CommandStatus == 0 for this case.
2463                  */
2464         case CISS_TMF_SUCCESS:
2465                 return 0;
2466         case CISS_TMF_INVALID_FRAME:
2467         case CISS_TMF_NOT_SUPPORTED:
2468         case CISS_TMF_FAILED:
2469         case CISS_TMF_WRONG_LUN:
2470         case CISS_TMF_OVERLAPPED_TAG:
2471                 break;
2472         default:
2473                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2474                                 tmf_status);
2475                 break;
2476         }
2477         return -tmf_status;
2478 }
2479
2480 static void complete_scsi_command(struct CommandList *cp)
2481 {
2482         struct scsi_cmnd *cmd;
2483         struct ctlr_info *h;
2484         struct ErrorInfo *ei;
2485         struct hpsa_scsi_dev_t *dev;
2486         struct io_accel2_cmd *c2;
2487
2488         u8 sense_key;
2489         u8 asc;      /* additional sense code */
2490         u8 ascq;     /* additional sense code qualifier */
2491         unsigned long sense_data_size;
2492
2493         ei = cp->err_info;
2494         cmd = cp->scsi_cmd;
2495         h = cp->h;
2496
2497         if (!cmd->device) {
2498                 cmd->result = DID_NO_CONNECT << 16;
2499                 return hpsa_cmd_free_and_done(h, cp, cmd);
2500         }
2501
2502         dev = cmd->device->hostdata;
2503         if (!dev) {
2504                 cmd->result = DID_NO_CONNECT << 16;
2505                 return hpsa_cmd_free_and_done(h, cp, cmd);
2506         }
2507         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2508
2509         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2510         if ((cp->cmd_type == CMD_SCSI) &&
2511                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2512                 hpsa_unmap_sg_chain_block(h, cp);
2513
2514         if ((cp->cmd_type == CMD_IOACCEL2) &&
2515                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2516                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2517
2518         cmd->result = (DID_OK << 16);           /* host byte */
2519         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2520
2521         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1) {
2522                 if (dev->physical_device && dev->expose_device &&
2523                         dev->removed) {
2524                         cmd->result = DID_NO_CONNECT << 16;
2525                         return hpsa_cmd_free_and_done(h, cp, cmd);
2526                 }
2527                 if (likely(cp->phys_disk != NULL))
2528                         atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2529         }
2530
2531         /*
2532          * We check for lockup status here as it may be set for
2533          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2534          * fail_all_oustanding_cmds()
2535          */
2536         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2537                 /* DID_NO_CONNECT will prevent a retry */
2538                 cmd->result = DID_NO_CONNECT << 16;
2539                 return hpsa_cmd_free_and_done(h, cp, cmd);
2540         }
2541
2542         if ((unlikely(hpsa_is_pending_event(cp)))) {
2543                 if (cp->reset_pending)
2544                         return hpsa_cmd_resolve_and_free(h, cp);
2545                 if (cp->abort_pending)
2546                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2547         }
2548
2549         if (cp->cmd_type == CMD_IOACCEL2)
2550                 return process_ioaccel2_completion(h, cp, cmd, dev);
2551
2552         scsi_set_resid(cmd, ei->ResidualCnt);
2553         if (ei->CommandStatus == 0)
2554                 return hpsa_cmd_free_and_done(h, cp, cmd);
2555
2556         /* For I/O accelerator commands, copy over some fields to the normal
2557          * CISS header used below for error handling.
2558          */
2559         if (cp->cmd_type == CMD_IOACCEL1) {
2560                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2561                 cp->Header.SGList = scsi_sg_count(cmd);
2562                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2563                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2564                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2565                 cp->Header.tag = c->tag;
2566                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2567                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2568
2569                 /* Any RAID offload error results in retry which will use
2570                  * the normal I/O path so the controller can handle whatever's
2571                  * wrong.
2572                  */
2573                 if (is_logical_device(dev)) {
2574                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2575                                 dev->offload_enabled = 0;
2576                         return hpsa_retry_cmd(h, cp);
2577                 }
2578         }
2579
2580         /* an error has occurred */
2581         switch (ei->CommandStatus) {
2582
2583         case CMD_TARGET_STATUS:
2584                 cmd->result |= ei->ScsiStatus;
2585                 /* copy the sense data */
2586                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2587                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2588                 else
2589                         sense_data_size = sizeof(ei->SenseInfo);
2590                 if (ei->SenseLen < sense_data_size)
2591                         sense_data_size = ei->SenseLen;
2592                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2593                 if (ei->ScsiStatus)
2594                         decode_sense_data(ei->SenseInfo, sense_data_size,
2595                                 &sense_key, &asc, &ascq);
2596                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2597                         if (sense_key == ABORTED_COMMAND) {
2598                                 cmd->result |= DID_SOFT_ERROR << 16;
2599                                 break;
2600                         }
2601                         break;
2602                 }
2603                 /* Problem was not a check condition
2604                  * Pass it up to the upper layers...
2605                  */
2606                 if (ei->ScsiStatus) {
2607                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2608                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2609                                 "Returning result: 0x%x\n",
2610                                 cp, ei->ScsiStatus,
2611                                 sense_key, asc, ascq,
2612                                 cmd->result);
2613                 } else {  /* scsi status is zero??? How??? */
2614                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2615                                 "Returning no connection.\n", cp),
2616
2617                         /* Ordinarily, this case should never happen,
2618                          * but there is a bug in some released firmware
2619                          * revisions that allows it to happen if, for
2620                          * example, a 4100 backplane loses power and
2621                          * the tape drive is in it.  We assume that
2622                          * it's a fatal error of some kind because we
2623                          * can't show that it wasn't. We will make it
2624                          * look like selection timeout since that is
2625                          * the most common reason for this to occur,
2626                          * and it's severe enough.
2627                          */
2628
2629                         cmd->result = DID_NO_CONNECT << 16;
2630                 }
2631                 break;
2632
2633         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2634                 break;
2635         case CMD_DATA_OVERRUN:
2636                 dev_warn(&h->pdev->dev,
2637                         "CDB %16phN data overrun\n", cp->Request.CDB);
2638                 break;
2639         case CMD_INVALID: {
2640                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2641                 print_cmd(cp); */
2642                 /* We get CMD_INVALID if you address a non-existent device
2643                  * instead of a selection timeout (no response).  You will
2644                  * see this if you yank out a drive, then try to access it.
2645                  * This is kind of a shame because it means that any other
2646                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2647                  * missing target. */
2648                 cmd->result = DID_NO_CONNECT << 16;
2649         }
2650                 break;
2651         case CMD_PROTOCOL_ERR:
2652                 cmd->result = DID_ERROR << 16;
2653                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2654                                 cp->Request.CDB);
2655                 break;
2656         case CMD_HARDWARE_ERR:
2657                 cmd->result = DID_ERROR << 16;
2658                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2659                         cp->Request.CDB);
2660                 break;
2661         case CMD_CONNECTION_LOST:
2662                 cmd->result = DID_ERROR << 16;
2663                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2664                         cp->Request.CDB);
2665                 break;
2666         case CMD_ABORTED:
2667                 /* Return now to avoid calling scsi_done(). */
2668                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2669         case CMD_ABORT_FAILED:
2670                 cmd->result = DID_ERROR << 16;
2671                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2672                         cp->Request.CDB);
2673                 break;
2674         case CMD_UNSOLICITED_ABORT:
2675                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2676                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2677                         cp->Request.CDB);
2678                 break;
2679         case CMD_TIMEOUT:
2680                 cmd->result = DID_TIME_OUT << 16;
2681                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2682                         cp->Request.CDB);
2683                 break;
2684         case CMD_UNABORTABLE:
2685                 cmd->result = DID_ERROR << 16;
2686                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2687                 break;
2688         case CMD_TMF_STATUS:
2689                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2690                         cmd->result = DID_ERROR << 16;
2691                 break;
2692         case CMD_IOACCEL_DISABLED:
2693                 /* This only handles the direct pass-through case since RAID
2694                  * offload is handled above.  Just attempt a retry.
2695                  */
2696                 cmd->result = DID_SOFT_ERROR << 16;
2697                 dev_warn(&h->pdev->dev,
2698                                 "cp %p had HP SSD Smart Path error\n", cp);
2699                 break;
2700         default:
2701                 cmd->result = DID_ERROR << 16;
2702                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2703                                 cp, ei->CommandStatus);
2704         }
2705
2706         return hpsa_cmd_free_and_done(h, cp, cmd);
2707 }
2708
2709 static void hpsa_pci_unmap(struct pci_dev *pdev,
2710         struct CommandList *c, int sg_used, int data_direction)
2711 {
2712         int i;
2713
2714         for (i = 0; i < sg_used; i++)
2715                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2716                                 le32_to_cpu(c->SG[i].Len),
2717                                 data_direction);
2718 }
2719
2720 static int hpsa_map_one(struct pci_dev *pdev,
2721                 struct CommandList *cp,
2722                 unsigned char *buf,
2723                 size_t buflen,
2724                 int data_direction)
2725 {
2726         u64 addr64;
2727
2728         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2729                 cp->Header.SGList = 0;
2730                 cp->Header.SGTotal = cpu_to_le16(0);
2731                 return 0;
2732         }
2733
2734         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2735         if (dma_mapping_error(&pdev->dev, addr64)) {
2736                 /* Prevent subsequent unmap of something never mapped */
2737                 cp->Header.SGList = 0;
2738                 cp->Header.SGTotal = cpu_to_le16(0);
2739                 return -1;
2740         }
2741         cp->SG[0].Addr = cpu_to_le64(addr64);
2742         cp->SG[0].Len = cpu_to_le32(buflen);
2743         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2744         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2745         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2746         return 0;
2747 }
2748
2749 #define NO_TIMEOUT ((unsigned long) -1)
2750 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2751 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2752         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2753 {
2754         DECLARE_COMPLETION_ONSTACK(wait);
2755
2756         c->waiting = &wait;
2757         __enqueue_cmd_and_start_io(h, c, reply_queue);
2758         if (timeout_msecs == NO_TIMEOUT) {
2759                 /* TODO: get rid of this no-timeout thing */
2760                 wait_for_completion_io(&wait);
2761                 return IO_OK;
2762         }
2763         if (!wait_for_completion_io_timeout(&wait,
2764                                         msecs_to_jiffies(timeout_msecs))) {
2765                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2766                 return -ETIMEDOUT;
2767         }
2768         return IO_OK;
2769 }
2770
2771 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2772                                    int reply_queue, unsigned long timeout_msecs)
2773 {
2774         if (unlikely(lockup_detected(h))) {
2775                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2776                 return IO_OK;
2777         }
2778         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2779 }
2780
2781 static u32 lockup_detected(struct ctlr_info *h)
2782 {
2783         int cpu;
2784         u32 rc, *lockup_detected;
2785
2786         cpu = get_cpu();
2787         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2788         rc = *lockup_detected;
2789         put_cpu();
2790         return rc;
2791 }
2792
2793 #define MAX_DRIVER_CMD_RETRIES 25
2794 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2795         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2796 {
2797         int backoff_time = 10, retry_count = 0;
2798         int rc;
2799
2800         do {
2801                 memset(c->err_info, 0, sizeof(*c->err_info));
2802                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2803                                                   timeout_msecs);
2804                 if (rc)
2805                         break;
2806                 retry_count++;
2807                 if (retry_count > 3) {
2808                         msleep(backoff_time);
2809                         if (backoff_time < 1000)
2810                                 backoff_time *= 2;
2811                 }
2812         } while ((check_for_unit_attention(h, c) ||
2813                         check_for_busy(h, c)) &&
2814                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2815         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2816         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2817                 rc = -EIO;
2818         return rc;
2819 }
2820
2821 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2822                                 struct CommandList *c)
2823 {
2824         const u8 *cdb = c->Request.CDB;
2825         const u8 *lun = c->Header.LUN.LunAddrBytes;
2826
2827         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2828         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2829                 txt, lun[0], lun[1], lun[2], lun[3],
2830                 lun[4], lun[5], lun[6], lun[7],
2831                 cdb[0], cdb[1], cdb[2], cdb[3],
2832                 cdb[4], cdb[5], cdb[6], cdb[7],
2833                 cdb[8], cdb[9], cdb[10], cdb[11],
2834                 cdb[12], cdb[13], cdb[14], cdb[15]);
2835 }
2836
2837 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2838                         struct CommandList *cp)
2839 {
2840         const struct ErrorInfo *ei = cp->err_info;
2841         struct device *d = &cp->h->pdev->dev;
2842         u8 sense_key, asc, ascq;
2843         int sense_len;
2844
2845         switch (ei->CommandStatus) {
2846         case CMD_TARGET_STATUS:
2847                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2848                         sense_len = sizeof(ei->SenseInfo);
2849                 else
2850                         sense_len = ei->SenseLen;
2851                 decode_sense_data(ei->SenseInfo, sense_len,
2852                                         &sense_key, &asc, &ascq);
2853                 hpsa_print_cmd(h, "SCSI status", cp);
2854                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2855                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2856                                 sense_key, asc, ascq);
2857                 else
2858                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2859                 if (ei->ScsiStatus == 0)
2860                         dev_warn(d, "SCSI status is abnormally zero.  "
2861                         "(probably indicates selection timeout "
2862                         "reported incorrectly due to a known "
2863                         "firmware bug, circa July, 2001.)\n");
2864                 break;
2865         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2866                 break;
2867         case CMD_DATA_OVERRUN:
2868                 hpsa_print_cmd(h, "overrun condition", cp);
2869                 break;
2870         case CMD_INVALID: {
2871                 /* controller unfortunately reports SCSI passthru's
2872                  * to non-existent targets as invalid commands.
2873                  */
2874                 hpsa_print_cmd(h, "invalid command", cp);
2875                 dev_warn(d, "probably means device no longer present\n");
2876                 }
2877                 break;
2878         case CMD_PROTOCOL_ERR:
2879                 hpsa_print_cmd(h, "protocol error", cp);
2880                 break;
2881         case CMD_HARDWARE_ERR:
2882                 hpsa_print_cmd(h, "hardware error", cp);
2883                 break;
2884         case CMD_CONNECTION_LOST:
2885                 hpsa_print_cmd(h, "connection lost", cp);
2886                 break;
2887         case CMD_ABORTED:
2888                 hpsa_print_cmd(h, "aborted", cp);
2889                 break;
2890         case CMD_ABORT_FAILED:
2891                 hpsa_print_cmd(h, "abort failed", cp);
2892                 break;
2893         case CMD_UNSOLICITED_ABORT:
2894                 hpsa_print_cmd(h, "unsolicited abort", cp);
2895                 break;
2896         case CMD_TIMEOUT:
2897                 hpsa_print_cmd(h, "timed out", cp);
2898                 break;
2899         case CMD_UNABORTABLE:
2900                 hpsa_print_cmd(h, "unabortable", cp);
2901                 break;
2902         case CMD_CTLR_LOCKUP:
2903                 hpsa_print_cmd(h, "controller lockup detected", cp);
2904                 break;
2905         default:
2906                 hpsa_print_cmd(h, "unknown status", cp);
2907                 dev_warn(d, "Unknown command status %x\n",
2908                                 ei->CommandStatus);
2909         }
2910 }
2911
2912 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2913                         u16 page, unsigned char *buf,
2914                         unsigned char bufsize)
2915 {
2916         int rc = IO_OK;
2917         struct CommandList *c;
2918         struct ErrorInfo *ei;
2919
2920         c = cmd_alloc(h);
2921
2922         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2923                         page, scsi3addr, TYPE_CMD)) {
2924                 rc = -1;
2925                 goto out;
2926         }
2927         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2928                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
2929         if (rc)
2930                 goto out;
2931         ei = c->err_info;
2932         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2933                 hpsa_scsi_interpret_error(h, c);
2934                 rc = -1;
2935         }
2936 out:
2937         cmd_free(h, c);
2938         return rc;
2939 }
2940
2941 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2942         u8 reset_type, int reply_queue)
2943 {
2944         int rc = IO_OK;
2945         struct CommandList *c;
2946         struct ErrorInfo *ei;
2947
2948         c = cmd_alloc(h);
2949
2950
2951         /* fill_cmd can't fail here, no data buffer to map. */
2952         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2953                         scsi3addr, TYPE_MSG);
2954         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
2955         if (rc) {
2956                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2957                 goto out;
2958         }
2959         /* no unmap needed here because no data xfer. */
2960
2961         ei = c->err_info;
2962         if (ei->CommandStatus != 0) {
2963                 hpsa_scsi_interpret_error(h, c);
2964                 rc = -1;
2965         }
2966 out:
2967         cmd_free(h, c);
2968         return rc;
2969 }
2970
2971 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2972                                struct hpsa_scsi_dev_t *dev,
2973                                unsigned char *scsi3addr)
2974 {
2975         int i;
2976         bool match = false;
2977         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2978         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2979
2980         if (hpsa_is_cmd_idle(c))
2981                 return false;
2982
2983         switch (c->cmd_type) {
2984         case CMD_SCSI:
2985         case CMD_IOCTL_PEND:
2986                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2987                                 sizeof(c->Header.LUN.LunAddrBytes));
2988                 break;
2989
2990         case CMD_IOACCEL1:
2991         case CMD_IOACCEL2:
2992                 if (c->phys_disk == dev) {
2993                         /* HBA mode match */
2994                         match = true;
2995                 } else {
2996                         /* Possible RAID mode -- check each phys dev. */
2997                         /* FIXME:  Do we need to take out a lock here?  If
2998                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2999                          * instead. */
3000                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
3001                                 /* FIXME: an alternate test might be
3002                                  *
3003                                  * match = dev->phys_disk[i]->ioaccel_handle
3004                                  *              == c2->scsi_nexus;      */
3005                                 match = dev->phys_disk[i] == c->phys_disk;
3006                         }
3007                 }
3008                 break;
3009
3010         case IOACCEL2_TMF:
3011                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
3012                         match = dev->phys_disk[i]->ioaccel_handle ==
3013                                         le32_to_cpu(ac->it_nexus);
3014                 }
3015                 break;
3016
3017         case 0:         /* The command is in the middle of being initialized. */
3018                 match = false;
3019                 break;
3020
3021         default:
3022                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
3023                         c->cmd_type);
3024                 BUG();
3025         }
3026
3027         return match;
3028 }
3029
3030 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
3031         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
3032 {
3033         int i;
3034         int rc = 0;
3035
3036         /* We can really only handle one reset at a time */
3037         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
3038                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
3039                 return -EINTR;
3040         }
3041
3042         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
3043
3044         for (i = 0; i < h->nr_cmds; i++) {
3045                 struct CommandList *c = h->cmd_pool + i;
3046                 int refcount = atomic_inc_return(&c->refcount);
3047
3048                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
3049                         unsigned long flags;
3050
3051                         /*
3052                          * Mark the target command as having a reset pending,
3053                          * then lock a lock so that the command cannot complete
3054                          * while we're considering it.  If the command is not
3055                          * idle then count it; otherwise revoke the event.
3056                          */
3057                         c->reset_pending = dev;
3058                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
3059                         if (!hpsa_is_cmd_idle(c))
3060                                 atomic_inc(&dev->reset_cmds_out);
3061                         else
3062                                 c->reset_pending = NULL;
3063                         spin_unlock_irqrestore(&h->lock, flags);
3064                 }
3065
3066                 cmd_free(h, c);
3067         }
3068
3069         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
3070         if (!rc)
3071                 wait_event(h->event_sync_wait_queue,
3072                         atomic_read(&dev->reset_cmds_out) == 0 ||
3073                         lockup_detected(h));
3074
3075         if (unlikely(lockup_detected(h))) {
3076                 dev_warn(&h->pdev->dev,
3077                          "Controller lockup detected during reset wait\n");
3078                 rc = -ENODEV;
3079         }
3080
3081         if (unlikely(rc))
3082                 atomic_set(&dev->reset_cmds_out, 0);
3083
3084         mutex_unlock(&h->reset_mutex);
3085         return rc;
3086 }
3087
3088 static void hpsa_get_raid_level(struct ctlr_info *h,
3089         unsigned char *scsi3addr, unsigned char *raid_level)
3090 {
3091         int rc;
3092         unsigned char *buf;
3093
3094         *raid_level = RAID_UNKNOWN;
3095         buf = kzalloc(64, GFP_KERNEL);
3096         if (!buf)
3097                 return;
3098
3099         if (!hpsa_vpd_page_supported(h, scsi3addr,
3100                 HPSA_VPD_LV_DEVICE_GEOMETRY))
3101                 goto exit;
3102
3103         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3104                 HPSA_VPD_LV_DEVICE_GEOMETRY, buf, 64);
3105
3106         if (rc == 0)
3107                 *raid_level = buf[8];
3108         if (*raid_level > RAID_UNKNOWN)
3109                 *raid_level = RAID_UNKNOWN;
3110 exit:
3111         kfree(buf);
3112         return;
3113 }
3114
3115 #define HPSA_MAP_DEBUG
3116 #ifdef HPSA_MAP_DEBUG
3117 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
3118                                 struct raid_map_data *map_buff)
3119 {
3120         struct raid_map_disk_data *dd = &map_buff->data[0];
3121         int map, row, col;
3122         u16 map_cnt, row_cnt, disks_per_row;
3123
3124         if (rc != 0)
3125                 return;
3126
3127         /* Show details only if debugging has been activated. */
3128         if (h->raid_offload_debug < 2)
3129                 return;
3130
3131         dev_info(&h->pdev->dev, "structure_size = %u\n",
3132                                 le32_to_cpu(map_buff->structure_size));
3133         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3134                         le32_to_cpu(map_buff->volume_blk_size));
3135         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3136                         le64_to_cpu(map_buff->volume_blk_cnt));
3137         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3138                         map_buff->phys_blk_shift);
3139         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3140                         map_buff->parity_rotation_shift);
3141         dev_info(&h->pdev->dev, "strip_size = %u\n",
3142                         le16_to_cpu(map_buff->strip_size));
3143         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3144                         le64_to_cpu(map_buff->disk_starting_blk));
3145         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3146                         le64_to_cpu(map_buff->disk_blk_cnt));
3147         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3148                         le16_to_cpu(map_buff->data_disks_per_row));
3149         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3150                         le16_to_cpu(map_buff->metadata_disks_per_row));
3151         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3152                         le16_to_cpu(map_buff->row_cnt));
3153         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3154                         le16_to_cpu(map_buff->layout_map_count));
3155         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3156                         le16_to_cpu(map_buff->flags));
3157         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3158                         le16_to_cpu(map_buff->flags) &
3159                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3160         dev_info(&h->pdev->dev, "dekindex = %u\n",
3161                         le16_to_cpu(map_buff->dekindex));
3162         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3163         for (map = 0; map < map_cnt; map++) {
3164                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3165                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3166                 for (row = 0; row < row_cnt; row++) {
3167                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3168                         disks_per_row =
3169                                 le16_to_cpu(map_buff->data_disks_per_row);
3170                         for (col = 0; col < disks_per_row; col++, dd++)
3171                                 dev_info(&h->pdev->dev,
3172                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3173                                         col, dd->ioaccel_handle,
3174                                         dd->xor_mult[0], dd->xor_mult[1]);
3175                         disks_per_row =
3176                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3177                         for (col = 0; col < disks_per_row; col++, dd++)
3178                                 dev_info(&h->pdev->dev,
3179                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3180                                         col, dd->ioaccel_handle,
3181                                         dd->xor_mult[0], dd->xor_mult[1]);
3182                 }
3183         }
3184 }
3185 #else
3186 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3187                         __attribute__((unused)) int rc,
3188                         __attribute__((unused)) struct raid_map_data *map_buff)
3189 {
3190 }
3191 #endif
3192
3193 static int hpsa_get_raid_map(struct ctlr_info *h,
3194         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3195 {
3196         int rc = 0;
3197         struct CommandList *c;
3198         struct ErrorInfo *ei;
3199
3200         c = cmd_alloc(h);
3201
3202         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3203                         sizeof(this_device->raid_map), 0,
3204                         scsi3addr, TYPE_CMD)) {
3205                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3206                 cmd_free(h, c);
3207                 return -1;
3208         }
3209         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3210                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3211         if (rc)
3212                 goto out;
3213         ei = c->err_info;
3214         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3215                 hpsa_scsi_interpret_error(h, c);
3216                 rc = -1;
3217                 goto out;
3218         }
3219         cmd_free(h, c);
3220
3221         /* @todo in the future, dynamically allocate RAID map memory */
3222         if (le32_to_cpu(this_device->raid_map.structure_size) >
3223                                 sizeof(this_device->raid_map)) {
3224                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3225                 rc = -1;
3226         }
3227         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3228         return rc;
3229 out:
3230         cmd_free(h, c);
3231         return rc;
3232 }
3233
3234 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3235                 unsigned char scsi3addr[], u16 bmic_device_index,
3236                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3237 {
3238         int rc = IO_OK;
3239         struct CommandList *c;
3240         struct ErrorInfo *ei;
3241
3242         c = cmd_alloc(h);
3243
3244         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3245                 0, RAID_CTLR_LUNID, TYPE_CMD);
3246         if (rc)
3247                 goto out;
3248
3249         c->Request.CDB[2] = bmic_device_index & 0xff;
3250         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3251
3252         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3253                                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3254         if (rc)
3255                 goto out;
3256         ei = c->err_info;
3257         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3258                 hpsa_scsi_interpret_error(h, c);
3259                 rc = -1;
3260         }
3261 out:
3262         cmd_free(h, c);
3263         return rc;
3264 }
3265
3266 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3267         struct bmic_identify_controller *buf, size_t bufsize)
3268 {
3269         int rc = IO_OK;
3270         struct CommandList *c;
3271         struct ErrorInfo *ei;
3272
3273         c = cmd_alloc(h);
3274
3275         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3276                 0, RAID_CTLR_LUNID, TYPE_CMD);
3277         if (rc)
3278                 goto out;
3279
3280         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3281                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3282         if (rc)
3283                 goto out;
3284         ei = c->err_info;
3285         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3286                 hpsa_scsi_interpret_error(h, c);
3287                 rc = -1;
3288         }
3289 out:
3290         cmd_free(h, c);
3291         return rc;
3292 }
3293
3294 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3295                 unsigned char scsi3addr[], u16 bmic_device_index,
3296                 struct bmic_identify_physical_device *buf, size_t bufsize)
3297 {
3298         int rc = IO_OK;
3299         struct CommandList *c;
3300         struct ErrorInfo *ei;
3301
3302         c = cmd_alloc(h);
3303         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3304                 0, RAID_CTLR_LUNID, TYPE_CMD);
3305         if (rc)
3306                 goto out;
3307
3308         c->Request.CDB[2] = bmic_device_index & 0xff;
3309         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3310
3311         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3312                                                 DEFAULT_TIMEOUT);
3313         ei = c->err_info;
3314         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3315                 hpsa_scsi_interpret_error(h, c);
3316                 rc = -1;
3317         }
3318 out:
3319         cmd_free(h, c);
3320
3321         return rc;
3322 }
3323
3324 /*
3325  * get enclosure information
3326  * struct ReportExtendedLUNdata *rlep - Used for BMIC drive number
3327  * struct hpsa_scsi_dev_t *encl_dev - device entry for enclosure
3328  * Uses id_physical_device to determine the box_index.
3329  */
3330 static void hpsa_get_enclosure_info(struct ctlr_info *h,
3331                         unsigned char *scsi3addr,
3332                         struct ReportExtendedLUNdata *rlep, int rle_index,
3333                         struct hpsa_scsi_dev_t *encl_dev)
3334 {
3335         int rc = -1;
3336         struct CommandList *c = NULL;
3337         struct ErrorInfo *ei = NULL;
3338         struct bmic_sense_storage_box_params *bssbp = NULL;
3339         struct bmic_identify_physical_device *id_phys = NULL;
3340         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3341         u16 bmic_device_index = 0;
3342
3343         bmic_device_index = GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]);
3344
3345         if (bmic_device_index == 0xFF00 || MASKED_DEVICE(&rle->lunid[0])) {
3346                 rc = IO_OK;
3347                 goto out;
3348         }
3349
3350         bssbp = kzalloc(sizeof(*bssbp), GFP_KERNEL);
3351         if (!bssbp)
3352                 goto out;
3353
3354         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3355         if (!id_phys)
3356                 goto out;
3357
3358         rc = hpsa_bmic_id_physical_device(h, scsi3addr, bmic_device_index,
3359                                                 id_phys, sizeof(*id_phys));
3360         if (rc) {
3361                 dev_warn(&h->pdev->dev, "%s: id_phys failed %d bdi[0x%x]\n",
3362                         __func__, encl_dev->external, bmic_device_index);
3363                 goto out;
3364         }
3365
3366         c = cmd_alloc(h);
3367
3368         rc = fill_cmd(c, BMIC_SENSE_STORAGE_BOX_PARAMS, h, bssbp,
3369                         sizeof(*bssbp), 0, RAID_CTLR_LUNID, TYPE_CMD);
3370
3371         if (rc)
3372                 goto out;
3373
3374         if (id_phys->phys_connector[1] == 'E')
3375                 c->Request.CDB[5] = id_phys->box_index;
3376         else
3377                 c->Request.CDB[5] = 0;
3378
3379         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3380                                                 DEFAULT_TIMEOUT);
3381         if (rc)
3382                 goto out;
3383
3384         ei = c->err_info;
3385         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3386                 rc = -1;
3387                 goto out;
3388         }
3389
3390         encl_dev->box[id_phys->active_path_number] = bssbp->phys_box_on_port;
3391         memcpy(&encl_dev->phys_connector[id_phys->active_path_number],
3392                 bssbp->phys_connector, sizeof(bssbp->phys_connector));
3393
3394         rc = IO_OK;
3395 out:
3396         kfree(bssbp);
3397         kfree(id_phys);
3398
3399         if (c)
3400                 cmd_free(h, c);
3401
3402         if (rc != IO_OK)
3403                 hpsa_show_dev_msg(KERN_INFO, h, encl_dev,
3404                         "Error, could not get enclosure information\n");
3405 }
3406
3407 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3408                                                 unsigned char *scsi3addr)
3409 {
3410         struct ReportExtendedLUNdata *physdev;
3411         u32 nphysicals;
3412         u64 sa = 0;
3413         int i;
3414
3415         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3416         if (!physdev)
3417                 return 0;
3418
3419         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3420                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3421                 kfree(physdev);
3422                 return 0;
3423         }
3424         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3425
3426         for (i = 0; i < nphysicals; i++)
3427                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3428                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3429                         break;
3430                 }
3431
3432         kfree(physdev);
3433
3434         return sa;
3435 }
3436
3437 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3438                                         struct hpsa_scsi_dev_t *dev)
3439 {
3440         int rc;
3441         u64 sa = 0;
3442
3443         if (is_hba_lunid(scsi3addr)) {
3444                 struct bmic_sense_subsystem_info *ssi;
3445
3446                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3447                 if (ssi == NULL) {
3448                         dev_warn(&h->pdev->dev,
3449                                 "%s: out of memory\n", __func__);
3450                         return;
3451                 }
3452
3453                 rc = hpsa_bmic_sense_subsystem_information(h,
3454                                         scsi3addr, 0, ssi, sizeof(*ssi));
3455                 if (rc == 0) {
3456                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3457                         h->sas_address = sa;
3458                 }
3459
3460                 kfree(ssi);
3461         } else
3462                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3463
3464         dev->sas_address = sa;
3465 }
3466
3467 /* Get a device id from inquiry page 0x83 */
3468 static bool hpsa_vpd_page_supported(struct ctlr_info *h,
3469         unsigned char scsi3addr[], u8 page)
3470 {
3471         int rc;
3472         int i;
3473         int pages;
3474         unsigned char *buf, bufsize;
3475
3476         buf = kzalloc(256, GFP_KERNEL);
3477         if (!buf)
3478                 return false;
3479
3480         /* Get the size of the page list first */
3481         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3482                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3483                                 buf, HPSA_VPD_HEADER_SZ);
3484         if (rc != 0)
3485                 goto exit_unsupported;
3486         pages = buf[3];
3487         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3488                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3489         else
3490                 bufsize = 255;
3491
3492         /* Get the whole VPD page list */
3493         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3494                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3495                                 buf, bufsize);
3496         if (rc != 0)
3497                 goto exit_unsupported;
3498
3499         pages = buf[3];
3500         for (i = 1; i <= pages; i++)
3501                 if (buf[3 + i] == page)
3502                         goto exit_supported;
3503 exit_unsupported:
3504         kfree(buf);
3505         return false;
3506 exit_supported:
3507         kfree(buf);
3508         return true;
3509 }
3510
3511 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3512         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3513 {
3514         int rc;
3515         unsigned char *buf;
3516         u8 ioaccel_status;
3517
3518         this_device->offload_config = 0;
3519         this_device->offload_enabled = 0;
3520         this_device->offload_to_be_enabled = 0;
3521
3522         buf = kzalloc(64, GFP_KERNEL);
3523         if (!buf)
3524                 return;
3525         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3526                 goto out;
3527         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3528                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3529         if (rc != 0)
3530                 goto out;
3531
3532 #define IOACCEL_STATUS_BYTE 4
3533 #define OFFLOAD_CONFIGURED_BIT 0x01
3534 #define OFFLOAD_ENABLED_BIT 0x02
3535         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3536         this_device->offload_config =
3537                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3538         if (this_device->offload_config) {
3539                 this_device->offload_enabled =
3540                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3541                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3542                         this_device->offload_enabled = 0;
3543         }
3544         this_device->offload_to_be_enabled = this_device->offload_enabled;
3545 out:
3546         kfree(buf);
3547         return;
3548 }
3549
3550 /* Get the device id from inquiry page 0x83 */
3551 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3552         unsigned char *device_id, int index, int buflen)
3553 {
3554         int rc;
3555         unsigned char *buf;
3556
3557         /* Does controller have VPD for device id? */
3558         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_DEVICE_ID))
3559                 return 1; /* not supported */
3560
3561         buf = kzalloc(64, GFP_KERNEL);
3562         if (!buf)
3563                 return -ENOMEM;
3564
3565         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE |
3566                                         HPSA_VPD_LV_DEVICE_ID, buf, 64);
3567         if (rc == 0) {
3568                 if (buflen > 16)
3569                         buflen = 16;
3570                 memcpy(device_id, &buf[8], buflen);
3571         }
3572
3573         kfree(buf);
3574
3575         return rc; /*0 - got id,  otherwise, didn't */
3576 }
3577
3578 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3579                 void *buf, int bufsize,
3580                 int extended_response)
3581 {
3582         int rc = IO_OK;
3583         struct CommandList *c;
3584         unsigned char scsi3addr[8];
3585         struct ErrorInfo *ei;
3586
3587         c = cmd_alloc(h);
3588
3589         /* address the controller */
3590         memset(scsi3addr, 0, sizeof(scsi3addr));
3591         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3592                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3593                 rc = -1;
3594                 goto out;
3595         }
3596         if (extended_response)
3597                 c->Request.CDB[1] = extended_response;
3598         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3599                                         PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
3600         if (rc)
3601                 goto out;
3602         ei = c->err_info;
3603         if (ei->CommandStatus != 0 &&
3604             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3605                 hpsa_scsi_interpret_error(h, c);
3606                 rc = -1;
3607         } else {
3608                 struct ReportLUNdata *rld = buf;
3609
3610                 if (rld->extended_response_flag != extended_response) {
3611                         dev_err(&h->pdev->dev,
3612                                 "report luns requested format %u, got %u\n",
3613                                 extended_response,
3614                                 rld->extended_response_flag);
3615                         rc = -1;
3616                 }
3617         }
3618 out:
3619         cmd_free(h, c);
3620         return rc;
3621 }
3622
3623 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3624                 struct ReportExtendedLUNdata *buf, int bufsize)
3625 {
3626         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3627                                                 HPSA_REPORT_PHYS_EXTENDED);
3628 }
3629
3630 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3631                 struct ReportLUNdata *buf, int bufsize)
3632 {
3633         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3634 }
3635
3636 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3637         int bus, int target, int lun)
3638 {
3639         device->bus = bus;
3640         device->target = target;
3641         device->lun = lun;
3642 }
3643
3644 /* Use VPD inquiry to get details of volume status */
3645 static int hpsa_get_volume_status(struct ctlr_info *h,
3646                                         unsigned char scsi3addr[])
3647 {
3648         int rc;
3649         int status;
3650         int size;
3651         unsigned char *buf;
3652
3653         buf = kzalloc(64, GFP_KERNEL);
3654         if (!buf)
3655                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3656
3657         /* Does controller have VPD for logical volume status? */
3658         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3659                 goto exit_failed;
3660
3661         /* Get the size of the VPD return buffer */
3662         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3663                                         buf, HPSA_VPD_HEADER_SZ);
3664         if (rc != 0)
3665                 goto exit_failed;
3666         size = buf[3];
3667
3668         /* Now get the whole VPD buffer */
3669         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3670                                         buf, size + HPSA_VPD_HEADER_SZ);
3671         if (rc != 0)
3672                 goto exit_failed;
3673         status = buf[4]; /* status byte */
3674
3675         kfree(buf);
3676         return status;
3677 exit_failed:
3678         kfree(buf);
3679         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3680 }
3681
3682 /* Determine offline status of a volume.
3683  * Return either:
3684  *  0 (not offline)
3685  *  0xff (offline for unknown reasons)
3686  *  # (integer code indicating one of several NOT READY states
3687  *     describing why a volume is to be kept offline)
3688  */
3689 static int hpsa_volume_offline(struct ctlr_info *h,
3690                                         unsigned char scsi3addr[])
3691 {
3692         struct CommandList *c;
3693         unsigned char *sense;
3694         u8 sense_key, asc, ascq;
3695         int sense_len;
3696         int rc, ldstat = 0;
3697         u16 cmd_status;
3698         u8 scsi_status;
3699 #define ASC_LUN_NOT_READY 0x04
3700 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3701 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3702
3703         c = cmd_alloc(h);
3704
3705         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3706         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3707                                         DEFAULT_TIMEOUT);
3708         if (rc) {
3709                 cmd_free(h, c);
3710                 return 0;
3711         }
3712         sense = c->err_info->SenseInfo;
3713         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3714                 sense_len = sizeof(c->err_info->SenseInfo);
3715         else
3716                 sense_len = c->err_info->SenseLen;
3717         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3718         cmd_status = c->err_info->CommandStatus;
3719         scsi_status = c->err_info->ScsiStatus;
3720         cmd_free(h, c);
3721         /* Is the volume 'not ready'? */
3722         if (cmd_status != CMD_TARGET_STATUS ||
3723                 scsi_status != SAM_STAT_CHECK_CONDITION ||
3724                 sense_key != NOT_READY ||
3725                 asc != ASC_LUN_NOT_READY)  {
3726                 return 0;
3727         }
3728
3729         /* Determine the reason for not ready state */
3730         ldstat = hpsa_get_volume_status(h, scsi3addr);
3731
3732         /* Keep volume offline in certain cases: */
3733         switch (ldstat) {
3734         case HPSA_LV_UNDERGOING_ERASE:
3735         case HPSA_LV_NOT_AVAILABLE:
3736         case HPSA_LV_UNDERGOING_RPI:
3737         case HPSA_LV_PENDING_RPI:
3738         case HPSA_LV_ENCRYPTED_NO_KEY:
3739         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3740         case HPSA_LV_UNDERGOING_ENCRYPTION:
3741         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3742         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3743                 return ldstat;
3744         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3745                 /* If VPD status page isn't available,
3746                  * use ASC/ASCQ to determine state
3747                  */
3748                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3749                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3750                         return ldstat;
3751                 break;
3752         default:
3753                 break;
3754         }
3755         return 0;
3756 }
3757
3758 /*
3759  * Find out if a logical device supports aborts by simply trying one.
3760  * Smart Array may claim not to support aborts on logical drives, but
3761  * if a MSA2000 * is connected, the drives on that will be presented
3762  * by the Smart Array as logical drives, and aborts may be sent to
3763  * those devices successfully.  So the simplest way to find out is
3764  * to simply try an abort and see how the device responds.
3765  */
3766 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3767                                         unsigned char *scsi3addr)
3768 {
3769         struct CommandList *c;
3770         struct ErrorInfo *ei;
3771         int rc = 0;
3772
3773         u64 tag = (u64) -1; /* bogus tag */
3774
3775         /* Assume that physical devices support aborts */
3776         if (!is_logical_dev_addr_mode(scsi3addr))
3777                 return 1;
3778
3779         c = cmd_alloc(h);
3780
3781         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3782         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
3783                                         DEFAULT_TIMEOUT);
3784         /* no unmap needed here because no data xfer. */
3785         ei = c->err_info;
3786         switch (ei->CommandStatus) {
3787         case CMD_INVALID:
3788                 rc = 0;
3789                 break;
3790         case CMD_UNABORTABLE:
3791         case CMD_ABORT_FAILED:
3792                 rc = 1;
3793                 break;
3794         case CMD_TMF_STATUS:
3795                 rc = hpsa_evaluate_tmf_status(h, c);
3796                 break;
3797         default:
3798                 rc = 0;
3799                 break;
3800         }
3801         cmd_free(h, c);
3802         return rc;
3803 }
3804
3805 static int hpsa_update_device_info(struct ctlr_info *h,
3806         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3807         unsigned char *is_OBDR_device)
3808 {
3809
3810 #define OBDR_SIG_OFFSET 43
3811 #define OBDR_TAPE_SIG "$DR-10"
3812 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3813 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3814
3815         unsigned char *inq_buff;
3816         unsigned char *obdr_sig;
3817         int rc = 0;
3818
3819         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3820         if (!inq_buff) {
3821                 rc = -ENOMEM;
3822                 goto bail_out;
3823         }
3824
3825         /* Do an inquiry to the device to see what it is. */
3826         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3827                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3828                 /* Inquiry failed (msg printed already) */
3829                 dev_err(&h->pdev->dev,
3830                         "hpsa_update_device_info: inquiry failed\n");
3831                 rc = -EIO;
3832                 goto bail_out;
3833         }
3834
3835         scsi_sanitize_inquiry_string(&inq_buff[8], 8);
3836         scsi_sanitize_inquiry_string(&inq_buff[16], 16);
3837
3838         this_device->devtype = (inq_buff[0] & 0x1f);
3839         memcpy(this_device->scsi3addr, scsi3addr, 8);
3840         memcpy(this_device->vendor, &inq_buff[8],
3841                 sizeof(this_device->vendor));
3842         memcpy(this_device->model, &inq_buff[16],
3843                 sizeof(this_device->model));
3844         this_device->rev = inq_buff[2];
3845         memset(this_device->device_id, 0,
3846                 sizeof(this_device->device_id));
3847         if (hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3848                 sizeof(this_device->device_id)))
3849                 dev_err(&h->pdev->dev,
3850                         "hpsa%d: %s: can't get device id for host %d:C0:T%d:L%d\t%s\t%.16s\n",
3851                         h->ctlr, __func__,
3852                         h->scsi_host->host_no,
3853                         this_device->target, this_device->lun,
3854                         scsi_device_type(this_device->devtype),
3855                         this_device->model);
3856
3857         if ((this_device->devtype == TYPE_DISK ||
3858                 this_device->devtype == TYPE_ZBC) &&
3859                 is_logical_dev_addr_mode(scsi3addr)) {
3860                 int volume_offline;
3861
3862                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3863                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3864                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3865                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3866                 if (volume_offline < 0 || volume_offline > 0xff)
3867                         volume_offline = HPSA_VPD_LV_STATUS_UNSUPPORTED;
3868                 this_device->volume_offline = volume_offline & 0xff;
3869         } else {
3870                 this_device->raid_level = RAID_UNKNOWN;
3871                 this_device->offload_config = 0;
3872                 this_device->offload_enabled = 0;
3873                 this_device->offload_to_be_enabled = 0;
3874                 this_device->hba_ioaccel_enabled = 0;
3875                 this_device->volume_offline = 0;
3876                 this_device->queue_depth = h->nr_cmds;
3877         }
3878
3879         if (is_OBDR_device) {
3880                 /* See if this is a One-Button-Disaster-Recovery device
3881                  * by looking for "$DR-10" at offset 43 in inquiry data.
3882                  */
3883                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3884                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3885                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3886                                                 OBDR_SIG_LEN) == 0);
3887         }
3888         kfree(inq_buff);
3889         return 0;
3890
3891 bail_out:
3892         kfree(inq_buff);
3893         return rc;
3894 }
3895
3896 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3897                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3898 {
3899         unsigned long flags;
3900         int rc, entry;
3901         /*
3902          * See if this device supports aborts.  If we already know
3903          * the device, we already know if it supports aborts, otherwise
3904          * we have to find out if it supports aborts by trying one.
3905          */
3906         spin_lock_irqsave(&h->devlock, flags);
3907         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3908         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3909                 entry >= 0 && entry < h->ndevices) {
3910                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3911                 spin_unlock_irqrestore(&h->devlock, flags);
3912         } else {
3913                 spin_unlock_irqrestore(&h->devlock, flags);
3914                 dev->supports_aborts =
3915                                 hpsa_device_supports_aborts(h, scsi3addr);
3916                 if (dev->supports_aborts < 0)
3917                         dev->supports_aborts = 0;
3918         }
3919 }
3920
3921 /*
3922  * Helper function to assign bus, target, lun mapping of devices.
3923  * Logical drive target and lun are assigned at this time, but
3924  * physical device lun and target assignment are deferred (assigned
3925  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3926 */
3927 static void figure_bus_target_lun(struct ctlr_info *h,
3928         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3929 {
3930         u32 lunid = get_unaligned_le32(lunaddrbytes);
3931
3932         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3933                 /* physical device, target and lun filled in later */
3934                 if (is_hba_lunid(lunaddrbytes)) {
3935                         int bus = HPSA_HBA_BUS;
3936
3937                         if (!device->rev)
3938                                 bus = HPSA_LEGACY_HBA_BUS;
3939                         hpsa_set_bus_target_lun(device,
3940                                         bus, 0, lunid & 0x3fff);
3941                 } else
3942                         /* defer target, lun assignment for physical devices */
3943                         hpsa_set_bus_target_lun(device,
3944                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3945                 return;
3946         }
3947         /* It's a logical device */
3948         if (device->external) {
3949                 hpsa_set_bus_target_lun(device,
3950                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3951                         lunid & 0x00ff);
3952                 return;
3953         }
3954         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3955                                 0, lunid & 0x3fff);
3956 }
3957
3958
3959 /*
3960  * Get address of physical disk used for an ioaccel2 mode command:
3961  *      1. Extract ioaccel2 handle from the command.
3962  *      2. Find a matching ioaccel2 handle from list of physical disks.
3963  *      3. Return:
3964  *              1 and set scsi3addr to address of matching physical
3965  *              0 if no matching physical disk was found.
3966  */
3967 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3968         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3969 {
3970         struct io_accel2_cmd *c2 =
3971                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3972         unsigned long flags;
3973         int i;
3974
3975         spin_lock_irqsave(&h->devlock, flags);
3976         for (i = 0; i < h->ndevices; i++)
3977                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3978                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3979                                 sizeof(h->dev[i]->scsi3addr));
3980                         spin_unlock_irqrestore(&h->devlock, flags);
3981                         return 1;
3982                 }
3983         spin_unlock_irqrestore(&h->devlock, flags);
3984         return 0;
3985 }
3986
3987 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3988         int i, int nphysicals, int nlocal_logicals)
3989 {
3990         /* In report logicals, local logicals are listed first,
3991         * then any externals.
3992         */
3993         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3994
3995         if (i == raid_ctlr_position)
3996                 return 0;
3997
3998         if (i < logicals_start)
3999                 return 0;
4000
4001         /* i is in logicals range, but still within local logicals */
4002         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
4003                 return 0;
4004
4005         return 1; /* it's an external lun */
4006 }
4007
4008 /*
4009  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
4010  * logdev.  The number of luns in physdev and logdev are returned in
4011  * *nphysicals and *nlogicals, respectively.
4012  * Returns 0 on success, -1 otherwise.
4013  */
4014 static int hpsa_gather_lun_info(struct ctlr_info *h,
4015         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
4016         struct ReportLUNdata *logdev, u32 *nlogicals)
4017 {
4018         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
4019                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
4020                 return -1;
4021         }
4022         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
4023         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
4024                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
4025                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
4026                 *nphysicals = HPSA_MAX_PHYS_LUN;
4027         }
4028         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
4029                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
4030                 return -1;
4031         }
4032         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
4033         /* Reject Logicals in excess of our max capability. */
4034         if (*nlogicals > HPSA_MAX_LUN) {
4035                 dev_warn(&h->pdev->dev,
4036                         "maximum logical LUNs (%d) exceeded.  "
4037                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
4038                         *nlogicals - HPSA_MAX_LUN);
4039                         *nlogicals = HPSA_MAX_LUN;
4040         }
4041         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
4042                 dev_warn(&h->pdev->dev,
4043                         "maximum logical + physical LUNs (%d) exceeded. "
4044                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
4045                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
4046                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
4047         }
4048         return 0;
4049 }
4050
4051 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
4052         int i, int nphysicals, int nlogicals,
4053         struct ReportExtendedLUNdata *physdev_list,
4054         struct ReportLUNdata *logdev_list)
4055 {
4056         /* Helper function, figure out where the LUN ID info is coming from
4057          * given index i, lists of physical and logical devices, where in
4058          * the list the raid controller is supposed to appear (first or last)
4059          */
4060
4061         int logicals_start = nphysicals + (raid_ctlr_position == 0);
4062         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
4063
4064         if (i == raid_ctlr_position)
4065                 return RAID_CTLR_LUNID;
4066
4067         if (i < logicals_start)
4068                 return &physdev_list->LUN[i -
4069                                 (raid_ctlr_position == 0)].lunid[0];
4070
4071         if (i < last_device)
4072                 return &logdev_list->LUN[i - nphysicals -
4073                         (raid_ctlr_position == 0)][0];
4074         BUG();
4075         return NULL;
4076 }
4077
4078 /* get physical drive ioaccel handle and queue depth */
4079 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
4080                 struct hpsa_scsi_dev_t *dev,
4081                 struct ReportExtendedLUNdata *rlep, int rle_index,
4082                 struct bmic_identify_physical_device *id_phys)
4083 {
4084         int rc;
4085         struct ext_report_lun_entry *rle;
4086
4087         /*
4088          * external targets don't support BMIC
4089          */
4090         if (dev->external) {
4091                 dev->queue_depth = 7;
4092                 return;
4093         }
4094
4095         rle = &rlep->LUN[rle_index];
4096
4097         dev->ioaccel_handle = rle->ioaccel_handle;
4098         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
4099                 dev->hba_ioaccel_enabled = 1;
4100         memset(id_phys, 0, sizeof(*id_phys));
4101         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
4102                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
4103                         sizeof(*id_phys));
4104         if (!rc)
4105                 /* Reserve space for FW operations */
4106 #define DRIVE_CMDS_RESERVED_FOR_FW 2
4107 #define DRIVE_QUEUE_DEPTH 7
4108                 dev->queue_depth =
4109                         le16_to_cpu(id_phys->current_queue_depth_limit) -
4110                                 DRIVE_CMDS_RESERVED_FOR_FW;
4111         else
4112                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
4113 }
4114
4115 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
4116         struct ReportExtendedLUNdata *rlep, int rle_index,
4117         struct bmic_identify_physical_device *id_phys)
4118 {
4119         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
4120
4121         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
4122                 this_device->hba_ioaccel_enabled = 1;
4123
4124         memcpy(&this_device->active_path_index,
4125                 &id_phys->active_path_number,
4126                 sizeof(this_device->active_path_index));
4127         memcpy(&this_device->path_map,
4128                 &id_phys->redundant_path_present_map,
4129                 sizeof(this_device->path_map));
4130         memcpy(&this_device->box,
4131                 &id_phys->alternate_paths_phys_box_on_port,
4132                 sizeof(this_device->box));
4133         memcpy(&this_device->phys_connector,
4134                 &id_phys->alternate_paths_phys_connector,
4135                 sizeof(this_device->phys_connector));
4136         memcpy(&this_device->bay,
4137                 &id_phys->phys_bay_in_box,
4138                 sizeof(this_device->bay));
4139 }
4140
4141 /* get number of local logical disks. */
4142 static int hpsa_set_local_logical_count(struct ctlr_info *h,
4143         struct bmic_identify_controller *id_ctlr,
4144         u32 *nlocals)
4145 {
4146         int rc;
4147
4148         if (!id_ctlr) {
4149                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
4150                         __func__);
4151                 return -ENOMEM;
4152         }
4153         memset(id_ctlr, 0, sizeof(*id_ctlr));
4154         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
4155         if (!rc)
4156                 if (id_ctlr->configured_logical_drive_count < 256)
4157                         *nlocals = id_ctlr->configured_logical_drive_count;
4158                 else
4159                         *nlocals = le16_to_cpu(
4160                                         id_ctlr->extended_logical_unit_count);
4161         else
4162                 *nlocals = -1;
4163         return rc;
4164 }
4165
4166 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
4167 {
4168         struct bmic_identify_physical_device *id_phys;
4169         bool is_spare = false;
4170         int rc;
4171
4172         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4173         if (!id_phys)
4174                 return false;
4175
4176         rc = hpsa_bmic_id_physical_device(h,
4177                                         lunaddrbytes,
4178                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
4179                                         id_phys, sizeof(*id_phys));
4180         if (rc == 0)
4181                 is_spare = (id_phys->more_flags >> 6) & 0x01;
4182
4183         kfree(id_phys);
4184         return is_spare;
4185 }
4186
4187 #define RPL_DEV_FLAG_NON_DISK                           0x1
4188 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
4189 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
4190
4191 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
4192
4193 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
4194                                 struct ext_report_lun_entry *rle)
4195 {
4196         u8 device_flags;
4197         u8 device_type;
4198
4199         if (!MASKED_DEVICE(lunaddrbytes))
4200                 return false;
4201
4202         device_flags = rle->device_flags;
4203         device_type = rle->device_type;
4204
4205         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
4206                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
4207                         return false;
4208                 return true;
4209         }
4210
4211         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
4212                 return false;
4213
4214         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
4215                 return false;
4216
4217         /*
4218          * Spares may be spun down, we do not want to
4219          * do an Inquiry to a RAID set spare drive as
4220          * that would have them spun up, that is a
4221          * performance hit because I/O to the RAID device
4222          * stops while the spin up occurs which can take
4223          * over 50 seconds.
4224          */
4225         if (hpsa_is_disk_spare(h, lunaddrbytes))
4226                 return true;
4227
4228         return false;
4229 }
4230
4231 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4232 {
4233         /* the idea here is we could get notified
4234          * that some devices have changed, so we do a report
4235          * physical luns and report logical luns cmd, and adjust
4236          * our list of devices accordingly.
4237          *
4238          * The scsi3addr's of devices won't change so long as the
4239          * adapter is not reset.  That means we can rescan and
4240          * tell which devices we already know about, vs. new
4241          * devices, vs.  disappearing devices.
4242          */
4243         struct ReportExtendedLUNdata *physdev_list = NULL;
4244         struct ReportLUNdata *logdev_list = NULL;
4245         struct bmic_identify_physical_device *id_phys = NULL;
4246         struct bmic_identify_controller *id_ctlr = NULL;
4247         u32 nphysicals = 0;
4248         u32 nlogicals = 0;
4249         u32 nlocal_logicals = 0;
4250         u32 ndev_allocated = 0;
4251         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4252         int ncurrent = 0;
4253         int i, n_ext_target_devs, ndevs_to_allocate;
4254         int raid_ctlr_position;
4255         bool physical_device;
4256         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4257
4258         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4259         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4260         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4261         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4262         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4263         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4264
4265         if (!currentsd || !physdev_list || !logdev_list ||
4266                 !tmpdevice || !id_phys || !id_ctlr) {
4267                 dev_err(&h->pdev->dev, "out of memory\n");
4268                 goto out;
4269         }
4270         memset(lunzerobits, 0, sizeof(lunzerobits));
4271
4272         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4273
4274         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4275                         logdev_list, &nlogicals)) {
4276                 h->drv_req_rescan = 1;
4277                 goto out;
4278         }
4279
4280         /* Set number of local logicals (non PTRAID) */
4281         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4282                 dev_warn(&h->pdev->dev,
4283                         "%s: Can't determine number of local logical devices.\n",
4284                         __func__);
4285         }
4286
4287         /* We might see up to the maximum number of logical and physical disks
4288          * plus external target devices, and a device for the local RAID
4289          * controller.
4290          */
4291         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4292
4293         /* Allocate the per device structures */
4294         for (i = 0; i < ndevs_to_allocate; i++) {
4295                 if (i >= HPSA_MAX_DEVICES) {
4296                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4297                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4298                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4299                         break;
4300                 }
4301
4302                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4303                 if (!currentsd[i]) {
4304                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4305                                 __FILE__, __LINE__);
4306                         h->drv_req_rescan = 1;
4307                         goto out;
4308                 }
4309                 ndev_allocated++;
4310         }
4311
4312         if (is_scsi_rev_5(h))
4313                 raid_ctlr_position = 0;
4314         else
4315                 raid_ctlr_position = nphysicals + nlogicals;
4316
4317         /* adjust our table of devices */
4318         n_ext_target_devs = 0;
4319         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4320                 u8 *lunaddrbytes, is_OBDR = 0;
4321                 int rc = 0;
4322                 int phys_dev_index = i - (raid_ctlr_position == 0);
4323                 bool skip_device = false;
4324
4325                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4326
4327                 /* Figure out where the LUN ID info is coming from */
4328                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4329                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4330
4331                 /* Determine if this is a lun from an external target array */
4332                 tmpdevice->external =
4333                         figure_external_status(h, raid_ctlr_position, i,
4334                                                 nphysicals, nlocal_logicals);
4335
4336                 /*
4337                  * Skip over some devices such as a spare.
4338                  */
4339                 if (!tmpdevice->external && physical_device) {
4340                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4341                                         &physdev_list->LUN[phys_dev_index]);
4342                         if (skip_device)
4343                                 continue;
4344                 }
4345
4346                 /* Get device type, vendor, model, device id */
4347                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4348                                                         &is_OBDR);
4349                 if (rc == -ENOMEM) {
4350                         dev_warn(&h->pdev->dev,
4351                                 "Out of memory, rescan deferred.\n");
4352                         h->drv_req_rescan = 1;
4353                         goto out;
4354                 }
4355                 if (rc) {
4356                         dev_warn(&h->pdev->dev,
4357                                 "Inquiry failed, skipping device.\n");
4358                         continue;
4359                 }
4360
4361                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4362                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4363                 this_device = currentsd[ncurrent];
4364
4365                 /* Turn on discovery_polling if there are ext target devices.
4366                  * Event-based change notification is unreliable for those.
4367                  */
4368                 if (!h->discovery_polling) {
4369                         if (tmpdevice->external) {
4370                                 h->discovery_polling = 1;
4371                                 dev_info(&h->pdev->dev,
4372                                         "External target, activate discovery polling.\n");
4373                         }
4374                 }
4375
4376
4377                 *this_device = *tmpdevice;
4378                 this_device->physical_device = physical_device;
4379
4380                 /*
4381                  * Expose all devices except for physical devices that
4382                  * are masked.
4383                  */
4384                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4385                         this_device->expose_device = 0;
4386                 else
4387                         this_device->expose_device = 1;
4388
4389
4390                 /*
4391                  * Get the SAS address for physical devices that are exposed.
4392                  */
4393                 if (this_device->physical_device && this_device->expose_device)
4394                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4395
4396                 switch (this_device->devtype) {
4397                 case TYPE_ROM:
4398                         /* We don't *really* support actual CD-ROM devices,
4399                          * just "One Button Disaster Recovery" tape drive
4400                          * which temporarily pretends to be a CD-ROM drive.
4401                          * So we check that the device is really an OBDR tape
4402                          * device by checking for "$DR-10" in bytes 43-48 of
4403                          * the inquiry data.
4404                          */
4405                         if (is_OBDR)
4406                                 ncurrent++;
4407                         break;
4408                 case TYPE_DISK:
4409                 case TYPE_ZBC:
4410                         if (this_device->physical_device) {
4411                                 /* The disk is in HBA mode. */
4412                                 /* Never use RAID mapper in HBA mode. */
4413                                 this_device->offload_enabled = 0;
4414                                 hpsa_get_ioaccel_drive_info(h, this_device,
4415                                         physdev_list, phys_dev_index, id_phys);
4416                                 hpsa_get_path_info(this_device,
4417                                         physdev_list, phys_dev_index, id_phys);
4418                         }
4419                         ncurrent++;
4420                         break;
4421                 case TYPE_TAPE:
4422                 case TYPE_MEDIUM_CHANGER:
4423                         ncurrent++;
4424                         break;
4425                 case TYPE_ENCLOSURE:
4426                         if (!this_device->external)
4427                                 hpsa_get_enclosure_info(h, lunaddrbytes,
4428                                                 physdev_list, phys_dev_index,
4429                                                 this_device);
4430                         ncurrent++;
4431                         break;
4432                 case TYPE_RAID:
4433                         /* Only present the Smartarray HBA as a RAID controller.
4434                          * If it's a RAID controller other than the HBA itself
4435                          * (an external RAID controller, MSA500 or similar)
4436                          * don't present it.
4437                          */
4438                         if (!is_hba_lunid(lunaddrbytes))
4439                                 break;
4440                         ncurrent++;
4441                         break;
4442                 default:
4443                         break;
4444                 }
4445                 if (ncurrent >= HPSA_MAX_DEVICES)
4446                         break;
4447         }
4448
4449         if (h->sas_host == NULL) {
4450                 int rc = 0;
4451
4452                 rc = hpsa_add_sas_host(h);
4453                 if (rc) {
4454                         dev_warn(&h->pdev->dev,
4455                                 "Could not add sas host %d\n", rc);
4456                         goto out;
4457                 }
4458         }
4459
4460         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4461 out:
4462         kfree(tmpdevice);
4463         for (i = 0; i < ndev_allocated; i++)
4464                 kfree(currentsd[i]);
4465         kfree(currentsd);
4466         kfree(physdev_list);
4467         kfree(logdev_list);
4468         kfree(id_ctlr);
4469         kfree(id_phys);
4470 }
4471
4472 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4473                                    struct scatterlist *sg)
4474 {
4475         u64 addr64 = (u64) sg_dma_address(sg);
4476         unsigned int len = sg_dma_len(sg);
4477
4478         desc->Addr = cpu_to_le64(addr64);
4479         desc->Len = cpu_to_le32(len);
4480         desc->Ext = 0;
4481 }
4482
4483 /*
4484  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4485  * dma mapping  and fills in the scatter gather entries of the
4486  * hpsa command, cp.
4487  */
4488 static int hpsa_scatter_gather(struct ctlr_info *h,
4489                 struct CommandList *cp,
4490                 struct scsi_cmnd *cmd)
4491 {
4492         struct scatterlist *sg;
4493         int use_sg, i, sg_limit, chained, last_sg;
4494         struct SGDescriptor *curr_sg;
4495
4496         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4497
4498         use_sg = scsi_dma_map(cmd);
4499         if (use_sg < 0)
4500                 return use_sg;
4501
4502         if (!use_sg)
4503                 goto sglist_finished;
4504
4505         /*
4506          * If the number of entries is greater than the max for a single list,
4507          * then we have a chained list; we will set up all but one entry in the
4508          * first list (the last entry is saved for link information);
4509          * otherwise, we don't have a chained list and we'll set up at each of
4510          * the entries in the one list.
4511          */
4512         curr_sg = cp->SG;
4513         chained = use_sg > h->max_cmd_sg_entries;
4514         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4515         last_sg = scsi_sg_count(cmd) - 1;
4516         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4517                 hpsa_set_sg_descriptor(curr_sg, sg);
4518                 curr_sg++;
4519         }
4520
4521         if (chained) {
4522                 /*
4523                  * Continue with the chained list.  Set curr_sg to the chained
4524                  * list.  Modify the limit to the total count less the entries
4525                  * we've already set up.  Resume the scan at the list entry
4526                  * where the previous loop left off.
4527                  */
4528                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4529                 sg_limit = use_sg - sg_limit;
4530                 for_each_sg(sg, sg, sg_limit, i) {
4531                         hpsa_set_sg_descriptor(curr_sg, sg);
4532                         curr_sg++;
4533                 }
4534         }
4535
4536         /* Back the pointer up to the last entry and mark it as "last". */
4537         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4538
4539         if (use_sg + chained > h->maxSG)
4540                 h->maxSG = use_sg + chained;
4541
4542         if (chained) {
4543                 cp->Header.SGList = h->max_cmd_sg_entries;
4544                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4545                 if (hpsa_map_sg_chain_block(h, cp)) {
4546                         scsi_dma_unmap(cmd);
4547                         return -1;
4548                 }
4549                 return 0;
4550         }
4551
4552 sglist_finished:
4553
4554         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4555         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4556         return 0;
4557 }
4558
4559 #define IO_ACCEL_INELIGIBLE (1)
4560 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4561 {
4562         int is_write = 0;
4563         u32 block;
4564         u32 block_cnt;
4565
4566         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4567         switch (cdb[0]) {
4568         case WRITE_6:
4569         case WRITE_12:
4570                 is_write = 1;
4571         case READ_6:
4572         case READ_12:
4573                 if (*cdb_len == 6) {
4574                         block = (((cdb[1] & 0x1F) << 16) |
4575                                 (cdb[2] << 8) |
4576                                 cdb[3]);
4577                         block_cnt = cdb[4];
4578                         if (block_cnt == 0)
4579                                 block_cnt = 256;
4580                 } else {
4581                         BUG_ON(*cdb_len != 12);
4582                         block = get_unaligned_be32(&cdb[2]);
4583                         block_cnt = get_unaligned_be32(&cdb[6]);
4584                 }
4585                 if (block_cnt > 0xffff)
4586                         return IO_ACCEL_INELIGIBLE;
4587
4588                 cdb[0] = is_write ? WRITE_10 : READ_10;
4589                 cdb[1] = 0;
4590                 cdb[2] = (u8) (block >> 24);
4591                 cdb[3] = (u8) (block >> 16);
4592                 cdb[4] = (u8) (block >> 8);
4593                 cdb[5] = (u8) (block);
4594                 cdb[6] = 0;
4595                 cdb[7] = (u8) (block_cnt >> 8);
4596                 cdb[8] = (u8) (block_cnt);
4597                 cdb[9] = 0;
4598                 *cdb_len = 10;
4599                 break;
4600         }
4601         return 0;
4602 }
4603
4604 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4605         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4606         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4607 {
4608         struct scsi_cmnd *cmd = c->scsi_cmd;
4609         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4610         unsigned int len;
4611         unsigned int total_len = 0;
4612         struct scatterlist *sg;
4613         u64 addr64;
4614         int use_sg, i;
4615         struct SGDescriptor *curr_sg;
4616         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4617
4618         /* TODO: implement chaining support */
4619         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4620                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4621                 return IO_ACCEL_INELIGIBLE;
4622         }
4623
4624         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4625
4626         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4627                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4628                 return IO_ACCEL_INELIGIBLE;
4629         }
4630
4631         c->cmd_type = CMD_IOACCEL1;
4632
4633         /* Adjust the DMA address to point to the accelerated command buffer */
4634         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4635                                 (c->cmdindex * sizeof(*cp));
4636         BUG_ON(c->busaddr & 0x0000007F);
4637
4638         use_sg = scsi_dma_map(cmd);
4639         if (use_sg < 0) {
4640                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4641                 return use_sg;
4642         }
4643
4644         if (use_sg) {
4645                 curr_sg = cp->SG;
4646                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4647                         addr64 = (u64) sg_dma_address(sg);
4648                         len  = sg_dma_len(sg);
4649                         total_len += len;
4650                         curr_sg->Addr = cpu_to_le64(addr64);
4651                         curr_sg->Len = cpu_to_le32(len);
4652                         curr_sg->Ext = cpu_to_le32(0);
4653                         curr_sg++;
4654                 }
4655                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4656
4657                 switch (cmd->sc_data_direction) {
4658                 case DMA_TO_DEVICE:
4659                         control |= IOACCEL1_CONTROL_DATA_OUT;
4660                         break;
4661                 case DMA_FROM_DEVICE:
4662                         control |= IOACCEL1_CONTROL_DATA_IN;
4663                         break;
4664                 case DMA_NONE:
4665                         control |= IOACCEL1_CONTROL_NODATAXFER;
4666                         break;
4667                 default:
4668                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4669                         cmd->sc_data_direction);
4670                         BUG();
4671                         break;
4672                 }
4673         } else {
4674                 control |= IOACCEL1_CONTROL_NODATAXFER;
4675         }
4676
4677         c->Header.SGList = use_sg;
4678         /* Fill out the command structure to submit */
4679         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4680         cp->transfer_len = cpu_to_le32(total_len);
4681         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4682                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4683         cp->control = cpu_to_le32(control);
4684         memcpy(cp->CDB, cdb, cdb_len);
4685         memcpy(cp->CISS_LUN, scsi3addr, 8);
4686         /* Tag was already set at init time. */
4687         enqueue_cmd_and_start_io(h, c);
4688         return 0;
4689 }
4690
4691 /*
4692  * Queue a command directly to a device behind the controller using the
4693  * I/O accelerator path.
4694  */
4695 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4696         struct CommandList *c)
4697 {
4698         struct scsi_cmnd *cmd = c->scsi_cmd;
4699         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4700
4701         if (!dev)
4702                 return -1;
4703
4704         c->phys_disk = dev;
4705
4706         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4707                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4708 }
4709
4710 /*
4711  * Set encryption parameters for the ioaccel2 request
4712  */
4713 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4714         struct CommandList *c, struct io_accel2_cmd *cp)
4715 {
4716         struct scsi_cmnd *cmd = c->scsi_cmd;
4717         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4718         struct raid_map_data *map = &dev->raid_map;
4719         u64 first_block;
4720
4721         /* Are we doing encryption on this device */
4722         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4723                 return;
4724         /* Set the data encryption key index. */
4725         cp->dekindex = map->dekindex;
4726
4727         /* Set the encryption enable flag, encoded into direction field. */
4728         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4729
4730         /* Set encryption tweak values based on logical block address
4731          * If block size is 512, tweak value is LBA.
4732          * For other block sizes, tweak is (LBA * block size)/ 512)
4733          */
4734         switch (cmd->cmnd[0]) {
4735         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4736         case READ_6:
4737         case WRITE_6:
4738                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4739                                 (cmd->cmnd[2] << 8) |
4740                                 cmd->cmnd[3]);
4741                 break;
4742         case WRITE_10:
4743         case READ_10:
4744         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4745         case WRITE_12:
4746         case READ_12:
4747                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4748                 break;
4749         case WRITE_16:
4750         case READ_16:
4751                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4752                 break;
4753         default:
4754                 dev_err(&h->pdev->dev,
4755                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4756                         __func__, cmd->cmnd[0]);
4757                 BUG();
4758                 break;
4759         }
4760
4761         if (le32_to_cpu(map->volume_blk_size) != 512)
4762                 first_block = first_block *
4763                                 le32_to_cpu(map->volume_blk_size)/512;
4764
4765         cp->tweak_lower = cpu_to_le32(first_block);
4766         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4767 }
4768
4769 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4770         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4771         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4772 {
4773         struct scsi_cmnd *cmd = c->scsi_cmd;
4774         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4775         struct ioaccel2_sg_element *curr_sg;
4776         int use_sg, i;
4777         struct scatterlist *sg;
4778         u64 addr64;
4779         u32 len;
4780         u32 total_len = 0;
4781
4782         if (!cmd->device)
4783                 return -1;
4784
4785         if (!cmd->device->hostdata)
4786                 return -1;
4787
4788         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4789
4790         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4791                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4792                 return IO_ACCEL_INELIGIBLE;
4793         }
4794
4795         c->cmd_type = CMD_IOACCEL2;
4796         /* Adjust the DMA address to point to the accelerated command buffer */
4797         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4798                                 (c->cmdindex * sizeof(*cp));
4799         BUG_ON(c->busaddr & 0x0000007F);
4800
4801         memset(cp, 0, sizeof(*cp));
4802         cp->IU_type = IOACCEL2_IU_TYPE;
4803
4804         use_sg = scsi_dma_map(cmd);
4805         if (use_sg < 0) {
4806                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4807                 return use_sg;
4808         }
4809
4810         if (use_sg) {
4811                 curr_sg = cp->sg;
4812                 if (use_sg > h->ioaccel_maxsg) {
4813                         addr64 = le64_to_cpu(
4814                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4815                         curr_sg->address = cpu_to_le64(addr64);
4816                         curr_sg->length = 0;
4817                         curr_sg->reserved[0] = 0;
4818                         curr_sg->reserved[1] = 0;
4819                         curr_sg->reserved[2] = 0;
4820                         curr_sg->chain_indicator = 0x80;
4821
4822                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4823                 }
4824                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4825                         addr64 = (u64) sg_dma_address(sg);
4826                         len  = sg_dma_len(sg);
4827                         total_len += len;
4828                         curr_sg->address = cpu_to_le64(addr64);
4829                         curr_sg->length = cpu_to_le32(len);
4830                         curr_sg->reserved[0] = 0;
4831                         curr_sg->reserved[1] = 0;
4832                         curr_sg->reserved[2] = 0;
4833                         curr_sg->chain_indicator = 0;
4834                         curr_sg++;
4835                 }
4836
4837                 switch (cmd->sc_data_direction) {
4838                 case DMA_TO_DEVICE:
4839                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4840                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4841                         break;
4842                 case DMA_FROM_DEVICE:
4843                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4844                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4845                         break;
4846                 case DMA_NONE:
4847                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4848                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4849                         break;
4850                 default:
4851                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4852                                 cmd->sc_data_direction);
4853                         BUG();
4854                         break;
4855                 }
4856         } else {
4857                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4858                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4859         }
4860
4861         /* Set encryption parameters, if necessary */
4862         set_encrypt_ioaccel2(h, c, cp);
4863
4864         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4865         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4866         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4867
4868         cp->data_len = cpu_to_le32(total_len);
4869         cp->err_ptr = cpu_to_le64(c->busaddr +
4870                         offsetof(struct io_accel2_cmd, error_data));
4871         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4872
4873         /* fill in sg elements */
4874         if (use_sg > h->ioaccel_maxsg) {
4875                 cp->sg_count = 1;
4876                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4877                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4878                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4879                         scsi_dma_unmap(cmd);
4880                         return -1;
4881                 }
4882         } else
4883                 cp->sg_count = (u8) use_sg;
4884
4885         enqueue_cmd_and_start_io(h, c);
4886         return 0;
4887 }
4888
4889 /*
4890  * Queue a command to the correct I/O accelerator path.
4891  */
4892 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4893         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4894         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4895 {
4896         if (!c->scsi_cmd->device)
4897                 return -1;
4898
4899         if (!c->scsi_cmd->device->hostdata)
4900                 return -1;
4901
4902         /* Try to honor the device's queue depth */
4903         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4904                                         phys_disk->queue_depth) {
4905                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4906                 return IO_ACCEL_INELIGIBLE;
4907         }
4908         if (h->transMethod & CFGTBL_Trans_io_accel1)
4909                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4910                                                 cdb, cdb_len, scsi3addr,
4911                                                 phys_disk);
4912         else
4913                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4914                                                 cdb, cdb_len, scsi3addr,
4915                                                 phys_disk);
4916 }
4917
4918 static void raid_map_helper(struct raid_map_data *map,
4919                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4920 {
4921         if (offload_to_mirror == 0)  {
4922                 /* use physical disk in the first mirrored group. */
4923                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4924                 return;
4925         }
4926         do {
4927                 /* determine mirror group that *map_index indicates */
4928                 *current_group = *map_index /
4929                         le16_to_cpu(map->data_disks_per_row);
4930                 if (offload_to_mirror == *current_group)
4931                         continue;
4932                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4933                         /* select map index from next group */
4934                         *map_index += le16_to_cpu(map->data_disks_per_row);
4935                         (*current_group)++;
4936                 } else {
4937                         /* select map index from first group */
4938                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4939                         *current_group = 0;
4940                 }
4941         } while (offload_to_mirror != *current_group);
4942 }
4943
4944 /*
4945  * Attempt to perform offload RAID mapping for a logical volume I/O.
4946  */
4947 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4948         struct CommandList *c)
4949 {
4950         struct scsi_cmnd *cmd = c->scsi_cmd;
4951         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4952         struct raid_map_data *map = &dev->raid_map;
4953         struct raid_map_disk_data *dd = &map->data[0];
4954         int is_write = 0;
4955         u32 map_index;
4956         u64 first_block, last_block;
4957         u32 block_cnt;
4958         u32 blocks_per_row;
4959         u64 first_row, last_row;
4960         u32 first_row_offset, last_row_offset;
4961         u32 first_column, last_column;
4962         u64 r0_first_row, r0_last_row;
4963         u32 r5or6_blocks_per_row;
4964         u64 r5or6_first_row, r5or6_last_row;
4965         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4966         u32 r5or6_first_column, r5or6_last_column;
4967         u32 total_disks_per_row;
4968         u32 stripesize;
4969         u32 first_group, last_group, current_group;
4970         u32 map_row;
4971         u32 disk_handle;
4972         u64 disk_block;
4973         u32 disk_block_cnt;
4974         u8 cdb[16];
4975         u8 cdb_len;
4976         u16 strip_size;
4977 #if BITS_PER_LONG == 32
4978         u64 tmpdiv;
4979 #endif
4980         int offload_to_mirror;
4981
4982         if (!dev)
4983                 return -1;
4984
4985         /* check for valid opcode, get LBA and block count */
4986         switch (cmd->cmnd[0]) {
4987         case WRITE_6:
4988                 is_write = 1;
4989         case READ_6:
4990                 first_block = (((cmd->cmnd[1] & 0x1F) << 16) |
4991                                 (cmd->cmnd[2] << 8) |
4992                                 cmd->cmnd[3]);
4993                 block_cnt = cmd->cmnd[4];
4994                 if (block_cnt == 0)
4995                         block_cnt = 256;
4996                 break;
4997         case WRITE_10:
4998                 is_write = 1;
4999         case READ_10:
5000                 first_block =
5001                         (((u64) cmd->cmnd[2]) << 24) |
5002                         (((u64) cmd->cmnd[3]) << 16) |
5003                         (((u64) cmd->cmnd[4]) << 8) |
5004                         cmd->cmnd[5];
5005                 block_cnt =
5006                         (((u32) cmd->cmnd[7]) << 8) |
5007                         cmd->cmnd[8];
5008                 break;
5009         case WRITE_12:
5010                 is_write = 1;
5011         case READ_12:
5012                 first_block =
5013                         (((u64) cmd->cmnd[2]) << 24) |
5014                         (((u64) cmd->cmnd[3]) << 16) |
5015                         (((u64) cmd->cmnd[4]) << 8) |
5016                         cmd->cmnd[5];
5017                 block_cnt =
5018                         (((u32) cmd->cmnd[6]) << 24) |
5019                         (((u32) cmd->cmnd[7]) << 16) |
5020                         (((u32) cmd->cmnd[8]) << 8) |
5021                 cmd->cmnd[9];
5022                 break;
5023         case WRITE_16:
5024                 is_write = 1;
5025         case READ_16:
5026                 first_block =
5027                         (((u64) cmd->cmnd[2]) << 56) |
5028                         (((u64) cmd->cmnd[3]) << 48) |
5029                         (((u64) cmd->cmnd[4]) << 40) |
5030                         (((u64) cmd->cmnd[5]) << 32) |
5031                         (((u64) cmd->cmnd[6]) << 24) |
5032                         (((u64) cmd->cmnd[7]) << 16) |
5033                         (((u64) cmd->cmnd[8]) << 8) |
5034                         cmd->cmnd[9];
5035                 block_cnt =
5036                         (((u32) cmd->cmnd[10]) << 24) |
5037                         (((u32) cmd->cmnd[11]) << 16) |
5038                         (((u32) cmd->cmnd[12]) << 8) |
5039                         cmd->cmnd[13];
5040                 break;
5041         default:
5042                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
5043         }
5044         last_block = first_block + block_cnt - 1;
5045
5046         /* check for write to non-RAID-0 */
5047         if (is_write && dev->raid_level != 0)
5048                 return IO_ACCEL_INELIGIBLE;
5049
5050         /* check for invalid block or wraparound */
5051         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
5052                 last_block < first_block)
5053                 return IO_ACCEL_INELIGIBLE;
5054
5055         /* calculate stripe information for the request */
5056         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
5057                                 le16_to_cpu(map->strip_size);
5058         strip_size = le16_to_cpu(map->strip_size);
5059 #if BITS_PER_LONG == 32
5060         tmpdiv = first_block;
5061         (void) do_div(tmpdiv, blocks_per_row);
5062         first_row = tmpdiv;
5063         tmpdiv = last_block;
5064         (void) do_div(tmpdiv, blocks_per_row);
5065         last_row = tmpdiv;
5066         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5067         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5068         tmpdiv = first_row_offset;
5069         (void) do_div(tmpdiv, strip_size);
5070         first_column = tmpdiv;
5071         tmpdiv = last_row_offset;
5072         (void) do_div(tmpdiv, strip_size);
5073         last_column = tmpdiv;
5074 #else
5075         first_row = first_block / blocks_per_row;
5076         last_row = last_block / blocks_per_row;
5077         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
5078         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
5079         first_column = first_row_offset / strip_size;
5080         last_column = last_row_offset / strip_size;
5081 #endif
5082
5083         /* if this isn't a single row/column then give to the controller */
5084         if ((first_row != last_row) || (first_column != last_column))
5085                 return IO_ACCEL_INELIGIBLE;
5086
5087         /* proceeding with driver mapping */
5088         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
5089                                 le16_to_cpu(map->metadata_disks_per_row);
5090         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5091                                 le16_to_cpu(map->row_cnt);
5092         map_index = (map_row * total_disks_per_row) + first_column;
5093
5094         switch (dev->raid_level) {
5095         case HPSA_RAID_0:
5096                 break; /* nothing special to do */
5097         case HPSA_RAID_1:
5098                 /* Handles load balance across RAID 1 members.
5099                  * (2-drive R1 and R10 with even # of drives.)
5100                  * Appropriate for SSDs, not optimal for HDDs
5101                  */
5102                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
5103                 if (dev->offload_to_mirror)
5104                         map_index += le16_to_cpu(map->data_disks_per_row);
5105                 dev->offload_to_mirror = !dev->offload_to_mirror;
5106                 break;
5107         case HPSA_RAID_ADM:
5108                 /* Handles N-way mirrors  (R1-ADM)
5109                  * and R10 with # of drives divisible by 3.)
5110                  */
5111                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
5112
5113                 offload_to_mirror = dev->offload_to_mirror;
5114                 raid_map_helper(map, offload_to_mirror,
5115                                 &map_index, &current_group);
5116                 /* set mirror group to use next time */
5117                 offload_to_mirror =
5118                         (offload_to_mirror >=
5119                         le16_to_cpu(map->layout_map_count) - 1)
5120                         ? 0 : offload_to_mirror + 1;
5121                 dev->offload_to_mirror = offload_to_mirror;
5122                 /* Avoid direct use of dev->offload_to_mirror within this
5123                  * function since multiple threads might simultaneously
5124                  * increment it beyond the range of dev->layout_map_count -1.
5125                  */
5126                 break;
5127         case HPSA_RAID_5:
5128         case HPSA_RAID_6:
5129                 if (le16_to_cpu(map->layout_map_count) <= 1)
5130                         break;
5131
5132                 /* Verify first and last block are in same RAID group */
5133                 r5or6_blocks_per_row =
5134                         le16_to_cpu(map->strip_size) *
5135                         le16_to_cpu(map->data_disks_per_row);
5136                 BUG_ON(r5or6_blocks_per_row == 0);
5137                 stripesize = r5or6_blocks_per_row *
5138                         le16_to_cpu(map->layout_map_count);
5139 #if BITS_PER_LONG == 32
5140                 tmpdiv = first_block;
5141                 first_group = do_div(tmpdiv, stripesize);
5142                 tmpdiv = first_group;
5143                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5144                 first_group = tmpdiv;
5145                 tmpdiv = last_block;
5146                 last_group = do_div(tmpdiv, stripesize);
5147                 tmpdiv = last_group;
5148                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
5149                 last_group = tmpdiv;
5150 #else
5151                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
5152                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
5153 #endif
5154                 if (first_group != last_group)
5155                         return IO_ACCEL_INELIGIBLE;
5156
5157                 /* Verify request is in a single row of RAID 5/6 */
5158 #if BITS_PER_LONG == 32
5159                 tmpdiv = first_block;
5160                 (void) do_div(tmpdiv, stripesize);
5161                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
5162                 tmpdiv = last_block;
5163                 (void) do_div(tmpdiv, stripesize);
5164                 r5or6_last_row = r0_last_row = tmpdiv;
5165 #else
5166                 first_row = r5or6_first_row = r0_first_row =
5167                                                 first_block / stripesize;
5168                 r5or6_last_row = r0_last_row = last_block / stripesize;
5169 #endif
5170                 if (r5or6_first_row != r5or6_last_row)
5171                         return IO_ACCEL_INELIGIBLE;
5172
5173
5174                 /* Verify request is in a single column */
5175 #if BITS_PER_LONG == 32
5176                 tmpdiv = first_block;
5177                 first_row_offset = do_div(tmpdiv, stripesize);
5178                 tmpdiv = first_row_offset;
5179                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
5180                 r5or6_first_row_offset = first_row_offset;
5181                 tmpdiv = last_block;
5182                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
5183                 tmpdiv = r5or6_last_row_offset;
5184                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
5185                 tmpdiv = r5or6_first_row_offset;
5186                 (void) do_div(tmpdiv, map->strip_size);
5187                 first_column = r5or6_first_column = tmpdiv;
5188                 tmpdiv = r5or6_last_row_offset;
5189                 (void) do_div(tmpdiv, map->strip_size);
5190                 r5or6_last_column = tmpdiv;
5191 #else
5192                 first_row_offset = r5or6_first_row_offset =
5193                         (u32)((first_block % stripesize) %
5194                                                 r5or6_blocks_per_row);
5195
5196                 r5or6_last_row_offset =
5197                         (u32)((last_block % stripesize) %
5198                                                 r5or6_blocks_per_row);
5199
5200                 first_column = r5or6_first_column =
5201                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
5202                 r5or6_last_column =
5203                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
5204 #endif
5205                 if (r5or6_first_column != r5or6_last_column)
5206                         return IO_ACCEL_INELIGIBLE;
5207
5208                 /* Request is eligible */
5209                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
5210                         le16_to_cpu(map->row_cnt);
5211
5212                 map_index = (first_group *
5213                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
5214                         (map_row * total_disks_per_row) + first_column;
5215                 break;
5216         default:
5217                 return IO_ACCEL_INELIGIBLE;
5218         }
5219
5220         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
5221                 return IO_ACCEL_INELIGIBLE;
5222
5223         c->phys_disk = dev->phys_disk[map_index];
5224         if (!c->phys_disk)
5225                 return IO_ACCEL_INELIGIBLE;
5226
5227         disk_handle = dd[map_index].ioaccel_handle;
5228         disk_block = le64_to_cpu(map->disk_starting_blk) +
5229                         first_row * le16_to_cpu(map->strip_size) +
5230                         (first_row_offset - first_column *
5231                         le16_to_cpu(map->strip_size));
5232         disk_block_cnt = block_cnt;
5233
5234         /* handle differing logical/physical block sizes */
5235         if (map->phys_blk_shift) {
5236                 disk_block <<= map->phys_blk_shift;
5237                 disk_block_cnt <<= map->phys_blk_shift;
5238         }
5239         BUG_ON(disk_block_cnt > 0xffff);
5240
5241         /* build the new CDB for the physical disk I/O */
5242         if (disk_block > 0xffffffff) {
5243                 cdb[0] = is_write ? WRITE_16 : READ_16;
5244                 cdb[1] = 0;
5245                 cdb[2] = (u8) (disk_block >> 56);
5246                 cdb[3] = (u8) (disk_block >> 48);
5247                 cdb[4] = (u8) (disk_block >> 40);
5248                 cdb[5] = (u8) (disk_block >> 32);
5249                 cdb[6] = (u8) (disk_block >> 24);
5250                 cdb[7] = (u8) (disk_block >> 16);
5251                 cdb[8] = (u8) (disk_block >> 8);
5252                 cdb[9] = (u8) (disk_block);
5253                 cdb[10] = (u8) (disk_block_cnt >> 24);
5254                 cdb[11] = (u8) (disk_block_cnt >> 16);
5255                 cdb[12] = (u8) (disk_block_cnt >> 8);
5256                 cdb[13] = (u8) (disk_block_cnt);
5257                 cdb[14] = 0;
5258                 cdb[15] = 0;
5259                 cdb_len = 16;
5260         } else {
5261                 cdb[0] = is_write ? WRITE_10 : READ_10;
5262                 cdb[1] = 0;
5263                 cdb[2] = (u8) (disk_block >> 24);
5264                 cdb[3] = (u8) (disk_block >> 16);
5265                 cdb[4] = (u8) (disk_block >> 8);
5266                 cdb[5] = (u8) (disk_block);
5267                 cdb[6] = 0;
5268                 cdb[7] = (u8) (disk_block_cnt >> 8);
5269                 cdb[8] = (u8) (disk_block_cnt);
5270                 cdb[9] = 0;
5271                 cdb_len = 10;
5272         }
5273         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5274                                                 dev->scsi3addr,
5275                                                 dev->phys_disk[map_index]);
5276 }
5277
5278 /*
5279  * Submit commands down the "normal" RAID stack path
5280  * All callers to hpsa_ciss_submit must check lockup_detected
5281  * beforehand, before (opt.) and after calling cmd_alloc
5282  */
5283 static int hpsa_ciss_submit(struct ctlr_info *h,
5284         struct CommandList *c, struct scsi_cmnd *cmd,
5285         unsigned char scsi3addr[])
5286 {
5287         cmd->host_scribble = (unsigned char *) c;
5288         c->cmd_type = CMD_SCSI;
5289         c->scsi_cmd = cmd;
5290         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5291         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5292         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5293
5294         /* Fill in the request block... */
5295
5296         c->Request.Timeout = 0;
5297         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5298         c->Request.CDBLen = cmd->cmd_len;
5299         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5300         switch (cmd->sc_data_direction) {
5301         case DMA_TO_DEVICE:
5302                 c->Request.type_attr_dir =
5303                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5304                 break;
5305         case DMA_FROM_DEVICE:
5306                 c->Request.type_attr_dir =
5307                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5308                 break;
5309         case DMA_NONE:
5310                 c->Request.type_attr_dir =
5311                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5312                 break;
5313         case DMA_BIDIRECTIONAL:
5314                 /* This can happen if a buggy application does a scsi passthru
5315                  * and sets both inlen and outlen to non-zero. ( see
5316                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5317                  */
5318
5319                 c->Request.type_attr_dir =
5320                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5321                 /* This is technically wrong, and hpsa controllers should
5322                  * reject it with CMD_INVALID, which is the most correct
5323                  * response, but non-fibre backends appear to let it
5324                  * slide by, and give the same results as if this field
5325                  * were set correctly.  Either way is acceptable for
5326                  * our purposes here.
5327                  */
5328
5329                 break;
5330
5331         default:
5332                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5333                         cmd->sc_data_direction);
5334                 BUG();
5335                 break;
5336         }
5337
5338         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5339                 hpsa_cmd_resolve_and_free(h, c);
5340                 return SCSI_MLQUEUE_HOST_BUSY;
5341         }
5342         enqueue_cmd_and_start_io(h, c);
5343         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5344         return 0;
5345 }
5346
5347 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5348                                 struct CommandList *c)
5349 {
5350         dma_addr_t cmd_dma_handle, err_dma_handle;
5351
5352         /* Zero out all of commandlist except the last field, refcount */
5353         memset(c, 0, offsetof(struct CommandList, refcount));
5354         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5355         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5356         c->err_info = h->errinfo_pool + index;
5357         memset(c->err_info, 0, sizeof(*c->err_info));
5358         err_dma_handle = h->errinfo_pool_dhandle
5359             + index * sizeof(*c->err_info);
5360         c->cmdindex = index;
5361         c->busaddr = (u32) cmd_dma_handle;
5362         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5363         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5364         c->h = h;
5365         c->scsi_cmd = SCSI_CMD_IDLE;
5366 }
5367
5368 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5369 {
5370         int i;
5371
5372         for (i = 0; i < h->nr_cmds; i++) {
5373                 struct CommandList *c = h->cmd_pool + i;
5374
5375                 hpsa_cmd_init(h, i, c);
5376                 atomic_set(&c->refcount, 0);
5377         }
5378 }
5379
5380 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5381                                 struct CommandList *c)
5382 {
5383         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5384
5385         BUG_ON(c->cmdindex != index);
5386
5387         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5388         memset(c->err_info, 0, sizeof(*c->err_info));
5389         c->busaddr = (u32) cmd_dma_handle;
5390 }
5391
5392 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5393                 struct CommandList *c, struct scsi_cmnd *cmd,
5394                 unsigned char *scsi3addr)
5395 {
5396         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5397         int rc = IO_ACCEL_INELIGIBLE;
5398
5399         if (!dev)
5400                 return SCSI_MLQUEUE_HOST_BUSY;
5401
5402         cmd->host_scribble = (unsigned char *) c;
5403
5404         if (dev->offload_enabled) {
5405                 hpsa_cmd_init(h, c->cmdindex, c);
5406                 c->cmd_type = CMD_SCSI;
5407                 c->scsi_cmd = cmd;
5408                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5409                 if (rc < 0)     /* scsi_dma_map failed. */
5410                         rc = SCSI_MLQUEUE_HOST_BUSY;
5411         } else if (dev->hba_ioaccel_enabled) {
5412                 hpsa_cmd_init(h, c->cmdindex, c);
5413                 c->cmd_type = CMD_SCSI;
5414                 c->scsi_cmd = cmd;
5415                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5416                 if (rc < 0)     /* scsi_dma_map failed. */
5417                         rc = SCSI_MLQUEUE_HOST_BUSY;
5418         }
5419         return rc;
5420 }
5421
5422 static void hpsa_command_resubmit_worker(struct work_struct *work)
5423 {
5424         struct scsi_cmnd *cmd;
5425         struct hpsa_scsi_dev_t *dev;
5426         struct CommandList *c = container_of(work, struct CommandList, work);
5427
5428         cmd = c->scsi_cmd;
5429         dev = cmd->device->hostdata;
5430         if (!dev) {
5431                 cmd->result = DID_NO_CONNECT << 16;
5432                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5433         }
5434         if (c->reset_pending)
5435                 return hpsa_cmd_resolve_and_free(c->h, c);
5436         if (c->abort_pending)
5437                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5438         if (c->cmd_type == CMD_IOACCEL2) {
5439                 struct ctlr_info *h = c->h;
5440                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5441                 int rc;
5442
5443                 if (c2->error_data.serv_response ==
5444                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5445                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5446                         if (rc == 0)
5447                                 return;
5448                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5449                                 /*
5450                                  * If we get here, it means dma mapping failed.
5451                                  * Try again via scsi mid layer, which will
5452                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5453                                  */
5454                                 cmd->result = DID_IMM_RETRY << 16;
5455                                 return hpsa_cmd_free_and_done(h, c, cmd);
5456                         }
5457                         /* else, fall thru and resubmit down CISS path */
5458                 }
5459         }
5460         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5461         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5462                 /*
5463                  * If we get here, it means dma mapping failed. Try
5464                  * again via scsi mid layer, which will then get
5465                  * SCSI_MLQUEUE_HOST_BUSY.
5466                  *
5467                  * hpsa_ciss_submit will have already freed c
5468                  * if it encountered a dma mapping failure.
5469                  */
5470                 cmd->result = DID_IMM_RETRY << 16;
5471                 cmd->scsi_done(cmd);
5472         }
5473 }
5474
5475 /* Running in struct Scsi_Host->host_lock less mode */
5476 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5477 {
5478         struct ctlr_info *h;
5479         struct hpsa_scsi_dev_t *dev;
5480         unsigned char scsi3addr[8];
5481         struct CommandList *c;
5482         int rc = 0;
5483
5484         /* Get the ptr to our adapter structure out of cmd->host. */
5485         h = sdev_to_hba(cmd->device);
5486
5487         BUG_ON(cmd->request->tag < 0);
5488
5489         dev = cmd->device->hostdata;
5490         if (!dev) {
5491                 cmd->result = NOT_READY << 16; /* host byte */
5492                 cmd->scsi_done(cmd);
5493                 return 0;
5494         }
5495
5496         if (dev->removed) {
5497                 cmd->result = DID_NO_CONNECT << 16;
5498                 cmd->scsi_done(cmd);
5499                 return 0;
5500         }
5501
5502         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5503
5504         if (unlikely(lockup_detected(h))) {
5505                 cmd->result = DID_NO_CONNECT << 16;
5506                 cmd->scsi_done(cmd);
5507                 return 0;
5508         }
5509         c = cmd_tagged_alloc(h, cmd);
5510
5511         /*
5512          * Call alternate submit routine for I/O accelerated commands.
5513          * Retries always go down the normal I/O path.
5514          */
5515         if (likely(cmd->retries == 0 &&
5516                 cmd->request->cmd_type == REQ_TYPE_FS &&
5517                 h->acciopath_status)) {
5518                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5519                 if (rc == 0)
5520                         return 0;
5521                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5522                         hpsa_cmd_resolve_and_free(h, c);
5523                         return SCSI_MLQUEUE_HOST_BUSY;
5524                 }
5525         }
5526         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5527 }
5528
5529 static void hpsa_scan_complete(struct ctlr_info *h)
5530 {
5531         unsigned long flags;
5532
5533         spin_lock_irqsave(&h->scan_lock, flags);
5534         h->scan_finished = 1;
5535         wake_up_all(&h->scan_wait_queue);
5536         spin_unlock_irqrestore(&h->scan_lock, flags);
5537 }
5538
5539 static void hpsa_scan_start(struct Scsi_Host *sh)
5540 {
5541         struct ctlr_info *h = shost_to_hba(sh);
5542         unsigned long flags;
5543
5544         /*
5545          * Don't let rescans be initiated on a controller known to be locked
5546          * up.  If the controller locks up *during* a rescan, that thread is
5547          * probably hosed, but at least we can prevent new rescan threads from
5548          * piling up on a locked up controller.
5549          */
5550         if (unlikely(lockup_detected(h)))
5551                 return hpsa_scan_complete(h);
5552
5553         /* wait until any scan already in progress is finished. */
5554         while (1) {
5555                 spin_lock_irqsave(&h->scan_lock, flags);
5556                 if (h->scan_finished)
5557                         break;
5558                 spin_unlock_irqrestore(&h->scan_lock, flags);
5559                 wait_event(h->scan_wait_queue, h->scan_finished);
5560                 /* Note: We don't need to worry about a race between this
5561                  * thread and driver unload because the midlayer will
5562                  * have incremented the reference count, so unload won't
5563                  * happen if we're in here.
5564                  */
5565         }
5566         h->scan_finished = 0; /* mark scan as in progress */
5567         spin_unlock_irqrestore(&h->scan_lock, flags);
5568
5569         if (unlikely(lockup_detected(h)))
5570                 return hpsa_scan_complete(h);
5571
5572         hpsa_update_scsi_devices(h);
5573
5574         hpsa_scan_complete(h);
5575 }
5576
5577 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5578 {
5579         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5580
5581         if (!logical_drive)
5582                 return -ENODEV;
5583
5584         if (qdepth < 1)
5585                 qdepth = 1;
5586         else if (qdepth > logical_drive->queue_depth)
5587                 qdepth = logical_drive->queue_depth;
5588
5589         return scsi_change_queue_depth(sdev, qdepth);
5590 }
5591
5592 static int hpsa_scan_finished(struct Scsi_Host *sh,
5593         unsigned long elapsed_time)
5594 {
5595         struct ctlr_info *h = shost_to_hba(sh);
5596         unsigned long flags;
5597         int finished;
5598
5599         spin_lock_irqsave(&h->scan_lock, flags);
5600         finished = h->scan_finished;
5601         spin_unlock_irqrestore(&h->scan_lock, flags);
5602         return finished;
5603 }
5604
5605 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5606 {
5607         struct Scsi_Host *sh;
5608
5609         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5610         if (sh == NULL) {
5611                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5612                 return -ENOMEM;
5613         }
5614
5615         sh->io_port = 0;
5616         sh->n_io_port = 0;
5617         sh->this_id = -1;
5618         sh->max_channel = 3;
5619         sh->max_cmd_len = MAX_COMMAND_SIZE;
5620         sh->max_lun = HPSA_MAX_LUN;
5621         sh->max_id = HPSA_MAX_LUN;
5622         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5623         sh->cmd_per_lun = sh->can_queue;
5624         sh->sg_tablesize = h->maxsgentries;
5625         sh->transportt = hpsa_sas_transport_template;
5626         sh->hostdata[0] = (unsigned long) h;
5627         sh->irq = h->intr[h->intr_mode];
5628         sh->unique_id = sh->irq;
5629
5630         h->scsi_host = sh;
5631         return 0;
5632 }
5633
5634 static int hpsa_scsi_add_host(struct ctlr_info *h)
5635 {
5636         int rv;
5637
5638         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5639         if (rv) {
5640                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5641                 return rv;
5642         }
5643         scsi_scan_host(h->scsi_host);
5644         return 0;
5645 }
5646
5647 /*
5648  * The block layer has already gone to the trouble of picking out a unique,
5649  * small-integer tag for this request.  We use an offset from that value as
5650  * an index to select our command block.  (The offset allows us to reserve the
5651  * low-numbered entries for our own uses.)
5652  */
5653 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5654 {
5655         int idx = scmd->request->tag;
5656
5657         if (idx < 0)
5658                 return idx;
5659
5660         /* Offset to leave space for internal cmds. */
5661         return idx += HPSA_NRESERVED_CMDS;
5662 }
5663
5664 /*
5665  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5666  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5667  */
5668 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5669                                 struct CommandList *c, unsigned char lunaddr[],
5670                                 int reply_queue)
5671 {
5672         int rc;
5673
5674         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5675         (void) fill_cmd(c, TEST_UNIT_READY, h,
5676                         NULL, 0, 0, lunaddr, TYPE_CMD);
5677         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5678         if (rc)
5679                 return rc;
5680         /* no unmap needed here because no data xfer. */
5681
5682         /* Check if the unit is already ready. */
5683         if (c->err_info->CommandStatus == CMD_SUCCESS)
5684                 return 0;
5685
5686         /*
5687          * The first command sent after reset will receive "unit attention" to
5688          * indicate that the LUN has been reset...this is actually what we're
5689          * looking for (but, success is good too).
5690          */
5691         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5692                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5693                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5694                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5695                 return 0;
5696
5697         return 1;
5698 }
5699
5700 /*
5701  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5702  * returns zero when the unit is ready, and non-zero when giving up.
5703  */
5704 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5705                                 struct CommandList *c,
5706                                 unsigned char lunaddr[], int reply_queue)
5707 {
5708         int rc;
5709         int count = 0;
5710         int waittime = 1; /* seconds */
5711
5712         /* Send test unit ready until device ready, or give up. */
5713         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5714
5715                 /*
5716                  * Wait for a bit.  do this first, because if we send
5717                  * the TUR right away, the reset will just abort it.
5718                  */
5719                 msleep(1000 * waittime);
5720
5721                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5722                 if (!rc)
5723                         break;
5724
5725                 /* Increase wait time with each try, up to a point. */
5726                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5727                         waittime *= 2;
5728
5729                 dev_warn(&h->pdev->dev,
5730                          "waiting %d secs for device to become ready.\n",
5731                          waittime);
5732         }
5733
5734         return rc;
5735 }
5736
5737 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5738                                            unsigned char lunaddr[],
5739                                            int reply_queue)
5740 {
5741         int first_queue;
5742         int last_queue;
5743         int rq;
5744         int rc = 0;
5745         struct CommandList *c;
5746
5747         c = cmd_alloc(h);
5748
5749         /*
5750          * If no specific reply queue was requested, then send the TUR
5751          * repeatedly, requesting a reply on each reply queue; otherwise execute
5752          * the loop exactly once using only the specified queue.
5753          */
5754         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5755                 first_queue = 0;
5756                 last_queue = h->nreply_queues - 1;
5757         } else {
5758                 first_queue = reply_queue;
5759                 last_queue = reply_queue;
5760         }
5761
5762         for (rq = first_queue; rq <= last_queue; rq++) {
5763                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5764                 if (rc)
5765                         break;
5766         }
5767
5768         if (rc)
5769                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5770         else
5771                 dev_warn(&h->pdev->dev, "device is ready.\n");
5772
5773         cmd_free(h, c);
5774         return rc;
5775 }
5776
5777 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5778  * complaining.  Doing a host- or bus-reset can't do anything good here.
5779  */
5780 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5781 {
5782         int rc;
5783         struct ctlr_info *h;
5784         struct hpsa_scsi_dev_t *dev;
5785         u8 reset_type;
5786         char msg[48];
5787
5788         /* find the controller to which the command to be aborted was sent */
5789         h = sdev_to_hba(scsicmd->device);
5790         if (h == NULL) /* paranoia */
5791                 return FAILED;
5792
5793         if (lockup_detected(h))
5794                 return FAILED;
5795
5796         dev = scsicmd->device->hostdata;
5797         if (!dev) {
5798                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5799                 return FAILED;
5800         }
5801
5802         /* if controller locked up, we can guarantee command won't complete */
5803         if (lockup_detected(h)) {
5804                 snprintf(msg, sizeof(msg),
5805                          "cmd %d RESET FAILED, lockup detected",
5806                          hpsa_get_cmd_index(scsicmd));
5807                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5808                 return FAILED;
5809         }
5810
5811         /* this reset request might be the result of a lockup; check */
5812         if (detect_controller_lockup(h)) {
5813                 snprintf(msg, sizeof(msg),
5814                          "cmd %d RESET FAILED, new lockup detected",
5815                          hpsa_get_cmd_index(scsicmd));
5816                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5817                 return FAILED;
5818         }
5819
5820         /* Do not attempt on controller */
5821         if (is_hba_lunid(dev->scsi3addr))
5822                 return SUCCESS;
5823
5824         if (is_logical_dev_addr_mode(dev->scsi3addr))
5825                 reset_type = HPSA_DEVICE_RESET_MSG;
5826         else
5827                 reset_type = HPSA_PHYS_TARGET_RESET;
5828
5829         sprintf(msg, "resetting %s",
5830                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5831         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5832
5833         h->reset_in_progress = 1;
5834
5835         /* send a reset to the SCSI LUN which the command was sent to */
5836         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5837                            DEFAULT_REPLY_QUEUE);
5838         sprintf(msg, "reset %s %s",
5839                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5840                 rc == 0 ? "completed successfully" : "failed");
5841         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5842         h->reset_in_progress = 0;
5843         return rc == 0 ? SUCCESS : FAILED;
5844 }
5845
5846 static void swizzle_abort_tag(u8 *tag)
5847 {
5848         u8 original_tag[8];
5849
5850         memcpy(original_tag, tag, 8);
5851         tag[0] = original_tag[3];
5852         tag[1] = original_tag[2];
5853         tag[2] = original_tag[1];
5854         tag[3] = original_tag[0];
5855         tag[4] = original_tag[7];
5856         tag[5] = original_tag[6];
5857         tag[6] = original_tag[5];
5858         tag[7] = original_tag[4];
5859 }
5860
5861 static void hpsa_get_tag(struct ctlr_info *h,
5862         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5863 {
5864         u64 tag;
5865         if (c->cmd_type == CMD_IOACCEL1) {
5866                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5867                         &h->ioaccel_cmd_pool[c->cmdindex];
5868                 tag = le64_to_cpu(cm1->tag);
5869                 *tagupper = cpu_to_le32(tag >> 32);
5870                 *taglower = cpu_to_le32(tag);
5871                 return;
5872         }
5873         if (c->cmd_type == CMD_IOACCEL2) {
5874                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5875                         &h->ioaccel2_cmd_pool[c->cmdindex];
5876                 /* upper tag not used in ioaccel2 mode */
5877                 memset(tagupper, 0, sizeof(*tagupper));
5878                 *taglower = cm2->Tag;
5879                 return;
5880         }
5881         tag = le64_to_cpu(c->Header.tag);
5882         *tagupper = cpu_to_le32(tag >> 32);
5883         *taglower = cpu_to_le32(tag);
5884 }
5885
5886 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5887         struct CommandList *abort, int reply_queue)
5888 {
5889         int rc = IO_OK;
5890         struct CommandList *c;
5891         struct ErrorInfo *ei;
5892         __le32 tagupper, taglower;
5893
5894         c = cmd_alloc(h);
5895
5896         /* fill_cmd can't fail here, no buffer to map */
5897         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5898                 0, 0, scsi3addr, TYPE_MSG);
5899         if (h->needs_abort_tags_swizzled)
5900                 swizzle_abort_tag(&c->Request.CDB[4]);
5901         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
5902         hpsa_get_tag(h, abort, &taglower, &tagupper);
5903         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5904                 __func__, tagupper, taglower);
5905         /* no unmap needed here because no data xfer. */
5906
5907         ei = c->err_info;
5908         switch (ei->CommandStatus) {
5909         case CMD_SUCCESS:
5910                 break;
5911         case CMD_TMF_STATUS:
5912                 rc = hpsa_evaluate_tmf_status(h, c);
5913                 break;
5914         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5915                 rc = -1;
5916                 break;
5917         default:
5918                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5919                         __func__, tagupper, taglower);
5920                 hpsa_scsi_interpret_error(h, c);
5921                 rc = -1;
5922                 break;
5923         }
5924         cmd_free(h, c);
5925         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5926                 __func__, tagupper, taglower);
5927         return rc;
5928 }
5929
5930 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5931         struct CommandList *command_to_abort, int reply_queue)
5932 {
5933         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5934         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5935         struct io_accel2_cmd *c2a =
5936                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5937         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5938         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5939
5940         if (!dev)
5941                 return;
5942
5943         /*
5944          * We're overlaying struct hpsa_tmf_struct on top of something which
5945          * was allocated as a struct io_accel2_cmd, so we better be sure it
5946          * actually fits, and doesn't overrun the error info space.
5947          */
5948         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5949                         sizeof(struct io_accel2_cmd));
5950         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5951                         offsetof(struct hpsa_tmf_struct, error_len) +
5952                                 sizeof(ac->error_len));
5953
5954         c->cmd_type = IOACCEL2_TMF;
5955         c->scsi_cmd = SCSI_CMD_BUSY;
5956
5957         /* Adjust the DMA address to point to the accelerated command buffer */
5958         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5959                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5960         BUG_ON(c->busaddr & 0x0000007F);
5961
5962         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5963         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5964         ac->reply_queue = reply_queue;
5965         ac->tmf = IOACCEL2_TMF_ABORT;
5966         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5967         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5968         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5969         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5970         ac->error_ptr = cpu_to_le64(c->busaddr +
5971                         offsetof(struct io_accel2_cmd, error_data));
5972         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5973 }
5974
5975 /* ioaccel2 path firmware cannot handle abort task requests.
5976  * Change abort requests to physical target reset, and send to the
5977  * address of the physical disk used for the ioaccel 2 command.
5978  * Return 0 on success (IO_OK)
5979  *       -1 on failure
5980  */
5981
5982 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5983         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5984 {
5985         int rc = IO_OK;
5986         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5987         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5988         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5989         unsigned char *psa = &phys_scsi3addr[0];
5990
5991         /* Get a pointer to the hpsa logical device. */
5992         scmd = abort->scsi_cmd;
5993         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5994         if (dev == NULL) {
5995                 dev_warn(&h->pdev->dev,
5996                         "Cannot abort: no device pointer for command.\n");
5997                         return -1; /* not abortable */
5998         }
5999
6000         if (h->raid_offload_debug > 0)
6001                 dev_info(&h->pdev->dev,
6002                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6003                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
6004                         "Reset as abort",
6005                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
6006                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
6007
6008         if (!dev->offload_enabled) {
6009                 dev_warn(&h->pdev->dev,
6010                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
6011                 return -1; /* not abortable */
6012         }
6013
6014         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
6015         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
6016                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
6017                 return -1; /* not abortable */
6018         }
6019
6020         /* send the reset */
6021         if (h->raid_offload_debug > 0)
6022                 dev_info(&h->pdev->dev,
6023                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6024                         psa[0], psa[1], psa[2], psa[3],
6025                         psa[4], psa[5], psa[6], psa[7]);
6026         rc = hpsa_do_reset(h, dev, psa, HPSA_PHYS_TARGET_RESET, reply_queue);
6027         if (rc != 0) {
6028                 dev_warn(&h->pdev->dev,
6029                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6030                         psa[0], psa[1], psa[2], psa[3],
6031                         psa[4], psa[5], psa[6], psa[7]);
6032                 return rc; /* failed to reset */
6033         }
6034
6035         /* wait for device to recover */
6036         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
6037                 dev_warn(&h->pdev->dev,
6038                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6039                         psa[0], psa[1], psa[2], psa[3],
6040                         psa[4], psa[5], psa[6], psa[7]);
6041                 return -1;  /* failed to recover */
6042         }
6043
6044         /* device recovered */
6045         dev_info(&h->pdev->dev,
6046                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
6047                 psa[0], psa[1], psa[2], psa[3],
6048                 psa[4], psa[5], psa[6], psa[7]);
6049
6050         return rc; /* success */
6051 }
6052
6053 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
6054         struct CommandList *abort, int reply_queue)
6055 {
6056         int rc = IO_OK;
6057         struct CommandList *c;
6058         __le32 taglower, tagupper;
6059         struct hpsa_scsi_dev_t *dev;
6060         struct io_accel2_cmd *c2;
6061
6062         dev = abort->scsi_cmd->device->hostdata;
6063         if (!dev)
6064                 return -1;
6065
6066         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
6067                 return -1;
6068
6069         c = cmd_alloc(h);
6070         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
6071         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
6072         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, DEFAULT_TIMEOUT);
6073         hpsa_get_tag(h, abort, &taglower, &tagupper);
6074         dev_dbg(&h->pdev->dev,
6075                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
6076                 __func__, tagupper, taglower);
6077         /* no unmap needed here because no data xfer. */
6078
6079         dev_dbg(&h->pdev->dev,
6080                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
6081                 __func__, tagupper, taglower, c2->error_data.serv_response);
6082         switch (c2->error_data.serv_response) {
6083         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
6084         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
6085                 rc = 0;
6086                 break;
6087         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
6088         case IOACCEL2_SERV_RESPONSE_FAILURE:
6089         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
6090                 rc = -1;
6091                 break;
6092         default:
6093                 dev_warn(&h->pdev->dev,
6094                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
6095                         __func__, tagupper, taglower,
6096                         c2->error_data.serv_response);
6097                 rc = -1;
6098         }
6099         cmd_free(h, c);
6100         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
6101                 tagupper, taglower);
6102         return rc;
6103 }
6104
6105 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
6106         struct hpsa_scsi_dev_t *dev, struct CommandList *abort, int reply_queue)
6107 {
6108         /*
6109          * ioccelerator mode 2 commands should be aborted via the
6110          * accelerated path, since RAID path is unaware of these commands,
6111          * but not all underlying firmware can handle abort TMF.
6112          * Change abort to physical device reset when abort TMF is unsupported.
6113          */
6114         if (abort->cmd_type == CMD_IOACCEL2) {
6115                 if ((HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags) ||
6116                         dev->physical_device)
6117                         return hpsa_send_abort_ioaccel2(h, abort,
6118                                                 reply_queue);
6119                 else
6120                         return hpsa_send_reset_as_abort_ioaccel2(h,
6121                                                         dev->scsi3addr,
6122                                                         abort, reply_queue);
6123         }
6124         return hpsa_send_abort(h, dev->scsi3addr, abort, reply_queue);
6125 }
6126
6127 /* Find out which reply queue a command was meant to return on */
6128 static int hpsa_extract_reply_queue(struct ctlr_info *h,
6129                                         struct CommandList *c)
6130 {
6131         if (c->cmd_type == CMD_IOACCEL2)
6132                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
6133         return c->Header.ReplyQueue;
6134 }
6135
6136 /*
6137  * Limit concurrency of abort commands to prevent
6138  * over-subscription of commands
6139  */
6140 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
6141 {
6142 #define ABORT_CMD_WAIT_MSECS 5000
6143         return !wait_event_timeout(h->abort_cmd_wait_queue,
6144                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
6145                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
6146 }
6147
6148 /* Send an abort for the specified command.
6149  *      If the device and controller support it,
6150  *              send a task abort request.
6151  */
6152 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
6153 {
6154
6155         int rc;
6156         struct ctlr_info *h;
6157         struct hpsa_scsi_dev_t *dev;
6158         struct CommandList *abort; /* pointer to command to be aborted */
6159         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
6160         char msg[256];          /* For debug messaging. */
6161         int ml = 0;
6162         __le32 tagupper, taglower;
6163         int refcount, reply_queue;
6164
6165         if (sc == NULL)
6166                 return FAILED;
6167
6168         if (sc->device == NULL)
6169                 return FAILED;
6170
6171         /* Find the controller of the command to be aborted */
6172         h = sdev_to_hba(sc->device);
6173         if (h == NULL)
6174                 return FAILED;
6175
6176         /* Find the device of the command to be aborted */
6177         dev = sc->device->hostdata;
6178         if (!dev) {
6179                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
6180                                 msg);
6181                 return FAILED;
6182         }
6183
6184         /* If controller locked up, we can guarantee command won't complete */
6185         if (lockup_detected(h)) {
6186                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6187                                         "ABORT FAILED, lockup detected");
6188                 return FAILED;
6189         }
6190
6191         /* This is a good time to check if controller lockup has occurred */
6192         if (detect_controller_lockup(h)) {
6193                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6194                                         "ABORT FAILED, new lockup detected");
6195                 return FAILED;
6196         }
6197
6198         /* Check that controller supports some kind of task abort */
6199         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
6200                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
6201                 return FAILED;
6202
6203         memset(msg, 0, sizeof(msg));
6204         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
6205                 h->scsi_host->host_no, sc->device->channel,
6206                 sc->device->id, sc->device->lun,
6207                 "Aborting command", sc);
6208
6209         /* Get SCSI command to be aborted */
6210         abort = (struct CommandList *) sc->host_scribble;
6211         if (abort == NULL) {
6212                 /* This can happen if the command already completed. */
6213                 return SUCCESS;
6214         }
6215         refcount = atomic_inc_return(&abort->refcount);
6216         if (refcount == 1) { /* Command is done already. */
6217                 cmd_free(h, abort);
6218                 return SUCCESS;
6219         }
6220
6221         /* Don't bother trying the abort if we know it won't work. */
6222         if (abort->cmd_type != CMD_IOACCEL2 &&
6223                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
6224                 cmd_free(h, abort);
6225                 return FAILED;
6226         }
6227
6228         /*
6229          * Check that we're aborting the right command.
6230          * It's possible the CommandList already completed and got re-used.
6231          */
6232         if (abort->scsi_cmd != sc) {
6233                 cmd_free(h, abort);
6234                 return SUCCESS;
6235         }
6236
6237         abort->abort_pending = true;
6238         hpsa_get_tag(h, abort, &taglower, &tagupper);
6239         reply_queue = hpsa_extract_reply_queue(h, abort);
6240         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
6241         as  = abort->scsi_cmd;
6242         if (as != NULL)
6243                 ml += sprintf(msg+ml,
6244                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
6245                         as->cmd_len, as->cmnd[0], as->cmnd[1],
6246                         as->serial_number);
6247         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
6248         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
6249
6250         /*
6251          * Command is in flight, or possibly already completed
6252          * by the firmware (but not to the scsi mid layer) but we can't
6253          * distinguish which.  Send the abort down.
6254          */
6255         if (wait_for_available_abort_cmd(h)) {
6256                 dev_warn(&h->pdev->dev,
6257                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6258                         msg);
6259                 cmd_free(h, abort);
6260                 return FAILED;
6261         }
6262         rc = hpsa_send_abort_both_ways(h, dev, abort, reply_queue);
6263         atomic_inc(&h->abort_cmds_available);
6264         wake_up_all(&h->abort_cmd_wait_queue);
6265         if (rc != 0) {
6266                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6267                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6268                                 "FAILED to abort command");
6269                 cmd_free(h, abort);
6270                 return FAILED;
6271         }
6272         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6273         wait_event(h->event_sync_wait_queue,
6274                    abort->scsi_cmd != sc || lockup_detected(h));
6275         cmd_free(h, abort);
6276         return !lockup_detected(h) ? SUCCESS : FAILED;
6277 }
6278
6279 /*
6280  * For operations with an associated SCSI command, a command block is allocated
6281  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6282  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6283  * the complement, although cmd_free() may be called instead.
6284  */
6285 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6286                                             struct scsi_cmnd *scmd)
6287 {
6288         int idx = hpsa_get_cmd_index(scmd);
6289         struct CommandList *c = h->cmd_pool + idx;
6290
6291         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6292                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6293                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6294                 /* The index value comes from the block layer, so if it's out of
6295                  * bounds, it's probably not our bug.
6296                  */
6297                 BUG();
6298         }
6299
6300         atomic_inc(&c->refcount);
6301         if (unlikely(!hpsa_is_cmd_idle(c))) {
6302                 /*
6303                  * We expect that the SCSI layer will hand us a unique tag
6304                  * value.  Thus, there should never be a collision here between
6305                  * two requests...because if the selected command isn't idle
6306                  * then someone is going to be very disappointed.
6307                  */
6308                 dev_err(&h->pdev->dev,
6309                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6310                         idx);
6311                 if (c->scsi_cmd != NULL)
6312                         scsi_print_command(c->scsi_cmd);
6313                 scsi_print_command(scmd);
6314         }
6315
6316         hpsa_cmd_partial_init(h, idx, c);
6317         return c;
6318 }
6319
6320 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6321 {
6322         /*
6323          * Release our reference to the block.  We don't need to do anything
6324          * else to free it, because it is accessed by index.  (There's no point
6325          * in checking the result of the decrement, since we cannot guarantee
6326          * that there isn't a concurrent abort which is also accessing it.)
6327          */
6328         (void)atomic_dec(&c->refcount);
6329 }
6330
6331 /*
6332  * For operations that cannot sleep, a command block is allocated at init,
6333  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6334  * which ones are free or in use.  Lock must be held when calling this.
6335  * cmd_free() is the complement.
6336  * This function never gives up and returns NULL.  If it hangs,
6337  * another thread must call cmd_free() to free some tags.
6338  */
6339
6340 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6341 {
6342         struct CommandList *c;
6343         int refcount, i;
6344         int offset = 0;
6345
6346         /*
6347          * There is some *extremely* small but non-zero chance that that
6348          * multiple threads could get in here, and one thread could
6349          * be scanning through the list of bits looking for a free
6350          * one, but the free ones are always behind him, and other
6351          * threads sneak in behind him and eat them before he can
6352          * get to them, so that while there is always a free one, a
6353          * very unlucky thread might be starved anyway, never able to
6354          * beat the other threads.  In reality, this happens so
6355          * infrequently as to be indistinguishable from never.
6356          *
6357          * Note that we start allocating commands before the SCSI host structure
6358          * is initialized.  Since the search starts at bit zero, this
6359          * all works, since we have at least one command structure available;
6360          * however, it means that the structures with the low indexes have to be
6361          * reserved for driver-initiated requests, while requests from the block
6362          * layer will use the higher indexes.
6363          */
6364
6365         for (;;) {
6366                 i = find_next_zero_bit(h->cmd_pool_bits,
6367                                         HPSA_NRESERVED_CMDS,
6368                                         offset);
6369                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6370                         offset = 0;
6371                         continue;
6372                 }
6373                 c = h->cmd_pool + i;
6374                 refcount = atomic_inc_return(&c->refcount);
6375                 if (unlikely(refcount > 1)) {
6376                         cmd_free(h, c); /* already in use */
6377                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6378                         continue;
6379                 }
6380                 set_bit(i & (BITS_PER_LONG - 1),
6381                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6382                 break; /* it's ours now. */
6383         }
6384         hpsa_cmd_partial_init(h, i, c);
6385         return c;
6386 }
6387
6388 /*
6389  * This is the complementary operation to cmd_alloc().  Note, however, in some
6390  * corner cases it may also be used to free blocks allocated by
6391  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6392  * the clear-bit is harmless.
6393  */
6394 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6395 {
6396         if (atomic_dec_and_test(&c->refcount)) {
6397                 int i;
6398
6399                 i = c - h->cmd_pool;
6400                 clear_bit(i & (BITS_PER_LONG - 1),
6401                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6402         }
6403 }
6404
6405 #ifdef CONFIG_COMPAT
6406
6407 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6408         void __user *arg)
6409 {
6410         IOCTL32_Command_struct __user *arg32 =
6411             (IOCTL32_Command_struct __user *) arg;
6412         IOCTL_Command_struct arg64;
6413         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6414         int err;
6415         u32 cp;
6416
6417         memset(&arg64, 0, sizeof(arg64));
6418         err = 0;
6419         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6420                            sizeof(arg64.LUN_info));
6421         err |= copy_from_user(&arg64.Request, &arg32->Request,
6422                            sizeof(arg64.Request));
6423         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6424                            sizeof(arg64.error_info));
6425         err |= get_user(arg64.buf_size, &arg32->buf_size);
6426         err |= get_user(cp, &arg32->buf);
6427         arg64.buf = compat_ptr(cp);
6428         err |= copy_to_user(p, &arg64, sizeof(arg64));
6429
6430         if (err)
6431                 return -EFAULT;
6432
6433         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6434         if (err)
6435                 return err;
6436         err |= copy_in_user(&arg32->error_info, &p->error_info,
6437                          sizeof(arg32->error_info));
6438         if (err)
6439                 return -EFAULT;
6440         return err;
6441 }
6442
6443 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6444         int cmd, void __user *arg)
6445 {
6446         BIG_IOCTL32_Command_struct __user *arg32 =
6447             (BIG_IOCTL32_Command_struct __user *) arg;
6448         BIG_IOCTL_Command_struct arg64;
6449         BIG_IOCTL_Command_struct __user *p =
6450             compat_alloc_user_space(sizeof(arg64));
6451         int err;
6452         u32 cp;
6453
6454         memset(&arg64, 0, sizeof(arg64));
6455         err = 0;
6456         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6457                            sizeof(arg64.LUN_info));
6458         err |= copy_from_user(&arg64.Request, &arg32->Request,
6459                            sizeof(arg64.Request));
6460         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6461                            sizeof(arg64.error_info));
6462         err |= get_user(arg64.buf_size, &arg32->buf_size);
6463         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6464         err |= get_user(cp, &arg32->buf);
6465         arg64.buf = compat_ptr(cp);
6466         err |= copy_to_user(p, &arg64, sizeof(arg64));
6467
6468         if (err)
6469                 return -EFAULT;
6470
6471         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6472         if (err)
6473                 return err;
6474         err |= copy_in_user(&arg32->error_info, &p->error_info,
6475                          sizeof(arg32->error_info));
6476         if (err)
6477                 return -EFAULT;
6478         return err;
6479 }
6480
6481 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6482 {
6483         switch (cmd) {
6484         case CCISS_GETPCIINFO:
6485         case CCISS_GETINTINFO:
6486         case CCISS_SETINTINFO:
6487         case CCISS_GETNODENAME:
6488         case CCISS_SETNODENAME:
6489         case CCISS_GETHEARTBEAT:
6490         case CCISS_GETBUSTYPES:
6491         case CCISS_GETFIRMVER:
6492         case CCISS_GETDRIVVER:
6493         case CCISS_REVALIDVOLS:
6494         case CCISS_DEREGDISK:
6495         case CCISS_REGNEWDISK:
6496         case CCISS_REGNEWD:
6497         case CCISS_RESCANDISK:
6498         case CCISS_GETLUNINFO:
6499                 return hpsa_ioctl(dev, cmd, arg);
6500
6501         case CCISS_PASSTHRU32:
6502                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6503         case CCISS_BIG_PASSTHRU32:
6504                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6505
6506         default:
6507                 return -ENOIOCTLCMD;
6508         }
6509 }
6510 #endif
6511
6512 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6513 {
6514         struct hpsa_pci_info pciinfo;
6515
6516         if (!argp)
6517                 return -EINVAL;
6518         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6519         pciinfo.bus = h->pdev->bus->number;
6520         pciinfo.dev_fn = h->pdev->devfn;
6521         pciinfo.board_id = h->board_id;
6522         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6523                 return -EFAULT;
6524         return 0;
6525 }
6526
6527 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6528 {
6529         DriverVer_type DriverVer;
6530         unsigned char vmaj, vmin, vsubmin;
6531         int rc;
6532
6533         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6534                 &vmaj, &vmin, &vsubmin);
6535         if (rc != 3) {
6536                 dev_info(&h->pdev->dev, "driver version string '%s' "
6537                         "unrecognized.", HPSA_DRIVER_VERSION);
6538                 vmaj = 0;
6539                 vmin = 0;
6540                 vsubmin = 0;
6541         }
6542         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6543         if (!argp)
6544                 return -EINVAL;
6545         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6546                 return -EFAULT;
6547         return 0;
6548 }
6549
6550 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6551 {
6552         IOCTL_Command_struct iocommand;
6553         struct CommandList *c;
6554         char *buff = NULL;
6555         u64 temp64;
6556         int rc = 0;
6557
6558         if (!argp)
6559                 return -EINVAL;
6560         if (!capable(CAP_SYS_RAWIO))
6561                 return -EPERM;
6562         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6563                 return -EFAULT;
6564         if ((iocommand.buf_size < 1) &&
6565             (iocommand.Request.Type.Direction != XFER_NONE)) {
6566                 return -EINVAL;
6567         }
6568         if (iocommand.buf_size > 0) {
6569                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6570                 if (buff == NULL)
6571                         return -ENOMEM;
6572                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6573                         /* Copy the data into the buffer we created */
6574                         if (copy_from_user(buff, iocommand.buf,
6575                                 iocommand.buf_size)) {
6576                                 rc = -EFAULT;
6577                                 goto out_kfree;
6578                         }
6579                 } else {
6580                         memset(buff, 0, iocommand.buf_size);
6581                 }
6582         }
6583         c = cmd_alloc(h);
6584
6585         /* Fill in the command type */
6586         c->cmd_type = CMD_IOCTL_PEND;
6587         c->scsi_cmd = SCSI_CMD_BUSY;
6588         /* Fill in Command Header */
6589         c->Header.ReplyQueue = 0; /* unused in simple mode */
6590         if (iocommand.buf_size > 0) {   /* buffer to fill */
6591                 c->Header.SGList = 1;
6592                 c->Header.SGTotal = cpu_to_le16(1);
6593         } else  { /* no buffers to fill */
6594                 c->Header.SGList = 0;
6595                 c->Header.SGTotal = cpu_to_le16(0);
6596         }
6597         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6598
6599         /* Fill in Request block */
6600         memcpy(&c->Request, &iocommand.Request,
6601                 sizeof(c->Request));
6602
6603         /* Fill in the scatter gather information */
6604         if (iocommand.buf_size > 0) {
6605                 temp64 = pci_map_single(h->pdev, buff,
6606                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6607                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6608                         c->SG[0].Addr = cpu_to_le64(0);
6609                         c->SG[0].Len = cpu_to_le32(0);
6610                         rc = -ENOMEM;
6611                         goto out;
6612                 }
6613                 c->SG[0].Addr = cpu_to_le64(temp64);
6614                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6615                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6616         }
6617         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6618                                         NO_TIMEOUT);
6619         if (iocommand.buf_size > 0)
6620                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6621         check_ioctl_unit_attention(h, c);
6622         if (rc) {
6623                 rc = -EIO;
6624                 goto out;
6625         }
6626
6627         /* Copy the error information out */
6628         memcpy(&iocommand.error_info, c->err_info,
6629                 sizeof(iocommand.error_info));
6630         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6631                 rc = -EFAULT;
6632                 goto out;
6633         }
6634         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6635                 iocommand.buf_size > 0) {
6636                 /* Copy the data out of the buffer we created */
6637                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6638                         rc = -EFAULT;
6639                         goto out;
6640                 }
6641         }
6642 out:
6643         cmd_free(h, c);
6644 out_kfree:
6645         kfree(buff);
6646         return rc;
6647 }
6648
6649 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6650 {
6651         BIG_IOCTL_Command_struct *ioc;
6652         struct CommandList *c;
6653         unsigned char **buff = NULL;
6654         int *buff_size = NULL;
6655         u64 temp64;
6656         BYTE sg_used = 0;
6657         int status = 0;
6658         u32 left;
6659         u32 sz;
6660         BYTE __user *data_ptr;
6661
6662         if (!argp)
6663                 return -EINVAL;
6664         if (!capable(CAP_SYS_RAWIO))
6665                 return -EPERM;
6666         ioc = (BIG_IOCTL_Command_struct *)
6667             kmalloc(sizeof(*ioc), GFP_KERNEL);
6668         if (!ioc) {
6669                 status = -ENOMEM;
6670                 goto cleanup1;
6671         }
6672         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6673                 status = -EFAULT;
6674                 goto cleanup1;
6675         }
6676         if ((ioc->buf_size < 1) &&
6677             (ioc->Request.Type.Direction != XFER_NONE)) {
6678                 status = -EINVAL;
6679                 goto cleanup1;
6680         }
6681         /* Check kmalloc limits  using all SGs */
6682         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6683                 status = -EINVAL;
6684                 goto cleanup1;
6685         }
6686         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6687                 status = -EINVAL;
6688                 goto cleanup1;
6689         }
6690         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6691         if (!buff) {
6692                 status = -ENOMEM;
6693                 goto cleanup1;
6694         }
6695         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6696         if (!buff_size) {
6697                 status = -ENOMEM;
6698                 goto cleanup1;
6699         }
6700         left = ioc->buf_size;
6701         data_ptr = ioc->buf;
6702         while (left) {
6703                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6704                 buff_size[sg_used] = sz;
6705                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6706                 if (buff[sg_used] == NULL) {
6707                         status = -ENOMEM;
6708                         goto cleanup1;
6709                 }
6710                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6711                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6712                                 status = -EFAULT;
6713                                 goto cleanup1;
6714                         }
6715                 } else
6716                         memset(buff[sg_used], 0, sz);
6717                 left -= sz;
6718                 data_ptr += sz;
6719                 sg_used++;
6720         }
6721         c = cmd_alloc(h);
6722
6723         c->cmd_type = CMD_IOCTL_PEND;
6724         c->scsi_cmd = SCSI_CMD_BUSY;
6725         c->Header.ReplyQueue = 0;
6726         c->Header.SGList = (u8) sg_used;
6727         c->Header.SGTotal = cpu_to_le16(sg_used);
6728         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6729         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6730         if (ioc->buf_size > 0) {
6731                 int i;
6732                 for (i = 0; i < sg_used; i++) {
6733                         temp64 = pci_map_single(h->pdev, buff[i],
6734                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6735                         if (dma_mapping_error(&h->pdev->dev,
6736                                                         (dma_addr_t) temp64)) {
6737                                 c->SG[i].Addr = cpu_to_le64(0);
6738                                 c->SG[i].Len = cpu_to_le32(0);
6739                                 hpsa_pci_unmap(h->pdev, c, i,
6740                                         PCI_DMA_BIDIRECTIONAL);
6741                                 status = -ENOMEM;
6742                                 goto cleanup0;
6743                         }
6744                         c->SG[i].Addr = cpu_to_le64(temp64);
6745                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6746                         c->SG[i].Ext = cpu_to_le32(0);
6747                 }
6748                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6749         }
6750         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
6751                                                 NO_TIMEOUT);
6752         if (sg_used)
6753                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6754         check_ioctl_unit_attention(h, c);
6755         if (status) {
6756                 status = -EIO;
6757                 goto cleanup0;
6758         }
6759
6760         /* Copy the error information out */
6761         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6762         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6763                 status = -EFAULT;
6764                 goto cleanup0;
6765         }
6766         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6767                 int i;
6768
6769                 /* Copy the data out of the buffer we created */
6770                 BYTE __user *ptr = ioc->buf;
6771                 for (i = 0; i < sg_used; i++) {
6772                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6773                                 status = -EFAULT;
6774                                 goto cleanup0;
6775                         }
6776                         ptr += buff_size[i];
6777                 }
6778         }
6779         status = 0;
6780 cleanup0:
6781         cmd_free(h, c);
6782 cleanup1:
6783         if (buff) {
6784                 int i;
6785
6786                 for (i = 0; i < sg_used; i++)
6787                         kfree(buff[i]);
6788                 kfree(buff);
6789         }
6790         kfree(buff_size);
6791         kfree(ioc);
6792         return status;
6793 }
6794
6795 static void check_ioctl_unit_attention(struct ctlr_info *h,
6796         struct CommandList *c)
6797 {
6798         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6799                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6800                 (void) check_for_unit_attention(h, c);
6801 }
6802
6803 /*
6804  * ioctl
6805  */
6806 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6807 {
6808         struct ctlr_info *h;
6809         void __user *argp = (void __user *)arg;
6810         int rc;
6811
6812         h = sdev_to_hba(dev);
6813
6814         switch (cmd) {
6815         case CCISS_DEREGDISK:
6816         case CCISS_REGNEWDISK:
6817         case CCISS_REGNEWD:
6818                 hpsa_scan_start(h->scsi_host);
6819                 return 0;
6820         case CCISS_GETPCIINFO:
6821                 return hpsa_getpciinfo_ioctl(h, argp);
6822         case CCISS_GETDRIVVER:
6823                 return hpsa_getdrivver_ioctl(h, argp);
6824         case CCISS_PASSTHRU:
6825                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6826                         return -EAGAIN;
6827                 rc = hpsa_passthru_ioctl(h, argp);
6828                 atomic_inc(&h->passthru_cmds_avail);
6829                 return rc;
6830         case CCISS_BIG_PASSTHRU:
6831                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6832                         return -EAGAIN;
6833                 rc = hpsa_big_passthru_ioctl(h, argp);
6834                 atomic_inc(&h->passthru_cmds_avail);
6835                 return rc;
6836         default:
6837                 return -ENOTTY;
6838         }
6839 }
6840
6841 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6842                                 u8 reset_type)
6843 {
6844         struct CommandList *c;
6845
6846         c = cmd_alloc(h);
6847
6848         /* fill_cmd can't fail here, no data buffer to map */
6849         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6850                 RAID_CTLR_LUNID, TYPE_MSG);
6851         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6852         c->waiting = NULL;
6853         enqueue_cmd_and_start_io(h, c);
6854         /* Don't wait for completion, the reset won't complete.  Don't free
6855          * the command either.  This is the last command we will send before
6856          * re-initializing everything, so it doesn't matter and won't leak.
6857          */
6858         return;
6859 }
6860
6861 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6862         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6863         int cmd_type)
6864 {
6865         int pci_dir = XFER_NONE;
6866         u64 tag; /* for commands to be aborted */
6867
6868         c->cmd_type = CMD_IOCTL_PEND;
6869         c->scsi_cmd = SCSI_CMD_BUSY;
6870         c->Header.ReplyQueue = 0;
6871         if (buff != NULL && size > 0) {
6872                 c->Header.SGList = 1;
6873                 c->Header.SGTotal = cpu_to_le16(1);
6874         } else {
6875                 c->Header.SGList = 0;
6876                 c->Header.SGTotal = cpu_to_le16(0);
6877         }
6878         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6879
6880         if (cmd_type == TYPE_CMD) {
6881                 switch (cmd) {
6882                 case HPSA_INQUIRY:
6883                         /* are we trying to read a vital product page */
6884                         if (page_code & VPD_PAGE) {
6885                                 c->Request.CDB[1] = 0x01;
6886                                 c->Request.CDB[2] = (page_code & 0xff);
6887                         }
6888                         c->Request.CDBLen = 6;
6889                         c->Request.type_attr_dir =
6890                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6891                         c->Request.Timeout = 0;
6892                         c->Request.CDB[0] = HPSA_INQUIRY;
6893                         c->Request.CDB[4] = size & 0xFF;
6894                         break;
6895                 case HPSA_REPORT_LOG:
6896                 case HPSA_REPORT_PHYS:
6897                         /* Talking to controller so It's a physical command
6898                            mode = 00 target = 0.  Nothing to write.
6899                          */
6900                         c->Request.CDBLen = 12;
6901                         c->Request.type_attr_dir =
6902                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6903                         c->Request.Timeout = 0;
6904                         c->Request.CDB[0] = cmd;
6905                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6906                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6907                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6908                         c->Request.CDB[9] = size & 0xFF;
6909                         break;
6910                 case BMIC_SENSE_DIAG_OPTIONS:
6911                         c->Request.CDBLen = 16;
6912                         c->Request.type_attr_dir =
6913                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6914                         c->Request.Timeout = 0;
6915                         /* Spec says this should be BMIC_WRITE */
6916                         c->Request.CDB[0] = BMIC_READ;
6917                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6918                         break;
6919                 case BMIC_SET_DIAG_OPTIONS:
6920                         c->Request.CDBLen = 16;
6921                         c->Request.type_attr_dir =
6922                                         TYPE_ATTR_DIR(cmd_type,
6923                                                 ATTR_SIMPLE, XFER_WRITE);
6924                         c->Request.Timeout = 0;
6925                         c->Request.CDB[0] = BMIC_WRITE;
6926                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6927                         break;
6928                 case HPSA_CACHE_FLUSH:
6929                         c->Request.CDBLen = 12;
6930                         c->Request.type_attr_dir =
6931                                         TYPE_ATTR_DIR(cmd_type,
6932                                                 ATTR_SIMPLE, XFER_WRITE);
6933                         c->Request.Timeout = 0;
6934                         c->Request.CDB[0] = BMIC_WRITE;
6935                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6936                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6937                         c->Request.CDB[8] = size & 0xFF;
6938                         break;
6939                 case TEST_UNIT_READY:
6940                         c->Request.CDBLen = 6;
6941                         c->Request.type_attr_dir =
6942                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6943                         c->Request.Timeout = 0;
6944                         break;
6945                 case HPSA_GET_RAID_MAP:
6946                         c->Request.CDBLen = 12;
6947                         c->Request.type_attr_dir =
6948                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6949                         c->Request.Timeout = 0;
6950                         c->Request.CDB[0] = HPSA_CISS_READ;
6951                         c->Request.CDB[1] = cmd;
6952                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6953                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6954                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6955                         c->Request.CDB[9] = size & 0xFF;
6956                         break;
6957                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6958                         c->Request.CDBLen = 10;
6959                         c->Request.type_attr_dir =
6960                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6961                         c->Request.Timeout = 0;
6962                         c->Request.CDB[0] = BMIC_READ;
6963                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6964                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6965                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6966                         break;
6967                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6968                         c->Request.CDBLen = 10;
6969                         c->Request.type_attr_dir =
6970                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6971                         c->Request.Timeout = 0;
6972                         c->Request.CDB[0] = BMIC_READ;
6973                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6974                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6975                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6976                         break;
6977                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6978                         c->Request.CDBLen = 10;
6979                         c->Request.type_attr_dir =
6980                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6981                         c->Request.Timeout = 0;
6982                         c->Request.CDB[0] = BMIC_READ;
6983                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6984                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6985                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6986                         break;
6987                 case BMIC_SENSE_STORAGE_BOX_PARAMS:
6988                         c->Request.CDBLen = 10;
6989                         c->Request.type_attr_dir =
6990                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6991                         c->Request.Timeout = 0;
6992                         c->Request.CDB[0] = BMIC_READ;
6993                         c->Request.CDB[6] = BMIC_SENSE_STORAGE_BOX_PARAMS;
6994                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6995                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6996                         break;
6997                 case BMIC_IDENTIFY_CONTROLLER:
6998                         c->Request.CDBLen = 10;
6999                         c->Request.type_attr_dir =
7000                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
7001                         c->Request.Timeout = 0;
7002                         c->Request.CDB[0] = BMIC_READ;
7003                         c->Request.CDB[1] = 0;
7004                         c->Request.CDB[2] = 0;
7005                         c->Request.CDB[3] = 0;
7006                         c->Request.CDB[4] = 0;
7007                         c->Request.CDB[5] = 0;
7008                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
7009                         c->Request.CDB[7] = (size >> 16) & 0xFF;
7010                         c->Request.CDB[8] = (size >> 8) & 0XFF;
7011                         c->Request.CDB[9] = 0;
7012                         break;
7013                 default:
7014                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
7015                         BUG();
7016                         return -1;
7017                 }
7018         } else if (cmd_type == TYPE_MSG) {
7019                 switch (cmd) {
7020
7021                 case  HPSA_PHYS_TARGET_RESET:
7022                         c->Request.CDBLen = 16;
7023                         c->Request.type_attr_dir =
7024                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7025                         c->Request.Timeout = 0; /* Don't time out */
7026                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7027                         c->Request.CDB[0] = HPSA_RESET;
7028                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
7029                         /* Physical target reset needs no control bytes 4-7*/
7030                         c->Request.CDB[4] = 0x00;
7031                         c->Request.CDB[5] = 0x00;
7032                         c->Request.CDB[6] = 0x00;
7033                         c->Request.CDB[7] = 0x00;
7034                         break;
7035                 case  HPSA_DEVICE_RESET_MSG:
7036                         c->Request.CDBLen = 16;
7037                         c->Request.type_attr_dir =
7038                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
7039                         c->Request.Timeout = 0; /* Don't time out */
7040                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
7041                         c->Request.CDB[0] =  cmd;
7042                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
7043                         /* If bytes 4-7 are zero, it means reset the */
7044                         /* LunID device */
7045                         c->Request.CDB[4] = 0x00;
7046                         c->Request.CDB[5] = 0x00;
7047                         c->Request.CDB[6] = 0x00;
7048                         c->Request.CDB[7] = 0x00;
7049                         break;
7050                 case  HPSA_ABORT_MSG:
7051                         memcpy(&tag, buff, sizeof(tag));
7052                         dev_dbg(&h->pdev->dev,
7053                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
7054                                 tag, c->Header.tag);
7055                         c->Request.CDBLen = 16;
7056                         c->Request.type_attr_dir =
7057                                         TYPE_ATTR_DIR(cmd_type,
7058                                                 ATTR_SIMPLE, XFER_WRITE);
7059                         c->Request.Timeout = 0; /* Don't time out */
7060                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
7061                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
7062                         c->Request.CDB[2] = 0x00; /* reserved */
7063                         c->Request.CDB[3] = 0x00; /* reserved */
7064                         /* Tag to abort goes in CDB[4]-CDB[11] */
7065                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
7066                         c->Request.CDB[12] = 0x00; /* reserved */
7067                         c->Request.CDB[13] = 0x00; /* reserved */
7068                         c->Request.CDB[14] = 0x00; /* reserved */
7069                         c->Request.CDB[15] = 0x00; /* reserved */
7070                 break;
7071                 default:
7072                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
7073                                 cmd);
7074                         BUG();
7075                 }
7076         } else {
7077                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
7078                 BUG();
7079         }
7080
7081         switch (GET_DIR(c->Request.type_attr_dir)) {
7082         case XFER_READ:
7083                 pci_dir = PCI_DMA_FROMDEVICE;
7084                 break;
7085         case XFER_WRITE:
7086                 pci_dir = PCI_DMA_TODEVICE;
7087                 break;
7088         case XFER_NONE:
7089                 pci_dir = PCI_DMA_NONE;
7090                 break;
7091         default:
7092                 pci_dir = PCI_DMA_BIDIRECTIONAL;
7093         }
7094         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
7095                 return -1;
7096         return 0;
7097 }
7098
7099 /*
7100  * Map (physical) PCI mem into (virtual) kernel space
7101  */
7102 static void __iomem *remap_pci_mem(ulong base, ulong size)
7103 {
7104         ulong page_base = ((ulong) base) & PAGE_MASK;
7105         ulong page_offs = ((ulong) base) - page_base;
7106         void __iomem *page_remapped = ioremap_nocache(page_base,
7107                 page_offs + size);
7108
7109         return page_remapped ? (page_remapped + page_offs) : NULL;
7110 }
7111
7112 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
7113 {
7114         return h->access.command_completed(h, q);
7115 }
7116
7117 static inline bool interrupt_pending(struct ctlr_info *h)
7118 {
7119         return h->access.intr_pending(h);
7120 }
7121
7122 static inline long interrupt_not_for_us(struct ctlr_info *h)
7123 {
7124         return (h->access.intr_pending(h) == 0) ||
7125                 (h->interrupts_enabled == 0);
7126 }
7127
7128 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
7129         u32 raw_tag)
7130 {
7131         if (unlikely(tag_index >= h->nr_cmds)) {
7132                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
7133                 return 1;
7134         }
7135         return 0;
7136 }
7137
7138 static inline void finish_cmd(struct CommandList *c)
7139 {
7140         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
7141         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
7142                         || c->cmd_type == CMD_IOACCEL2))
7143                 complete_scsi_command(c);
7144         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
7145                 complete(c->waiting);
7146 }
7147
7148 /* process completion of an indexed ("direct lookup") command */
7149 static inline void process_indexed_cmd(struct ctlr_info *h,
7150         u32 raw_tag)
7151 {
7152         u32 tag_index;
7153         struct CommandList *c;
7154
7155         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
7156         if (!bad_tag(h, tag_index, raw_tag)) {
7157                 c = h->cmd_pool + tag_index;
7158                 finish_cmd(c);
7159         }
7160 }
7161
7162 /* Some controllers, like p400, will give us one interrupt
7163  * after a soft reset, even if we turned interrupts off.
7164  * Only need to check for this in the hpsa_xxx_discard_completions
7165  * functions.
7166  */
7167 static int ignore_bogus_interrupt(struct ctlr_info *h)
7168 {
7169         if (likely(!reset_devices))
7170                 return 0;
7171
7172         if (likely(h->interrupts_enabled))
7173                 return 0;
7174
7175         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
7176                 "(known firmware bug.)  Ignoring.\n");
7177
7178         return 1;
7179 }
7180
7181 /*
7182  * Convert &h->q[x] (passed to interrupt handlers) back to h.
7183  * Relies on (h-q[x] == x) being true for x such that
7184  * 0 <= x < MAX_REPLY_QUEUES.
7185  */
7186 static struct ctlr_info *queue_to_hba(u8 *queue)
7187 {
7188         return container_of((queue - *queue), struct ctlr_info, q[0]);
7189 }
7190
7191 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
7192 {
7193         struct ctlr_info *h = queue_to_hba(queue);
7194         u8 q = *(u8 *) queue;
7195         u32 raw_tag;
7196
7197         if (ignore_bogus_interrupt(h))
7198                 return IRQ_NONE;
7199
7200         if (interrupt_not_for_us(h))
7201                 return IRQ_NONE;
7202         h->last_intr_timestamp = get_jiffies_64();
7203         while (interrupt_pending(h)) {
7204                 raw_tag = get_next_completion(h, q);
7205                 while (raw_tag != FIFO_EMPTY)
7206                         raw_tag = next_command(h, q);
7207         }
7208         return IRQ_HANDLED;
7209 }
7210
7211 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
7212 {
7213         struct ctlr_info *h = queue_to_hba(queue);
7214         u32 raw_tag;
7215         u8 q = *(u8 *) queue;
7216
7217         if (ignore_bogus_interrupt(h))
7218                 return IRQ_NONE;
7219
7220         h->last_intr_timestamp = get_jiffies_64();
7221         raw_tag = get_next_completion(h, q);
7222         while (raw_tag != FIFO_EMPTY)
7223                 raw_tag = next_command(h, q);
7224         return IRQ_HANDLED;
7225 }
7226
7227 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
7228 {
7229         struct ctlr_info *h = queue_to_hba((u8 *) queue);
7230         u32 raw_tag;
7231         u8 q = *(u8 *) queue;
7232
7233         if (interrupt_not_for_us(h))
7234                 return IRQ_NONE;
7235         h->last_intr_timestamp = get_jiffies_64();
7236         while (interrupt_pending(h)) {
7237                 raw_tag = get_next_completion(h, q);
7238                 while (raw_tag != FIFO_EMPTY) {
7239                         process_indexed_cmd(h, raw_tag);
7240                         raw_tag = next_command(h, q);
7241                 }
7242         }
7243         return IRQ_HANDLED;
7244 }
7245
7246 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
7247 {
7248         struct ctlr_info *h = queue_to_hba(queue);
7249         u32 raw_tag;
7250         u8 q = *(u8 *) queue;
7251
7252         h->last_intr_timestamp = get_jiffies_64();
7253         raw_tag = get_next_completion(h, q);
7254         while (raw_tag != FIFO_EMPTY) {
7255                 process_indexed_cmd(h, raw_tag);
7256                 raw_tag = next_command(h, q);
7257         }
7258         return IRQ_HANDLED;
7259 }
7260
7261 /* Send a message CDB to the firmware. Careful, this only works
7262  * in simple mode, not performant mode due to the tag lookup.
7263  * We only ever use this immediately after a controller reset.
7264  */
7265 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
7266                         unsigned char type)
7267 {
7268         struct Command {
7269                 struct CommandListHeader CommandHeader;
7270                 struct RequestBlock Request;
7271                 struct ErrDescriptor ErrorDescriptor;
7272         };
7273         struct Command *cmd;
7274         static const size_t cmd_sz = sizeof(*cmd) +
7275                                         sizeof(cmd->ErrorDescriptor);
7276         dma_addr_t paddr64;
7277         __le32 paddr32;
7278         u32 tag;
7279         void __iomem *vaddr;
7280         int i, err;
7281
7282         vaddr = pci_ioremap_bar(pdev, 0);
7283         if (vaddr == NULL)
7284                 return -ENOMEM;
7285
7286         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7287          * CCISS commands, so they must be allocated from the lower 4GiB of
7288          * memory.
7289          */
7290         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7291         if (err) {
7292                 iounmap(vaddr);
7293                 return err;
7294         }
7295
7296         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7297         if (cmd == NULL) {
7298                 iounmap(vaddr);
7299                 return -ENOMEM;
7300         }
7301
7302         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7303          * although there's no guarantee, we assume that the address is at
7304          * least 4-byte aligned (most likely, it's page-aligned).
7305          */
7306         paddr32 = cpu_to_le32(paddr64);
7307
7308         cmd->CommandHeader.ReplyQueue = 0;
7309         cmd->CommandHeader.SGList = 0;
7310         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7311         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7312         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7313
7314         cmd->Request.CDBLen = 16;
7315         cmd->Request.type_attr_dir =
7316                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7317         cmd->Request.Timeout = 0; /* Don't time out */
7318         cmd->Request.CDB[0] = opcode;
7319         cmd->Request.CDB[1] = type;
7320         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7321         cmd->ErrorDescriptor.Addr =
7322                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7323         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7324
7325         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7326
7327         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7328                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7329                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7330                         break;
7331                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7332         }
7333
7334         iounmap(vaddr);
7335
7336         /* we leak the DMA buffer here ... no choice since the controller could
7337          *  still complete the command.
7338          */
7339         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7340                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7341                         opcode, type);
7342                 return -ETIMEDOUT;
7343         }
7344
7345         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7346
7347         if (tag & HPSA_ERROR_BIT) {
7348                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7349                         opcode, type);
7350                 return -EIO;
7351         }
7352
7353         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7354                 opcode, type);
7355         return 0;
7356 }
7357
7358 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7359
7360 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7361         void __iomem *vaddr, u32 use_doorbell)
7362 {
7363
7364         if (use_doorbell) {
7365                 /* For everything after the P600, the PCI power state method
7366                  * of resetting the controller doesn't work, so we have this
7367                  * other way using the doorbell register.
7368                  */
7369                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7370                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7371
7372                 /* PMC hardware guys tell us we need a 10 second delay after
7373                  * doorbell reset and before any attempt to talk to the board
7374                  * at all to ensure that this actually works and doesn't fall
7375                  * over in some weird corner cases.
7376                  */
7377                 msleep(10000);
7378         } else { /* Try to do it the PCI power state way */
7379
7380                 /* Quoting from the Open CISS Specification: "The Power
7381                  * Management Control/Status Register (CSR) controls the power
7382                  * state of the device.  The normal operating state is D0,
7383                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7384                  * the controller, place the interface device in D3 then to D0,
7385                  * this causes a secondary PCI reset which will reset the
7386                  * controller." */
7387
7388                 int rc = 0;
7389
7390                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7391
7392                 /* enter the D3hot power management state */
7393                 rc = pci_set_power_state(pdev, PCI_D3hot);
7394                 if (rc)
7395                         return rc;
7396
7397                 msleep(500);
7398
7399                 /* enter the D0 power management state */
7400                 rc = pci_set_power_state(pdev, PCI_D0);
7401                 if (rc)
7402                         return rc;
7403
7404                 /*
7405                  * The P600 requires a small delay when changing states.
7406                  * Otherwise we may think the board did not reset and we bail.
7407                  * This for kdump only and is particular to the P600.
7408                  */
7409                 msleep(500);
7410         }
7411         return 0;
7412 }
7413
7414 static void init_driver_version(char *driver_version, int len)
7415 {
7416         memset(driver_version, 0, len);
7417         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7418 }
7419
7420 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7421 {
7422         char *driver_version;
7423         int i, size = sizeof(cfgtable->driver_version);
7424
7425         driver_version = kmalloc(size, GFP_KERNEL);
7426         if (!driver_version)
7427                 return -ENOMEM;
7428
7429         init_driver_version(driver_version, size);
7430         for (i = 0; i < size; i++)
7431                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7432         kfree(driver_version);
7433         return 0;
7434 }
7435
7436 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7437                                           unsigned char *driver_ver)
7438 {
7439         int i;
7440
7441         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7442                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7443 }
7444
7445 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7446 {
7447
7448         char *driver_ver, *old_driver_ver;
7449         int rc, size = sizeof(cfgtable->driver_version);
7450
7451         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7452         if (!old_driver_ver)
7453                 return -ENOMEM;
7454         driver_ver = old_driver_ver + size;
7455
7456         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7457          * should have been changed, otherwise we know the reset failed.
7458          */
7459         init_driver_version(old_driver_ver, size);
7460         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7461         rc = !memcmp(driver_ver, old_driver_ver, size);
7462         kfree(old_driver_ver);
7463         return rc;
7464 }
7465 /* This does a hard reset of the controller using PCI power management
7466  * states or the using the doorbell register.
7467  */
7468 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7469 {
7470         u64 cfg_offset;
7471         u32 cfg_base_addr;
7472         u64 cfg_base_addr_index;
7473         void __iomem *vaddr;
7474         unsigned long paddr;
7475         u32 misc_fw_support;
7476         int rc;
7477         struct CfgTable __iomem *cfgtable;
7478         u32 use_doorbell;
7479         u16 command_register;
7480
7481         /* For controllers as old as the P600, this is very nearly
7482          * the same thing as
7483          *
7484          * pci_save_state(pci_dev);
7485          * pci_set_power_state(pci_dev, PCI_D3hot);
7486          * pci_set_power_state(pci_dev, PCI_D0);
7487          * pci_restore_state(pci_dev);
7488          *
7489          * For controllers newer than the P600, the pci power state
7490          * method of resetting doesn't work so we have another way
7491          * using the doorbell register.
7492          */
7493
7494         if (!ctlr_is_resettable(board_id)) {
7495                 dev_warn(&pdev->dev, "Controller not resettable\n");
7496                 return -ENODEV;
7497         }
7498
7499         /* if controller is soft- but not hard resettable... */
7500         if (!ctlr_is_hard_resettable(board_id))
7501                 return -ENOTSUPP; /* try soft reset later. */
7502
7503         /* Save the PCI command register */
7504         pci_read_config_word(pdev, 4, &command_register);
7505         pci_save_state(pdev);
7506
7507         /* find the first memory BAR, so we can find the cfg table */
7508         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7509         if (rc)
7510                 return rc;
7511         vaddr = remap_pci_mem(paddr, 0x250);
7512         if (!vaddr)
7513                 return -ENOMEM;
7514
7515         /* find cfgtable in order to check if reset via doorbell is supported */
7516         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7517                                         &cfg_base_addr_index, &cfg_offset);
7518         if (rc)
7519                 goto unmap_vaddr;
7520         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7521                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7522         if (!cfgtable) {
7523                 rc = -ENOMEM;
7524                 goto unmap_vaddr;
7525         }
7526         rc = write_driver_ver_to_cfgtable(cfgtable);
7527         if (rc)
7528                 goto unmap_cfgtable;
7529
7530         /* If reset via doorbell register is supported, use that.
7531          * There are two such methods.  Favor the newest method.
7532          */
7533         misc_fw_support = readl(&cfgtable->misc_fw_support);
7534         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7535         if (use_doorbell) {
7536                 use_doorbell = DOORBELL_CTLR_RESET2;
7537         } else {
7538                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7539                 if (use_doorbell) {
7540                         dev_warn(&pdev->dev,
7541                                 "Soft reset not supported. Firmware update is required.\n");
7542                         rc = -ENOTSUPP; /* try soft reset */
7543                         goto unmap_cfgtable;
7544                 }
7545         }
7546
7547         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7548         if (rc)
7549                 goto unmap_cfgtable;
7550
7551         pci_restore_state(pdev);
7552         pci_write_config_word(pdev, 4, command_register);
7553
7554         /* Some devices (notably the HP Smart Array 5i Controller)
7555            need a little pause here */
7556         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7557
7558         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7559         if (rc) {
7560                 dev_warn(&pdev->dev,
7561                         "Failed waiting for board to become ready after hard reset\n");
7562                 goto unmap_cfgtable;
7563         }
7564
7565         rc = controller_reset_failed(vaddr);
7566         if (rc < 0)
7567                 goto unmap_cfgtable;
7568         if (rc) {
7569                 dev_warn(&pdev->dev, "Unable to successfully reset "
7570                         "controller. Will try soft reset.\n");
7571                 rc = -ENOTSUPP;
7572         } else {
7573                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7574         }
7575
7576 unmap_cfgtable:
7577         iounmap(cfgtable);
7578
7579 unmap_vaddr:
7580         iounmap(vaddr);
7581         return rc;
7582 }
7583
7584 /*
7585  *  We cannot read the structure directly, for portability we must use
7586  *   the io functions.
7587  *   This is for debug only.
7588  */
7589 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7590 {
7591 #ifdef HPSA_DEBUG
7592         int i;
7593         char temp_name[17];
7594
7595         dev_info(dev, "Controller Configuration information\n");
7596         dev_info(dev, "------------------------------------\n");
7597         for (i = 0; i < 4; i++)
7598                 temp_name[i] = readb(&(tb->Signature[i]));
7599         temp_name[4] = '\0';
7600         dev_info(dev, "   Signature = %s\n", temp_name);
7601         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7602         dev_info(dev, "   Transport methods supported = 0x%x\n",
7603                readl(&(tb->TransportSupport)));
7604         dev_info(dev, "   Transport methods active = 0x%x\n",
7605                readl(&(tb->TransportActive)));
7606         dev_info(dev, "   Requested transport Method = 0x%x\n",
7607                readl(&(tb->HostWrite.TransportRequest)));
7608         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7609                readl(&(tb->HostWrite.CoalIntDelay)));
7610         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7611                readl(&(tb->HostWrite.CoalIntCount)));
7612         dev_info(dev, "   Max outstanding commands = %d\n",
7613                readl(&(tb->CmdsOutMax)));
7614         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7615         for (i = 0; i < 16; i++)
7616                 temp_name[i] = readb(&(tb->ServerName[i]));
7617         temp_name[16] = '\0';
7618         dev_info(dev, "   Server Name = %s\n", temp_name);
7619         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7620                 readl(&(tb->HeartBeat)));
7621 #endif                          /* HPSA_DEBUG */
7622 }
7623
7624 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7625 {
7626         int i, offset, mem_type, bar_type;
7627
7628         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7629                 return 0;
7630         offset = 0;
7631         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7632                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7633                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7634                         offset += 4;
7635                 else {
7636                         mem_type = pci_resource_flags(pdev, i) &
7637                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7638                         switch (mem_type) {
7639                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7640                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7641                                 offset += 4;    /* 32 bit */
7642                                 break;
7643                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7644                                 offset += 8;
7645                                 break;
7646                         default:        /* reserved in PCI 2.2 */
7647                                 dev_warn(&pdev->dev,
7648                                        "base address is invalid\n");
7649                                 return -1;
7650                                 break;
7651                         }
7652                 }
7653                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7654                         return i + 1;
7655         }
7656         return -1;
7657 }
7658
7659 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7660 {
7661         if (h->msix_vector) {
7662                 if (h->pdev->msix_enabled)
7663                         pci_disable_msix(h->pdev);
7664                 h->msix_vector = 0;
7665         } else if (h->msi_vector) {
7666                 if (h->pdev->msi_enabled)
7667                         pci_disable_msi(h->pdev);
7668                 h->msi_vector = 0;
7669         }
7670 }
7671
7672 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7673  * controllers that are capable. If not, we use legacy INTx mode.
7674  */
7675 static void hpsa_interrupt_mode(struct ctlr_info *h)
7676 {
7677 #ifdef CONFIG_PCI_MSI
7678         int err, i;
7679         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7680
7681         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7682                 hpsa_msix_entries[i].vector = 0;
7683                 hpsa_msix_entries[i].entry = i;
7684         }
7685
7686         /* Some boards advertise MSI but don't really support it */
7687         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7688             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7689                 goto default_int_mode;
7690         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7691                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7692                 h->msix_vector = MAX_REPLY_QUEUES;
7693                 if (h->msix_vector > num_online_cpus())
7694                         h->msix_vector = num_online_cpus();
7695                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7696                                             1, h->msix_vector);
7697                 if (err < 0) {
7698                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7699                         h->msix_vector = 0;
7700                         goto single_msi_mode;
7701                 } else if (err < h->msix_vector) {
7702                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7703                                "available\n", err);
7704                 }
7705                 h->msix_vector = err;
7706                 for (i = 0; i < h->msix_vector; i++)
7707                         h->intr[i] = hpsa_msix_entries[i].vector;
7708                 return;
7709         }
7710 single_msi_mode:
7711         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7712                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7713                 if (!pci_enable_msi(h->pdev))
7714                         h->msi_vector = 1;
7715                 else
7716                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7717         }
7718 default_int_mode:
7719 #endif                          /* CONFIG_PCI_MSI */
7720         /* if we get here we're going to use the default interrupt mode */
7721         h->intr[h->intr_mode] = h->pdev->irq;
7722 }
7723
7724 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7725 {
7726         int i;
7727         u32 subsystem_vendor_id, subsystem_device_id;
7728
7729         subsystem_vendor_id = pdev->subsystem_vendor;
7730         subsystem_device_id = pdev->subsystem_device;
7731         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7732                     subsystem_vendor_id;
7733
7734         for (i = 0; i < ARRAY_SIZE(products); i++)
7735                 if (*board_id == products[i].board_id)
7736                         return i;
7737
7738         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7739                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7740                 !hpsa_allow_any) {
7741                 dev_warn(&pdev->dev, "unrecognized board ID: "
7742                         "0x%08x, ignoring.\n", *board_id);
7743                         return -ENODEV;
7744         }
7745         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7746 }
7747
7748 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7749                                     unsigned long *memory_bar)
7750 {
7751         int i;
7752
7753         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7754                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7755                         /* addressing mode bits already removed */
7756                         *memory_bar = pci_resource_start(pdev, i);
7757                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7758                                 *memory_bar);
7759                         return 0;
7760                 }
7761         dev_warn(&pdev->dev, "no memory BAR found\n");
7762         return -ENODEV;
7763 }
7764
7765 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7766                                      int wait_for_ready)
7767 {
7768         int i, iterations;
7769         u32 scratchpad;
7770         if (wait_for_ready)
7771                 iterations = HPSA_BOARD_READY_ITERATIONS;
7772         else
7773                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7774
7775         for (i = 0; i < iterations; i++) {
7776                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7777                 if (wait_for_ready) {
7778                         if (scratchpad == HPSA_FIRMWARE_READY)
7779                                 return 0;
7780                 } else {
7781                         if (scratchpad != HPSA_FIRMWARE_READY)
7782                                 return 0;
7783                 }
7784                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7785         }
7786         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7787         return -ENODEV;
7788 }
7789
7790 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7791                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7792                                u64 *cfg_offset)
7793 {
7794         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7795         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7796         *cfg_base_addr &= (u32) 0x0000ffff;
7797         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7798         if (*cfg_base_addr_index == -1) {
7799                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7800                 return -ENODEV;
7801         }
7802         return 0;
7803 }
7804
7805 static void hpsa_free_cfgtables(struct ctlr_info *h)
7806 {
7807         if (h->transtable) {
7808                 iounmap(h->transtable);
7809                 h->transtable = NULL;
7810         }
7811         if (h->cfgtable) {
7812                 iounmap(h->cfgtable);
7813                 h->cfgtable = NULL;
7814         }
7815 }
7816
7817 /* Find and map CISS config table and transfer table
7818 + * several items must be unmapped (freed) later
7819 + * */
7820 static int hpsa_find_cfgtables(struct ctlr_info *h)
7821 {
7822         u64 cfg_offset;
7823         u32 cfg_base_addr;
7824         u64 cfg_base_addr_index;
7825         u32 trans_offset;
7826         int rc;
7827
7828         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7829                 &cfg_base_addr_index, &cfg_offset);
7830         if (rc)
7831                 return rc;
7832         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7833                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7834         if (!h->cfgtable) {
7835                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7836                 return -ENOMEM;
7837         }
7838         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7839         if (rc)
7840                 return rc;
7841         /* Find performant mode table. */
7842         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7843         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7844                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7845                                 sizeof(*h->transtable));
7846         if (!h->transtable) {
7847                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7848                 hpsa_free_cfgtables(h);
7849                 return -ENOMEM;
7850         }
7851         return 0;
7852 }
7853
7854 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7855 {
7856 #define MIN_MAX_COMMANDS 16
7857         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7858
7859         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7860
7861         /* Limit commands in memory limited kdump scenario. */
7862         if (reset_devices && h->max_commands > 32)
7863                 h->max_commands = 32;
7864
7865         if (h->max_commands < MIN_MAX_COMMANDS) {
7866                 dev_warn(&h->pdev->dev,
7867                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7868                         h->max_commands,
7869                         MIN_MAX_COMMANDS);
7870                 h->max_commands = MIN_MAX_COMMANDS;
7871         }
7872 }
7873
7874 /* If the controller reports that the total max sg entries is greater than 512,
7875  * then we know that chained SG blocks work.  (Original smart arrays did not
7876  * support chained SG blocks and would return zero for max sg entries.)
7877  */
7878 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7879 {
7880         return h->maxsgentries > 512;
7881 }
7882
7883 /* Interrogate the hardware for some limits:
7884  * max commands, max SG elements without chaining, and with chaining,
7885  * SG chain block size, etc.
7886  */
7887 static void hpsa_find_board_params(struct ctlr_info *h)
7888 {
7889         hpsa_get_max_perf_mode_cmds(h);
7890         h->nr_cmds = h->max_commands;
7891         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7892         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7893         if (hpsa_supports_chained_sg_blocks(h)) {
7894                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7895                 h->max_cmd_sg_entries = 32;
7896                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7897                 h->maxsgentries--; /* save one for chain pointer */
7898         } else {
7899                 /*
7900                  * Original smart arrays supported at most 31 s/g entries
7901                  * embedded inline in the command (trying to use more
7902                  * would lock up the controller)
7903                  */
7904                 h->max_cmd_sg_entries = 31;
7905                 h->maxsgentries = 31; /* default to traditional values */
7906                 h->chainsize = 0;
7907         }
7908
7909         /* Find out what task management functions are supported and cache */
7910         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7911         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7912                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7913         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7914                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7915         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7916                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7917 }
7918
7919 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7920 {
7921         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7922                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7923                 return false;
7924         }
7925         return true;
7926 }
7927
7928 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7929 {
7930         u32 driver_support;
7931
7932         driver_support = readl(&(h->cfgtable->driver_support));
7933         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7934 #ifdef CONFIG_X86
7935         driver_support |= ENABLE_SCSI_PREFETCH;
7936 #endif
7937         driver_support |= ENABLE_UNIT_ATTN;
7938         writel(driver_support, &(h->cfgtable->driver_support));
7939 }
7940
7941 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7942  * in a prefetch beyond physical memory.
7943  */
7944 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7945 {
7946         u32 dma_prefetch;
7947
7948         if (h->board_id != 0x3225103C)
7949                 return;
7950         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7951         dma_prefetch |= 0x8000;
7952         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7953 }
7954
7955 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7956 {
7957         int i;
7958         u32 doorbell_value;
7959         unsigned long flags;
7960         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7961         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7962                 spin_lock_irqsave(&h->lock, flags);
7963                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7964                 spin_unlock_irqrestore(&h->lock, flags);
7965                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7966                         goto done;
7967                 /* delay and try again */
7968                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7969         }
7970         return -ENODEV;
7971 done:
7972         return 0;
7973 }
7974
7975 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7976 {
7977         int i;
7978         u32 doorbell_value;
7979         unsigned long flags;
7980
7981         /* under certain very rare conditions, this can take awhile.
7982          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7983          * as we enter this code.)
7984          */
7985         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7986                 if (h->remove_in_progress)
7987                         goto done;
7988                 spin_lock_irqsave(&h->lock, flags);
7989                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7990                 spin_unlock_irqrestore(&h->lock, flags);
7991                 if (!(doorbell_value & CFGTBL_ChangeReq))
7992                         goto done;
7993                 /* delay and try again */
7994                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7995         }
7996         return -ENODEV;
7997 done:
7998         return 0;
7999 }
8000
8001 /* return -ENODEV or other reason on error, 0 on success */
8002 static int hpsa_enter_simple_mode(struct ctlr_info *h)
8003 {
8004         u32 trans_support;
8005
8006         trans_support = readl(&(h->cfgtable->TransportSupport));
8007         if (!(trans_support & SIMPLE_MODE))
8008                 return -ENOTSUPP;
8009
8010         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
8011
8012         /* Update the field, and then ring the doorbell */
8013         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
8014         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
8015         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8016         if (hpsa_wait_for_mode_change_ack(h))
8017                 goto error;
8018         print_cfg_table(&h->pdev->dev, h->cfgtable);
8019         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
8020                 goto error;
8021         h->transMethod = CFGTBL_Trans_Simple;
8022         return 0;
8023 error:
8024         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
8025         return -ENODEV;
8026 }
8027
8028 /* free items allocated or mapped by hpsa_pci_init */
8029 static void hpsa_free_pci_init(struct ctlr_info *h)
8030 {
8031         hpsa_free_cfgtables(h);                 /* pci_init 4 */
8032         iounmap(h->vaddr);                      /* pci_init 3 */
8033         h->vaddr = NULL;
8034         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8035         /*
8036          * call pci_disable_device before pci_release_regions per
8037          * Documentation/PCI/pci.txt
8038          */
8039         pci_disable_device(h->pdev);            /* pci_init 1 */
8040         pci_release_regions(h->pdev);           /* pci_init 2 */
8041 }
8042
8043 /* several items must be freed later */
8044 static int hpsa_pci_init(struct ctlr_info *h)
8045 {
8046         int prod_index, err;
8047
8048         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
8049         if (prod_index < 0)
8050                 return prod_index;
8051         h->product_name = products[prod_index].product_name;
8052         h->access = *(products[prod_index].access);
8053
8054         h->needs_abort_tags_swizzled =
8055                 ctlr_needs_abort_tags_swizzled(h->board_id);
8056
8057         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
8058                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
8059
8060         err = pci_enable_device(h->pdev);
8061         if (err) {
8062                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
8063                 pci_disable_device(h->pdev);
8064                 return err;
8065         }
8066
8067         err = pci_request_regions(h->pdev, HPSA);
8068         if (err) {
8069                 dev_err(&h->pdev->dev,
8070                         "failed to obtain PCI resources\n");
8071                 pci_disable_device(h->pdev);
8072                 return err;
8073         }
8074
8075         pci_set_master(h->pdev);
8076
8077         hpsa_interrupt_mode(h);
8078         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
8079         if (err)
8080                 goto clean2;    /* intmode+region, pci */
8081         h->vaddr = remap_pci_mem(h->paddr, 0x250);
8082         if (!h->vaddr) {
8083                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
8084                 err = -ENOMEM;
8085                 goto clean2;    /* intmode+region, pci */
8086         }
8087         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8088         if (err)
8089                 goto clean3;    /* vaddr, intmode+region, pci */
8090         err = hpsa_find_cfgtables(h);
8091         if (err)
8092                 goto clean3;    /* vaddr, intmode+region, pci */
8093         hpsa_find_board_params(h);
8094
8095         if (!hpsa_CISS_signature_present(h)) {
8096                 err = -ENODEV;
8097                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8098         }
8099         hpsa_set_driver_support_bits(h);
8100         hpsa_p600_dma_prefetch_quirk(h);
8101         err = hpsa_enter_simple_mode(h);
8102         if (err)
8103                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
8104         return 0;
8105
8106 clean4: /* cfgtables, vaddr, intmode+region, pci */
8107         hpsa_free_cfgtables(h);
8108 clean3: /* vaddr, intmode+region, pci */
8109         iounmap(h->vaddr);
8110         h->vaddr = NULL;
8111 clean2: /* intmode+region, pci */
8112         hpsa_disable_interrupt_mode(h);
8113         /*
8114          * call pci_disable_device before pci_release_regions per
8115          * Documentation/PCI/pci.txt
8116          */
8117         pci_disable_device(h->pdev);
8118         pci_release_regions(h->pdev);
8119         return err;
8120 }
8121
8122 static void hpsa_hba_inquiry(struct ctlr_info *h)
8123 {
8124         int rc;
8125
8126 #define HBA_INQUIRY_BYTE_COUNT 64
8127         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
8128         if (!h->hba_inquiry_data)
8129                 return;
8130         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
8131                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
8132         if (rc != 0) {
8133                 kfree(h->hba_inquiry_data);
8134                 h->hba_inquiry_data = NULL;
8135         }
8136 }
8137
8138 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
8139 {
8140         int rc, i;
8141         void __iomem *vaddr;
8142
8143         if (!reset_devices)
8144                 return 0;
8145
8146         /* kdump kernel is loading, we don't know in which state is
8147          * the pci interface. The dev->enable_cnt is equal zero
8148          * so we call enable+disable, wait a while and switch it on.
8149          */
8150         rc = pci_enable_device(pdev);
8151         if (rc) {
8152                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
8153                 return -ENODEV;
8154         }
8155         pci_disable_device(pdev);
8156         msleep(260);                    /* a randomly chosen number */
8157         rc = pci_enable_device(pdev);
8158         if (rc) {
8159                 dev_warn(&pdev->dev, "failed to enable device.\n");
8160                 return -ENODEV;
8161         }
8162
8163         pci_set_master(pdev);
8164
8165         vaddr = pci_ioremap_bar(pdev, 0);
8166         if (vaddr == NULL) {
8167                 rc = -ENOMEM;
8168                 goto out_disable;
8169         }
8170         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
8171         iounmap(vaddr);
8172
8173         /* Reset the controller with a PCI power-cycle or via doorbell */
8174         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
8175
8176         /* -ENOTSUPP here means we cannot reset the controller
8177          * but it's already (and still) up and running in
8178          * "performant mode".  Or, it might be 640x, which can't reset
8179          * due to concerns about shared bbwc between 6402/6404 pair.
8180          */
8181         if (rc)
8182                 goto out_disable;
8183
8184         /* Now try to get the controller to respond to a no-op */
8185         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
8186         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
8187                 if (hpsa_noop(pdev) == 0)
8188                         break;
8189                 else
8190                         dev_warn(&pdev->dev, "no-op failed%s\n",
8191                                         (i < 11 ? "; re-trying" : ""));
8192         }
8193
8194 out_disable:
8195
8196         pci_disable_device(pdev);
8197         return rc;
8198 }
8199
8200 static void hpsa_free_cmd_pool(struct ctlr_info *h)
8201 {
8202         kfree(h->cmd_pool_bits);
8203         h->cmd_pool_bits = NULL;
8204         if (h->cmd_pool) {
8205                 pci_free_consistent(h->pdev,
8206                                 h->nr_cmds * sizeof(struct CommandList),
8207                                 h->cmd_pool,
8208                                 h->cmd_pool_dhandle);
8209                 h->cmd_pool = NULL;
8210                 h->cmd_pool_dhandle = 0;
8211         }
8212         if (h->errinfo_pool) {
8213                 pci_free_consistent(h->pdev,
8214                                 h->nr_cmds * sizeof(struct ErrorInfo),
8215                                 h->errinfo_pool,
8216                                 h->errinfo_pool_dhandle);
8217                 h->errinfo_pool = NULL;
8218                 h->errinfo_pool_dhandle = 0;
8219         }
8220 }
8221
8222 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
8223 {
8224         h->cmd_pool_bits = kzalloc(
8225                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
8226                 sizeof(unsigned long), GFP_KERNEL);
8227         h->cmd_pool = pci_alloc_consistent(h->pdev,
8228                     h->nr_cmds * sizeof(*h->cmd_pool),
8229                     &(h->cmd_pool_dhandle));
8230         h->errinfo_pool = pci_alloc_consistent(h->pdev,
8231                     h->nr_cmds * sizeof(*h->errinfo_pool),
8232                     &(h->errinfo_pool_dhandle));
8233         if ((h->cmd_pool_bits == NULL)
8234             || (h->cmd_pool == NULL)
8235             || (h->errinfo_pool == NULL)) {
8236                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
8237                 goto clean_up;
8238         }
8239         hpsa_preinitialize_commands(h);
8240         return 0;
8241 clean_up:
8242         hpsa_free_cmd_pool(h);
8243         return -ENOMEM;
8244 }
8245
8246 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
8247 {
8248         int i, cpu;
8249
8250         cpu = cpumask_first(cpu_online_mask);
8251         for (i = 0; i < h->msix_vector; i++) {
8252                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
8253                 cpu = cpumask_next(cpu, cpu_online_mask);
8254         }
8255 }
8256
8257 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
8258 static void hpsa_free_irqs(struct ctlr_info *h)
8259 {
8260         int i;
8261
8262         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
8263                 /* Single reply queue, only one irq to free */
8264                 i = h->intr_mode;
8265                 irq_set_affinity_hint(h->intr[i], NULL);
8266                 free_irq(h->intr[i], &h->q[i]);
8267                 h->q[i] = 0;
8268                 return;
8269         }
8270
8271         for (i = 0; i < h->msix_vector; i++) {
8272                 irq_set_affinity_hint(h->intr[i], NULL);
8273                 free_irq(h->intr[i], &h->q[i]);
8274                 h->q[i] = 0;
8275         }
8276         for (; i < MAX_REPLY_QUEUES; i++)
8277                 h->q[i] = 0;
8278 }
8279
8280 /* returns 0 on success; cleans up and returns -Enn on error */
8281 static int hpsa_request_irqs(struct ctlr_info *h,
8282         irqreturn_t (*msixhandler)(int, void *),
8283         irqreturn_t (*intxhandler)(int, void *))
8284 {
8285         int rc, i;
8286
8287         /*
8288          * initialize h->q[x] = x so that interrupt handlers know which
8289          * queue to process.
8290          */
8291         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8292                 h->q[i] = (u8) i;
8293
8294         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8295                 /* If performant mode and MSI-X, use multiple reply queues */
8296                 for (i = 0; i < h->msix_vector; i++) {
8297                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8298                         rc = request_irq(h->intr[i], msixhandler,
8299                                         0, h->intrname[i],
8300                                         &h->q[i]);
8301                         if (rc) {
8302                                 int j;
8303
8304                                 dev_err(&h->pdev->dev,
8305                                         "failed to get irq %d for %s\n",
8306                                        h->intr[i], h->devname);
8307                                 for (j = 0; j < i; j++) {
8308                                         free_irq(h->intr[j], &h->q[j]);
8309                                         h->q[j] = 0;
8310                                 }
8311                                 for (; j < MAX_REPLY_QUEUES; j++)
8312                                         h->q[j] = 0;
8313                                 return rc;
8314                         }
8315                 }
8316                 hpsa_irq_affinity_hints(h);
8317         } else {
8318                 /* Use single reply pool */
8319                 if (h->msix_vector > 0 || h->msi_vector) {
8320                         if (h->msix_vector)
8321                                 sprintf(h->intrname[h->intr_mode],
8322                                         "%s-msix", h->devname);
8323                         else
8324                                 sprintf(h->intrname[h->intr_mode],
8325                                         "%s-msi", h->devname);
8326                         rc = request_irq(h->intr[h->intr_mode],
8327                                 msixhandler, 0,
8328                                 h->intrname[h->intr_mode],
8329                                 &h->q[h->intr_mode]);
8330                 } else {
8331                         sprintf(h->intrname[h->intr_mode],
8332                                 "%s-intx", h->devname);
8333                         rc = request_irq(h->intr[h->intr_mode],
8334                                 intxhandler, IRQF_SHARED,
8335                                 h->intrname[h->intr_mode],
8336                                 &h->q[h->intr_mode]);
8337                 }
8338                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8339         }
8340         if (rc) {
8341                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8342                        h->intr[h->intr_mode], h->devname);
8343                 hpsa_free_irqs(h);
8344                 return -ENODEV;
8345         }
8346         return 0;
8347 }
8348
8349 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8350 {
8351         int rc;
8352         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8353
8354         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8355         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8356         if (rc) {
8357                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8358                 return rc;
8359         }
8360
8361         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8362         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8363         if (rc) {
8364                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8365                         "after soft reset.\n");
8366                 return rc;
8367         }
8368
8369         return 0;
8370 }
8371
8372 static void hpsa_free_reply_queues(struct ctlr_info *h)
8373 {
8374         int i;
8375
8376         for (i = 0; i < h->nreply_queues; i++) {
8377                 if (!h->reply_queue[i].head)
8378                         continue;
8379                 pci_free_consistent(h->pdev,
8380                                         h->reply_queue_size,
8381                                         h->reply_queue[i].head,
8382                                         h->reply_queue[i].busaddr);
8383                 h->reply_queue[i].head = NULL;
8384                 h->reply_queue[i].busaddr = 0;
8385         }
8386         h->reply_queue_size = 0;
8387 }
8388
8389 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8390 {
8391         hpsa_free_performant_mode(h);           /* init_one 7 */
8392         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8393         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8394         hpsa_free_irqs(h);                      /* init_one 4 */
8395         scsi_host_put(h->scsi_host);            /* init_one 3 */
8396         h->scsi_host = NULL;                    /* init_one 3 */
8397         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8398         free_percpu(h->lockup_detected);        /* init_one 2 */
8399         h->lockup_detected = NULL;              /* init_one 2 */
8400         if (h->resubmit_wq) {
8401                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8402                 h->resubmit_wq = NULL;
8403         }
8404         if (h->rescan_ctlr_wq) {
8405                 destroy_workqueue(h->rescan_ctlr_wq);
8406                 h->rescan_ctlr_wq = NULL;
8407         }
8408         kfree(h);                               /* init_one 1 */
8409 }
8410
8411 /* Called when controller lockup detected. */
8412 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8413 {
8414         int i, refcount;
8415         struct CommandList *c;
8416         int failcount = 0;
8417
8418         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8419         for (i = 0; i < h->nr_cmds; i++) {
8420                 c = h->cmd_pool + i;
8421                 refcount = atomic_inc_return(&c->refcount);
8422                 if (refcount > 1) {
8423                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8424                         finish_cmd(c);
8425                         atomic_dec(&h->commands_outstanding);
8426                         failcount++;
8427                 }
8428                 cmd_free(h, c);
8429         }
8430         dev_warn(&h->pdev->dev,
8431                 "failed %d commands in fail_all\n", failcount);
8432 }
8433
8434 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8435 {
8436         int cpu;
8437
8438         for_each_online_cpu(cpu) {
8439                 u32 *lockup_detected;
8440                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8441                 *lockup_detected = value;
8442         }
8443         wmb(); /* be sure the per-cpu variables are out to memory */
8444 }
8445
8446 static void controller_lockup_detected(struct ctlr_info *h)
8447 {
8448         unsigned long flags;
8449         u32 lockup_detected;
8450
8451         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8452         spin_lock_irqsave(&h->lock, flags);
8453         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8454         if (!lockup_detected) {
8455                 /* no heartbeat, but controller gave us a zero. */
8456                 dev_warn(&h->pdev->dev,
8457                         "lockup detected after %d but scratchpad register is zero\n",
8458                         h->heartbeat_sample_interval / HZ);
8459                 lockup_detected = 0xffffffff;
8460         }
8461         set_lockup_detected_for_all_cpus(h, lockup_detected);
8462         spin_unlock_irqrestore(&h->lock, flags);
8463         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8464                         lockup_detected, h->heartbeat_sample_interval / HZ);
8465         pci_disable_device(h->pdev);
8466         fail_all_outstanding_cmds(h);
8467 }
8468
8469 static int detect_controller_lockup(struct ctlr_info *h)
8470 {
8471         u64 now;
8472         u32 heartbeat;
8473         unsigned long flags;
8474
8475         now = get_jiffies_64();
8476         /* If we've received an interrupt recently, we're ok. */
8477         if (time_after64(h->last_intr_timestamp +
8478                                 (h->heartbeat_sample_interval), now))
8479                 return false;
8480
8481         /*
8482          * If we've already checked the heartbeat recently, we're ok.
8483          * This could happen if someone sends us a signal. We
8484          * otherwise don't care about signals in this thread.
8485          */
8486         if (time_after64(h->last_heartbeat_timestamp +
8487                                 (h->heartbeat_sample_interval), now))
8488                 return false;
8489
8490         /* If heartbeat has not changed since we last looked, we're not ok. */
8491         spin_lock_irqsave(&h->lock, flags);
8492         heartbeat = readl(&h->cfgtable->HeartBeat);
8493         spin_unlock_irqrestore(&h->lock, flags);
8494         if (h->last_heartbeat == heartbeat) {
8495                 controller_lockup_detected(h);
8496                 return true;
8497         }
8498
8499         /* We're ok. */
8500         h->last_heartbeat = heartbeat;
8501         h->last_heartbeat_timestamp = now;
8502         return false;
8503 }
8504
8505 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8506 {
8507         int i;
8508         char *event_type;
8509
8510         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8511                 return;
8512
8513         /* Ask the controller to clear the events we're handling. */
8514         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8515                         | CFGTBL_Trans_io_accel2)) &&
8516                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8517                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8518
8519                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8520                         event_type = "state change";
8521                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8522                         event_type = "configuration change";
8523                 /* Stop sending new RAID offload reqs via the IO accelerator */
8524                 scsi_block_requests(h->scsi_host);
8525                 for (i = 0; i < h->ndevices; i++) {
8526                         h->dev[i]->offload_enabled = 0;
8527                         h->dev[i]->offload_to_be_enabled = 0;
8528                 }
8529                 hpsa_drain_accel_commands(h);
8530                 /* Set 'accelerator path config change' bit */
8531                 dev_warn(&h->pdev->dev,
8532                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8533                         h->events, event_type);
8534                 writel(h->events, &(h->cfgtable->clear_event_notify));
8535                 /* Set the "clear event notify field update" bit 6 */
8536                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8537                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8538                 hpsa_wait_for_clear_event_notify_ack(h);
8539                 scsi_unblock_requests(h->scsi_host);
8540         } else {
8541                 /* Acknowledge controller notification events. */
8542                 writel(h->events, &(h->cfgtable->clear_event_notify));
8543                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8544                 hpsa_wait_for_clear_event_notify_ack(h);
8545 #if 0
8546                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8547                 hpsa_wait_for_mode_change_ack(h);
8548 #endif
8549         }
8550         return;
8551 }
8552
8553 /* Check a register on the controller to see if there are configuration
8554  * changes (added/changed/removed logical drives, etc.) which mean that
8555  * we should rescan the controller for devices.
8556  * Also check flag for driver-initiated rescan.
8557  */
8558 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8559 {
8560         if (h->drv_req_rescan) {
8561                 h->drv_req_rescan = 0;
8562                 return 1;
8563         }
8564
8565         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8566                 return 0;
8567
8568         h->events = readl(&(h->cfgtable->event_notify));
8569         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8570 }
8571
8572 /*
8573  * Check if any of the offline devices have become ready
8574  */
8575 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8576 {
8577         unsigned long flags;
8578         struct offline_device_entry *d;
8579         struct list_head *this, *tmp;
8580
8581         spin_lock_irqsave(&h->offline_device_lock, flags);
8582         list_for_each_safe(this, tmp, &h->offline_device_list) {
8583                 d = list_entry(this, struct offline_device_entry,
8584                                 offline_list);
8585                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8586                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8587                         spin_lock_irqsave(&h->offline_device_lock, flags);
8588                         list_del(&d->offline_list);
8589                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8590                         return 1;
8591                 }
8592                 spin_lock_irqsave(&h->offline_device_lock, flags);
8593         }
8594         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8595         return 0;
8596 }
8597
8598 static int hpsa_luns_changed(struct ctlr_info *h)
8599 {
8600         int rc = 1; /* assume there are changes */
8601         struct ReportLUNdata *logdev = NULL;
8602
8603         /* if we can't find out if lun data has changed,
8604          * assume that it has.
8605          */
8606
8607         if (!h->lastlogicals)
8608                 goto out;
8609
8610         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8611         if (!logdev) {
8612                 dev_warn(&h->pdev->dev,
8613                         "Out of memory, can't track lun changes.\n");
8614                 goto out;
8615         }
8616         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8617                 dev_warn(&h->pdev->dev,
8618                         "report luns failed, can't track lun changes.\n");
8619                 goto out;
8620         }
8621         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8622                 dev_info(&h->pdev->dev,
8623                         "Lun changes detected.\n");
8624                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8625                 goto out;
8626         } else
8627                 rc = 0; /* no changes detected. */
8628 out:
8629         kfree(logdev);
8630         return rc;
8631 }
8632
8633 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8634 {
8635         unsigned long flags;
8636         struct ctlr_info *h = container_of(to_delayed_work(work),
8637                                         struct ctlr_info, rescan_ctlr_work);
8638
8639
8640         if (h->remove_in_progress)
8641                 return;
8642
8643         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8644                 scsi_host_get(h->scsi_host);
8645                 hpsa_ack_ctlr_events(h);
8646                 hpsa_scan_start(h->scsi_host);
8647                 scsi_host_put(h->scsi_host);
8648         } else if (h->discovery_polling) {
8649                 hpsa_disable_rld_caching(h);
8650                 if (hpsa_luns_changed(h)) {
8651                         struct Scsi_Host *sh = NULL;
8652
8653                         dev_info(&h->pdev->dev,
8654                                 "driver discovery polling rescan.\n");
8655                         sh = scsi_host_get(h->scsi_host);
8656                         if (sh != NULL) {
8657                                 hpsa_scan_start(sh);
8658                                 scsi_host_put(sh);
8659                         }
8660                 }
8661         }
8662         spin_lock_irqsave(&h->lock, flags);
8663         if (!h->remove_in_progress)
8664                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8665                                 h->heartbeat_sample_interval);
8666         spin_unlock_irqrestore(&h->lock, flags);
8667 }
8668
8669 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8670 {
8671         unsigned long flags;
8672         struct ctlr_info *h = container_of(to_delayed_work(work),
8673                                         struct ctlr_info, monitor_ctlr_work);
8674
8675         detect_controller_lockup(h);
8676         if (lockup_detected(h))
8677                 return;
8678
8679         spin_lock_irqsave(&h->lock, flags);
8680         if (!h->remove_in_progress)
8681                 schedule_delayed_work(&h->monitor_ctlr_work,
8682                                 h->heartbeat_sample_interval);
8683         spin_unlock_irqrestore(&h->lock, flags);
8684 }
8685
8686 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8687                                                 char *name)
8688 {
8689         struct workqueue_struct *wq = NULL;
8690
8691         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8692         if (!wq)
8693                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8694
8695         return wq;
8696 }
8697
8698 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8699 {
8700         int dac, rc;
8701         struct ctlr_info *h;
8702         int try_soft_reset = 0;
8703         unsigned long flags;
8704         u32 board_id;
8705
8706         if (number_of_controllers == 0)
8707                 printk(KERN_INFO DRIVER_NAME "\n");
8708
8709         rc = hpsa_lookup_board_id(pdev, &board_id);
8710         if (rc < 0) {
8711                 dev_warn(&pdev->dev, "Board ID not found\n");
8712                 return rc;
8713         }
8714
8715         rc = hpsa_init_reset_devices(pdev, board_id);
8716         if (rc) {
8717                 if (rc != -ENOTSUPP)
8718                         return rc;
8719                 /* If the reset fails in a particular way (it has no way to do
8720                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8721                  * a soft reset once we get the controller configured up to the
8722                  * point that it can accept a command.
8723                  */
8724                 try_soft_reset = 1;
8725                 rc = 0;
8726         }
8727
8728 reinit_after_soft_reset:
8729
8730         /* Command structures must be aligned on a 32-byte boundary because
8731          * the 5 lower bits of the address are used by the hardware. and by
8732          * the driver.  See comments in hpsa.h for more info.
8733          */
8734         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8735         h = kzalloc(sizeof(*h), GFP_KERNEL);
8736         if (!h) {
8737                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8738                 return -ENOMEM;
8739         }
8740
8741         h->pdev = pdev;
8742
8743         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8744         INIT_LIST_HEAD(&h->offline_device_list);
8745         spin_lock_init(&h->lock);
8746         spin_lock_init(&h->offline_device_lock);
8747         spin_lock_init(&h->scan_lock);
8748         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8749         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8750
8751         /* Allocate and clear per-cpu variable lockup_detected */
8752         h->lockup_detected = alloc_percpu(u32);
8753         if (!h->lockup_detected) {
8754                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8755                 rc = -ENOMEM;
8756                 goto clean1;    /* aer/h */
8757         }
8758         set_lockup_detected_for_all_cpus(h, 0);
8759
8760         rc = hpsa_pci_init(h);
8761         if (rc)
8762                 goto clean2;    /* lu, aer/h */
8763
8764         /* relies on h-> settings made by hpsa_pci_init, including
8765          * interrupt_mode h->intr */
8766         rc = hpsa_scsi_host_alloc(h);
8767         if (rc)
8768                 goto clean2_5;  /* pci, lu, aer/h */
8769
8770         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8771         h->ctlr = number_of_controllers;
8772         number_of_controllers++;
8773
8774         /* configure PCI DMA stuff */
8775         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8776         if (rc == 0) {
8777                 dac = 1;
8778         } else {
8779                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8780                 if (rc == 0) {
8781                         dac = 0;
8782                 } else {
8783                         dev_err(&pdev->dev, "no suitable DMA available\n");
8784                         goto clean3;    /* shost, pci, lu, aer/h */
8785                 }
8786         }
8787
8788         /* make sure the board interrupts are off */
8789         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8790
8791         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8792         if (rc)
8793                 goto clean3;    /* shost, pci, lu, aer/h */
8794         rc = hpsa_alloc_cmd_pool(h);
8795         if (rc)
8796                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8797         rc = hpsa_alloc_sg_chain_blocks(h);
8798         if (rc)
8799                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8800         init_waitqueue_head(&h->scan_wait_queue);
8801         init_waitqueue_head(&h->abort_cmd_wait_queue);
8802         init_waitqueue_head(&h->event_sync_wait_queue);
8803         mutex_init(&h->reset_mutex);
8804         h->scan_finished = 1; /* no scan currently in progress */
8805
8806         pci_set_drvdata(pdev, h);
8807         h->ndevices = 0;
8808
8809         spin_lock_init(&h->devlock);
8810         rc = hpsa_put_ctlr_into_performant_mode(h);
8811         if (rc)
8812                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8813
8814         /* create the resubmit workqueue */
8815         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8816         if (!h->rescan_ctlr_wq) {
8817                 rc = -ENOMEM;
8818                 goto clean7;
8819         }
8820
8821         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8822         if (!h->resubmit_wq) {
8823                 rc = -ENOMEM;
8824                 goto clean7;    /* aer/h */
8825         }
8826
8827         /*
8828          * At this point, the controller is ready to take commands.
8829          * Now, if reset_devices and the hard reset didn't work, try
8830          * the soft reset and see if that works.
8831          */
8832         if (try_soft_reset) {
8833
8834                 /* This is kind of gross.  We may or may not get a completion
8835                  * from the soft reset command, and if we do, then the value
8836                  * from the fifo may or may not be valid.  So, we wait 10 secs
8837                  * after the reset throwing away any completions we get during
8838                  * that time.  Unregister the interrupt handler and register
8839                  * fake ones to scoop up any residual completions.
8840                  */
8841                 spin_lock_irqsave(&h->lock, flags);
8842                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8843                 spin_unlock_irqrestore(&h->lock, flags);
8844                 hpsa_free_irqs(h);
8845                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8846                                         hpsa_intx_discard_completions);
8847                 if (rc) {
8848                         dev_warn(&h->pdev->dev,
8849                                 "Failed to request_irq after soft reset.\n");
8850                         /*
8851                          * cannot goto clean7 or free_irqs will be called
8852                          * again. Instead, do its work
8853                          */
8854                         hpsa_free_performant_mode(h);   /* clean7 */
8855                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8856                         hpsa_free_cmd_pool(h);          /* clean5 */
8857                         /*
8858                          * skip hpsa_free_irqs(h) clean4 since that
8859                          * was just called before request_irqs failed
8860                          */
8861                         goto clean3;
8862                 }
8863
8864                 rc = hpsa_kdump_soft_reset(h);
8865                 if (rc)
8866                         /* Neither hard nor soft reset worked, we're hosed. */
8867                         goto clean7;
8868
8869                 dev_info(&h->pdev->dev, "Board READY.\n");
8870                 dev_info(&h->pdev->dev,
8871                         "Waiting for stale completions to drain.\n");
8872                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8873                 msleep(10000);
8874                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8875
8876                 rc = controller_reset_failed(h->cfgtable);
8877                 if (rc)
8878                         dev_info(&h->pdev->dev,
8879                                 "Soft reset appears to have failed.\n");
8880
8881                 /* since the controller's reset, we have to go back and re-init
8882                  * everything.  Easiest to just forget what we've done and do it
8883                  * all over again.
8884                  */
8885                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8886                 try_soft_reset = 0;
8887                 if (rc)
8888                         /* don't goto clean, we already unallocated */
8889                         return -ENODEV;
8890
8891                 goto reinit_after_soft_reset;
8892         }
8893
8894         /* Enable Accelerated IO path at driver layer */
8895         h->acciopath_status = 1;
8896         /* Disable discovery polling.*/
8897         h->discovery_polling = 0;
8898
8899
8900         /* Turn the interrupts on so we can service requests */
8901         h->access.set_intr_mask(h, HPSA_INTR_ON);
8902
8903         hpsa_hba_inquiry(h);
8904
8905         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8906         if (!h->lastlogicals)
8907                 dev_info(&h->pdev->dev,
8908                         "Can't track change to report lun data\n");
8909
8910         /* hook into SCSI subsystem */
8911         rc = hpsa_scsi_add_host(h);
8912         if (rc)
8913                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8914
8915         /* Monitor the controller for firmware lockups */
8916         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8917         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8918         schedule_delayed_work(&h->monitor_ctlr_work,
8919                                 h->heartbeat_sample_interval);
8920         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8921         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8922                                 h->heartbeat_sample_interval);
8923         return 0;
8924
8925 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8926         hpsa_free_performant_mode(h);
8927         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8928 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8929         hpsa_free_sg_chain_blocks(h);
8930 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8931         hpsa_free_cmd_pool(h);
8932 clean4: /* irq, shost, pci, lu, aer/h */
8933         hpsa_free_irqs(h);
8934 clean3: /* shost, pci, lu, aer/h */
8935         scsi_host_put(h->scsi_host);
8936         h->scsi_host = NULL;
8937 clean2_5: /* pci, lu, aer/h */
8938         hpsa_free_pci_init(h);
8939 clean2: /* lu, aer/h */
8940         if (h->lockup_detected) {
8941                 free_percpu(h->lockup_detected);
8942                 h->lockup_detected = NULL;
8943         }
8944 clean1: /* wq/aer/h */
8945         if (h->resubmit_wq) {
8946                 destroy_workqueue(h->resubmit_wq);
8947                 h->resubmit_wq = NULL;
8948         }
8949         if (h->rescan_ctlr_wq) {
8950                 destroy_workqueue(h->rescan_ctlr_wq);
8951                 h->rescan_ctlr_wq = NULL;
8952         }
8953         kfree(h);
8954         return rc;
8955 }
8956
8957 static void hpsa_flush_cache(struct ctlr_info *h)
8958 {
8959         char *flush_buf;
8960         struct CommandList *c;
8961         int rc;
8962
8963         if (unlikely(lockup_detected(h)))
8964                 return;
8965         flush_buf = kzalloc(4, GFP_KERNEL);
8966         if (!flush_buf)
8967                 return;
8968
8969         c = cmd_alloc(h);
8970
8971         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8972                 RAID_CTLR_LUNID, TYPE_CMD)) {
8973                 goto out;
8974         }
8975         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8976                                         PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
8977         if (rc)
8978                 goto out;
8979         if (c->err_info->CommandStatus != 0)
8980 out:
8981                 dev_warn(&h->pdev->dev,
8982                         "error flushing cache on controller\n");
8983         cmd_free(h, c);
8984         kfree(flush_buf);
8985 }
8986
8987 /* Make controller gather fresh report lun data each time we
8988  * send down a report luns request
8989  */
8990 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8991 {
8992         u32 *options;
8993         struct CommandList *c;
8994         int rc;
8995
8996         /* Don't bother trying to set diag options if locked up */
8997         if (unlikely(h->lockup_detected))
8998                 return;
8999
9000         options = kzalloc(sizeof(*options), GFP_KERNEL);
9001         if (!options) {
9002                 dev_err(&h->pdev->dev,
9003                         "Error: failed to disable rld caching, during alloc.\n");
9004                 return;
9005         }
9006
9007         c = cmd_alloc(h);
9008
9009         /* first, get the current diag options settings */
9010         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9011                 RAID_CTLR_LUNID, TYPE_CMD))
9012                 goto errout;
9013
9014         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9015                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9016         if ((rc != 0) || (c->err_info->CommandStatus != 0))
9017                 goto errout;
9018
9019         /* Now, set the bit for disabling the RLD caching */
9020         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
9021
9022         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
9023                 RAID_CTLR_LUNID, TYPE_CMD))
9024                 goto errout;
9025
9026         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9027                 PCI_DMA_TODEVICE, DEFAULT_TIMEOUT);
9028         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9029                 goto errout;
9030
9031         /* Now verify that it got set: */
9032         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
9033                 RAID_CTLR_LUNID, TYPE_CMD))
9034                 goto errout;
9035
9036         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
9037                 PCI_DMA_FROMDEVICE, DEFAULT_TIMEOUT);
9038         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
9039                 goto errout;
9040
9041         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
9042                 goto out;
9043
9044 errout:
9045         dev_err(&h->pdev->dev,
9046                         "Error: failed to disable report lun data caching.\n");
9047 out:
9048         cmd_free(h, c);
9049         kfree(options);
9050 }
9051
9052 static void hpsa_shutdown(struct pci_dev *pdev)
9053 {
9054         struct ctlr_info *h;
9055
9056         h = pci_get_drvdata(pdev);
9057         /* Turn board interrupts off  and send the flush cache command
9058          * sendcmd will turn off interrupt, and send the flush...
9059          * To write all data in the battery backed cache to disks
9060          */
9061         hpsa_flush_cache(h);
9062         h->access.set_intr_mask(h, HPSA_INTR_OFF);
9063         hpsa_free_irqs(h);                      /* init_one 4 */
9064         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
9065 }
9066
9067 static void hpsa_free_device_info(struct ctlr_info *h)
9068 {
9069         int i;
9070
9071         for (i = 0; i < h->ndevices; i++) {
9072                 kfree(h->dev[i]);
9073                 h->dev[i] = NULL;
9074         }
9075 }
9076
9077 static void hpsa_remove_one(struct pci_dev *pdev)
9078 {
9079         struct ctlr_info *h;
9080         unsigned long flags;
9081
9082         if (pci_get_drvdata(pdev) == NULL) {
9083                 dev_err(&pdev->dev, "unable to remove device\n");
9084                 return;
9085         }
9086         h = pci_get_drvdata(pdev);
9087
9088         /* Get rid of any controller monitoring work items */
9089         spin_lock_irqsave(&h->lock, flags);
9090         h->remove_in_progress = 1;
9091         spin_unlock_irqrestore(&h->lock, flags);
9092         cancel_delayed_work_sync(&h->monitor_ctlr_work);
9093         cancel_delayed_work_sync(&h->rescan_ctlr_work);
9094         destroy_workqueue(h->rescan_ctlr_wq);
9095         destroy_workqueue(h->resubmit_wq);
9096
9097         /*
9098          * Call before disabling interrupts.
9099          * scsi_remove_host can trigger I/O operations especially
9100          * when multipath is enabled. There can be SYNCHRONIZE CACHE
9101          * operations which cannot complete and will hang the system.
9102          */
9103         if (h->scsi_host)
9104                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
9105         /* includes hpsa_free_irqs - init_one 4 */
9106         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9107         hpsa_shutdown(pdev);
9108
9109         hpsa_free_device_info(h);               /* scan */
9110
9111         kfree(h->hba_inquiry_data);                     /* init_one 10 */
9112         h->hba_inquiry_data = NULL;                     /* init_one 10 */
9113         hpsa_free_ioaccel2_sg_chain_blocks(h);
9114         hpsa_free_performant_mode(h);                   /* init_one 7 */
9115         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
9116         hpsa_free_cmd_pool(h);                          /* init_one 5 */
9117         kfree(h->lastlogicals);
9118
9119         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
9120
9121         scsi_host_put(h->scsi_host);                    /* init_one 3 */
9122         h->scsi_host = NULL;                            /* init_one 3 */
9123
9124         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
9125         hpsa_free_pci_init(h);                          /* init_one 2.5 */
9126
9127         free_percpu(h->lockup_detected);                /* init_one 2 */
9128         h->lockup_detected = NULL;                      /* init_one 2 */
9129         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
9130
9131         hpsa_delete_sas_host(h);
9132
9133         kfree(h);                                       /* init_one 1 */
9134 }
9135
9136 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
9137         __attribute__((unused)) pm_message_t state)
9138 {
9139         return -ENOSYS;
9140 }
9141
9142 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
9143 {
9144         return -ENOSYS;
9145 }
9146
9147 static struct pci_driver hpsa_pci_driver = {
9148         .name = HPSA,
9149         .probe = hpsa_init_one,
9150         .remove = hpsa_remove_one,
9151         .id_table = hpsa_pci_device_id, /* id_table */
9152         .shutdown = hpsa_shutdown,
9153         .suspend = hpsa_suspend,
9154         .resume = hpsa_resume,
9155 };
9156
9157 /* Fill in bucket_map[], given nsgs (the max number of
9158  * scatter gather elements supported) and bucket[],
9159  * which is an array of 8 integers.  The bucket[] array
9160  * contains 8 different DMA transfer sizes (in 16
9161  * byte increments) which the controller uses to fetch
9162  * commands.  This function fills in bucket_map[], which
9163  * maps a given number of scatter gather elements to one of
9164  * the 8 DMA transfer sizes.  The point of it is to allow the
9165  * controller to only do as much DMA as needed to fetch the
9166  * command, with the DMA transfer size encoded in the lower
9167  * bits of the command address.
9168  */
9169 static void  calc_bucket_map(int bucket[], int num_buckets,
9170         int nsgs, int min_blocks, u32 *bucket_map)
9171 {
9172         int i, j, b, size;
9173
9174         /* Note, bucket_map must have nsgs+1 entries. */
9175         for (i = 0; i <= nsgs; i++) {
9176                 /* Compute size of a command with i SG entries */
9177                 size = i + min_blocks;
9178                 b = num_buckets; /* Assume the biggest bucket */
9179                 /* Find the bucket that is just big enough */
9180                 for (j = 0; j < num_buckets; j++) {
9181                         if (bucket[j] >= size) {
9182                                 b = j;
9183                                 break;
9184                         }
9185                 }
9186                 /* for a command with i SG entries, use bucket b. */
9187                 bucket_map[i] = b;
9188         }
9189 }
9190
9191 /*
9192  * return -ENODEV on err, 0 on success (or no action)
9193  * allocates numerous items that must be freed later
9194  */
9195 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
9196 {
9197         int i;
9198         unsigned long register_value;
9199         unsigned long transMethod = CFGTBL_Trans_Performant |
9200                         (trans_support & CFGTBL_Trans_use_short_tags) |
9201                                 CFGTBL_Trans_enable_directed_msix |
9202                         (trans_support & (CFGTBL_Trans_io_accel1 |
9203                                 CFGTBL_Trans_io_accel2));
9204         struct access_method access = SA5_performant_access;
9205
9206         /* This is a bit complicated.  There are 8 registers on
9207          * the controller which we write to to tell it 8 different
9208          * sizes of commands which there may be.  It's a way of
9209          * reducing the DMA done to fetch each command.  Encoded into
9210          * each command's tag are 3 bits which communicate to the controller
9211          * which of the eight sizes that command fits within.  The size of
9212          * each command depends on how many scatter gather entries there are.
9213          * Each SG entry requires 16 bytes.  The eight registers are programmed
9214          * with the number of 16-byte blocks a command of that size requires.
9215          * The smallest command possible requires 5 such 16 byte blocks.
9216          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
9217          * blocks.  Note, this only extends to the SG entries contained
9218          * within the command block, and does not extend to chained blocks
9219          * of SG elements.   bft[] contains the eight values we write to
9220          * the registers.  They are not evenly distributed, but have more
9221          * sizes for small commands, and fewer sizes for larger commands.
9222          */
9223         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
9224 #define MIN_IOACCEL2_BFT_ENTRY 5
9225 #define HPSA_IOACCEL2_HEADER_SZ 4
9226         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
9227                         13, 14, 15, 16, 17, 18, 19,
9228                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
9229         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
9230         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
9231         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
9232                                  16 * MIN_IOACCEL2_BFT_ENTRY);
9233         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
9234         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
9235         /*  5 = 1 s/g entry or 4k
9236          *  6 = 2 s/g entry or 8k
9237          *  8 = 4 s/g entry or 16k
9238          * 10 = 6 s/g entry or 24k
9239          */
9240
9241         /* If the controller supports either ioaccel method then
9242          * we can also use the RAID stack submit path that does not
9243          * perform the superfluous readl() after each command submission.
9244          */
9245         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
9246                 access = SA5_performant_access_no_read;
9247
9248         /* Controller spec: zero out this buffer. */
9249         for (i = 0; i < h->nreply_queues; i++)
9250                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
9251
9252         bft[7] = SG_ENTRIES_IN_CMD + 4;
9253         calc_bucket_map(bft, ARRAY_SIZE(bft),
9254                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
9255         for (i = 0; i < 8; i++)
9256                 writel(bft[i], &h->transtable->BlockFetch[i]);
9257
9258         /* size of controller ring buffer */
9259         writel(h->max_commands, &h->transtable->RepQSize);
9260         writel(h->nreply_queues, &h->transtable->RepQCount);
9261         writel(0, &h->transtable->RepQCtrAddrLow32);
9262         writel(0, &h->transtable->RepQCtrAddrHigh32);
9263
9264         for (i = 0; i < h->nreply_queues; i++) {
9265                 writel(0, &h->transtable->RepQAddr[i].upper);
9266                 writel(h->reply_queue[i].busaddr,
9267                         &h->transtable->RepQAddr[i].lower);
9268         }
9269
9270         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9271         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9272         /*
9273          * enable outbound interrupt coalescing in accelerator mode;
9274          */
9275         if (trans_support & CFGTBL_Trans_io_accel1) {
9276                 access = SA5_ioaccel_mode1_access;
9277                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9278                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9279         } else {
9280                 if (trans_support & CFGTBL_Trans_io_accel2) {
9281                         access = SA5_ioaccel_mode2_access;
9282                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9283                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9284                 }
9285         }
9286         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9287         if (hpsa_wait_for_mode_change_ack(h)) {
9288                 dev_err(&h->pdev->dev,
9289                         "performant mode problem - doorbell timeout\n");
9290                 return -ENODEV;
9291         }
9292         register_value = readl(&(h->cfgtable->TransportActive));
9293         if (!(register_value & CFGTBL_Trans_Performant)) {
9294                 dev_err(&h->pdev->dev,
9295                         "performant mode problem - transport not active\n");
9296                 return -ENODEV;
9297         }
9298         /* Change the access methods to the performant access methods */
9299         h->access = access;
9300         h->transMethod = transMethod;
9301
9302         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9303                 (trans_support & CFGTBL_Trans_io_accel2)))
9304                 return 0;
9305
9306         if (trans_support & CFGTBL_Trans_io_accel1) {
9307                 /* Set up I/O accelerator mode */
9308                 for (i = 0; i < h->nreply_queues; i++) {
9309                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9310                         h->reply_queue[i].current_entry =
9311                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9312                 }
9313                 bft[7] = h->ioaccel_maxsg + 8;
9314                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9315                                 h->ioaccel1_blockFetchTable);
9316
9317                 /* initialize all reply queue entries to unused */
9318                 for (i = 0; i < h->nreply_queues; i++)
9319                         memset(h->reply_queue[i].head,
9320                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9321                                 h->reply_queue_size);
9322
9323                 /* set all the constant fields in the accelerator command
9324                  * frames once at init time to save CPU cycles later.
9325                  */
9326                 for (i = 0; i < h->nr_cmds; i++) {
9327                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9328
9329                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9330                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9331                                         (i * sizeof(struct ErrorInfo)));
9332                         cp->err_info_len = sizeof(struct ErrorInfo);
9333                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9334                         cp->host_context_flags =
9335                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9336                         cp->timeout_sec = 0;
9337                         cp->ReplyQueue = 0;
9338                         cp->tag =
9339                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9340                         cp->host_addr =
9341                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9342                                         (i * sizeof(struct io_accel1_cmd)));
9343                 }
9344         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9345                 u64 cfg_offset, cfg_base_addr_index;
9346                 u32 bft2_offset, cfg_base_addr;
9347                 int rc;
9348
9349                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9350                         &cfg_base_addr_index, &cfg_offset);
9351                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9352                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9353                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9354                                 4, h->ioaccel2_blockFetchTable);
9355                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9356                 BUILD_BUG_ON(offsetof(struct CfgTable,
9357                                 io_accel_request_size_offset) != 0xb8);
9358                 h->ioaccel2_bft2_regs =
9359                         remap_pci_mem(pci_resource_start(h->pdev,
9360                                         cfg_base_addr_index) +
9361                                         cfg_offset + bft2_offset,
9362                                         ARRAY_SIZE(bft2) *
9363                                         sizeof(*h->ioaccel2_bft2_regs));
9364                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9365                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9366         }
9367         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9368         if (hpsa_wait_for_mode_change_ack(h)) {
9369                 dev_err(&h->pdev->dev,
9370                         "performant mode problem - enabling ioaccel mode\n");
9371                 return -ENODEV;
9372         }
9373         return 0;
9374 }
9375
9376 /* Free ioaccel1 mode command blocks and block fetch table */
9377 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9378 {
9379         if (h->ioaccel_cmd_pool) {
9380                 pci_free_consistent(h->pdev,
9381                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9382                         h->ioaccel_cmd_pool,
9383                         h->ioaccel_cmd_pool_dhandle);
9384                 h->ioaccel_cmd_pool = NULL;
9385                 h->ioaccel_cmd_pool_dhandle = 0;
9386         }
9387         kfree(h->ioaccel1_blockFetchTable);
9388         h->ioaccel1_blockFetchTable = NULL;
9389 }
9390
9391 /* Allocate ioaccel1 mode command blocks and block fetch table */
9392 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9393 {
9394         h->ioaccel_maxsg =
9395                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9396         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9397                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9398
9399         /* Command structures must be aligned on a 128-byte boundary
9400          * because the 7 lower bits of the address are used by the
9401          * hardware.
9402          */
9403         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9404                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9405         h->ioaccel_cmd_pool =
9406                 pci_alloc_consistent(h->pdev,
9407                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9408                         &(h->ioaccel_cmd_pool_dhandle));
9409
9410         h->ioaccel1_blockFetchTable =
9411                 kmalloc(((h->ioaccel_maxsg + 1) *
9412                                 sizeof(u32)), GFP_KERNEL);
9413
9414         if ((h->ioaccel_cmd_pool == NULL) ||
9415                 (h->ioaccel1_blockFetchTable == NULL))
9416                 goto clean_up;
9417
9418         memset(h->ioaccel_cmd_pool, 0,
9419                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9420         return 0;
9421
9422 clean_up:
9423         hpsa_free_ioaccel1_cmd_and_bft(h);
9424         return -ENOMEM;
9425 }
9426
9427 /* Free ioaccel2 mode command blocks and block fetch table */
9428 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9429 {
9430         hpsa_free_ioaccel2_sg_chain_blocks(h);
9431
9432         if (h->ioaccel2_cmd_pool) {
9433                 pci_free_consistent(h->pdev,
9434                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9435                         h->ioaccel2_cmd_pool,
9436                         h->ioaccel2_cmd_pool_dhandle);
9437                 h->ioaccel2_cmd_pool = NULL;
9438                 h->ioaccel2_cmd_pool_dhandle = 0;
9439         }
9440         kfree(h->ioaccel2_blockFetchTable);
9441         h->ioaccel2_blockFetchTable = NULL;
9442 }
9443
9444 /* Allocate ioaccel2 mode command blocks and block fetch table */
9445 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9446 {
9447         int rc;
9448
9449         /* Allocate ioaccel2 mode command blocks and block fetch table */
9450
9451         h->ioaccel_maxsg =
9452                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9453         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9454                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9455
9456         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9457                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9458         h->ioaccel2_cmd_pool =
9459                 pci_alloc_consistent(h->pdev,
9460                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9461                         &(h->ioaccel2_cmd_pool_dhandle));
9462
9463         h->ioaccel2_blockFetchTable =
9464                 kmalloc(((h->ioaccel_maxsg + 1) *
9465                                 sizeof(u32)), GFP_KERNEL);
9466
9467         if ((h->ioaccel2_cmd_pool == NULL) ||
9468                 (h->ioaccel2_blockFetchTable == NULL)) {
9469                 rc = -ENOMEM;
9470                 goto clean_up;
9471         }
9472
9473         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9474         if (rc)
9475                 goto clean_up;
9476
9477         memset(h->ioaccel2_cmd_pool, 0,
9478                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9479         return 0;
9480
9481 clean_up:
9482         hpsa_free_ioaccel2_cmd_and_bft(h);
9483         return rc;
9484 }
9485
9486 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9487 static void hpsa_free_performant_mode(struct ctlr_info *h)
9488 {
9489         kfree(h->blockFetchTable);
9490         h->blockFetchTable = NULL;
9491         hpsa_free_reply_queues(h);
9492         hpsa_free_ioaccel1_cmd_and_bft(h);
9493         hpsa_free_ioaccel2_cmd_and_bft(h);
9494 }
9495
9496 /* return -ENODEV on error, 0 on success (or no action)
9497  * allocates numerous items that must be freed later
9498  */
9499 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9500 {
9501         u32 trans_support;
9502         unsigned long transMethod = CFGTBL_Trans_Performant |
9503                                         CFGTBL_Trans_use_short_tags;
9504         int i, rc;
9505
9506         if (hpsa_simple_mode)
9507                 return 0;
9508
9509         trans_support = readl(&(h->cfgtable->TransportSupport));
9510         if (!(trans_support & PERFORMANT_MODE))
9511                 return 0;
9512
9513         /* Check for I/O accelerator mode support */
9514         if (trans_support & CFGTBL_Trans_io_accel1) {
9515                 transMethod |= CFGTBL_Trans_io_accel1 |
9516                                 CFGTBL_Trans_enable_directed_msix;
9517                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9518                 if (rc)
9519                         return rc;
9520         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9521                 transMethod |= CFGTBL_Trans_io_accel2 |
9522                                 CFGTBL_Trans_enable_directed_msix;
9523                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9524                 if (rc)
9525                         return rc;
9526         }
9527
9528         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9529         hpsa_get_max_perf_mode_cmds(h);
9530         /* Performant mode ring buffer and supporting data structures */
9531         h->reply_queue_size = h->max_commands * sizeof(u64);
9532
9533         for (i = 0; i < h->nreply_queues; i++) {
9534                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9535                                                 h->reply_queue_size,
9536                                                 &(h->reply_queue[i].busaddr));
9537                 if (!h->reply_queue[i].head) {
9538                         rc = -ENOMEM;
9539                         goto clean1;    /* rq, ioaccel */
9540                 }
9541                 h->reply_queue[i].size = h->max_commands;
9542                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9543                 h->reply_queue[i].current_entry = 0;
9544         }
9545
9546         /* Need a block fetch table for performant mode */
9547         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9548                                 sizeof(u32)), GFP_KERNEL);
9549         if (!h->blockFetchTable) {
9550                 rc = -ENOMEM;
9551                 goto clean1;    /* rq, ioaccel */
9552         }
9553
9554         rc = hpsa_enter_performant_mode(h, trans_support);
9555         if (rc)
9556                 goto clean2;    /* bft, rq, ioaccel */
9557         return 0;
9558
9559 clean2: /* bft, rq, ioaccel */
9560         kfree(h->blockFetchTable);
9561         h->blockFetchTable = NULL;
9562 clean1: /* rq, ioaccel */
9563         hpsa_free_reply_queues(h);
9564         hpsa_free_ioaccel1_cmd_and_bft(h);
9565         hpsa_free_ioaccel2_cmd_and_bft(h);
9566         return rc;
9567 }
9568
9569 static int is_accelerated_cmd(struct CommandList *c)
9570 {
9571         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9572 }
9573
9574 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9575 {
9576         struct CommandList *c = NULL;
9577         int i, accel_cmds_out;
9578         int refcount;
9579
9580         do { /* wait for all outstanding ioaccel commands to drain out */
9581                 accel_cmds_out = 0;
9582                 for (i = 0; i < h->nr_cmds; i++) {
9583                         c = h->cmd_pool + i;
9584                         refcount = atomic_inc_return(&c->refcount);
9585                         if (refcount > 1) /* Command is allocated */
9586                                 accel_cmds_out += is_accelerated_cmd(c);
9587                         cmd_free(h, c);
9588                 }
9589                 if (accel_cmds_out <= 0)
9590                         break;
9591                 msleep(100);
9592         } while (1);
9593 }
9594
9595 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9596                                 struct hpsa_sas_port *hpsa_sas_port)
9597 {
9598         struct hpsa_sas_phy *hpsa_sas_phy;
9599         struct sas_phy *phy;
9600
9601         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9602         if (!hpsa_sas_phy)
9603                 return NULL;
9604
9605         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9606                 hpsa_sas_port->next_phy_index);
9607         if (!phy) {
9608                 kfree(hpsa_sas_phy);
9609                 return NULL;
9610         }
9611
9612         hpsa_sas_port->next_phy_index++;
9613         hpsa_sas_phy->phy = phy;
9614         hpsa_sas_phy->parent_port = hpsa_sas_port;
9615
9616         return hpsa_sas_phy;
9617 }
9618
9619 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9620 {
9621         struct sas_phy *phy = hpsa_sas_phy->phy;
9622
9623         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9624         sas_phy_free(phy);
9625         if (hpsa_sas_phy->added_to_port)
9626                 list_del(&hpsa_sas_phy->phy_list_entry);
9627         kfree(hpsa_sas_phy);
9628 }
9629
9630 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9631 {
9632         int rc;
9633         struct hpsa_sas_port *hpsa_sas_port;
9634         struct sas_phy *phy;
9635         struct sas_identify *identify;
9636
9637         hpsa_sas_port = hpsa_sas_phy->parent_port;
9638         phy = hpsa_sas_phy->phy;
9639
9640         identify = &phy->identify;
9641         memset(identify, 0, sizeof(*identify));
9642         identify->sas_address = hpsa_sas_port->sas_address;
9643         identify->device_type = SAS_END_DEVICE;
9644         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9645         identify->target_port_protocols = SAS_PROTOCOL_STP;
9646         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9647         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9648         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9649         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9650         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9651
9652         rc = sas_phy_add(hpsa_sas_phy->phy);
9653         if (rc)
9654                 return rc;
9655
9656         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9657         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9658                         &hpsa_sas_port->phy_list_head);
9659         hpsa_sas_phy->added_to_port = true;
9660
9661         return 0;
9662 }
9663
9664 static int
9665         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9666                                 struct sas_rphy *rphy)
9667 {
9668         struct sas_identify *identify;
9669
9670         identify = &rphy->identify;
9671         identify->sas_address = hpsa_sas_port->sas_address;
9672         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9673         identify->target_port_protocols = SAS_PROTOCOL_STP;
9674
9675         return sas_rphy_add(rphy);
9676 }
9677
9678 static struct hpsa_sas_port
9679         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9680                                 u64 sas_address)
9681 {
9682         int rc;
9683         struct hpsa_sas_port *hpsa_sas_port;
9684         struct sas_port *port;
9685
9686         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9687         if (!hpsa_sas_port)
9688                 return NULL;
9689
9690         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9691         hpsa_sas_port->parent_node = hpsa_sas_node;
9692
9693         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9694         if (!port)
9695                 goto free_hpsa_port;
9696
9697         rc = sas_port_add(port);
9698         if (rc)
9699                 goto free_sas_port;
9700
9701         hpsa_sas_port->port = port;
9702         hpsa_sas_port->sas_address = sas_address;
9703         list_add_tail(&hpsa_sas_port->port_list_entry,
9704                         &hpsa_sas_node->port_list_head);
9705
9706         return hpsa_sas_port;
9707
9708 free_sas_port:
9709         sas_port_free(port);
9710 free_hpsa_port:
9711         kfree(hpsa_sas_port);
9712
9713         return NULL;
9714 }
9715
9716 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9717 {
9718         struct hpsa_sas_phy *hpsa_sas_phy;
9719         struct hpsa_sas_phy *next;
9720
9721         list_for_each_entry_safe(hpsa_sas_phy, next,
9722                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9723                 hpsa_free_sas_phy(hpsa_sas_phy);
9724
9725         sas_port_delete(hpsa_sas_port->port);
9726         list_del(&hpsa_sas_port->port_list_entry);
9727         kfree(hpsa_sas_port);
9728 }
9729
9730 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9731 {
9732         struct hpsa_sas_node *hpsa_sas_node;
9733
9734         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9735         if (hpsa_sas_node) {
9736                 hpsa_sas_node->parent_dev = parent_dev;
9737                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9738         }
9739
9740         return hpsa_sas_node;
9741 }
9742
9743 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9744 {
9745         struct hpsa_sas_port *hpsa_sas_port;
9746         struct hpsa_sas_port *next;
9747
9748         if (!hpsa_sas_node)
9749                 return;
9750
9751         list_for_each_entry_safe(hpsa_sas_port, next,
9752                         &hpsa_sas_node->port_list_head, port_list_entry)
9753                 hpsa_free_sas_port(hpsa_sas_port);
9754
9755         kfree(hpsa_sas_node);
9756 }
9757
9758 static struct hpsa_scsi_dev_t
9759         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9760                                         struct sas_rphy *rphy)
9761 {
9762         int i;
9763         struct hpsa_scsi_dev_t *device;
9764
9765         for (i = 0; i < h->ndevices; i++) {
9766                 device = h->dev[i];
9767                 if (!device->sas_port)
9768                         continue;
9769                 if (device->sas_port->rphy == rphy)
9770                         return device;
9771         }
9772
9773         return NULL;
9774 }
9775
9776 static int hpsa_add_sas_host(struct ctlr_info *h)
9777 {
9778         int rc;
9779         struct device *parent_dev;
9780         struct hpsa_sas_node *hpsa_sas_node;
9781         struct hpsa_sas_port *hpsa_sas_port;
9782         struct hpsa_sas_phy *hpsa_sas_phy;
9783
9784         parent_dev = &h->scsi_host->shost_gendev;
9785
9786         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9787         if (!hpsa_sas_node)
9788                 return -ENOMEM;
9789
9790         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9791         if (!hpsa_sas_port) {
9792                 rc = -ENODEV;
9793                 goto free_sas_node;
9794         }
9795
9796         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9797         if (!hpsa_sas_phy) {
9798                 rc = -ENODEV;
9799                 goto free_sas_port;
9800         }
9801
9802         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9803         if (rc)
9804                 goto free_sas_phy;
9805
9806         h->sas_host = hpsa_sas_node;
9807
9808         return 0;
9809
9810 free_sas_phy:
9811         hpsa_free_sas_phy(hpsa_sas_phy);
9812 free_sas_port:
9813         hpsa_free_sas_port(hpsa_sas_port);
9814 free_sas_node:
9815         hpsa_free_sas_node(hpsa_sas_node);
9816
9817         return rc;
9818 }
9819
9820 static void hpsa_delete_sas_host(struct ctlr_info *h)
9821 {
9822         hpsa_free_sas_node(h->sas_host);
9823 }
9824
9825 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9826                                 struct hpsa_scsi_dev_t *device)
9827 {
9828         int rc;
9829         struct hpsa_sas_port *hpsa_sas_port;
9830         struct sas_rphy *rphy;
9831
9832         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9833         if (!hpsa_sas_port)
9834                 return -ENOMEM;
9835
9836         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9837         if (!rphy) {
9838                 rc = -ENODEV;
9839                 goto free_sas_port;
9840         }
9841
9842         hpsa_sas_port->rphy = rphy;
9843         device->sas_port = hpsa_sas_port;
9844
9845         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9846         if (rc)
9847                 goto free_sas_port;
9848
9849         return 0;
9850
9851 free_sas_port:
9852         hpsa_free_sas_port(hpsa_sas_port);
9853         device->sas_port = NULL;
9854
9855         return rc;
9856 }
9857
9858 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9859 {
9860         if (device->sas_port) {
9861                 hpsa_free_sas_port(device->sas_port);
9862                 device->sas_port = NULL;
9863         }
9864 }
9865
9866 static int
9867 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9868 {
9869         return 0;
9870 }
9871
9872 static int
9873 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9874 {
9875         *identifier = 0;
9876         return 0;
9877 }
9878
9879 static int
9880 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9881 {
9882         return -ENXIO;
9883 }
9884
9885 static int
9886 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9887 {
9888         return 0;
9889 }
9890
9891 static int
9892 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9893 {
9894         return 0;
9895 }
9896
9897 static int
9898 hpsa_sas_phy_setup(struct sas_phy *phy)
9899 {
9900         return 0;
9901 }
9902
9903 static void
9904 hpsa_sas_phy_release(struct sas_phy *phy)
9905 {
9906 }
9907
9908 static int
9909 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9910 {
9911         return -EINVAL;
9912 }
9913
9914 /* SMP = Serial Management Protocol */
9915 static int
9916 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9917 struct request *req)
9918 {
9919         return -EINVAL;
9920 }
9921
9922 static struct sas_function_template hpsa_sas_transport_functions = {
9923         .get_linkerrors = hpsa_sas_get_linkerrors,
9924         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9925         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9926         .phy_reset = hpsa_sas_phy_reset,
9927         .phy_enable = hpsa_sas_phy_enable,
9928         .phy_setup = hpsa_sas_phy_setup,
9929         .phy_release = hpsa_sas_phy_release,
9930         .set_phy_speed = hpsa_sas_phy_speed,
9931         .smp_handler = hpsa_sas_smp_handler,
9932 };
9933
9934 /*
9935  *  This is it.  Register the PCI driver information for the cards we control
9936  *  the OS will call our registered routines when it finds one of our cards.
9937  */
9938 static int __init hpsa_init(void)
9939 {
9940         int rc;
9941
9942         hpsa_sas_transport_template =
9943                 sas_attach_transport(&hpsa_sas_transport_functions);
9944         if (!hpsa_sas_transport_template)
9945                 return -ENODEV;
9946
9947         rc = pci_register_driver(&hpsa_pci_driver);
9948
9949         if (rc)
9950                 sas_release_transport(hpsa_sas_transport_template);
9951
9952         return rc;
9953 }
9954
9955 static void __exit hpsa_cleanup(void)
9956 {
9957         pci_unregister_driver(&hpsa_pci_driver);
9958         sas_release_transport(hpsa_sas_transport_template);
9959 }
9960
9961 static void __attribute__((unused)) verify_offsets(void)
9962 {
9963 #define VERIFY_OFFSET(member, offset) \
9964         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9965
9966         VERIFY_OFFSET(structure_size, 0);
9967         VERIFY_OFFSET(volume_blk_size, 4);
9968         VERIFY_OFFSET(volume_blk_cnt, 8);
9969         VERIFY_OFFSET(phys_blk_shift, 16);
9970         VERIFY_OFFSET(parity_rotation_shift, 17);
9971         VERIFY_OFFSET(strip_size, 18);
9972         VERIFY_OFFSET(disk_starting_blk, 20);
9973         VERIFY_OFFSET(disk_blk_cnt, 28);
9974         VERIFY_OFFSET(data_disks_per_row, 36);
9975         VERIFY_OFFSET(metadata_disks_per_row, 38);
9976         VERIFY_OFFSET(row_cnt, 40);
9977         VERIFY_OFFSET(layout_map_count, 42);
9978         VERIFY_OFFSET(flags, 44);
9979         VERIFY_OFFSET(dekindex, 46);
9980         /* VERIFY_OFFSET(reserved, 48 */
9981         VERIFY_OFFSET(data, 64);
9982
9983 #undef VERIFY_OFFSET
9984
9985 #define VERIFY_OFFSET(member, offset) \
9986         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9987
9988         VERIFY_OFFSET(IU_type, 0);
9989         VERIFY_OFFSET(direction, 1);
9990         VERIFY_OFFSET(reply_queue, 2);
9991         /* VERIFY_OFFSET(reserved1, 3);  */
9992         VERIFY_OFFSET(scsi_nexus, 4);
9993         VERIFY_OFFSET(Tag, 8);
9994         VERIFY_OFFSET(cdb, 16);
9995         VERIFY_OFFSET(cciss_lun, 32);
9996         VERIFY_OFFSET(data_len, 40);
9997         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9998         VERIFY_OFFSET(sg_count, 45);
9999         /* VERIFY_OFFSET(reserved3 */
10000         VERIFY_OFFSET(err_ptr, 48);
10001         VERIFY_OFFSET(err_len, 56);
10002         /* VERIFY_OFFSET(reserved4  */
10003         VERIFY_OFFSET(sg, 64);
10004
10005 #undef VERIFY_OFFSET
10006
10007 #define VERIFY_OFFSET(member, offset) \
10008         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
10009
10010         VERIFY_OFFSET(dev_handle, 0x00);
10011         VERIFY_OFFSET(reserved1, 0x02);
10012         VERIFY_OFFSET(function, 0x03);
10013         VERIFY_OFFSET(reserved2, 0x04);
10014         VERIFY_OFFSET(err_info, 0x0C);
10015         VERIFY_OFFSET(reserved3, 0x10);
10016         VERIFY_OFFSET(err_info_len, 0x12);
10017         VERIFY_OFFSET(reserved4, 0x13);
10018         VERIFY_OFFSET(sgl_offset, 0x14);
10019         VERIFY_OFFSET(reserved5, 0x15);
10020         VERIFY_OFFSET(transfer_len, 0x1C);
10021         VERIFY_OFFSET(reserved6, 0x20);
10022         VERIFY_OFFSET(io_flags, 0x24);
10023         VERIFY_OFFSET(reserved7, 0x26);
10024         VERIFY_OFFSET(LUN, 0x34);
10025         VERIFY_OFFSET(control, 0x3C);
10026         VERIFY_OFFSET(CDB, 0x40);
10027         VERIFY_OFFSET(reserved8, 0x50);
10028         VERIFY_OFFSET(host_context_flags, 0x60);
10029         VERIFY_OFFSET(timeout_sec, 0x62);
10030         VERIFY_OFFSET(ReplyQueue, 0x64);
10031         VERIFY_OFFSET(reserved9, 0x65);
10032         VERIFY_OFFSET(tag, 0x68);
10033         VERIFY_OFFSET(host_addr, 0x70);
10034         VERIFY_OFFSET(CISS_LUN, 0x78);
10035         VERIFY_OFFSET(SG, 0x78 + 8);
10036 #undef VERIFY_OFFSET
10037 }
10038
10039 module_init(hpsa_init);
10040 module_exit(hpsa_cleanup);