GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / spi / spi-tegra114.c
1 /*
2  * SPI driver for NVIDIA's Tegra114 SPI Controller.
3  *
4  * Copyright (c) 2013, NVIDIA CORPORATION.  All rights reserved.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms and conditions of the GNU General Public License,
8  * version 2, as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
17  */
18
19 #include <linux/clk.h>
20 #include <linux/completion.h>
21 #include <linux/delay.h>
22 #include <linux/dmaengine.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/dmapool.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/kthread.h>
30 #include <linux/module.h>
31 #include <linux/platform_device.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/reset.h>
36 #include <linux/spi/spi.h>
37
38 #define SPI_COMMAND1                            0x000
39 #define SPI_BIT_LENGTH(x)                       (((x) & 0x1f) << 0)
40 #define SPI_PACKED                              (1 << 5)
41 #define SPI_TX_EN                               (1 << 11)
42 #define SPI_RX_EN                               (1 << 12)
43 #define SPI_BOTH_EN_BYTE                        (1 << 13)
44 #define SPI_BOTH_EN_BIT                         (1 << 14)
45 #define SPI_LSBYTE_FE                           (1 << 15)
46 #define SPI_LSBIT_FE                            (1 << 16)
47 #define SPI_BIDIROE                             (1 << 17)
48 #define SPI_IDLE_SDA_DRIVE_LOW                  (0 << 18)
49 #define SPI_IDLE_SDA_DRIVE_HIGH                 (1 << 18)
50 #define SPI_IDLE_SDA_PULL_LOW                   (2 << 18)
51 #define SPI_IDLE_SDA_PULL_HIGH                  (3 << 18)
52 #define SPI_IDLE_SDA_MASK                       (3 << 18)
53 #define SPI_CS_SS_VAL                           (1 << 20)
54 #define SPI_CS_SW_HW                            (1 << 21)
55 /* SPI_CS_POL_INACTIVE bits are default high */
56                                                 /* n from 0 to 3 */
57 #define SPI_CS_POL_INACTIVE(n)                  (1 << (22 + (n)))
58 #define SPI_CS_POL_INACTIVE_MASK                (0xF << 22)
59
60 #define SPI_CS_SEL_0                            (0 << 26)
61 #define SPI_CS_SEL_1                            (1 << 26)
62 #define SPI_CS_SEL_2                            (2 << 26)
63 #define SPI_CS_SEL_3                            (3 << 26)
64 #define SPI_CS_SEL_MASK                         (3 << 26)
65 #define SPI_CS_SEL(x)                           (((x) & 0x3) << 26)
66 #define SPI_CONTROL_MODE_0                      (0 << 28)
67 #define SPI_CONTROL_MODE_1                      (1 << 28)
68 #define SPI_CONTROL_MODE_2                      (2 << 28)
69 #define SPI_CONTROL_MODE_3                      (3 << 28)
70 #define SPI_CONTROL_MODE_MASK                   (3 << 28)
71 #define SPI_MODE_SEL(x)                         (((x) & 0x3) << 28)
72 #define SPI_M_S                                 (1 << 30)
73 #define SPI_PIO                                 (1 << 31)
74
75 #define SPI_COMMAND2                            0x004
76 #define SPI_TX_TAP_DELAY(x)                     (((x) & 0x3F) << 6)
77 #define SPI_RX_TAP_DELAY(x)                     (((x) & 0x3F) << 0)
78
79 #define SPI_CS_TIMING1                          0x008
80 #define SPI_SETUP_HOLD(setup, hold)             (((setup) << 4) | (hold))
81 #define SPI_CS_SETUP_HOLD(reg, cs, val)                 \
82                 ((((val) & 0xFFu) << ((cs) * 8)) |      \
83                 ((reg) & ~(0xFFu << ((cs) * 8))))
84
85 #define SPI_CS_TIMING2                          0x00C
86 #define CYCLES_BETWEEN_PACKETS_0(x)             (((x) & 0x1F) << 0)
87 #define CS_ACTIVE_BETWEEN_PACKETS_0             (1 << 5)
88 #define CYCLES_BETWEEN_PACKETS_1(x)             (((x) & 0x1F) << 8)
89 #define CS_ACTIVE_BETWEEN_PACKETS_1             (1 << 13)
90 #define CYCLES_BETWEEN_PACKETS_2(x)             (((x) & 0x1F) << 16)
91 #define CS_ACTIVE_BETWEEN_PACKETS_2             (1 << 21)
92 #define CYCLES_BETWEEN_PACKETS_3(x)             (((x) & 0x1F) << 24)
93 #define CS_ACTIVE_BETWEEN_PACKETS_3             (1 << 29)
94 #define SPI_SET_CS_ACTIVE_BETWEEN_PACKETS(reg, cs, val)         \
95                 (reg = (((val) & 0x1) << ((cs) * 8 + 5)) |      \
96                         ((reg) & ~(1 << ((cs) * 8 + 5))))
97 #define SPI_SET_CYCLES_BETWEEN_PACKETS(reg, cs, val)            \
98                 (reg = (((val) & 0xF) << ((cs) * 8)) |          \
99                         ((reg) & ~(0xF << ((cs) * 8))))
100
101 #define SPI_TRANS_STATUS                        0x010
102 #define SPI_BLK_CNT(val)                        (((val) >> 0) & 0xFFFF)
103 #define SPI_SLV_IDLE_COUNT(val)                 (((val) >> 16) & 0xFF)
104 #define SPI_RDY                                 (1 << 30)
105
106 #define SPI_FIFO_STATUS                         0x014
107 #define SPI_RX_FIFO_EMPTY                       (1 << 0)
108 #define SPI_RX_FIFO_FULL                        (1 << 1)
109 #define SPI_TX_FIFO_EMPTY                       (1 << 2)
110 #define SPI_TX_FIFO_FULL                        (1 << 3)
111 #define SPI_RX_FIFO_UNF                         (1 << 4)
112 #define SPI_RX_FIFO_OVF                         (1 << 5)
113 #define SPI_TX_FIFO_UNF                         (1 << 6)
114 #define SPI_TX_FIFO_OVF                         (1 << 7)
115 #define SPI_ERR                                 (1 << 8)
116 #define SPI_TX_FIFO_FLUSH                       (1 << 14)
117 #define SPI_RX_FIFO_FLUSH                       (1 << 15)
118 #define SPI_TX_FIFO_EMPTY_COUNT(val)            (((val) >> 16) & 0x7F)
119 #define SPI_RX_FIFO_FULL_COUNT(val)             (((val) >> 23) & 0x7F)
120 #define SPI_FRAME_END                           (1 << 30)
121 #define SPI_CS_INACTIVE                         (1 << 31)
122
123 #define SPI_FIFO_ERROR                          (SPI_RX_FIFO_UNF | \
124                         SPI_RX_FIFO_OVF | SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF)
125 #define SPI_FIFO_EMPTY                  (SPI_RX_FIFO_EMPTY | SPI_TX_FIFO_EMPTY)
126
127 #define SPI_TX_DATA                             0x018
128 #define SPI_RX_DATA                             0x01C
129
130 #define SPI_DMA_CTL                             0x020
131 #define SPI_TX_TRIG_1                           (0 << 15)
132 #define SPI_TX_TRIG_4                           (1 << 15)
133 #define SPI_TX_TRIG_8                           (2 << 15)
134 #define SPI_TX_TRIG_16                          (3 << 15)
135 #define SPI_TX_TRIG_MASK                        (3 << 15)
136 #define SPI_RX_TRIG_1                           (0 << 19)
137 #define SPI_RX_TRIG_4                           (1 << 19)
138 #define SPI_RX_TRIG_8                           (2 << 19)
139 #define SPI_RX_TRIG_16                          (3 << 19)
140 #define SPI_RX_TRIG_MASK                        (3 << 19)
141 #define SPI_IE_TX                               (1 << 28)
142 #define SPI_IE_RX                               (1 << 29)
143 #define SPI_CONT                                (1 << 30)
144 #define SPI_DMA                                 (1 << 31)
145 #define SPI_DMA_EN                              SPI_DMA
146
147 #define SPI_DMA_BLK                             0x024
148 #define SPI_DMA_BLK_SET(x)                      (((x) & 0xFFFF) << 0)
149
150 #define SPI_TX_FIFO                             0x108
151 #define SPI_RX_FIFO                             0x188
152 #define MAX_CHIP_SELECT                         4
153 #define SPI_FIFO_DEPTH                          64
154 #define DATA_DIR_TX                             (1 << 0)
155 #define DATA_DIR_RX                             (1 << 1)
156
157 #define SPI_DMA_TIMEOUT                         (msecs_to_jiffies(1000))
158 #define DEFAULT_SPI_DMA_BUF_LEN                 (16*1024)
159 #define TX_FIFO_EMPTY_COUNT_MAX                 SPI_TX_FIFO_EMPTY_COUNT(0x40)
160 #define RX_FIFO_FULL_COUNT_ZERO                 SPI_RX_FIFO_FULL_COUNT(0)
161 #define MAX_HOLD_CYCLES                         16
162 #define SPI_DEFAULT_SPEED                       25000000
163
164 struct tegra_spi_data {
165         struct device                           *dev;
166         struct spi_master                       *master;
167         spinlock_t                              lock;
168
169         struct clk                              *clk;
170         struct reset_control                    *rst;
171         void __iomem                            *base;
172         phys_addr_t                             phys;
173         unsigned                                irq;
174         u32                                     cur_speed;
175
176         struct spi_device                       *cur_spi;
177         struct spi_device                       *cs_control;
178         unsigned                                cur_pos;
179         unsigned                                words_per_32bit;
180         unsigned                                bytes_per_word;
181         unsigned                                curr_dma_words;
182         unsigned                                cur_direction;
183
184         unsigned                                cur_rx_pos;
185         unsigned                                cur_tx_pos;
186
187         unsigned                                dma_buf_size;
188         unsigned                                max_buf_size;
189         bool                                    is_curr_dma_xfer;
190
191         struct completion                       rx_dma_complete;
192         struct completion                       tx_dma_complete;
193
194         u32                                     tx_status;
195         u32                                     rx_status;
196         u32                                     status_reg;
197         bool                                    is_packed;
198
199         u32                                     command1_reg;
200         u32                                     dma_control_reg;
201         u32                                     def_command1_reg;
202
203         struct completion                       xfer_completion;
204         struct spi_transfer                     *curr_xfer;
205         struct dma_chan                         *rx_dma_chan;
206         u32                                     *rx_dma_buf;
207         dma_addr_t                              rx_dma_phys;
208         struct dma_async_tx_descriptor          *rx_dma_desc;
209
210         struct dma_chan                         *tx_dma_chan;
211         u32                                     *tx_dma_buf;
212         dma_addr_t                              tx_dma_phys;
213         struct dma_async_tx_descriptor          *tx_dma_desc;
214 };
215
216 static int tegra_spi_runtime_suspend(struct device *dev);
217 static int tegra_spi_runtime_resume(struct device *dev);
218
219 static inline u32 tegra_spi_readl(struct tegra_spi_data *tspi,
220                 unsigned long reg)
221 {
222         return readl(tspi->base + reg);
223 }
224
225 static inline void tegra_spi_writel(struct tegra_spi_data *tspi,
226                 u32 val, unsigned long reg)
227 {
228         writel(val, tspi->base + reg);
229
230         /* Read back register to make sure that register writes completed */
231         if (reg != SPI_TX_FIFO)
232                 readl(tspi->base + SPI_COMMAND1);
233 }
234
235 static void tegra_spi_clear_status(struct tegra_spi_data *tspi)
236 {
237         u32 val;
238
239         /* Write 1 to clear status register */
240         val = tegra_spi_readl(tspi, SPI_TRANS_STATUS);
241         tegra_spi_writel(tspi, val, SPI_TRANS_STATUS);
242
243         /* Clear fifo status error if any */
244         val = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
245         if (val & SPI_ERR)
246                 tegra_spi_writel(tspi, SPI_ERR | SPI_FIFO_ERROR,
247                                 SPI_FIFO_STATUS);
248 }
249
250 static unsigned tegra_spi_calculate_curr_xfer_param(
251         struct spi_device *spi, struct tegra_spi_data *tspi,
252         struct spi_transfer *t)
253 {
254         unsigned remain_len = t->len - tspi->cur_pos;
255         unsigned max_word;
256         unsigned bits_per_word = t->bits_per_word;
257         unsigned max_len;
258         unsigned total_fifo_words;
259
260         tspi->bytes_per_word = DIV_ROUND_UP(bits_per_word, 8);
261
262         if (bits_per_word == 8 || bits_per_word == 16) {
263                 tspi->is_packed = 1;
264                 tspi->words_per_32bit = 32/bits_per_word;
265         } else {
266                 tspi->is_packed = 0;
267                 tspi->words_per_32bit = 1;
268         }
269
270         if (tspi->is_packed) {
271                 max_len = min(remain_len, tspi->max_buf_size);
272                 tspi->curr_dma_words = max_len/tspi->bytes_per_word;
273                 total_fifo_words = (max_len + 3) / 4;
274         } else {
275                 max_word = (remain_len - 1) / tspi->bytes_per_word + 1;
276                 max_word = min(max_word, tspi->max_buf_size/4);
277                 tspi->curr_dma_words = max_word;
278                 total_fifo_words = max_word;
279         }
280         return total_fifo_words;
281 }
282
283 static unsigned tegra_spi_fill_tx_fifo_from_client_txbuf(
284         struct tegra_spi_data *tspi, struct spi_transfer *t)
285 {
286         unsigned nbytes;
287         unsigned tx_empty_count;
288         u32 fifo_status;
289         unsigned max_n_32bit;
290         unsigned i, count;
291         unsigned int written_words;
292         unsigned fifo_words_left;
293         u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
294
295         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
296         tx_empty_count = SPI_TX_FIFO_EMPTY_COUNT(fifo_status);
297
298         if (tspi->is_packed) {
299                 fifo_words_left = tx_empty_count * tspi->words_per_32bit;
300                 written_words = min(fifo_words_left, tspi->curr_dma_words);
301                 nbytes = written_words * tspi->bytes_per_word;
302                 max_n_32bit = DIV_ROUND_UP(nbytes, 4);
303                 for (count = 0; count < max_n_32bit; count++) {
304                         u32 x = 0;
305
306                         for (i = 0; (i < 4) && nbytes; i++, nbytes--)
307                                 x |= (u32)(*tx_buf++) << (i * 8);
308                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
309                 }
310
311                 tspi->cur_tx_pos += written_words * tspi->bytes_per_word;
312         } else {
313                 unsigned int write_bytes;
314                 max_n_32bit = min(tspi->curr_dma_words,  tx_empty_count);
315                 written_words = max_n_32bit;
316                 nbytes = written_words * tspi->bytes_per_word;
317                 if (nbytes > t->len - tspi->cur_pos)
318                         nbytes = t->len - tspi->cur_pos;
319                 write_bytes = nbytes;
320                 for (count = 0; count < max_n_32bit; count++) {
321                         u32 x = 0;
322
323                         for (i = 0; nbytes && (i < tspi->bytes_per_word);
324                                                         i++, nbytes--)
325                                 x |= (u32)(*tx_buf++) << (i * 8);
326                         tegra_spi_writel(tspi, x, SPI_TX_FIFO);
327                 }
328
329                 tspi->cur_tx_pos += write_bytes;
330         }
331
332         return written_words;
333 }
334
335 static unsigned int tegra_spi_read_rx_fifo_to_client_rxbuf(
336                 struct tegra_spi_data *tspi, struct spi_transfer *t)
337 {
338         unsigned rx_full_count;
339         u32 fifo_status;
340         unsigned i, count;
341         unsigned int read_words = 0;
342         unsigned len;
343         u8 *rx_buf = (u8 *)t->rx_buf + tspi->cur_rx_pos;
344
345         fifo_status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
346         rx_full_count = SPI_RX_FIFO_FULL_COUNT(fifo_status);
347         if (tspi->is_packed) {
348                 len = tspi->curr_dma_words * tspi->bytes_per_word;
349                 for (count = 0; count < rx_full_count; count++) {
350                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO);
351
352                         for (i = 0; len && (i < 4); i++, len--)
353                                 *rx_buf++ = (x >> i*8) & 0xFF;
354                 }
355                 read_words += tspi->curr_dma_words;
356                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
357         } else {
358                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
359                 u8 bytes_per_word = tspi->bytes_per_word;
360                 unsigned int read_bytes;
361
362                 len = rx_full_count * bytes_per_word;
363                 if (len > t->len - tspi->cur_pos)
364                         len = t->len - tspi->cur_pos;
365                 read_bytes = len;
366                 for (count = 0; count < rx_full_count; count++) {
367                         u32 x = tegra_spi_readl(tspi, SPI_RX_FIFO) & rx_mask;
368
369                         for (i = 0; len && (i < bytes_per_word); i++, len--)
370                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
371                 }
372                 read_words += rx_full_count;
373                 tspi->cur_rx_pos += read_bytes;
374         }
375
376         return read_words;
377 }
378
379 static void tegra_spi_copy_client_txbuf_to_spi_txbuf(
380                 struct tegra_spi_data *tspi, struct spi_transfer *t)
381 {
382         /* Make the dma buffer to read by cpu */
383         dma_sync_single_for_cpu(tspi->dev, tspi->tx_dma_phys,
384                                 tspi->dma_buf_size, DMA_TO_DEVICE);
385
386         if (tspi->is_packed) {
387                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
388
389                 memcpy(tspi->tx_dma_buf, t->tx_buf + tspi->cur_pos, len);
390                 tspi->cur_tx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
391         } else {
392                 unsigned int i;
393                 unsigned int count;
394                 u8 *tx_buf = (u8 *)t->tx_buf + tspi->cur_tx_pos;
395                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
396                 unsigned int write_bytes;
397
398                 if (consume > t->len - tspi->cur_pos)
399                         consume = t->len - tspi->cur_pos;
400                 write_bytes = consume;
401                 for (count = 0; count < tspi->curr_dma_words; count++) {
402                         u32 x = 0;
403
404                         for (i = 0; consume && (i < tspi->bytes_per_word);
405                                                         i++, consume--)
406                                 x |= (u32)(*tx_buf++) << (i * 8);
407                         tspi->tx_dma_buf[count] = x;
408                 }
409
410                 tspi->cur_tx_pos += write_bytes;
411         }
412
413         /* Make the dma buffer to read by dma */
414         dma_sync_single_for_device(tspi->dev, tspi->tx_dma_phys,
415                                 tspi->dma_buf_size, DMA_TO_DEVICE);
416 }
417
418 static void tegra_spi_copy_spi_rxbuf_to_client_rxbuf(
419                 struct tegra_spi_data *tspi, struct spi_transfer *t)
420 {
421         /* Make the dma buffer to read by cpu */
422         dma_sync_single_for_cpu(tspi->dev, tspi->rx_dma_phys,
423                 tspi->dma_buf_size, DMA_FROM_DEVICE);
424
425         if (tspi->is_packed) {
426                 unsigned len = tspi->curr_dma_words * tspi->bytes_per_word;
427
428                 memcpy(t->rx_buf + tspi->cur_rx_pos, tspi->rx_dma_buf, len);
429                 tspi->cur_rx_pos += tspi->curr_dma_words * tspi->bytes_per_word;
430         } else {
431                 unsigned int i;
432                 unsigned int count;
433                 unsigned char *rx_buf = t->rx_buf + tspi->cur_rx_pos;
434                 u32 rx_mask = ((u32)1 << t->bits_per_word) - 1;
435                 unsigned consume = tspi->curr_dma_words * tspi->bytes_per_word;
436                 unsigned int read_bytes;
437
438                 if (consume > t->len - tspi->cur_pos)
439                         consume = t->len - tspi->cur_pos;
440                 read_bytes = consume;
441                 for (count = 0; count < tspi->curr_dma_words; count++) {
442                         u32 x = tspi->rx_dma_buf[count] & rx_mask;
443
444                         for (i = 0; consume && (i < tspi->bytes_per_word);
445                                                         i++, consume--)
446                                 *rx_buf++ = (x >> (i*8)) & 0xFF;
447                 }
448
449                 tspi->cur_rx_pos += read_bytes;
450         }
451
452         /* Make the dma buffer to read by dma */
453         dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
454                 tspi->dma_buf_size, DMA_FROM_DEVICE);
455 }
456
457 static void tegra_spi_dma_complete(void *args)
458 {
459         struct completion *dma_complete = args;
460
461         complete(dma_complete);
462 }
463
464 static int tegra_spi_start_tx_dma(struct tegra_spi_data *tspi, int len)
465 {
466         reinit_completion(&tspi->tx_dma_complete);
467         tspi->tx_dma_desc = dmaengine_prep_slave_single(tspi->tx_dma_chan,
468                                 tspi->tx_dma_phys, len, DMA_MEM_TO_DEV,
469                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
470         if (!tspi->tx_dma_desc) {
471                 dev_err(tspi->dev, "Not able to get desc for Tx\n");
472                 return -EIO;
473         }
474
475         tspi->tx_dma_desc->callback = tegra_spi_dma_complete;
476         tspi->tx_dma_desc->callback_param = &tspi->tx_dma_complete;
477
478         dmaengine_submit(tspi->tx_dma_desc);
479         dma_async_issue_pending(tspi->tx_dma_chan);
480         return 0;
481 }
482
483 static int tegra_spi_start_rx_dma(struct tegra_spi_data *tspi, int len)
484 {
485         reinit_completion(&tspi->rx_dma_complete);
486         tspi->rx_dma_desc = dmaengine_prep_slave_single(tspi->rx_dma_chan,
487                                 tspi->rx_dma_phys, len, DMA_DEV_TO_MEM,
488                                 DMA_PREP_INTERRUPT |  DMA_CTRL_ACK);
489         if (!tspi->rx_dma_desc) {
490                 dev_err(tspi->dev, "Not able to get desc for Rx\n");
491                 return -EIO;
492         }
493
494         tspi->rx_dma_desc->callback = tegra_spi_dma_complete;
495         tspi->rx_dma_desc->callback_param = &tspi->rx_dma_complete;
496
497         dmaengine_submit(tspi->rx_dma_desc);
498         dma_async_issue_pending(tspi->rx_dma_chan);
499         return 0;
500 }
501
502 static int tegra_spi_flush_fifos(struct tegra_spi_data *tspi)
503 {
504         unsigned long timeout = jiffies + HZ;
505         u32 status;
506
507         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
508         if ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
509                 status |= SPI_RX_FIFO_FLUSH | SPI_TX_FIFO_FLUSH;
510                 tegra_spi_writel(tspi, status, SPI_FIFO_STATUS);
511                 while ((status & SPI_FIFO_EMPTY) != SPI_FIFO_EMPTY) {
512                         status = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
513                         if (time_after(jiffies, timeout)) {
514                                 dev_err(tspi->dev,
515                                         "timeout waiting for fifo flush\n");
516                                 return -EIO;
517                         }
518
519                         udelay(1);
520                 }
521         }
522
523         return 0;
524 }
525
526 static int tegra_spi_start_dma_based_transfer(
527                 struct tegra_spi_data *tspi, struct spi_transfer *t)
528 {
529         u32 val;
530         unsigned int len;
531         int ret = 0;
532         u8 dma_burst;
533         struct dma_slave_config dma_sconfig = {0};
534
535         val = SPI_DMA_BLK_SET(tspi->curr_dma_words - 1);
536         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
537
538         if (tspi->is_packed)
539                 len = DIV_ROUND_UP(tspi->curr_dma_words * tspi->bytes_per_word,
540                                         4) * 4;
541         else
542                 len = tspi->curr_dma_words * 4;
543
544         /* Set attention level based on length of transfer */
545         if (len & 0xF) {
546                 val |= SPI_TX_TRIG_1 | SPI_RX_TRIG_1;
547                 dma_burst = 1;
548         } else if (((len) >> 4) & 0x1) {
549                 val |= SPI_TX_TRIG_4 | SPI_RX_TRIG_4;
550                 dma_burst = 4;
551         } else {
552                 val |= SPI_TX_TRIG_8 | SPI_RX_TRIG_8;
553                 dma_burst = 8;
554         }
555
556         if (tspi->cur_direction & DATA_DIR_TX)
557                 val |= SPI_IE_TX;
558
559         if (tspi->cur_direction & DATA_DIR_RX)
560                 val |= SPI_IE_RX;
561
562         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
563         tspi->dma_control_reg = val;
564
565         dma_sconfig.device_fc = true;
566         if (tspi->cur_direction & DATA_DIR_TX) {
567                 dma_sconfig.dst_addr = tspi->phys + SPI_TX_FIFO;
568                 dma_sconfig.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
569                 dma_sconfig.dst_maxburst = dma_burst;
570                 ret = dmaengine_slave_config(tspi->tx_dma_chan, &dma_sconfig);
571                 if (ret < 0) {
572                         dev_err(tspi->dev,
573                                 "DMA slave config failed: %d\n", ret);
574                         return ret;
575                 }
576
577                 tegra_spi_copy_client_txbuf_to_spi_txbuf(tspi, t);
578                 ret = tegra_spi_start_tx_dma(tspi, len);
579                 if (ret < 0) {
580                         dev_err(tspi->dev,
581                                 "Starting tx dma failed, err %d\n", ret);
582                         return ret;
583                 }
584         }
585
586         if (tspi->cur_direction & DATA_DIR_RX) {
587                 dma_sconfig.src_addr = tspi->phys + SPI_RX_FIFO;
588                 dma_sconfig.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
589                 dma_sconfig.src_maxburst = dma_burst;
590                 ret = dmaengine_slave_config(tspi->rx_dma_chan, &dma_sconfig);
591                 if (ret < 0) {
592                         dev_err(tspi->dev,
593                                 "DMA slave config failed: %d\n", ret);
594                         return ret;
595                 }
596
597                 /* Make the dma buffer to read by dma */
598                 dma_sync_single_for_device(tspi->dev, tspi->rx_dma_phys,
599                                 tspi->dma_buf_size, DMA_FROM_DEVICE);
600
601                 ret = tegra_spi_start_rx_dma(tspi, len);
602                 if (ret < 0) {
603                         dev_err(tspi->dev,
604                                 "Starting rx dma failed, err %d\n", ret);
605                         if (tspi->cur_direction & DATA_DIR_TX)
606                                 dmaengine_terminate_all(tspi->tx_dma_chan);
607                         return ret;
608                 }
609         }
610         tspi->is_curr_dma_xfer = true;
611         tspi->dma_control_reg = val;
612
613         val |= SPI_DMA_EN;
614         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
615         return ret;
616 }
617
618 static int tegra_spi_start_cpu_based_transfer(
619                 struct tegra_spi_data *tspi, struct spi_transfer *t)
620 {
621         u32 val;
622         unsigned cur_words;
623
624         if (tspi->cur_direction & DATA_DIR_TX)
625                 cur_words = tegra_spi_fill_tx_fifo_from_client_txbuf(tspi, t);
626         else
627                 cur_words = tspi->curr_dma_words;
628
629         val = SPI_DMA_BLK_SET(cur_words - 1);
630         tegra_spi_writel(tspi, val, SPI_DMA_BLK);
631
632         val = 0;
633         if (tspi->cur_direction & DATA_DIR_TX)
634                 val |= SPI_IE_TX;
635
636         if (tspi->cur_direction & DATA_DIR_RX)
637                 val |= SPI_IE_RX;
638
639         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
640         tspi->dma_control_reg = val;
641
642         tspi->is_curr_dma_xfer = false;
643
644         val |= SPI_DMA_EN;
645         tegra_spi_writel(tspi, val, SPI_DMA_CTL);
646         return 0;
647 }
648
649 static int tegra_spi_init_dma_param(struct tegra_spi_data *tspi,
650                         bool dma_to_memory)
651 {
652         struct dma_chan *dma_chan;
653         u32 *dma_buf;
654         dma_addr_t dma_phys;
655         int ret;
656
657         dma_chan = dma_request_slave_channel_reason(tspi->dev,
658                                         dma_to_memory ? "rx" : "tx");
659         if (IS_ERR(dma_chan)) {
660                 ret = PTR_ERR(dma_chan);
661                 if (ret != -EPROBE_DEFER)
662                         dev_err(tspi->dev,
663                                 "Dma channel is not available: %d\n", ret);
664                 return ret;
665         }
666
667         dma_buf = dma_alloc_coherent(tspi->dev, tspi->dma_buf_size,
668                                 &dma_phys, GFP_KERNEL);
669         if (!dma_buf) {
670                 dev_err(tspi->dev, " Not able to allocate the dma buffer\n");
671                 dma_release_channel(dma_chan);
672                 return -ENOMEM;
673         }
674
675         if (dma_to_memory) {
676                 tspi->rx_dma_chan = dma_chan;
677                 tspi->rx_dma_buf = dma_buf;
678                 tspi->rx_dma_phys = dma_phys;
679         } else {
680                 tspi->tx_dma_chan = dma_chan;
681                 tspi->tx_dma_buf = dma_buf;
682                 tspi->tx_dma_phys = dma_phys;
683         }
684         return 0;
685 }
686
687 static void tegra_spi_deinit_dma_param(struct tegra_spi_data *tspi,
688         bool dma_to_memory)
689 {
690         u32 *dma_buf;
691         dma_addr_t dma_phys;
692         struct dma_chan *dma_chan;
693
694         if (dma_to_memory) {
695                 dma_buf = tspi->rx_dma_buf;
696                 dma_chan = tspi->rx_dma_chan;
697                 dma_phys = tspi->rx_dma_phys;
698                 tspi->rx_dma_chan = NULL;
699                 tspi->rx_dma_buf = NULL;
700         } else {
701                 dma_buf = tspi->tx_dma_buf;
702                 dma_chan = tspi->tx_dma_chan;
703                 dma_phys = tspi->tx_dma_phys;
704                 tspi->tx_dma_buf = NULL;
705                 tspi->tx_dma_chan = NULL;
706         }
707         if (!dma_chan)
708                 return;
709
710         dma_free_coherent(tspi->dev, tspi->dma_buf_size, dma_buf, dma_phys);
711         dma_release_channel(dma_chan);
712 }
713
714 static u32 tegra_spi_setup_transfer_one(struct spi_device *spi,
715                 struct spi_transfer *t, bool is_first_of_msg)
716 {
717         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
718         u32 speed = t->speed_hz;
719         u8 bits_per_word = t->bits_per_word;
720         u32 command1;
721         int req_mode;
722
723         if (speed != tspi->cur_speed) {
724                 clk_set_rate(tspi->clk, speed);
725                 tspi->cur_speed = speed;
726         }
727
728         tspi->cur_spi = spi;
729         tspi->cur_pos = 0;
730         tspi->cur_rx_pos = 0;
731         tspi->cur_tx_pos = 0;
732         tspi->curr_xfer = t;
733
734         if (is_first_of_msg) {
735                 tegra_spi_clear_status(tspi);
736
737                 command1 = tspi->def_command1_reg;
738                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
739
740                 command1 &= ~SPI_CONTROL_MODE_MASK;
741                 req_mode = spi->mode & 0x3;
742                 if (req_mode == SPI_MODE_0)
743                         command1 |= SPI_CONTROL_MODE_0;
744                 else if (req_mode == SPI_MODE_1)
745                         command1 |= SPI_CONTROL_MODE_1;
746                 else if (req_mode == SPI_MODE_2)
747                         command1 |= SPI_CONTROL_MODE_2;
748                 else if (req_mode == SPI_MODE_3)
749                         command1 |= SPI_CONTROL_MODE_3;
750
751                 if (tspi->cs_control) {
752                         if (tspi->cs_control != spi)
753                                 tegra_spi_writel(tspi, command1, SPI_COMMAND1);
754                         tspi->cs_control = NULL;
755                 } else
756                         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
757
758                 command1 |= SPI_CS_SW_HW;
759                 if (spi->mode & SPI_CS_HIGH)
760                         command1 |= SPI_CS_SS_VAL;
761                 else
762                         command1 &= ~SPI_CS_SS_VAL;
763
764                 tegra_spi_writel(tspi, 0, SPI_COMMAND2);
765         } else {
766                 command1 = tspi->command1_reg;
767                 command1 &= ~SPI_BIT_LENGTH(~0);
768                 command1 |= SPI_BIT_LENGTH(bits_per_word - 1);
769         }
770
771         return command1;
772 }
773
774 static int tegra_spi_start_transfer_one(struct spi_device *spi,
775                 struct spi_transfer *t, u32 command1)
776 {
777         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
778         unsigned total_fifo_words;
779         int ret;
780
781         total_fifo_words = tegra_spi_calculate_curr_xfer_param(spi, tspi, t);
782
783         if (tspi->is_packed)
784                 command1 |= SPI_PACKED;
785         else
786                 command1 &= ~SPI_PACKED;
787
788         command1 &= ~(SPI_CS_SEL_MASK | SPI_TX_EN | SPI_RX_EN);
789         tspi->cur_direction = 0;
790         if (t->rx_buf) {
791                 command1 |= SPI_RX_EN;
792                 tspi->cur_direction |= DATA_DIR_RX;
793         }
794         if (t->tx_buf) {
795                 command1 |= SPI_TX_EN;
796                 tspi->cur_direction |= DATA_DIR_TX;
797         }
798         command1 |= SPI_CS_SEL(spi->chip_select);
799         tegra_spi_writel(tspi, command1, SPI_COMMAND1);
800         tspi->command1_reg = command1;
801
802         dev_dbg(tspi->dev, "The def 0x%x and written 0x%x\n",
803                 tspi->def_command1_reg, (unsigned)command1);
804
805         ret = tegra_spi_flush_fifos(tspi);
806         if (ret < 0)
807                 return ret;
808         if (total_fifo_words > SPI_FIFO_DEPTH)
809                 ret = tegra_spi_start_dma_based_transfer(tspi, t);
810         else
811                 ret = tegra_spi_start_cpu_based_transfer(tspi, t);
812         return ret;
813 }
814
815 static int tegra_spi_setup(struct spi_device *spi)
816 {
817         struct tegra_spi_data *tspi = spi_master_get_devdata(spi->master);
818         u32 val;
819         unsigned long flags;
820         int ret;
821
822         dev_dbg(&spi->dev, "setup %d bpw, %scpol, %scpha, %dHz\n",
823                 spi->bits_per_word,
824                 spi->mode & SPI_CPOL ? "" : "~",
825                 spi->mode & SPI_CPHA ? "" : "~",
826                 spi->max_speed_hz);
827
828         ret = pm_runtime_get_sync(tspi->dev);
829         if (ret < 0) {
830                 pm_runtime_put_noidle(tspi->dev);
831                 dev_err(tspi->dev, "pm runtime failed, e = %d\n", ret);
832                 return ret;
833         }
834
835         spin_lock_irqsave(&tspi->lock, flags);
836         val = tspi->def_command1_reg;
837         if (spi->mode & SPI_CS_HIGH)
838                 val &= ~SPI_CS_POL_INACTIVE(spi->chip_select);
839         else
840                 val |= SPI_CS_POL_INACTIVE(spi->chip_select);
841         tspi->def_command1_reg = val;
842         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
843         spin_unlock_irqrestore(&tspi->lock, flags);
844
845         pm_runtime_put(tspi->dev);
846         return 0;
847 }
848
849 static void tegra_spi_transfer_delay(int delay)
850 {
851         if (!delay)
852                 return;
853
854         if (delay >= 1000)
855                 mdelay(delay / 1000);
856
857         udelay(delay % 1000);
858 }
859
860 static int tegra_spi_transfer_one_message(struct spi_master *master,
861                         struct spi_message *msg)
862 {
863         bool is_first_msg = true;
864         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
865         struct spi_transfer *xfer;
866         struct spi_device *spi = msg->spi;
867         int ret;
868         bool skip = false;
869
870         msg->status = 0;
871         msg->actual_length = 0;
872
873         list_for_each_entry(xfer, &msg->transfers, transfer_list) {
874                 u32 cmd1;
875
876                 reinit_completion(&tspi->xfer_completion);
877
878                 cmd1 = tegra_spi_setup_transfer_one(spi, xfer, is_first_msg);
879
880                 if (!xfer->len) {
881                         ret = 0;
882                         skip = true;
883                         goto complete_xfer;
884                 }
885
886                 ret = tegra_spi_start_transfer_one(spi, xfer, cmd1);
887                 if (ret < 0) {
888                         dev_err(tspi->dev,
889                                 "spi can not start transfer, err %d\n", ret);
890                         goto complete_xfer;
891                 }
892
893                 is_first_msg = false;
894                 ret = wait_for_completion_timeout(&tspi->xfer_completion,
895                                                 SPI_DMA_TIMEOUT);
896                 if (WARN_ON(ret == 0)) {
897                         dev_err(tspi->dev,
898                                 "spi transfer timeout, err %d\n", ret);
899                         if (tspi->is_curr_dma_xfer &&
900                             (tspi->cur_direction & DATA_DIR_TX))
901                                 dmaengine_terminate_all(tspi->tx_dma_chan);
902                         if (tspi->is_curr_dma_xfer &&
903                             (tspi->cur_direction & DATA_DIR_RX))
904                                 dmaengine_terminate_all(tspi->rx_dma_chan);
905                         ret = -EIO;
906                         tegra_spi_flush_fifos(tspi);
907                         reset_control_assert(tspi->rst);
908                         udelay(2);
909                         reset_control_deassert(tspi->rst);
910                         goto complete_xfer;
911                 }
912
913                 if (tspi->tx_status ||  tspi->rx_status) {
914                         dev_err(tspi->dev, "Error in Transfer\n");
915                         ret = -EIO;
916                         goto complete_xfer;
917                 }
918                 msg->actual_length += xfer->len;
919
920 complete_xfer:
921                 if (ret < 0 || skip) {
922                         tegra_spi_writel(tspi, tspi->def_command1_reg,
923                                         SPI_COMMAND1);
924                         tegra_spi_transfer_delay(xfer->delay_usecs);
925                         goto exit;
926                 } else if (list_is_last(&xfer->transfer_list,
927                                         &msg->transfers)) {
928                         if (xfer->cs_change)
929                                 tspi->cs_control = spi;
930                         else {
931                                 tegra_spi_writel(tspi, tspi->def_command1_reg,
932                                                 SPI_COMMAND1);
933                                 tegra_spi_transfer_delay(xfer->delay_usecs);
934                         }
935                 } else if (xfer->cs_change) {
936                         tegra_spi_writel(tspi, tspi->def_command1_reg,
937                                         SPI_COMMAND1);
938                         tegra_spi_transfer_delay(xfer->delay_usecs);
939                 }
940
941         }
942         ret = 0;
943 exit:
944         msg->status = ret;
945         spi_finalize_current_message(master);
946         return ret;
947 }
948
949 static irqreturn_t handle_cpu_based_xfer(struct tegra_spi_data *tspi)
950 {
951         struct spi_transfer *t = tspi->curr_xfer;
952         unsigned long flags;
953
954         spin_lock_irqsave(&tspi->lock, flags);
955         if (tspi->tx_status ||  tspi->rx_status) {
956                 dev_err(tspi->dev, "CpuXfer ERROR bit set 0x%x\n",
957                         tspi->status_reg);
958                 dev_err(tspi->dev, "CpuXfer 0x%08x:0x%08x\n",
959                         tspi->command1_reg, tspi->dma_control_reg);
960                 tegra_spi_flush_fifos(tspi);
961                 reset_control_assert(tspi->rst);
962                 udelay(2);
963                 reset_control_deassert(tspi->rst);
964                 complete(&tspi->xfer_completion);
965                 goto exit;
966         }
967
968         if (tspi->cur_direction & DATA_DIR_RX)
969                 tegra_spi_read_rx_fifo_to_client_rxbuf(tspi, t);
970
971         if (tspi->cur_direction & DATA_DIR_TX)
972                 tspi->cur_pos = tspi->cur_tx_pos;
973         else
974                 tspi->cur_pos = tspi->cur_rx_pos;
975
976         if (tspi->cur_pos == t->len) {
977                 complete(&tspi->xfer_completion);
978                 goto exit;
979         }
980
981         tegra_spi_calculate_curr_xfer_param(tspi->cur_spi, tspi, t);
982         tegra_spi_start_cpu_based_transfer(tspi, t);
983 exit:
984         spin_unlock_irqrestore(&tspi->lock, flags);
985         return IRQ_HANDLED;
986 }
987
988 static irqreturn_t handle_dma_based_xfer(struct tegra_spi_data *tspi)
989 {
990         struct spi_transfer *t = tspi->curr_xfer;
991         long wait_status;
992         int err = 0;
993         unsigned total_fifo_words;
994         unsigned long flags;
995
996         /* Abort dmas if any error */
997         if (tspi->cur_direction & DATA_DIR_TX) {
998                 if (tspi->tx_status) {
999                         dmaengine_terminate_all(tspi->tx_dma_chan);
1000                         err += 1;
1001                 } else {
1002                         wait_status = wait_for_completion_interruptible_timeout(
1003                                 &tspi->tx_dma_complete, SPI_DMA_TIMEOUT);
1004                         if (wait_status <= 0) {
1005                                 dmaengine_terminate_all(tspi->tx_dma_chan);
1006                                 dev_err(tspi->dev, "TxDma Xfer failed\n");
1007                                 err += 1;
1008                         }
1009                 }
1010         }
1011
1012         if (tspi->cur_direction & DATA_DIR_RX) {
1013                 if (tspi->rx_status) {
1014                         dmaengine_terminate_all(tspi->rx_dma_chan);
1015                         err += 2;
1016                 } else {
1017                         wait_status = wait_for_completion_interruptible_timeout(
1018                                 &tspi->rx_dma_complete, SPI_DMA_TIMEOUT);
1019                         if (wait_status <= 0) {
1020                                 dmaengine_terminate_all(tspi->rx_dma_chan);
1021                                 dev_err(tspi->dev, "RxDma Xfer failed\n");
1022                                 err += 2;
1023                         }
1024                 }
1025         }
1026
1027         spin_lock_irqsave(&tspi->lock, flags);
1028         if (err) {
1029                 dev_err(tspi->dev, "DmaXfer: ERROR bit set 0x%x\n",
1030                         tspi->status_reg);
1031                 dev_err(tspi->dev, "DmaXfer 0x%08x:0x%08x\n",
1032                         tspi->command1_reg, tspi->dma_control_reg);
1033                 tegra_spi_flush_fifos(tspi);
1034                 reset_control_assert(tspi->rst);
1035                 udelay(2);
1036                 reset_control_deassert(tspi->rst);
1037                 complete(&tspi->xfer_completion);
1038                 spin_unlock_irqrestore(&tspi->lock, flags);
1039                 return IRQ_HANDLED;
1040         }
1041
1042         if (tspi->cur_direction & DATA_DIR_RX)
1043                 tegra_spi_copy_spi_rxbuf_to_client_rxbuf(tspi, t);
1044
1045         if (tspi->cur_direction & DATA_DIR_TX)
1046                 tspi->cur_pos = tspi->cur_tx_pos;
1047         else
1048                 tspi->cur_pos = tspi->cur_rx_pos;
1049
1050         if (tspi->cur_pos == t->len) {
1051                 complete(&tspi->xfer_completion);
1052                 goto exit;
1053         }
1054
1055         /* Continue transfer in current message */
1056         total_fifo_words = tegra_spi_calculate_curr_xfer_param(tspi->cur_spi,
1057                                                         tspi, t);
1058         if (total_fifo_words > SPI_FIFO_DEPTH)
1059                 err = tegra_spi_start_dma_based_transfer(tspi, t);
1060         else
1061                 err = tegra_spi_start_cpu_based_transfer(tspi, t);
1062
1063 exit:
1064         spin_unlock_irqrestore(&tspi->lock, flags);
1065         return IRQ_HANDLED;
1066 }
1067
1068 static irqreturn_t tegra_spi_isr_thread(int irq, void *context_data)
1069 {
1070         struct tegra_spi_data *tspi = context_data;
1071
1072         if (!tspi->is_curr_dma_xfer)
1073                 return handle_cpu_based_xfer(tspi);
1074         return handle_dma_based_xfer(tspi);
1075 }
1076
1077 static irqreturn_t tegra_spi_isr(int irq, void *context_data)
1078 {
1079         struct tegra_spi_data *tspi = context_data;
1080
1081         tspi->status_reg = tegra_spi_readl(tspi, SPI_FIFO_STATUS);
1082         if (tspi->cur_direction & DATA_DIR_TX)
1083                 tspi->tx_status = tspi->status_reg &
1084                                         (SPI_TX_FIFO_UNF | SPI_TX_FIFO_OVF);
1085
1086         if (tspi->cur_direction & DATA_DIR_RX)
1087                 tspi->rx_status = tspi->status_reg &
1088                                         (SPI_RX_FIFO_OVF | SPI_RX_FIFO_UNF);
1089         tegra_spi_clear_status(tspi);
1090
1091         return IRQ_WAKE_THREAD;
1092 }
1093
1094 static const struct of_device_id tegra_spi_of_match[] = {
1095         { .compatible = "nvidia,tegra114-spi", },
1096         {}
1097 };
1098 MODULE_DEVICE_TABLE(of, tegra_spi_of_match);
1099
1100 static int tegra_spi_probe(struct platform_device *pdev)
1101 {
1102         struct spi_master       *master;
1103         struct tegra_spi_data   *tspi;
1104         struct resource         *r;
1105         int ret, spi_irq;
1106
1107         master = spi_alloc_master(&pdev->dev, sizeof(*tspi));
1108         if (!master) {
1109                 dev_err(&pdev->dev, "master allocation failed\n");
1110                 return -ENOMEM;
1111         }
1112         platform_set_drvdata(pdev, master);
1113         tspi = spi_master_get_devdata(master);
1114
1115         if (of_property_read_u32(pdev->dev.of_node, "spi-max-frequency",
1116                                  &master->max_speed_hz))
1117                 master->max_speed_hz = 25000000; /* 25MHz */
1118
1119         /* the spi->mode bits understood by this driver: */
1120         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1121         master->setup = tegra_spi_setup;
1122         master->transfer_one_message = tegra_spi_transfer_one_message;
1123         master->num_chipselect = MAX_CHIP_SELECT;
1124         master->auto_runtime_pm = true;
1125
1126         tspi->master = master;
1127         tspi->dev = &pdev->dev;
1128         spin_lock_init(&tspi->lock);
1129
1130         r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1131         tspi->base = devm_ioremap_resource(&pdev->dev, r);
1132         if (IS_ERR(tspi->base)) {
1133                 ret = PTR_ERR(tspi->base);
1134                 goto exit_free_master;
1135         }
1136         tspi->phys = r->start;
1137
1138         spi_irq = platform_get_irq(pdev, 0);
1139         tspi->irq = spi_irq;
1140
1141         tspi->clk = devm_clk_get(&pdev->dev, "spi");
1142         if (IS_ERR(tspi->clk)) {
1143                 dev_err(&pdev->dev, "can not get clock\n");
1144                 ret = PTR_ERR(tspi->clk);
1145                 goto exit_free_master;
1146         }
1147
1148         tspi->rst = devm_reset_control_get_exclusive(&pdev->dev, "spi");
1149         if (IS_ERR(tspi->rst)) {
1150                 dev_err(&pdev->dev, "can not get reset\n");
1151                 ret = PTR_ERR(tspi->rst);
1152                 goto exit_free_master;
1153         }
1154
1155         tspi->max_buf_size = SPI_FIFO_DEPTH << 2;
1156         tspi->dma_buf_size = DEFAULT_SPI_DMA_BUF_LEN;
1157
1158         ret = tegra_spi_init_dma_param(tspi, true);
1159         if (ret < 0)
1160                 goto exit_free_master;
1161         ret = tegra_spi_init_dma_param(tspi, false);
1162         if (ret < 0)
1163                 goto exit_rx_dma_free;
1164         tspi->max_buf_size = tspi->dma_buf_size;
1165         init_completion(&tspi->tx_dma_complete);
1166         init_completion(&tspi->rx_dma_complete);
1167
1168         init_completion(&tspi->xfer_completion);
1169
1170         pm_runtime_enable(&pdev->dev);
1171         if (!pm_runtime_enabled(&pdev->dev)) {
1172                 ret = tegra_spi_runtime_resume(&pdev->dev);
1173                 if (ret)
1174                         goto exit_pm_disable;
1175         }
1176
1177         ret = pm_runtime_get_sync(&pdev->dev);
1178         if (ret < 0) {
1179                 dev_err(&pdev->dev, "pm runtime get failed, e = %d\n", ret);
1180                 goto exit_pm_disable;
1181         }
1182
1183         reset_control_assert(tspi->rst);
1184         udelay(2);
1185         reset_control_deassert(tspi->rst);
1186         tspi->def_command1_reg  = SPI_M_S;
1187         tegra_spi_writel(tspi, tspi->def_command1_reg, SPI_COMMAND1);
1188         pm_runtime_put(&pdev->dev);
1189         ret = request_threaded_irq(tspi->irq, tegra_spi_isr,
1190                                    tegra_spi_isr_thread, IRQF_ONESHOT,
1191                                    dev_name(&pdev->dev), tspi);
1192         if (ret < 0) {
1193                 dev_err(&pdev->dev, "Failed to register ISR for IRQ %d\n",
1194                         tspi->irq);
1195                 goto exit_pm_disable;
1196         }
1197
1198         master->dev.of_node = pdev->dev.of_node;
1199         ret = devm_spi_register_master(&pdev->dev, master);
1200         if (ret < 0) {
1201                 dev_err(&pdev->dev, "can not register to master err %d\n", ret);
1202                 goto exit_free_irq;
1203         }
1204         return ret;
1205
1206 exit_free_irq:
1207         free_irq(spi_irq, tspi);
1208 exit_pm_disable:
1209         pm_runtime_disable(&pdev->dev);
1210         if (!pm_runtime_status_suspended(&pdev->dev))
1211                 tegra_spi_runtime_suspend(&pdev->dev);
1212         tegra_spi_deinit_dma_param(tspi, false);
1213 exit_rx_dma_free:
1214         tegra_spi_deinit_dma_param(tspi, true);
1215 exit_free_master:
1216         spi_master_put(master);
1217         return ret;
1218 }
1219
1220 static int tegra_spi_remove(struct platform_device *pdev)
1221 {
1222         struct spi_master *master = platform_get_drvdata(pdev);
1223         struct tegra_spi_data   *tspi = spi_master_get_devdata(master);
1224
1225         free_irq(tspi->irq, tspi);
1226
1227         if (tspi->tx_dma_chan)
1228                 tegra_spi_deinit_dma_param(tspi, false);
1229
1230         if (tspi->rx_dma_chan)
1231                 tegra_spi_deinit_dma_param(tspi, true);
1232
1233         pm_runtime_disable(&pdev->dev);
1234         if (!pm_runtime_status_suspended(&pdev->dev))
1235                 tegra_spi_runtime_suspend(&pdev->dev);
1236
1237         return 0;
1238 }
1239
1240 #ifdef CONFIG_PM_SLEEP
1241 static int tegra_spi_suspend(struct device *dev)
1242 {
1243         struct spi_master *master = dev_get_drvdata(dev);
1244
1245         return spi_master_suspend(master);
1246 }
1247
1248 static int tegra_spi_resume(struct device *dev)
1249 {
1250         struct spi_master *master = dev_get_drvdata(dev);
1251         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1252         int ret;
1253
1254         ret = pm_runtime_get_sync(dev);
1255         if (ret < 0) {
1256                 pm_runtime_put_noidle(dev);
1257                 dev_err(dev, "pm runtime failed, e = %d\n", ret);
1258                 return ret;
1259         }
1260         tegra_spi_writel(tspi, tspi->command1_reg, SPI_COMMAND1);
1261         pm_runtime_put(dev);
1262
1263         return spi_master_resume(master);
1264 }
1265 #endif
1266
1267 static int tegra_spi_runtime_suspend(struct device *dev)
1268 {
1269         struct spi_master *master = dev_get_drvdata(dev);
1270         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1271
1272         /* Flush all write which are in PPSB queue by reading back */
1273         tegra_spi_readl(tspi, SPI_COMMAND1);
1274
1275         clk_disable_unprepare(tspi->clk);
1276         return 0;
1277 }
1278
1279 static int tegra_spi_runtime_resume(struct device *dev)
1280 {
1281         struct spi_master *master = dev_get_drvdata(dev);
1282         struct tegra_spi_data *tspi = spi_master_get_devdata(master);
1283         int ret;
1284
1285         ret = clk_prepare_enable(tspi->clk);
1286         if (ret < 0) {
1287                 dev_err(tspi->dev, "clk_prepare failed: %d\n", ret);
1288                 return ret;
1289         }
1290         return 0;
1291 }
1292
1293 static const struct dev_pm_ops tegra_spi_pm_ops = {
1294         SET_RUNTIME_PM_OPS(tegra_spi_runtime_suspend,
1295                 tegra_spi_runtime_resume, NULL)
1296         SET_SYSTEM_SLEEP_PM_OPS(tegra_spi_suspend, tegra_spi_resume)
1297 };
1298 static struct platform_driver tegra_spi_driver = {
1299         .driver = {
1300                 .name           = "spi-tegra114",
1301                 .pm             = &tegra_spi_pm_ops,
1302                 .of_match_table = tegra_spi_of_match,
1303         },
1304         .probe =        tegra_spi_probe,
1305         .remove =       tegra_spi_remove,
1306 };
1307 module_platform_driver(tegra_spi_driver);
1308
1309 MODULE_ALIAS("platform:spi-tegra114");
1310 MODULE_DESCRIPTION("NVIDIA Tegra114 SPI Controller Driver");
1311 MODULE_AUTHOR("Laxman Dewangan <ldewangan@nvidia.com>");
1312 MODULE_LICENSE("GPL v2");