GNU Linux-libre 4.4.284-gnu1
[releases.git] / drivers / scsi / hpsa.c
1 /*
2  *    Disk Array driver for HP Smart Array SAS controllers
3  *    Copyright 2014-2015 PMC-Sierra, Inc.
4  *    Copyright 2000,2009-2015 Hewlett-Packard Development Company, L.P.
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License as published by
8  *    the Free Software Foundation; version 2 of the License.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
13  *    NON INFRINGEMENT.  See the GNU General Public License for more details.
14  *
15  *    Questions/Comments/Bugfixes to storagedev@pmcs.com
16  *
17  */
18
19 #include <linux/module.h>
20 #include <linux/interrupt.h>
21 #include <linux/types.h>
22 #include <linux/pci.h>
23 #include <linux/pci-aspm.h>
24 #include <linux/kernel.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/fs.h>
28 #include <linux/timer.h>
29 #include <linux/init.h>
30 #include <linux/spinlock.h>
31 #include <linux/compat.h>
32 #include <linux/blktrace_api.h>
33 #include <linux/uaccess.h>
34 #include <linux/io.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/completion.h>
37 #include <linux/moduleparam.h>
38 #include <scsi/scsi.h>
39 #include <scsi/scsi_cmnd.h>
40 #include <scsi/scsi_device.h>
41 #include <scsi/scsi_host.h>
42 #include <scsi/scsi_tcq.h>
43 #include <scsi/scsi_eh.h>
44 #include <scsi/scsi_transport_sas.h>
45 #include <scsi/scsi_dbg.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <linux/atomic.h>
50 #include <linux/jiffies.h>
51 #include <linux/percpu-defs.h>
52 #include <linux/percpu.h>
53 #include <asm/unaligned.h>
54 #include <asm/div64.h>
55 #include "hpsa_cmd.h"
56 #include "hpsa.h"
57
58 /*
59  * HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.'
60  * with an optional trailing '-' followed by a byte value (0-255).
61  */
62 #define HPSA_DRIVER_VERSION "3.4.14-0"
63 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
64 #define HPSA "hpsa"
65
66 /* How long to wait for CISS doorbell communication */
67 #define CLEAR_EVENT_WAIT_INTERVAL 20    /* ms for each msleep() call */
68 #define MODE_CHANGE_WAIT_INTERVAL 10    /* ms for each msleep() call */
69 #define MAX_CLEAR_EVENT_WAIT 30000      /* times 20 ms = 600 s */
70 #define MAX_MODE_CHANGE_WAIT 2000       /* times 10 ms = 20 s */
71 #define MAX_IOCTL_CONFIG_WAIT 1000
72
73 /*define how many times we will try a command because of bus resets */
74 #define MAX_CMD_RETRIES 3
75
76 /* Embedded module documentation macros - see modules.h */
77 MODULE_AUTHOR("Hewlett-Packard Company");
78 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
79         HPSA_DRIVER_VERSION);
80 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
81 MODULE_VERSION(HPSA_DRIVER_VERSION);
82 MODULE_LICENSE("GPL");
83
84 static int hpsa_allow_any;
85 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
86 MODULE_PARM_DESC(hpsa_allow_any,
87                 "Allow hpsa driver to access unknown HP Smart Array hardware");
88 static int hpsa_simple_mode;
89 module_param(hpsa_simple_mode, int, S_IRUGO|S_IWUSR);
90 MODULE_PARM_DESC(hpsa_simple_mode,
91         "Use 'simple mode' rather than 'performant mode'");
92
93 /* define the PCI info for the cards we can control */
94 static const struct pci_device_id hpsa_pci_device_id[] = {
95         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3241},
96         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3243},
97         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3245},
98         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3247},
99         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3249},
100         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324A},
101         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x324B},
102         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSE,     0x103C, 0x3233},
103         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3350},
104         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3351},
105         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3352},
106         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3353},
107         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3354},
108         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3355},
109         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSF,     0x103C, 0x3356},
110         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1921},
111         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1922},
112         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1923},
113         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1924},
114         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1926},
115         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1928},
116         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSH,     0x103C, 0x1929},
117         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BD},
118         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BE},
119         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21BF},
120         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C0},
121         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C1},
122         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C2},
123         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C3},
124         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C4},
125         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C5},
126         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C6},
127         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C7},
128         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C8},
129         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21C9},
130         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CA},
131         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CB},
132         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CC},
133         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CD},
134         {PCI_VENDOR_ID_HP,     PCI_DEVICE_ID_HP_CISSI,     0x103C, 0x21CE},
135         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0580},
136         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0581},
137         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0582},
138         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0583},
139         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0584},
140         {PCI_VENDOR_ID_ADAPTEC2, 0x0290, 0x9005, 0x0585},
141         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0076},
142         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0087},
143         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x007D},
144         {PCI_VENDOR_ID_HP_3PAR, 0x0075, 0x1590, 0x0088},
145         {PCI_VENDOR_ID_HP, 0x333f, 0x103c, 0x333f},
146         {PCI_VENDOR_ID_HP,     PCI_ANY_ID,      PCI_ANY_ID, PCI_ANY_ID,
147                 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
148         {0,}
149 };
150
151 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
152
153 /*  board_id = Subsystem Device ID & Vendor ID
154  *  product = Marketing Name for the board
155  *  access = Address of the struct of function pointers
156  */
157 static struct board_type products[] = {
158         {0x3241103C, "Smart Array P212", &SA5_access},
159         {0x3243103C, "Smart Array P410", &SA5_access},
160         {0x3245103C, "Smart Array P410i", &SA5_access},
161         {0x3247103C, "Smart Array P411", &SA5_access},
162         {0x3249103C, "Smart Array P812", &SA5_access},
163         {0x324A103C, "Smart Array P712m", &SA5_access},
164         {0x324B103C, "Smart Array P711m", &SA5_access},
165         {0x3233103C, "HP StorageWorks 1210m", &SA5_access}, /* alias of 333f */
166         {0x3350103C, "Smart Array P222", &SA5_access},
167         {0x3351103C, "Smart Array P420", &SA5_access},
168         {0x3352103C, "Smart Array P421", &SA5_access},
169         {0x3353103C, "Smart Array P822", &SA5_access},
170         {0x3354103C, "Smart Array P420i", &SA5_access},
171         {0x3355103C, "Smart Array P220i", &SA5_access},
172         {0x3356103C, "Smart Array P721m", &SA5_access},
173         {0x1921103C, "Smart Array P830i", &SA5_access},
174         {0x1922103C, "Smart Array P430", &SA5_access},
175         {0x1923103C, "Smart Array P431", &SA5_access},
176         {0x1924103C, "Smart Array P830", &SA5_access},
177         {0x1926103C, "Smart Array P731m", &SA5_access},
178         {0x1928103C, "Smart Array P230i", &SA5_access},
179         {0x1929103C, "Smart Array P530", &SA5_access},
180         {0x21BD103C, "Smart Array P244br", &SA5_access},
181         {0x21BE103C, "Smart Array P741m", &SA5_access},
182         {0x21BF103C, "Smart HBA H240ar", &SA5_access},
183         {0x21C0103C, "Smart Array P440ar", &SA5_access},
184         {0x21C1103C, "Smart Array P840ar", &SA5_access},
185         {0x21C2103C, "Smart Array P440", &SA5_access},
186         {0x21C3103C, "Smart Array P441", &SA5_access},
187         {0x21C4103C, "Smart Array", &SA5_access},
188         {0x21C5103C, "Smart Array P841", &SA5_access},
189         {0x21C6103C, "Smart HBA H244br", &SA5_access},
190         {0x21C7103C, "Smart HBA H240", &SA5_access},
191         {0x21C8103C, "Smart HBA H241", &SA5_access},
192         {0x21C9103C, "Smart Array", &SA5_access},
193         {0x21CA103C, "Smart Array P246br", &SA5_access},
194         {0x21CB103C, "Smart Array P840", &SA5_access},
195         {0x21CC103C, "Smart Array", &SA5_access},
196         {0x21CD103C, "Smart Array", &SA5_access},
197         {0x21CE103C, "Smart HBA", &SA5_access},
198         {0x05809005, "SmartHBA-SA", &SA5_access},
199         {0x05819005, "SmartHBA-SA 8i", &SA5_access},
200         {0x05829005, "SmartHBA-SA 8i8e", &SA5_access},
201         {0x05839005, "SmartHBA-SA 8e", &SA5_access},
202         {0x05849005, "SmartHBA-SA 16i", &SA5_access},
203         {0x05859005, "SmartHBA-SA 4i4e", &SA5_access},
204         {0x00761590, "HP Storage P1224 Array Controller", &SA5_access},
205         {0x00871590, "HP Storage P1224e Array Controller", &SA5_access},
206         {0x007D1590, "HP Storage P1228 Array Controller", &SA5_access},
207         {0x00881590, "HP Storage P1228e Array Controller", &SA5_access},
208         {0x333f103c, "HP StorageWorks 1210m Array Controller", &SA5_access},
209         {0xFFFF103C, "Unknown Smart Array", &SA5_access},
210 };
211
212 static struct scsi_transport_template *hpsa_sas_transport_template;
213 static int hpsa_add_sas_host(struct ctlr_info *h);
214 static void hpsa_delete_sas_host(struct ctlr_info *h);
215 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
216                         struct hpsa_scsi_dev_t *device);
217 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device);
218 static struct hpsa_scsi_dev_t
219         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
220                 struct sas_rphy *rphy);
221
222 #define SCSI_CMD_BUSY ((struct scsi_cmnd *)&hpsa_cmd_busy)
223 static const struct scsi_cmnd hpsa_cmd_busy;
224 #define SCSI_CMD_IDLE ((struct scsi_cmnd *)&hpsa_cmd_idle)
225 static const struct scsi_cmnd hpsa_cmd_idle;
226 static int number_of_controllers;
227
228 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
229 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
230 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg);
231
232 #ifdef CONFIG_COMPAT
233 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd,
234         void __user *arg);
235 #endif
236
237 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
238 static struct CommandList *cmd_alloc(struct ctlr_info *h);
239 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c);
240 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
241                                             struct scsi_cmnd *scmd);
242 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
243         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
244         int cmd_type);
245 static void hpsa_free_cmd_pool(struct ctlr_info *h);
246 #define VPD_PAGE (1 << 8)
247 #define HPSA_SIMPLE_ERROR_BITS 0x03
248
249 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
250 static void hpsa_scan_start(struct Scsi_Host *);
251 static int hpsa_scan_finished(struct Scsi_Host *sh,
252         unsigned long elapsed_time);
253 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth);
254
255 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
256 static int hpsa_eh_abort_handler(struct scsi_cmnd *scsicmd);
257 static int hpsa_slave_alloc(struct scsi_device *sdev);
258 static int hpsa_slave_configure(struct scsi_device *sdev);
259 static void hpsa_slave_destroy(struct scsi_device *sdev);
260
261 static void hpsa_update_scsi_devices(struct ctlr_info *h);
262 static int check_for_unit_attention(struct ctlr_info *h,
263         struct CommandList *c);
264 static void check_ioctl_unit_attention(struct ctlr_info *h,
265         struct CommandList *c);
266 /* performant mode helper functions */
267 static void calc_bucket_map(int *bucket, int num_buckets,
268         int nsgs, int min_blocks, u32 *bucket_map);
269 static void hpsa_free_performant_mode(struct ctlr_info *h);
270 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
271 static inline u32 next_command(struct ctlr_info *h, u8 q);
272 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
273                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
274                                u64 *cfg_offset);
275 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
276                                     unsigned long *memory_bar);
277 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
278 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
279                                      int wait_for_ready);
280 static inline void finish_cmd(struct CommandList *c);
281 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h);
282 #define BOARD_NOT_READY 0
283 #define BOARD_READY 1
284 static void hpsa_drain_accel_commands(struct ctlr_info *h);
285 static void hpsa_flush_cache(struct ctlr_info *h);
286 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
287         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
288         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk);
289 static void hpsa_command_resubmit_worker(struct work_struct *work);
290 static u32 lockup_detected(struct ctlr_info *h);
291 static int detect_controller_lockup(struct ctlr_info *h);
292 static void hpsa_disable_rld_caching(struct ctlr_info *h);
293 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
294         struct ReportExtendedLUNdata *buf, int bufsize);
295 static int hpsa_luns_changed(struct ctlr_info *h);
296
297 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
298 {
299         unsigned long *priv = shost_priv(sdev->host);
300         return (struct ctlr_info *) *priv;
301 }
302
303 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
304 {
305         unsigned long *priv = shost_priv(sh);
306         return (struct ctlr_info *) *priv;
307 }
308
309 static inline bool hpsa_is_cmd_idle(struct CommandList *c)
310 {
311         return c->scsi_cmd == SCSI_CMD_IDLE;
312 }
313
314 static inline bool hpsa_is_pending_event(struct CommandList *c)
315 {
316         return c->abort_pending || c->reset_pending;
317 }
318
319 /* extract sense key, asc, and ascq from sense data.  -1 means invalid. */
320 static void decode_sense_data(const u8 *sense_data, int sense_data_len,
321                         u8 *sense_key, u8 *asc, u8 *ascq)
322 {
323         struct scsi_sense_hdr sshdr;
324         bool rc;
325
326         *sense_key = -1;
327         *asc = -1;
328         *ascq = -1;
329
330         if (sense_data_len < 1)
331                 return;
332
333         rc = scsi_normalize_sense(sense_data, sense_data_len, &sshdr);
334         if (rc) {
335                 *sense_key = sshdr.sense_key;
336                 *asc = sshdr.asc;
337                 *ascq = sshdr.ascq;
338         }
339 }
340
341 static int check_for_unit_attention(struct ctlr_info *h,
342         struct CommandList *c)
343 {
344         u8 sense_key, asc, ascq;
345         int sense_len;
346
347         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
348                 sense_len = sizeof(c->err_info->SenseInfo);
349         else
350                 sense_len = c->err_info->SenseLen;
351
352         decode_sense_data(c->err_info->SenseInfo, sense_len,
353                                 &sense_key, &asc, &ascq);
354         if (sense_key != UNIT_ATTENTION || asc == 0xff)
355                 return 0;
356
357         switch (asc) {
358         case STATE_CHANGED:
359                 dev_warn(&h->pdev->dev,
360                         "%s: a state change detected, command retried\n",
361                         h->devname);
362                 break;
363         case LUN_FAILED:
364                 dev_warn(&h->pdev->dev,
365                         "%s: LUN failure detected\n", h->devname);
366                 break;
367         case REPORT_LUNS_CHANGED:
368                 dev_warn(&h->pdev->dev,
369                         "%s: report LUN data changed\n", h->devname);
370         /*
371          * Note: this REPORT_LUNS_CHANGED condition only occurs on the external
372          * target (array) devices.
373          */
374                 break;
375         case POWER_OR_RESET:
376                 dev_warn(&h->pdev->dev,
377                         "%s: a power on or device reset detected\n",
378                         h->devname);
379                 break;
380         case UNIT_ATTENTION_CLEARED:
381                 dev_warn(&h->pdev->dev,
382                         "%s: unit attention cleared by another initiator\n",
383                         h->devname);
384                 break;
385         default:
386                 dev_warn(&h->pdev->dev,
387                         "%s: unknown unit attention detected\n",
388                         h->devname);
389                 break;
390         }
391         return 1;
392 }
393
394 static int check_for_busy(struct ctlr_info *h, struct CommandList *c)
395 {
396         if (c->err_info->CommandStatus != CMD_TARGET_STATUS ||
397                 (c->err_info->ScsiStatus != SAM_STAT_BUSY &&
398                  c->err_info->ScsiStatus != SAM_STAT_TASK_SET_FULL))
399                 return 0;
400         dev_warn(&h->pdev->dev, HPSA "device busy");
401         return 1;
402 }
403
404 static u32 lockup_detected(struct ctlr_info *h);
405 static ssize_t host_show_lockup_detected(struct device *dev,
406                 struct device_attribute *attr, char *buf)
407 {
408         int ld;
409         struct ctlr_info *h;
410         struct Scsi_Host *shost = class_to_shost(dev);
411
412         h = shost_to_hba(shost);
413         ld = lockup_detected(h);
414
415         return sprintf(buf, "ld=%d\n", ld);
416 }
417
418 static ssize_t host_store_hp_ssd_smart_path_status(struct device *dev,
419                                          struct device_attribute *attr,
420                                          const char *buf, size_t count)
421 {
422         int status, len;
423         struct ctlr_info *h;
424         struct Scsi_Host *shost = class_to_shost(dev);
425         char tmpbuf[10];
426
427         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
428                 return -EACCES;
429         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
430         strncpy(tmpbuf, buf, len);
431         tmpbuf[len] = '\0';
432         if (sscanf(tmpbuf, "%d", &status) != 1)
433                 return -EINVAL;
434         h = shost_to_hba(shost);
435         h->acciopath_status = !!status;
436         dev_warn(&h->pdev->dev,
437                 "hpsa: HP SSD Smart Path %s via sysfs update.\n",
438                 h->acciopath_status ? "enabled" : "disabled");
439         return count;
440 }
441
442 static ssize_t host_store_raid_offload_debug(struct device *dev,
443                                          struct device_attribute *attr,
444                                          const char *buf, size_t count)
445 {
446         int debug_level, len;
447         struct ctlr_info *h;
448         struct Scsi_Host *shost = class_to_shost(dev);
449         char tmpbuf[10];
450
451         if (!capable(CAP_SYS_ADMIN) || !capable(CAP_SYS_RAWIO))
452                 return -EACCES;
453         len = count > sizeof(tmpbuf) - 1 ? sizeof(tmpbuf) - 1 : count;
454         strncpy(tmpbuf, buf, len);
455         tmpbuf[len] = '\0';
456         if (sscanf(tmpbuf, "%d", &debug_level) != 1)
457                 return -EINVAL;
458         if (debug_level < 0)
459                 debug_level = 0;
460         h = shost_to_hba(shost);
461         h->raid_offload_debug = debug_level;
462         dev_warn(&h->pdev->dev, "hpsa: Set raid_offload_debug level = %d\n",
463                 h->raid_offload_debug);
464         return count;
465 }
466
467 static ssize_t host_store_rescan(struct device *dev,
468                                  struct device_attribute *attr,
469                                  const char *buf, size_t count)
470 {
471         struct ctlr_info *h;
472         struct Scsi_Host *shost = class_to_shost(dev);
473         h = shost_to_hba(shost);
474         hpsa_scan_start(h->scsi_host);
475         return count;
476 }
477
478 static ssize_t host_show_firmware_revision(struct device *dev,
479              struct device_attribute *attr, char *buf)
480 {
481         struct ctlr_info *h;
482         struct Scsi_Host *shost = class_to_shost(dev);
483         unsigned char *fwrev;
484
485         h = shost_to_hba(shost);
486         if (!h->hba_inquiry_data)
487                 return 0;
488         fwrev = &h->hba_inquiry_data[32];
489         return snprintf(buf, 20, "%c%c%c%c\n",
490                 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
491 }
492
493 static ssize_t host_show_commands_outstanding(struct device *dev,
494              struct device_attribute *attr, char *buf)
495 {
496         struct Scsi_Host *shost = class_to_shost(dev);
497         struct ctlr_info *h = shost_to_hba(shost);
498
499         return snprintf(buf, 20, "%d\n",
500                         atomic_read(&h->commands_outstanding));
501 }
502
503 static ssize_t host_show_transport_mode(struct device *dev,
504         struct device_attribute *attr, char *buf)
505 {
506         struct ctlr_info *h;
507         struct Scsi_Host *shost = class_to_shost(dev);
508
509         h = shost_to_hba(shost);
510         return snprintf(buf, 20, "%s\n",
511                 h->transMethod & CFGTBL_Trans_Performant ?
512                         "performant" : "simple");
513 }
514
515 static ssize_t host_show_hp_ssd_smart_path_status(struct device *dev,
516         struct device_attribute *attr, char *buf)
517 {
518         struct ctlr_info *h;
519         struct Scsi_Host *shost = class_to_shost(dev);
520
521         h = shost_to_hba(shost);
522         return snprintf(buf, 30, "HP SSD Smart Path %s\n",
523                 (h->acciopath_status == 1) ?  "enabled" : "disabled");
524 }
525
526 /* List of controllers which cannot be hard reset on kexec with reset_devices */
527 static u32 unresettable_controller[] = {
528         0x324a103C, /* Smart Array P712m */
529         0x324b103C, /* Smart Array P711m */
530         0x3223103C, /* Smart Array P800 */
531         0x3234103C, /* Smart Array P400 */
532         0x3235103C, /* Smart Array P400i */
533         0x3211103C, /* Smart Array E200i */
534         0x3212103C, /* Smart Array E200 */
535         0x3213103C, /* Smart Array E200i */
536         0x3214103C, /* Smart Array E200i */
537         0x3215103C, /* Smart Array E200i */
538         0x3237103C, /* Smart Array E500 */
539         0x323D103C, /* Smart Array P700m */
540         0x40800E11, /* Smart Array 5i */
541         0x409C0E11, /* Smart Array 6400 */
542         0x409D0E11, /* Smart Array 6400 EM */
543         0x40700E11, /* Smart Array 5300 */
544         0x40820E11, /* Smart Array 532 */
545         0x40830E11, /* Smart Array 5312 */
546         0x409A0E11, /* Smart Array 641 */
547         0x409B0E11, /* Smart Array 642 */
548         0x40910E11, /* Smart Array 6i */
549 };
550
551 /* List of controllers which cannot even be soft reset */
552 static u32 soft_unresettable_controller[] = {
553         0x40800E11, /* Smart Array 5i */
554         0x40700E11, /* Smart Array 5300 */
555         0x40820E11, /* Smart Array 532 */
556         0x40830E11, /* Smart Array 5312 */
557         0x409A0E11, /* Smart Array 641 */
558         0x409B0E11, /* Smart Array 642 */
559         0x40910E11, /* Smart Array 6i */
560         /* Exclude 640x boards.  These are two pci devices in one slot
561          * which share a battery backed cache module.  One controls the
562          * cache, the other accesses the cache through the one that controls
563          * it.  If we reset the one controlling the cache, the other will
564          * likely not be happy.  Just forbid resetting this conjoined mess.
565          * The 640x isn't really supported by hpsa anyway.
566          */
567         0x409C0E11, /* Smart Array 6400 */
568         0x409D0E11, /* Smart Array 6400 EM */
569 };
570
571 static u32 needs_abort_tags_swizzled[] = {
572         0x323D103C, /* Smart Array P700m */
573         0x324a103C, /* Smart Array P712m */
574         0x324b103C, /* SmartArray P711m */
575 };
576
577 static int board_id_in_array(u32 a[], int nelems, u32 board_id)
578 {
579         int i;
580
581         for (i = 0; i < nelems; i++)
582                 if (a[i] == board_id)
583                         return 1;
584         return 0;
585 }
586
587 static int ctlr_is_hard_resettable(u32 board_id)
588 {
589         return !board_id_in_array(unresettable_controller,
590                         ARRAY_SIZE(unresettable_controller), board_id);
591 }
592
593 static int ctlr_is_soft_resettable(u32 board_id)
594 {
595         return !board_id_in_array(soft_unresettable_controller,
596                         ARRAY_SIZE(soft_unresettable_controller), board_id);
597 }
598
599 static int ctlr_is_resettable(u32 board_id)
600 {
601         return ctlr_is_hard_resettable(board_id) ||
602                 ctlr_is_soft_resettable(board_id);
603 }
604
605 static int ctlr_needs_abort_tags_swizzled(u32 board_id)
606 {
607         return board_id_in_array(needs_abort_tags_swizzled,
608                         ARRAY_SIZE(needs_abort_tags_swizzled), board_id);
609 }
610
611 static ssize_t host_show_resettable(struct device *dev,
612         struct device_attribute *attr, char *buf)
613 {
614         struct ctlr_info *h;
615         struct Scsi_Host *shost = class_to_shost(dev);
616
617         h = shost_to_hba(shost);
618         return snprintf(buf, 20, "%d\n", ctlr_is_resettable(h->board_id));
619 }
620
621 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
622 {
623         return (scsi3addr[3] & 0xC0) == 0x40;
624 }
625
626 static const char * const raid_label[] = { "0", "4", "1(+0)", "5", "5+1", "6",
627         "1(+0)ADM", "UNKNOWN", "PHYS DRV"
628 };
629 #define HPSA_RAID_0     0
630 #define HPSA_RAID_4     1
631 #define HPSA_RAID_1     2       /* also used for RAID 10 */
632 #define HPSA_RAID_5     3       /* also used for RAID 50 */
633 #define HPSA_RAID_51    4
634 #define HPSA_RAID_6     5       /* also used for RAID 60 */
635 #define HPSA_RAID_ADM   6       /* also used for RAID 1+0 ADM */
636 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 2)
637 #define PHYSICAL_DRIVE (ARRAY_SIZE(raid_label) - 1)
638
639 static inline bool is_logical_device(struct hpsa_scsi_dev_t *device)
640 {
641         return !device->physical_device;
642 }
643
644 static ssize_t raid_level_show(struct device *dev,
645              struct device_attribute *attr, char *buf)
646 {
647         ssize_t l = 0;
648         unsigned char rlevel;
649         struct ctlr_info *h;
650         struct scsi_device *sdev;
651         struct hpsa_scsi_dev_t *hdev;
652         unsigned long flags;
653
654         sdev = to_scsi_device(dev);
655         h = sdev_to_hba(sdev);
656         spin_lock_irqsave(&h->lock, flags);
657         hdev = sdev->hostdata;
658         if (!hdev) {
659                 spin_unlock_irqrestore(&h->lock, flags);
660                 return -ENODEV;
661         }
662
663         /* Is this even a logical drive? */
664         if (!is_logical_device(hdev)) {
665                 spin_unlock_irqrestore(&h->lock, flags);
666                 l = snprintf(buf, PAGE_SIZE, "N/A\n");
667                 return l;
668         }
669
670         rlevel = hdev->raid_level;
671         spin_unlock_irqrestore(&h->lock, flags);
672         if (rlevel > RAID_UNKNOWN)
673                 rlevel = RAID_UNKNOWN;
674         l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
675         return l;
676 }
677
678 static ssize_t lunid_show(struct device *dev,
679              struct device_attribute *attr, char *buf)
680 {
681         struct ctlr_info *h;
682         struct scsi_device *sdev;
683         struct hpsa_scsi_dev_t *hdev;
684         unsigned long flags;
685         unsigned char lunid[8];
686
687         sdev = to_scsi_device(dev);
688         h = sdev_to_hba(sdev);
689         spin_lock_irqsave(&h->lock, flags);
690         hdev = sdev->hostdata;
691         if (!hdev) {
692                 spin_unlock_irqrestore(&h->lock, flags);
693                 return -ENODEV;
694         }
695         memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
696         spin_unlock_irqrestore(&h->lock, flags);
697         return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
698                 lunid[0], lunid[1], lunid[2], lunid[3],
699                 lunid[4], lunid[5], lunid[6], lunid[7]);
700 }
701
702 static ssize_t unique_id_show(struct device *dev,
703              struct device_attribute *attr, char *buf)
704 {
705         struct ctlr_info *h;
706         struct scsi_device *sdev;
707         struct hpsa_scsi_dev_t *hdev;
708         unsigned long flags;
709         unsigned char sn[16];
710
711         sdev = to_scsi_device(dev);
712         h = sdev_to_hba(sdev);
713         spin_lock_irqsave(&h->lock, flags);
714         hdev = sdev->hostdata;
715         if (!hdev) {
716                 spin_unlock_irqrestore(&h->lock, flags);
717                 return -ENODEV;
718         }
719         memcpy(sn, hdev->device_id, sizeof(sn));
720         spin_unlock_irqrestore(&h->lock, flags);
721         return snprintf(buf, 16 * 2 + 2,
722                         "%02X%02X%02X%02X%02X%02X%02X%02X"
723                         "%02X%02X%02X%02X%02X%02X%02X%02X\n",
724                         sn[0], sn[1], sn[2], sn[3],
725                         sn[4], sn[5], sn[6], sn[7],
726                         sn[8], sn[9], sn[10], sn[11],
727                         sn[12], sn[13], sn[14], sn[15]);
728 }
729
730 static ssize_t host_show_hp_ssd_smart_path_enabled(struct device *dev,
731              struct device_attribute *attr, char *buf)
732 {
733         struct ctlr_info *h;
734         struct scsi_device *sdev;
735         struct hpsa_scsi_dev_t *hdev;
736         unsigned long flags;
737         int offload_enabled;
738
739         sdev = to_scsi_device(dev);
740         h = sdev_to_hba(sdev);
741         spin_lock_irqsave(&h->lock, flags);
742         hdev = sdev->hostdata;
743         if (!hdev) {
744                 spin_unlock_irqrestore(&h->lock, flags);
745                 return -ENODEV;
746         }
747         offload_enabled = hdev->offload_enabled;
748         spin_unlock_irqrestore(&h->lock, flags);
749         return snprintf(buf, 20, "%d\n", offload_enabled);
750 }
751
752 #define MAX_PATHS 8
753
754 static ssize_t path_info_show(struct device *dev,
755              struct device_attribute *attr, char *buf)
756 {
757         struct ctlr_info *h;
758         struct scsi_device *sdev;
759         struct hpsa_scsi_dev_t *hdev;
760         unsigned long flags;
761         int i;
762         int output_len = 0;
763         u8 box;
764         u8 bay;
765         u8 path_map_index = 0;
766         char *active;
767         unsigned char phys_connector[2];
768
769         sdev = to_scsi_device(dev);
770         h = sdev_to_hba(sdev);
771         spin_lock_irqsave(&h->devlock, flags);
772         hdev = sdev->hostdata;
773         if (!hdev) {
774                 spin_unlock_irqrestore(&h->devlock, flags);
775                 return -ENODEV;
776         }
777
778         bay = hdev->bay;
779         for (i = 0; i < MAX_PATHS; i++) {
780                 path_map_index = 1<<i;
781                 if (i == hdev->active_path_index)
782                         active = "Active";
783                 else if (hdev->path_map & path_map_index)
784                         active = "Inactive";
785                 else
786                         continue;
787
788                 output_len += scnprintf(buf + output_len,
789                                 PAGE_SIZE - output_len,
790                                 "[%d:%d:%d:%d] %20.20s ",
791                                 h->scsi_host->host_no,
792                                 hdev->bus, hdev->target, hdev->lun,
793                                 scsi_device_type(hdev->devtype));
794
795                 if (hdev->external ||
796                         hdev->devtype == TYPE_RAID ||
797                         is_logical_device(hdev)) {
798                         output_len += snprintf(buf + output_len,
799                                                 PAGE_SIZE - output_len,
800                                                 "%s\n", active);
801                         continue;
802                 }
803
804                 box = hdev->box[i];
805                 memcpy(&phys_connector, &hdev->phys_connector[i],
806                         sizeof(phys_connector));
807                 if (phys_connector[0] < '0')
808                         phys_connector[0] = '0';
809                 if (phys_connector[1] < '0')
810                         phys_connector[1] = '0';
811                 if (hdev->phys_connector[i] > 0)
812                         output_len += snprintf(buf + output_len,
813                                 PAGE_SIZE - output_len,
814                                 "PORT: %.2s ",
815                                 phys_connector);
816                 if (hdev->devtype == TYPE_DISK && hdev->expose_device) {
817                         if (box == 0 || box == 0xFF) {
818                                 output_len += snprintf(buf + output_len,
819                                         PAGE_SIZE - output_len,
820                                         "BAY: %hhu %s\n",
821                                         bay, active);
822                         } else {
823                                 output_len += snprintf(buf + output_len,
824                                         PAGE_SIZE - output_len,
825                                         "BOX: %hhu BAY: %hhu %s\n",
826                                         box, bay, active);
827                         }
828                 } else if (box != 0 && box != 0xFF) {
829                         output_len += snprintf(buf + output_len,
830                                 PAGE_SIZE - output_len, "BOX: %hhu %s\n",
831                                 box, active);
832                 } else
833                         output_len += snprintf(buf + output_len,
834                                 PAGE_SIZE - output_len, "%s\n", active);
835         }
836
837         spin_unlock_irqrestore(&h->devlock, flags);
838         return output_len;
839 }
840
841 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
842 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
843 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
844 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
845 static DEVICE_ATTR(hp_ssd_smart_path_enabled, S_IRUGO,
846                         host_show_hp_ssd_smart_path_enabled, NULL);
847 static DEVICE_ATTR(path_info, S_IRUGO, path_info_show, NULL);
848 static DEVICE_ATTR(hp_ssd_smart_path_status, S_IWUSR|S_IRUGO|S_IROTH,
849                 host_show_hp_ssd_smart_path_status,
850                 host_store_hp_ssd_smart_path_status);
851 static DEVICE_ATTR(raid_offload_debug, S_IWUSR, NULL,
852                         host_store_raid_offload_debug);
853 static DEVICE_ATTR(firmware_revision, S_IRUGO,
854         host_show_firmware_revision, NULL);
855 static DEVICE_ATTR(commands_outstanding, S_IRUGO,
856         host_show_commands_outstanding, NULL);
857 static DEVICE_ATTR(transport_mode, S_IRUGO,
858         host_show_transport_mode, NULL);
859 static DEVICE_ATTR(resettable, S_IRUGO,
860         host_show_resettable, NULL);
861 static DEVICE_ATTR(lockup_detected, S_IRUGO,
862         host_show_lockup_detected, NULL);
863
864 static struct device_attribute *hpsa_sdev_attrs[] = {
865         &dev_attr_raid_level,
866         &dev_attr_lunid,
867         &dev_attr_unique_id,
868         &dev_attr_hp_ssd_smart_path_enabled,
869         &dev_attr_path_info,
870         NULL,
871 };
872
873 static struct device_attribute *hpsa_shost_attrs[] = {
874         &dev_attr_rescan,
875         &dev_attr_firmware_revision,
876         &dev_attr_commands_outstanding,
877         &dev_attr_transport_mode,
878         &dev_attr_resettable,
879         &dev_attr_hp_ssd_smart_path_status,
880         &dev_attr_raid_offload_debug,
881         &dev_attr_lockup_detected,
882         NULL,
883 };
884
885 #define HPSA_NRESERVED_CMDS     (HPSA_CMDS_RESERVED_FOR_ABORTS + \
886                 HPSA_CMDS_RESERVED_FOR_DRIVER + HPSA_MAX_CONCURRENT_PASSTHRUS)
887
888 static struct scsi_host_template hpsa_driver_template = {
889         .module                 = THIS_MODULE,
890         .name                   = HPSA,
891         .proc_name              = HPSA,
892         .queuecommand           = hpsa_scsi_queue_command,
893         .scan_start             = hpsa_scan_start,
894         .scan_finished          = hpsa_scan_finished,
895         .change_queue_depth     = hpsa_change_queue_depth,
896         .this_id                = -1,
897         .use_clustering         = ENABLE_CLUSTERING,
898         .eh_abort_handler       = hpsa_eh_abort_handler,
899         .eh_device_reset_handler = hpsa_eh_device_reset_handler,
900         .ioctl                  = hpsa_ioctl,
901         .slave_alloc            = hpsa_slave_alloc,
902         .slave_configure        = hpsa_slave_configure,
903         .slave_destroy          = hpsa_slave_destroy,
904 #ifdef CONFIG_COMPAT
905         .compat_ioctl           = hpsa_compat_ioctl,
906 #endif
907         .sdev_attrs = hpsa_sdev_attrs,
908         .shost_attrs = hpsa_shost_attrs,
909         .max_sectors = 8192,
910         .no_write_same = 1,
911 };
912
913 static inline u32 next_command(struct ctlr_info *h, u8 q)
914 {
915         u32 a;
916         struct reply_queue_buffer *rq = &h->reply_queue[q];
917
918         if (h->transMethod & CFGTBL_Trans_io_accel1)
919                 return h->access.command_completed(h, q);
920
921         if (unlikely(!(h->transMethod & CFGTBL_Trans_Performant)))
922                 return h->access.command_completed(h, q);
923
924         if ((rq->head[rq->current_entry] & 1) == rq->wraparound) {
925                 a = rq->head[rq->current_entry];
926                 rq->current_entry++;
927                 atomic_dec(&h->commands_outstanding);
928         } else {
929                 a = FIFO_EMPTY;
930         }
931         /* Check for wraparound */
932         if (rq->current_entry == h->max_commands) {
933                 rq->current_entry = 0;
934                 rq->wraparound ^= 1;
935         }
936         return a;
937 }
938
939 /*
940  * There are some special bits in the bus address of the
941  * command that we have to set for the controller to know
942  * how to process the command:
943  *
944  * Normal performant mode:
945  * bit 0: 1 means performant mode, 0 means simple mode.
946  * bits 1-3 = block fetch table entry
947  * bits 4-6 = command type (== 0)
948  *
949  * ioaccel1 mode:
950  * bit 0 = "performant mode" bit.
951  * bits 1-3 = block fetch table entry
952  * bits 4-6 = command type (== 110)
953  * (command type is needed because ioaccel1 mode
954  * commands are submitted through the same register as normal
955  * mode commands, so this is how the controller knows whether
956  * the command is normal mode or ioaccel1 mode.)
957  *
958  * ioaccel2 mode:
959  * bit 0 = "performant mode" bit.
960  * bits 1-4 = block fetch table entry (note extra bit)
961  * bits 4-6 = not needed, because ioaccel2 mode has
962  * a separate special register for submitting commands.
963  */
964
965 /*
966  * set_performant_mode: Modify the tag for cciss performant
967  * set bit 0 for pull model, bits 3-1 for block fetch
968  * register number
969  */
970 #define DEFAULT_REPLY_QUEUE (-1)
971 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c,
972                                         int reply_queue)
973 {
974         if (likely(h->transMethod & CFGTBL_Trans_Performant)) {
975                 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
976                 if (unlikely(!h->msix_vector))
977                         return;
978                 if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
979                         c->Header.ReplyQueue =
980                                 raw_smp_processor_id() % h->nreply_queues;
981                 else
982                         c->Header.ReplyQueue = reply_queue % h->nreply_queues;
983         }
984 }
985
986 static void set_ioaccel1_performant_mode(struct ctlr_info *h,
987                                                 struct CommandList *c,
988                                                 int reply_queue)
989 {
990         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
991
992         /*
993          * Tell the controller to post the reply to the queue for this
994          * processor.  This seems to give the best I/O throughput.
995          */
996         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
997                 cp->ReplyQueue = smp_processor_id() % h->nreply_queues;
998         else
999                 cp->ReplyQueue = reply_queue % h->nreply_queues;
1000         /*
1001          * Set the bits in the address sent down to include:
1002          *  - performant mode bit (bit 0)
1003          *  - pull count (bits 1-3)
1004          *  - command type (bits 4-6)
1005          */
1006         c->busaddr |= 1 | (h->ioaccel1_blockFetchTable[c->Header.SGList] << 1) |
1007                                         IOACCEL1_BUSADDR_CMDTYPE;
1008 }
1009
1010 static void set_ioaccel2_tmf_performant_mode(struct ctlr_info *h,
1011                                                 struct CommandList *c,
1012                                                 int reply_queue)
1013 {
1014         struct hpsa_tmf_struct *cp = (struct hpsa_tmf_struct *)
1015                 &h->ioaccel2_cmd_pool[c->cmdindex];
1016
1017         /* Tell the controller to post the reply to the queue for this
1018          * processor.  This seems to give the best I/O throughput.
1019          */
1020         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1021                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1022         else
1023                 cp->reply_queue = reply_queue % h->nreply_queues;
1024         /* Set the bits in the address sent down to include:
1025          *  - performant mode bit not used in ioaccel mode 2
1026          *  - pull count (bits 0-3)
1027          *  - command type isn't needed for ioaccel2
1028          */
1029         c->busaddr |= h->ioaccel2_blockFetchTable[0];
1030 }
1031
1032 static void set_ioaccel2_performant_mode(struct ctlr_info *h,
1033                                                 struct CommandList *c,
1034                                                 int reply_queue)
1035 {
1036         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
1037
1038         /*
1039          * Tell the controller to post the reply to the queue for this
1040          * processor.  This seems to give the best I/O throughput.
1041          */
1042         if (likely(reply_queue == DEFAULT_REPLY_QUEUE))
1043                 cp->reply_queue = smp_processor_id() % h->nreply_queues;
1044         else
1045                 cp->reply_queue = reply_queue % h->nreply_queues;
1046         /*
1047          * Set the bits in the address sent down to include:
1048          *  - performant mode bit not used in ioaccel mode 2
1049          *  - pull count (bits 0-3)
1050          *  - command type isn't needed for ioaccel2
1051          */
1052         c->busaddr |= (h->ioaccel2_blockFetchTable[cp->sg_count]);
1053 }
1054
1055 static int is_firmware_flash_cmd(u8 *cdb)
1056 {
1057         return cdb[0] == BMIC_WRITE && cdb[6] == BMIC_FLASH_FIRMWARE;
1058 }
1059
1060 /*
1061  * During firmware flash, the heartbeat register may not update as frequently
1062  * as it should.  So we dial down lockup detection during firmware flash. and
1063  * dial it back up when firmware flash completes.
1064  */
1065 #define HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH (240 * HZ)
1066 #define HEARTBEAT_SAMPLE_INTERVAL (30 * HZ)
1067 static void dial_down_lockup_detection_during_fw_flash(struct ctlr_info *h,
1068                 struct CommandList *c)
1069 {
1070         if (!is_firmware_flash_cmd(c->Request.CDB))
1071                 return;
1072         atomic_inc(&h->firmware_flash_in_progress);
1073         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL_DURING_FLASH;
1074 }
1075
1076 static void dial_up_lockup_detection_on_fw_flash_complete(struct ctlr_info *h,
1077                 struct CommandList *c)
1078 {
1079         if (is_firmware_flash_cmd(c->Request.CDB) &&
1080                 atomic_dec_and_test(&h->firmware_flash_in_progress))
1081                 h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
1082 }
1083
1084 static void __enqueue_cmd_and_start_io(struct ctlr_info *h,
1085         struct CommandList *c, int reply_queue)
1086 {
1087         dial_down_lockup_detection_during_fw_flash(h, c);
1088         atomic_inc(&h->commands_outstanding);
1089         switch (c->cmd_type) {
1090         case CMD_IOACCEL1:
1091                 set_ioaccel1_performant_mode(h, c, reply_queue);
1092                 writel(c->busaddr, h->vaddr + SA5_REQUEST_PORT_OFFSET);
1093                 break;
1094         case CMD_IOACCEL2:
1095                 set_ioaccel2_performant_mode(h, c, reply_queue);
1096                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1097                 break;
1098         case IOACCEL2_TMF:
1099                 set_ioaccel2_tmf_performant_mode(h, c, reply_queue);
1100                 writel(c->busaddr, h->vaddr + IOACCEL2_INBOUND_POSTQ_32);
1101                 break;
1102         default:
1103                 set_performant_mode(h, c, reply_queue);
1104                 h->access.submit_command(h, c);
1105         }
1106 }
1107
1108 static void enqueue_cmd_and_start_io(struct ctlr_info *h, struct CommandList *c)
1109 {
1110         if (unlikely(hpsa_is_pending_event(c)))
1111                 return finish_cmd(c);
1112
1113         __enqueue_cmd_and_start_io(h, c, DEFAULT_REPLY_QUEUE);
1114 }
1115
1116 static inline int is_hba_lunid(unsigned char scsi3addr[])
1117 {
1118         return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
1119 }
1120
1121 static inline int is_scsi_rev_5(struct ctlr_info *h)
1122 {
1123         if (!h->hba_inquiry_data)
1124                 return 0;
1125         if ((h->hba_inquiry_data[2] & 0x07) == 5)
1126                 return 1;
1127         return 0;
1128 }
1129
1130 static int hpsa_find_target_lun(struct ctlr_info *h,
1131         unsigned char scsi3addr[], int bus, int *target, int *lun)
1132 {
1133         /* finds an unused bus, target, lun for a new physical device
1134          * assumes h->devlock is held
1135          */
1136         int i, found = 0;
1137         DECLARE_BITMAP(lun_taken, HPSA_MAX_DEVICES);
1138
1139         bitmap_zero(lun_taken, HPSA_MAX_DEVICES);
1140
1141         for (i = 0; i < h->ndevices; i++) {
1142                 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
1143                         __set_bit(h->dev[i]->target, lun_taken);
1144         }
1145
1146         i = find_first_zero_bit(lun_taken, HPSA_MAX_DEVICES);
1147         if (i < HPSA_MAX_DEVICES) {
1148                 /* *bus = 1; */
1149                 *target = i;
1150                 *lun = 0;
1151                 found = 1;
1152         }
1153         return !found;
1154 }
1155
1156 static void hpsa_show_dev_msg(const char *level, struct ctlr_info *h,
1157         struct hpsa_scsi_dev_t *dev, char *description)
1158 {
1159 #define LABEL_SIZE 25
1160         char label[LABEL_SIZE];
1161
1162         if (h == NULL || h->pdev == NULL || h->scsi_host == NULL)
1163                 return;
1164
1165         switch (dev->devtype) {
1166         case TYPE_RAID:
1167                 snprintf(label, LABEL_SIZE, "controller");
1168                 break;
1169         case TYPE_ENCLOSURE:
1170                 snprintf(label, LABEL_SIZE, "enclosure");
1171                 break;
1172         case TYPE_DISK:
1173                 if (dev->external)
1174                         snprintf(label, LABEL_SIZE, "external");
1175                 else if (!is_logical_dev_addr_mode(dev->scsi3addr))
1176                         snprintf(label, LABEL_SIZE, "%s",
1177                                 raid_label[PHYSICAL_DRIVE]);
1178                 else
1179                         snprintf(label, LABEL_SIZE, "RAID-%s",
1180                                 dev->raid_level > RAID_UNKNOWN ? "?" :
1181                                 raid_label[dev->raid_level]);
1182                 break;
1183         case TYPE_ROM:
1184                 snprintf(label, LABEL_SIZE, "rom");
1185                 break;
1186         case TYPE_TAPE:
1187                 snprintf(label, LABEL_SIZE, "tape");
1188                 break;
1189         case TYPE_MEDIUM_CHANGER:
1190                 snprintf(label, LABEL_SIZE, "changer");
1191                 break;
1192         default:
1193                 snprintf(label, LABEL_SIZE, "UNKNOWN");
1194                 break;
1195         }
1196
1197         dev_printk(level, &h->pdev->dev,
1198                         "scsi %d:%d:%d:%d: %s %s %.8s %.16s %s SSDSmartPathCap%c En%c Exp=%d\n",
1199                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
1200                         description,
1201                         scsi_device_type(dev->devtype),
1202                         dev->vendor,
1203                         dev->model,
1204                         label,
1205                         dev->offload_config ? '+' : '-',
1206                         dev->offload_enabled ? '+' : '-',
1207                         dev->expose_device);
1208 }
1209
1210 /* Add an entry into h->dev[] array. */
1211 static int hpsa_scsi_add_entry(struct ctlr_info *h,
1212                 struct hpsa_scsi_dev_t *device,
1213                 struct hpsa_scsi_dev_t *added[], int *nadded)
1214 {
1215         /* assumes h->devlock is held */
1216         int n = h->ndevices;
1217         int i;
1218         unsigned char addr1[8], addr2[8];
1219         struct hpsa_scsi_dev_t *sd;
1220
1221         if (n >= HPSA_MAX_DEVICES) {
1222                 dev_err(&h->pdev->dev, "too many devices, some will be "
1223                         "inaccessible.\n");
1224                 return -1;
1225         }
1226
1227         /* physical devices do not have lun or target assigned until now. */
1228         if (device->lun != -1)
1229                 /* Logical device, lun is already assigned. */
1230                 goto lun_assigned;
1231
1232         /* If this device a non-zero lun of a multi-lun device
1233          * byte 4 of the 8-byte LUN addr will contain the logical
1234          * unit no, zero otherwise.
1235          */
1236         if (device->scsi3addr[4] == 0) {
1237                 /* This is not a non-zero lun of a multi-lun device */
1238                 if (hpsa_find_target_lun(h, device->scsi3addr,
1239                         device->bus, &device->target, &device->lun) != 0)
1240                         return -1;
1241                 goto lun_assigned;
1242         }
1243
1244         /* This is a non-zero lun of a multi-lun device.
1245          * Search through our list and find the device which
1246          * has the same 8 byte LUN address, excepting byte 4 and 5.
1247          * Assign the same bus and target for this new LUN.
1248          * Use the logical unit number from the firmware.
1249          */
1250         memcpy(addr1, device->scsi3addr, 8);
1251         addr1[4] = 0;
1252         addr1[5] = 0;
1253         for (i = 0; i < n; i++) {
1254                 sd = h->dev[i];
1255                 memcpy(addr2, sd->scsi3addr, 8);
1256                 addr2[4] = 0;
1257                 addr2[5] = 0;
1258                 /* differ only in byte 4 and 5? */
1259                 if (memcmp(addr1, addr2, 8) == 0) {
1260                         device->bus = sd->bus;
1261                         device->target = sd->target;
1262                         device->lun = device->scsi3addr[4];
1263                         break;
1264                 }
1265         }
1266         if (device->lun == -1) {
1267                 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
1268                         " suspect firmware bug or unsupported hardware "
1269                         "configuration.\n");
1270                         return -1;
1271         }
1272
1273 lun_assigned:
1274
1275         h->dev[n] = device;
1276         h->ndevices++;
1277         added[*nadded] = device;
1278         (*nadded)++;
1279         hpsa_show_dev_msg(KERN_INFO, h, device,
1280                 device->expose_device ? "added" : "masked");
1281         device->offload_to_be_enabled = device->offload_enabled;
1282         device->offload_enabled = 0;
1283         return 0;
1284 }
1285
1286 /* Update an entry in h->dev[] array. */
1287 static void hpsa_scsi_update_entry(struct ctlr_info *h,
1288         int entry, struct hpsa_scsi_dev_t *new_entry)
1289 {
1290         int offload_enabled;
1291         /* assumes h->devlock is held */
1292         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1293
1294         /* Raid level changed. */
1295         h->dev[entry]->raid_level = new_entry->raid_level;
1296
1297         /* Raid offload parameters changed.  Careful about the ordering. */
1298         if (new_entry->offload_config && new_entry->offload_enabled) {
1299                 /*
1300                  * if drive is newly offload_enabled, we want to copy the
1301                  * raid map data first.  If previously offload_enabled and
1302                  * offload_config were set, raid map data had better be
1303                  * the same as it was before.  if raid map data is changed
1304                  * then it had better be the case that
1305                  * h->dev[entry]->offload_enabled is currently 0.
1306                  */
1307                 h->dev[entry]->raid_map = new_entry->raid_map;
1308                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1309         }
1310         if (new_entry->hba_ioaccel_enabled) {
1311                 h->dev[entry]->ioaccel_handle = new_entry->ioaccel_handle;
1312                 wmb(); /* set ioaccel_handle *before* hba_ioaccel_enabled */
1313         }
1314         h->dev[entry]->hba_ioaccel_enabled = new_entry->hba_ioaccel_enabled;
1315         h->dev[entry]->offload_config = new_entry->offload_config;
1316         h->dev[entry]->offload_to_mirror = new_entry->offload_to_mirror;
1317         h->dev[entry]->queue_depth = new_entry->queue_depth;
1318
1319         /*
1320          * We can turn off ioaccel offload now, but need to delay turning
1321          * it on until we can update h->dev[entry]->phys_disk[], but we
1322          * can't do that until all the devices are updated.
1323          */
1324         h->dev[entry]->offload_to_be_enabled = new_entry->offload_enabled;
1325         if (!new_entry->offload_enabled)
1326                 h->dev[entry]->offload_enabled = 0;
1327
1328         offload_enabled = h->dev[entry]->offload_enabled;
1329         h->dev[entry]->offload_enabled = h->dev[entry]->offload_to_be_enabled;
1330         hpsa_show_dev_msg(KERN_INFO, h, h->dev[entry], "updated");
1331         h->dev[entry]->offload_enabled = offload_enabled;
1332 }
1333
1334 /* Replace an entry from h->dev[] array. */
1335 static void hpsa_scsi_replace_entry(struct ctlr_info *h,
1336         int entry, struct hpsa_scsi_dev_t *new_entry,
1337         struct hpsa_scsi_dev_t *added[], int *nadded,
1338         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1339 {
1340         /* assumes h->devlock is held */
1341         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1342         removed[*nremoved] = h->dev[entry];
1343         (*nremoved)++;
1344
1345         /*
1346          * New physical devices won't have target/lun assigned yet
1347          * so we need to preserve the values in the slot we are replacing.
1348          */
1349         if (new_entry->target == -1) {
1350                 new_entry->target = h->dev[entry]->target;
1351                 new_entry->lun = h->dev[entry]->lun;
1352         }
1353
1354         h->dev[entry] = new_entry;
1355         added[*nadded] = new_entry;
1356         (*nadded)++;
1357         hpsa_show_dev_msg(KERN_INFO, h, new_entry, "replaced");
1358         new_entry->offload_to_be_enabled = new_entry->offload_enabled;
1359         new_entry->offload_enabled = 0;
1360 }
1361
1362 /* Remove an entry from h->dev[] array. */
1363 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int entry,
1364         struct hpsa_scsi_dev_t *removed[], int *nremoved)
1365 {
1366         /* assumes h->devlock is held */
1367         int i;
1368         struct hpsa_scsi_dev_t *sd;
1369
1370         BUG_ON(entry < 0 || entry >= HPSA_MAX_DEVICES);
1371
1372         sd = h->dev[entry];
1373         removed[*nremoved] = h->dev[entry];
1374         (*nremoved)++;
1375
1376         for (i = entry; i < h->ndevices-1; i++)
1377                 h->dev[i] = h->dev[i+1];
1378         h->ndevices--;
1379         hpsa_show_dev_msg(KERN_INFO, h, sd, "removed");
1380 }
1381
1382 #define SCSI3ADDR_EQ(a, b) ( \
1383         (a)[7] == (b)[7] && \
1384         (a)[6] == (b)[6] && \
1385         (a)[5] == (b)[5] && \
1386         (a)[4] == (b)[4] && \
1387         (a)[3] == (b)[3] && \
1388         (a)[2] == (b)[2] && \
1389         (a)[1] == (b)[1] && \
1390         (a)[0] == (b)[0])
1391
1392 static void fixup_botched_add(struct ctlr_info *h,
1393         struct hpsa_scsi_dev_t *added)
1394 {
1395         /* called when scsi_add_device fails in order to re-adjust
1396          * h->dev[] to match the mid layer's view.
1397          */
1398         unsigned long flags;
1399         int i, j;
1400
1401         spin_lock_irqsave(&h->lock, flags);
1402         for (i = 0; i < h->ndevices; i++) {
1403                 if (h->dev[i] == added) {
1404                         for (j = i; j < h->ndevices-1; j++)
1405                                 h->dev[j] = h->dev[j+1];
1406                         h->ndevices--;
1407                         break;
1408                 }
1409         }
1410         spin_unlock_irqrestore(&h->lock, flags);
1411         kfree(added);
1412 }
1413
1414 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
1415         struct hpsa_scsi_dev_t *dev2)
1416 {
1417         /* we compare everything except lun and target as these
1418          * are not yet assigned.  Compare parts likely
1419          * to differ first
1420          */
1421         if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
1422                 sizeof(dev1->scsi3addr)) != 0)
1423                 return 0;
1424         if (memcmp(dev1->device_id, dev2->device_id,
1425                 sizeof(dev1->device_id)) != 0)
1426                 return 0;
1427         if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
1428                 return 0;
1429         if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
1430                 return 0;
1431         if (dev1->devtype != dev2->devtype)
1432                 return 0;
1433         if (dev1->bus != dev2->bus)
1434                 return 0;
1435         return 1;
1436 }
1437
1438 static inline int device_updated(struct hpsa_scsi_dev_t *dev1,
1439         struct hpsa_scsi_dev_t *dev2)
1440 {
1441         /* Device attributes that can change, but don't mean
1442          * that the device is a different device, nor that the OS
1443          * needs to be told anything about the change.
1444          */
1445         if (dev1->raid_level != dev2->raid_level)
1446                 return 1;
1447         if (dev1->offload_config != dev2->offload_config)
1448                 return 1;
1449         if (dev1->offload_enabled != dev2->offload_enabled)
1450                 return 1;
1451         if (!is_logical_dev_addr_mode(dev1->scsi3addr))
1452                 if (dev1->queue_depth != dev2->queue_depth)
1453                         return 1;
1454         return 0;
1455 }
1456
1457 /* Find needle in haystack.  If exact match found, return DEVICE_SAME,
1458  * and return needle location in *index.  If scsi3addr matches, but not
1459  * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
1460  * location in *index.
1461  * In the case of a minor device attribute change, such as RAID level, just
1462  * return DEVICE_UPDATED, along with the updated device's location in index.
1463  * If needle not found, return DEVICE_NOT_FOUND.
1464  */
1465 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
1466         struct hpsa_scsi_dev_t *haystack[], int haystack_size,
1467         int *index)
1468 {
1469         int i;
1470 #define DEVICE_NOT_FOUND 0
1471 #define DEVICE_CHANGED 1
1472 #define DEVICE_SAME 2
1473 #define DEVICE_UPDATED 3
1474         if (needle == NULL)
1475                 return DEVICE_NOT_FOUND;
1476
1477         for (i = 0; i < haystack_size; i++) {
1478                 if (haystack[i] == NULL) /* previously removed. */
1479                         continue;
1480                 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
1481                         *index = i;
1482                         if (device_is_the_same(needle, haystack[i])) {
1483                                 if (device_updated(needle, haystack[i]))
1484                                         return DEVICE_UPDATED;
1485                                 return DEVICE_SAME;
1486                         } else {
1487                                 /* Keep offline devices offline */
1488                                 if (needle->volume_offline)
1489                                         return DEVICE_NOT_FOUND;
1490                                 return DEVICE_CHANGED;
1491                         }
1492                 }
1493         }
1494         *index = -1;
1495         return DEVICE_NOT_FOUND;
1496 }
1497
1498 static void hpsa_monitor_offline_device(struct ctlr_info *h,
1499                                         unsigned char scsi3addr[])
1500 {
1501         struct offline_device_entry *device;
1502         unsigned long flags;
1503
1504         /* Check to see if device is already on the list */
1505         spin_lock_irqsave(&h->offline_device_lock, flags);
1506         list_for_each_entry(device, &h->offline_device_list, offline_list) {
1507                 if (memcmp(device->scsi3addr, scsi3addr,
1508                         sizeof(device->scsi3addr)) == 0) {
1509                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1510                         return;
1511                 }
1512         }
1513         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1514
1515         /* Device is not on the list, add it. */
1516         device = kmalloc(sizeof(*device), GFP_KERNEL);
1517         if (!device) {
1518                 dev_warn(&h->pdev->dev, "out of memory in %s\n", __func__);
1519                 return;
1520         }
1521         memcpy(device->scsi3addr, scsi3addr, sizeof(device->scsi3addr));
1522         spin_lock_irqsave(&h->offline_device_lock, flags);
1523         list_add_tail(&device->offline_list, &h->offline_device_list);
1524         spin_unlock_irqrestore(&h->offline_device_lock, flags);
1525 }
1526
1527 /* Print a message explaining various offline volume states */
1528 static void hpsa_show_volume_status(struct ctlr_info *h,
1529         struct hpsa_scsi_dev_t *sd)
1530 {
1531         if (sd->volume_offline == HPSA_VPD_LV_STATUS_UNSUPPORTED)
1532                 dev_info(&h->pdev->dev,
1533                         "C%d:B%d:T%d:L%d Volume status is not available through vital product data pages.\n",
1534                         h->scsi_host->host_no,
1535                         sd->bus, sd->target, sd->lun);
1536         switch (sd->volume_offline) {
1537         case HPSA_LV_OK:
1538                 break;
1539         case HPSA_LV_UNDERGOING_ERASE:
1540                 dev_info(&h->pdev->dev,
1541                         "C%d:B%d:T%d:L%d Volume is undergoing background erase process.\n",
1542                         h->scsi_host->host_no,
1543                         sd->bus, sd->target, sd->lun);
1544                 break;
1545         case HPSA_LV_NOT_AVAILABLE:
1546                 dev_info(&h->pdev->dev,
1547                         "C%d:B%d:T%d:L%d Volume is waiting for transforming volume.\n",
1548                         h->scsi_host->host_no,
1549                         sd->bus, sd->target, sd->lun);
1550                 break;
1551         case HPSA_LV_UNDERGOING_RPI:
1552                 dev_info(&h->pdev->dev,
1553                         "C%d:B%d:T%d:L%d Volume is undergoing rapid parity init.\n",
1554                         h->scsi_host->host_no,
1555                         sd->bus, sd->target, sd->lun);
1556                 break;
1557         case HPSA_LV_PENDING_RPI:
1558                 dev_info(&h->pdev->dev,
1559                         "C%d:B%d:T%d:L%d Volume is queued for rapid parity initialization process.\n",
1560                         h->scsi_host->host_no,
1561                         sd->bus, sd->target, sd->lun);
1562                 break;
1563         case HPSA_LV_ENCRYPTED_NO_KEY:
1564                 dev_info(&h->pdev->dev,
1565                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because key is not present.\n",
1566                         h->scsi_host->host_no,
1567                         sd->bus, sd->target, sd->lun);
1568                 break;
1569         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
1570                 dev_info(&h->pdev->dev,
1571                         "C%d:B%d:T%d:L%d Volume is not encrypted and cannot be accessed because controller is in encryption-only mode.\n",
1572                         h->scsi_host->host_no,
1573                         sd->bus, sd->target, sd->lun);
1574                 break;
1575         case HPSA_LV_UNDERGOING_ENCRYPTION:
1576                 dev_info(&h->pdev->dev,
1577                         "C%d:B%d:T%d:L%d Volume is undergoing encryption process.\n",
1578                         h->scsi_host->host_no,
1579                         sd->bus, sd->target, sd->lun);
1580                 break;
1581         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
1582                 dev_info(&h->pdev->dev,
1583                         "C%d:B%d:T%d:L%d Volume is undergoing encryption re-keying process.\n",
1584                         h->scsi_host->host_no,
1585                         sd->bus, sd->target, sd->lun);
1586                 break;
1587         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
1588                 dev_info(&h->pdev->dev,
1589                         "C%d:B%d:T%d:L%d Volume is encrypted and cannot be accessed because controller does not have encryption enabled.\n",
1590                         h->scsi_host->host_no,
1591                         sd->bus, sd->target, sd->lun);
1592                 break;
1593         case HPSA_LV_PENDING_ENCRYPTION:
1594                 dev_info(&h->pdev->dev,
1595                         "C%d:B%d:T%d:L%d Volume is pending migration to encrypted state, but process has not started.\n",
1596                         h->scsi_host->host_no,
1597                         sd->bus, sd->target, sd->lun);
1598                 break;
1599         case HPSA_LV_PENDING_ENCRYPTION_REKEYING:
1600                 dev_info(&h->pdev->dev,
1601                         "C%d:B%d:T%d:L%d Volume is encrypted and is pending encryption rekeying.\n",
1602                         h->scsi_host->host_no,
1603                         sd->bus, sd->target, sd->lun);
1604                 break;
1605         }
1606 }
1607
1608 /*
1609  * Figure the list of physical drive pointers for a logical drive with
1610  * raid offload configured.
1611  */
1612 static void hpsa_figure_phys_disk_ptrs(struct ctlr_info *h,
1613                                 struct hpsa_scsi_dev_t *dev[], int ndevices,
1614                                 struct hpsa_scsi_dev_t *logical_drive)
1615 {
1616         struct raid_map_data *map = &logical_drive->raid_map;
1617         struct raid_map_disk_data *dd = &map->data[0];
1618         int i, j;
1619         int total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
1620                                 le16_to_cpu(map->metadata_disks_per_row);
1621         int nraid_map_entries = le16_to_cpu(map->row_cnt) *
1622                                 le16_to_cpu(map->layout_map_count) *
1623                                 total_disks_per_row;
1624         int nphys_disk = le16_to_cpu(map->layout_map_count) *
1625                                 total_disks_per_row;
1626         int qdepth;
1627
1628         if (nraid_map_entries > RAID_MAP_MAX_ENTRIES)
1629                 nraid_map_entries = RAID_MAP_MAX_ENTRIES;
1630
1631         logical_drive->nphysical_disks = nraid_map_entries;
1632
1633         qdepth = 0;
1634         for (i = 0; i < nraid_map_entries; i++) {
1635                 logical_drive->phys_disk[i] = NULL;
1636                 if (!logical_drive->offload_config)
1637                         continue;
1638                 for (j = 0; j < ndevices; j++) {
1639                         if (dev[j] == NULL)
1640                                 continue;
1641                         if (dev[j]->devtype != TYPE_DISK)
1642                                 continue;
1643                         if (is_logical_device(dev[j]))
1644                                 continue;
1645                         if (dev[j]->ioaccel_handle != dd[i].ioaccel_handle)
1646                                 continue;
1647
1648                         logical_drive->phys_disk[i] = dev[j];
1649                         if (i < nphys_disk)
1650                                 qdepth = min(h->nr_cmds, qdepth +
1651                                     logical_drive->phys_disk[i]->queue_depth);
1652                         break;
1653                 }
1654
1655                 /*
1656                  * This can happen if a physical drive is removed and
1657                  * the logical drive is degraded.  In that case, the RAID
1658                  * map data will refer to a physical disk which isn't actually
1659                  * present.  And in that case offload_enabled should already
1660                  * be 0, but we'll turn it off here just in case
1661                  */
1662                 if (!logical_drive->phys_disk[i]) {
1663                         logical_drive->offload_enabled = 0;
1664                         logical_drive->offload_to_be_enabled = 0;
1665                         logical_drive->queue_depth = 8;
1666                 }
1667         }
1668         if (nraid_map_entries)
1669                 /*
1670                  * This is correct for reads, too high for full stripe writes,
1671                  * way too high for partial stripe writes
1672                  */
1673                 logical_drive->queue_depth = qdepth;
1674         else
1675                 logical_drive->queue_depth = h->nr_cmds;
1676 }
1677
1678 static void hpsa_update_log_drive_phys_drive_ptrs(struct ctlr_info *h,
1679                                 struct hpsa_scsi_dev_t *dev[], int ndevices)
1680 {
1681         int i;
1682
1683         for (i = 0; i < ndevices; i++) {
1684                 if (dev[i] == NULL)
1685                         continue;
1686                 if (dev[i]->devtype != TYPE_DISK)
1687                         continue;
1688                 if (!is_logical_device(dev[i]))
1689                         continue;
1690
1691                 /*
1692                  * If offload is currently enabled, the RAID map and
1693                  * phys_disk[] assignment *better* not be changing
1694                  * and since it isn't changing, we do not need to
1695                  * update it.
1696                  */
1697                 if (dev[i]->offload_enabled)
1698                         continue;
1699
1700                 hpsa_figure_phys_disk_ptrs(h, dev, ndevices, dev[i]);
1701         }
1702 }
1703
1704 static int hpsa_add_device(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1705 {
1706         int rc = 0;
1707
1708         if (!h->scsi_host)
1709                 return 1;
1710
1711         if (is_logical_device(device)) /* RAID */
1712                 rc = scsi_add_device(h->scsi_host, device->bus,
1713                                         device->target, device->lun);
1714         else /* HBA */
1715                 rc = hpsa_add_sas_device(h->sas_host, device);
1716
1717         return rc;
1718 }
1719
1720 static void hpsa_remove_device(struct ctlr_info *h,
1721                         struct hpsa_scsi_dev_t *device)
1722 {
1723         struct scsi_device *sdev = NULL;
1724
1725         if (!h->scsi_host)
1726                 return;
1727
1728         if (is_logical_device(device)) { /* RAID */
1729                 sdev = scsi_device_lookup(h->scsi_host, device->bus,
1730                                                 device->target, device->lun);
1731                 if (sdev) {
1732                         scsi_remove_device(sdev);
1733                         scsi_device_put(sdev);
1734                 } else {
1735                         /*
1736                          * We don't expect to get here.  Future commands
1737                          * to this device will get a selection timeout as
1738                          * if the device were gone.
1739                          */
1740                         hpsa_show_dev_msg(KERN_WARNING, h, device,
1741                                         "didn't find device for removal.");
1742                 }
1743         } else /* HBA */
1744                 hpsa_remove_sas_device(device);
1745 }
1746
1747 static void adjust_hpsa_scsi_table(struct ctlr_info *h,
1748         struct hpsa_scsi_dev_t *sd[], int nsds)
1749 {
1750         /* sd contains scsi3 addresses and devtypes, and inquiry
1751          * data.  This function takes what's in sd to be the current
1752          * reality and updates h->dev[] to reflect that reality.
1753          */
1754         int i, entry, device_change, changes = 0;
1755         struct hpsa_scsi_dev_t *csd;
1756         unsigned long flags;
1757         struct hpsa_scsi_dev_t **added, **removed;
1758         int nadded, nremoved;
1759
1760         /*
1761          * A reset can cause a device status to change
1762          * re-schedule the scan to see what happened.
1763          */
1764         if (h->reset_in_progress) {
1765                 h->drv_req_rescan = 1;
1766                 return;
1767         }
1768
1769         added = kzalloc(sizeof(*added) * HPSA_MAX_DEVICES, GFP_KERNEL);
1770         removed = kzalloc(sizeof(*removed) * HPSA_MAX_DEVICES, GFP_KERNEL);
1771
1772         if (!added || !removed) {
1773                 dev_warn(&h->pdev->dev, "out of memory in "
1774                         "adjust_hpsa_scsi_table\n");
1775                 goto free_and_out;
1776         }
1777
1778         spin_lock_irqsave(&h->devlock, flags);
1779
1780         /* find any devices in h->dev[] that are not in
1781          * sd[] and remove them from h->dev[], and for any
1782          * devices which have changed, remove the old device
1783          * info and add the new device info.
1784          * If minor device attributes change, just update
1785          * the existing device structure.
1786          */
1787         i = 0;
1788         nremoved = 0;
1789         nadded = 0;
1790         while (i < h->ndevices) {
1791                 csd = h->dev[i];
1792                 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
1793                 if (device_change == DEVICE_NOT_FOUND) {
1794                         changes++;
1795                         hpsa_scsi_remove_entry(h, i, removed, &nremoved);
1796                         continue; /* remove ^^^, hence i not incremented */
1797                 } else if (device_change == DEVICE_CHANGED) {
1798                         changes++;
1799                         hpsa_scsi_replace_entry(h, i, sd[entry],
1800                                 added, &nadded, removed, &nremoved);
1801                         /* Set it to NULL to prevent it from being freed
1802                          * at the bottom of hpsa_update_scsi_devices()
1803                          */
1804                         sd[entry] = NULL;
1805                 } else if (device_change == DEVICE_UPDATED) {
1806                         hpsa_scsi_update_entry(h, i, sd[entry]);
1807                 }
1808                 i++;
1809         }
1810
1811         /* Now, make sure every device listed in sd[] is also
1812          * listed in h->dev[], adding them if they aren't found
1813          */
1814
1815         for (i = 0; i < nsds; i++) {
1816                 if (!sd[i]) /* if already added above. */
1817                         continue;
1818
1819                 /* Don't add devices which are NOT READY, FORMAT IN PROGRESS
1820                  * as the SCSI mid-layer does not handle such devices well.
1821                  * It relentlessly loops sending TUR at 3Hz, then READ(10)
1822                  * at 160Hz, and prevents the system from coming up.
1823                  */
1824                 if (sd[i]->volume_offline) {
1825                         hpsa_show_volume_status(h, sd[i]);
1826                         hpsa_show_dev_msg(KERN_INFO, h, sd[i], "offline");
1827                         continue;
1828                 }
1829
1830                 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
1831                                         h->ndevices, &entry);
1832                 if (device_change == DEVICE_NOT_FOUND) {
1833                         changes++;
1834                         if (hpsa_scsi_add_entry(h, sd[i], added, &nadded) != 0)
1835                                 break;
1836                         sd[i] = NULL; /* prevent from being freed later. */
1837                 } else if (device_change == DEVICE_CHANGED) {
1838                         /* should never happen... */
1839                         changes++;
1840                         dev_warn(&h->pdev->dev,
1841                                 "device unexpectedly changed.\n");
1842                         /* but if it does happen, we just ignore that device */
1843                 }
1844         }
1845         hpsa_update_log_drive_phys_drive_ptrs(h, h->dev, h->ndevices);
1846
1847         /* Now that h->dev[]->phys_disk[] is coherent, we can enable
1848          * any logical drives that need it enabled.
1849          */
1850         for (i = 0; i < h->ndevices; i++) {
1851                 if (h->dev[i] == NULL)
1852                         continue;
1853                 h->dev[i]->offload_enabled = h->dev[i]->offload_to_be_enabled;
1854         }
1855
1856         spin_unlock_irqrestore(&h->devlock, flags);
1857
1858         /* Monitor devices which are in one of several NOT READY states to be
1859          * brought online later. This must be done without holding h->devlock,
1860          * so don't touch h->dev[]
1861          */
1862         for (i = 0; i < nsds; i++) {
1863                 if (!sd[i]) /* if already added above. */
1864                         continue;
1865                 if (sd[i]->volume_offline)
1866                         hpsa_monitor_offline_device(h, sd[i]->scsi3addr);
1867         }
1868
1869         /* Don't notify scsi mid layer of any changes the first time through
1870          * (or if there are no changes) scsi_scan_host will do it later the
1871          * first time through.
1872          */
1873         if (!changes)
1874                 goto free_and_out;
1875
1876         /* Notify scsi mid layer of any removed devices */
1877         for (i = 0; i < nremoved; i++) {
1878                 if (removed[i] == NULL)
1879                         continue;
1880                 if (removed[i]->expose_device)
1881                         hpsa_remove_device(h, removed[i]);
1882                 kfree(removed[i]);
1883                 removed[i] = NULL;
1884         }
1885
1886         /* Notify scsi mid layer of any added devices */
1887         for (i = 0; i < nadded; i++) {
1888                 int rc = 0;
1889
1890                 if (added[i] == NULL)
1891                         continue;
1892                 if (!(added[i]->expose_device))
1893                         continue;
1894                 rc = hpsa_add_device(h, added[i]);
1895                 if (!rc)
1896                         continue;
1897                 dev_warn(&h->pdev->dev,
1898                         "addition failed %d, device not added.", rc);
1899                 /* now we have to remove it from h->dev,
1900                  * since it didn't get added to scsi mid layer
1901                  */
1902                 fixup_botched_add(h, added[i]);
1903                 h->drv_req_rescan = 1;
1904         }
1905
1906 free_and_out:
1907         kfree(added);
1908         kfree(removed);
1909 }
1910
1911 /*
1912  * Lookup bus/target/lun and return corresponding struct hpsa_scsi_dev_t *
1913  * Assume's h->devlock is held.
1914  */
1915 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
1916         int bus, int target, int lun)
1917 {
1918         int i;
1919         struct hpsa_scsi_dev_t *sd;
1920
1921         for (i = 0; i < h->ndevices; i++) {
1922                 sd = h->dev[i];
1923                 if (sd->bus == bus && sd->target == target && sd->lun == lun)
1924                         return sd;
1925         }
1926         return NULL;
1927 }
1928
1929 static int hpsa_slave_alloc(struct scsi_device *sdev)
1930 {
1931         struct hpsa_scsi_dev_t *sd;
1932         unsigned long flags;
1933         struct ctlr_info *h;
1934
1935         h = sdev_to_hba(sdev);
1936         spin_lock_irqsave(&h->devlock, flags);
1937         if (sdev_channel(sdev) == HPSA_PHYSICAL_DEVICE_BUS) {
1938                 struct scsi_target *starget;
1939                 struct sas_rphy *rphy;
1940
1941                 starget = scsi_target(sdev);
1942                 rphy = target_to_rphy(starget);
1943                 sd = hpsa_find_device_by_sas_rphy(h, rphy);
1944                 if (sd) {
1945                         sd->target = sdev_id(sdev);
1946                         sd->lun = sdev->lun;
1947                 }
1948         } else
1949                 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
1950                                         sdev_id(sdev), sdev->lun);
1951
1952         if (sd && sd->expose_device) {
1953                 atomic_set(&sd->ioaccel_cmds_out, 0);
1954                 sdev->hostdata = sd;
1955         } else
1956                 sdev->hostdata = NULL;
1957         spin_unlock_irqrestore(&h->devlock, flags);
1958         return 0;
1959 }
1960
1961 /* configure scsi device based on internal per-device structure */
1962 static int hpsa_slave_configure(struct scsi_device *sdev)
1963 {
1964         struct hpsa_scsi_dev_t *sd;
1965         int queue_depth;
1966
1967         sd = sdev->hostdata;
1968         sdev->no_uld_attach = !sd || !sd->expose_device;
1969
1970         if (sd)
1971                 queue_depth = sd->queue_depth != 0 ?
1972                         sd->queue_depth : sdev->host->can_queue;
1973         else
1974                 queue_depth = sdev->host->can_queue;
1975
1976         scsi_change_queue_depth(sdev, queue_depth);
1977
1978         return 0;
1979 }
1980
1981 static void hpsa_slave_destroy(struct scsi_device *sdev)
1982 {
1983         /* nothing to do. */
1984 }
1985
1986 static void hpsa_free_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
1987 {
1988         int i;
1989
1990         if (!h->ioaccel2_cmd_sg_list)
1991                 return;
1992         for (i = 0; i < h->nr_cmds; i++) {
1993                 kfree(h->ioaccel2_cmd_sg_list[i]);
1994                 h->ioaccel2_cmd_sg_list[i] = NULL;
1995         }
1996         kfree(h->ioaccel2_cmd_sg_list);
1997         h->ioaccel2_cmd_sg_list = NULL;
1998 }
1999
2000 static int hpsa_allocate_ioaccel2_sg_chain_blocks(struct ctlr_info *h)
2001 {
2002         int i;
2003
2004         if (h->chainsize <= 0)
2005                 return 0;
2006
2007         h->ioaccel2_cmd_sg_list =
2008                 kzalloc(sizeof(*h->ioaccel2_cmd_sg_list) * h->nr_cmds,
2009                                         GFP_KERNEL);
2010         if (!h->ioaccel2_cmd_sg_list)
2011                 return -ENOMEM;
2012         for (i = 0; i < h->nr_cmds; i++) {
2013                 h->ioaccel2_cmd_sg_list[i] =
2014                         kmalloc(sizeof(*h->ioaccel2_cmd_sg_list[i]) *
2015                                         h->maxsgentries, GFP_KERNEL);
2016                 if (!h->ioaccel2_cmd_sg_list[i])
2017                         goto clean;
2018         }
2019         return 0;
2020
2021 clean:
2022         hpsa_free_ioaccel2_sg_chain_blocks(h);
2023         return -ENOMEM;
2024 }
2025
2026 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
2027 {
2028         int i;
2029
2030         if (!h->cmd_sg_list)
2031                 return;
2032         for (i = 0; i < h->nr_cmds; i++) {
2033                 kfree(h->cmd_sg_list[i]);
2034                 h->cmd_sg_list[i] = NULL;
2035         }
2036         kfree(h->cmd_sg_list);
2037         h->cmd_sg_list = NULL;
2038 }
2039
2040 static int hpsa_alloc_sg_chain_blocks(struct ctlr_info *h)
2041 {
2042         int i;
2043
2044         if (h->chainsize <= 0)
2045                 return 0;
2046
2047         h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
2048                                 GFP_KERNEL);
2049         if (!h->cmd_sg_list) {
2050                 dev_err(&h->pdev->dev, "Failed to allocate SG list\n");
2051                 return -ENOMEM;
2052         }
2053         for (i = 0; i < h->nr_cmds; i++) {
2054                 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
2055                                                 h->chainsize, GFP_KERNEL);
2056                 if (!h->cmd_sg_list[i]) {
2057                         dev_err(&h->pdev->dev, "Failed to allocate cmd SG\n");
2058                         goto clean;
2059                 }
2060         }
2061         return 0;
2062
2063 clean:
2064         hpsa_free_sg_chain_blocks(h);
2065         return -ENOMEM;
2066 }
2067
2068 static int hpsa_map_ioaccel2_sg_chain_block(struct ctlr_info *h,
2069         struct io_accel2_cmd *cp, struct CommandList *c)
2070 {
2071         struct ioaccel2_sg_element *chain_block;
2072         u64 temp64;
2073         u32 chain_size;
2074
2075         chain_block = h->ioaccel2_cmd_sg_list[c->cmdindex];
2076         chain_size = le32_to_cpu(cp->sg[0].length);
2077         temp64 = pci_map_single(h->pdev, chain_block, chain_size,
2078                                 PCI_DMA_TODEVICE);
2079         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2080                 /* prevent subsequent unmapping */
2081                 cp->sg->address = 0;
2082                 return -1;
2083         }
2084         cp->sg->address = cpu_to_le64(temp64);
2085         return 0;
2086 }
2087
2088 static void hpsa_unmap_ioaccel2_sg_chain_block(struct ctlr_info *h,
2089         struct io_accel2_cmd *cp)
2090 {
2091         struct ioaccel2_sg_element *chain_sg;
2092         u64 temp64;
2093         u32 chain_size;
2094
2095         chain_sg = cp->sg;
2096         temp64 = le64_to_cpu(chain_sg->address);
2097         chain_size = le32_to_cpu(cp->sg[0].length);
2098         pci_unmap_single(h->pdev, temp64, chain_size, PCI_DMA_TODEVICE);
2099 }
2100
2101 static int hpsa_map_sg_chain_block(struct ctlr_info *h,
2102         struct CommandList *c)
2103 {
2104         struct SGDescriptor *chain_sg, *chain_block;
2105         u64 temp64;
2106         u32 chain_len;
2107
2108         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2109         chain_block = h->cmd_sg_list[c->cmdindex];
2110         chain_sg->Ext = cpu_to_le32(HPSA_SG_CHAIN);
2111         chain_len = sizeof(*chain_sg) *
2112                 (le16_to_cpu(c->Header.SGTotal) - h->max_cmd_sg_entries);
2113         chain_sg->Len = cpu_to_le32(chain_len);
2114         temp64 = pci_map_single(h->pdev, chain_block, chain_len,
2115                                 PCI_DMA_TODEVICE);
2116         if (dma_mapping_error(&h->pdev->dev, temp64)) {
2117                 /* prevent subsequent unmapping */
2118                 chain_sg->Addr = cpu_to_le64(0);
2119                 return -1;
2120         }
2121         chain_sg->Addr = cpu_to_le64(temp64);
2122         return 0;
2123 }
2124
2125 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
2126         struct CommandList *c)
2127 {
2128         struct SGDescriptor *chain_sg;
2129
2130         if (le16_to_cpu(c->Header.SGTotal) <= h->max_cmd_sg_entries)
2131                 return;
2132
2133         chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
2134         pci_unmap_single(h->pdev, le64_to_cpu(chain_sg->Addr),
2135                         le32_to_cpu(chain_sg->Len), PCI_DMA_TODEVICE);
2136 }
2137
2138
2139 /* Decode the various types of errors on ioaccel2 path.
2140  * Return 1 for any error that should generate a RAID path retry.
2141  * Return 0 for errors that don't require a RAID path retry.
2142  */
2143 static int handle_ioaccel_mode2_error(struct ctlr_info *h,
2144                                         struct CommandList *c,
2145                                         struct scsi_cmnd *cmd,
2146                                         struct io_accel2_cmd *c2)
2147 {
2148         int data_len;
2149         int retry = 0;
2150         u32 ioaccel2_resid = 0;
2151
2152         switch (c2->error_data.serv_response) {
2153         case IOACCEL2_SERV_RESPONSE_COMPLETE:
2154                 switch (c2->error_data.status) {
2155                 case IOACCEL2_STATUS_SR_TASK_COMP_GOOD:
2156                         if (cmd)
2157                                 cmd->result = 0;
2158                         break;
2159                 case IOACCEL2_STATUS_SR_TASK_COMP_CHK_COND:
2160                         cmd->result |= SAM_STAT_CHECK_CONDITION;
2161                         if (c2->error_data.data_present !=
2162                                         IOACCEL2_SENSE_DATA_PRESENT) {
2163                                 memset(cmd->sense_buffer, 0,
2164                                         SCSI_SENSE_BUFFERSIZE);
2165                                 break;
2166                         }
2167                         /* copy the sense data */
2168                         data_len = c2->error_data.sense_data_len;
2169                         if (data_len > SCSI_SENSE_BUFFERSIZE)
2170                                 data_len = SCSI_SENSE_BUFFERSIZE;
2171                         if (data_len > sizeof(c2->error_data.sense_data_buff))
2172                                 data_len =
2173                                         sizeof(c2->error_data.sense_data_buff);
2174                         memcpy(cmd->sense_buffer,
2175                                 c2->error_data.sense_data_buff, data_len);
2176                         retry = 1;
2177                         break;
2178                 case IOACCEL2_STATUS_SR_TASK_COMP_BUSY:
2179                         retry = 1;
2180                         break;
2181                 case IOACCEL2_STATUS_SR_TASK_COMP_RES_CON:
2182                         retry = 1;
2183                         break;
2184                 case IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL:
2185                         retry = 1;
2186                         break;
2187                 case IOACCEL2_STATUS_SR_TASK_COMP_ABORTED:
2188                         retry = 1;
2189                         break;
2190                 default:
2191                         retry = 1;
2192                         break;
2193                 }
2194                 break;
2195         case IOACCEL2_SERV_RESPONSE_FAILURE:
2196                 switch (c2->error_data.status) {
2197                 case IOACCEL2_STATUS_SR_IO_ERROR:
2198                 case IOACCEL2_STATUS_SR_IO_ABORTED:
2199                 case IOACCEL2_STATUS_SR_OVERRUN:
2200                         retry = 1;
2201                         break;
2202                 case IOACCEL2_STATUS_SR_UNDERRUN:
2203                         cmd->result = (DID_OK << 16);           /* host byte */
2204                         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2205                         ioaccel2_resid = get_unaligned_le32(
2206                                                 &c2->error_data.resid_cnt[0]);
2207                         scsi_set_resid(cmd, ioaccel2_resid);
2208                         break;
2209                 case IOACCEL2_STATUS_SR_NO_PATH_TO_DEVICE:
2210                 case IOACCEL2_STATUS_SR_INVALID_DEVICE:
2211                 case IOACCEL2_STATUS_SR_IOACCEL_DISABLED:
2212                         /* We will get an event from ctlr to trigger rescan */
2213                         retry = 1;
2214                         break;
2215                 default:
2216                         retry = 1;
2217                 }
2218                 break;
2219         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
2220                 break;
2221         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
2222                 break;
2223         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
2224                 retry = 1;
2225                 break;
2226         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
2227                 break;
2228         default:
2229                 retry = 1;
2230                 break;
2231         }
2232
2233         return retry;   /* retry on raid path? */
2234 }
2235
2236 static void hpsa_cmd_resolve_events(struct ctlr_info *h,
2237                 struct CommandList *c)
2238 {
2239         bool do_wake = false;
2240
2241         /*
2242          * Prevent the following race in the abort handler:
2243          *
2244          * 1. LLD is requested to abort a SCSI command
2245          * 2. The SCSI command completes
2246          * 3. The struct CommandList associated with step 2 is made available
2247          * 4. New I/O request to LLD to another LUN re-uses struct CommandList
2248          * 5. Abort handler follows scsi_cmnd->host_scribble and
2249          *    finds struct CommandList and tries to aborts it
2250          * Now we have aborted the wrong command.
2251          *
2252          * Reset c->scsi_cmd here so that the abort or reset handler will know
2253          * this command has completed.  Then, check to see if the handler is
2254          * waiting for this command, and, if so, wake it.
2255          */
2256         c->scsi_cmd = SCSI_CMD_IDLE;
2257         mb();   /* Declare command idle before checking for pending events. */
2258         if (c->abort_pending) {
2259                 do_wake = true;
2260                 c->abort_pending = false;
2261         }
2262         if (c->reset_pending) {
2263                 unsigned long flags;
2264                 struct hpsa_scsi_dev_t *dev;
2265
2266                 /*
2267                  * There appears to be a reset pending; lock the lock and
2268                  * reconfirm.  If so, then decrement the count of outstanding
2269                  * commands and wake the reset command if this is the last one.
2270                  */
2271                 spin_lock_irqsave(&h->lock, flags);
2272                 dev = c->reset_pending;         /* Re-fetch under the lock. */
2273                 if (dev && atomic_dec_and_test(&dev->reset_cmds_out))
2274                         do_wake = true;
2275                 c->reset_pending = NULL;
2276                 spin_unlock_irqrestore(&h->lock, flags);
2277         }
2278
2279         if (do_wake)
2280                 wake_up_all(&h->event_sync_wait_queue);
2281 }
2282
2283 static void hpsa_cmd_resolve_and_free(struct ctlr_info *h,
2284                                       struct CommandList *c)
2285 {
2286         hpsa_cmd_resolve_events(h, c);
2287         cmd_tagged_free(h, c);
2288 }
2289
2290 static void hpsa_cmd_free_and_done(struct ctlr_info *h,
2291                 struct CommandList *c, struct scsi_cmnd *cmd)
2292 {
2293         hpsa_cmd_resolve_and_free(h, c);
2294         cmd->scsi_done(cmd);
2295 }
2296
2297 static void hpsa_retry_cmd(struct ctlr_info *h, struct CommandList *c)
2298 {
2299         INIT_WORK(&c->work, hpsa_command_resubmit_worker);
2300         queue_work_on(raw_smp_processor_id(), h->resubmit_wq, &c->work);
2301 }
2302
2303 static void hpsa_set_scsi_cmd_aborted(struct scsi_cmnd *cmd)
2304 {
2305         cmd->result = DID_ABORT << 16;
2306 }
2307
2308 static void hpsa_cmd_abort_and_free(struct ctlr_info *h, struct CommandList *c,
2309                                     struct scsi_cmnd *cmd)
2310 {
2311         hpsa_set_scsi_cmd_aborted(cmd);
2312         dev_warn(&h->pdev->dev, "CDB %16phN was aborted with status 0x%x\n",
2313                          c->Request.CDB, c->err_info->ScsiStatus);
2314         hpsa_cmd_resolve_and_free(h, c);
2315 }
2316
2317 static void process_ioaccel2_completion(struct ctlr_info *h,
2318                 struct CommandList *c, struct scsi_cmnd *cmd,
2319                 struct hpsa_scsi_dev_t *dev)
2320 {
2321         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2322
2323         /* check for good status */
2324         if (likely(c2->error_data.serv_response == 0 &&
2325                         c2->error_data.status == 0)) {
2326                 cmd->result = 0;
2327                 return hpsa_cmd_free_and_done(h, c, cmd);
2328         }
2329
2330         /*
2331          * Any RAID offload error results in retry which will use
2332          * the normal I/O path so the controller can handle whatever's
2333          * wrong.
2334          */
2335         if (is_logical_device(dev) &&
2336                 c2->error_data.serv_response ==
2337                         IOACCEL2_SERV_RESPONSE_FAILURE) {
2338                 if (c2->error_data.status ==
2339                         IOACCEL2_STATUS_SR_IOACCEL_DISABLED)
2340                         dev->offload_enabled = 0;
2341
2342                 return hpsa_retry_cmd(h, c);
2343         }
2344
2345         if (handle_ioaccel_mode2_error(h, c, cmd, c2))
2346                 return hpsa_retry_cmd(h, c);
2347
2348         return hpsa_cmd_free_and_done(h, c, cmd);
2349 }
2350
2351 /* Returns 0 on success, < 0 otherwise. */
2352 static int hpsa_evaluate_tmf_status(struct ctlr_info *h,
2353                                         struct CommandList *cp)
2354 {
2355         u8 tmf_status = cp->err_info->ScsiStatus;
2356
2357         switch (tmf_status) {
2358         case CISS_TMF_COMPLETE:
2359                 /*
2360                  * CISS_TMF_COMPLETE never happens, instead,
2361                  * ei->CommandStatus == 0 for this case.
2362                  */
2363         case CISS_TMF_SUCCESS:
2364                 return 0;
2365         case CISS_TMF_INVALID_FRAME:
2366         case CISS_TMF_NOT_SUPPORTED:
2367         case CISS_TMF_FAILED:
2368         case CISS_TMF_WRONG_LUN:
2369         case CISS_TMF_OVERLAPPED_TAG:
2370                 break;
2371         default:
2372                 dev_warn(&h->pdev->dev, "Unknown TMF status: 0x%02x\n",
2373                                 tmf_status);
2374                 break;
2375         }
2376         return -tmf_status;
2377 }
2378
2379 static void complete_scsi_command(struct CommandList *cp)
2380 {
2381         struct scsi_cmnd *cmd;
2382         struct ctlr_info *h;
2383         struct ErrorInfo *ei;
2384         struct hpsa_scsi_dev_t *dev;
2385         struct io_accel2_cmd *c2;
2386
2387         u8 sense_key;
2388         u8 asc;      /* additional sense code */
2389         u8 ascq;     /* additional sense code qualifier */
2390         unsigned long sense_data_size;
2391
2392         ei = cp->err_info;
2393         cmd = cp->scsi_cmd;
2394         h = cp->h;
2395         dev = cmd->device->hostdata;
2396         c2 = &h->ioaccel2_cmd_pool[cp->cmdindex];
2397
2398         scsi_dma_unmap(cmd); /* undo the DMA mappings */
2399         if ((cp->cmd_type == CMD_SCSI) &&
2400                 (le16_to_cpu(cp->Header.SGTotal) > h->max_cmd_sg_entries))
2401                 hpsa_unmap_sg_chain_block(h, cp);
2402
2403         if ((cp->cmd_type == CMD_IOACCEL2) &&
2404                 (c2->sg[0].chain_indicator == IOACCEL2_CHAIN))
2405                 hpsa_unmap_ioaccel2_sg_chain_block(h, c2);
2406
2407         cmd->result = (DID_OK << 16);           /* host byte */
2408         cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
2409
2410         if (cp->cmd_type == CMD_IOACCEL2 || cp->cmd_type == CMD_IOACCEL1)
2411                 atomic_dec(&cp->phys_disk->ioaccel_cmds_out);
2412
2413         /*
2414          * We check for lockup status here as it may be set for
2415          * CMD_SCSI, CMD_IOACCEL1 and CMD_IOACCEL2 commands by
2416          * fail_all_oustanding_cmds()
2417          */
2418         if (unlikely(ei->CommandStatus == CMD_CTLR_LOCKUP)) {
2419                 /* DID_NO_CONNECT will prevent a retry */
2420                 cmd->result = DID_NO_CONNECT << 16;
2421                 return hpsa_cmd_free_and_done(h, cp, cmd);
2422         }
2423
2424         if ((unlikely(hpsa_is_pending_event(cp)))) {
2425                 if (cp->reset_pending)
2426                         return hpsa_cmd_resolve_and_free(h, cp);
2427                 if (cp->abort_pending)
2428                         return hpsa_cmd_abort_and_free(h, cp, cmd);
2429         }
2430
2431         if (cp->cmd_type == CMD_IOACCEL2)
2432                 return process_ioaccel2_completion(h, cp, cmd, dev);
2433
2434         scsi_set_resid(cmd, ei->ResidualCnt);
2435         if (ei->CommandStatus == 0)
2436                 return hpsa_cmd_free_and_done(h, cp, cmd);
2437
2438         /* For I/O accelerator commands, copy over some fields to the normal
2439          * CISS header used below for error handling.
2440          */
2441         if (cp->cmd_type == CMD_IOACCEL1) {
2442                 struct io_accel1_cmd *c = &h->ioaccel_cmd_pool[cp->cmdindex];
2443                 cp->Header.SGList = scsi_sg_count(cmd);
2444                 cp->Header.SGTotal = cpu_to_le16(cp->Header.SGList);
2445                 cp->Request.CDBLen = le16_to_cpu(c->io_flags) &
2446                         IOACCEL1_IOFLAGS_CDBLEN_MASK;
2447                 cp->Header.tag = c->tag;
2448                 memcpy(cp->Header.LUN.LunAddrBytes, c->CISS_LUN, 8);
2449                 memcpy(cp->Request.CDB, c->CDB, cp->Request.CDBLen);
2450
2451                 /* Any RAID offload error results in retry which will use
2452                  * the normal I/O path so the controller can handle whatever's
2453                  * wrong.
2454                  */
2455                 if (is_logical_device(dev)) {
2456                         if (ei->CommandStatus == CMD_IOACCEL_DISABLED)
2457                                 dev->offload_enabled = 0;
2458                         return hpsa_retry_cmd(h, cp);
2459                 }
2460         }
2461
2462         /* an error has occurred */
2463         switch (ei->CommandStatus) {
2464
2465         case CMD_TARGET_STATUS:
2466                 cmd->result |= ei->ScsiStatus;
2467                 /* copy the sense data */
2468                 if (SCSI_SENSE_BUFFERSIZE < sizeof(ei->SenseInfo))
2469                         sense_data_size = SCSI_SENSE_BUFFERSIZE;
2470                 else
2471                         sense_data_size = sizeof(ei->SenseInfo);
2472                 if (ei->SenseLen < sense_data_size)
2473                         sense_data_size = ei->SenseLen;
2474                 memcpy(cmd->sense_buffer, ei->SenseInfo, sense_data_size);
2475                 if (ei->ScsiStatus)
2476                         decode_sense_data(ei->SenseInfo, sense_data_size,
2477                                 &sense_key, &asc, &ascq);
2478                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
2479                         if (sense_key == ABORTED_COMMAND) {
2480                                 cmd->result |= DID_SOFT_ERROR << 16;
2481                                 break;
2482                         }
2483                         break;
2484                 }
2485                 /* Problem was not a check condition
2486                  * Pass it up to the upper layers...
2487                  */
2488                 if (ei->ScsiStatus) {
2489                         dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
2490                                 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
2491                                 "Returning result: 0x%x\n",
2492                                 cp, ei->ScsiStatus,
2493                                 sense_key, asc, ascq,
2494                                 cmd->result);
2495                 } else {  /* scsi status is zero??? How??? */
2496                         dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
2497                                 "Returning no connection.\n", cp),
2498
2499                         /* Ordinarily, this case should never happen,
2500                          * but there is a bug in some released firmware
2501                          * revisions that allows it to happen if, for
2502                          * example, a 4100 backplane loses power and
2503                          * the tape drive is in it.  We assume that
2504                          * it's a fatal error of some kind because we
2505                          * can't show that it wasn't. We will make it
2506                          * look like selection timeout since that is
2507                          * the most common reason for this to occur,
2508                          * and it's severe enough.
2509                          */
2510
2511                         cmd->result = DID_NO_CONNECT << 16;
2512                 }
2513                 break;
2514
2515         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2516                 break;
2517         case CMD_DATA_OVERRUN:
2518                 dev_warn(&h->pdev->dev,
2519                         "CDB %16phN data overrun\n", cp->Request.CDB);
2520                 break;
2521         case CMD_INVALID: {
2522                 /* print_bytes(cp, sizeof(*cp), 1, 0);
2523                 print_cmd(cp); */
2524                 /* We get CMD_INVALID if you address a non-existent device
2525                  * instead of a selection timeout (no response).  You will
2526                  * see this if you yank out a drive, then try to access it.
2527                  * This is kind of a shame because it means that any other
2528                  * CMD_INVALID (e.g. driver bug) will get interpreted as a
2529                  * missing target. */
2530                 cmd->result = DID_NO_CONNECT << 16;
2531         }
2532                 break;
2533         case CMD_PROTOCOL_ERR:
2534                 cmd->result = DID_ERROR << 16;
2535                 dev_warn(&h->pdev->dev, "CDB %16phN : protocol error\n",
2536                                 cp->Request.CDB);
2537                 break;
2538         case CMD_HARDWARE_ERR:
2539                 cmd->result = DID_ERROR << 16;
2540                 dev_warn(&h->pdev->dev, "CDB %16phN : hardware error\n",
2541                         cp->Request.CDB);
2542                 break;
2543         case CMD_CONNECTION_LOST:
2544                 cmd->result = DID_ERROR << 16;
2545                 dev_warn(&h->pdev->dev, "CDB %16phN : connection lost\n",
2546                         cp->Request.CDB);
2547                 break;
2548         case CMD_ABORTED:
2549                 /* Return now to avoid calling scsi_done(). */
2550                 return hpsa_cmd_abort_and_free(h, cp, cmd);
2551         case CMD_ABORT_FAILED:
2552                 cmd->result = DID_ERROR << 16;
2553                 dev_warn(&h->pdev->dev, "CDB %16phN : abort failed\n",
2554                         cp->Request.CDB);
2555                 break;
2556         case CMD_UNSOLICITED_ABORT:
2557                 cmd->result = DID_SOFT_ERROR << 16; /* retry the command */
2558                 dev_warn(&h->pdev->dev, "CDB %16phN : unsolicited abort\n",
2559                         cp->Request.CDB);
2560                 break;
2561         case CMD_TIMEOUT:
2562                 cmd->result = DID_TIME_OUT << 16;
2563                 dev_warn(&h->pdev->dev, "CDB %16phN timed out\n",
2564                         cp->Request.CDB);
2565                 break;
2566         case CMD_UNABORTABLE:
2567                 cmd->result = DID_ERROR << 16;
2568                 dev_warn(&h->pdev->dev, "Command unabortable\n");
2569                 break;
2570         case CMD_TMF_STATUS:
2571                 if (hpsa_evaluate_tmf_status(h, cp)) /* TMF failed? */
2572                         cmd->result = DID_ERROR << 16;
2573                 break;
2574         case CMD_IOACCEL_DISABLED:
2575                 /* This only handles the direct pass-through case since RAID
2576                  * offload is handled above.  Just attempt a retry.
2577                  */
2578                 cmd->result = DID_SOFT_ERROR << 16;
2579                 dev_warn(&h->pdev->dev,
2580                                 "cp %p had HP SSD Smart Path error\n", cp);
2581                 break;
2582         default:
2583                 cmd->result = DID_ERROR << 16;
2584                 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
2585                                 cp, ei->CommandStatus);
2586         }
2587
2588         return hpsa_cmd_free_and_done(h, cp, cmd);
2589 }
2590
2591 static void hpsa_pci_unmap(struct pci_dev *pdev,
2592         struct CommandList *c, int sg_used, int data_direction)
2593 {
2594         int i;
2595
2596         for (i = 0; i < sg_used; i++)
2597                 pci_unmap_single(pdev, (dma_addr_t) le64_to_cpu(c->SG[i].Addr),
2598                                 le32_to_cpu(c->SG[i].Len),
2599                                 data_direction);
2600 }
2601
2602 static int hpsa_map_one(struct pci_dev *pdev,
2603                 struct CommandList *cp,
2604                 unsigned char *buf,
2605                 size_t buflen,
2606                 int data_direction)
2607 {
2608         u64 addr64;
2609
2610         if (buflen == 0 || data_direction == PCI_DMA_NONE) {
2611                 cp->Header.SGList = 0;
2612                 cp->Header.SGTotal = cpu_to_le16(0);
2613                 return 0;
2614         }
2615
2616         addr64 = pci_map_single(pdev, buf, buflen, data_direction);
2617         if (dma_mapping_error(&pdev->dev, addr64)) {
2618                 /* Prevent subsequent unmap of something never mapped */
2619                 cp->Header.SGList = 0;
2620                 cp->Header.SGTotal = cpu_to_le16(0);
2621                 return -1;
2622         }
2623         cp->SG[0].Addr = cpu_to_le64(addr64);
2624         cp->SG[0].Len = cpu_to_le32(buflen);
2625         cp->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* we are not chaining */
2626         cp->Header.SGList = 1;   /* no. SGs contig in this cmd */
2627         cp->Header.SGTotal = cpu_to_le16(1); /* total sgs in cmd list */
2628         return 0;
2629 }
2630
2631 #define NO_TIMEOUT ((unsigned long) -1)
2632 #define DEFAULT_TIMEOUT 30000 /* milliseconds */
2633 static int hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
2634         struct CommandList *c, int reply_queue, unsigned long timeout_msecs)
2635 {
2636         DECLARE_COMPLETION_ONSTACK(wait);
2637
2638         c->waiting = &wait;
2639         __enqueue_cmd_and_start_io(h, c, reply_queue);
2640         if (timeout_msecs == NO_TIMEOUT) {
2641                 /* TODO: get rid of this no-timeout thing */
2642                 wait_for_completion_io(&wait);
2643                 return IO_OK;
2644         }
2645         if (!wait_for_completion_io_timeout(&wait,
2646                                         msecs_to_jiffies(timeout_msecs))) {
2647                 dev_warn(&h->pdev->dev, "Command timed out.\n");
2648                 return -ETIMEDOUT;
2649         }
2650         return IO_OK;
2651 }
2652
2653 static int hpsa_scsi_do_simple_cmd(struct ctlr_info *h, struct CommandList *c,
2654                                    int reply_queue, unsigned long timeout_msecs)
2655 {
2656         if (unlikely(lockup_detected(h))) {
2657                 c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
2658                 return IO_OK;
2659         }
2660         return hpsa_scsi_do_simple_cmd_core(h, c, reply_queue, timeout_msecs);
2661 }
2662
2663 static u32 lockup_detected(struct ctlr_info *h)
2664 {
2665         int cpu;
2666         u32 rc, *lockup_detected;
2667
2668         cpu = get_cpu();
2669         lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
2670         rc = *lockup_detected;
2671         put_cpu();
2672         return rc;
2673 }
2674
2675 #define MAX_DRIVER_CMD_RETRIES 25
2676 static int hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
2677         struct CommandList *c, int data_direction, unsigned long timeout_msecs)
2678 {
2679         int backoff_time = 10, retry_count = 0;
2680         int rc;
2681
2682         do {
2683                 memset(c->err_info, 0, sizeof(*c->err_info));
2684                 rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE,
2685                                                   timeout_msecs);
2686                 if (rc)
2687                         break;
2688                 retry_count++;
2689                 if (retry_count > 3) {
2690                         msleep(backoff_time);
2691                         if (backoff_time < 1000)
2692                                 backoff_time *= 2;
2693                 }
2694         } while ((check_for_unit_attention(h, c) ||
2695                         check_for_busy(h, c)) &&
2696                         retry_count <= MAX_DRIVER_CMD_RETRIES);
2697         hpsa_pci_unmap(h->pdev, c, 1, data_direction);
2698         if (retry_count > MAX_DRIVER_CMD_RETRIES)
2699                 rc = -EIO;
2700         return rc;
2701 }
2702
2703 static void hpsa_print_cmd(struct ctlr_info *h, char *txt,
2704                                 struct CommandList *c)
2705 {
2706         const u8 *cdb = c->Request.CDB;
2707         const u8 *lun = c->Header.LUN.LunAddrBytes;
2708
2709         dev_warn(&h->pdev->dev, "%s: LUN:%02x%02x%02x%02x%02x%02x%02x%02x"
2710         " CDB:%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n",
2711                 txt, lun[0], lun[1], lun[2], lun[3],
2712                 lun[4], lun[5], lun[6], lun[7],
2713                 cdb[0], cdb[1], cdb[2], cdb[3],
2714                 cdb[4], cdb[5], cdb[6], cdb[7],
2715                 cdb[8], cdb[9], cdb[10], cdb[11],
2716                 cdb[12], cdb[13], cdb[14], cdb[15]);
2717 }
2718
2719 static void hpsa_scsi_interpret_error(struct ctlr_info *h,
2720                         struct CommandList *cp)
2721 {
2722         const struct ErrorInfo *ei = cp->err_info;
2723         struct device *d = &cp->h->pdev->dev;
2724         u8 sense_key, asc, ascq;
2725         int sense_len;
2726
2727         switch (ei->CommandStatus) {
2728         case CMD_TARGET_STATUS:
2729                 if (ei->SenseLen > sizeof(ei->SenseInfo))
2730                         sense_len = sizeof(ei->SenseInfo);
2731                 else
2732                         sense_len = ei->SenseLen;
2733                 decode_sense_data(ei->SenseInfo, sense_len,
2734                                         &sense_key, &asc, &ascq);
2735                 hpsa_print_cmd(h, "SCSI status", cp);
2736                 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION)
2737                         dev_warn(d, "SCSI Status = 02, Sense key = 0x%02x, ASC = 0x%02x, ASCQ = 0x%02x\n",
2738                                 sense_key, asc, ascq);
2739                 else
2740                         dev_warn(d, "SCSI Status = 0x%02x\n", ei->ScsiStatus);
2741                 if (ei->ScsiStatus == 0)
2742                         dev_warn(d, "SCSI status is abnormally zero.  "
2743                         "(probably indicates selection timeout "
2744                         "reported incorrectly due to a known "
2745                         "firmware bug, circa July, 2001.)\n");
2746                 break;
2747         case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
2748                 break;
2749         case CMD_DATA_OVERRUN:
2750                 hpsa_print_cmd(h, "overrun condition", cp);
2751                 break;
2752         case CMD_INVALID: {
2753                 /* controller unfortunately reports SCSI passthru's
2754                  * to non-existent targets as invalid commands.
2755                  */
2756                 hpsa_print_cmd(h, "invalid command", cp);
2757                 dev_warn(d, "probably means device no longer present\n");
2758                 }
2759                 break;
2760         case CMD_PROTOCOL_ERR:
2761                 hpsa_print_cmd(h, "protocol error", cp);
2762                 break;
2763         case CMD_HARDWARE_ERR:
2764                 hpsa_print_cmd(h, "hardware error", cp);
2765                 break;
2766         case CMD_CONNECTION_LOST:
2767                 hpsa_print_cmd(h, "connection lost", cp);
2768                 break;
2769         case CMD_ABORTED:
2770                 hpsa_print_cmd(h, "aborted", cp);
2771                 break;
2772         case CMD_ABORT_FAILED:
2773                 hpsa_print_cmd(h, "abort failed", cp);
2774                 break;
2775         case CMD_UNSOLICITED_ABORT:
2776                 hpsa_print_cmd(h, "unsolicited abort", cp);
2777                 break;
2778         case CMD_TIMEOUT:
2779                 hpsa_print_cmd(h, "timed out", cp);
2780                 break;
2781         case CMD_UNABORTABLE:
2782                 hpsa_print_cmd(h, "unabortable", cp);
2783                 break;
2784         case CMD_CTLR_LOCKUP:
2785                 hpsa_print_cmd(h, "controller lockup detected", cp);
2786                 break;
2787         default:
2788                 hpsa_print_cmd(h, "unknown status", cp);
2789                 dev_warn(d, "Unknown command status %x\n",
2790                                 ei->CommandStatus);
2791         }
2792 }
2793
2794 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
2795                         u16 page, unsigned char *buf,
2796                         unsigned char bufsize)
2797 {
2798         int rc = IO_OK;
2799         struct CommandList *c;
2800         struct ErrorInfo *ei;
2801
2802         c = cmd_alloc(h);
2803
2804         if (fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize,
2805                         page, scsi3addr, TYPE_CMD)) {
2806                 rc = -1;
2807                 goto out;
2808         }
2809         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
2810                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
2811         if (rc)
2812                 goto out;
2813         ei = c->err_info;
2814         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
2815                 hpsa_scsi_interpret_error(h, c);
2816                 rc = -1;
2817         }
2818 out:
2819         cmd_free(h, c);
2820         return rc;
2821 }
2822
2823 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr,
2824         u8 reset_type, int reply_queue)
2825 {
2826         int rc = IO_OK;
2827         struct CommandList *c;
2828         struct ErrorInfo *ei;
2829
2830         c = cmd_alloc(h);
2831
2832
2833         /* fill_cmd can't fail here, no data buffer to map. */
2834         (void) fill_cmd(c, reset_type, h, NULL, 0, 0,
2835                         scsi3addr, TYPE_MSG);
2836         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
2837         if (rc) {
2838                 dev_warn(&h->pdev->dev, "Failed to send reset command\n");
2839                 goto out;
2840         }
2841         /* no unmap needed here because no data xfer. */
2842
2843         ei = c->err_info;
2844         if (ei->CommandStatus != 0) {
2845                 hpsa_scsi_interpret_error(h, c);
2846                 rc = -1;
2847         }
2848 out:
2849         cmd_free(h, c);
2850         return rc;
2851 }
2852
2853 static bool hpsa_cmd_dev_match(struct ctlr_info *h, struct CommandList *c,
2854                                struct hpsa_scsi_dev_t *dev,
2855                                unsigned char *scsi3addr)
2856 {
2857         int i;
2858         bool match = false;
2859         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
2860         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
2861
2862         if (hpsa_is_cmd_idle(c))
2863                 return false;
2864
2865         switch (c->cmd_type) {
2866         case CMD_SCSI:
2867         case CMD_IOCTL_PEND:
2868                 match = !memcmp(scsi3addr, &c->Header.LUN.LunAddrBytes,
2869                                 sizeof(c->Header.LUN.LunAddrBytes));
2870                 break;
2871
2872         case CMD_IOACCEL1:
2873         case CMD_IOACCEL2:
2874                 if (c->phys_disk == dev) {
2875                         /* HBA mode match */
2876                         match = true;
2877                 } else {
2878                         /* Possible RAID mode -- check each phys dev. */
2879                         /* FIXME:  Do we need to take out a lock here?  If
2880                          * so, we could just call hpsa_get_pdisk_of_ioaccel2()
2881                          * instead. */
2882                         for (i = 0; i < dev->nphysical_disks && !match; i++) {
2883                                 /* FIXME: an alternate test might be
2884                                  *
2885                                  * match = dev->phys_disk[i]->ioaccel_handle
2886                                  *              == c2->scsi_nexus;      */
2887                                 match = dev->phys_disk[i] == c->phys_disk;
2888                         }
2889                 }
2890                 break;
2891
2892         case IOACCEL2_TMF:
2893                 for (i = 0; i < dev->nphysical_disks && !match; i++) {
2894                         match = dev->phys_disk[i]->ioaccel_handle ==
2895                                         le32_to_cpu(ac->it_nexus);
2896                 }
2897                 break;
2898
2899         case 0:         /* The command is in the middle of being initialized. */
2900                 match = false;
2901                 break;
2902
2903         default:
2904                 dev_err(&h->pdev->dev, "unexpected cmd_type: %d\n",
2905                         c->cmd_type);
2906                 BUG();
2907         }
2908
2909         return match;
2910 }
2911
2912 static int hpsa_do_reset(struct ctlr_info *h, struct hpsa_scsi_dev_t *dev,
2913         unsigned char *scsi3addr, u8 reset_type, int reply_queue)
2914 {
2915         int i;
2916         int rc = 0;
2917
2918         /* We can really only handle one reset at a time */
2919         if (mutex_lock_interruptible(&h->reset_mutex) == -EINTR) {
2920                 dev_warn(&h->pdev->dev, "concurrent reset wait interrupted.\n");
2921                 return -EINTR;
2922         }
2923
2924         BUG_ON(atomic_read(&dev->reset_cmds_out) != 0);
2925
2926         for (i = 0; i < h->nr_cmds; i++) {
2927                 struct CommandList *c = h->cmd_pool + i;
2928                 int refcount = atomic_inc_return(&c->refcount);
2929
2930                 if (refcount > 1 && hpsa_cmd_dev_match(h, c, dev, scsi3addr)) {
2931                         unsigned long flags;
2932
2933                         /*
2934                          * Mark the target command as having a reset pending,
2935                          * then lock a lock so that the command cannot complete
2936                          * while we're considering it.  If the command is not
2937                          * idle then count it; otherwise revoke the event.
2938                          */
2939                         c->reset_pending = dev;
2940                         spin_lock_irqsave(&h->lock, flags);     /* Implied MB */
2941                         if (!hpsa_is_cmd_idle(c))
2942                                 atomic_inc(&dev->reset_cmds_out);
2943                         else
2944                                 c->reset_pending = NULL;
2945                         spin_unlock_irqrestore(&h->lock, flags);
2946                 }
2947
2948                 cmd_free(h, c);
2949         }
2950
2951         rc = hpsa_send_reset(h, scsi3addr, reset_type, reply_queue);
2952         if (!rc)
2953                 wait_event(h->event_sync_wait_queue,
2954                         atomic_read(&dev->reset_cmds_out) == 0 ||
2955                         lockup_detected(h));
2956
2957         if (unlikely(lockup_detected(h))) {
2958                 dev_warn(&h->pdev->dev,
2959                          "Controller lockup detected during reset wait\n");
2960                 rc = -ENODEV;
2961         }
2962
2963         if (unlikely(rc))
2964                 atomic_set(&dev->reset_cmds_out, 0);
2965
2966         mutex_unlock(&h->reset_mutex);
2967         return rc;
2968 }
2969
2970 static void hpsa_get_raid_level(struct ctlr_info *h,
2971         unsigned char *scsi3addr, unsigned char *raid_level)
2972 {
2973         int rc;
2974         unsigned char *buf;
2975
2976         *raid_level = RAID_UNKNOWN;
2977         buf = kzalloc(64, GFP_KERNEL);
2978         if (!buf)
2979                 return;
2980         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0xC1, buf, 64);
2981         if (rc == 0)
2982                 *raid_level = buf[8];
2983         if (*raid_level > RAID_UNKNOWN)
2984                 *raid_level = RAID_UNKNOWN;
2985         kfree(buf);
2986         return;
2987 }
2988
2989 #define HPSA_MAP_DEBUG
2990 #ifdef HPSA_MAP_DEBUG
2991 static void hpsa_debug_map_buff(struct ctlr_info *h, int rc,
2992                                 struct raid_map_data *map_buff)
2993 {
2994         struct raid_map_disk_data *dd = &map_buff->data[0];
2995         int map, row, col;
2996         u16 map_cnt, row_cnt, disks_per_row;
2997
2998         if (rc != 0)
2999                 return;
3000
3001         /* Show details only if debugging has been activated. */
3002         if (h->raid_offload_debug < 2)
3003                 return;
3004
3005         dev_info(&h->pdev->dev, "structure_size = %u\n",
3006                                 le32_to_cpu(map_buff->structure_size));
3007         dev_info(&h->pdev->dev, "volume_blk_size = %u\n",
3008                         le32_to_cpu(map_buff->volume_blk_size));
3009         dev_info(&h->pdev->dev, "volume_blk_cnt = 0x%llx\n",
3010                         le64_to_cpu(map_buff->volume_blk_cnt));
3011         dev_info(&h->pdev->dev, "physicalBlockShift = %u\n",
3012                         map_buff->phys_blk_shift);
3013         dev_info(&h->pdev->dev, "parity_rotation_shift = %u\n",
3014                         map_buff->parity_rotation_shift);
3015         dev_info(&h->pdev->dev, "strip_size = %u\n",
3016                         le16_to_cpu(map_buff->strip_size));
3017         dev_info(&h->pdev->dev, "disk_starting_blk = 0x%llx\n",
3018                         le64_to_cpu(map_buff->disk_starting_blk));
3019         dev_info(&h->pdev->dev, "disk_blk_cnt = 0x%llx\n",
3020                         le64_to_cpu(map_buff->disk_blk_cnt));
3021         dev_info(&h->pdev->dev, "data_disks_per_row = %u\n",
3022                         le16_to_cpu(map_buff->data_disks_per_row));
3023         dev_info(&h->pdev->dev, "metadata_disks_per_row = %u\n",
3024                         le16_to_cpu(map_buff->metadata_disks_per_row));
3025         dev_info(&h->pdev->dev, "row_cnt = %u\n",
3026                         le16_to_cpu(map_buff->row_cnt));
3027         dev_info(&h->pdev->dev, "layout_map_count = %u\n",
3028                         le16_to_cpu(map_buff->layout_map_count));
3029         dev_info(&h->pdev->dev, "flags = 0x%x\n",
3030                         le16_to_cpu(map_buff->flags));
3031         dev_info(&h->pdev->dev, "encrypytion = %s\n",
3032                         le16_to_cpu(map_buff->flags) &
3033                         RAID_MAP_FLAG_ENCRYPT_ON ?  "ON" : "OFF");
3034         dev_info(&h->pdev->dev, "dekindex = %u\n",
3035                         le16_to_cpu(map_buff->dekindex));
3036         map_cnt = le16_to_cpu(map_buff->layout_map_count);
3037         for (map = 0; map < map_cnt; map++) {
3038                 dev_info(&h->pdev->dev, "Map%u:\n", map);
3039                 row_cnt = le16_to_cpu(map_buff->row_cnt);
3040                 for (row = 0; row < row_cnt; row++) {
3041                         dev_info(&h->pdev->dev, "  Row%u:\n", row);
3042                         disks_per_row =
3043                                 le16_to_cpu(map_buff->data_disks_per_row);
3044                         for (col = 0; col < disks_per_row; col++, dd++)
3045                                 dev_info(&h->pdev->dev,
3046                                         "    D%02u: h=0x%04x xor=%u,%u\n",
3047                                         col, dd->ioaccel_handle,
3048                                         dd->xor_mult[0], dd->xor_mult[1]);
3049                         disks_per_row =
3050                                 le16_to_cpu(map_buff->metadata_disks_per_row);
3051                         for (col = 0; col < disks_per_row; col++, dd++)
3052                                 dev_info(&h->pdev->dev,
3053                                         "    M%02u: h=0x%04x xor=%u,%u\n",
3054                                         col, dd->ioaccel_handle,
3055                                         dd->xor_mult[0], dd->xor_mult[1]);
3056                 }
3057         }
3058 }
3059 #else
3060 static void hpsa_debug_map_buff(__attribute__((unused)) struct ctlr_info *h,
3061                         __attribute__((unused)) int rc,
3062                         __attribute__((unused)) struct raid_map_data *map_buff)
3063 {
3064 }
3065 #endif
3066
3067 static int hpsa_get_raid_map(struct ctlr_info *h,
3068         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3069 {
3070         int rc = 0;
3071         struct CommandList *c;
3072         struct ErrorInfo *ei;
3073
3074         c = cmd_alloc(h);
3075
3076         if (fill_cmd(c, HPSA_GET_RAID_MAP, h, &this_device->raid_map,
3077                         sizeof(this_device->raid_map), 0,
3078                         scsi3addr, TYPE_CMD)) {
3079                 dev_warn(&h->pdev->dev, "hpsa_get_raid_map fill_cmd failed\n");
3080                 cmd_free(h, c);
3081                 return -1;
3082         }
3083         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3084                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3085         if (rc)
3086                 goto out;
3087         ei = c->err_info;
3088         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3089                 hpsa_scsi_interpret_error(h, c);
3090                 rc = -1;
3091                 goto out;
3092         }
3093         cmd_free(h, c);
3094
3095         /* @todo in the future, dynamically allocate RAID map memory */
3096         if (le32_to_cpu(this_device->raid_map.structure_size) >
3097                                 sizeof(this_device->raid_map)) {
3098                 dev_warn(&h->pdev->dev, "RAID map size is too large!\n");
3099                 rc = -1;
3100         }
3101         hpsa_debug_map_buff(h, rc, &this_device->raid_map);
3102         return rc;
3103 out:
3104         cmd_free(h, c);
3105         return rc;
3106 }
3107
3108 static int hpsa_bmic_sense_subsystem_information(struct ctlr_info *h,
3109                 unsigned char scsi3addr[], u16 bmic_device_index,
3110                 struct bmic_sense_subsystem_info *buf, size_t bufsize)
3111 {
3112         int rc = IO_OK;
3113         struct CommandList *c;
3114         struct ErrorInfo *ei;
3115
3116         c = cmd_alloc(h);
3117
3118         rc = fill_cmd(c, BMIC_SENSE_SUBSYSTEM_INFORMATION, h, buf, bufsize,
3119                 0, RAID_CTLR_LUNID, TYPE_CMD);
3120         if (rc)
3121                 goto out;
3122
3123         c->Request.CDB[2] = bmic_device_index & 0xff;
3124         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3125
3126         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3127                                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3128         if (rc)
3129                 goto out;
3130         ei = c->err_info;
3131         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3132                 hpsa_scsi_interpret_error(h, c);
3133                 rc = -1;
3134         }
3135 out:
3136         cmd_free(h, c);
3137         return rc;
3138 }
3139
3140 static int hpsa_bmic_id_controller(struct ctlr_info *h,
3141         struct bmic_identify_controller *buf, size_t bufsize)
3142 {
3143         int rc = IO_OK;
3144         struct CommandList *c;
3145         struct ErrorInfo *ei;
3146
3147         c = cmd_alloc(h);
3148
3149         rc = fill_cmd(c, BMIC_IDENTIFY_CONTROLLER, h, buf, bufsize,
3150                 0, RAID_CTLR_LUNID, TYPE_CMD);
3151         if (rc)
3152                 goto out;
3153
3154         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3155                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3156         if (rc)
3157                 goto out;
3158         ei = c->err_info;
3159         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3160                 hpsa_scsi_interpret_error(h, c);
3161                 rc = -1;
3162         }
3163 out:
3164         cmd_free(h, c);
3165         return rc;
3166 }
3167
3168 static int hpsa_bmic_id_physical_device(struct ctlr_info *h,
3169                 unsigned char scsi3addr[], u16 bmic_device_index,
3170                 struct bmic_identify_physical_device *buf, size_t bufsize)
3171 {
3172         int rc = IO_OK;
3173         struct CommandList *c;
3174         struct ErrorInfo *ei;
3175
3176         c = cmd_alloc(h);
3177         rc = fill_cmd(c, BMIC_IDENTIFY_PHYSICAL_DEVICE, h, buf, bufsize,
3178                 0, RAID_CTLR_LUNID, TYPE_CMD);
3179         if (rc)
3180                 goto out;
3181
3182         c->Request.CDB[2] = bmic_device_index & 0xff;
3183         c->Request.CDB[9] = (bmic_device_index >> 8) & 0xff;
3184
3185         hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE,
3186                                                 NO_TIMEOUT);
3187         ei = c->err_info;
3188         if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
3189                 hpsa_scsi_interpret_error(h, c);
3190                 rc = -1;
3191         }
3192 out:
3193         cmd_free(h, c);
3194
3195         return rc;
3196 }
3197
3198 static u64 hpsa_get_sas_address_from_report_physical(struct ctlr_info *h,
3199                                                 unsigned char *scsi3addr)
3200 {
3201         struct ReportExtendedLUNdata *physdev;
3202         u32 nphysicals;
3203         u64 sa = 0;
3204         int i;
3205
3206         physdev = kzalloc(sizeof(*physdev), GFP_KERNEL);
3207         if (!physdev)
3208                 return 0;
3209
3210         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3211                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3212                 kfree(physdev);
3213                 return 0;
3214         }
3215         nphysicals = get_unaligned_be32(physdev->LUNListLength) / 24;
3216
3217         for (i = 0; i < nphysicals; i++)
3218                 if (!memcmp(&physdev->LUN[i].lunid[0], scsi3addr, 8)) {
3219                         sa = get_unaligned_be64(&physdev->LUN[i].wwid[0]);
3220                         break;
3221                 }
3222
3223         kfree(physdev);
3224
3225         return sa;
3226 }
3227
3228 static void hpsa_get_sas_address(struct ctlr_info *h, unsigned char *scsi3addr,
3229                                         struct hpsa_scsi_dev_t *dev)
3230 {
3231         int rc;
3232         u64 sa = 0;
3233
3234         if (is_hba_lunid(scsi3addr)) {
3235                 struct bmic_sense_subsystem_info *ssi;
3236
3237                 ssi = kzalloc(sizeof(*ssi), GFP_KERNEL);
3238                 if (ssi == NULL) {
3239                         dev_warn(&h->pdev->dev,
3240                                 "%s: out of memory\n", __func__);
3241                         return;
3242                 }
3243
3244                 rc = hpsa_bmic_sense_subsystem_information(h,
3245                                         scsi3addr, 0, ssi, sizeof(*ssi));
3246                 if (rc == 0) {
3247                         sa = get_unaligned_be64(ssi->primary_world_wide_id);
3248                         h->sas_address = sa;
3249                 }
3250
3251                 kfree(ssi);
3252         } else
3253                 sa = hpsa_get_sas_address_from_report_physical(h, scsi3addr);
3254
3255         dev->sas_address = sa;
3256 }
3257
3258 /* Get a device id from inquiry page 0x83 */
3259 static int hpsa_vpd_page_supported(struct ctlr_info *h,
3260         unsigned char scsi3addr[], u8 page)
3261 {
3262         int rc;
3263         int i;
3264         int pages;
3265         unsigned char *buf, bufsize;
3266
3267         buf = kzalloc(256, GFP_KERNEL);
3268         if (!buf)
3269                 return 0;
3270
3271         /* Get the size of the page list first */
3272         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3273                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3274                                 buf, HPSA_VPD_HEADER_SZ);
3275         if (rc != 0)
3276                 goto exit_unsupported;
3277         pages = buf[3];
3278         if ((pages + HPSA_VPD_HEADER_SZ) <= 255)
3279                 bufsize = pages + HPSA_VPD_HEADER_SZ;
3280         else
3281                 bufsize = 255;
3282
3283         /* Get the whole VPD page list */
3284         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3285                                 VPD_PAGE | HPSA_VPD_SUPPORTED_PAGES,
3286                                 buf, bufsize);
3287         if (rc != 0)
3288                 goto exit_unsupported;
3289
3290         pages = buf[3];
3291         for (i = 1; i <= pages; i++)
3292                 if (buf[3 + i] == page)
3293                         goto exit_supported;
3294 exit_unsupported:
3295         kfree(buf);
3296         return 0;
3297 exit_supported:
3298         kfree(buf);
3299         return 1;
3300 }
3301
3302 static void hpsa_get_ioaccel_status(struct ctlr_info *h,
3303         unsigned char *scsi3addr, struct hpsa_scsi_dev_t *this_device)
3304 {
3305         int rc;
3306         unsigned char *buf;
3307         u8 ioaccel_status;
3308
3309         this_device->offload_config = 0;
3310         this_device->offload_enabled = 0;
3311         this_device->offload_to_be_enabled = 0;
3312
3313         buf = kzalloc(64, GFP_KERNEL);
3314         if (!buf)
3315                 return;
3316         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_IOACCEL_STATUS))
3317                 goto out;
3318         rc = hpsa_scsi_do_inquiry(h, scsi3addr,
3319                         VPD_PAGE | HPSA_VPD_LV_IOACCEL_STATUS, buf, 64);
3320         if (rc != 0)
3321                 goto out;
3322
3323 #define IOACCEL_STATUS_BYTE 4
3324 #define OFFLOAD_CONFIGURED_BIT 0x01
3325 #define OFFLOAD_ENABLED_BIT 0x02
3326         ioaccel_status = buf[IOACCEL_STATUS_BYTE];
3327         this_device->offload_config =
3328                 !!(ioaccel_status & OFFLOAD_CONFIGURED_BIT);
3329         if (this_device->offload_config) {
3330                 this_device->offload_enabled =
3331                         !!(ioaccel_status & OFFLOAD_ENABLED_BIT);
3332                 if (hpsa_get_raid_map(h, scsi3addr, this_device))
3333                         this_device->offload_enabled = 0;
3334         }
3335         this_device->offload_to_be_enabled = this_device->offload_enabled;
3336 out:
3337         kfree(buf);
3338         return;
3339 }
3340
3341 /* Get the device id from inquiry page 0x83 */
3342 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
3343         unsigned char *device_id, int index, int buflen)
3344 {
3345         int rc;
3346         unsigned char *buf;
3347
3348         if (buflen > 16)
3349                 buflen = 16;
3350         buf = kzalloc(64, GFP_KERNEL);
3351         if (!buf)
3352                 return -ENOMEM;
3353         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | 0x83, buf, 64);
3354         if (rc == 0)
3355                 memcpy(device_id, &buf[index], buflen);
3356
3357         kfree(buf);
3358
3359         return rc != 0;
3360 }
3361
3362 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
3363                 void *buf, int bufsize,
3364                 int extended_response)
3365 {
3366         int rc = IO_OK;
3367         struct CommandList *c;
3368         unsigned char scsi3addr[8];
3369         struct ErrorInfo *ei;
3370
3371         c = cmd_alloc(h);
3372
3373         /* address the controller */
3374         memset(scsi3addr, 0, sizeof(scsi3addr));
3375         if (fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
3376                 buf, bufsize, 0, scsi3addr, TYPE_CMD)) {
3377                 rc = -1;
3378                 goto out;
3379         }
3380         if (extended_response)
3381                 c->Request.CDB[1] = extended_response;
3382         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
3383                                         PCI_DMA_FROMDEVICE, NO_TIMEOUT);
3384         if (rc)
3385                 goto out;
3386         ei = c->err_info;
3387         if (ei->CommandStatus != 0 &&
3388             ei->CommandStatus != CMD_DATA_UNDERRUN) {
3389                 hpsa_scsi_interpret_error(h, c);
3390                 rc = -1;
3391         } else {
3392                 struct ReportLUNdata *rld = buf;
3393
3394                 if (rld->extended_response_flag != extended_response) {
3395                         dev_err(&h->pdev->dev,
3396                                 "report luns requested format %u, got %u\n",
3397                                 extended_response,
3398                                 rld->extended_response_flag);
3399                         rc = -1;
3400                 }
3401         }
3402 out:
3403         cmd_free(h, c);
3404         return rc;
3405 }
3406
3407 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
3408                 struct ReportExtendedLUNdata *buf, int bufsize)
3409 {
3410         return hpsa_scsi_do_report_luns(h, 0, buf, bufsize,
3411                                                 HPSA_REPORT_PHYS_EXTENDED);
3412 }
3413
3414 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
3415                 struct ReportLUNdata *buf, int bufsize)
3416 {
3417         return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
3418 }
3419
3420 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
3421         int bus, int target, int lun)
3422 {
3423         device->bus = bus;
3424         device->target = target;
3425         device->lun = lun;
3426 }
3427
3428 /* Use VPD inquiry to get details of volume status */
3429 static int hpsa_get_volume_status(struct ctlr_info *h,
3430                                         unsigned char scsi3addr[])
3431 {
3432         int rc;
3433         int status;
3434         int size;
3435         unsigned char *buf;
3436
3437         buf = kzalloc(64, GFP_KERNEL);
3438         if (!buf)
3439                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3440
3441         /* Does controller have VPD for logical volume status? */
3442         if (!hpsa_vpd_page_supported(h, scsi3addr, HPSA_VPD_LV_STATUS))
3443                 goto exit_failed;
3444
3445         /* Get the size of the VPD return buffer */
3446         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3447                                         buf, HPSA_VPD_HEADER_SZ);
3448         if (rc != 0)
3449                 goto exit_failed;
3450         size = buf[3];
3451
3452         /* Now get the whole VPD buffer */
3453         rc = hpsa_scsi_do_inquiry(h, scsi3addr, VPD_PAGE | HPSA_VPD_LV_STATUS,
3454                                         buf, size + HPSA_VPD_HEADER_SZ);
3455         if (rc != 0)
3456                 goto exit_failed;
3457         status = buf[4]; /* status byte */
3458
3459         kfree(buf);
3460         return status;
3461 exit_failed:
3462         kfree(buf);
3463         return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3464 }
3465
3466 /* Determine offline status of a volume.
3467  * Return either:
3468  *  0 (not offline)
3469  *  0xff (offline for unknown reasons)
3470  *  # (integer code indicating one of several NOT READY states
3471  *     describing why a volume is to be kept offline)
3472  */
3473 static unsigned char hpsa_volume_offline(struct ctlr_info *h,
3474                                         unsigned char scsi3addr[])
3475 {
3476         struct CommandList *c;
3477         unsigned char *sense;
3478         u8 sense_key, asc, ascq;
3479         int sense_len;
3480         int rc, ldstat = 0;
3481         u16 cmd_status;
3482         u8 scsi_status;
3483 #define ASC_LUN_NOT_READY 0x04
3484 #define ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS 0x04
3485 #define ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ 0x02
3486
3487         c = cmd_alloc(h);
3488
3489         (void) fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, scsi3addr, TYPE_CMD);
3490         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3491         if (rc) {
3492                 cmd_free(h, c);
3493                 return HPSA_VPD_LV_STATUS_UNSUPPORTED;
3494         }
3495         sense = c->err_info->SenseInfo;
3496         if (c->err_info->SenseLen > sizeof(c->err_info->SenseInfo))
3497                 sense_len = sizeof(c->err_info->SenseInfo);
3498         else
3499                 sense_len = c->err_info->SenseLen;
3500         decode_sense_data(sense, sense_len, &sense_key, &asc, &ascq);
3501         cmd_status = c->err_info->CommandStatus;
3502         scsi_status = c->err_info->ScsiStatus;
3503         cmd_free(h, c);
3504
3505         /* Determine the reason for not ready state */
3506         ldstat = hpsa_get_volume_status(h, scsi3addr);
3507
3508         /* Keep volume offline in certain cases: */
3509         switch (ldstat) {
3510         case HPSA_LV_FAILED:
3511         case HPSA_LV_UNDERGOING_ERASE:
3512         case HPSA_LV_NOT_AVAILABLE:
3513         case HPSA_LV_UNDERGOING_RPI:
3514         case HPSA_LV_PENDING_RPI:
3515         case HPSA_LV_ENCRYPTED_NO_KEY:
3516         case HPSA_LV_PLAINTEXT_IN_ENCRYPT_ONLY_CONTROLLER:
3517         case HPSA_LV_UNDERGOING_ENCRYPTION:
3518         case HPSA_LV_UNDERGOING_ENCRYPTION_REKEYING:
3519         case HPSA_LV_ENCRYPTED_IN_NON_ENCRYPTED_CONTROLLER:
3520                 return ldstat;
3521         case HPSA_VPD_LV_STATUS_UNSUPPORTED:
3522                 /* If VPD status page isn't available,
3523                  * use ASC/ASCQ to determine state
3524                  */
3525                 if ((ascq == ASCQ_LUN_NOT_READY_FORMAT_IN_PROGRESS) ||
3526                         (ascq == ASCQ_LUN_NOT_READY_INITIALIZING_CMD_REQ))
3527                         return ldstat;
3528                 break;
3529         default:
3530                 break;
3531         }
3532         return HPSA_LV_OK;
3533 }
3534
3535 /*
3536  * Find out if a logical device supports aborts by simply trying one.
3537  * Smart Array may claim not to support aborts on logical drives, but
3538  * if a MSA2000 * is connected, the drives on that will be presented
3539  * by the Smart Array as logical drives, and aborts may be sent to
3540  * those devices successfully.  So the simplest way to find out is
3541  * to simply try an abort and see how the device responds.
3542  */
3543 static int hpsa_device_supports_aborts(struct ctlr_info *h,
3544                                         unsigned char *scsi3addr)
3545 {
3546         struct CommandList *c;
3547         struct ErrorInfo *ei;
3548         int rc = 0;
3549
3550         u64 tag = (u64) -1; /* bogus tag */
3551
3552         /* Assume that physical devices support aborts */
3553         if (!is_logical_dev_addr_mode(scsi3addr))
3554                 return 1;
3555
3556         c = cmd_alloc(h);
3557
3558         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &tag, 0, 0, scsi3addr, TYPE_MSG);
3559         (void) hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
3560         /* no unmap needed here because no data xfer. */
3561         ei = c->err_info;
3562         switch (ei->CommandStatus) {
3563         case CMD_INVALID:
3564                 rc = 0;
3565                 break;
3566         case CMD_UNABORTABLE:
3567         case CMD_ABORT_FAILED:
3568                 rc = 1;
3569                 break;
3570         case CMD_TMF_STATUS:
3571                 rc = hpsa_evaluate_tmf_status(h, c);
3572                 break;
3573         default:
3574                 rc = 0;
3575                 break;
3576         }
3577         cmd_free(h, c);
3578         return rc;
3579 }
3580
3581 static void sanitize_inquiry_string(unsigned char *s, int len)
3582 {
3583         bool terminated = false;
3584
3585         for (; len > 0; (--len, ++s)) {
3586                 if (*s == 0)
3587                         terminated = true;
3588                 if (terminated || *s < 0x20 || *s > 0x7e)
3589                         *s = ' ';
3590         }
3591 }
3592
3593 static int hpsa_update_device_info(struct ctlr_info *h,
3594         unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device,
3595         unsigned char *is_OBDR_device)
3596 {
3597
3598 #define OBDR_SIG_OFFSET 43
3599 #define OBDR_TAPE_SIG "$DR-10"
3600 #define OBDR_SIG_LEN (sizeof(OBDR_TAPE_SIG) - 1)
3601 #define OBDR_TAPE_INQ_SIZE (OBDR_SIG_OFFSET + OBDR_SIG_LEN)
3602
3603         unsigned char *inq_buff;
3604         unsigned char *obdr_sig;
3605         int rc = 0;
3606
3607         inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
3608         if (!inq_buff) {
3609                 rc = -ENOMEM;
3610                 goto bail_out;
3611         }
3612
3613         /* Do an inquiry to the device to see what it is. */
3614         if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
3615                 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
3616                 dev_err(&h->pdev->dev,
3617                         "%s: inquiry failed, device will be skipped.\n",
3618                         __func__);
3619                 rc = HPSA_INQUIRY_FAILED;
3620                 goto bail_out;
3621         }
3622
3623         sanitize_inquiry_string(&inq_buff[8], 8);
3624         sanitize_inquiry_string(&inq_buff[16], 16);
3625
3626         this_device->devtype = (inq_buff[0] & 0x1f);
3627         memcpy(this_device->scsi3addr, scsi3addr, 8);
3628         memcpy(this_device->vendor, &inq_buff[8],
3629                 sizeof(this_device->vendor));
3630         memcpy(this_device->model, &inq_buff[16],
3631                 sizeof(this_device->model));
3632         memset(this_device->device_id, 0,
3633                 sizeof(this_device->device_id));
3634         hpsa_get_device_id(h, scsi3addr, this_device->device_id, 8,
3635                 sizeof(this_device->device_id));
3636
3637         if (this_device->devtype == TYPE_DISK &&
3638                 is_logical_dev_addr_mode(scsi3addr)) {
3639                 unsigned char volume_offline;
3640
3641                 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
3642                 if (h->fw_support & MISC_FW_RAID_OFFLOAD_BASIC)
3643                         hpsa_get_ioaccel_status(h, scsi3addr, this_device);
3644                 volume_offline = hpsa_volume_offline(h, scsi3addr);
3645                 this_device->volume_offline = volume_offline;
3646                 if (volume_offline == HPSA_LV_FAILED) {
3647                         rc = HPSA_LV_FAILED;
3648                         dev_err(&h->pdev->dev,
3649                                 "%s: LV failed, device will be skipped.\n",
3650                                 __func__);
3651                         goto bail_out;
3652                 }
3653         } else {
3654                 this_device->raid_level = RAID_UNKNOWN;
3655                 this_device->offload_config = 0;
3656                 this_device->offload_enabled = 0;
3657                 this_device->offload_to_be_enabled = 0;
3658                 this_device->hba_ioaccel_enabled = 0;
3659                 this_device->volume_offline = 0;
3660                 this_device->queue_depth = h->nr_cmds;
3661         }
3662
3663         if (is_OBDR_device) {
3664                 /* See if this is a One-Button-Disaster-Recovery device
3665                  * by looking for "$DR-10" at offset 43 in inquiry data.
3666                  */
3667                 obdr_sig = &inq_buff[OBDR_SIG_OFFSET];
3668                 *is_OBDR_device = (this_device->devtype == TYPE_ROM &&
3669                                         strncmp(obdr_sig, OBDR_TAPE_SIG,
3670                                                 OBDR_SIG_LEN) == 0);
3671         }
3672         kfree(inq_buff);
3673         return 0;
3674
3675 bail_out:
3676         kfree(inq_buff);
3677         return rc;
3678 }
3679
3680 static void hpsa_update_device_supports_aborts(struct ctlr_info *h,
3681                         struct hpsa_scsi_dev_t *dev, u8 *scsi3addr)
3682 {
3683         unsigned long flags;
3684         int rc, entry;
3685         /*
3686          * See if this device supports aborts.  If we already know
3687          * the device, we already know if it supports aborts, otherwise
3688          * we have to find out if it supports aborts by trying one.
3689          */
3690         spin_lock_irqsave(&h->devlock, flags);
3691         rc = hpsa_scsi_find_entry(dev, h->dev, h->ndevices, &entry);
3692         if ((rc == DEVICE_SAME || rc == DEVICE_UPDATED) &&
3693                 entry >= 0 && entry < h->ndevices) {
3694                 dev->supports_aborts = h->dev[entry]->supports_aborts;
3695                 spin_unlock_irqrestore(&h->devlock, flags);
3696         } else {
3697                 spin_unlock_irqrestore(&h->devlock, flags);
3698                 dev->supports_aborts =
3699                                 hpsa_device_supports_aborts(h, scsi3addr);
3700                 if (dev->supports_aborts < 0)
3701                         dev->supports_aborts = 0;
3702         }
3703 }
3704
3705 /*
3706  * Helper function to assign bus, target, lun mapping of devices.
3707  * Logical drive target and lun are assigned at this time, but
3708  * physical device lun and target assignment are deferred (assigned
3709  * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
3710 */
3711 static void figure_bus_target_lun(struct ctlr_info *h,
3712         u8 *lunaddrbytes, struct hpsa_scsi_dev_t *device)
3713 {
3714         u32 lunid = get_unaligned_le32(lunaddrbytes);
3715
3716         if (!is_logical_dev_addr_mode(lunaddrbytes)) {
3717                 /* physical device, target and lun filled in later */
3718                 if (is_hba_lunid(lunaddrbytes))
3719                         hpsa_set_bus_target_lun(device,
3720                                         HPSA_HBA_BUS, 0, lunid & 0x3fff);
3721                 else
3722                         /* defer target, lun assignment for physical devices */
3723                         hpsa_set_bus_target_lun(device,
3724                                         HPSA_PHYSICAL_DEVICE_BUS, -1, -1);
3725                 return;
3726         }
3727         /* It's a logical device */
3728         if (device->external) {
3729                 hpsa_set_bus_target_lun(device,
3730                         HPSA_EXTERNAL_RAID_VOLUME_BUS, (lunid >> 16) & 0x3fff,
3731                         lunid & 0x00ff);
3732                 return;
3733         }
3734         hpsa_set_bus_target_lun(device, HPSA_RAID_VOLUME_BUS,
3735                                 0, lunid & 0x3fff);
3736 }
3737
3738
3739 /*
3740  * Get address of physical disk used for an ioaccel2 mode command:
3741  *      1. Extract ioaccel2 handle from the command.
3742  *      2. Find a matching ioaccel2 handle from list of physical disks.
3743  *      3. Return:
3744  *              1 and set scsi3addr to address of matching physical
3745  *              0 if no matching physical disk was found.
3746  */
3747 static int hpsa_get_pdisk_of_ioaccel2(struct ctlr_info *h,
3748         struct CommandList *ioaccel2_cmd_to_abort, unsigned char *scsi3addr)
3749 {
3750         struct io_accel2_cmd *c2 =
3751                         &h->ioaccel2_cmd_pool[ioaccel2_cmd_to_abort->cmdindex];
3752         unsigned long flags;
3753         int i;
3754
3755         spin_lock_irqsave(&h->devlock, flags);
3756         for (i = 0; i < h->ndevices; i++)
3757                 if (h->dev[i]->ioaccel_handle == le32_to_cpu(c2->scsi_nexus)) {
3758                         memcpy(scsi3addr, h->dev[i]->scsi3addr,
3759                                 sizeof(h->dev[i]->scsi3addr));
3760                         spin_unlock_irqrestore(&h->devlock, flags);
3761                         return 1;
3762                 }
3763         spin_unlock_irqrestore(&h->devlock, flags);
3764         return 0;
3765 }
3766
3767 static int  figure_external_status(struct ctlr_info *h, int raid_ctlr_position,
3768         int i, int nphysicals, int nlocal_logicals)
3769 {
3770         /* In report logicals, local logicals are listed first,
3771         * then any externals.
3772         */
3773         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3774
3775         if (i == raid_ctlr_position)
3776                 return 0;
3777
3778         if (i < logicals_start)
3779                 return 0;
3780
3781         /* i is in logicals range, but still within local logicals */
3782         if ((i - nphysicals - (raid_ctlr_position == 0)) < nlocal_logicals)
3783                 return 0;
3784
3785         return 1; /* it's an external lun */
3786 }
3787
3788 /*
3789  * Do CISS_REPORT_PHYS and CISS_REPORT_LOG.  Data is returned in physdev,
3790  * logdev.  The number of luns in physdev and logdev are returned in
3791  * *nphysicals and *nlogicals, respectively.
3792  * Returns 0 on success, -1 otherwise.
3793  */
3794 static int hpsa_gather_lun_info(struct ctlr_info *h,
3795         struct ReportExtendedLUNdata *physdev, u32 *nphysicals,
3796         struct ReportLUNdata *logdev, u32 *nlogicals)
3797 {
3798         if (hpsa_scsi_do_report_phys_luns(h, physdev, sizeof(*physdev))) {
3799                 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
3800                 return -1;
3801         }
3802         *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 24;
3803         if (*nphysicals > HPSA_MAX_PHYS_LUN) {
3804                 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded. %d LUNs ignored.\n",
3805                         HPSA_MAX_PHYS_LUN, *nphysicals - HPSA_MAX_PHYS_LUN);
3806                 *nphysicals = HPSA_MAX_PHYS_LUN;
3807         }
3808         if (hpsa_scsi_do_report_log_luns(h, logdev, sizeof(*logdev))) {
3809                 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
3810                 return -1;
3811         }
3812         *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
3813         /* Reject Logicals in excess of our max capability. */
3814         if (*nlogicals > HPSA_MAX_LUN) {
3815                 dev_warn(&h->pdev->dev,
3816                         "maximum logical LUNs (%d) exceeded.  "
3817                         "%d LUNs ignored.\n", HPSA_MAX_LUN,
3818                         *nlogicals - HPSA_MAX_LUN);
3819                         *nlogicals = HPSA_MAX_LUN;
3820         }
3821         if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
3822                 dev_warn(&h->pdev->dev,
3823                         "maximum logical + physical LUNs (%d) exceeded. "
3824                         "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
3825                         *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
3826                 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
3827         }
3828         return 0;
3829 }
3830
3831 static u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position,
3832         int i, int nphysicals, int nlogicals,
3833         struct ReportExtendedLUNdata *physdev_list,
3834         struct ReportLUNdata *logdev_list)
3835 {
3836         /* Helper function, figure out where the LUN ID info is coming from
3837          * given index i, lists of physical and logical devices, where in
3838          * the list the raid controller is supposed to appear (first or last)
3839          */
3840
3841         int logicals_start = nphysicals + (raid_ctlr_position == 0);
3842         int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
3843
3844         if (i == raid_ctlr_position)
3845                 return RAID_CTLR_LUNID;
3846
3847         if (i < logicals_start)
3848                 return &physdev_list->LUN[i -
3849                                 (raid_ctlr_position == 0)].lunid[0];
3850
3851         if (i < last_device)
3852                 return &logdev_list->LUN[i - nphysicals -
3853                         (raid_ctlr_position == 0)][0];
3854         BUG();
3855         return NULL;
3856 }
3857
3858 /* get physical drive ioaccel handle and queue depth */
3859 static void hpsa_get_ioaccel_drive_info(struct ctlr_info *h,
3860                 struct hpsa_scsi_dev_t *dev,
3861                 struct ReportExtendedLUNdata *rlep, int rle_index,
3862                 struct bmic_identify_physical_device *id_phys)
3863 {
3864         int rc;
3865         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3866
3867         dev->ioaccel_handle = rle->ioaccel_handle;
3868         if ((rle->device_flags & 0x08) && dev->ioaccel_handle)
3869                 dev->hba_ioaccel_enabled = 1;
3870         memset(id_phys, 0, sizeof(*id_phys));
3871         rc = hpsa_bmic_id_physical_device(h, &rle->lunid[0],
3872                         GET_BMIC_DRIVE_NUMBER(&rle->lunid[0]), id_phys,
3873                         sizeof(*id_phys));
3874         if (!rc)
3875                 /* Reserve space for FW operations */
3876 #define DRIVE_CMDS_RESERVED_FOR_FW 2
3877 #define DRIVE_QUEUE_DEPTH 7
3878                 dev->queue_depth =
3879                         le16_to_cpu(id_phys->current_queue_depth_limit) -
3880                                 DRIVE_CMDS_RESERVED_FOR_FW;
3881         else
3882                 dev->queue_depth = DRIVE_QUEUE_DEPTH; /* conservative */
3883 }
3884
3885 static void hpsa_get_path_info(struct hpsa_scsi_dev_t *this_device,
3886         struct ReportExtendedLUNdata *rlep, int rle_index,
3887         struct bmic_identify_physical_device *id_phys)
3888 {
3889         struct ext_report_lun_entry *rle = &rlep->LUN[rle_index];
3890
3891         if ((rle->device_flags & 0x08) && this_device->ioaccel_handle)
3892                 this_device->hba_ioaccel_enabled = 1;
3893
3894         memcpy(&this_device->active_path_index,
3895                 &id_phys->active_path_number,
3896                 sizeof(this_device->active_path_index));
3897         memcpy(&this_device->path_map,
3898                 &id_phys->redundant_path_present_map,
3899                 sizeof(this_device->path_map));
3900         memcpy(&this_device->box,
3901                 &id_phys->alternate_paths_phys_box_on_port,
3902                 sizeof(this_device->box));
3903         memcpy(&this_device->phys_connector,
3904                 &id_phys->alternate_paths_phys_connector,
3905                 sizeof(this_device->phys_connector));
3906         memcpy(&this_device->bay,
3907                 &id_phys->phys_bay_in_box,
3908                 sizeof(this_device->bay));
3909 }
3910
3911 /* get number of local logical disks. */
3912 static int hpsa_set_local_logical_count(struct ctlr_info *h,
3913         struct bmic_identify_controller *id_ctlr,
3914         u32 *nlocals)
3915 {
3916         int rc;
3917
3918         if (!id_ctlr) {
3919                 dev_warn(&h->pdev->dev, "%s: id_ctlr buffer is NULL.\n",
3920                         __func__);
3921                 return -ENOMEM;
3922         }
3923         memset(id_ctlr, 0, sizeof(*id_ctlr));
3924         rc = hpsa_bmic_id_controller(h, id_ctlr, sizeof(*id_ctlr));
3925         if (!rc)
3926                 if (id_ctlr->configured_logical_drive_count < 256)
3927                         *nlocals = id_ctlr->configured_logical_drive_count;
3928                 else
3929                         *nlocals = le16_to_cpu(
3930                                         id_ctlr->extended_logical_unit_count);
3931         else
3932                 *nlocals = -1;
3933         return rc;
3934 }
3935
3936 static bool hpsa_is_disk_spare(struct ctlr_info *h, u8 *lunaddrbytes)
3937 {
3938         struct bmic_identify_physical_device *id_phys;
3939         bool is_spare = false;
3940         int rc;
3941
3942         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
3943         if (!id_phys)
3944                 return false;
3945
3946         rc = hpsa_bmic_id_physical_device(h,
3947                                         lunaddrbytes,
3948                                         GET_BMIC_DRIVE_NUMBER(lunaddrbytes),
3949                                         id_phys, sizeof(*id_phys));
3950         if (rc == 0)
3951                 is_spare = (id_phys->more_flags >> 6) & 0x01;
3952
3953         kfree(id_phys);
3954         return is_spare;
3955 }
3956
3957 #define RPL_DEV_FLAG_NON_DISK                           0x1
3958 #define RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED  0x2
3959 #define RPL_DEV_FLAG_UNCONFIG_DISK                      0x4
3960
3961 #define BMIC_DEVICE_TYPE_ENCLOSURE  6
3962
3963 static bool hpsa_skip_device(struct ctlr_info *h, u8 *lunaddrbytes,
3964                                 struct ext_report_lun_entry *rle)
3965 {
3966         u8 device_flags;
3967         u8 device_type;
3968
3969         if (!MASKED_DEVICE(lunaddrbytes))
3970                 return false;
3971
3972         device_flags = rle->device_flags;
3973         device_type = rle->device_type;
3974
3975         if (device_flags & RPL_DEV_FLAG_NON_DISK) {
3976                 if (device_type == BMIC_DEVICE_TYPE_ENCLOSURE)
3977                         return false;
3978                 return true;
3979         }
3980
3981         if (!(device_flags & RPL_DEV_FLAG_UNCONFIG_DISK_REPORTING_SUPPORTED))
3982                 return false;
3983
3984         if (device_flags & RPL_DEV_FLAG_UNCONFIG_DISK)
3985                 return false;
3986
3987         /*
3988          * Spares may be spun down, we do not want to
3989          * do an Inquiry to a RAID set spare drive as
3990          * that would have them spun up, that is a
3991          * performance hit because I/O to the RAID device
3992          * stops while the spin up occurs which can take
3993          * over 50 seconds.
3994          */
3995         if (hpsa_is_disk_spare(h, lunaddrbytes))
3996                 return true;
3997
3998         return false;
3999 }
4000
4001 static void hpsa_update_scsi_devices(struct ctlr_info *h)
4002 {
4003         /* the idea here is we could get notified
4004          * that some devices have changed, so we do a report
4005          * physical luns and report logical luns cmd, and adjust
4006          * our list of devices accordingly.
4007          *
4008          * The scsi3addr's of devices won't change so long as the
4009          * adapter is not reset.  That means we can rescan and
4010          * tell which devices we already know about, vs. new
4011          * devices, vs.  disappearing devices.
4012          */
4013         struct ReportExtendedLUNdata *physdev_list = NULL;
4014         struct ReportLUNdata *logdev_list = NULL;
4015         struct bmic_identify_physical_device *id_phys = NULL;
4016         struct bmic_identify_controller *id_ctlr = NULL;
4017         u32 nphysicals = 0;
4018         u32 nlogicals = 0;
4019         u32 nlocal_logicals = 0;
4020         u32 ndev_allocated = 0;
4021         struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
4022         int ncurrent = 0;
4023         int i, n_ext_target_devs, ndevs_to_allocate;
4024         int raid_ctlr_position;
4025         bool physical_device;
4026         DECLARE_BITMAP(lunzerobits, MAX_EXT_TARGETS);
4027
4028         currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_DEVICES, GFP_KERNEL);
4029         physdev_list = kzalloc(sizeof(*physdev_list), GFP_KERNEL);
4030         logdev_list = kzalloc(sizeof(*logdev_list), GFP_KERNEL);
4031         tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
4032         id_phys = kzalloc(sizeof(*id_phys), GFP_KERNEL);
4033         id_ctlr = kzalloc(sizeof(*id_ctlr), GFP_KERNEL);
4034
4035         if (!currentsd || !physdev_list || !logdev_list ||
4036                 !tmpdevice || !id_phys || !id_ctlr) {
4037                 dev_err(&h->pdev->dev, "out of memory\n");
4038                 goto out;
4039         }
4040         memset(lunzerobits, 0, sizeof(lunzerobits));
4041
4042         h->drv_req_rescan = 0; /* cancel scheduled rescan - we're doing it. */
4043
4044         if (hpsa_gather_lun_info(h, physdev_list, &nphysicals,
4045                         logdev_list, &nlogicals)) {
4046                 h->drv_req_rescan = 1;
4047                 goto out;
4048         }
4049
4050         /* Set number of local logicals (non PTRAID) */
4051         if (hpsa_set_local_logical_count(h, id_ctlr, &nlocal_logicals)) {
4052                 dev_warn(&h->pdev->dev,
4053                         "%s: Can't determine number of local logical devices.\n",
4054                         __func__);
4055         }
4056
4057         /* We might see up to the maximum number of logical and physical disks
4058          * plus external target devices, and a device for the local RAID
4059          * controller.
4060          */
4061         ndevs_to_allocate = nphysicals + nlogicals + MAX_EXT_TARGETS + 1;
4062
4063         /* Allocate the per device structures */
4064         for (i = 0; i < ndevs_to_allocate; i++) {
4065                 if (i >= HPSA_MAX_DEVICES) {
4066                         dev_warn(&h->pdev->dev, "maximum devices (%d) exceeded."
4067                                 "  %d devices ignored.\n", HPSA_MAX_DEVICES,
4068                                 ndevs_to_allocate - HPSA_MAX_DEVICES);
4069                         break;
4070                 }
4071
4072                 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
4073                 if (!currentsd[i]) {
4074                         dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
4075                                 __FILE__, __LINE__);
4076                         h->drv_req_rescan = 1;
4077                         goto out;
4078                 }
4079                 ndev_allocated++;
4080         }
4081
4082         if (is_scsi_rev_5(h))
4083                 raid_ctlr_position = 0;
4084         else
4085                 raid_ctlr_position = nphysicals + nlogicals;
4086
4087         /* adjust our table of devices */
4088         n_ext_target_devs = 0;
4089         for (i = 0; i < nphysicals + nlogicals + 1; i++) {
4090                 u8 *lunaddrbytes, is_OBDR = 0;
4091                 int rc = 0;
4092                 int phys_dev_index = i - (raid_ctlr_position == 0);
4093                 bool skip_device = false;
4094
4095                 physical_device = i < nphysicals + (raid_ctlr_position == 0);
4096
4097                 /* Figure out where the LUN ID info is coming from */
4098                 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
4099                         i, nphysicals, nlogicals, physdev_list, logdev_list);
4100
4101                 /*
4102                  * Skip over some devices such as a spare.
4103                  */
4104                 if (!tmpdevice->external && physical_device) {
4105                         skip_device = hpsa_skip_device(h, lunaddrbytes,
4106                                         &physdev_list->LUN[phys_dev_index]);
4107                         if (skip_device)
4108                                 continue;
4109                 }
4110
4111                 /* Get device type, vendor, model, device id */
4112                 rc = hpsa_update_device_info(h, lunaddrbytes, tmpdevice,
4113                                                         &is_OBDR);
4114                 if (rc == -ENOMEM) {
4115                         dev_warn(&h->pdev->dev,
4116                                 "Out of memory, rescan deferred.\n");
4117                         h->drv_req_rescan = 1;
4118                         goto out;
4119                 }
4120                 if (rc) {
4121                         h->drv_req_rescan = 1;
4122                         continue;
4123                 }
4124
4125                 /* Determine if this is a lun from an external target array */
4126                 tmpdevice->external =
4127                         figure_external_status(h, raid_ctlr_position, i,
4128                                                 nphysicals, nlocal_logicals);
4129
4130                 figure_bus_target_lun(h, lunaddrbytes, tmpdevice);
4131                 hpsa_update_device_supports_aborts(h, tmpdevice, lunaddrbytes);
4132                 this_device = currentsd[ncurrent];
4133
4134                 /* Turn on discovery_polling if there are ext target devices.
4135                  * Event-based change notification is unreliable for those.
4136                  */
4137                 if (!h->discovery_polling) {
4138                         if (tmpdevice->external) {
4139                                 h->discovery_polling = 1;
4140                                 dev_info(&h->pdev->dev,
4141                                         "External target, activate discovery polling.\n");
4142                         }
4143                 }
4144
4145
4146                 *this_device = *tmpdevice;
4147                 this_device->physical_device = physical_device;
4148
4149                 /*
4150                  * Expose all devices except for physical devices that
4151                  * are masked.
4152                  */
4153                 if (MASKED_DEVICE(lunaddrbytes) && this_device->physical_device)
4154                         this_device->expose_device = 0;
4155                 else
4156                         this_device->expose_device = 1;
4157
4158
4159                 /*
4160                  * Get the SAS address for physical devices that are exposed.
4161                  */
4162                 if (this_device->physical_device && this_device->expose_device)
4163                         hpsa_get_sas_address(h, lunaddrbytes, this_device);
4164
4165                 switch (this_device->devtype) {
4166                 case TYPE_ROM:
4167                         /* We don't *really* support actual CD-ROM devices,
4168                          * just "One Button Disaster Recovery" tape drive
4169                          * which temporarily pretends to be a CD-ROM drive.
4170                          * So we check that the device is really an OBDR tape
4171                          * device by checking for "$DR-10" in bytes 43-48 of
4172                          * the inquiry data.
4173                          */
4174                         if (is_OBDR)
4175                                 ncurrent++;
4176                         break;
4177                 case TYPE_DISK:
4178                         if (this_device->physical_device) {
4179                                 /* The disk is in HBA mode. */
4180                                 /* Never use RAID mapper in HBA mode. */
4181                                 this_device->offload_enabled = 0;
4182                                 hpsa_get_ioaccel_drive_info(h, this_device,
4183                                         physdev_list, phys_dev_index, id_phys);
4184                                 hpsa_get_path_info(this_device,
4185                                         physdev_list, phys_dev_index, id_phys);
4186                         }
4187                         ncurrent++;
4188                         break;
4189                 case TYPE_TAPE:
4190                 case TYPE_MEDIUM_CHANGER:
4191                 case TYPE_ENCLOSURE:
4192                         ncurrent++;
4193                         break;
4194                 case TYPE_RAID:
4195                         /* Only present the Smartarray HBA as a RAID controller.
4196                          * If it's a RAID controller other than the HBA itself
4197                          * (an external RAID controller, MSA500 or similar)
4198                          * don't present it.
4199                          */
4200                         if (!is_hba_lunid(lunaddrbytes))
4201                                 break;
4202                         ncurrent++;
4203                         break;
4204                 default:
4205                         break;
4206                 }
4207                 if (ncurrent >= HPSA_MAX_DEVICES)
4208                         break;
4209         }
4210
4211         if (h->sas_host == NULL) {
4212                 int rc = 0;
4213
4214                 rc = hpsa_add_sas_host(h);
4215                 if (rc) {
4216                         dev_warn(&h->pdev->dev,
4217                                 "Could not add sas host %d\n", rc);
4218                         goto out;
4219                 }
4220         }
4221
4222         adjust_hpsa_scsi_table(h, currentsd, ncurrent);
4223 out:
4224         kfree(tmpdevice);
4225         for (i = 0; i < ndev_allocated; i++)
4226                 kfree(currentsd[i]);
4227         kfree(currentsd);
4228         kfree(physdev_list);
4229         kfree(logdev_list);
4230         kfree(id_ctlr);
4231         kfree(id_phys);
4232 }
4233
4234 static void hpsa_set_sg_descriptor(struct SGDescriptor *desc,
4235                                    struct scatterlist *sg)
4236 {
4237         u64 addr64 = (u64) sg_dma_address(sg);
4238         unsigned int len = sg_dma_len(sg);
4239
4240         desc->Addr = cpu_to_le64(addr64);
4241         desc->Len = cpu_to_le32(len);
4242         desc->Ext = 0;
4243 }
4244
4245 /*
4246  * hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
4247  * dma mapping  and fills in the scatter gather entries of the
4248  * hpsa command, cp.
4249  */
4250 static int hpsa_scatter_gather(struct ctlr_info *h,
4251                 struct CommandList *cp,
4252                 struct scsi_cmnd *cmd)
4253 {
4254         struct scatterlist *sg;
4255         int use_sg, i, sg_limit, chained, last_sg;
4256         struct SGDescriptor *curr_sg;
4257
4258         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4259
4260         use_sg = scsi_dma_map(cmd);
4261         if (use_sg < 0)
4262                 return use_sg;
4263
4264         if (!use_sg)
4265                 goto sglist_finished;
4266
4267         /*
4268          * If the number of entries is greater than the max for a single list,
4269          * then we have a chained list; we will set up all but one entry in the
4270          * first list (the last entry is saved for link information);
4271          * otherwise, we don't have a chained list and we'll set up at each of
4272          * the entries in the one list.
4273          */
4274         curr_sg = cp->SG;
4275         chained = use_sg > h->max_cmd_sg_entries;
4276         sg_limit = chained ? h->max_cmd_sg_entries - 1 : use_sg;
4277         last_sg = scsi_sg_count(cmd) - 1;
4278         scsi_for_each_sg(cmd, sg, sg_limit, i) {
4279                 hpsa_set_sg_descriptor(curr_sg, sg);
4280                 curr_sg++;
4281         }
4282
4283         if (chained) {
4284                 /*
4285                  * Continue with the chained list.  Set curr_sg to the chained
4286                  * list.  Modify the limit to the total count less the entries
4287                  * we've already set up.  Resume the scan at the list entry
4288                  * where the previous loop left off.
4289                  */
4290                 curr_sg = h->cmd_sg_list[cp->cmdindex];
4291                 sg_limit = use_sg - sg_limit;
4292                 for_each_sg(sg, sg, sg_limit, i) {
4293                         hpsa_set_sg_descriptor(curr_sg, sg);
4294                         curr_sg++;
4295                 }
4296         }
4297
4298         /* Back the pointer up to the last entry and mark it as "last". */
4299         (curr_sg - 1)->Ext = cpu_to_le32(HPSA_SG_LAST);
4300
4301         if (use_sg + chained > h->maxSG)
4302                 h->maxSG = use_sg + chained;
4303
4304         if (chained) {
4305                 cp->Header.SGList = h->max_cmd_sg_entries;
4306                 cp->Header.SGTotal = cpu_to_le16(use_sg + 1);
4307                 if (hpsa_map_sg_chain_block(h, cp)) {
4308                         scsi_dma_unmap(cmd);
4309                         return -1;
4310                 }
4311                 return 0;
4312         }
4313
4314 sglist_finished:
4315
4316         cp->Header.SGList = (u8) use_sg;   /* no. SGs contig in this cmd */
4317         cp->Header.SGTotal = cpu_to_le16(use_sg); /* total sgs in cmd list */
4318         return 0;
4319 }
4320
4321 #define IO_ACCEL_INELIGIBLE (1)
4322 static int fixup_ioaccel_cdb(u8 *cdb, int *cdb_len)
4323 {
4324         int is_write = 0;
4325         u32 block;
4326         u32 block_cnt;
4327
4328         /* Perform some CDB fixups if needed using 10 byte reads/writes only */
4329         switch (cdb[0]) {
4330         case WRITE_6:
4331         case WRITE_12:
4332                 is_write = 1;
4333         case READ_6:
4334         case READ_12:
4335                 if (*cdb_len == 6) {
4336                         block = get_unaligned_be16(&cdb[2]);
4337                         block_cnt = cdb[4];
4338                         if (block_cnt == 0)
4339                                 block_cnt = 256;
4340                 } else {
4341                         BUG_ON(*cdb_len != 12);
4342                         block = get_unaligned_be32(&cdb[2]);
4343                         block_cnt = get_unaligned_be32(&cdb[6]);
4344                 }
4345                 if (block_cnt > 0xffff)
4346                         return IO_ACCEL_INELIGIBLE;
4347
4348                 cdb[0] = is_write ? WRITE_10 : READ_10;
4349                 cdb[1] = 0;
4350                 cdb[2] = (u8) (block >> 24);
4351                 cdb[3] = (u8) (block >> 16);
4352                 cdb[4] = (u8) (block >> 8);
4353                 cdb[5] = (u8) (block);
4354                 cdb[6] = 0;
4355                 cdb[7] = (u8) (block_cnt >> 8);
4356                 cdb[8] = (u8) (block_cnt);
4357                 cdb[9] = 0;
4358                 *cdb_len = 10;
4359                 break;
4360         }
4361         return 0;
4362 }
4363
4364 static int hpsa_scsi_ioaccel1_queue_command(struct ctlr_info *h,
4365         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4366         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4367 {
4368         struct scsi_cmnd *cmd = c->scsi_cmd;
4369         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[c->cmdindex];
4370         unsigned int len;
4371         unsigned int total_len = 0;
4372         struct scatterlist *sg;
4373         u64 addr64;
4374         int use_sg, i;
4375         struct SGDescriptor *curr_sg;
4376         u32 control = IOACCEL1_CONTROL_SIMPLEQUEUE;
4377
4378         /* TODO: implement chaining support */
4379         if (scsi_sg_count(cmd) > h->ioaccel_maxsg) {
4380                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4381                 return IO_ACCEL_INELIGIBLE;
4382         }
4383
4384         BUG_ON(cmd->cmd_len > IOACCEL1_IOFLAGS_CDBLEN_MAX);
4385
4386         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4387                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4388                 return IO_ACCEL_INELIGIBLE;
4389         }
4390
4391         c->cmd_type = CMD_IOACCEL1;
4392
4393         /* Adjust the DMA address to point to the accelerated command buffer */
4394         c->busaddr = (u32) h->ioaccel_cmd_pool_dhandle +
4395                                 (c->cmdindex * sizeof(*cp));
4396         BUG_ON(c->busaddr & 0x0000007F);
4397
4398         use_sg = scsi_dma_map(cmd);
4399         if (use_sg < 0) {
4400                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4401                 return use_sg;
4402         }
4403
4404         if (use_sg) {
4405                 curr_sg = cp->SG;
4406                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4407                         addr64 = (u64) sg_dma_address(sg);
4408                         len  = sg_dma_len(sg);
4409                         total_len += len;
4410                         curr_sg->Addr = cpu_to_le64(addr64);
4411                         curr_sg->Len = cpu_to_le32(len);
4412                         curr_sg->Ext = cpu_to_le32(0);
4413                         curr_sg++;
4414                 }
4415                 (--curr_sg)->Ext = cpu_to_le32(HPSA_SG_LAST);
4416
4417                 switch (cmd->sc_data_direction) {
4418                 case DMA_TO_DEVICE:
4419                         control |= IOACCEL1_CONTROL_DATA_OUT;
4420                         break;
4421                 case DMA_FROM_DEVICE:
4422                         control |= IOACCEL1_CONTROL_DATA_IN;
4423                         break;
4424                 case DMA_NONE:
4425                         control |= IOACCEL1_CONTROL_NODATAXFER;
4426                         break;
4427                 default:
4428                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4429                         cmd->sc_data_direction);
4430                         BUG();
4431                         break;
4432                 }
4433         } else {
4434                 control |= IOACCEL1_CONTROL_NODATAXFER;
4435         }
4436
4437         c->Header.SGList = use_sg;
4438         /* Fill out the command structure to submit */
4439         cp->dev_handle = cpu_to_le16(ioaccel_handle & 0xFFFF);
4440         cp->transfer_len = cpu_to_le32(total_len);
4441         cp->io_flags = cpu_to_le16(IOACCEL1_IOFLAGS_IO_REQ |
4442                         (cdb_len & IOACCEL1_IOFLAGS_CDBLEN_MASK));
4443         cp->control = cpu_to_le32(control);
4444         memcpy(cp->CDB, cdb, cdb_len);
4445         memcpy(cp->CISS_LUN, scsi3addr, 8);
4446         /* Tag was already set at init time. */
4447         enqueue_cmd_and_start_io(h, c);
4448         return 0;
4449 }
4450
4451 /*
4452  * Queue a command directly to a device behind the controller using the
4453  * I/O accelerator path.
4454  */
4455 static int hpsa_scsi_ioaccel_direct_map(struct ctlr_info *h,
4456         struct CommandList *c)
4457 {
4458         struct scsi_cmnd *cmd = c->scsi_cmd;
4459         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4460
4461         c->phys_disk = dev;
4462
4463         return hpsa_scsi_ioaccel_queue_command(h, c, dev->ioaccel_handle,
4464                 cmd->cmnd, cmd->cmd_len, dev->scsi3addr, dev);
4465 }
4466
4467 /*
4468  * Set encryption parameters for the ioaccel2 request
4469  */
4470 static void set_encrypt_ioaccel2(struct ctlr_info *h,
4471         struct CommandList *c, struct io_accel2_cmd *cp)
4472 {
4473         struct scsi_cmnd *cmd = c->scsi_cmd;
4474         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4475         struct raid_map_data *map = &dev->raid_map;
4476         u64 first_block;
4477
4478         /* Are we doing encryption on this device */
4479         if (!(le16_to_cpu(map->flags) & RAID_MAP_FLAG_ENCRYPT_ON))
4480                 return;
4481         /* Set the data encryption key index. */
4482         cp->dekindex = map->dekindex;
4483
4484         /* Set the encryption enable flag, encoded into direction field. */
4485         cp->direction |= IOACCEL2_DIRECTION_ENCRYPT_MASK;
4486
4487         /* Set encryption tweak values based on logical block address
4488          * If block size is 512, tweak value is LBA.
4489          * For other block sizes, tweak is (LBA * block size)/ 512)
4490          */
4491         switch (cmd->cmnd[0]) {
4492         /* Required? 6-byte cdbs eliminated by fixup_ioaccel_cdb */
4493         case WRITE_6:
4494         case READ_6:
4495                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4496                 break;
4497         case WRITE_10:
4498         case READ_10:
4499         /* Required? 12-byte cdbs eliminated by fixup_ioaccel_cdb */
4500         case WRITE_12:
4501         case READ_12:
4502                 first_block = get_unaligned_be32(&cmd->cmnd[2]);
4503                 break;
4504         case WRITE_16:
4505         case READ_16:
4506                 first_block = get_unaligned_be64(&cmd->cmnd[2]);
4507                 break;
4508         default:
4509                 dev_err(&h->pdev->dev,
4510                         "ERROR: %s: size (0x%x) not supported for encryption\n",
4511                         __func__, cmd->cmnd[0]);
4512                 BUG();
4513                 break;
4514         }
4515
4516         if (le32_to_cpu(map->volume_blk_size) != 512)
4517                 first_block = first_block *
4518                                 le32_to_cpu(map->volume_blk_size)/512;
4519
4520         cp->tweak_lower = cpu_to_le32(first_block);
4521         cp->tweak_upper = cpu_to_le32(first_block >> 32);
4522 }
4523
4524 static int hpsa_scsi_ioaccel2_queue_command(struct ctlr_info *h,
4525         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4526         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4527 {
4528         struct scsi_cmnd *cmd = c->scsi_cmd;
4529         struct io_accel2_cmd *cp = &h->ioaccel2_cmd_pool[c->cmdindex];
4530         struct ioaccel2_sg_element *curr_sg;
4531         int use_sg, i;
4532         struct scatterlist *sg;
4533         u64 addr64;
4534         u32 len;
4535         u32 total_len = 0;
4536
4537         BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
4538
4539         if (fixup_ioaccel_cdb(cdb, &cdb_len)) {
4540                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4541                 return IO_ACCEL_INELIGIBLE;
4542         }
4543
4544         c->cmd_type = CMD_IOACCEL2;
4545         /* Adjust the DMA address to point to the accelerated command buffer */
4546         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
4547                                 (c->cmdindex * sizeof(*cp));
4548         BUG_ON(c->busaddr & 0x0000007F);
4549
4550         memset(cp, 0, sizeof(*cp));
4551         cp->IU_type = IOACCEL2_IU_TYPE;
4552
4553         use_sg = scsi_dma_map(cmd);
4554         if (use_sg < 0) {
4555                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4556                 return use_sg;
4557         }
4558
4559         if (use_sg) {
4560                 curr_sg = cp->sg;
4561                 if (use_sg > h->ioaccel_maxsg) {
4562                         addr64 = le64_to_cpu(
4563                                 h->ioaccel2_cmd_sg_list[c->cmdindex]->address);
4564                         curr_sg->address = cpu_to_le64(addr64);
4565                         curr_sg->length = 0;
4566                         curr_sg->reserved[0] = 0;
4567                         curr_sg->reserved[1] = 0;
4568                         curr_sg->reserved[2] = 0;
4569                         curr_sg->chain_indicator = IOACCEL2_CHAIN;
4570
4571                         curr_sg = h->ioaccel2_cmd_sg_list[c->cmdindex];
4572                 }
4573                 scsi_for_each_sg(cmd, sg, use_sg, i) {
4574                         addr64 = (u64) sg_dma_address(sg);
4575                         len  = sg_dma_len(sg);
4576                         total_len += len;
4577                         curr_sg->address = cpu_to_le64(addr64);
4578                         curr_sg->length = cpu_to_le32(len);
4579                         curr_sg->reserved[0] = 0;
4580                         curr_sg->reserved[1] = 0;
4581                         curr_sg->reserved[2] = 0;
4582                         curr_sg->chain_indicator = 0;
4583                         curr_sg++;
4584                 }
4585
4586                 /*
4587                  * Set the last s/g element bit
4588                  */
4589                 (curr_sg - 1)->chain_indicator = IOACCEL2_LAST_SG;
4590
4591                 switch (cmd->sc_data_direction) {
4592                 case DMA_TO_DEVICE:
4593                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4594                         cp->direction |= IOACCEL2_DIR_DATA_OUT;
4595                         break;
4596                 case DMA_FROM_DEVICE:
4597                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4598                         cp->direction |= IOACCEL2_DIR_DATA_IN;
4599                         break;
4600                 case DMA_NONE:
4601                         cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4602                         cp->direction |= IOACCEL2_DIR_NO_DATA;
4603                         break;
4604                 default:
4605                         dev_err(&h->pdev->dev, "unknown data direction: %d\n",
4606                                 cmd->sc_data_direction);
4607                         BUG();
4608                         break;
4609                 }
4610         } else {
4611                 cp->direction &= ~IOACCEL2_DIRECTION_MASK;
4612                 cp->direction |= IOACCEL2_DIR_NO_DATA;
4613         }
4614
4615         /* Set encryption parameters, if necessary */
4616         set_encrypt_ioaccel2(h, c, cp);
4617
4618         cp->scsi_nexus = cpu_to_le32(ioaccel_handle);
4619         cp->Tag = cpu_to_le32(c->cmdindex << DIRECT_LOOKUP_SHIFT);
4620         memcpy(cp->cdb, cdb, sizeof(cp->cdb));
4621
4622         cp->data_len = cpu_to_le32(total_len);
4623         cp->err_ptr = cpu_to_le64(c->busaddr +
4624                         offsetof(struct io_accel2_cmd, error_data));
4625         cp->err_len = cpu_to_le32(sizeof(cp->error_data));
4626
4627         /* fill in sg elements */
4628         if (use_sg > h->ioaccel_maxsg) {
4629                 cp->sg_count = 1;
4630                 cp->sg[0].length = cpu_to_le32(use_sg * sizeof(cp->sg[0]));
4631                 if (hpsa_map_ioaccel2_sg_chain_block(h, cp, c)) {
4632                         atomic_dec(&phys_disk->ioaccel_cmds_out);
4633                         scsi_dma_unmap(cmd);
4634                         return -1;
4635                 }
4636         } else
4637                 cp->sg_count = (u8) use_sg;
4638
4639         enqueue_cmd_and_start_io(h, c);
4640         return 0;
4641 }
4642
4643 /*
4644  * Queue a command to the correct I/O accelerator path.
4645  */
4646 static int hpsa_scsi_ioaccel_queue_command(struct ctlr_info *h,
4647         struct CommandList *c, u32 ioaccel_handle, u8 *cdb, int cdb_len,
4648         u8 *scsi3addr, struct hpsa_scsi_dev_t *phys_disk)
4649 {
4650         /* Try to honor the device's queue depth */
4651         if (atomic_inc_return(&phys_disk->ioaccel_cmds_out) >
4652                                         phys_disk->queue_depth) {
4653                 atomic_dec(&phys_disk->ioaccel_cmds_out);
4654                 return IO_ACCEL_INELIGIBLE;
4655         }
4656         if (h->transMethod & CFGTBL_Trans_io_accel1)
4657                 return hpsa_scsi_ioaccel1_queue_command(h, c, ioaccel_handle,
4658                                                 cdb, cdb_len, scsi3addr,
4659                                                 phys_disk);
4660         else
4661                 return hpsa_scsi_ioaccel2_queue_command(h, c, ioaccel_handle,
4662                                                 cdb, cdb_len, scsi3addr,
4663                                                 phys_disk);
4664 }
4665
4666 static void raid_map_helper(struct raid_map_data *map,
4667                 int offload_to_mirror, u32 *map_index, u32 *current_group)
4668 {
4669         if (offload_to_mirror == 0)  {
4670                 /* use physical disk in the first mirrored group. */
4671                 *map_index %= le16_to_cpu(map->data_disks_per_row);
4672                 return;
4673         }
4674         do {
4675                 /* determine mirror group that *map_index indicates */
4676                 *current_group = *map_index /
4677                         le16_to_cpu(map->data_disks_per_row);
4678                 if (offload_to_mirror == *current_group)
4679                         continue;
4680                 if (*current_group < le16_to_cpu(map->layout_map_count) - 1) {
4681                         /* select map index from next group */
4682                         *map_index += le16_to_cpu(map->data_disks_per_row);
4683                         (*current_group)++;
4684                 } else {
4685                         /* select map index from first group */
4686                         *map_index %= le16_to_cpu(map->data_disks_per_row);
4687                         *current_group = 0;
4688                 }
4689         } while (offload_to_mirror != *current_group);
4690 }
4691
4692 /*
4693  * Attempt to perform offload RAID mapping for a logical volume I/O.
4694  */
4695 static int hpsa_scsi_ioaccel_raid_map(struct ctlr_info *h,
4696         struct CommandList *c)
4697 {
4698         struct scsi_cmnd *cmd = c->scsi_cmd;
4699         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
4700         struct raid_map_data *map = &dev->raid_map;
4701         struct raid_map_disk_data *dd = &map->data[0];
4702         int is_write = 0;
4703         u32 map_index;
4704         u64 first_block, last_block;
4705         u32 block_cnt;
4706         u32 blocks_per_row;
4707         u64 first_row, last_row;
4708         u32 first_row_offset, last_row_offset;
4709         u32 first_column, last_column;
4710         u64 r0_first_row, r0_last_row;
4711         u32 r5or6_blocks_per_row;
4712         u64 r5or6_first_row, r5or6_last_row;
4713         u32 r5or6_first_row_offset, r5or6_last_row_offset;
4714         u32 r5or6_first_column, r5or6_last_column;
4715         u32 total_disks_per_row;
4716         u32 stripesize;
4717         u32 first_group, last_group, current_group;
4718         u32 map_row;
4719         u32 disk_handle;
4720         u64 disk_block;
4721         u32 disk_block_cnt;
4722         u8 cdb[16];
4723         u8 cdb_len;
4724         u16 strip_size;
4725 #if BITS_PER_LONG == 32
4726         u64 tmpdiv;
4727 #endif
4728         int offload_to_mirror;
4729
4730         /* check for valid opcode, get LBA and block count */
4731         switch (cmd->cmnd[0]) {
4732         case WRITE_6:
4733                 is_write = 1;
4734         case READ_6:
4735                 first_block = get_unaligned_be16(&cmd->cmnd[2]);
4736                 block_cnt = cmd->cmnd[4];
4737                 if (block_cnt == 0)
4738                         block_cnt = 256;
4739                 break;
4740         case WRITE_10:
4741                 is_write = 1;
4742         case READ_10:
4743                 first_block =
4744                         (((u64) cmd->cmnd[2]) << 24) |
4745                         (((u64) cmd->cmnd[3]) << 16) |
4746                         (((u64) cmd->cmnd[4]) << 8) |
4747                         cmd->cmnd[5];
4748                 block_cnt =
4749                         (((u32) cmd->cmnd[7]) << 8) |
4750                         cmd->cmnd[8];
4751                 break;
4752         case WRITE_12:
4753                 is_write = 1;
4754         case READ_12:
4755                 first_block =
4756                         (((u64) cmd->cmnd[2]) << 24) |
4757                         (((u64) cmd->cmnd[3]) << 16) |
4758                         (((u64) cmd->cmnd[4]) << 8) |
4759                         cmd->cmnd[5];
4760                 block_cnt =
4761                         (((u32) cmd->cmnd[6]) << 24) |
4762                         (((u32) cmd->cmnd[7]) << 16) |
4763                         (((u32) cmd->cmnd[8]) << 8) |
4764                 cmd->cmnd[9];
4765                 break;
4766         case WRITE_16:
4767                 is_write = 1;
4768         case READ_16:
4769                 first_block =
4770                         (((u64) cmd->cmnd[2]) << 56) |
4771                         (((u64) cmd->cmnd[3]) << 48) |
4772                         (((u64) cmd->cmnd[4]) << 40) |
4773                         (((u64) cmd->cmnd[5]) << 32) |
4774                         (((u64) cmd->cmnd[6]) << 24) |
4775                         (((u64) cmd->cmnd[7]) << 16) |
4776                         (((u64) cmd->cmnd[8]) << 8) |
4777                         cmd->cmnd[9];
4778                 block_cnt =
4779                         (((u32) cmd->cmnd[10]) << 24) |
4780                         (((u32) cmd->cmnd[11]) << 16) |
4781                         (((u32) cmd->cmnd[12]) << 8) |
4782                         cmd->cmnd[13];
4783                 break;
4784         default:
4785                 return IO_ACCEL_INELIGIBLE; /* process via normal I/O path */
4786         }
4787         last_block = first_block + block_cnt - 1;
4788
4789         /* check for write to non-RAID-0 */
4790         if (is_write && dev->raid_level != 0)
4791                 return IO_ACCEL_INELIGIBLE;
4792
4793         /* check for invalid block or wraparound */
4794         if (last_block >= le64_to_cpu(map->volume_blk_cnt) ||
4795                 last_block < first_block)
4796                 return IO_ACCEL_INELIGIBLE;
4797
4798         /* calculate stripe information for the request */
4799         blocks_per_row = le16_to_cpu(map->data_disks_per_row) *
4800                                 le16_to_cpu(map->strip_size);
4801         strip_size = le16_to_cpu(map->strip_size);
4802 #if BITS_PER_LONG == 32
4803         tmpdiv = first_block;
4804         (void) do_div(tmpdiv, blocks_per_row);
4805         first_row = tmpdiv;
4806         tmpdiv = last_block;
4807         (void) do_div(tmpdiv, blocks_per_row);
4808         last_row = tmpdiv;
4809         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4810         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4811         tmpdiv = first_row_offset;
4812         (void) do_div(tmpdiv, strip_size);
4813         first_column = tmpdiv;
4814         tmpdiv = last_row_offset;
4815         (void) do_div(tmpdiv, strip_size);
4816         last_column = tmpdiv;
4817 #else
4818         first_row = first_block / blocks_per_row;
4819         last_row = last_block / blocks_per_row;
4820         first_row_offset = (u32) (first_block - (first_row * blocks_per_row));
4821         last_row_offset = (u32) (last_block - (last_row * blocks_per_row));
4822         first_column = first_row_offset / strip_size;
4823         last_column = last_row_offset / strip_size;
4824 #endif
4825
4826         /* if this isn't a single row/column then give to the controller */
4827         if ((first_row != last_row) || (first_column != last_column))
4828                 return IO_ACCEL_INELIGIBLE;
4829
4830         /* proceeding with driver mapping */
4831         total_disks_per_row = le16_to_cpu(map->data_disks_per_row) +
4832                                 le16_to_cpu(map->metadata_disks_per_row);
4833         map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4834                                 le16_to_cpu(map->row_cnt);
4835         map_index = (map_row * total_disks_per_row) + first_column;
4836
4837         switch (dev->raid_level) {
4838         case HPSA_RAID_0:
4839                 break; /* nothing special to do */
4840         case HPSA_RAID_1:
4841                 /* Handles load balance across RAID 1 members.
4842                  * (2-drive R1 and R10 with even # of drives.)
4843                  * Appropriate for SSDs, not optimal for HDDs
4844                  */
4845                 BUG_ON(le16_to_cpu(map->layout_map_count) != 2);
4846                 if (dev->offload_to_mirror)
4847                         map_index += le16_to_cpu(map->data_disks_per_row);
4848                 dev->offload_to_mirror = !dev->offload_to_mirror;
4849                 break;
4850         case HPSA_RAID_ADM:
4851                 /* Handles N-way mirrors  (R1-ADM)
4852                  * and R10 with # of drives divisible by 3.)
4853                  */
4854                 BUG_ON(le16_to_cpu(map->layout_map_count) != 3);
4855
4856                 offload_to_mirror = dev->offload_to_mirror;
4857                 raid_map_helper(map, offload_to_mirror,
4858                                 &map_index, &current_group);
4859                 /* set mirror group to use next time */
4860                 offload_to_mirror =
4861                         (offload_to_mirror >=
4862                         le16_to_cpu(map->layout_map_count) - 1)
4863                         ? 0 : offload_to_mirror + 1;
4864                 dev->offload_to_mirror = offload_to_mirror;
4865                 /* Avoid direct use of dev->offload_to_mirror within this
4866                  * function since multiple threads might simultaneously
4867                  * increment it beyond the range of dev->layout_map_count -1.
4868                  */
4869                 break;
4870         case HPSA_RAID_5:
4871         case HPSA_RAID_6:
4872                 if (le16_to_cpu(map->layout_map_count) <= 1)
4873                         break;
4874
4875                 /* Verify first and last block are in same RAID group */
4876                 r5or6_blocks_per_row =
4877                         le16_to_cpu(map->strip_size) *
4878                         le16_to_cpu(map->data_disks_per_row);
4879                 BUG_ON(r5or6_blocks_per_row == 0);
4880                 stripesize = r5or6_blocks_per_row *
4881                         le16_to_cpu(map->layout_map_count);
4882 #if BITS_PER_LONG == 32
4883                 tmpdiv = first_block;
4884                 first_group = do_div(tmpdiv, stripesize);
4885                 tmpdiv = first_group;
4886                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4887                 first_group = tmpdiv;
4888                 tmpdiv = last_block;
4889                 last_group = do_div(tmpdiv, stripesize);
4890                 tmpdiv = last_group;
4891                 (void) do_div(tmpdiv, r5or6_blocks_per_row);
4892                 last_group = tmpdiv;
4893 #else
4894                 first_group = (first_block % stripesize) / r5or6_blocks_per_row;
4895                 last_group = (last_block % stripesize) / r5or6_blocks_per_row;
4896 #endif
4897                 if (first_group != last_group)
4898                         return IO_ACCEL_INELIGIBLE;
4899
4900                 /* Verify request is in a single row of RAID 5/6 */
4901 #if BITS_PER_LONG == 32
4902                 tmpdiv = first_block;
4903                 (void) do_div(tmpdiv, stripesize);
4904                 first_row = r5or6_first_row = r0_first_row = tmpdiv;
4905                 tmpdiv = last_block;
4906                 (void) do_div(tmpdiv, stripesize);
4907                 r5or6_last_row = r0_last_row = tmpdiv;
4908 #else
4909                 first_row = r5or6_first_row = r0_first_row =
4910                                                 first_block / stripesize;
4911                 r5or6_last_row = r0_last_row = last_block / stripesize;
4912 #endif
4913                 if (r5or6_first_row != r5or6_last_row)
4914                         return IO_ACCEL_INELIGIBLE;
4915
4916
4917                 /* Verify request is in a single column */
4918 #if BITS_PER_LONG == 32
4919                 tmpdiv = first_block;
4920                 first_row_offset = do_div(tmpdiv, stripesize);
4921                 tmpdiv = first_row_offset;
4922                 first_row_offset = (u32) do_div(tmpdiv, r5or6_blocks_per_row);
4923                 r5or6_first_row_offset = first_row_offset;
4924                 tmpdiv = last_block;
4925                 r5or6_last_row_offset = do_div(tmpdiv, stripesize);
4926                 tmpdiv = r5or6_last_row_offset;
4927                 r5or6_last_row_offset = do_div(tmpdiv, r5or6_blocks_per_row);
4928                 tmpdiv = r5or6_first_row_offset;
4929                 (void) do_div(tmpdiv, map->strip_size);
4930                 first_column = r5or6_first_column = tmpdiv;
4931                 tmpdiv = r5or6_last_row_offset;
4932                 (void) do_div(tmpdiv, map->strip_size);
4933                 r5or6_last_column = tmpdiv;
4934 #else
4935                 first_row_offset = r5or6_first_row_offset =
4936                         (u32)((first_block % stripesize) %
4937                                                 r5or6_blocks_per_row);
4938
4939                 r5or6_last_row_offset =
4940                         (u32)((last_block % stripesize) %
4941                                                 r5or6_blocks_per_row);
4942
4943                 first_column = r5or6_first_column =
4944                         r5or6_first_row_offset / le16_to_cpu(map->strip_size);
4945                 r5or6_last_column =
4946                         r5or6_last_row_offset / le16_to_cpu(map->strip_size);
4947 #endif
4948                 if (r5or6_first_column != r5or6_last_column)
4949                         return IO_ACCEL_INELIGIBLE;
4950
4951                 /* Request is eligible */
4952                 map_row = ((u32)(first_row >> map->parity_rotation_shift)) %
4953                         le16_to_cpu(map->row_cnt);
4954
4955                 map_index = (first_group *
4956                         (le16_to_cpu(map->row_cnt) * total_disks_per_row)) +
4957                         (map_row * total_disks_per_row) + first_column;
4958                 break;
4959         default:
4960                 return IO_ACCEL_INELIGIBLE;
4961         }
4962
4963         if (unlikely(map_index >= RAID_MAP_MAX_ENTRIES))
4964                 return IO_ACCEL_INELIGIBLE;
4965
4966         c->phys_disk = dev->phys_disk[map_index];
4967
4968         disk_handle = dd[map_index].ioaccel_handle;
4969         disk_block = le64_to_cpu(map->disk_starting_blk) +
4970                         first_row * le16_to_cpu(map->strip_size) +
4971                         (first_row_offset - first_column *
4972                         le16_to_cpu(map->strip_size));
4973         disk_block_cnt = block_cnt;
4974
4975         /* handle differing logical/physical block sizes */
4976         if (map->phys_blk_shift) {
4977                 disk_block <<= map->phys_blk_shift;
4978                 disk_block_cnt <<= map->phys_blk_shift;
4979         }
4980         BUG_ON(disk_block_cnt > 0xffff);
4981
4982         /* build the new CDB for the physical disk I/O */
4983         if (disk_block > 0xffffffff) {
4984                 cdb[0] = is_write ? WRITE_16 : READ_16;
4985                 cdb[1] = 0;
4986                 cdb[2] = (u8) (disk_block >> 56);
4987                 cdb[3] = (u8) (disk_block >> 48);
4988                 cdb[4] = (u8) (disk_block >> 40);
4989                 cdb[5] = (u8) (disk_block >> 32);
4990                 cdb[6] = (u8) (disk_block >> 24);
4991                 cdb[7] = (u8) (disk_block >> 16);
4992                 cdb[8] = (u8) (disk_block >> 8);
4993                 cdb[9] = (u8) (disk_block);
4994                 cdb[10] = (u8) (disk_block_cnt >> 24);
4995                 cdb[11] = (u8) (disk_block_cnt >> 16);
4996                 cdb[12] = (u8) (disk_block_cnt >> 8);
4997                 cdb[13] = (u8) (disk_block_cnt);
4998                 cdb[14] = 0;
4999                 cdb[15] = 0;
5000                 cdb_len = 16;
5001         } else {
5002                 cdb[0] = is_write ? WRITE_10 : READ_10;
5003                 cdb[1] = 0;
5004                 cdb[2] = (u8) (disk_block >> 24);
5005                 cdb[3] = (u8) (disk_block >> 16);
5006                 cdb[4] = (u8) (disk_block >> 8);
5007                 cdb[5] = (u8) (disk_block);
5008                 cdb[6] = 0;
5009                 cdb[7] = (u8) (disk_block_cnt >> 8);
5010                 cdb[8] = (u8) (disk_block_cnt);
5011                 cdb[9] = 0;
5012                 cdb_len = 10;
5013         }
5014         return hpsa_scsi_ioaccel_queue_command(h, c, disk_handle, cdb, cdb_len,
5015                                                 dev->scsi3addr,
5016                                                 dev->phys_disk[map_index]);
5017 }
5018
5019 /*
5020  * Submit commands down the "normal" RAID stack path
5021  * All callers to hpsa_ciss_submit must check lockup_detected
5022  * beforehand, before (opt.) and after calling cmd_alloc
5023  */
5024 static int hpsa_ciss_submit(struct ctlr_info *h,
5025         struct CommandList *c, struct scsi_cmnd *cmd,
5026         unsigned char scsi3addr[])
5027 {
5028         cmd->host_scribble = (unsigned char *) c;
5029         c->cmd_type = CMD_SCSI;
5030         c->scsi_cmd = cmd;
5031         c->Header.ReplyQueue = 0;  /* unused in simple mode */
5032         memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
5033         c->Header.tag = cpu_to_le64((c->cmdindex << DIRECT_LOOKUP_SHIFT));
5034
5035         /* Fill in the request block... */
5036
5037         c->Request.Timeout = 0;
5038         BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
5039         c->Request.CDBLen = cmd->cmd_len;
5040         memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
5041         switch (cmd->sc_data_direction) {
5042         case DMA_TO_DEVICE:
5043                 c->Request.type_attr_dir =
5044                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_WRITE);
5045                 break;
5046         case DMA_FROM_DEVICE:
5047                 c->Request.type_attr_dir =
5048                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_READ);
5049                 break;
5050         case DMA_NONE:
5051                 c->Request.type_attr_dir =
5052                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_NONE);
5053                 break;
5054         case DMA_BIDIRECTIONAL:
5055                 /* This can happen if a buggy application does a scsi passthru
5056                  * and sets both inlen and outlen to non-zero. ( see
5057                  * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
5058                  */
5059
5060                 c->Request.type_attr_dir =
5061                         TYPE_ATTR_DIR(TYPE_CMD, ATTR_SIMPLE, XFER_RSVD);
5062                 /* This is technically wrong, and hpsa controllers should
5063                  * reject it with CMD_INVALID, which is the most correct
5064                  * response, but non-fibre backends appear to let it
5065                  * slide by, and give the same results as if this field
5066                  * were set correctly.  Either way is acceptable for
5067                  * our purposes here.
5068                  */
5069
5070                 break;
5071
5072         default:
5073                 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
5074                         cmd->sc_data_direction);
5075                 BUG();
5076                 break;
5077         }
5078
5079         if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
5080                 hpsa_cmd_resolve_and_free(h, c);
5081                 return SCSI_MLQUEUE_HOST_BUSY;
5082         }
5083         enqueue_cmd_and_start_io(h, c);
5084         /* the cmd'll come back via intr handler in complete_scsi_command()  */
5085         return 0;
5086 }
5087
5088 static void hpsa_cmd_init(struct ctlr_info *h, int index,
5089                                 struct CommandList *c)
5090 {
5091         dma_addr_t cmd_dma_handle, err_dma_handle;
5092
5093         /* Zero out all of commandlist except the last field, refcount */
5094         memset(c, 0, offsetof(struct CommandList, refcount));
5095         c->Header.tag = cpu_to_le64((u64) (index << DIRECT_LOOKUP_SHIFT));
5096         cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5097         c->err_info = h->errinfo_pool + index;
5098         memset(c->err_info, 0, sizeof(*c->err_info));
5099         err_dma_handle = h->errinfo_pool_dhandle
5100             + index * sizeof(*c->err_info);
5101         c->cmdindex = index;
5102         c->busaddr = (u32) cmd_dma_handle;
5103         c->ErrDesc.Addr = cpu_to_le64((u64) err_dma_handle);
5104         c->ErrDesc.Len = cpu_to_le32((u32) sizeof(*c->err_info));
5105         c->h = h;
5106         c->scsi_cmd = SCSI_CMD_IDLE;
5107 }
5108
5109 static void hpsa_preinitialize_commands(struct ctlr_info *h)
5110 {
5111         int i;
5112
5113         for (i = 0; i < h->nr_cmds; i++) {
5114                 struct CommandList *c = h->cmd_pool + i;
5115
5116                 hpsa_cmd_init(h, i, c);
5117                 atomic_set(&c->refcount, 0);
5118         }
5119 }
5120
5121 static inline void hpsa_cmd_partial_init(struct ctlr_info *h, int index,
5122                                 struct CommandList *c)
5123 {
5124         dma_addr_t cmd_dma_handle = h->cmd_pool_dhandle + index * sizeof(*c);
5125
5126         BUG_ON(c->cmdindex != index);
5127
5128         memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
5129         memset(c->err_info, 0, sizeof(*c->err_info));
5130         c->busaddr = (u32) cmd_dma_handle;
5131 }
5132
5133 static int hpsa_ioaccel_submit(struct ctlr_info *h,
5134                 struct CommandList *c, struct scsi_cmnd *cmd,
5135                 unsigned char *scsi3addr)
5136 {
5137         struct hpsa_scsi_dev_t *dev = cmd->device->hostdata;
5138         int rc = IO_ACCEL_INELIGIBLE;
5139
5140         cmd->host_scribble = (unsigned char *) c;
5141
5142         if (dev->offload_enabled) {
5143                 hpsa_cmd_init(h, c->cmdindex, c);
5144                 c->cmd_type = CMD_SCSI;
5145                 c->scsi_cmd = cmd;
5146                 rc = hpsa_scsi_ioaccel_raid_map(h, c);
5147                 if (rc < 0)     /* scsi_dma_map failed. */
5148                         rc = SCSI_MLQUEUE_HOST_BUSY;
5149         } else if (dev->hba_ioaccel_enabled) {
5150                 hpsa_cmd_init(h, c->cmdindex, c);
5151                 c->cmd_type = CMD_SCSI;
5152                 c->scsi_cmd = cmd;
5153                 rc = hpsa_scsi_ioaccel_direct_map(h, c);
5154                 if (rc < 0)     /* scsi_dma_map failed. */
5155                         rc = SCSI_MLQUEUE_HOST_BUSY;
5156         }
5157         return rc;
5158 }
5159
5160 static void hpsa_command_resubmit_worker(struct work_struct *work)
5161 {
5162         struct scsi_cmnd *cmd;
5163         struct hpsa_scsi_dev_t *dev;
5164         struct CommandList *c = container_of(work, struct CommandList, work);
5165
5166         cmd = c->scsi_cmd;
5167         dev = cmd->device->hostdata;
5168         if (!dev) {
5169                 cmd->result = DID_NO_CONNECT << 16;
5170                 return hpsa_cmd_free_and_done(c->h, c, cmd);
5171         }
5172         if (c->reset_pending)
5173                 return hpsa_cmd_resolve_and_free(c->h, c);
5174         if (c->abort_pending)
5175                 return hpsa_cmd_abort_and_free(c->h, c, cmd);
5176         if (c->cmd_type == CMD_IOACCEL2) {
5177                 struct ctlr_info *h = c->h;
5178                 struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5179                 int rc;
5180
5181                 if (c2->error_data.serv_response ==
5182                                 IOACCEL2_STATUS_SR_TASK_COMP_SET_FULL) {
5183                         rc = hpsa_ioaccel_submit(h, c, cmd, dev->scsi3addr);
5184                         if (rc == 0)
5185                                 return;
5186                         if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5187                                 /*
5188                                  * If we get here, it means dma mapping failed.
5189                                  * Try again via scsi mid layer, which will
5190                                  * then get SCSI_MLQUEUE_HOST_BUSY.
5191                                  */
5192                                 cmd->result = DID_IMM_RETRY << 16;
5193                                 return hpsa_cmd_free_and_done(h, c, cmd);
5194                         }
5195                         /* else, fall thru and resubmit down CISS path */
5196                 }
5197         }
5198         hpsa_cmd_partial_init(c->h, c->cmdindex, c);
5199         if (hpsa_ciss_submit(c->h, c, cmd, dev->scsi3addr)) {
5200                 /*
5201                  * If we get here, it means dma mapping failed. Try
5202                  * again via scsi mid layer, which will then get
5203                  * SCSI_MLQUEUE_HOST_BUSY.
5204                  *
5205                  * hpsa_ciss_submit will have already freed c
5206                  * if it encountered a dma mapping failure.
5207                  */
5208                 cmd->result = DID_IMM_RETRY << 16;
5209                 cmd->scsi_done(cmd);
5210         }
5211 }
5212
5213 /* Running in struct Scsi_Host->host_lock less mode */
5214 static int hpsa_scsi_queue_command(struct Scsi_Host *sh, struct scsi_cmnd *cmd)
5215 {
5216         struct ctlr_info *h;
5217         struct hpsa_scsi_dev_t *dev;
5218         unsigned char scsi3addr[8];
5219         struct CommandList *c;
5220         int rc = 0;
5221
5222         /* Get the ptr to our adapter structure out of cmd->host. */
5223         h = sdev_to_hba(cmd->device);
5224
5225         BUG_ON(cmd->request->tag < 0);
5226
5227         dev = cmd->device->hostdata;
5228         if (!dev) {
5229                 cmd->result = DID_NO_CONNECT << 16;
5230                 cmd->scsi_done(cmd);
5231                 return 0;
5232         }
5233
5234         memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
5235
5236         if (unlikely(lockup_detected(h))) {
5237                 cmd->result = DID_NO_CONNECT << 16;
5238                 cmd->scsi_done(cmd);
5239                 return 0;
5240         }
5241         c = cmd_tagged_alloc(h, cmd);
5242
5243         /*
5244          * This is necessary because the SML doesn't zero out this field during
5245          * error recovery.
5246          */
5247         cmd->result = 0;
5248
5249         /*
5250          * Call alternate submit routine for I/O accelerated commands.
5251          * Retries always go down the normal I/O path.
5252          */
5253         if (likely(cmd->retries == 0 &&
5254                 cmd->request->cmd_type == REQ_TYPE_FS &&
5255                 h->acciopath_status)) {
5256                 rc = hpsa_ioaccel_submit(h, c, cmd, scsi3addr);
5257                 if (rc == 0)
5258                         return 0;
5259                 if (rc == SCSI_MLQUEUE_HOST_BUSY) {
5260                         hpsa_cmd_resolve_and_free(h, c);
5261                         return SCSI_MLQUEUE_HOST_BUSY;
5262                 }
5263         }
5264         return hpsa_ciss_submit(h, c, cmd, scsi3addr);
5265 }
5266
5267 static void hpsa_scan_complete(struct ctlr_info *h)
5268 {
5269         unsigned long flags;
5270
5271         spin_lock_irqsave(&h->scan_lock, flags);
5272         h->scan_finished = 1;
5273         wake_up(&h->scan_wait_queue);
5274         spin_unlock_irqrestore(&h->scan_lock, flags);
5275 }
5276
5277 static void hpsa_scan_start(struct Scsi_Host *sh)
5278 {
5279         struct ctlr_info *h = shost_to_hba(sh);
5280         unsigned long flags;
5281
5282         /*
5283          * Don't let rescans be initiated on a controller known to be locked
5284          * up.  If the controller locks up *during* a rescan, that thread is
5285          * probably hosed, but at least we can prevent new rescan threads from
5286          * piling up on a locked up controller.
5287          */
5288         if (unlikely(lockup_detected(h)))
5289                 return hpsa_scan_complete(h);
5290
5291         /*
5292          * If a scan is already waiting to run, no need to add another
5293          */
5294         spin_lock_irqsave(&h->scan_lock, flags);
5295         if (h->scan_waiting) {
5296                 spin_unlock_irqrestore(&h->scan_lock, flags);
5297                 return;
5298         }
5299
5300         spin_unlock_irqrestore(&h->scan_lock, flags);
5301
5302         /* wait until any scan already in progress is finished. */
5303         while (1) {
5304                 spin_lock_irqsave(&h->scan_lock, flags);
5305                 if (h->scan_finished)
5306                         break;
5307                 h->scan_waiting = 1;
5308                 spin_unlock_irqrestore(&h->scan_lock, flags);
5309                 wait_event(h->scan_wait_queue, h->scan_finished);
5310                 /* Note: We don't need to worry about a race between this
5311                  * thread and driver unload because the midlayer will
5312                  * have incremented the reference count, so unload won't
5313                  * happen if we're in here.
5314                  */
5315         }
5316         h->scan_finished = 0; /* mark scan as in progress */
5317         h->scan_waiting = 0;
5318         spin_unlock_irqrestore(&h->scan_lock, flags);
5319
5320         if (unlikely(lockup_detected(h)))
5321                 return hpsa_scan_complete(h);
5322
5323         hpsa_update_scsi_devices(h);
5324
5325         hpsa_scan_complete(h);
5326 }
5327
5328 static int hpsa_change_queue_depth(struct scsi_device *sdev, int qdepth)
5329 {
5330         struct hpsa_scsi_dev_t *logical_drive = sdev->hostdata;
5331
5332         if (!logical_drive)
5333                 return -ENODEV;
5334
5335         if (qdepth < 1)
5336                 qdepth = 1;
5337         else if (qdepth > logical_drive->queue_depth)
5338                 qdepth = logical_drive->queue_depth;
5339
5340         return scsi_change_queue_depth(sdev, qdepth);
5341 }
5342
5343 static int hpsa_scan_finished(struct Scsi_Host *sh,
5344         unsigned long elapsed_time)
5345 {
5346         struct ctlr_info *h = shost_to_hba(sh);
5347         unsigned long flags;
5348         int finished;
5349
5350         spin_lock_irqsave(&h->scan_lock, flags);
5351         finished = h->scan_finished;
5352         spin_unlock_irqrestore(&h->scan_lock, flags);
5353         return finished;
5354 }
5355
5356 static int hpsa_scsi_host_alloc(struct ctlr_info *h)
5357 {
5358         struct Scsi_Host *sh;
5359
5360         sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
5361         if (sh == NULL) {
5362                 dev_err(&h->pdev->dev, "scsi_host_alloc failed\n");
5363                 return -ENOMEM;
5364         }
5365
5366         sh->io_port = 0;
5367         sh->n_io_port = 0;
5368         sh->this_id = -1;
5369         sh->max_channel = 3;
5370         sh->max_cmd_len = MAX_COMMAND_SIZE;
5371         sh->max_lun = HPSA_MAX_LUN;
5372         sh->max_id = HPSA_MAX_LUN;
5373         sh->can_queue = h->nr_cmds - HPSA_NRESERVED_CMDS;
5374         sh->cmd_per_lun = sh->can_queue;
5375         sh->sg_tablesize = h->maxsgentries;
5376         sh->transportt = hpsa_sas_transport_template;
5377         sh->hostdata[0] = (unsigned long) h;
5378         sh->irq = h->intr[h->intr_mode];
5379         sh->unique_id = sh->irq;
5380
5381         h->scsi_host = sh;
5382         return 0;
5383 }
5384
5385 static int hpsa_scsi_add_host(struct ctlr_info *h)
5386 {
5387         int rv;
5388
5389         rv = scsi_add_host(h->scsi_host, &h->pdev->dev);
5390         if (rv) {
5391                 dev_err(&h->pdev->dev, "scsi_add_host failed\n");
5392                 return rv;
5393         }
5394         scsi_scan_host(h->scsi_host);
5395         return 0;
5396 }
5397
5398 /*
5399  * The block layer has already gone to the trouble of picking out a unique,
5400  * small-integer tag for this request.  We use an offset from that value as
5401  * an index to select our command block.  (The offset allows us to reserve the
5402  * low-numbered entries for our own uses.)
5403  */
5404 static int hpsa_get_cmd_index(struct scsi_cmnd *scmd)
5405 {
5406         int idx = scmd->request->tag;
5407
5408         if (idx < 0)
5409                 return idx;
5410
5411         /* Offset to leave space for internal cmds. */
5412         return idx += HPSA_NRESERVED_CMDS;
5413 }
5414
5415 /*
5416  * Send a TEST_UNIT_READY command to the specified LUN using the specified
5417  * reply queue; returns zero if the unit is ready, and non-zero otherwise.
5418  */
5419 static int hpsa_send_test_unit_ready(struct ctlr_info *h,
5420                                 struct CommandList *c, unsigned char lunaddr[],
5421                                 int reply_queue)
5422 {
5423         int rc;
5424
5425         /* Send the Test Unit Ready, fill_cmd can't fail, no mapping */
5426         (void) fill_cmd(c, TEST_UNIT_READY, h,
5427                         NULL, 0, 0, lunaddr, TYPE_CMD);
5428         rc = hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5429         if (rc)
5430                 return rc;
5431         /* no unmap needed here because no data xfer. */
5432
5433         /* Check if the unit is already ready. */
5434         if (c->err_info->CommandStatus == CMD_SUCCESS)
5435                 return 0;
5436
5437         /*
5438          * The first command sent after reset will receive "unit attention" to
5439          * indicate that the LUN has been reset...this is actually what we're
5440          * looking for (but, success is good too).
5441          */
5442         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
5443                 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
5444                         (c->err_info->SenseInfo[2] == NO_SENSE ||
5445                          c->err_info->SenseInfo[2] == UNIT_ATTENTION))
5446                 return 0;
5447
5448         return 1;
5449 }
5450
5451 /*
5452  * Wait for a TEST_UNIT_READY command to complete, retrying as necessary;
5453  * returns zero when the unit is ready, and non-zero when giving up.
5454  */
5455 static int hpsa_wait_for_test_unit_ready(struct ctlr_info *h,
5456                                 struct CommandList *c,
5457                                 unsigned char lunaddr[], int reply_queue)
5458 {
5459         int rc;
5460         int count = 0;
5461         int waittime = 1; /* seconds */
5462
5463         /* Send test unit ready until device ready, or give up. */
5464         for (count = 0; count < HPSA_TUR_RETRY_LIMIT; count++) {
5465
5466                 /*
5467                  * Wait for a bit.  do this first, because if we send
5468                  * the TUR right away, the reset will just abort it.
5469                  */
5470                 msleep(1000 * waittime);
5471
5472                 rc = hpsa_send_test_unit_ready(h, c, lunaddr, reply_queue);
5473                 if (!rc)
5474                         break;
5475
5476                 /* Increase wait time with each try, up to a point. */
5477                 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
5478                         waittime *= 2;
5479
5480                 dev_warn(&h->pdev->dev,
5481                          "waiting %d secs for device to become ready.\n",
5482                          waittime);
5483         }
5484
5485         return rc;
5486 }
5487
5488 static int wait_for_device_to_become_ready(struct ctlr_info *h,
5489                                            unsigned char lunaddr[],
5490                                            int reply_queue)
5491 {
5492         int first_queue;
5493         int last_queue;
5494         int rq;
5495         int rc = 0;
5496         struct CommandList *c;
5497
5498         c = cmd_alloc(h);
5499
5500         /*
5501          * If no specific reply queue was requested, then send the TUR
5502          * repeatedly, requesting a reply on each reply queue; otherwise execute
5503          * the loop exactly once using only the specified queue.
5504          */
5505         if (reply_queue == DEFAULT_REPLY_QUEUE) {
5506                 first_queue = 0;
5507                 last_queue = h->nreply_queues - 1;
5508         } else {
5509                 first_queue = reply_queue;
5510                 last_queue = reply_queue;
5511         }
5512
5513         for (rq = first_queue; rq <= last_queue; rq++) {
5514                 rc = hpsa_wait_for_test_unit_ready(h, c, lunaddr, rq);
5515                 if (rc)
5516                         break;
5517         }
5518
5519         if (rc)
5520                 dev_warn(&h->pdev->dev, "giving up on device.\n");
5521         else
5522                 dev_warn(&h->pdev->dev, "device is ready.\n");
5523
5524         cmd_free(h, c);
5525         return rc;
5526 }
5527
5528 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
5529  * complaining.  Doing a host- or bus-reset can't do anything good here.
5530  */
5531 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
5532 {
5533         int rc;
5534         struct ctlr_info *h;
5535         struct hpsa_scsi_dev_t *dev;
5536         u8 reset_type;
5537         char msg[48];
5538
5539         /* find the controller to which the command to be aborted was sent */
5540         h = sdev_to_hba(scsicmd->device);
5541         if (h == NULL) /* paranoia */
5542                 return FAILED;
5543
5544         if (lockup_detected(h))
5545                 return FAILED;
5546
5547         dev = scsicmd->device->hostdata;
5548         if (!dev) {
5549                 dev_err(&h->pdev->dev, "%s: device lookup failed\n", __func__);
5550                 return FAILED;
5551         }
5552
5553         /* if controller locked up, we can guarantee command won't complete */
5554         if (lockup_detected(h)) {
5555                 snprintf(msg, sizeof(msg),
5556                          "cmd %d RESET FAILED, lockup detected",
5557                          hpsa_get_cmd_index(scsicmd));
5558                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5559                 return FAILED;
5560         }
5561
5562         /* this reset request might be the result of a lockup; check */
5563         if (detect_controller_lockup(h)) {
5564                 snprintf(msg, sizeof(msg),
5565                          "cmd %d RESET FAILED, new lockup detected",
5566                          hpsa_get_cmd_index(scsicmd));
5567                 hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5568                 return FAILED;
5569         }
5570
5571         /* Do not attempt on controller */
5572         if (is_hba_lunid(dev->scsi3addr))
5573                 return SUCCESS;
5574
5575         if (is_logical_dev_addr_mode(dev->scsi3addr))
5576                 reset_type = HPSA_DEVICE_RESET_MSG;
5577         else
5578                 reset_type = HPSA_PHYS_TARGET_RESET;
5579
5580         sprintf(msg, "resetting %s",
5581                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ");
5582         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5583
5584         h->reset_in_progress = 1;
5585
5586         /* send a reset to the SCSI LUN which the command was sent to */
5587         rc = hpsa_do_reset(h, dev, dev->scsi3addr, reset_type,
5588                            DEFAULT_REPLY_QUEUE);
5589         sprintf(msg, "reset %s %s",
5590                 reset_type == HPSA_DEVICE_RESET_MSG ? "logical " : "physical ",
5591                 rc == 0 ? "completed successfully" : "failed");
5592         hpsa_show_dev_msg(KERN_WARNING, h, dev, msg);
5593         h->reset_in_progress = 0;
5594         return rc == 0 ? SUCCESS : FAILED;
5595 }
5596
5597 static void swizzle_abort_tag(u8 *tag)
5598 {
5599         u8 original_tag[8];
5600
5601         memcpy(original_tag, tag, 8);
5602         tag[0] = original_tag[3];
5603         tag[1] = original_tag[2];
5604         tag[2] = original_tag[1];
5605         tag[3] = original_tag[0];
5606         tag[4] = original_tag[7];
5607         tag[5] = original_tag[6];
5608         tag[6] = original_tag[5];
5609         tag[7] = original_tag[4];
5610 }
5611
5612 static void hpsa_get_tag(struct ctlr_info *h,
5613         struct CommandList *c, __le32 *taglower, __le32 *tagupper)
5614 {
5615         u64 tag;
5616         if (c->cmd_type == CMD_IOACCEL1) {
5617                 struct io_accel1_cmd *cm1 = (struct io_accel1_cmd *)
5618                         &h->ioaccel_cmd_pool[c->cmdindex];
5619                 tag = le64_to_cpu(cm1->tag);
5620                 *tagupper = cpu_to_le32(tag >> 32);
5621                 *taglower = cpu_to_le32(tag);
5622                 return;
5623         }
5624         if (c->cmd_type == CMD_IOACCEL2) {
5625                 struct io_accel2_cmd *cm2 = (struct io_accel2_cmd *)
5626                         &h->ioaccel2_cmd_pool[c->cmdindex];
5627                 /* upper tag not used in ioaccel2 mode */
5628                 memset(tagupper, 0, sizeof(*tagupper));
5629                 *taglower = cm2->Tag;
5630                 return;
5631         }
5632         tag = le64_to_cpu(c->Header.tag);
5633         *tagupper = cpu_to_le32(tag >> 32);
5634         *taglower = cpu_to_le32(tag);
5635 }
5636
5637 static int hpsa_send_abort(struct ctlr_info *h, unsigned char *scsi3addr,
5638         struct CommandList *abort, int reply_queue)
5639 {
5640         int rc = IO_OK;
5641         struct CommandList *c;
5642         struct ErrorInfo *ei;
5643         __le32 tagupper, taglower;
5644
5645         c = cmd_alloc(h);
5646
5647         /* fill_cmd can't fail here, no buffer to map */
5648         (void) fill_cmd(c, HPSA_ABORT_MSG, h, &abort->Header.tag,
5649                 0, 0, scsi3addr, TYPE_MSG);
5650         if (h->needs_abort_tags_swizzled)
5651                 swizzle_abort_tag(&c->Request.CDB[4]);
5652         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5653         hpsa_get_tag(h, abort, &taglower, &tagupper);
5654         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: do_simple_cmd(abort) completed.\n",
5655                 __func__, tagupper, taglower);
5656         /* no unmap needed here because no data xfer. */
5657
5658         ei = c->err_info;
5659         switch (ei->CommandStatus) {
5660         case CMD_SUCCESS:
5661                 break;
5662         case CMD_TMF_STATUS:
5663                 rc = hpsa_evaluate_tmf_status(h, c);
5664                 break;
5665         case CMD_UNABORTABLE: /* Very common, don't make noise. */
5666                 rc = -1;
5667                 break;
5668         default:
5669                 dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: interpreting error.\n",
5670                         __func__, tagupper, taglower);
5671                 hpsa_scsi_interpret_error(h, c);
5672                 rc = -1;
5673                 break;
5674         }
5675         cmd_free(h, c);
5676         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n",
5677                 __func__, tagupper, taglower);
5678         return rc;
5679 }
5680
5681 static void setup_ioaccel2_abort_cmd(struct CommandList *c, struct ctlr_info *h,
5682         struct CommandList *command_to_abort, int reply_queue)
5683 {
5684         struct io_accel2_cmd *c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5685         struct hpsa_tmf_struct *ac = (struct hpsa_tmf_struct *) c2;
5686         struct io_accel2_cmd *c2a =
5687                 &h->ioaccel2_cmd_pool[command_to_abort->cmdindex];
5688         struct scsi_cmnd *scmd = command_to_abort->scsi_cmd;
5689         struct hpsa_scsi_dev_t *dev = scmd->device->hostdata;
5690
5691         /*
5692          * We're overlaying struct hpsa_tmf_struct on top of something which
5693          * was allocated as a struct io_accel2_cmd, so we better be sure it
5694          * actually fits, and doesn't overrun the error info space.
5695          */
5696         BUILD_BUG_ON(sizeof(struct hpsa_tmf_struct) >
5697                         sizeof(struct io_accel2_cmd));
5698         BUG_ON(offsetof(struct io_accel2_cmd, error_data) <
5699                         offsetof(struct hpsa_tmf_struct, error_len) +
5700                                 sizeof(ac->error_len));
5701
5702         c->cmd_type = IOACCEL2_TMF;
5703         c->scsi_cmd = SCSI_CMD_BUSY;
5704
5705         /* Adjust the DMA address to point to the accelerated command buffer */
5706         c->busaddr = (u32) h->ioaccel2_cmd_pool_dhandle +
5707                                 (c->cmdindex * sizeof(struct io_accel2_cmd));
5708         BUG_ON(c->busaddr & 0x0000007F);
5709
5710         memset(ac, 0, sizeof(*c2)); /* yes this is correct */
5711         ac->iu_type = IOACCEL2_IU_TMF_TYPE;
5712         ac->reply_queue = reply_queue;
5713         ac->tmf = IOACCEL2_TMF_ABORT;
5714         ac->it_nexus = cpu_to_le32(dev->ioaccel_handle);
5715         memset(ac->lun_id, 0, sizeof(ac->lun_id));
5716         ac->tag = cpu_to_le64(c->cmdindex << DIRECT_LOOKUP_SHIFT);
5717         ac->abort_tag = cpu_to_le64(le32_to_cpu(c2a->Tag));
5718         ac->error_ptr = cpu_to_le64(c->busaddr +
5719                         offsetof(struct io_accel2_cmd, error_data));
5720         ac->error_len = cpu_to_le32(sizeof(c2->error_data));
5721 }
5722
5723 /* ioaccel2 path firmware cannot handle abort task requests.
5724  * Change abort requests to physical target reset, and send to the
5725  * address of the physical disk used for the ioaccel 2 command.
5726  * Return 0 on success (IO_OK)
5727  *       -1 on failure
5728  */
5729
5730 static int hpsa_send_reset_as_abort_ioaccel2(struct ctlr_info *h,
5731         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5732 {
5733         int rc = IO_OK;
5734         struct scsi_cmnd *scmd; /* scsi command within request being aborted */
5735         struct hpsa_scsi_dev_t *dev; /* device to which scsi cmd was sent */
5736         unsigned char phys_scsi3addr[8]; /* addr of phys disk with volume */
5737         unsigned char *psa = &phys_scsi3addr[0];
5738
5739         /* Get a pointer to the hpsa logical device. */
5740         scmd = abort->scsi_cmd;
5741         dev = (struct hpsa_scsi_dev_t *)(scmd->device->hostdata);
5742         if (dev == NULL) {
5743                 dev_warn(&h->pdev->dev,
5744                         "Cannot abort: no device pointer for command.\n");
5745                         return -1; /* not abortable */
5746         }
5747
5748         if (h->raid_offload_debug > 0)
5749                 dev_info(&h->pdev->dev,
5750                         "scsi %d:%d:%d:%d %s scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5751                         h->scsi_host->host_no, dev->bus, dev->target, dev->lun,
5752                         "Reset as abort",
5753                         scsi3addr[0], scsi3addr[1], scsi3addr[2], scsi3addr[3],
5754                         scsi3addr[4], scsi3addr[5], scsi3addr[6], scsi3addr[7]);
5755
5756         if (!dev->offload_enabled) {
5757                 dev_warn(&h->pdev->dev,
5758                         "Can't abort: device is not operating in HP SSD Smart Path mode.\n");
5759                 return -1; /* not abortable */
5760         }
5761
5762         /* Incoming scsi3addr is logical addr. We need physical disk addr. */
5763         if (!hpsa_get_pdisk_of_ioaccel2(h, abort, psa)) {
5764                 dev_warn(&h->pdev->dev, "Can't abort: Failed lookup of physical address.\n");
5765                 return -1; /* not abortable */
5766         }
5767
5768         /* send the reset */
5769         if (h->raid_offload_debug > 0)
5770                 dev_info(&h->pdev->dev,
5771                         "Reset as abort: Resetting physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5772                         psa[0], psa[1], psa[2], psa[3],
5773                         psa[4], psa[5], psa[6], psa[7]);
5774         rc = hpsa_do_reset(h, dev, psa, HPSA_RESET_TYPE_TARGET, reply_queue);
5775         if (rc != 0) {
5776                 dev_warn(&h->pdev->dev,
5777                         "Reset as abort: Failed on physical device at scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5778                         psa[0], psa[1], psa[2], psa[3],
5779                         psa[4], psa[5], psa[6], psa[7]);
5780                 return rc; /* failed to reset */
5781         }
5782
5783         /* wait for device to recover */
5784         if (wait_for_device_to_become_ready(h, psa, reply_queue) != 0) {
5785                 dev_warn(&h->pdev->dev,
5786                         "Reset as abort: Failed: Device never recovered from reset: 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5787                         psa[0], psa[1], psa[2], psa[3],
5788                         psa[4], psa[5], psa[6], psa[7]);
5789                 return -1;  /* failed to recover */
5790         }
5791
5792         /* device recovered */
5793         dev_info(&h->pdev->dev,
5794                 "Reset as abort: Device recovered from reset: scsi3addr 0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
5795                 psa[0], psa[1], psa[2], psa[3],
5796                 psa[4], psa[5], psa[6], psa[7]);
5797
5798         return rc; /* success */
5799 }
5800
5801 static int hpsa_send_abort_ioaccel2(struct ctlr_info *h,
5802         struct CommandList *abort, int reply_queue)
5803 {
5804         int rc = IO_OK;
5805         struct CommandList *c;
5806         __le32 taglower, tagupper;
5807         struct hpsa_scsi_dev_t *dev;
5808         struct io_accel2_cmd *c2;
5809
5810         dev = abort->scsi_cmd->device->hostdata;
5811         if (!dev->offload_enabled && !dev->hba_ioaccel_enabled)
5812                 return -1;
5813
5814         c = cmd_alloc(h);
5815         setup_ioaccel2_abort_cmd(c, h, abort, reply_queue);
5816         c2 = &h->ioaccel2_cmd_pool[c->cmdindex];
5817         (void) hpsa_scsi_do_simple_cmd(h, c, reply_queue, NO_TIMEOUT);
5818         hpsa_get_tag(h, abort, &taglower, &tagupper);
5819         dev_dbg(&h->pdev->dev,
5820                 "%s: Tag:0x%08x:%08x: do_simple_cmd(ioaccel2 abort) completed.\n",
5821                 __func__, tagupper, taglower);
5822         /* no unmap needed here because no data xfer. */
5823
5824         dev_dbg(&h->pdev->dev,
5825                 "%s: Tag:0x%08x:%08x: abort service response = 0x%02x.\n",
5826                 __func__, tagupper, taglower, c2->error_data.serv_response);
5827         switch (c2->error_data.serv_response) {
5828         case IOACCEL2_SERV_RESPONSE_TMF_COMPLETE:
5829         case IOACCEL2_SERV_RESPONSE_TMF_SUCCESS:
5830                 rc = 0;
5831                 break;
5832         case IOACCEL2_SERV_RESPONSE_TMF_REJECTED:
5833         case IOACCEL2_SERV_RESPONSE_FAILURE:
5834         case IOACCEL2_SERV_RESPONSE_TMF_WRONG_LUN:
5835                 rc = -1;
5836                 break;
5837         default:
5838                 dev_warn(&h->pdev->dev,
5839                         "%s: Tag:0x%08x:%08x: unknown abort service response 0x%02x\n",
5840                         __func__, tagupper, taglower,
5841                         c2->error_data.serv_response);
5842                 rc = -1;
5843         }
5844         cmd_free(h, c);
5845         dev_dbg(&h->pdev->dev, "%s: Tag:0x%08x:%08x: Finished.\n", __func__,
5846                 tagupper, taglower);
5847         return rc;
5848 }
5849
5850 static int hpsa_send_abort_both_ways(struct ctlr_info *h,
5851         unsigned char *scsi3addr, struct CommandList *abort, int reply_queue)
5852 {
5853         /*
5854          * ioccelerator mode 2 commands should be aborted via the
5855          * accelerated path, since RAID path is unaware of these commands,
5856          * but not all underlying firmware can handle abort TMF.
5857          * Change abort to physical device reset when abort TMF is unsupported.
5858          */
5859         if (abort->cmd_type == CMD_IOACCEL2) {
5860                 if (HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags)
5861                         return hpsa_send_abort_ioaccel2(h, abort,
5862                                                 reply_queue);
5863                 else
5864                         return hpsa_send_reset_as_abort_ioaccel2(h, scsi3addr,
5865                                                         abort, reply_queue);
5866         }
5867         return hpsa_send_abort(h, scsi3addr, abort, reply_queue);
5868 }
5869
5870 /* Find out which reply queue a command was meant to return on */
5871 static int hpsa_extract_reply_queue(struct ctlr_info *h,
5872                                         struct CommandList *c)
5873 {
5874         if (c->cmd_type == CMD_IOACCEL2)
5875                 return h->ioaccel2_cmd_pool[c->cmdindex].reply_queue;
5876         return c->Header.ReplyQueue;
5877 }
5878
5879 /*
5880  * Limit concurrency of abort commands to prevent
5881  * over-subscription of commands
5882  */
5883 static inline int wait_for_available_abort_cmd(struct ctlr_info *h)
5884 {
5885 #define ABORT_CMD_WAIT_MSECS 5000
5886         return !wait_event_timeout(h->abort_cmd_wait_queue,
5887                         atomic_dec_if_positive(&h->abort_cmds_available) >= 0,
5888                         msecs_to_jiffies(ABORT_CMD_WAIT_MSECS));
5889 }
5890
5891 /* Send an abort for the specified command.
5892  *      If the device and controller support it,
5893  *              send a task abort request.
5894  */
5895 static int hpsa_eh_abort_handler(struct scsi_cmnd *sc)
5896 {
5897
5898         int rc;
5899         struct ctlr_info *h;
5900         struct hpsa_scsi_dev_t *dev;
5901         struct CommandList *abort; /* pointer to command to be aborted */
5902         struct scsi_cmnd *as;   /* ptr to scsi cmd inside aborted command. */
5903         char msg[256];          /* For debug messaging. */
5904         int ml = 0;
5905         __le32 tagupper, taglower;
5906         int refcount, reply_queue;
5907
5908         if (sc == NULL)
5909                 return FAILED;
5910
5911         if (sc->device == NULL)
5912                 return FAILED;
5913
5914         /* Find the controller of the command to be aborted */
5915         h = sdev_to_hba(sc->device);
5916         if (h == NULL)
5917                 return FAILED;
5918
5919         /* Find the device of the command to be aborted */
5920         dev = sc->device->hostdata;
5921         if (!dev) {
5922                 dev_err(&h->pdev->dev, "%s FAILED, Device lookup failed.\n",
5923                                 msg);
5924                 return FAILED;
5925         }
5926
5927         /* If controller locked up, we can guarantee command won't complete */
5928         if (lockup_detected(h)) {
5929                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5930                                         "ABORT FAILED, lockup detected");
5931                 return FAILED;
5932         }
5933
5934         /* This is a good time to check if controller lockup has occurred */
5935         if (detect_controller_lockup(h)) {
5936                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
5937                                         "ABORT FAILED, new lockup detected");
5938                 return FAILED;
5939         }
5940
5941         /* Check that controller supports some kind of task abort */
5942         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags) &&
5943                 !(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
5944                 return FAILED;
5945
5946         memset(msg, 0, sizeof(msg));
5947         ml += sprintf(msg+ml, "scsi %d:%d:%d:%llu %s %p",
5948                 h->scsi_host->host_no, sc->device->channel,
5949                 sc->device->id, sc->device->lun,
5950                 "Aborting command", sc);
5951
5952         /* Get SCSI command to be aborted */
5953         abort = (struct CommandList *) sc->host_scribble;
5954         if (abort == NULL) {
5955                 /* This can happen if the command already completed. */
5956                 return SUCCESS;
5957         }
5958         refcount = atomic_inc_return(&abort->refcount);
5959         if (refcount == 1) { /* Command is done already. */
5960                 cmd_free(h, abort);
5961                 return SUCCESS;
5962         }
5963
5964         /* Don't bother trying the abort if we know it won't work. */
5965         if (abort->cmd_type != CMD_IOACCEL2 &&
5966                 abort->cmd_type != CMD_IOACCEL1 && !dev->supports_aborts) {
5967                 cmd_free(h, abort);
5968                 return FAILED;
5969         }
5970
5971         /*
5972          * Check that we're aborting the right command.
5973          * It's possible the CommandList already completed and got re-used.
5974          */
5975         if (abort->scsi_cmd != sc) {
5976                 cmd_free(h, abort);
5977                 return SUCCESS;
5978         }
5979
5980         abort->abort_pending = true;
5981         hpsa_get_tag(h, abort, &taglower, &tagupper);
5982         reply_queue = hpsa_extract_reply_queue(h, abort);
5983         ml += sprintf(msg+ml, "Tag:0x%08x:%08x ", tagupper, taglower);
5984         as  = abort->scsi_cmd;
5985         if (as != NULL)
5986                 ml += sprintf(msg+ml,
5987                         "CDBLen: %d CDB: 0x%02x%02x... SN: 0x%lx ",
5988                         as->cmd_len, as->cmnd[0], as->cmnd[1],
5989                         as->serial_number);
5990         dev_warn(&h->pdev->dev, "%s BEING SENT\n", msg);
5991         hpsa_show_dev_msg(KERN_WARNING, h, dev, "Aborting command");
5992
5993         /*
5994          * Command is in flight, or possibly already completed
5995          * by the firmware (but not to the scsi mid layer) but we can't
5996          * distinguish which.  Send the abort down.
5997          */
5998         if (wait_for_available_abort_cmd(h)) {
5999                 dev_warn(&h->pdev->dev,
6000                         "%s FAILED, timeout waiting for an abort command to become available.\n",
6001                         msg);
6002                 cmd_free(h, abort);
6003                 return FAILED;
6004         }
6005         rc = hpsa_send_abort_both_ways(h, dev->scsi3addr, abort, reply_queue);
6006         atomic_inc(&h->abort_cmds_available);
6007         wake_up_all(&h->abort_cmd_wait_queue);
6008         if (rc != 0) {
6009                 dev_warn(&h->pdev->dev, "%s SENT, FAILED\n", msg);
6010                 hpsa_show_dev_msg(KERN_WARNING, h, dev,
6011                                 "FAILED to abort command");
6012                 cmd_free(h, abort);
6013                 return FAILED;
6014         }
6015         dev_info(&h->pdev->dev, "%s SENT, SUCCESS\n", msg);
6016         wait_event(h->event_sync_wait_queue,
6017                    abort->scsi_cmd != sc || lockup_detected(h));
6018         cmd_free(h, abort);
6019         return !lockup_detected(h) ? SUCCESS : FAILED;
6020 }
6021
6022 /*
6023  * For operations with an associated SCSI command, a command block is allocated
6024  * at init, and managed by cmd_tagged_alloc() and cmd_tagged_free() using the
6025  * block request tag as an index into a table of entries.  cmd_tagged_free() is
6026  * the complement, although cmd_free() may be called instead.
6027  */
6028 static struct CommandList *cmd_tagged_alloc(struct ctlr_info *h,
6029                                             struct scsi_cmnd *scmd)
6030 {
6031         int idx = hpsa_get_cmd_index(scmd);
6032         struct CommandList *c = h->cmd_pool + idx;
6033
6034         if (idx < HPSA_NRESERVED_CMDS || idx >= h->nr_cmds) {
6035                 dev_err(&h->pdev->dev, "Bad block tag: %d not in [%d..%d]\n",
6036                         idx, HPSA_NRESERVED_CMDS, h->nr_cmds - 1);
6037                 /* The index value comes from the block layer, so if it's out of
6038                  * bounds, it's probably not our bug.
6039                  */
6040                 BUG();
6041         }
6042
6043         atomic_inc(&c->refcount);
6044         if (unlikely(!hpsa_is_cmd_idle(c))) {
6045                 /*
6046                  * We expect that the SCSI layer will hand us a unique tag
6047                  * value.  Thus, there should never be a collision here between
6048                  * two requests...because if the selected command isn't idle
6049                  * then someone is going to be very disappointed.
6050                  */
6051                 dev_err(&h->pdev->dev,
6052                         "tag collision (tag=%d) in cmd_tagged_alloc().\n",
6053                         idx);
6054                 if (c->scsi_cmd != NULL)
6055                         scsi_print_command(c->scsi_cmd);
6056                 scsi_print_command(scmd);
6057         }
6058
6059         hpsa_cmd_partial_init(h, idx, c);
6060         return c;
6061 }
6062
6063 static void cmd_tagged_free(struct ctlr_info *h, struct CommandList *c)
6064 {
6065         /*
6066          * Release our reference to the block.  We don't need to do anything
6067          * else to free it, because it is accessed by index.  (There's no point
6068          * in checking the result of the decrement, since we cannot guarantee
6069          * that there isn't a concurrent abort which is also accessing it.)
6070          */
6071         (void)atomic_dec(&c->refcount);
6072 }
6073
6074 /*
6075  * For operations that cannot sleep, a command block is allocated at init,
6076  * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
6077  * which ones are free or in use.  Lock must be held when calling this.
6078  * cmd_free() is the complement.
6079  * This function never gives up and returns NULL.  If it hangs,
6080  * another thread must call cmd_free() to free some tags.
6081  */
6082
6083 static struct CommandList *cmd_alloc(struct ctlr_info *h)
6084 {
6085         struct CommandList *c;
6086         int refcount, i;
6087         int offset = 0;
6088
6089         /*
6090          * There is some *extremely* small but non-zero chance that that
6091          * multiple threads could get in here, and one thread could
6092          * be scanning through the list of bits looking for a free
6093          * one, but the free ones are always behind him, and other
6094          * threads sneak in behind him and eat them before he can
6095          * get to them, so that while there is always a free one, a
6096          * very unlucky thread might be starved anyway, never able to
6097          * beat the other threads.  In reality, this happens so
6098          * infrequently as to be indistinguishable from never.
6099          *
6100          * Note that we start allocating commands before the SCSI host structure
6101          * is initialized.  Since the search starts at bit zero, this
6102          * all works, since we have at least one command structure available;
6103          * however, it means that the structures with the low indexes have to be
6104          * reserved for driver-initiated requests, while requests from the block
6105          * layer will use the higher indexes.
6106          */
6107
6108         for (;;) {
6109                 i = find_next_zero_bit(h->cmd_pool_bits,
6110                                         HPSA_NRESERVED_CMDS,
6111                                         offset);
6112                 if (unlikely(i >= HPSA_NRESERVED_CMDS)) {
6113                         offset = 0;
6114                         continue;
6115                 }
6116                 c = h->cmd_pool + i;
6117                 refcount = atomic_inc_return(&c->refcount);
6118                 if (unlikely(refcount > 1)) {
6119                         cmd_free(h, c); /* already in use */
6120                         offset = (i + 1) % HPSA_NRESERVED_CMDS;
6121                         continue;
6122                 }
6123                 set_bit(i & (BITS_PER_LONG - 1),
6124                         h->cmd_pool_bits + (i / BITS_PER_LONG));
6125                 break; /* it's ours now. */
6126         }
6127         hpsa_cmd_partial_init(h, i, c);
6128         return c;
6129 }
6130
6131 /*
6132  * This is the complementary operation to cmd_alloc().  Note, however, in some
6133  * corner cases it may also be used to free blocks allocated by
6134  * cmd_tagged_alloc() in which case the ref-count decrement does the trick and
6135  * the clear-bit is harmless.
6136  */
6137 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
6138 {
6139         if (atomic_dec_and_test(&c->refcount)) {
6140                 int i;
6141
6142                 i = c - h->cmd_pool;
6143                 clear_bit(i & (BITS_PER_LONG - 1),
6144                           h->cmd_pool_bits + (i / BITS_PER_LONG));
6145         }
6146 }
6147
6148 #ifdef CONFIG_COMPAT
6149
6150 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd,
6151         void __user *arg)
6152 {
6153         IOCTL32_Command_struct __user *arg32 =
6154             (IOCTL32_Command_struct __user *) arg;
6155         IOCTL_Command_struct arg64;
6156         IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
6157         int err;
6158         u32 cp;
6159
6160         memset(&arg64, 0, sizeof(arg64));
6161         err = 0;
6162         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6163                            sizeof(arg64.LUN_info));
6164         err |= copy_from_user(&arg64.Request, &arg32->Request,
6165                            sizeof(arg64.Request));
6166         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6167                            sizeof(arg64.error_info));
6168         err |= get_user(arg64.buf_size, &arg32->buf_size);
6169         err |= get_user(cp, &arg32->buf);
6170         arg64.buf = compat_ptr(cp);
6171         err |= copy_to_user(p, &arg64, sizeof(arg64));
6172
6173         if (err)
6174                 return -EFAULT;
6175
6176         err = hpsa_ioctl(dev, CCISS_PASSTHRU, p);
6177         if (err)
6178                 return err;
6179         err |= copy_in_user(&arg32->error_info, &p->error_info,
6180                          sizeof(arg32->error_info));
6181         if (err)
6182                 return -EFAULT;
6183         return err;
6184 }
6185
6186 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
6187         int cmd, void __user *arg)
6188 {
6189         BIG_IOCTL32_Command_struct __user *arg32 =
6190             (BIG_IOCTL32_Command_struct __user *) arg;
6191         BIG_IOCTL_Command_struct arg64;
6192         BIG_IOCTL_Command_struct __user *p =
6193             compat_alloc_user_space(sizeof(arg64));
6194         int err;
6195         u32 cp;
6196
6197         memset(&arg64, 0, sizeof(arg64));
6198         err = 0;
6199         err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
6200                            sizeof(arg64.LUN_info));
6201         err |= copy_from_user(&arg64.Request, &arg32->Request,
6202                            sizeof(arg64.Request));
6203         err |= copy_from_user(&arg64.error_info, &arg32->error_info,
6204                            sizeof(arg64.error_info));
6205         err |= get_user(arg64.buf_size, &arg32->buf_size);
6206         err |= get_user(arg64.malloc_size, &arg32->malloc_size);
6207         err |= get_user(cp, &arg32->buf);
6208         arg64.buf = compat_ptr(cp);
6209         err |= copy_to_user(p, &arg64, sizeof(arg64));
6210
6211         if (err)
6212                 return -EFAULT;
6213
6214         err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, p);
6215         if (err)
6216                 return err;
6217         err |= copy_in_user(&arg32->error_info, &p->error_info,
6218                          sizeof(arg32->error_info));
6219         if (err)
6220                 return -EFAULT;
6221         return err;
6222 }
6223
6224 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6225 {
6226         switch (cmd) {
6227         case CCISS_GETPCIINFO:
6228         case CCISS_GETINTINFO:
6229         case CCISS_SETINTINFO:
6230         case CCISS_GETNODENAME:
6231         case CCISS_SETNODENAME:
6232         case CCISS_GETHEARTBEAT:
6233         case CCISS_GETBUSTYPES:
6234         case CCISS_GETFIRMVER:
6235         case CCISS_GETDRIVVER:
6236         case CCISS_REVALIDVOLS:
6237         case CCISS_DEREGDISK:
6238         case CCISS_REGNEWDISK:
6239         case CCISS_REGNEWD:
6240         case CCISS_RESCANDISK:
6241         case CCISS_GETLUNINFO:
6242                 return hpsa_ioctl(dev, cmd, arg);
6243
6244         case CCISS_PASSTHRU32:
6245                 return hpsa_ioctl32_passthru(dev, cmd, arg);
6246         case CCISS_BIG_PASSTHRU32:
6247                 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
6248
6249         default:
6250                 return -ENOIOCTLCMD;
6251         }
6252 }
6253 #endif
6254
6255 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
6256 {
6257         struct hpsa_pci_info pciinfo;
6258
6259         if (!argp)
6260                 return -EINVAL;
6261         pciinfo.domain = pci_domain_nr(h->pdev->bus);
6262         pciinfo.bus = h->pdev->bus->number;
6263         pciinfo.dev_fn = h->pdev->devfn;
6264         pciinfo.board_id = h->board_id;
6265         if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
6266                 return -EFAULT;
6267         return 0;
6268 }
6269
6270 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
6271 {
6272         DriverVer_type DriverVer;
6273         unsigned char vmaj, vmin, vsubmin;
6274         int rc;
6275
6276         rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
6277                 &vmaj, &vmin, &vsubmin);
6278         if (rc != 3) {
6279                 dev_info(&h->pdev->dev, "driver version string '%s' "
6280                         "unrecognized.", HPSA_DRIVER_VERSION);
6281                 vmaj = 0;
6282                 vmin = 0;
6283                 vsubmin = 0;
6284         }
6285         DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
6286         if (!argp)
6287                 return -EINVAL;
6288         if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
6289                 return -EFAULT;
6290         return 0;
6291 }
6292
6293 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6294 {
6295         IOCTL_Command_struct iocommand;
6296         struct CommandList *c;
6297         char *buff = NULL;
6298         u64 temp64;
6299         int rc = 0;
6300
6301         if (!argp)
6302                 return -EINVAL;
6303         if (!capable(CAP_SYS_RAWIO))
6304                 return -EPERM;
6305         if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
6306                 return -EFAULT;
6307         if ((iocommand.buf_size < 1) &&
6308             (iocommand.Request.Type.Direction != XFER_NONE)) {
6309                 return -EINVAL;
6310         }
6311         if (iocommand.buf_size > 0) {
6312                 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
6313                 if (buff == NULL)
6314                         return -ENOMEM;
6315                 if (iocommand.Request.Type.Direction & XFER_WRITE) {
6316                         /* Copy the data into the buffer we created */
6317                         if (copy_from_user(buff, iocommand.buf,
6318                                 iocommand.buf_size)) {
6319                                 rc = -EFAULT;
6320                                 goto out_kfree;
6321                         }
6322                 } else {
6323                         memset(buff, 0, iocommand.buf_size);
6324                 }
6325         }
6326         c = cmd_alloc(h);
6327
6328         /* Fill in the command type */
6329         c->cmd_type = CMD_IOCTL_PEND;
6330         c->scsi_cmd = SCSI_CMD_BUSY;
6331         /* Fill in Command Header */
6332         c->Header.ReplyQueue = 0; /* unused in simple mode */
6333         if (iocommand.buf_size > 0) {   /* buffer to fill */
6334                 c->Header.SGList = 1;
6335                 c->Header.SGTotal = cpu_to_le16(1);
6336         } else  { /* no buffers to fill */
6337                 c->Header.SGList = 0;
6338                 c->Header.SGTotal = cpu_to_le16(0);
6339         }
6340         memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
6341
6342         /* Fill in Request block */
6343         memcpy(&c->Request, &iocommand.Request,
6344                 sizeof(c->Request));
6345
6346         /* Fill in the scatter gather information */
6347         if (iocommand.buf_size > 0) {
6348                 temp64 = pci_map_single(h->pdev, buff,
6349                         iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
6350                 if (dma_mapping_error(&h->pdev->dev, (dma_addr_t) temp64)) {
6351                         c->SG[0].Addr = cpu_to_le64(0);
6352                         c->SG[0].Len = cpu_to_le32(0);
6353                         rc = -ENOMEM;
6354                         goto out;
6355                 }
6356                 c->SG[0].Addr = cpu_to_le64(temp64);
6357                 c->SG[0].Len = cpu_to_le32(iocommand.buf_size);
6358                 c->SG[0].Ext = cpu_to_le32(HPSA_SG_LAST); /* not chaining */
6359         }
6360         rc = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6361         if (iocommand.buf_size > 0)
6362                 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
6363         check_ioctl_unit_attention(h, c);
6364         if (rc) {
6365                 rc = -EIO;
6366                 goto out;
6367         }
6368
6369         /* Copy the error information out */
6370         memcpy(&iocommand.error_info, c->err_info,
6371                 sizeof(iocommand.error_info));
6372         if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
6373                 rc = -EFAULT;
6374                 goto out;
6375         }
6376         if ((iocommand.Request.Type.Direction & XFER_READ) &&
6377                 iocommand.buf_size > 0) {
6378                 /* Copy the data out of the buffer we created */
6379                 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
6380                         rc = -EFAULT;
6381                         goto out;
6382                 }
6383         }
6384 out:
6385         cmd_free(h, c);
6386 out_kfree:
6387         kfree(buff);
6388         return rc;
6389 }
6390
6391 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
6392 {
6393         BIG_IOCTL_Command_struct *ioc;
6394         struct CommandList *c;
6395         unsigned char **buff = NULL;
6396         int *buff_size = NULL;
6397         u64 temp64;
6398         BYTE sg_used = 0;
6399         int status = 0;
6400         u32 left;
6401         u32 sz;
6402         BYTE __user *data_ptr;
6403
6404         if (!argp)
6405                 return -EINVAL;
6406         if (!capable(CAP_SYS_RAWIO))
6407                 return -EPERM;
6408         ioc = (BIG_IOCTL_Command_struct *)
6409             kmalloc(sizeof(*ioc), GFP_KERNEL);
6410         if (!ioc) {
6411                 status = -ENOMEM;
6412                 goto cleanup1;
6413         }
6414         if (copy_from_user(ioc, argp, sizeof(*ioc))) {
6415                 status = -EFAULT;
6416                 goto cleanup1;
6417         }
6418         if ((ioc->buf_size < 1) &&
6419             (ioc->Request.Type.Direction != XFER_NONE)) {
6420                 status = -EINVAL;
6421                 goto cleanup1;
6422         }
6423         /* Check kmalloc limits  using all SGs */
6424         if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
6425                 status = -EINVAL;
6426                 goto cleanup1;
6427         }
6428         if (ioc->buf_size > ioc->malloc_size * SG_ENTRIES_IN_CMD) {
6429                 status = -EINVAL;
6430                 goto cleanup1;
6431         }
6432         buff = kzalloc(SG_ENTRIES_IN_CMD * sizeof(char *), GFP_KERNEL);
6433         if (!buff) {
6434                 status = -ENOMEM;
6435                 goto cleanup1;
6436         }
6437         buff_size = kmalloc(SG_ENTRIES_IN_CMD * sizeof(int), GFP_KERNEL);
6438         if (!buff_size) {
6439                 status = -ENOMEM;
6440                 goto cleanup1;
6441         }
6442         left = ioc->buf_size;
6443         data_ptr = ioc->buf;
6444         while (left) {
6445                 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
6446                 buff_size[sg_used] = sz;
6447                 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
6448                 if (buff[sg_used] == NULL) {
6449                         status = -ENOMEM;
6450                         goto cleanup1;
6451                 }
6452                 if (ioc->Request.Type.Direction & XFER_WRITE) {
6453                         if (copy_from_user(buff[sg_used], data_ptr, sz)) {
6454                                 status = -EFAULT;
6455                                 goto cleanup1;
6456                         }
6457                 } else
6458                         memset(buff[sg_used], 0, sz);
6459                 left -= sz;
6460                 data_ptr += sz;
6461                 sg_used++;
6462         }
6463         c = cmd_alloc(h);
6464
6465         c->cmd_type = CMD_IOCTL_PEND;
6466         c->scsi_cmd = SCSI_CMD_BUSY;
6467         c->Header.ReplyQueue = 0;
6468         c->Header.SGList = (u8) sg_used;
6469         c->Header.SGTotal = cpu_to_le16(sg_used);
6470         memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
6471         memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
6472         if (ioc->buf_size > 0) {
6473                 int i;
6474                 for (i = 0; i < sg_used; i++) {
6475                         temp64 = pci_map_single(h->pdev, buff[i],
6476                                     buff_size[i], PCI_DMA_BIDIRECTIONAL);
6477                         if (dma_mapping_error(&h->pdev->dev,
6478                                                         (dma_addr_t) temp64)) {
6479                                 c->SG[i].Addr = cpu_to_le64(0);
6480                                 c->SG[i].Len = cpu_to_le32(0);
6481                                 hpsa_pci_unmap(h->pdev, c, i,
6482                                         PCI_DMA_BIDIRECTIONAL);
6483                                 status = -ENOMEM;
6484                                 goto cleanup0;
6485                         }
6486                         c->SG[i].Addr = cpu_to_le64(temp64);
6487                         c->SG[i].Len = cpu_to_le32(buff_size[i]);
6488                         c->SG[i].Ext = cpu_to_le32(0);
6489                 }
6490                 c->SG[--i].Ext = cpu_to_le32(HPSA_SG_LAST);
6491         }
6492         status = hpsa_scsi_do_simple_cmd(h, c, DEFAULT_REPLY_QUEUE, NO_TIMEOUT);
6493         if (sg_used)
6494                 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
6495         check_ioctl_unit_attention(h, c);
6496         if (status) {
6497                 status = -EIO;
6498                 goto cleanup0;
6499         }
6500
6501         /* Copy the error information out */
6502         memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
6503         if (copy_to_user(argp, ioc, sizeof(*ioc))) {
6504                 status = -EFAULT;
6505                 goto cleanup0;
6506         }
6507         if ((ioc->Request.Type.Direction & XFER_READ) && ioc->buf_size > 0) {
6508                 int i;
6509
6510                 /* Copy the data out of the buffer we created */
6511                 BYTE __user *ptr = ioc->buf;
6512                 for (i = 0; i < sg_used; i++) {
6513                         if (copy_to_user(ptr, buff[i], buff_size[i])) {
6514                                 status = -EFAULT;
6515                                 goto cleanup0;
6516                         }
6517                         ptr += buff_size[i];
6518                 }
6519         }
6520         status = 0;
6521 cleanup0:
6522         cmd_free(h, c);
6523 cleanup1:
6524         if (buff) {
6525                 int i;
6526
6527                 for (i = 0; i < sg_used; i++)
6528                         kfree(buff[i]);
6529                 kfree(buff);
6530         }
6531         kfree(buff_size);
6532         kfree(ioc);
6533         return status;
6534 }
6535
6536 static void check_ioctl_unit_attention(struct ctlr_info *h,
6537         struct CommandList *c)
6538 {
6539         if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
6540                         c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
6541                 (void) check_for_unit_attention(h, c);
6542 }
6543
6544 /*
6545  * ioctl
6546  */
6547 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void __user *arg)
6548 {
6549         struct ctlr_info *h;
6550         void __user *argp = (void __user *)arg;
6551         int rc;
6552
6553         h = sdev_to_hba(dev);
6554
6555         switch (cmd) {
6556         case CCISS_DEREGDISK:
6557         case CCISS_REGNEWDISK:
6558         case CCISS_REGNEWD:
6559                 hpsa_scan_start(h->scsi_host);
6560                 return 0;
6561         case CCISS_GETPCIINFO:
6562                 return hpsa_getpciinfo_ioctl(h, argp);
6563         case CCISS_GETDRIVVER:
6564                 return hpsa_getdrivver_ioctl(h, argp);
6565         case CCISS_PASSTHRU:
6566                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6567                         return -EAGAIN;
6568                 rc = hpsa_passthru_ioctl(h, argp);
6569                 atomic_inc(&h->passthru_cmds_avail);
6570                 return rc;
6571         case CCISS_BIG_PASSTHRU:
6572                 if (atomic_dec_if_positive(&h->passthru_cmds_avail) < 0)
6573                         return -EAGAIN;
6574                 rc = hpsa_big_passthru_ioctl(h, argp);
6575                 atomic_inc(&h->passthru_cmds_avail);
6576                 return rc;
6577         default:
6578                 return -ENOTTY;
6579         }
6580 }
6581
6582 static void hpsa_send_host_reset(struct ctlr_info *h, unsigned char *scsi3addr,
6583                                 u8 reset_type)
6584 {
6585         struct CommandList *c;
6586
6587         c = cmd_alloc(h);
6588
6589         /* fill_cmd can't fail here, no data buffer to map */
6590         (void) fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0,
6591                 RAID_CTLR_LUNID, TYPE_MSG);
6592         c->Request.CDB[1] = reset_type; /* fill_cmd defaults to target reset */
6593         c->waiting = NULL;
6594         enqueue_cmd_and_start_io(h, c);
6595         /* Don't wait for completion, the reset won't complete.  Don't free
6596          * the command either.  This is the last command we will send before
6597          * re-initializing everything, so it doesn't matter and won't leak.
6598          */
6599         return;
6600 }
6601
6602 static int fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
6603         void *buff, size_t size, u16 page_code, unsigned char *scsi3addr,
6604         int cmd_type)
6605 {
6606         int pci_dir = XFER_NONE;
6607         u64 tag; /* for commands to be aborted */
6608
6609         c->cmd_type = CMD_IOCTL_PEND;
6610         c->scsi_cmd = SCSI_CMD_BUSY;
6611         c->Header.ReplyQueue = 0;
6612         if (buff != NULL && size > 0) {
6613                 c->Header.SGList = 1;
6614                 c->Header.SGTotal = cpu_to_le16(1);
6615         } else {
6616                 c->Header.SGList = 0;
6617                 c->Header.SGTotal = cpu_to_le16(0);
6618         }
6619         memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
6620
6621         if (cmd_type == TYPE_CMD) {
6622                 switch (cmd) {
6623                 case HPSA_INQUIRY:
6624                         /* are we trying to read a vital product page */
6625                         if (page_code & VPD_PAGE) {
6626                                 c->Request.CDB[1] = 0x01;
6627                                 c->Request.CDB[2] = (page_code & 0xff);
6628                         }
6629                         c->Request.CDBLen = 6;
6630                         c->Request.type_attr_dir =
6631                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6632                         c->Request.Timeout = 0;
6633                         c->Request.CDB[0] = HPSA_INQUIRY;
6634                         c->Request.CDB[4] = size & 0xFF;
6635                         break;
6636                 case HPSA_REPORT_LOG:
6637                 case HPSA_REPORT_PHYS:
6638                         /* Talking to controller so It's a physical command
6639                            mode = 00 target = 0.  Nothing to write.
6640                          */
6641                         c->Request.CDBLen = 12;
6642                         c->Request.type_attr_dir =
6643                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6644                         c->Request.Timeout = 0;
6645                         c->Request.CDB[0] = cmd;
6646                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6647                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6648                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6649                         c->Request.CDB[9] = size & 0xFF;
6650                         break;
6651                 case BMIC_SENSE_DIAG_OPTIONS:
6652                         c->Request.CDBLen = 16;
6653                         c->Request.type_attr_dir =
6654                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6655                         c->Request.Timeout = 0;
6656                         /* Spec says this should be BMIC_WRITE */
6657                         c->Request.CDB[0] = BMIC_READ;
6658                         c->Request.CDB[6] = BMIC_SENSE_DIAG_OPTIONS;
6659                         break;
6660                 case BMIC_SET_DIAG_OPTIONS:
6661                         c->Request.CDBLen = 16;
6662                         c->Request.type_attr_dir =
6663                                         TYPE_ATTR_DIR(cmd_type,
6664                                                 ATTR_SIMPLE, XFER_WRITE);
6665                         c->Request.Timeout = 0;
6666                         c->Request.CDB[0] = BMIC_WRITE;
6667                         c->Request.CDB[6] = BMIC_SET_DIAG_OPTIONS;
6668                         break;
6669                 case HPSA_CACHE_FLUSH:
6670                         c->Request.CDBLen = 12;
6671                         c->Request.type_attr_dir =
6672                                         TYPE_ATTR_DIR(cmd_type,
6673                                                 ATTR_SIMPLE, XFER_WRITE);
6674                         c->Request.Timeout = 0;
6675                         c->Request.CDB[0] = BMIC_WRITE;
6676                         c->Request.CDB[6] = BMIC_CACHE_FLUSH;
6677                         c->Request.CDB[7] = (size >> 8) & 0xFF;
6678                         c->Request.CDB[8] = size & 0xFF;
6679                         break;
6680                 case TEST_UNIT_READY:
6681                         c->Request.CDBLen = 6;
6682                         c->Request.type_attr_dir =
6683                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6684                         c->Request.Timeout = 0;
6685                         break;
6686                 case HPSA_GET_RAID_MAP:
6687                         c->Request.CDBLen = 12;
6688                         c->Request.type_attr_dir =
6689                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6690                         c->Request.Timeout = 0;
6691                         c->Request.CDB[0] = HPSA_CISS_READ;
6692                         c->Request.CDB[1] = cmd;
6693                         c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
6694                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6695                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6696                         c->Request.CDB[9] = size & 0xFF;
6697                         break;
6698                 case BMIC_SENSE_CONTROLLER_PARAMETERS:
6699                         c->Request.CDBLen = 10;
6700                         c->Request.type_attr_dir =
6701                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6702                         c->Request.Timeout = 0;
6703                         c->Request.CDB[0] = BMIC_READ;
6704                         c->Request.CDB[6] = BMIC_SENSE_CONTROLLER_PARAMETERS;
6705                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6706                         c->Request.CDB[8] = (size >> 8) & 0xFF;
6707                         break;
6708                 case BMIC_IDENTIFY_PHYSICAL_DEVICE:
6709                         c->Request.CDBLen = 10;
6710                         c->Request.type_attr_dir =
6711                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6712                         c->Request.Timeout = 0;
6713                         c->Request.CDB[0] = BMIC_READ;
6714                         c->Request.CDB[6] = BMIC_IDENTIFY_PHYSICAL_DEVICE;
6715                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6716                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6717                         break;
6718                 case BMIC_SENSE_SUBSYSTEM_INFORMATION:
6719                         c->Request.CDBLen = 10;
6720                         c->Request.type_attr_dir =
6721                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6722                         c->Request.Timeout = 0;
6723                         c->Request.CDB[0] = BMIC_READ;
6724                         c->Request.CDB[6] = BMIC_SENSE_SUBSYSTEM_INFORMATION;
6725                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6726                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6727                         break;
6728                 case BMIC_IDENTIFY_CONTROLLER:
6729                         c->Request.CDBLen = 10;
6730                         c->Request.type_attr_dir =
6731                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_READ);
6732                         c->Request.Timeout = 0;
6733                         c->Request.CDB[0] = BMIC_READ;
6734                         c->Request.CDB[1] = 0;
6735                         c->Request.CDB[2] = 0;
6736                         c->Request.CDB[3] = 0;
6737                         c->Request.CDB[4] = 0;
6738                         c->Request.CDB[5] = 0;
6739                         c->Request.CDB[6] = BMIC_IDENTIFY_CONTROLLER;
6740                         c->Request.CDB[7] = (size >> 16) & 0xFF;
6741                         c->Request.CDB[8] = (size >> 8) & 0XFF;
6742                         c->Request.CDB[9] = 0;
6743                         break;
6744                 default:
6745                         dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
6746                         BUG();
6747                         return -1;
6748                 }
6749         } else if (cmd_type == TYPE_MSG) {
6750                 switch (cmd) {
6751
6752                 case  HPSA_PHYS_TARGET_RESET:
6753                         c->Request.CDBLen = 16;
6754                         c->Request.type_attr_dir =
6755                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6756                         c->Request.Timeout = 0; /* Don't time out */
6757                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6758                         c->Request.CDB[0] = HPSA_RESET;
6759                         c->Request.CDB[1] = HPSA_TARGET_RESET_TYPE;
6760                         /* Physical target reset needs no control bytes 4-7*/
6761                         c->Request.CDB[4] = 0x00;
6762                         c->Request.CDB[5] = 0x00;
6763                         c->Request.CDB[6] = 0x00;
6764                         c->Request.CDB[7] = 0x00;
6765                         break;
6766                 case  HPSA_DEVICE_RESET_MSG:
6767                         c->Request.CDBLen = 16;
6768                         c->Request.type_attr_dir =
6769                                 TYPE_ATTR_DIR(cmd_type, ATTR_SIMPLE, XFER_NONE);
6770                         c->Request.Timeout = 0; /* Don't time out */
6771                         memset(&c->Request.CDB[0], 0, sizeof(c->Request.CDB));
6772                         c->Request.CDB[0] =  cmd;
6773                         c->Request.CDB[1] = HPSA_RESET_TYPE_LUN;
6774                         /* If bytes 4-7 are zero, it means reset the */
6775                         /* LunID device */
6776                         c->Request.CDB[4] = 0x00;
6777                         c->Request.CDB[5] = 0x00;
6778                         c->Request.CDB[6] = 0x00;
6779                         c->Request.CDB[7] = 0x00;
6780                         break;
6781                 case  HPSA_ABORT_MSG:
6782                         memcpy(&tag, buff, sizeof(tag));
6783                         dev_dbg(&h->pdev->dev,
6784                                 "Abort Tag:0x%016llx using rqst Tag:0x%016llx",
6785                                 tag, c->Header.tag);
6786                         c->Request.CDBLen = 16;
6787                         c->Request.type_attr_dir =
6788                                         TYPE_ATTR_DIR(cmd_type,
6789                                                 ATTR_SIMPLE, XFER_WRITE);
6790                         c->Request.Timeout = 0; /* Don't time out */
6791                         c->Request.CDB[0] = HPSA_TASK_MANAGEMENT;
6792                         c->Request.CDB[1] = HPSA_TMF_ABORT_TASK;
6793                         c->Request.CDB[2] = 0x00; /* reserved */
6794                         c->Request.CDB[3] = 0x00; /* reserved */
6795                         /* Tag to abort goes in CDB[4]-CDB[11] */
6796                         memcpy(&c->Request.CDB[4], &tag, sizeof(tag));
6797                         c->Request.CDB[12] = 0x00; /* reserved */
6798                         c->Request.CDB[13] = 0x00; /* reserved */
6799                         c->Request.CDB[14] = 0x00; /* reserved */
6800                         c->Request.CDB[15] = 0x00; /* reserved */
6801                 break;
6802                 default:
6803                         dev_warn(&h->pdev->dev, "unknown message type %d\n",
6804                                 cmd);
6805                         BUG();
6806                 }
6807         } else {
6808                 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
6809                 BUG();
6810         }
6811
6812         switch (GET_DIR(c->Request.type_attr_dir)) {
6813         case XFER_READ:
6814                 pci_dir = PCI_DMA_FROMDEVICE;
6815                 break;
6816         case XFER_WRITE:
6817                 pci_dir = PCI_DMA_TODEVICE;
6818                 break;
6819         case XFER_NONE:
6820                 pci_dir = PCI_DMA_NONE;
6821                 break;
6822         default:
6823                 pci_dir = PCI_DMA_BIDIRECTIONAL;
6824         }
6825         if (hpsa_map_one(h->pdev, c, buff, size, pci_dir))
6826                 return -1;
6827         return 0;
6828 }
6829
6830 /*
6831  * Map (physical) PCI mem into (virtual) kernel space
6832  */
6833 static void __iomem *remap_pci_mem(ulong base, ulong size)
6834 {
6835         ulong page_base = ((ulong) base) & PAGE_MASK;
6836         ulong page_offs = ((ulong) base) - page_base;
6837         void __iomem *page_remapped = ioremap_nocache(page_base,
6838                 page_offs + size);
6839
6840         return page_remapped ? (page_remapped + page_offs) : NULL;
6841 }
6842
6843 static inline unsigned long get_next_completion(struct ctlr_info *h, u8 q)
6844 {
6845         return h->access.command_completed(h, q);
6846 }
6847
6848 static inline bool interrupt_pending(struct ctlr_info *h)
6849 {
6850         return h->access.intr_pending(h);
6851 }
6852
6853 static inline long interrupt_not_for_us(struct ctlr_info *h)
6854 {
6855         return (h->access.intr_pending(h) == 0) ||
6856                 (h->interrupts_enabled == 0);
6857 }
6858
6859 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
6860         u32 raw_tag)
6861 {
6862         if (unlikely(tag_index >= h->nr_cmds)) {
6863                 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
6864                 return 1;
6865         }
6866         return 0;
6867 }
6868
6869 static inline void finish_cmd(struct CommandList *c)
6870 {
6871         dial_up_lockup_detection_on_fw_flash_complete(c->h, c);
6872         if (likely(c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_SCSI
6873                         || c->cmd_type == CMD_IOACCEL2))
6874                 complete_scsi_command(c);
6875         else if (c->cmd_type == CMD_IOCTL_PEND || c->cmd_type == IOACCEL2_TMF)
6876                 complete(c->waiting);
6877 }
6878
6879 /* process completion of an indexed ("direct lookup") command */
6880 static inline void process_indexed_cmd(struct ctlr_info *h,
6881         u32 raw_tag)
6882 {
6883         u32 tag_index;
6884         struct CommandList *c;
6885
6886         tag_index = raw_tag >> DIRECT_LOOKUP_SHIFT;
6887         if (!bad_tag(h, tag_index, raw_tag)) {
6888                 c = h->cmd_pool + tag_index;
6889                 finish_cmd(c);
6890         }
6891 }
6892
6893 /* Some controllers, like p400, will give us one interrupt
6894  * after a soft reset, even if we turned interrupts off.
6895  * Only need to check for this in the hpsa_xxx_discard_completions
6896  * functions.
6897  */
6898 static int ignore_bogus_interrupt(struct ctlr_info *h)
6899 {
6900         if (likely(!reset_devices))
6901                 return 0;
6902
6903         if (likely(h->interrupts_enabled))
6904                 return 0;
6905
6906         dev_info(&h->pdev->dev, "Received interrupt while interrupts disabled "
6907                 "(known firmware bug.)  Ignoring.\n");
6908
6909         return 1;
6910 }
6911
6912 /*
6913  * Convert &h->q[x] (passed to interrupt handlers) back to h.
6914  * Relies on (h-q[x] == x) being true for x such that
6915  * 0 <= x < MAX_REPLY_QUEUES.
6916  */
6917 static struct ctlr_info *queue_to_hba(u8 *queue)
6918 {
6919         return container_of((queue - *queue), struct ctlr_info, q[0]);
6920 }
6921
6922 static irqreturn_t hpsa_intx_discard_completions(int irq, void *queue)
6923 {
6924         struct ctlr_info *h = queue_to_hba(queue);
6925         u8 q = *(u8 *) queue;
6926         u32 raw_tag;
6927
6928         if (ignore_bogus_interrupt(h))
6929                 return IRQ_NONE;
6930
6931         if (interrupt_not_for_us(h))
6932                 return IRQ_NONE;
6933         h->last_intr_timestamp = get_jiffies_64();
6934         while (interrupt_pending(h)) {
6935                 raw_tag = get_next_completion(h, q);
6936                 while (raw_tag != FIFO_EMPTY)
6937                         raw_tag = next_command(h, q);
6938         }
6939         return IRQ_HANDLED;
6940 }
6941
6942 static irqreturn_t hpsa_msix_discard_completions(int irq, void *queue)
6943 {
6944         struct ctlr_info *h = queue_to_hba(queue);
6945         u32 raw_tag;
6946         u8 q = *(u8 *) queue;
6947
6948         if (ignore_bogus_interrupt(h))
6949                 return IRQ_NONE;
6950
6951         h->last_intr_timestamp = get_jiffies_64();
6952         raw_tag = get_next_completion(h, q);
6953         while (raw_tag != FIFO_EMPTY)
6954                 raw_tag = next_command(h, q);
6955         return IRQ_HANDLED;
6956 }
6957
6958 static irqreturn_t do_hpsa_intr_intx(int irq, void *queue)
6959 {
6960         struct ctlr_info *h = queue_to_hba((u8 *) queue);
6961         u32 raw_tag;
6962         u8 q = *(u8 *) queue;
6963
6964         if (interrupt_not_for_us(h))
6965                 return IRQ_NONE;
6966         h->last_intr_timestamp = get_jiffies_64();
6967         while (interrupt_pending(h)) {
6968                 raw_tag = get_next_completion(h, q);
6969                 while (raw_tag != FIFO_EMPTY) {
6970                         process_indexed_cmd(h, raw_tag);
6971                         raw_tag = next_command(h, q);
6972                 }
6973         }
6974         return IRQ_HANDLED;
6975 }
6976
6977 static irqreturn_t do_hpsa_intr_msi(int irq, void *queue)
6978 {
6979         struct ctlr_info *h = queue_to_hba(queue);
6980         u32 raw_tag;
6981         u8 q = *(u8 *) queue;
6982
6983         h->last_intr_timestamp = get_jiffies_64();
6984         raw_tag = get_next_completion(h, q);
6985         while (raw_tag != FIFO_EMPTY) {
6986                 process_indexed_cmd(h, raw_tag);
6987                 raw_tag = next_command(h, q);
6988         }
6989         return IRQ_HANDLED;
6990 }
6991
6992 /* Send a message CDB to the firmware. Careful, this only works
6993  * in simple mode, not performant mode due to the tag lookup.
6994  * We only ever use this immediately after a controller reset.
6995  */
6996 static int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
6997                         unsigned char type)
6998 {
6999         struct Command {
7000                 struct CommandListHeader CommandHeader;
7001                 struct RequestBlock Request;
7002                 struct ErrDescriptor ErrorDescriptor;
7003         };
7004         struct Command *cmd;
7005         static const size_t cmd_sz = sizeof(*cmd) +
7006                                         sizeof(cmd->ErrorDescriptor);
7007         dma_addr_t paddr64;
7008         __le32 paddr32;
7009         u32 tag;
7010         void __iomem *vaddr;
7011         int i, err;
7012
7013         vaddr = pci_ioremap_bar(pdev, 0);
7014         if (vaddr == NULL)
7015                 return -ENOMEM;
7016
7017         /* The Inbound Post Queue only accepts 32-bit physical addresses for the
7018          * CCISS commands, so they must be allocated from the lower 4GiB of
7019          * memory.
7020          */
7021         err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
7022         if (err) {
7023                 iounmap(vaddr);
7024                 return err;
7025         }
7026
7027         cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
7028         if (cmd == NULL) {
7029                 iounmap(vaddr);
7030                 return -ENOMEM;
7031         }
7032
7033         /* This must fit, because of the 32-bit consistent DMA mask.  Also,
7034          * although there's no guarantee, we assume that the address is at
7035          * least 4-byte aligned (most likely, it's page-aligned).
7036          */
7037         paddr32 = cpu_to_le32(paddr64);
7038
7039         cmd->CommandHeader.ReplyQueue = 0;
7040         cmd->CommandHeader.SGList = 0;
7041         cmd->CommandHeader.SGTotal = cpu_to_le16(0);
7042         cmd->CommandHeader.tag = cpu_to_le64(paddr64);
7043         memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
7044
7045         cmd->Request.CDBLen = 16;
7046         cmd->Request.type_attr_dir =
7047                         TYPE_ATTR_DIR(TYPE_MSG, ATTR_HEADOFQUEUE, XFER_NONE);
7048         cmd->Request.Timeout = 0; /* Don't time out */
7049         cmd->Request.CDB[0] = opcode;
7050         cmd->Request.CDB[1] = type;
7051         memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
7052         cmd->ErrorDescriptor.Addr =
7053                         cpu_to_le64((le32_to_cpu(paddr32) + sizeof(*cmd)));
7054         cmd->ErrorDescriptor.Len = cpu_to_le32(sizeof(struct ErrorInfo));
7055
7056         writel(le32_to_cpu(paddr32), vaddr + SA5_REQUEST_PORT_OFFSET);
7057
7058         for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
7059                 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
7060                 if ((tag & ~HPSA_SIMPLE_ERROR_BITS) == paddr64)
7061                         break;
7062                 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
7063         }
7064
7065         iounmap(vaddr);
7066
7067         /* we leak the DMA buffer here ... no choice since the controller could
7068          *  still complete the command.
7069          */
7070         if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
7071                 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
7072                         opcode, type);
7073                 return -ETIMEDOUT;
7074         }
7075
7076         pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
7077
7078         if (tag & HPSA_ERROR_BIT) {
7079                 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
7080                         opcode, type);
7081                 return -EIO;
7082         }
7083
7084         dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
7085                 opcode, type);
7086         return 0;
7087 }
7088
7089 #define hpsa_noop(p) hpsa_message(p, 3, 0)
7090
7091 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
7092         void __iomem *vaddr, u32 use_doorbell)
7093 {
7094
7095         if (use_doorbell) {
7096                 /* For everything after the P600, the PCI power state method
7097                  * of resetting the controller doesn't work, so we have this
7098                  * other way using the doorbell register.
7099                  */
7100                 dev_info(&pdev->dev, "using doorbell to reset controller\n");
7101                 writel(use_doorbell, vaddr + SA5_DOORBELL);
7102
7103                 /* PMC hardware guys tell us we need a 10 second delay after
7104                  * doorbell reset and before any attempt to talk to the board
7105                  * at all to ensure that this actually works and doesn't fall
7106                  * over in some weird corner cases.
7107                  */
7108                 msleep(10000);
7109         } else { /* Try to do it the PCI power state way */
7110
7111                 /* Quoting from the Open CISS Specification: "The Power
7112                  * Management Control/Status Register (CSR) controls the power
7113                  * state of the device.  The normal operating state is D0,
7114                  * CSR=00h.  The software off state is D3, CSR=03h.  To reset
7115                  * the controller, place the interface device in D3 then to D0,
7116                  * this causes a secondary PCI reset which will reset the
7117                  * controller." */
7118
7119                 int rc = 0;
7120
7121                 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
7122
7123                 /* enter the D3hot power management state */
7124                 rc = pci_set_power_state(pdev, PCI_D3hot);
7125                 if (rc)
7126                         return rc;
7127
7128                 msleep(500);
7129
7130                 /* enter the D0 power management state */
7131                 rc = pci_set_power_state(pdev, PCI_D0);
7132                 if (rc)
7133                         return rc;
7134
7135                 /*
7136                  * The P600 requires a small delay when changing states.
7137                  * Otherwise we may think the board did not reset and we bail.
7138                  * This for kdump only and is particular to the P600.
7139                  */
7140                 msleep(500);
7141         }
7142         return 0;
7143 }
7144
7145 static void init_driver_version(char *driver_version, int len)
7146 {
7147         memset(driver_version, 0, len);
7148         strncpy(driver_version, HPSA " " HPSA_DRIVER_VERSION, len - 1);
7149 }
7150
7151 static int write_driver_ver_to_cfgtable(struct CfgTable __iomem *cfgtable)
7152 {
7153         char *driver_version;
7154         int i, size = sizeof(cfgtable->driver_version);
7155
7156         driver_version = kmalloc(size, GFP_KERNEL);
7157         if (!driver_version)
7158                 return -ENOMEM;
7159
7160         init_driver_version(driver_version, size);
7161         for (i = 0; i < size; i++)
7162                 writeb(driver_version[i], &cfgtable->driver_version[i]);
7163         kfree(driver_version);
7164         return 0;
7165 }
7166
7167 static void read_driver_ver_from_cfgtable(struct CfgTable __iomem *cfgtable,
7168                                           unsigned char *driver_ver)
7169 {
7170         int i;
7171
7172         for (i = 0; i < sizeof(cfgtable->driver_version); i++)
7173                 driver_ver[i] = readb(&cfgtable->driver_version[i]);
7174 }
7175
7176 static int controller_reset_failed(struct CfgTable __iomem *cfgtable)
7177 {
7178
7179         char *driver_ver, *old_driver_ver;
7180         int rc, size = sizeof(cfgtable->driver_version);
7181
7182         old_driver_ver = kmalloc(2 * size, GFP_KERNEL);
7183         if (!old_driver_ver)
7184                 return -ENOMEM;
7185         driver_ver = old_driver_ver + size;
7186
7187         /* After a reset, the 32 bytes of "driver version" in the cfgtable
7188          * should have been changed, otherwise we know the reset failed.
7189          */
7190         init_driver_version(old_driver_ver, size);
7191         read_driver_ver_from_cfgtable(cfgtable, driver_ver);
7192         rc = !memcmp(driver_ver, old_driver_ver, size);
7193         kfree(old_driver_ver);
7194         return rc;
7195 }
7196 /* This does a hard reset of the controller using PCI power management
7197  * states or the using the doorbell register.
7198  */
7199 static int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev, u32 board_id)
7200 {
7201         u64 cfg_offset;
7202         u32 cfg_base_addr;
7203         u64 cfg_base_addr_index;
7204         void __iomem *vaddr;
7205         unsigned long paddr;
7206         u32 misc_fw_support;
7207         int rc;
7208         struct CfgTable __iomem *cfgtable;
7209         u32 use_doorbell;
7210         u16 command_register;
7211
7212         /* For controllers as old as the P600, this is very nearly
7213          * the same thing as
7214          *
7215          * pci_save_state(pci_dev);
7216          * pci_set_power_state(pci_dev, PCI_D3hot);
7217          * pci_set_power_state(pci_dev, PCI_D0);
7218          * pci_restore_state(pci_dev);
7219          *
7220          * For controllers newer than the P600, the pci power state
7221          * method of resetting doesn't work so we have another way
7222          * using the doorbell register.
7223          */
7224
7225         if (!ctlr_is_resettable(board_id)) {
7226                 dev_warn(&pdev->dev, "Controller not resettable\n");
7227                 return -ENODEV;
7228         }
7229
7230         /* if controller is soft- but not hard resettable... */
7231         if (!ctlr_is_hard_resettable(board_id))
7232                 return -ENOTSUPP; /* try soft reset later. */
7233
7234         /* Save the PCI command register */
7235         pci_read_config_word(pdev, 4, &command_register);
7236         pci_save_state(pdev);
7237
7238         /* find the first memory BAR, so we can find the cfg table */
7239         rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
7240         if (rc)
7241                 return rc;
7242         vaddr = remap_pci_mem(paddr, 0x250);
7243         if (!vaddr)
7244                 return -ENOMEM;
7245
7246         /* find cfgtable in order to check if reset via doorbell is supported */
7247         rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
7248                                         &cfg_base_addr_index, &cfg_offset);
7249         if (rc)
7250                 goto unmap_vaddr;
7251         cfgtable = remap_pci_mem(pci_resource_start(pdev,
7252                        cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
7253         if (!cfgtable) {
7254                 rc = -ENOMEM;
7255                 goto unmap_vaddr;
7256         }
7257         rc = write_driver_ver_to_cfgtable(cfgtable);
7258         if (rc)
7259                 goto unmap_cfgtable;
7260
7261         /* If reset via doorbell register is supported, use that.
7262          * There are two such methods.  Favor the newest method.
7263          */
7264         misc_fw_support = readl(&cfgtable->misc_fw_support);
7265         use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET2;
7266         if (use_doorbell) {
7267                 use_doorbell = DOORBELL_CTLR_RESET2;
7268         } else {
7269                 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
7270                 if (use_doorbell) {
7271                         dev_warn(&pdev->dev,
7272                                 "Soft reset not supported. Firmware update is required.\n");
7273                         rc = -ENOTSUPP; /* try soft reset */
7274                         goto unmap_cfgtable;
7275                 }
7276         }
7277
7278         rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
7279         if (rc)
7280                 goto unmap_cfgtable;
7281
7282         pci_restore_state(pdev);
7283         pci_write_config_word(pdev, 4, command_register);
7284
7285         /* Some devices (notably the HP Smart Array 5i Controller)
7286            need a little pause here */
7287         msleep(HPSA_POST_RESET_PAUSE_MSECS);
7288
7289         rc = hpsa_wait_for_board_state(pdev, vaddr, BOARD_READY);
7290         if (rc) {
7291                 dev_warn(&pdev->dev,
7292                         "Failed waiting for board to become ready after hard reset\n");
7293                 goto unmap_cfgtable;
7294         }
7295
7296         rc = controller_reset_failed(vaddr);
7297         if (rc < 0)
7298                 goto unmap_cfgtable;
7299         if (rc) {
7300                 dev_warn(&pdev->dev, "Unable to successfully reset "
7301                         "controller. Will try soft reset.\n");
7302                 rc = -ENOTSUPP;
7303         } else {
7304                 dev_info(&pdev->dev, "board ready after hard reset.\n");
7305         }
7306
7307 unmap_cfgtable:
7308         iounmap(cfgtable);
7309
7310 unmap_vaddr:
7311         iounmap(vaddr);
7312         return rc;
7313 }
7314
7315 /*
7316  *  We cannot read the structure directly, for portability we must use
7317  *   the io functions.
7318  *   This is for debug only.
7319  */
7320 static void print_cfg_table(struct device *dev, struct CfgTable __iomem *tb)
7321 {
7322 #ifdef HPSA_DEBUG
7323         int i;
7324         char temp_name[17];
7325
7326         dev_info(dev, "Controller Configuration information\n");
7327         dev_info(dev, "------------------------------------\n");
7328         for (i = 0; i < 4; i++)
7329                 temp_name[i] = readb(&(tb->Signature[i]));
7330         temp_name[4] = '\0';
7331         dev_info(dev, "   Signature = %s\n", temp_name);
7332         dev_info(dev, "   Spec Number = %d\n", readl(&(tb->SpecValence)));
7333         dev_info(dev, "   Transport methods supported = 0x%x\n",
7334                readl(&(tb->TransportSupport)));
7335         dev_info(dev, "   Transport methods active = 0x%x\n",
7336                readl(&(tb->TransportActive)));
7337         dev_info(dev, "   Requested transport Method = 0x%x\n",
7338                readl(&(tb->HostWrite.TransportRequest)));
7339         dev_info(dev, "   Coalesce Interrupt Delay = 0x%x\n",
7340                readl(&(tb->HostWrite.CoalIntDelay)));
7341         dev_info(dev, "   Coalesce Interrupt Count = 0x%x\n",
7342                readl(&(tb->HostWrite.CoalIntCount)));
7343         dev_info(dev, "   Max outstanding commands = %d\n",
7344                readl(&(tb->CmdsOutMax)));
7345         dev_info(dev, "   Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
7346         for (i = 0; i < 16; i++)
7347                 temp_name[i] = readb(&(tb->ServerName[i]));
7348         temp_name[16] = '\0';
7349         dev_info(dev, "   Server Name = %s\n", temp_name);
7350         dev_info(dev, "   Heartbeat Counter = 0x%x\n\n\n",
7351                 readl(&(tb->HeartBeat)));
7352 #endif                          /* HPSA_DEBUG */
7353 }
7354
7355 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
7356 {
7357         int i, offset, mem_type, bar_type;
7358
7359         if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
7360                 return 0;
7361         offset = 0;
7362         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
7363                 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
7364                 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
7365                         offset += 4;
7366                 else {
7367                         mem_type = pci_resource_flags(pdev, i) &
7368                             PCI_BASE_ADDRESS_MEM_TYPE_MASK;
7369                         switch (mem_type) {
7370                         case PCI_BASE_ADDRESS_MEM_TYPE_32:
7371                         case PCI_BASE_ADDRESS_MEM_TYPE_1M:
7372                                 offset += 4;    /* 32 bit */
7373                                 break;
7374                         case PCI_BASE_ADDRESS_MEM_TYPE_64:
7375                                 offset += 8;
7376                                 break;
7377                         default:        /* reserved in PCI 2.2 */
7378                                 dev_warn(&pdev->dev,
7379                                        "base address is invalid\n");
7380                                 return -1;
7381                                 break;
7382                         }
7383                 }
7384                 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
7385                         return i + 1;
7386         }
7387         return -1;
7388 }
7389
7390 static void hpsa_disable_interrupt_mode(struct ctlr_info *h)
7391 {
7392         if (h->msix_vector) {
7393                 if (h->pdev->msix_enabled)
7394                         pci_disable_msix(h->pdev);
7395                 h->msix_vector = 0;
7396         } else if (h->msi_vector) {
7397                 if (h->pdev->msi_enabled)
7398                         pci_disable_msi(h->pdev);
7399                 h->msi_vector = 0;
7400         }
7401 }
7402
7403 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
7404  * controllers that are capable. If not, we use legacy INTx mode.
7405  */
7406 static void hpsa_interrupt_mode(struct ctlr_info *h)
7407 {
7408 #ifdef CONFIG_PCI_MSI
7409         int err, i;
7410         struct msix_entry hpsa_msix_entries[MAX_REPLY_QUEUES];
7411
7412         for (i = 0; i < MAX_REPLY_QUEUES; i++) {
7413                 hpsa_msix_entries[i].vector = 0;
7414                 hpsa_msix_entries[i].entry = i;
7415         }
7416
7417         /* Some boards advertise MSI but don't really support it */
7418         if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
7419             (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
7420                 goto default_int_mode;
7421         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
7422                 dev_info(&h->pdev->dev, "MSI-X capable controller\n");
7423                 h->msix_vector = MAX_REPLY_QUEUES;
7424                 if (h->msix_vector > num_online_cpus())
7425                         h->msix_vector = num_online_cpus();
7426                 err = pci_enable_msix_range(h->pdev, hpsa_msix_entries,
7427                                             1, h->msix_vector);
7428                 if (err < 0) {
7429                         dev_warn(&h->pdev->dev, "MSI-X init failed %d\n", err);
7430                         h->msix_vector = 0;
7431                         goto single_msi_mode;
7432                 } else if (err < h->msix_vector) {
7433                         dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
7434                                "available\n", err);
7435                 }
7436                 h->msix_vector = err;
7437                 for (i = 0; i < h->msix_vector; i++)
7438                         h->intr[i] = hpsa_msix_entries[i].vector;
7439                 return;
7440         }
7441 single_msi_mode:
7442         if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
7443                 dev_info(&h->pdev->dev, "MSI capable controller\n");
7444                 if (!pci_enable_msi(h->pdev))
7445                         h->msi_vector = 1;
7446                 else
7447                         dev_warn(&h->pdev->dev, "MSI init failed\n");
7448         }
7449 default_int_mode:
7450 #endif                          /* CONFIG_PCI_MSI */
7451         /* if we get here we're going to use the default interrupt mode */
7452         h->intr[h->intr_mode] = h->pdev->irq;
7453 }
7454
7455 static int hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
7456 {
7457         int i;
7458         u32 subsystem_vendor_id, subsystem_device_id;
7459
7460         subsystem_vendor_id = pdev->subsystem_vendor;
7461         subsystem_device_id = pdev->subsystem_device;
7462         *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
7463                     subsystem_vendor_id;
7464
7465         for (i = 0; i < ARRAY_SIZE(products); i++)
7466                 if (*board_id == products[i].board_id)
7467                         return i;
7468
7469         if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
7470                 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
7471                 !hpsa_allow_any) {
7472                 dev_warn(&pdev->dev, "unrecognized board ID: "
7473                         "0x%08x, ignoring.\n", *board_id);
7474                         return -ENODEV;
7475         }
7476         return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
7477 }
7478
7479 static int hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
7480                                     unsigned long *memory_bar)
7481 {
7482         int i;
7483
7484         for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
7485                 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
7486                         /* addressing mode bits already removed */
7487                         *memory_bar = pci_resource_start(pdev, i);
7488                         dev_dbg(&pdev->dev, "memory BAR = %lx\n",
7489                                 *memory_bar);
7490                         return 0;
7491                 }
7492         dev_warn(&pdev->dev, "no memory BAR found\n");
7493         return -ENODEV;
7494 }
7495
7496 static int hpsa_wait_for_board_state(struct pci_dev *pdev, void __iomem *vaddr,
7497                                      int wait_for_ready)
7498 {
7499         int i, iterations;
7500         u32 scratchpad;
7501         if (wait_for_ready)
7502                 iterations = HPSA_BOARD_READY_ITERATIONS;
7503         else
7504                 iterations = HPSA_BOARD_NOT_READY_ITERATIONS;
7505
7506         for (i = 0; i < iterations; i++) {
7507                 scratchpad = readl(vaddr + SA5_SCRATCHPAD_OFFSET);
7508                 if (wait_for_ready) {
7509                         if (scratchpad == HPSA_FIRMWARE_READY)
7510                                 return 0;
7511                 } else {
7512                         if (scratchpad != HPSA_FIRMWARE_READY)
7513                                 return 0;
7514                 }
7515                 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
7516         }
7517         dev_warn(&pdev->dev, "board not ready, timed out.\n");
7518         return -ENODEV;
7519 }
7520
7521 static int hpsa_find_cfg_addrs(struct pci_dev *pdev, void __iomem *vaddr,
7522                                u32 *cfg_base_addr, u64 *cfg_base_addr_index,
7523                                u64 *cfg_offset)
7524 {
7525         *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
7526         *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
7527         *cfg_base_addr &= (u32) 0x0000ffff;
7528         *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
7529         if (*cfg_base_addr_index == -1) {
7530                 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
7531                 return -ENODEV;
7532         }
7533         return 0;
7534 }
7535
7536 static void hpsa_free_cfgtables(struct ctlr_info *h)
7537 {
7538         if (h->transtable) {
7539                 iounmap(h->transtable);
7540                 h->transtable = NULL;
7541         }
7542         if (h->cfgtable) {
7543                 iounmap(h->cfgtable);
7544                 h->cfgtable = NULL;
7545         }
7546 }
7547
7548 /* Find and map CISS config table and transfer table
7549 + * several items must be unmapped (freed) later
7550 + * */
7551 static int hpsa_find_cfgtables(struct ctlr_info *h)
7552 {
7553         u64 cfg_offset;
7554         u32 cfg_base_addr;
7555         u64 cfg_base_addr_index;
7556         u32 trans_offset;
7557         int rc;
7558
7559         rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
7560                 &cfg_base_addr_index, &cfg_offset);
7561         if (rc)
7562                 return rc;
7563         h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
7564                        cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
7565         if (!h->cfgtable) {
7566                 dev_err(&h->pdev->dev, "Failed mapping cfgtable\n");
7567                 return -ENOMEM;
7568         }
7569         rc = write_driver_ver_to_cfgtable(h->cfgtable);
7570         if (rc)
7571                 return rc;
7572         /* Find performant mode table. */
7573         trans_offset = readl(&h->cfgtable->TransMethodOffset);
7574         h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
7575                                 cfg_base_addr_index)+cfg_offset+trans_offset,
7576                                 sizeof(*h->transtable));
7577         if (!h->transtable) {
7578                 dev_err(&h->pdev->dev, "Failed mapping transfer table\n");
7579                 hpsa_free_cfgtables(h);
7580                 return -ENOMEM;
7581         }
7582         return 0;
7583 }
7584
7585 static void hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
7586 {
7587 #define MIN_MAX_COMMANDS 16
7588         BUILD_BUG_ON(MIN_MAX_COMMANDS <= HPSA_NRESERVED_CMDS);
7589
7590         h->max_commands = readl(&h->cfgtable->MaxPerformantModeCommands);
7591
7592         /* Limit commands in memory limited kdump scenario. */
7593         if (reset_devices && h->max_commands > 32)
7594                 h->max_commands = 32;
7595
7596         if (h->max_commands < MIN_MAX_COMMANDS) {
7597                 dev_warn(&h->pdev->dev,
7598                         "Controller reports max supported commands of %d Using %d instead. Ensure that firmware is up to date.\n",
7599                         h->max_commands,
7600                         MIN_MAX_COMMANDS);
7601                 h->max_commands = MIN_MAX_COMMANDS;
7602         }
7603 }
7604
7605 /* If the controller reports that the total max sg entries is greater than 512,
7606  * then we know that chained SG blocks work.  (Original smart arrays did not
7607  * support chained SG blocks and would return zero for max sg entries.)
7608  */
7609 static int hpsa_supports_chained_sg_blocks(struct ctlr_info *h)
7610 {
7611         return h->maxsgentries > 512;
7612 }
7613
7614 /* Interrogate the hardware for some limits:
7615  * max commands, max SG elements without chaining, and with chaining,
7616  * SG chain block size, etc.
7617  */
7618 static void hpsa_find_board_params(struct ctlr_info *h)
7619 {
7620         hpsa_get_max_perf_mode_cmds(h);
7621         h->nr_cmds = h->max_commands;
7622         h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
7623         h->fw_support = readl(&(h->cfgtable->misc_fw_support));
7624         if (hpsa_supports_chained_sg_blocks(h)) {
7625                 /* Limit in-command s/g elements to 32 save dma'able memory. */
7626                 h->max_cmd_sg_entries = 32;
7627                 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries;
7628                 h->maxsgentries--; /* save one for chain pointer */
7629         } else {
7630                 /*
7631                  * Original smart arrays supported at most 31 s/g entries
7632                  * embedded inline in the command (trying to use more
7633                  * would lock up the controller)
7634                  */
7635                 h->max_cmd_sg_entries = 31;
7636                 h->maxsgentries = 31; /* default to traditional values */
7637                 h->chainsize = 0;
7638         }
7639
7640         /* Find out what task management functions are supported and cache */
7641         h->TMFSupportFlags = readl(&(h->cfgtable->TMFSupportFlags));
7642         if (!(HPSATMF_PHYS_TASK_ABORT & h->TMFSupportFlags))
7643                 dev_warn(&h->pdev->dev, "Physical aborts not supported\n");
7644         if (!(HPSATMF_LOG_TASK_ABORT & h->TMFSupportFlags))
7645                 dev_warn(&h->pdev->dev, "Logical aborts not supported\n");
7646         if (!(HPSATMF_IOACCEL_ENABLED & h->TMFSupportFlags))
7647                 dev_warn(&h->pdev->dev, "HP SSD Smart Path aborts not supported\n");
7648 }
7649
7650 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
7651 {
7652         if (!check_signature(h->cfgtable->Signature, "CISS", 4)) {
7653                 dev_err(&h->pdev->dev, "not a valid CISS config table\n");
7654                 return false;
7655         }
7656         return true;
7657 }
7658
7659 static inline void hpsa_set_driver_support_bits(struct ctlr_info *h)
7660 {
7661         u32 driver_support;
7662
7663         driver_support = readl(&(h->cfgtable->driver_support));
7664         /* Need to enable prefetch in the SCSI core for 6400 in x86 */
7665 #ifdef CONFIG_X86
7666         driver_support |= ENABLE_SCSI_PREFETCH;
7667 #endif
7668         driver_support |= ENABLE_UNIT_ATTN;
7669         writel(driver_support, &(h->cfgtable->driver_support));
7670 }
7671
7672 /* Disable DMA prefetch for the P600.  Otherwise an ASIC bug may result
7673  * in a prefetch beyond physical memory.
7674  */
7675 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
7676 {
7677         u32 dma_prefetch;
7678
7679         if (h->board_id != 0x3225103C)
7680                 return;
7681         dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
7682         dma_prefetch |= 0x8000;
7683         writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
7684 }
7685
7686 static int hpsa_wait_for_clear_event_notify_ack(struct ctlr_info *h)
7687 {
7688         int i;
7689         u32 doorbell_value;
7690         unsigned long flags;
7691         /* wait until the clear_event_notify bit 6 is cleared by controller. */
7692         for (i = 0; i < MAX_CLEAR_EVENT_WAIT; i++) {
7693                 spin_lock_irqsave(&h->lock, flags);
7694                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7695                 spin_unlock_irqrestore(&h->lock, flags);
7696                 if (!(doorbell_value & DOORBELL_CLEAR_EVENTS))
7697                         goto done;
7698                 /* delay and try again */
7699                 msleep(CLEAR_EVENT_WAIT_INTERVAL);
7700         }
7701         return -ENODEV;
7702 done:
7703         return 0;
7704 }
7705
7706 static int hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
7707 {
7708         int i;
7709         u32 doorbell_value;
7710         unsigned long flags;
7711
7712         /* under certain very rare conditions, this can take awhile.
7713          * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
7714          * as we enter this code.)
7715          */
7716         for (i = 0; i < MAX_MODE_CHANGE_WAIT; i++) {
7717                 if (h->remove_in_progress)
7718                         goto done;
7719                 spin_lock_irqsave(&h->lock, flags);
7720                 doorbell_value = readl(h->vaddr + SA5_DOORBELL);
7721                 spin_unlock_irqrestore(&h->lock, flags);
7722                 if (!(doorbell_value & CFGTBL_ChangeReq))
7723                         goto done;
7724                 /* delay and try again */
7725                 msleep(MODE_CHANGE_WAIT_INTERVAL);
7726         }
7727         return -ENODEV;
7728 done:
7729         return 0;
7730 }
7731
7732 /* return -ENODEV or other reason on error, 0 on success */
7733 static int hpsa_enter_simple_mode(struct ctlr_info *h)
7734 {
7735         u32 trans_support;
7736
7737         trans_support = readl(&(h->cfgtable->TransportSupport));
7738         if (!(trans_support & SIMPLE_MODE))
7739                 return -ENOTSUPP;
7740
7741         h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
7742
7743         /* Update the field, and then ring the doorbell */
7744         writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
7745         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
7746         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
7747         if (hpsa_wait_for_mode_change_ack(h))
7748                 goto error;
7749         print_cfg_table(&h->pdev->dev, h->cfgtable);
7750         if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple))
7751                 goto error;
7752         h->transMethod = CFGTBL_Trans_Simple;
7753         return 0;
7754 error:
7755         dev_err(&h->pdev->dev, "failed to enter simple mode\n");
7756         return -ENODEV;
7757 }
7758
7759 /* free items allocated or mapped by hpsa_pci_init */
7760 static void hpsa_free_pci_init(struct ctlr_info *h)
7761 {
7762         hpsa_free_cfgtables(h);                 /* pci_init 4 */
7763         iounmap(h->vaddr);                      /* pci_init 3 */
7764         h->vaddr = NULL;
7765         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
7766         /*
7767          * call pci_disable_device before pci_release_regions per
7768          * Documentation/PCI/pci.txt
7769          */
7770         pci_disable_device(h->pdev);            /* pci_init 1 */
7771         pci_release_regions(h->pdev);           /* pci_init 2 */
7772 }
7773
7774 /* several items must be freed later */
7775 static int hpsa_pci_init(struct ctlr_info *h)
7776 {
7777         int prod_index, err;
7778
7779         prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
7780         if (prod_index < 0)
7781                 return prod_index;
7782         h->product_name = products[prod_index].product_name;
7783         h->access = *(products[prod_index].access);
7784
7785         h->needs_abort_tags_swizzled =
7786                 ctlr_needs_abort_tags_swizzled(h->board_id);
7787
7788         pci_disable_link_state(h->pdev, PCIE_LINK_STATE_L0S |
7789                                PCIE_LINK_STATE_L1 | PCIE_LINK_STATE_CLKPM);
7790
7791         err = pci_enable_device(h->pdev);
7792         if (err) {
7793                 dev_err(&h->pdev->dev, "failed to enable PCI device\n");
7794                 pci_disable_device(h->pdev);
7795                 return err;
7796         }
7797
7798         err = pci_request_regions(h->pdev, HPSA);
7799         if (err) {
7800                 dev_err(&h->pdev->dev,
7801                         "failed to obtain PCI resources\n");
7802                 pci_disable_device(h->pdev);
7803                 return err;
7804         }
7805
7806         pci_set_master(h->pdev);
7807
7808         hpsa_interrupt_mode(h);
7809         err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
7810         if (err)
7811                 goto clean2;    /* intmode+region, pci */
7812         h->vaddr = remap_pci_mem(h->paddr, 0x250);
7813         if (!h->vaddr) {
7814                 dev_err(&h->pdev->dev, "failed to remap PCI mem\n");
7815                 err = -ENOMEM;
7816                 goto clean2;    /* intmode+region, pci */
7817         }
7818         err = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
7819         if (err)
7820                 goto clean3;    /* vaddr, intmode+region, pci */
7821         err = hpsa_find_cfgtables(h);
7822         if (err)
7823                 goto clean3;    /* vaddr, intmode+region, pci */
7824         hpsa_find_board_params(h);
7825
7826         if (!hpsa_CISS_signature_present(h)) {
7827                 err = -ENODEV;
7828                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7829         }
7830         hpsa_set_driver_support_bits(h);
7831         hpsa_p600_dma_prefetch_quirk(h);
7832         err = hpsa_enter_simple_mode(h);
7833         if (err)
7834                 goto clean4;    /* cfgtables, vaddr, intmode+region, pci */
7835         return 0;
7836
7837 clean4: /* cfgtables, vaddr, intmode+region, pci */
7838         hpsa_free_cfgtables(h);
7839 clean3: /* vaddr, intmode+region, pci */
7840         iounmap(h->vaddr);
7841         h->vaddr = NULL;
7842 clean2: /* intmode+region, pci */
7843         hpsa_disable_interrupt_mode(h);
7844         /*
7845          * call pci_disable_device before pci_release_regions per
7846          * Documentation/PCI/pci.txt
7847          */
7848         pci_disable_device(h->pdev);
7849         pci_release_regions(h->pdev);
7850         return err;
7851 }
7852
7853 static void hpsa_hba_inquiry(struct ctlr_info *h)
7854 {
7855         int rc;
7856
7857 #define HBA_INQUIRY_BYTE_COUNT 64
7858         h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
7859         if (!h->hba_inquiry_data)
7860                 return;
7861         rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
7862                 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
7863         if (rc != 0) {
7864                 kfree(h->hba_inquiry_data);
7865                 h->hba_inquiry_data = NULL;
7866         }
7867 }
7868
7869 static int hpsa_init_reset_devices(struct pci_dev *pdev, u32 board_id)
7870 {
7871         int rc, i;
7872         void __iomem *vaddr;
7873
7874         if (!reset_devices)
7875                 return 0;
7876
7877         /* kdump kernel is loading, we don't know in which state is
7878          * the pci interface. The dev->enable_cnt is equal zero
7879          * so we call enable+disable, wait a while and switch it on.
7880          */
7881         rc = pci_enable_device(pdev);
7882         if (rc) {
7883                 dev_warn(&pdev->dev, "Failed to enable PCI device\n");
7884                 return -ENODEV;
7885         }
7886         pci_disable_device(pdev);
7887         msleep(260);                    /* a randomly chosen number */
7888         rc = pci_enable_device(pdev);
7889         if (rc) {
7890                 dev_warn(&pdev->dev, "failed to enable device.\n");
7891                 return -ENODEV;
7892         }
7893
7894         pci_set_master(pdev);
7895
7896         vaddr = pci_ioremap_bar(pdev, 0);
7897         if (vaddr == NULL) {
7898                 rc = -ENOMEM;
7899                 goto out_disable;
7900         }
7901         writel(SA5_INTR_OFF, vaddr + SA5_REPLY_INTR_MASK_OFFSET);
7902         iounmap(vaddr);
7903
7904         /* Reset the controller with a PCI power-cycle or via doorbell */
7905         rc = hpsa_kdump_hard_reset_controller(pdev, board_id);
7906
7907         /* -ENOTSUPP here means we cannot reset the controller
7908          * but it's already (and still) up and running in
7909          * "performant mode".  Or, it might be 640x, which can't reset
7910          * due to concerns about shared bbwc between 6402/6404 pair.
7911          */
7912         if (rc)
7913                 goto out_disable;
7914
7915         /* Now try to get the controller to respond to a no-op */
7916         dev_info(&pdev->dev, "Waiting for controller to respond to no-op\n");
7917         for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
7918                 if (hpsa_noop(pdev) == 0)
7919                         break;
7920                 else
7921                         dev_warn(&pdev->dev, "no-op failed%s\n",
7922                                         (i < 11 ? "; re-trying" : ""));
7923         }
7924
7925 out_disable:
7926
7927         pci_disable_device(pdev);
7928         return rc;
7929 }
7930
7931 static void hpsa_free_cmd_pool(struct ctlr_info *h)
7932 {
7933         kfree(h->cmd_pool_bits);
7934         h->cmd_pool_bits = NULL;
7935         if (h->cmd_pool) {
7936                 pci_free_consistent(h->pdev,
7937                                 h->nr_cmds * sizeof(struct CommandList),
7938                                 h->cmd_pool,
7939                                 h->cmd_pool_dhandle);
7940                 h->cmd_pool = NULL;
7941                 h->cmd_pool_dhandle = 0;
7942         }
7943         if (h->errinfo_pool) {
7944                 pci_free_consistent(h->pdev,
7945                                 h->nr_cmds * sizeof(struct ErrorInfo),
7946                                 h->errinfo_pool,
7947                                 h->errinfo_pool_dhandle);
7948                 h->errinfo_pool = NULL;
7949                 h->errinfo_pool_dhandle = 0;
7950         }
7951 }
7952
7953 static int hpsa_alloc_cmd_pool(struct ctlr_info *h)
7954 {
7955         h->cmd_pool_bits = kzalloc(
7956                 DIV_ROUND_UP(h->nr_cmds, BITS_PER_LONG) *
7957                 sizeof(unsigned long), GFP_KERNEL);
7958         h->cmd_pool = pci_alloc_consistent(h->pdev,
7959                     h->nr_cmds * sizeof(*h->cmd_pool),
7960                     &(h->cmd_pool_dhandle));
7961         h->errinfo_pool = pci_alloc_consistent(h->pdev,
7962                     h->nr_cmds * sizeof(*h->errinfo_pool),
7963                     &(h->errinfo_pool_dhandle));
7964         if ((h->cmd_pool_bits == NULL)
7965             || (h->cmd_pool == NULL)
7966             || (h->errinfo_pool == NULL)) {
7967                 dev_err(&h->pdev->dev, "out of memory in %s", __func__);
7968                 goto clean_up;
7969         }
7970         hpsa_preinitialize_commands(h);
7971         return 0;
7972 clean_up:
7973         hpsa_free_cmd_pool(h);
7974         return -ENOMEM;
7975 }
7976
7977 static void hpsa_irq_affinity_hints(struct ctlr_info *h)
7978 {
7979         int i, cpu;
7980
7981         cpu = cpumask_first(cpu_online_mask);
7982         for (i = 0; i < h->msix_vector; i++) {
7983                 irq_set_affinity_hint(h->intr[i], get_cpu_mask(cpu));
7984                 cpu = cpumask_next(cpu, cpu_online_mask);
7985         }
7986 }
7987
7988 /* clear affinity hints and free MSI-X, MSI, or legacy INTx vectors */
7989 static void hpsa_free_irqs(struct ctlr_info *h)
7990 {
7991         int i;
7992
7993         if (!h->msix_vector || h->intr_mode != PERF_MODE_INT) {
7994                 /* Single reply queue, only one irq to free */
7995                 i = h->intr_mode;
7996                 irq_set_affinity_hint(h->intr[i], NULL);
7997                 free_irq(h->intr[i], &h->q[i]);
7998                 h->q[i] = 0;
7999                 return;
8000         }
8001
8002         for (i = 0; i < h->msix_vector; i++) {
8003                 irq_set_affinity_hint(h->intr[i], NULL);
8004                 free_irq(h->intr[i], &h->q[i]);
8005                 h->q[i] = 0;
8006         }
8007         for (; i < MAX_REPLY_QUEUES; i++)
8008                 h->q[i] = 0;
8009 }
8010
8011 /* returns 0 on success; cleans up and returns -Enn on error */
8012 static int hpsa_request_irqs(struct ctlr_info *h,
8013         irqreturn_t (*msixhandler)(int, void *),
8014         irqreturn_t (*intxhandler)(int, void *))
8015 {
8016         int rc, i;
8017
8018         /*
8019          * initialize h->q[x] = x so that interrupt handlers know which
8020          * queue to process.
8021          */
8022         for (i = 0; i < MAX_REPLY_QUEUES; i++)
8023                 h->q[i] = (u8) i;
8024
8025         if (h->intr_mode == PERF_MODE_INT && h->msix_vector > 0) {
8026                 /* If performant mode and MSI-X, use multiple reply queues */
8027                 for (i = 0; i < h->msix_vector; i++) {
8028                         sprintf(h->intrname[i], "%s-msix%d", h->devname, i);
8029                         rc = request_irq(h->intr[i], msixhandler,
8030                                         0, h->intrname[i],
8031                                         &h->q[i]);
8032                         if (rc) {
8033                                 int j;
8034
8035                                 dev_err(&h->pdev->dev,
8036                                         "failed to get irq %d for %s\n",
8037                                        h->intr[i], h->devname);
8038                                 for (j = 0; j < i; j++) {
8039                                         free_irq(h->intr[j], &h->q[j]);
8040                                         h->q[j] = 0;
8041                                 }
8042                                 for (; j < MAX_REPLY_QUEUES; j++)
8043                                         h->q[j] = 0;
8044                                 return rc;
8045                         }
8046                 }
8047                 hpsa_irq_affinity_hints(h);
8048         } else {
8049                 /* Use single reply pool */
8050                 if (h->msix_vector > 0 || h->msi_vector) {
8051                         if (h->msix_vector)
8052                                 sprintf(h->intrname[h->intr_mode],
8053                                         "%s-msix", h->devname);
8054                         else
8055                                 sprintf(h->intrname[h->intr_mode],
8056                                         "%s-msi", h->devname);
8057                         rc = request_irq(h->intr[h->intr_mode],
8058                                 msixhandler, 0,
8059                                 h->intrname[h->intr_mode],
8060                                 &h->q[h->intr_mode]);
8061                 } else {
8062                         sprintf(h->intrname[h->intr_mode],
8063                                 "%s-intx", h->devname);
8064                         rc = request_irq(h->intr[h->intr_mode],
8065                                 intxhandler, IRQF_SHARED,
8066                                 h->intrname[h->intr_mode],
8067                                 &h->q[h->intr_mode]);
8068                 }
8069                 irq_set_affinity_hint(h->intr[h->intr_mode], NULL);
8070         }
8071         if (rc) {
8072                 dev_err(&h->pdev->dev, "failed to get irq %d for %s\n",
8073                        h->intr[h->intr_mode], h->devname);
8074                 hpsa_free_irqs(h);
8075                 return -ENODEV;
8076         }
8077         return 0;
8078 }
8079
8080 static int hpsa_kdump_soft_reset(struct ctlr_info *h)
8081 {
8082         int rc;
8083         hpsa_send_host_reset(h, RAID_CTLR_LUNID, HPSA_RESET_TYPE_CONTROLLER);
8084
8085         dev_info(&h->pdev->dev, "Waiting for board to soft reset.\n");
8086         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_NOT_READY);
8087         if (rc) {
8088                 dev_warn(&h->pdev->dev, "Soft reset had no effect.\n");
8089                 return rc;
8090         }
8091
8092         dev_info(&h->pdev->dev, "Board reset, awaiting READY status.\n");
8093         rc = hpsa_wait_for_board_state(h->pdev, h->vaddr, BOARD_READY);
8094         if (rc) {
8095                 dev_warn(&h->pdev->dev, "Board failed to become ready "
8096                         "after soft reset.\n");
8097                 return rc;
8098         }
8099
8100         return 0;
8101 }
8102
8103 static void hpsa_free_reply_queues(struct ctlr_info *h)
8104 {
8105         int i;
8106
8107         for (i = 0; i < h->nreply_queues; i++) {
8108                 if (!h->reply_queue[i].head)
8109                         continue;
8110                 pci_free_consistent(h->pdev,
8111                                         h->reply_queue_size,
8112                                         h->reply_queue[i].head,
8113                                         h->reply_queue[i].busaddr);
8114                 h->reply_queue[i].head = NULL;
8115                 h->reply_queue[i].busaddr = 0;
8116         }
8117         h->reply_queue_size = 0;
8118 }
8119
8120 static void hpsa_undo_allocations_after_kdump_soft_reset(struct ctlr_info *h)
8121 {
8122         hpsa_free_performant_mode(h);           /* init_one 7 */
8123         hpsa_free_sg_chain_blocks(h);           /* init_one 6 */
8124         hpsa_free_cmd_pool(h);                  /* init_one 5 */
8125         hpsa_free_irqs(h);                      /* init_one 4 */
8126         scsi_host_put(h->scsi_host);            /* init_one 3 */
8127         h->scsi_host = NULL;                    /* init_one 3 */
8128         hpsa_free_pci_init(h);                  /* init_one 2_5 */
8129         free_percpu(h->lockup_detected);        /* init_one 2 */
8130         h->lockup_detected = NULL;              /* init_one 2 */
8131         if (h->resubmit_wq) {
8132                 destroy_workqueue(h->resubmit_wq);      /* init_one 1 */
8133                 h->resubmit_wq = NULL;
8134         }
8135         if (h->rescan_ctlr_wq) {
8136                 destroy_workqueue(h->rescan_ctlr_wq);
8137                 h->rescan_ctlr_wq = NULL;
8138         }
8139         kfree(h);                               /* init_one 1 */
8140 }
8141
8142 /* Called when controller lockup detected. */
8143 static void fail_all_outstanding_cmds(struct ctlr_info *h)
8144 {
8145         int i, refcount;
8146         struct CommandList *c;
8147         int failcount = 0;
8148
8149         flush_workqueue(h->resubmit_wq); /* ensure all cmds are fully built */
8150         for (i = 0; i < h->nr_cmds; i++) {
8151                 c = h->cmd_pool + i;
8152                 refcount = atomic_inc_return(&c->refcount);
8153                 if (refcount > 1) {
8154                         c->err_info->CommandStatus = CMD_CTLR_LOCKUP;
8155                         finish_cmd(c);
8156                         atomic_dec(&h->commands_outstanding);
8157                         failcount++;
8158                 }
8159                 cmd_free(h, c);
8160         }
8161         dev_warn(&h->pdev->dev,
8162                 "failed %d commands in fail_all\n", failcount);
8163 }
8164
8165 static void set_lockup_detected_for_all_cpus(struct ctlr_info *h, u32 value)
8166 {
8167         int cpu;
8168
8169         for_each_online_cpu(cpu) {
8170                 u32 *lockup_detected;
8171                 lockup_detected = per_cpu_ptr(h->lockup_detected, cpu);
8172                 *lockup_detected = value;
8173         }
8174         wmb(); /* be sure the per-cpu variables are out to memory */
8175 }
8176
8177 static void controller_lockup_detected(struct ctlr_info *h)
8178 {
8179         unsigned long flags;
8180         u32 lockup_detected;
8181
8182         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8183         spin_lock_irqsave(&h->lock, flags);
8184         lockup_detected = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
8185         if (!lockup_detected) {
8186                 /* no heartbeat, but controller gave us a zero. */
8187                 dev_warn(&h->pdev->dev,
8188                         "lockup detected after %d but scratchpad register is zero\n",
8189                         h->heartbeat_sample_interval / HZ);
8190                 lockup_detected = 0xffffffff;
8191         }
8192         set_lockup_detected_for_all_cpus(h, lockup_detected);
8193         spin_unlock_irqrestore(&h->lock, flags);
8194         dev_warn(&h->pdev->dev, "Controller lockup detected: 0x%08x after %d\n",
8195                         lockup_detected, h->heartbeat_sample_interval / HZ);
8196         pci_disable_device(h->pdev);
8197         fail_all_outstanding_cmds(h);
8198 }
8199
8200 static int detect_controller_lockup(struct ctlr_info *h)
8201 {
8202         u64 now;
8203         u32 heartbeat;
8204         unsigned long flags;
8205
8206         now = get_jiffies_64();
8207         /* If we've received an interrupt recently, we're ok. */
8208         if (time_after64(h->last_intr_timestamp +
8209                                 (h->heartbeat_sample_interval), now))
8210                 return false;
8211
8212         /*
8213          * If we've already checked the heartbeat recently, we're ok.
8214          * This could happen if someone sends us a signal. We
8215          * otherwise don't care about signals in this thread.
8216          */
8217         if (time_after64(h->last_heartbeat_timestamp +
8218                                 (h->heartbeat_sample_interval), now))
8219                 return false;
8220
8221         /* If heartbeat has not changed since we last looked, we're not ok. */
8222         spin_lock_irqsave(&h->lock, flags);
8223         heartbeat = readl(&h->cfgtable->HeartBeat);
8224         spin_unlock_irqrestore(&h->lock, flags);
8225         if (h->last_heartbeat == heartbeat) {
8226                 controller_lockup_detected(h);
8227                 return true;
8228         }
8229
8230         /* We're ok. */
8231         h->last_heartbeat = heartbeat;
8232         h->last_heartbeat_timestamp = now;
8233         return false;
8234 }
8235
8236 static void hpsa_ack_ctlr_events(struct ctlr_info *h)
8237 {
8238         int i;
8239         char *event_type;
8240
8241         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8242                 return;
8243
8244         /* Ask the controller to clear the events we're handling. */
8245         if ((h->transMethod & (CFGTBL_Trans_io_accel1
8246                         | CFGTBL_Trans_io_accel2)) &&
8247                 (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE ||
8248                  h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)) {
8249
8250                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_STATE_CHANGE)
8251                         event_type = "state change";
8252                 if (h->events & HPSA_EVENT_NOTIFY_ACCEL_IO_PATH_CONFIG_CHANGE)
8253                         event_type = "configuration change";
8254                 /* Stop sending new RAID offload reqs via the IO accelerator */
8255                 scsi_block_requests(h->scsi_host);
8256                 for (i = 0; i < h->ndevices; i++)
8257                         h->dev[i]->offload_enabled = 0;
8258                 hpsa_drain_accel_commands(h);
8259                 /* Set 'accelerator path config change' bit */
8260                 dev_warn(&h->pdev->dev,
8261                         "Acknowledging event: 0x%08x (HP SSD Smart Path %s)\n",
8262                         h->events, event_type);
8263                 writel(h->events, &(h->cfgtable->clear_event_notify));
8264                 /* Set the "clear event notify field update" bit 6 */
8265                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8266                 /* Wait until ctlr clears 'clear event notify field', bit 6 */
8267                 hpsa_wait_for_clear_event_notify_ack(h);
8268                 scsi_unblock_requests(h->scsi_host);
8269         } else {
8270                 /* Acknowledge controller notification events. */
8271                 writel(h->events, &(h->cfgtable->clear_event_notify));
8272                 writel(DOORBELL_CLEAR_EVENTS, h->vaddr + SA5_DOORBELL);
8273                 hpsa_wait_for_clear_event_notify_ack(h);
8274 #if 0
8275                 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
8276                 hpsa_wait_for_mode_change_ack(h);
8277 #endif
8278         }
8279         return;
8280 }
8281
8282 /* Check a register on the controller to see if there are configuration
8283  * changes (added/changed/removed logical drives, etc.) which mean that
8284  * we should rescan the controller for devices.
8285  * Also check flag for driver-initiated rescan.
8286  */
8287 static int hpsa_ctlr_needs_rescan(struct ctlr_info *h)
8288 {
8289         if (h->drv_req_rescan) {
8290                 h->drv_req_rescan = 0;
8291                 return 1;
8292         }
8293
8294         if (!(h->fw_support & MISC_FW_EVENT_NOTIFY))
8295                 return 0;
8296
8297         h->events = readl(&(h->cfgtable->event_notify));
8298         return h->events & RESCAN_REQUIRED_EVENT_BITS;
8299 }
8300
8301 /*
8302  * Check if any of the offline devices have become ready
8303  */
8304 static int hpsa_offline_devices_ready(struct ctlr_info *h)
8305 {
8306         unsigned long flags;
8307         struct offline_device_entry *d;
8308         struct list_head *this, *tmp;
8309
8310         spin_lock_irqsave(&h->offline_device_lock, flags);
8311         list_for_each_safe(this, tmp, &h->offline_device_list) {
8312                 d = list_entry(this, struct offline_device_entry,
8313                                 offline_list);
8314                 spin_unlock_irqrestore(&h->offline_device_lock, flags);
8315                 if (!hpsa_volume_offline(h, d->scsi3addr)) {
8316                         spin_lock_irqsave(&h->offline_device_lock, flags);
8317                         list_del(&d->offline_list);
8318                         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8319                         return 1;
8320                 }
8321                 spin_lock_irqsave(&h->offline_device_lock, flags);
8322         }
8323         spin_unlock_irqrestore(&h->offline_device_lock, flags);
8324         return 0;
8325 }
8326
8327 static int hpsa_luns_changed(struct ctlr_info *h)
8328 {
8329         int rc = 1; /* assume there are changes */
8330         struct ReportLUNdata *logdev = NULL;
8331
8332         /* if we can't find out if lun data has changed,
8333          * assume that it has.
8334          */
8335
8336         if (!h->lastlogicals)
8337                 goto out;
8338
8339         logdev = kzalloc(sizeof(*logdev), GFP_KERNEL);
8340         if (!logdev) {
8341                 dev_warn(&h->pdev->dev,
8342                         "Out of memory, can't track lun changes.\n");
8343                 goto out;
8344         }
8345         if (hpsa_scsi_do_report_luns(h, 1, logdev, sizeof(*logdev), 0)) {
8346                 dev_warn(&h->pdev->dev,
8347                         "report luns failed, can't track lun changes.\n");
8348                 goto out;
8349         }
8350         if (memcmp(logdev, h->lastlogicals, sizeof(*logdev))) {
8351                 dev_info(&h->pdev->dev,
8352                         "Lun changes detected.\n");
8353                 memcpy(h->lastlogicals, logdev, sizeof(*logdev));
8354                 goto out;
8355         } else
8356                 rc = 0; /* no changes detected. */
8357 out:
8358         kfree(logdev);
8359         return rc;
8360 }
8361
8362 static void hpsa_rescan_ctlr_worker(struct work_struct *work)
8363 {
8364         unsigned long flags;
8365         struct ctlr_info *h = container_of(to_delayed_work(work),
8366                                         struct ctlr_info, rescan_ctlr_work);
8367
8368
8369         if (h->remove_in_progress)
8370                 return;
8371
8372         if (hpsa_ctlr_needs_rescan(h) || hpsa_offline_devices_ready(h)) {
8373                 scsi_host_get(h->scsi_host);
8374                 hpsa_ack_ctlr_events(h);
8375                 hpsa_scan_start(h->scsi_host);
8376                 scsi_host_put(h->scsi_host);
8377         } else if (h->discovery_polling) {
8378                 hpsa_disable_rld_caching(h);
8379                 if (hpsa_luns_changed(h)) {
8380                         struct Scsi_Host *sh = NULL;
8381
8382                         dev_info(&h->pdev->dev,
8383                                 "driver discovery polling rescan.\n");
8384                         sh = scsi_host_get(h->scsi_host);
8385                         if (sh != NULL) {
8386                                 hpsa_scan_start(sh);
8387                                 scsi_host_put(sh);
8388                         }
8389                 }
8390         }
8391         spin_lock_irqsave(&h->lock, flags);
8392         if (!h->remove_in_progress)
8393                 queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8394                                 h->heartbeat_sample_interval);
8395         spin_unlock_irqrestore(&h->lock, flags);
8396 }
8397
8398 static void hpsa_monitor_ctlr_worker(struct work_struct *work)
8399 {
8400         unsigned long flags;
8401         struct ctlr_info *h = container_of(to_delayed_work(work),
8402                                         struct ctlr_info, monitor_ctlr_work);
8403
8404         detect_controller_lockup(h);
8405         if (lockup_detected(h))
8406                 return;
8407
8408         spin_lock_irqsave(&h->lock, flags);
8409         if (!h->remove_in_progress)
8410                 schedule_delayed_work(&h->monitor_ctlr_work,
8411                                 h->heartbeat_sample_interval);
8412         spin_unlock_irqrestore(&h->lock, flags);
8413 }
8414
8415 static struct workqueue_struct *hpsa_create_controller_wq(struct ctlr_info *h,
8416                                                 char *name)
8417 {
8418         struct workqueue_struct *wq = NULL;
8419
8420         wq = alloc_ordered_workqueue("%s_%d_hpsa", 0, name, h->ctlr);
8421         if (!wq)
8422                 dev_err(&h->pdev->dev, "failed to create %s workqueue\n", name);
8423
8424         return wq;
8425 }
8426
8427 static int hpsa_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
8428 {
8429         int dac, rc;
8430         struct ctlr_info *h;
8431         int try_soft_reset = 0;
8432         unsigned long flags;
8433         u32 board_id;
8434
8435         if (number_of_controllers == 0)
8436                 printk(KERN_INFO DRIVER_NAME "\n");
8437
8438         rc = hpsa_lookup_board_id(pdev, &board_id);
8439         if (rc < 0) {
8440                 dev_warn(&pdev->dev, "Board ID not found\n");
8441                 return rc;
8442         }
8443
8444         rc = hpsa_init_reset_devices(pdev, board_id);
8445         if (rc) {
8446                 if (rc != -ENOTSUPP)
8447                         return rc;
8448                 /* If the reset fails in a particular way (it has no way to do
8449                  * a proper hard reset, so returns -ENOTSUPP) we can try to do
8450                  * a soft reset once we get the controller configured up to the
8451                  * point that it can accept a command.
8452                  */
8453                 try_soft_reset = 1;
8454                 rc = 0;
8455         }
8456
8457 reinit_after_soft_reset:
8458
8459         /* Command structures must be aligned on a 32-byte boundary because
8460          * the 5 lower bits of the address are used by the hardware. and by
8461          * the driver.  See comments in hpsa.h for more info.
8462          */
8463         BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
8464         h = kzalloc(sizeof(*h), GFP_KERNEL);
8465         if (!h) {
8466                 dev_err(&pdev->dev, "Failed to allocate controller head\n");
8467                 return -ENOMEM;
8468         }
8469
8470         h->pdev = pdev;
8471
8472         h->intr_mode = hpsa_simple_mode ? SIMPLE_MODE_INT : PERF_MODE_INT;
8473         INIT_LIST_HEAD(&h->offline_device_list);
8474         spin_lock_init(&h->lock);
8475         spin_lock_init(&h->offline_device_lock);
8476         spin_lock_init(&h->scan_lock);
8477         atomic_set(&h->passthru_cmds_avail, HPSA_MAX_CONCURRENT_PASSTHRUS);
8478         atomic_set(&h->abort_cmds_available, HPSA_CMDS_RESERVED_FOR_ABORTS);
8479
8480         /* Allocate and clear per-cpu variable lockup_detected */
8481         h->lockup_detected = alloc_percpu(u32);
8482         if (!h->lockup_detected) {
8483                 dev_err(&h->pdev->dev, "Failed to allocate lockup detector\n");
8484                 rc = -ENOMEM;
8485                 goto clean1;    /* aer/h */
8486         }
8487         set_lockup_detected_for_all_cpus(h, 0);
8488
8489         rc = hpsa_pci_init(h);
8490         if (rc)
8491                 goto clean2;    /* lu, aer/h */
8492
8493         /* relies on h-> settings made by hpsa_pci_init, including
8494          * interrupt_mode h->intr */
8495         rc = hpsa_scsi_host_alloc(h);
8496         if (rc)
8497                 goto clean2_5;  /* pci, lu, aer/h */
8498
8499         sprintf(h->devname, HPSA "%d", h->scsi_host->host_no);
8500         h->ctlr = number_of_controllers;
8501         number_of_controllers++;
8502
8503         /* configure PCI DMA stuff */
8504         rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
8505         if (rc == 0) {
8506                 dac = 1;
8507         } else {
8508                 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
8509                 if (rc == 0) {
8510                         dac = 0;
8511                 } else {
8512                         dev_err(&pdev->dev, "no suitable DMA available\n");
8513                         goto clean3;    /* shost, pci, lu, aer/h */
8514                 }
8515         }
8516
8517         /* make sure the board interrupts are off */
8518         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8519
8520         rc = hpsa_request_irqs(h, do_hpsa_intr_msi, do_hpsa_intr_intx);
8521         if (rc)
8522                 goto clean3;    /* shost, pci, lu, aer/h */
8523         rc = hpsa_alloc_cmd_pool(h);
8524         if (rc)
8525                 goto clean4;    /* irq, shost, pci, lu, aer/h */
8526         rc = hpsa_alloc_sg_chain_blocks(h);
8527         if (rc)
8528                 goto clean5;    /* cmd, irq, shost, pci, lu, aer/h */
8529         init_waitqueue_head(&h->scan_wait_queue);
8530         init_waitqueue_head(&h->abort_cmd_wait_queue);
8531         init_waitqueue_head(&h->event_sync_wait_queue);
8532         mutex_init(&h->reset_mutex);
8533         h->scan_finished = 1; /* no scan currently in progress */
8534         h->scan_waiting = 0;
8535
8536         pci_set_drvdata(pdev, h);
8537         h->ndevices = 0;
8538
8539         spin_lock_init(&h->devlock);
8540         rc = hpsa_put_ctlr_into_performant_mode(h);
8541         if (rc)
8542                 goto clean6; /* sg, cmd, irq, shost, pci, lu, aer/h */
8543
8544         /* hook into SCSI subsystem */
8545         rc = hpsa_scsi_add_host(h);
8546         if (rc)
8547                 goto clean7; /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8548
8549         /* create the resubmit workqueue */
8550         h->rescan_ctlr_wq = hpsa_create_controller_wq(h, "rescan");
8551         if (!h->rescan_ctlr_wq) {
8552                 rc = -ENOMEM;
8553                 goto clean7;
8554         }
8555
8556         h->resubmit_wq = hpsa_create_controller_wq(h, "resubmit");
8557         if (!h->resubmit_wq) {
8558                 rc = -ENOMEM;
8559                 goto clean7;    /* aer/h */
8560         }
8561
8562         /*
8563          * At this point, the controller is ready to take commands.
8564          * Now, if reset_devices and the hard reset didn't work, try
8565          * the soft reset and see if that works.
8566          */
8567         if (try_soft_reset) {
8568
8569                 /* This is kind of gross.  We may or may not get a completion
8570                  * from the soft reset command, and if we do, then the value
8571                  * from the fifo may or may not be valid.  So, we wait 10 secs
8572                  * after the reset throwing away any completions we get during
8573                  * that time.  Unregister the interrupt handler and register
8574                  * fake ones to scoop up any residual completions.
8575                  */
8576                 spin_lock_irqsave(&h->lock, flags);
8577                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8578                 spin_unlock_irqrestore(&h->lock, flags);
8579                 hpsa_free_irqs(h);
8580                 rc = hpsa_request_irqs(h, hpsa_msix_discard_completions,
8581                                         hpsa_intx_discard_completions);
8582                 if (rc) {
8583                         dev_warn(&h->pdev->dev,
8584                                 "Failed to request_irq after soft reset.\n");
8585                         /*
8586                          * cannot goto clean7 or free_irqs will be called
8587                          * again. Instead, do its work
8588                          */
8589                         hpsa_free_performant_mode(h);   /* clean7 */
8590                         hpsa_free_sg_chain_blocks(h);   /* clean6 */
8591                         hpsa_free_cmd_pool(h);          /* clean5 */
8592                         /*
8593                          * skip hpsa_free_irqs(h) clean4 since that
8594                          * was just called before request_irqs failed
8595                          */
8596                         goto clean3;
8597                 }
8598
8599                 rc = hpsa_kdump_soft_reset(h);
8600                 if (rc)
8601                         /* Neither hard nor soft reset worked, we're hosed. */
8602                         goto clean7;
8603
8604                 dev_info(&h->pdev->dev, "Board READY.\n");
8605                 dev_info(&h->pdev->dev,
8606                         "Waiting for stale completions to drain.\n");
8607                 h->access.set_intr_mask(h, HPSA_INTR_ON);
8608                 msleep(10000);
8609                 h->access.set_intr_mask(h, HPSA_INTR_OFF);
8610
8611                 rc = controller_reset_failed(h->cfgtable);
8612                 if (rc)
8613                         dev_info(&h->pdev->dev,
8614                                 "Soft reset appears to have failed.\n");
8615
8616                 /* since the controller's reset, we have to go back and re-init
8617                  * everything.  Easiest to just forget what we've done and do it
8618                  * all over again.
8619                  */
8620                 hpsa_undo_allocations_after_kdump_soft_reset(h);
8621                 try_soft_reset = 0;
8622                 if (rc)
8623                         /* don't goto clean, we already unallocated */
8624                         return -ENODEV;
8625
8626                 goto reinit_after_soft_reset;
8627         }
8628
8629         /* Enable Accelerated IO path at driver layer */
8630         h->acciopath_status = 1;
8631         /* Disable discovery polling.*/
8632         h->discovery_polling = 0;
8633
8634
8635         /* Turn the interrupts on so we can service requests */
8636         h->access.set_intr_mask(h, HPSA_INTR_ON);
8637
8638         hpsa_hba_inquiry(h);
8639
8640         h->lastlogicals = kzalloc(sizeof(*(h->lastlogicals)), GFP_KERNEL);
8641         if (!h->lastlogicals)
8642                 dev_info(&h->pdev->dev,
8643                         "Can't track change to report lun data\n");
8644
8645         /* Monitor the controller for firmware lockups */
8646         h->heartbeat_sample_interval = HEARTBEAT_SAMPLE_INTERVAL;
8647         INIT_DELAYED_WORK(&h->monitor_ctlr_work, hpsa_monitor_ctlr_worker);
8648         schedule_delayed_work(&h->monitor_ctlr_work,
8649                                 h->heartbeat_sample_interval);
8650         INIT_DELAYED_WORK(&h->rescan_ctlr_work, hpsa_rescan_ctlr_worker);
8651         queue_delayed_work(h->rescan_ctlr_wq, &h->rescan_ctlr_work,
8652                                 h->heartbeat_sample_interval);
8653         return 0;
8654
8655 clean7: /* perf, sg, cmd, irq, shost, pci, lu, aer/h */
8656         hpsa_free_performant_mode(h);
8657         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8658 clean6: /* sg, cmd, irq, pci, lockup, wq/aer/h */
8659         hpsa_free_sg_chain_blocks(h);
8660 clean5: /* cmd, irq, shost, pci, lu, aer/h */
8661         hpsa_free_cmd_pool(h);
8662 clean4: /* irq, shost, pci, lu, aer/h */
8663         hpsa_free_irqs(h);
8664 clean3: /* shost, pci, lu, aer/h */
8665         scsi_host_put(h->scsi_host);
8666         h->scsi_host = NULL;
8667 clean2_5: /* pci, lu, aer/h */
8668         hpsa_free_pci_init(h);
8669 clean2: /* lu, aer/h */
8670         if (h->lockup_detected) {
8671                 free_percpu(h->lockup_detected);
8672                 h->lockup_detected = NULL;
8673         }
8674 clean1: /* wq/aer/h */
8675         if (h->resubmit_wq) {
8676                 destroy_workqueue(h->resubmit_wq);
8677                 h->resubmit_wq = NULL;
8678         }
8679         if (h->rescan_ctlr_wq) {
8680                 destroy_workqueue(h->rescan_ctlr_wq);
8681                 h->rescan_ctlr_wq = NULL;
8682         }
8683         kfree(h);
8684         return rc;
8685 }
8686
8687 static void hpsa_flush_cache(struct ctlr_info *h)
8688 {
8689         char *flush_buf;
8690         struct CommandList *c;
8691         int rc;
8692
8693         if (unlikely(lockup_detected(h)))
8694                 return;
8695         flush_buf = kzalloc(4, GFP_KERNEL);
8696         if (!flush_buf)
8697                 return;
8698
8699         c = cmd_alloc(h);
8700
8701         if (fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
8702                 RAID_CTLR_LUNID, TYPE_CMD)) {
8703                 goto out;
8704         }
8705         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8706                                         PCI_DMA_TODEVICE, NO_TIMEOUT);
8707         if (rc)
8708                 goto out;
8709         if (c->err_info->CommandStatus != 0)
8710 out:
8711                 dev_warn(&h->pdev->dev,
8712                         "error flushing cache on controller\n");
8713         cmd_free(h, c);
8714         kfree(flush_buf);
8715 }
8716
8717 /* Make controller gather fresh report lun data each time we
8718  * send down a report luns request
8719  */
8720 static void hpsa_disable_rld_caching(struct ctlr_info *h)
8721 {
8722         u32 *options;
8723         struct CommandList *c;
8724         int rc;
8725
8726         /* Don't bother trying to set diag options if locked up */
8727         if (unlikely(h->lockup_detected))
8728                 return;
8729
8730         options = kzalloc(sizeof(*options), GFP_KERNEL);
8731         if (!options) {
8732                 dev_err(&h->pdev->dev,
8733                         "Error: failed to disable rld caching, during alloc.\n");
8734                 return;
8735         }
8736
8737         c = cmd_alloc(h);
8738
8739         /* first, get the current diag options settings */
8740         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8741                 RAID_CTLR_LUNID, TYPE_CMD))
8742                 goto errout;
8743
8744         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8745                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8746         if ((rc != 0) || (c->err_info->CommandStatus != 0))
8747                 goto errout;
8748
8749         /* Now, set the bit for disabling the RLD caching */
8750         *options |= HPSA_DIAG_OPTS_DISABLE_RLD_CACHING;
8751
8752         if (fill_cmd(c, BMIC_SET_DIAG_OPTIONS, h, options, 4, 0,
8753                 RAID_CTLR_LUNID, TYPE_CMD))
8754                 goto errout;
8755
8756         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8757                 PCI_DMA_TODEVICE, NO_TIMEOUT);
8758         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8759                 goto errout;
8760
8761         /* Now verify that it got set: */
8762         if (fill_cmd(c, BMIC_SENSE_DIAG_OPTIONS, h, options, 4, 0,
8763                 RAID_CTLR_LUNID, TYPE_CMD))
8764                 goto errout;
8765
8766         rc = hpsa_scsi_do_simple_cmd_with_retry(h, c,
8767                 PCI_DMA_FROMDEVICE, NO_TIMEOUT);
8768         if ((rc != 0)  || (c->err_info->CommandStatus != 0))
8769                 goto errout;
8770
8771         if (*options & HPSA_DIAG_OPTS_DISABLE_RLD_CACHING)
8772                 goto out;
8773
8774 errout:
8775         dev_err(&h->pdev->dev,
8776                         "Error: failed to disable report lun data caching.\n");
8777 out:
8778         cmd_free(h, c);
8779         kfree(options);
8780 }
8781
8782 static void hpsa_shutdown(struct pci_dev *pdev)
8783 {
8784         struct ctlr_info *h;
8785
8786         h = pci_get_drvdata(pdev);
8787         /* Turn board interrupts off  and send the flush cache command
8788          * sendcmd will turn off interrupt, and send the flush...
8789          * To write all data in the battery backed cache to disks
8790          */
8791         hpsa_flush_cache(h);
8792         h->access.set_intr_mask(h, HPSA_INTR_OFF);
8793         hpsa_free_irqs(h);                      /* init_one 4 */
8794         hpsa_disable_interrupt_mode(h);         /* pci_init 2 */
8795 }
8796
8797 static void hpsa_free_device_info(struct ctlr_info *h)
8798 {
8799         int i;
8800
8801         for (i = 0; i < h->ndevices; i++) {
8802                 kfree(h->dev[i]);
8803                 h->dev[i] = NULL;
8804         }
8805 }
8806
8807 static void hpsa_remove_one(struct pci_dev *pdev)
8808 {
8809         struct ctlr_info *h;
8810         unsigned long flags;
8811
8812         if (pci_get_drvdata(pdev) == NULL) {
8813                 dev_err(&pdev->dev, "unable to remove device\n");
8814                 return;
8815         }
8816         h = pci_get_drvdata(pdev);
8817
8818         /* Get rid of any controller monitoring work items */
8819         spin_lock_irqsave(&h->lock, flags);
8820         h->remove_in_progress = 1;
8821         spin_unlock_irqrestore(&h->lock, flags);
8822         cancel_delayed_work_sync(&h->monitor_ctlr_work);
8823         cancel_delayed_work_sync(&h->rescan_ctlr_work);
8824         destroy_workqueue(h->rescan_ctlr_wq);
8825         destroy_workqueue(h->resubmit_wq);
8826
8827         hpsa_delete_sas_host(h);
8828
8829         /*
8830          * Call before disabling interrupts.
8831          * scsi_remove_host can trigger I/O operations especially
8832          * when multipath is enabled. There can be SYNCHRONIZE CACHE
8833          * operations which cannot complete and will hang the system.
8834          */
8835         if (h->scsi_host)
8836                 scsi_remove_host(h->scsi_host);         /* init_one 8 */
8837         /* includes hpsa_free_irqs - init_one 4 */
8838         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8839         hpsa_shutdown(pdev);
8840
8841         hpsa_free_device_info(h);               /* scan */
8842
8843         kfree(h->hba_inquiry_data);                     /* init_one 10 */
8844         h->hba_inquiry_data = NULL;                     /* init_one 10 */
8845         hpsa_free_ioaccel2_sg_chain_blocks(h);
8846         hpsa_free_performant_mode(h);                   /* init_one 7 */
8847         hpsa_free_sg_chain_blocks(h);                   /* init_one 6 */
8848         hpsa_free_cmd_pool(h);                          /* init_one 5 */
8849         kfree(h->lastlogicals);
8850
8851         /* hpsa_free_irqs already called via hpsa_shutdown init_one 4 */
8852
8853         scsi_host_put(h->scsi_host);                    /* init_one 3 */
8854         h->scsi_host = NULL;                            /* init_one 3 */
8855
8856         /* includes hpsa_disable_interrupt_mode - pci_init 2 */
8857         hpsa_free_pci_init(h);                          /* init_one 2.5 */
8858
8859         free_percpu(h->lockup_detected);                /* init_one 2 */
8860         h->lockup_detected = NULL;                      /* init_one 2 */
8861         /* (void) pci_disable_pcie_error_reporting(pdev); */    /* init_one 1 */
8862
8863         kfree(h);                                       /* init_one 1 */
8864 }
8865
8866 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
8867         __attribute__((unused)) pm_message_t state)
8868 {
8869         return -ENOSYS;
8870 }
8871
8872 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
8873 {
8874         return -ENOSYS;
8875 }
8876
8877 static struct pci_driver hpsa_pci_driver = {
8878         .name = HPSA,
8879         .probe = hpsa_init_one,
8880         .remove = hpsa_remove_one,
8881         .id_table = hpsa_pci_device_id, /* id_table */
8882         .shutdown = hpsa_shutdown,
8883         .suspend = hpsa_suspend,
8884         .resume = hpsa_resume,
8885 };
8886
8887 /* Fill in bucket_map[], given nsgs (the max number of
8888  * scatter gather elements supported) and bucket[],
8889  * which is an array of 8 integers.  The bucket[] array
8890  * contains 8 different DMA transfer sizes (in 16
8891  * byte increments) which the controller uses to fetch
8892  * commands.  This function fills in bucket_map[], which
8893  * maps a given number of scatter gather elements to one of
8894  * the 8 DMA transfer sizes.  The point of it is to allow the
8895  * controller to only do as much DMA as needed to fetch the
8896  * command, with the DMA transfer size encoded in the lower
8897  * bits of the command address.
8898  */
8899 static void  calc_bucket_map(int bucket[], int num_buckets,
8900         int nsgs, int min_blocks, u32 *bucket_map)
8901 {
8902         int i, j, b, size;
8903
8904         /* Note, bucket_map must have nsgs+1 entries. */
8905         for (i = 0; i <= nsgs; i++) {
8906                 /* Compute size of a command with i SG entries */
8907                 size = i + min_blocks;
8908                 b = num_buckets; /* Assume the biggest bucket */
8909                 /* Find the bucket that is just big enough */
8910                 for (j = 0; j < num_buckets; j++) {
8911                         if (bucket[j] >= size) {
8912                                 b = j;
8913                                 break;
8914                         }
8915                 }
8916                 /* for a command with i SG entries, use bucket b. */
8917                 bucket_map[i] = b;
8918         }
8919 }
8920
8921 /*
8922  * return -ENODEV on err, 0 on success (or no action)
8923  * allocates numerous items that must be freed later
8924  */
8925 static int hpsa_enter_performant_mode(struct ctlr_info *h, u32 trans_support)
8926 {
8927         int i;
8928         unsigned long register_value;
8929         unsigned long transMethod = CFGTBL_Trans_Performant |
8930                         (trans_support & CFGTBL_Trans_use_short_tags) |
8931                                 CFGTBL_Trans_enable_directed_msix |
8932                         (trans_support & (CFGTBL_Trans_io_accel1 |
8933                                 CFGTBL_Trans_io_accel2));
8934         struct access_method access = SA5_performant_access;
8935
8936         /* This is a bit complicated.  There are 8 registers on
8937          * the controller which we write to to tell it 8 different
8938          * sizes of commands which there may be.  It's a way of
8939          * reducing the DMA done to fetch each command.  Encoded into
8940          * each command's tag are 3 bits which communicate to the controller
8941          * which of the eight sizes that command fits within.  The size of
8942          * each command depends on how many scatter gather entries there are.
8943          * Each SG entry requires 16 bytes.  The eight registers are programmed
8944          * with the number of 16-byte blocks a command of that size requires.
8945          * The smallest command possible requires 5 such 16 byte blocks.
8946          * the largest command possible requires SG_ENTRIES_IN_CMD + 4 16-byte
8947          * blocks.  Note, this only extends to the SG entries contained
8948          * within the command block, and does not extend to chained blocks
8949          * of SG elements.   bft[] contains the eight values we write to
8950          * the registers.  They are not evenly distributed, but have more
8951          * sizes for small commands, and fewer sizes for larger commands.
8952          */
8953         int bft[8] = {5, 6, 8, 10, 12, 20, 28, SG_ENTRIES_IN_CMD + 4};
8954 #define MIN_IOACCEL2_BFT_ENTRY 5
8955 #define HPSA_IOACCEL2_HEADER_SZ 4
8956         int bft2[16] = {MIN_IOACCEL2_BFT_ENTRY, 6, 7, 8, 9, 10, 11, 12,
8957                         13, 14, 15, 16, 17, 18, 19,
8958                         HPSA_IOACCEL2_HEADER_SZ + IOACCEL2_MAXSGENTRIES};
8959         BUILD_BUG_ON(ARRAY_SIZE(bft2) != 16);
8960         BUILD_BUG_ON(ARRAY_SIZE(bft) != 8);
8961         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) >
8962                                  16 * MIN_IOACCEL2_BFT_ENTRY);
8963         BUILD_BUG_ON(sizeof(struct ioaccel2_sg_element) != 16);
8964         BUILD_BUG_ON(28 > SG_ENTRIES_IN_CMD + 4);
8965         /*  5 = 1 s/g entry or 4k
8966          *  6 = 2 s/g entry or 8k
8967          *  8 = 4 s/g entry or 16k
8968          * 10 = 6 s/g entry or 24k
8969          */
8970
8971         /* If the controller supports either ioaccel method then
8972          * we can also use the RAID stack submit path that does not
8973          * perform the superfluous readl() after each command submission.
8974          */
8975         if (trans_support & (CFGTBL_Trans_io_accel1 | CFGTBL_Trans_io_accel2))
8976                 access = SA5_performant_access_no_read;
8977
8978         /* Controller spec: zero out this buffer. */
8979         for (i = 0; i < h->nreply_queues; i++)
8980                 memset(h->reply_queue[i].head, 0, h->reply_queue_size);
8981
8982         bft[7] = SG_ENTRIES_IN_CMD + 4;
8983         calc_bucket_map(bft, ARRAY_SIZE(bft),
8984                                 SG_ENTRIES_IN_CMD, 4, h->blockFetchTable);
8985         for (i = 0; i < 8; i++)
8986                 writel(bft[i], &h->transtable->BlockFetch[i]);
8987
8988         /* size of controller ring buffer */
8989         writel(h->max_commands, &h->transtable->RepQSize);
8990         writel(h->nreply_queues, &h->transtable->RepQCount);
8991         writel(0, &h->transtable->RepQCtrAddrLow32);
8992         writel(0, &h->transtable->RepQCtrAddrHigh32);
8993
8994         for (i = 0; i < h->nreply_queues; i++) {
8995                 writel(0, &h->transtable->RepQAddr[i].upper);
8996                 writel(h->reply_queue[i].busaddr,
8997                         &h->transtable->RepQAddr[i].lower);
8998         }
8999
9000         writel(0, &h->cfgtable->HostWrite.command_pool_addr_hi);
9001         writel(transMethod, &(h->cfgtable->HostWrite.TransportRequest));
9002         /*
9003          * enable outbound interrupt coalescing in accelerator mode;
9004          */
9005         if (trans_support & CFGTBL_Trans_io_accel1) {
9006                 access = SA5_ioaccel_mode1_access;
9007                 writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9008                 writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9009         } else {
9010                 if (trans_support & CFGTBL_Trans_io_accel2) {
9011                         access = SA5_ioaccel_mode2_access;
9012                         writel(10, &h->cfgtable->HostWrite.CoalIntDelay);
9013                         writel(4, &h->cfgtable->HostWrite.CoalIntCount);
9014                 }
9015         }
9016         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9017         if (hpsa_wait_for_mode_change_ack(h)) {
9018                 dev_err(&h->pdev->dev,
9019                         "performant mode problem - doorbell timeout\n");
9020                 return -ENODEV;
9021         }
9022         register_value = readl(&(h->cfgtable->TransportActive));
9023         if (!(register_value & CFGTBL_Trans_Performant)) {
9024                 dev_err(&h->pdev->dev,
9025                         "performant mode problem - transport not active\n");
9026                 return -ENODEV;
9027         }
9028         /* Change the access methods to the performant access methods */
9029         h->access = access;
9030         h->transMethod = transMethod;
9031
9032         if (!((trans_support & CFGTBL_Trans_io_accel1) ||
9033                 (trans_support & CFGTBL_Trans_io_accel2)))
9034                 return 0;
9035
9036         if (trans_support & CFGTBL_Trans_io_accel1) {
9037                 /* Set up I/O accelerator mode */
9038                 for (i = 0; i < h->nreply_queues; i++) {
9039                         writel(i, h->vaddr + IOACCEL_MODE1_REPLY_QUEUE_INDEX);
9040                         h->reply_queue[i].current_entry =
9041                                 readl(h->vaddr + IOACCEL_MODE1_PRODUCER_INDEX);
9042                 }
9043                 bft[7] = h->ioaccel_maxsg + 8;
9044                 calc_bucket_map(bft, ARRAY_SIZE(bft), h->ioaccel_maxsg, 8,
9045                                 h->ioaccel1_blockFetchTable);
9046
9047                 /* initialize all reply queue entries to unused */
9048                 for (i = 0; i < h->nreply_queues; i++)
9049                         memset(h->reply_queue[i].head,
9050                                 (u8) IOACCEL_MODE1_REPLY_UNUSED,
9051                                 h->reply_queue_size);
9052
9053                 /* set all the constant fields in the accelerator command
9054                  * frames once at init time to save CPU cycles later.
9055                  */
9056                 for (i = 0; i < h->nr_cmds; i++) {
9057                         struct io_accel1_cmd *cp = &h->ioaccel_cmd_pool[i];
9058
9059                         cp->function = IOACCEL1_FUNCTION_SCSIIO;
9060                         cp->err_info = (u32) (h->errinfo_pool_dhandle +
9061                                         (i * sizeof(struct ErrorInfo)));
9062                         cp->err_info_len = sizeof(struct ErrorInfo);
9063                         cp->sgl_offset = IOACCEL1_SGLOFFSET;
9064                         cp->host_context_flags =
9065                                 cpu_to_le16(IOACCEL1_HCFLAGS_CISS_FORMAT);
9066                         cp->timeout_sec = 0;
9067                         cp->ReplyQueue = 0;
9068                         cp->tag =
9069                                 cpu_to_le64((i << DIRECT_LOOKUP_SHIFT));
9070                         cp->host_addr =
9071                                 cpu_to_le64(h->ioaccel_cmd_pool_dhandle +
9072                                         (i * sizeof(struct io_accel1_cmd)));
9073                 }
9074         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9075                 u64 cfg_offset, cfg_base_addr_index;
9076                 u32 bft2_offset, cfg_base_addr;
9077                 int rc;
9078
9079                 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
9080                         &cfg_base_addr_index, &cfg_offset);
9081                 BUILD_BUG_ON(offsetof(struct io_accel2_cmd, sg) != 64);
9082                 bft2[15] = h->ioaccel_maxsg + HPSA_IOACCEL2_HEADER_SZ;
9083                 calc_bucket_map(bft2, ARRAY_SIZE(bft2), h->ioaccel_maxsg,
9084                                 4, h->ioaccel2_blockFetchTable);
9085                 bft2_offset = readl(&h->cfgtable->io_accel_request_size_offset);
9086                 BUILD_BUG_ON(offsetof(struct CfgTable,
9087                                 io_accel_request_size_offset) != 0xb8);
9088                 h->ioaccel2_bft2_regs =
9089                         remap_pci_mem(pci_resource_start(h->pdev,
9090                                         cfg_base_addr_index) +
9091                                         cfg_offset + bft2_offset,
9092                                         ARRAY_SIZE(bft2) *
9093                                         sizeof(*h->ioaccel2_bft2_regs));
9094                 for (i = 0; i < ARRAY_SIZE(bft2); i++)
9095                         writel(bft2[i], &h->ioaccel2_bft2_regs[i]);
9096         }
9097         writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
9098         if (hpsa_wait_for_mode_change_ack(h)) {
9099                 dev_err(&h->pdev->dev,
9100                         "performant mode problem - enabling ioaccel mode\n");
9101                 return -ENODEV;
9102         }
9103         return 0;
9104 }
9105
9106 /* Free ioaccel1 mode command blocks and block fetch table */
9107 static void hpsa_free_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9108 {
9109         if (h->ioaccel_cmd_pool) {
9110                 pci_free_consistent(h->pdev,
9111                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9112                         h->ioaccel_cmd_pool,
9113                         h->ioaccel_cmd_pool_dhandle);
9114                 h->ioaccel_cmd_pool = NULL;
9115                 h->ioaccel_cmd_pool_dhandle = 0;
9116         }
9117         kfree(h->ioaccel1_blockFetchTable);
9118         h->ioaccel1_blockFetchTable = NULL;
9119 }
9120
9121 /* Allocate ioaccel1 mode command blocks and block fetch table */
9122 static int hpsa_alloc_ioaccel1_cmd_and_bft(struct ctlr_info *h)
9123 {
9124         h->ioaccel_maxsg =
9125                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9126         if (h->ioaccel_maxsg > IOACCEL1_MAXSGENTRIES)
9127                 h->ioaccel_maxsg = IOACCEL1_MAXSGENTRIES;
9128
9129         /* Command structures must be aligned on a 128-byte boundary
9130          * because the 7 lower bits of the address are used by the
9131          * hardware.
9132          */
9133         BUILD_BUG_ON(sizeof(struct io_accel1_cmd) %
9134                         IOACCEL1_COMMANDLIST_ALIGNMENT);
9135         h->ioaccel_cmd_pool =
9136                 pci_alloc_consistent(h->pdev,
9137                         h->nr_cmds * sizeof(*h->ioaccel_cmd_pool),
9138                         &(h->ioaccel_cmd_pool_dhandle));
9139
9140         h->ioaccel1_blockFetchTable =
9141                 kmalloc(((h->ioaccel_maxsg + 1) *
9142                                 sizeof(u32)), GFP_KERNEL);
9143
9144         if ((h->ioaccel_cmd_pool == NULL) ||
9145                 (h->ioaccel1_blockFetchTable == NULL))
9146                 goto clean_up;
9147
9148         memset(h->ioaccel_cmd_pool, 0,
9149                 h->nr_cmds * sizeof(*h->ioaccel_cmd_pool));
9150         return 0;
9151
9152 clean_up:
9153         hpsa_free_ioaccel1_cmd_and_bft(h);
9154         return -ENOMEM;
9155 }
9156
9157 /* Free ioaccel2 mode command blocks and block fetch table */
9158 static void hpsa_free_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9159 {
9160         hpsa_free_ioaccel2_sg_chain_blocks(h);
9161
9162         if (h->ioaccel2_cmd_pool) {
9163                 pci_free_consistent(h->pdev,
9164                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9165                         h->ioaccel2_cmd_pool,
9166                         h->ioaccel2_cmd_pool_dhandle);
9167                 h->ioaccel2_cmd_pool = NULL;
9168                 h->ioaccel2_cmd_pool_dhandle = 0;
9169         }
9170         kfree(h->ioaccel2_blockFetchTable);
9171         h->ioaccel2_blockFetchTable = NULL;
9172 }
9173
9174 /* Allocate ioaccel2 mode command blocks and block fetch table */
9175 static int hpsa_alloc_ioaccel2_cmd_and_bft(struct ctlr_info *h)
9176 {
9177         int rc;
9178
9179         /* Allocate ioaccel2 mode command blocks and block fetch table */
9180
9181         h->ioaccel_maxsg =
9182                 readl(&(h->cfgtable->io_accel_max_embedded_sg_count));
9183         if (h->ioaccel_maxsg > IOACCEL2_MAXSGENTRIES)
9184                 h->ioaccel_maxsg = IOACCEL2_MAXSGENTRIES;
9185
9186         BUILD_BUG_ON(sizeof(struct io_accel2_cmd) %
9187                         IOACCEL2_COMMANDLIST_ALIGNMENT);
9188         h->ioaccel2_cmd_pool =
9189                 pci_alloc_consistent(h->pdev,
9190                         h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool),
9191                         &(h->ioaccel2_cmd_pool_dhandle));
9192
9193         h->ioaccel2_blockFetchTable =
9194                 kmalloc(((h->ioaccel_maxsg + 1) *
9195                                 sizeof(u32)), GFP_KERNEL);
9196
9197         if ((h->ioaccel2_cmd_pool == NULL) ||
9198                 (h->ioaccel2_blockFetchTable == NULL)) {
9199                 rc = -ENOMEM;
9200                 goto clean_up;
9201         }
9202
9203         rc = hpsa_allocate_ioaccel2_sg_chain_blocks(h);
9204         if (rc)
9205                 goto clean_up;
9206
9207         memset(h->ioaccel2_cmd_pool, 0,
9208                 h->nr_cmds * sizeof(*h->ioaccel2_cmd_pool));
9209         return 0;
9210
9211 clean_up:
9212         hpsa_free_ioaccel2_cmd_and_bft(h);
9213         return rc;
9214 }
9215
9216 /* Free items allocated by hpsa_put_ctlr_into_performant_mode */
9217 static void hpsa_free_performant_mode(struct ctlr_info *h)
9218 {
9219         kfree(h->blockFetchTable);
9220         h->blockFetchTable = NULL;
9221         hpsa_free_reply_queues(h);
9222         hpsa_free_ioaccel1_cmd_and_bft(h);
9223         hpsa_free_ioaccel2_cmd_and_bft(h);
9224 }
9225
9226 /* return -ENODEV on error, 0 on success (or no action)
9227  * allocates numerous items that must be freed later
9228  */
9229 static int hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
9230 {
9231         u32 trans_support;
9232         unsigned long transMethod = CFGTBL_Trans_Performant |
9233                                         CFGTBL_Trans_use_short_tags;
9234         int i, rc;
9235
9236         if (hpsa_simple_mode)
9237                 return 0;
9238
9239         trans_support = readl(&(h->cfgtable->TransportSupport));
9240         if (!(trans_support & PERFORMANT_MODE))
9241                 return 0;
9242
9243         /* Check for I/O accelerator mode support */
9244         if (trans_support & CFGTBL_Trans_io_accel1) {
9245                 transMethod |= CFGTBL_Trans_io_accel1 |
9246                                 CFGTBL_Trans_enable_directed_msix;
9247                 rc = hpsa_alloc_ioaccel1_cmd_and_bft(h);
9248                 if (rc)
9249                         return rc;
9250         } else if (trans_support & CFGTBL_Trans_io_accel2) {
9251                 transMethod |= CFGTBL_Trans_io_accel2 |
9252                                 CFGTBL_Trans_enable_directed_msix;
9253                 rc = hpsa_alloc_ioaccel2_cmd_and_bft(h);
9254                 if (rc)
9255                         return rc;
9256         }
9257
9258         h->nreply_queues = h->msix_vector > 0 ? h->msix_vector : 1;
9259         hpsa_get_max_perf_mode_cmds(h);
9260         /* Performant mode ring buffer and supporting data structures */
9261         h->reply_queue_size = h->max_commands * sizeof(u64);
9262
9263         for (i = 0; i < h->nreply_queues; i++) {
9264                 h->reply_queue[i].head = pci_alloc_consistent(h->pdev,
9265                                                 h->reply_queue_size,
9266                                                 &(h->reply_queue[i].busaddr));
9267                 if (!h->reply_queue[i].head) {
9268                         rc = -ENOMEM;
9269                         goto clean1;    /* rq, ioaccel */
9270                 }
9271                 h->reply_queue[i].size = h->max_commands;
9272                 h->reply_queue[i].wraparound = 1;  /* spec: init to 1 */
9273                 h->reply_queue[i].current_entry = 0;
9274         }
9275
9276         /* Need a block fetch table for performant mode */
9277         h->blockFetchTable = kmalloc(((SG_ENTRIES_IN_CMD + 1) *
9278                                 sizeof(u32)), GFP_KERNEL);
9279         if (!h->blockFetchTable) {
9280                 rc = -ENOMEM;
9281                 goto clean1;    /* rq, ioaccel */
9282         }
9283
9284         rc = hpsa_enter_performant_mode(h, trans_support);
9285         if (rc)
9286                 goto clean2;    /* bft, rq, ioaccel */
9287         return 0;
9288
9289 clean2: /* bft, rq, ioaccel */
9290         kfree(h->blockFetchTable);
9291         h->blockFetchTable = NULL;
9292 clean1: /* rq, ioaccel */
9293         hpsa_free_reply_queues(h);
9294         hpsa_free_ioaccel1_cmd_and_bft(h);
9295         hpsa_free_ioaccel2_cmd_and_bft(h);
9296         return rc;
9297 }
9298
9299 static int is_accelerated_cmd(struct CommandList *c)
9300 {
9301         return c->cmd_type == CMD_IOACCEL1 || c->cmd_type == CMD_IOACCEL2;
9302 }
9303
9304 static void hpsa_drain_accel_commands(struct ctlr_info *h)
9305 {
9306         struct CommandList *c = NULL;
9307         int i, accel_cmds_out;
9308         int refcount;
9309
9310         do { /* wait for all outstanding ioaccel commands to drain out */
9311                 accel_cmds_out = 0;
9312                 for (i = 0; i < h->nr_cmds; i++) {
9313                         c = h->cmd_pool + i;
9314                         refcount = atomic_inc_return(&c->refcount);
9315                         if (refcount > 1) /* Command is allocated */
9316                                 accel_cmds_out += is_accelerated_cmd(c);
9317                         cmd_free(h, c);
9318                 }
9319                 if (accel_cmds_out <= 0)
9320                         break;
9321                 msleep(100);
9322         } while (1);
9323 }
9324
9325 static struct hpsa_sas_phy *hpsa_alloc_sas_phy(
9326                                 struct hpsa_sas_port *hpsa_sas_port)
9327 {
9328         struct hpsa_sas_phy *hpsa_sas_phy;
9329         struct sas_phy *phy;
9330
9331         hpsa_sas_phy = kzalloc(sizeof(*hpsa_sas_phy), GFP_KERNEL);
9332         if (!hpsa_sas_phy)
9333                 return NULL;
9334
9335         phy = sas_phy_alloc(hpsa_sas_port->parent_node->parent_dev,
9336                 hpsa_sas_port->next_phy_index);
9337         if (!phy) {
9338                 kfree(hpsa_sas_phy);
9339                 return NULL;
9340         }
9341
9342         hpsa_sas_port->next_phy_index++;
9343         hpsa_sas_phy->phy = phy;
9344         hpsa_sas_phy->parent_port = hpsa_sas_port;
9345
9346         return hpsa_sas_phy;
9347 }
9348
9349 static void hpsa_free_sas_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9350 {
9351         struct sas_phy *phy = hpsa_sas_phy->phy;
9352
9353         sas_port_delete_phy(hpsa_sas_phy->parent_port->port, phy);
9354         if (hpsa_sas_phy->added_to_port)
9355                 list_del(&hpsa_sas_phy->phy_list_entry);
9356         sas_phy_delete(phy);
9357         kfree(hpsa_sas_phy);
9358 }
9359
9360 static int hpsa_sas_port_add_phy(struct hpsa_sas_phy *hpsa_sas_phy)
9361 {
9362         int rc;
9363         struct hpsa_sas_port *hpsa_sas_port;
9364         struct sas_phy *phy;
9365         struct sas_identify *identify;
9366
9367         hpsa_sas_port = hpsa_sas_phy->parent_port;
9368         phy = hpsa_sas_phy->phy;
9369
9370         identify = &phy->identify;
9371         memset(identify, 0, sizeof(*identify));
9372         identify->sas_address = hpsa_sas_port->sas_address;
9373         identify->device_type = SAS_END_DEVICE;
9374         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9375         identify->target_port_protocols = SAS_PROTOCOL_STP;
9376         phy->minimum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9377         phy->maximum_linkrate_hw = SAS_LINK_RATE_UNKNOWN;
9378         phy->minimum_linkrate = SAS_LINK_RATE_UNKNOWN;
9379         phy->maximum_linkrate = SAS_LINK_RATE_UNKNOWN;
9380         phy->negotiated_linkrate = SAS_LINK_RATE_UNKNOWN;
9381
9382         rc = sas_phy_add(hpsa_sas_phy->phy);
9383         if (rc)
9384                 return rc;
9385
9386         sas_port_add_phy(hpsa_sas_port->port, hpsa_sas_phy->phy);
9387         list_add_tail(&hpsa_sas_phy->phy_list_entry,
9388                         &hpsa_sas_port->phy_list_head);
9389         hpsa_sas_phy->added_to_port = true;
9390
9391         return 0;
9392 }
9393
9394 static int
9395         hpsa_sas_port_add_rphy(struct hpsa_sas_port *hpsa_sas_port,
9396                                 struct sas_rphy *rphy)
9397 {
9398         struct sas_identify *identify;
9399
9400         identify = &rphy->identify;
9401         identify->sas_address = hpsa_sas_port->sas_address;
9402         identify->initiator_port_protocols = SAS_PROTOCOL_STP;
9403         identify->target_port_protocols = SAS_PROTOCOL_STP;
9404
9405         return sas_rphy_add(rphy);
9406 }
9407
9408 static struct hpsa_sas_port
9409         *hpsa_alloc_sas_port(struct hpsa_sas_node *hpsa_sas_node,
9410                                 u64 sas_address)
9411 {
9412         int rc;
9413         struct hpsa_sas_port *hpsa_sas_port;
9414         struct sas_port *port;
9415
9416         hpsa_sas_port = kzalloc(sizeof(*hpsa_sas_port), GFP_KERNEL);
9417         if (!hpsa_sas_port)
9418                 return NULL;
9419
9420         INIT_LIST_HEAD(&hpsa_sas_port->phy_list_head);
9421         hpsa_sas_port->parent_node = hpsa_sas_node;
9422
9423         port = sas_port_alloc_num(hpsa_sas_node->parent_dev);
9424         if (!port)
9425                 goto free_hpsa_port;
9426
9427         rc = sas_port_add(port);
9428         if (rc)
9429                 goto free_sas_port;
9430
9431         hpsa_sas_port->port = port;
9432         hpsa_sas_port->sas_address = sas_address;
9433         list_add_tail(&hpsa_sas_port->port_list_entry,
9434                         &hpsa_sas_node->port_list_head);
9435
9436         return hpsa_sas_port;
9437
9438 free_sas_port:
9439         sas_port_free(port);
9440 free_hpsa_port:
9441         kfree(hpsa_sas_port);
9442
9443         return NULL;
9444 }
9445
9446 static void hpsa_free_sas_port(struct hpsa_sas_port *hpsa_sas_port)
9447 {
9448         struct hpsa_sas_phy *hpsa_sas_phy;
9449         struct hpsa_sas_phy *next;
9450
9451         list_for_each_entry_safe(hpsa_sas_phy, next,
9452                         &hpsa_sas_port->phy_list_head, phy_list_entry)
9453                 hpsa_free_sas_phy(hpsa_sas_phy);
9454
9455         sas_port_delete(hpsa_sas_port->port);
9456         list_del(&hpsa_sas_port->port_list_entry);
9457         kfree(hpsa_sas_port);
9458 }
9459
9460 static struct hpsa_sas_node *hpsa_alloc_sas_node(struct device *parent_dev)
9461 {
9462         struct hpsa_sas_node *hpsa_sas_node;
9463
9464         hpsa_sas_node = kzalloc(sizeof(*hpsa_sas_node), GFP_KERNEL);
9465         if (hpsa_sas_node) {
9466                 hpsa_sas_node->parent_dev = parent_dev;
9467                 INIT_LIST_HEAD(&hpsa_sas_node->port_list_head);
9468         }
9469
9470         return hpsa_sas_node;
9471 }
9472
9473 static void hpsa_free_sas_node(struct hpsa_sas_node *hpsa_sas_node)
9474 {
9475         struct hpsa_sas_port *hpsa_sas_port;
9476         struct hpsa_sas_port *next;
9477
9478         if (!hpsa_sas_node)
9479                 return;
9480
9481         list_for_each_entry_safe(hpsa_sas_port, next,
9482                         &hpsa_sas_node->port_list_head, port_list_entry)
9483                 hpsa_free_sas_port(hpsa_sas_port);
9484
9485         kfree(hpsa_sas_node);
9486 }
9487
9488 static struct hpsa_scsi_dev_t
9489         *hpsa_find_device_by_sas_rphy(struct ctlr_info *h,
9490                                         struct sas_rphy *rphy)
9491 {
9492         int i;
9493         struct hpsa_scsi_dev_t *device;
9494
9495         for (i = 0; i < h->ndevices; i++) {
9496                 device = h->dev[i];
9497                 if (!device->sas_port)
9498                         continue;
9499                 if (device->sas_port->rphy == rphy)
9500                         return device;
9501         }
9502
9503         return NULL;
9504 }
9505
9506 static int hpsa_add_sas_host(struct ctlr_info *h)
9507 {
9508         int rc;
9509         struct device *parent_dev;
9510         struct hpsa_sas_node *hpsa_sas_node;
9511         struct hpsa_sas_port *hpsa_sas_port;
9512         struct hpsa_sas_phy *hpsa_sas_phy;
9513
9514         parent_dev = &h->scsi_host->shost_gendev;
9515
9516         hpsa_sas_node = hpsa_alloc_sas_node(parent_dev);
9517         if (!hpsa_sas_node)
9518                 return -ENOMEM;
9519
9520         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, h->sas_address);
9521         if (!hpsa_sas_port) {
9522                 rc = -ENODEV;
9523                 goto free_sas_node;
9524         }
9525
9526         hpsa_sas_phy = hpsa_alloc_sas_phy(hpsa_sas_port);
9527         if (!hpsa_sas_phy) {
9528                 rc = -ENODEV;
9529                 goto free_sas_port;
9530         }
9531
9532         rc = hpsa_sas_port_add_phy(hpsa_sas_phy);
9533         if (rc)
9534                 goto free_sas_phy;
9535
9536         h->sas_host = hpsa_sas_node;
9537
9538         return 0;
9539
9540 free_sas_phy:
9541         hpsa_free_sas_phy(hpsa_sas_phy);
9542 free_sas_port:
9543         hpsa_free_sas_port(hpsa_sas_port);
9544 free_sas_node:
9545         hpsa_free_sas_node(hpsa_sas_node);
9546
9547         return rc;
9548 }
9549
9550 static void hpsa_delete_sas_host(struct ctlr_info *h)
9551 {
9552         hpsa_free_sas_node(h->sas_host);
9553 }
9554
9555 static int hpsa_add_sas_device(struct hpsa_sas_node *hpsa_sas_node,
9556                                 struct hpsa_scsi_dev_t *device)
9557 {
9558         int rc;
9559         struct hpsa_sas_port *hpsa_sas_port;
9560         struct sas_rphy *rphy;
9561
9562         hpsa_sas_port = hpsa_alloc_sas_port(hpsa_sas_node, device->sas_address);
9563         if (!hpsa_sas_port)
9564                 return -ENOMEM;
9565
9566         rphy = sas_end_device_alloc(hpsa_sas_port->port);
9567         if (!rphy) {
9568                 rc = -ENODEV;
9569                 goto free_sas_port;
9570         }
9571
9572         hpsa_sas_port->rphy = rphy;
9573         device->sas_port = hpsa_sas_port;
9574
9575         rc = hpsa_sas_port_add_rphy(hpsa_sas_port, rphy);
9576         if (rc)
9577                 goto free_sas_port;
9578
9579         return 0;
9580
9581 free_sas_port:
9582         hpsa_free_sas_port(hpsa_sas_port);
9583         device->sas_port = NULL;
9584
9585         return rc;
9586 }
9587
9588 static void hpsa_remove_sas_device(struct hpsa_scsi_dev_t *device)
9589 {
9590         if (device->sas_port) {
9591                 hpsa_free_sas_port(device->sas_port);
9592                 device->sas_port = NULL;
9593         }
9594 }
9595
9596 static int
9597 hpsa_sas_get_linkerrors(struct sas_phy *phy)
9598 {
9599         return 0;
9600 }
9601
9602 static int
9603 hpsa_sas_get_enclosure_identifier(struct sas_rphy *rphy, u64 *identifier)
9604 {
9605         return 0;
9606 }
9607
9608 static int
9609 hpsa_sas_get_bay_identifier(struct sas_rphy *rphy)
9610 {
9611         return -ENXIO;
9612 }
9613
9614 static int
9615 hpsa_sas_phy_reset(struct sas_phy *phy, int hard_reset)
9616 {
9617         return 0;
9618 }
9619
9620 static int
9621 hpsa_sas_phy_enable(struct sas_phy *phy, int enable)
9622 {
9623         return 0;
9624 }
9625
9626 static int
9627 hpsa_sas_phy_setup(struct sas_phy *phy)
9628 {
9629         return 0;
9630 }
9631
9632 static void
9633 hpsa_sas_phy_release(struct sas_phy *phy)
9634 {
9635 }
9636
9637 static int
9638 hpsa_sas_phy_speed(struct sas_phy *phy, struct sas_phy_linkrates *rates)
9639 {
9640         return -EINVAL;
9641 }
9642
9643 /* SMP = Serial Management Protocol */
9644 static int
9645 hpsa_sas_smp_handler(struct Scsi_Host *shost, struct sas_rphy *rphy,
9646 struct request *req)
9647 {
9648         return -EINVAL;
9649 }
9650
9651 static struct sas_function_template hpsa_sas_transport_functions = {
9652         .get_linkerrors = hpsa_sas_get_linkerrors,
9653         .get_enclosure_identifier = hpsa_sas_get_enclosure_identifier,
9654         .get_bay_identifier = hpsa_sas_get_bay_identifier,
9655         .phy_reset = hpsa_sas_phy_reset,
9656         .phy_enable = hpsa_sas_phy_enable,
9657         .phy_setup = hpsa_sas_phy_setup,
9658         .phy_release = hpsa_sas_phy_release,
9659         .set_phy_speed = hpsa_sas_phy_speed,
9660         .smp_handler = hpsa_sas_smp_handler,
9661 };
9662
9663 /*
9664  *  This is it.  Register the PCI driver information for the cards we control
9665  *  the OS will call our registered routines when it finds one of our cards.
9666  */
9667 static int __init hpsa_init(void)
9668 {
9669         int rc;
9670
9671         hpsa_sas_transport_template =
9672                 sas_attach_transport(&hpsa_sas_transport_functions);
9673         if (!hpsa_sas_transport_template)
9674                 return -ENODEV;
9675
9676         rc = pci_register_driver(&hpsa_pci_driver);
9677
9678         if (rc)
9679                 sas_release_transport(hpsa_sas_transport_template);
9680
9681         return rc;
9682 }
9683
9684 static void __exit hpsa_cleanup(void)
9685 {
9686         pci_unregister_driver(&hpsa_pci_driver);
9687         sas_release_transport(hpsa_sas_transport_template);
9688 }
9689
9690 static void __attribute__((unused)) verify_offsets(void)
9691 {
9692 #define VERIFY_OFFSET(member, offset) \
9693         BUILD_BUG_ON(offsetof(struct raid_map_data, member) != offset)
9694
9695         VERIFY_OFFSET(structure_size, 0);
9696         VERIFY_OFFSET(volume_blk_size, 4);
9697         VERIFY_OFFSET(volume_blk_cnt, 8);
9698         VERIFY_OFFSET(phys_blk_shift, 16);
9699         VERIFY_OFFSET(parity_rotation_shift, 17);
9700         VERIFY_OFFSET(strip_size, 18);
9701         VERIFY_OFFSET(disk_starting_blk, 20);
9702         VERIFY_OFFSET(disk_blk_cnt, 28);
9703         VERIFY_OFFSET(data_disks_per_row, 36);
9704         VERIFY_OFFSET(metadata_disks_per_row, 38);
9705         VERIFY_OFFSET(row_cnt, 40);
9706         VERIFY_OFFSET(layout_map_count, 42);
9707         VERIFY_OFFSET(flags, 44);
9708         VERIFY_OFFSET(dekindex, 46);
9709         /* VERIFY_OFFSET(reserved, 48 */
9710         VERIFY_OFFSET(data, 64);
9711
9712 #undef VERIFY_OFFSET
9713
9714 #define VERIFY_OFFSET(member, offset) \
9715         BUILD_BUG_ON(offsetof(struct io_accel2_cmd, member) != offset)
9716
9717         VERIFY_OFFSET(IU_type, 0);
9718         VERIFY_OFFSET(direction, 1);
9719         VERIFY_OFFSET(reply_queue, 2);
9720         /* VERIFY_OFFSET(reserved1, 3);  */
9721         VERIFY_OFFSET(scsi_nexus, 4);
9722         VERIFY_OFFSET(Tag, 8);
9723         VERIFY_OFFSET(cdb, 16);
9724         VERIFY_OFFSET(cciss_lun, 32);
9725         VERIFY_OFFSET(data_len, 40);
9726         VERIFY_OFFSET(cmd_priority_task_attr, 44);
9727         VERIFY_OFFSET(sg_count, 45);
9728         /* VERIFY_OFFSET(reserved3 */
9729         VERIFY_OFFSET(err_ptr, 48);
9730         VERIFY_OFFSET(err_len, 56);
9731         /* VERIFY_OFFSET(reserved4  */
9732         VERIFY_OFFSET(sg, 64);
9733
9734 #undef VERIFY_OFFSET
9735
9736 #define VERIFY_OFFSET(member, offset) \
9737         BUILD_BUG_ON(offsetof(struct io_accel1_cmd, member) != offset)
9738
9739         VERIFY_OFFSET(dev_handle, 0x00);
9740         VERIFY_OFFSET(reserved1, 0x02);
9741         VERIFY_OFFSET(function, 0x03);
9742         VERIFY_OFFSET(reserved2, 0x04);
9743         VERIFY_OFFSET(err_info, 0x0C);
9744         VERIFY_OFFSET(reserved3, 0x10);
9745         VERIFY_OFFSET(err_info_len, 0x12);
9746         VERIFY_OFFSET(reserved4, 0x13);
9747         VERIFY_OFFSET(sgl_offset, 0x14);
9748         VERIFY_OFFSET(reserved5, 0x15);
9749         VERIFY_OFFSET(transfer_len, 0x1C);
9750         VERIFY_OFFSET(reserved6, 0x20);
9751         VERIFY_OFFSET(io_flags, 0x24);
9752         VERIFY_OFFSET(reserved7, 0x26);
9753         VERIFY_OFFSET(LUN, 0x34);
9754         VERIFY_OFFSET(control, 0x3C);
9755         VERIFY_OFFSET(CDB, 0x40);
9756         VERIFY_OFFSET(reserved8, 0x50);
9757         VERIFY_OFFSET(host_context_flags, 0x60);
9758         VERIFY_OFFSET(timeout_sec, 0x62);
9759         VERIFY_OFFSET(ReplyQueue, 0x64);
9760         VERIFY_OFFSET(reserved9, 0x65);
9761         VERIFY_OFFSET(tag, 0x68);
9762         VERIFY_OFFSET(host_addr, 0x70);
9763         VERIFY_OFFSET(CISS_LUN, 0x78);
9764         VERIFY_OFFSET(SG, 0x78 + 8);
9765 #undef VERIFY_OFFSET
9766 }
9767
9768 module_init(hpsa_init);
9769 module_exit(hpsa_cleanup);