GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / spi / spi-topcliff-pch.c
1 /*
2  * SPI bus driver for the Topcliff PCH used by Intel SoCs
3  *
4  * Copyright (C) 2011 LAPIS Semiconductor Co., Ltd.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License as published by
8  * the Free Software Foundation; version 2 of the License.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15
16 #include <linux/delay.h>
17 #include <linux/pci.h>
18 #include <linux/wait.h>
19 #include <linux/spi/spi.h>
20 #include <linux/interrupt.h>
21 #include <linux/sched.h>
22 #include <linux/spi/spidev.h>
23 #include <linux/module.h>
24 #include <linux/device.h>
25 #include <linux/platform_device.h>
26
27 #include <linux/dmaengine.h>
28 #include <linux/pch_dma.h>
29
30 /* Register offsets */
31 #define PCH_SPCR                0x00    /* SPI control register */
32 #define PCH_SPBRR               0x04    /* SPI baud rate register */
33 #define PCH_SPSR                0x08    /* SPI status register */
34 #define PCH_SPDWR               0x0C    /* SPI write data register */
35 #define PCH_SPDRR               0x10    /* SPI read data register */
36 #define PCH_SSNXCR              0x18    /* SSN Expand Control Register */
37 #define PCH_SRST                0x1C    /* SPI reset register */
38 #define PCH_ADDRESS_SIZE        0x20
39
40 #define PCH_SPSR_TFD            0x000007C0
41 #define PCH_SPSR_RFD            0x0000F800
42
43 #define PCH_READABLE(x)         (((x) & PCH_SPSR_RFD)>>11)
44 #define PCH_WRITABLE(x)         (((x) & PCH_SPSR_TFD)>>6)
45
46 #define PCH_RX_THOLD            7
47 #define PCH_RX_THOLD_MAX        15
48
49 #define PCH_TX_THOLD            2
50
51 #define PCH_MAX_BAUDRATE        5000000
52 #define PCH_MAX_FIFO_DEPTH      16
53
54 #define STATUS_RUNNING          1
55 #define STATUS_EXITING          2
56 #define PCH_SLEEP_TIME          10
57
58 #define SSN_LOW                 0x02U
59 #define SSN_HIGH                0x03U
60 #define SSN_NO_CONTROL          0x00U
61 #define PCH_MAX_CS              0xFF
62 #define PCI_DEVICE_ID_GE_SPI    0x8816
63
64 #define SPCR_SPE_BIT            (1 << 0)
65 #define SPCR_MSTR_BIT           (1 << 1)
66 #define SPCR_LSBF_BIT           (1 << 4)
67 #define SPCR_CPHA_BIT           (1 << 5)
68 #define SPCR_CPOL_BIT           (1 << 6)
69 #define SPCR_TFIE_BIT           (1 << 8)
70 #define SPCR_RFIE_BIT           (1 << 9)
71 #define SPCR_FIE_BIT            (1 << 10)
72 #define SPCR_ORIE_BIT           (1 << 11)
73 #define SPCR_MDFIE_BIT          (1 << 12)
74 #define SPCR_FICLR_BIT          (1 << 24)
75 #define SPSR_TFI_BIT            (1 << 0)
76 #define SPSR_RFI_BIT            (1 << 1)
77 #define SPSR_FI_BIT             (1 << 2)
78 #define SPSR_ORF_BIT            (1 << 3)
79 #define SPBRR_SIZE_BIT          (1 << 10)
80
81 #define PCH_ALL                 (SPCR_TFIE_BIT|SPCR_RFIE_BIT|SPCR_FIE_BIT|\
82                                 SPCR_ORIE_BIT|SPCR_MDFIE_BIT)
83
84 #define SPCR_RFIC_FIELD         20
85 #define SPCR_TFIC_FIELD         16
86
87 #define MASK_SPBRR_SPBR_BITS    ((1 << 10) - 1)
88 #define MASK_RFIC_SPCR_BITS     (0xf << SPCR_RFIC_FIELD)
89 #define MASK_TFIC_SPCR_BITS     (0xf << SPCR_TFIC_FIELD)
90
91 #define PCH_CLOCK_HZ            50000000
92 #define PCH_MAX_SPBR            1023
93
94 /* Definition for ML7213/ML7223/ML7831 by LAPIS Semiconductor */
95 #define PCI_DEVICE_ID_ML7213_SPI        0x802c
96 #define PCI_DEVICE_ID_ML7223_SPI        0x800F
97 #define PCI_DEVICE_ID_ML7831_SPI        0x8816
98
99 /*
100  * Set the number of SPI instance max
101  * Intel EG20T PCH :            1ch
102  * LAPIS Semiconductor ML7213 IOH :     2ch
103  * LAPIS Semiconductor ML7223 IOH :     1ch
104  * LAPIS Semiconductor ML7831 IOH :     1ch
105 */
106 #define PCH_SPI_MAX_DEV                 2
107
108 #define PCH_BUF_SIZE            4096
109 #define PCH_DMA_TRANS_SIZE      12
110
111 static int use_dma = 1;
112
113 struct pch_spi_dma_ctrl {
114         struct dma_async_tx_descriptor  *desc_tx;
115         struct dma_async_tx_descriptor  *desc_rx;
116         struct pch_dma_slave            param_tx;
117         struct pch_dma_slave            param_rx;
118         struct dma_chan         *chan_tx;
119         struct dma_chan         *chan_rx;
120         struct scatterlist              *sg_tx_p;
121         struct scatterlist              *sg_rx_p;
122         struct scatterlist              sg_tx;
123         struct scatterlist              sg_rx;
124         int                             nent;
125         void                            *tx_buf_virt;
126         void                            *rx_buf_virt;
127         dma_addr_t                      tx_buf_dma;
128         dma_addr_t                      rx_buf_dma;
129 };
130 /**
131  * struct pch_spi_data - Holds the SPI channel specific details
132  * @io_remap_addr:              The remapped PCI base address
133  * @master:                     Pointer to the SPI master structure
134  * @work:                       Reference to work queue handler
135  * @wait:                       Wait queue for waking up upon receiving an
136  *                              interrupt.
137  * @transfer_complete:          Status of SPI Transfer
138  * @bcurrent_msg_processing:    Status flag for message processing
139  * @lock:                       Lock for protecting this structure
140  * @queue:                      SPI Message queue
141  * @status:                     Status of the SPI driver
142  * @bpw_len:                    Length of data to be transferred in bits per
143  *                              word
144  * @transfer_active:            Flag showing active transfer
145  * @tx_index:                   Transmit data count; for bookkeeping during
146  *                              transfer
147  * @rx_index:                   Receive data count; for bookkeeping during
148  *                              transfer
149  * @tx_buff:                    Buffer for data to be transmitted
150  * @rx_index:                   Buffer for Received data
151  * @n_curnt_chip:               The chip number that this SPI driver currently
152  *                              operates on
153  * @current_chip:               Reference to the current chip that this SPI
154  *                              driver currently operates on
155  * @current_msg:                The current message that this SPI driver is
156  *                              handling
157  * @cur_trans:                  The current transfer that this SPI driver is
158  *                              handling
159  * @board_dat:                  Reference to the SPI device data structure
160  * @plat_dev:                   platform_device structure
161  * @ch:                         SPI channel number
162  * @irq_reg_sts:                Status of IRQ registration
163  */
164 struct pch_spi_data {
165         void __iomem *io_remap_addr;
166         unsigned long io_base_addr;
167         struct spi_master *master;
168         struct work_struct work;
169         wait_queue_head_t wait;
170         u8 transfer_complete;
171         u8 bcurrent_msg_processing;
172         spinlock_t lock;
173         struct list_head queue;
174         u8 status;
175         u32 bpw_len;
176         u8 transfer_active;
177         u32 tx_index;
178         u32 rx_index;
179         u16 *pkt_tx_buff;
180         u16 *pkt_rx_buff;
181         u8 n_curnt_chip;
182         struct spi_device *current_chip;
183         struct spi_message *current_msg;
184         struct spi_transfer *cur_trans;
185         struct pch_spi_board_data *board_dat;
186         struct platform_device  *plat_dev;
187         int ch;
188         struct pch_spi_dma_ctrl dma;
189         int use_dma;
190         u8 irq_reg_sts;
191         int save_total_len;
192 };
193
194 /**
195  * struct pch_spi_board_data - Holds the SPI device specific details
196  * @pdev:               Pointer to the PCI device
197  * @suspend_sts:        Status of suspend
198  * @num:                The number of SPI device instance
199  */
200 struct pch_spi_board_data {
201         struct pci_dev *pdev;
202         u8 suspend_sts;
203         int num;
204 };
205
206 struct pch_pd_dev_save {
207         int num;
208         struct platform_device *pd_save[PCH_SPI_MAX_DEV];
209         struct pch_spi_board_data *board_dat;
210 };
211
212 static const struct pci_device_id pch_spi_pcidev_id[] = {
213         { PCI_VDEVICE(INTEL, PCI_DEVICE_ID_GE_SPI),    1, },
214         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7213_SPI), 2, },
215         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7223_SPI), 1, },
216         { PCI_VDEVICE(ROHM, PCI_DEVICE_ID_ML7831_SPI), 1, },
217         { }
218 };
219
220 /**
221  * pch_spi_writereg() - Performs  register writes
222  * @master:     Pointer to struct spi_master.
223  * @idx:        Register offset.
224  * @val:        Value to be written to register.
225  */
226 static inline void pch_spi_writereg(struct spi_master *master, int idx, u32 val)
227 {
228         struct pch_spi_data *data = spi_master_get_devdata(master);
229         iowrite32(val, (data->io_remap_addr + idx));
230 }
231
232 /**
233  * pch_spi_readreg() - Performs register reads
234  * @master:     Pointer to struct spi_master.
235  * @idx:        Register offset.
236  */
237 static inline u32 pch_spi_readreg(struct spi_master *master, int idx)
238 {
239         struct pch_spi_data *data = spi_master_get_devdata(master);
240         return ioread32(data->io_remap_addr + idx);
241 }
242
243 static inline void pch_spi_setclr_reg(struct spi_master *master, int idx,
244                                       u32 set, u32 clr)
245 {
246         u32 tmp = pch_spi_readreg(master, idx);
247         tmp = (tmp & ~clr) | set;
248         pch_spi_writereg(master, idx, tmp);
249 }
250
251 static void pch_spi_set_master_mode(struct spi_master *master)
252 {
253         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_MSTR_BIT, 0);
254 }
255
256 /**
257  * pch_spi_clear_fifo() - Clears the Transmit and Receive FIFOs
258  * @master:     Pointer to struct spi_master.
259  */
260 static void pch_spi_clear_fifo(struct spi_master *master)
261 {
262         pch_spi_setclr_reg(master, PCH_SPCR, SPCR_FICLR_BIT, 0);
263         pch_spi_setclr_reg(master, PCH_SPCR, 0, SPCR_FICLR_BIT);
264 }
265
266 static void pch_spi_handler_sub(struct pch_spi_data *data, u32 reg_spsr_val,
267                                 void __iomem *io_remap_addr)
268 {
269         u32 n_read, tx_index, rx_index, bpw_len;
270         u16 *pkt_rx_buffer, *pkt_tx_buff;
271         int read_cnt;
272         u32 reg_spcr_val;
273         void __iomem *spsr;
274         void __iomem *spdrr;
275         void __iomem *spdwr;
276
277         spsr = io_remap_addr + PCH_SPSR;
278         iowrite32(reg_spsr_val, spsr);
279
280         if (data->transfer_active) {
281                 rx_index = data->rx_index;
282                 tx_index = data->tx_index;
283                 bpw_len = data->bpw_len;
284                 pkt_rx_buffer = data->pkt_rx_buff;
285                 pkt_tx_buff = data->pkt_tx_buff;
286
287                 spdrr = io_remap_addr + PCH_SPDRR;
288                 spdwr = io_remap_addr + PCH_SPDWR;
289
290                 n_read = PCH_READABLE(reg_spsr_val);
291
292                 for (read_cnt = 0; (read_cnt < n_read); read_cnt++) {
293                         pkt_rx_buffer[rx_index++] = ioread32(spdrr);
294                         if (tx_index < bpw_len)
295                                 iowrite32(pkt_tx_buff[tx_index++], spdwr);
296                 }
297
298                 /* disable RFI if not needed */
299                 if ((bpw_len - rx_index) <= PCH_MAX_FIFO_DEPTH) {
300                         reg_spcr_val = ioread32(io_remap_addr + PCH_SPCR);
301                         reg_spcr_val &= ~SPCR_RFIE_BIT; /* disable RFI */
302
303                         /* reset rx threshold */
304                         reg_spcr_val &= ~MASK_RFIC_SPCR_BITS;
305                         reg_spcr_val |= (PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD);
306
307                         iowrite32(reg_spcr_val, (io_remap_addr + PCH_SPCR));
308                 }
309
310                 /* update counts */
311                 data->tx_index = tx_index;
312                 data->rx_index = rx_index;
313
314                 /* if transfer complete interrupt */
315                 if (reg_spsr_val & SPSR_FI_BIT) {
316                         if ((tx_index == bpw_len) && (rx_index == tx_index)) {
317                                 /* disable interrupts */
318                                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
319                                                    PCH_ALL);
320
321                                 /* transfer is completed;
322                                    inform pch_spi_process_messages */
323                                 data->transfer_complete = true;
324                                 data->transfer_active = false;
325                                 wake_up(&data->wait);
326                         } else {
327                                 dev_vdbg(&data->master->dev,
328                                         "%s : Transfer is not completed",
329                                         __func__);
330                         }
331                 }
332         }
333 }
334
335 /**
336  * pch_spi_handler() - Interrupt handler
337  * @irq:        The interrupt number.
338  * @dev_id:     Pointer to struct pch_spi_board_data.
339  */
340 static irqreturn_t pch_spi_handler(int irq, void *dev_id)
341 {
342         u32 reg_spsr_val;
343         void __iomem *spsr;
344         void __iomem *io_remap_addr;
345         irqreturn_t ret = IRQ_NONE;
346         struct pch_spi_data *data = dev_id;
347         struct pch_spi_board_data *board_dat = data->board_dat;
348
349         if (board_dat->suspend_sts) {
350                 dev_dbg(&board_dat->pdev->dev,
351                         "%s returning due to suspend\n", __func__);
352                 return IRQ_NONE;
353         }
354
355         io_remap_addr = data->io_remap_addr;
356         spsr = io_remap_addr + PCH_SPSR;
357
358         reg_spsr_val = ioread32(spsr);
359
360         if (reg_spsr_val & SPSR_ORF_BIT) {
361                 dev_err(&board_dat->pdev->dev, "%s Over run error\n", __func__);
362                 if (data->current_msg->complete) {
363                         data->transfer_complete = true;
364                         data->current_msg->status = -EIO;
365                         data->current_msg->complete(data->current_msg->context);
366                         data->bcurrent_msg_processing = false;
367                         data->current_msg = NULL;
368                         data->cur_trans = NULL;
369                 }
370         }
371
372         if (data->use_dma)
373                 return IRQ_NONE;
374
375         /* Check if the interrupt is for SPI device */
376         if (reg_spsr_val & (SPSR_FI_BIT | SPSR_RFI_BIT)) {
377                 pch_spi_handler_sub(data, reg_spsr_val, io_remap_addr);
378                 ret = IRQ_HANDLED;
379         }
380
381         dev_dbg(&board_dat->pdev->dev, "%s EXIT return value=%d\n",
382                 __func__, ret);
383
384         return ret;
385 }
386
387 /**
388  * pch_spi_set_baud_rate() - Sets SPBR field in SPBRR
389  * @master:     Pointer to struct spi_master.
390  * @speed_hz:   Baud rate.
391  */
392 static void pch_spi_set_baud_rate(struct spi_master *master, u32 speed_hz)
393 {
394         u32 n_spbr = PCH_CLOCK_HZ / (speed_hz * 2);
395
396         /* if baud rate is less than we can support limit it */
397         if (n_spbr > PCH_MAX_SPBR)
398                 n_spbr = PCH_MAX_SPBR;
399
400         pch_spi_setclr_reg(master, PCH_SPBRR, n_spbr, MASK_SPBRR_SPBR_BITS);
401 }
402
403 /**
404  * pch_spi_set_bits_per_word() - Sets SIZE field in SPBRR
405  * @master:             Pointer to struct spi_master.
406  * @bits_per_word:      Bits per word for SPI transfer.
407  */
408 static void pch_spi_set_bits_per_word(struct spi_master *master,
409                                       u8 bits_per_word)
410 {
411         if (bits_per_word == 8)
412                 pch_spi_setclr_reg(master, PCH_SPBRR, 0, SPBRR_SIZE_BIT);
413         else
414                 pch_spi_setclr_reg(master, PCH_SPBRR, SPBRR_SIZE_BIT, 0);
415 }
416
417 /**
418  * pch_spi_setup_transfer() - Configures the PCH SPI hardware for transfer
419  * @spi:        Pointer to struct spi_device.
420  */
421 static void pch_spi_setup_transfer(struct spi_device *spi)
422 {
423         u32 flags = 0;
424
425         dev_dbg(&spi->dev, "%s SPBRR content =%x setting baud rate=%d\n",
426                 __func__, pch_spi_readreg(spi->master, PCH_SPBRR),
427                 spi->max_speed_hz);
428         pch_spi_set_baud_rate(spi->master, spi->max_speed_hz);
429
430         /* set bits per word */
431         pch_spi_set_bits_per_word(spi->master, spi->bits_per_word);
432
433         if (!(spi->mode & SPI_LSB_FIRST))
434                 flags |= SPCR_LSBF_BIT;
435         if (spi->mode & SPI_CPOL)
436                 flags |= SPCR_CPOL_BIT;
437         if (spi->mode & SPI_CPHA)
438                 flags |= SPCR_CPHA_BIT;
439         pch_spi_setclr_reg(spi->master, PCH_SPCR, flags,
440                            (SPCR_LSBF_BIT | SPCR_CPOL_BIT | SPCR_CPHA_BIT));
441
442         /* Clear the FIFO by toggling  FICLR to 1 and back to 0 */
443         pch_spi_clear_fifo(spi->master);
444 }
445
446 /**
447  * pch_spi_reset() - Clears SPI registers
448  * @master:     Pointer to struct spi_master.
449  */
450 static void pch_spi_reset(struct spi_master *master)
451 {
452         /* write 1 to reset SPI */
453         pch_spi_writereg(master, PCH_SRST, 0x1);
454
455         /* clear reset */
456         pch_spi_writereg(master, PCH_SRST, 0x0);
457 }
458
459 static int pch_spi_transfer(struct spi_device *pspi, struct spi_message *pmsg)
460 {
461
462         struct spi_transfer *transfer;
463         struct pch_spi_data *data = spi_master_get_devdata(pspi->master);
464         int retval;
465         unsigned long flags;
466
467         spin_lock_irqsave(&data->lock, flags);
468         /* validate Tx/Rx buffers and Transfer length */
469         list_for_each_entry(transfer, &pmsg->transfers, transfer_list) {
470                 if (!transfer->tx_buf && !transfer->rx_buf) {
471                         dev_err(&pspi->dev,
472                                 "%s Tx and Rx buffer NULL\n", __func__);
473                         retval = -EINVAL;
474                         goto err_return_spinlock;
475                 }
476
477                 if (!transfer->len) {
478                         dev_err(&pspi->dev, "%s Transfer length invalid\n",
479                                 __func__);
480                         retval = -EINVAL;
481                         goto err_return_spinlock;
482                 }
483
484                 dev_dbg(&pspi->dev,
485                         "%s Tx/Rx buffer valid. Transfer length valid\n",
486                         __func__);
487         }
488         spin_unlock_irqrestore(&data->lock, flags);
489
490         /* We won't process any messages if we have been asked to terminate */
491         if (data->status == STATUS_EXITING) {
492                 dev_err(&pspi->dev, "%s status = STATUS_EXITING.\n", __func__);
493                 retval = -ESHUTDOWN;
494                 goto err_out;
495         }
496
497         /* If suspended ,return -EINVAL */
498         if (data->board_dat->suspend_sts) {
499                 dev_err(&pspi->dev, "%s suspend; returning EINVAL\n", __func__);
500                 retval = -EINVAL;
501                 goto err_out;
502         }
503
504         /* set status of message */
505         pmsg->actual_length = 0;
506         dev_dbg(&pspi->dev, "%s - pmsg->status =%d\n", __func__, pmsg->status);
507
508         pmsg->status = -EINPROGRESS;
509         spin_lock_irqsave(&data->lock, flags);
510         /* add message to queue */
511         list_add_tail(&pmsg->queue, &data->queue);
512         spin_unlock_irqrestore(&data->lock, flags);
513
514         dev_dbg(&pspi->dev, "%s - Invoked list_add_tail\n", __func__);
515
516         schedule_work(&data->work);
517         dev_dbg(&pspi->dev, "%s - Invoked queue work\n", __func__);
518
519         retval = 0;
520
521 err_out:
522         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
523         return retval;
524 err_return_spinlock:
525         dev_dbg(&pspi->dev, "%s RETURN=%d\n", __func__, retval);
526         spin_unlock_irqrestore(&data->lock, flags);
527         return retval;
528 }
529
530 static inline void pch_spi_select_chip(struct pch_spi_data *data,
531                                        struct spi_device *pspi)
532 {
533         if (data->current_chip != NULL) {
534                 if (pspi->chip_select != data->n_curnt_chip) {
535                         dev_dbg(&pspi->dev, "%s : different slave\n", __func__);
536                         data->current_chip = NULL;
537                 }
538         }
539
540         data->current_chip = pspi;
541
542         data->n_curnt_chip = data->current_chip->chip_select;
543
544         dev_dbg(&pspi->dev, "%s :Invoking pch_spi_setup_transfer\n", __func__);
545         pch_spi_setup_transfer(pspi);
546 }
547
548 static void pch_spi_set_tx(struct pch_spi_data *data, int *bpw)
549 {
550         int size;
551         u32 n_writes;
552         int j;
553         struct spi_message *pmsg, *tmp;
554         const u8 *tx_buf;
555         const u16 *tx_sbuf;
556
557         /* set baud rate if needed */
558         if (data->cur_trans->speed_hz) {
559                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
560                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
561         }
562
563         /* set bits per word if needed */
564         if (data->cur_trans->bits_per_word &&
565             (data->current_msg->spi->bits_per_word != data->cur_trans->bits_per_word)) {
566                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
567                 pch_spi_set_bits_per_word(data->master,
568                                           data->cur_trans->bits_per_word);
569                 *bpw = data->cur_trans->bits_per_word;
570         } else {
571                 *bpw = data->current_msg->spi->bits_per_word;
572         }
573
574         /* reset Tx/Rx index */
575         data->tx_index = 0;
576         data->rx_index = 0;
577
578         data->bpw_len = data->cur_trans->len / (*bpw / 8);
579
580         /* find alloc size */
581         size = data->cur_trans->len * sizeof(*data->pkt_tx_buff);
582
583         /* allocate memory for pkt_tx_buff & pkt_rx_buffer */
584         data->pkt_tx_buff = kzalloc(size, GFP_KERNEL);
585         if (data->pkt_tx_buff != NULL) {
586                 data->pkt_rx_buff = kzalloc(size, GFP_KERNEL);
587                 if (!data->pkt_rx_buff) {
588                         kfree(data->pkt_tx_buff);
589                         data->pkt_tx_buff = NULL;
590                 }
591         }
592
593         if (!data->pkt_rx_buff) {
594                 /* flush queue and set status of all transfers to -ENOMEM */
595                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
596                         pmsg->status = -ENOMEM;
597
598                         if (pmsg->complete)
599                                 pmsg->complete(pmsg->context);
600
601                         /* delete from queue */
602                         list_del_init(&pmsg->queue);
603                 }
604                 return;
605         }
606
607         /* copy Tx Data */
608         if (data->cur_trans->tx_buf != NULL) {
609                 if (*bpw == 8) {
610                         tx_buf = data->cur_trans->tx_buf;
611                         for (j = 0; j < data->bpw_len; j++)
612                                 data->pkt_tx_buff[j] = *tx_buf++;
613                 } else {
614                         tx_sbuf = data->cur_trans->tx_buf;
615                         for (j = 0; j < data->bpw_len; j++)
616                                 data->pkt_tx_buff[j] = *tx_sbuf++;
617                 }
618         }
619
620         /* if len greater than PCH_MAX_FIFO_DEPTH, write 16,else len bytes */
621         n_writes = data->bpw_len;
622         if (n_writes > PCH_MAX_FIFO_DEPTH)
623                 n_writes = PCH_MAX_FIFO_DEPTH;
624
625         dev_dbg(&data->master->dev,
626                 "\n%s:Pulling down SSN low - writing 0x2 to SSNXCR\n",
627                 __func__);
628         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
629
630         for (j = 0; j < n_writes; j++)
631                 pch_spi_writereg(data->master, PCH_SPDWR, data->pkt_tx_buff[j]);
632
633         /* update tx_index */
634         data->tx_index = j;
635
636         /* reset transfer complete flag */
637         data->transfer_complete = false;
638         data->transfer_active = true;
639 }
640
641 static void pch_spi_nomore_transfer(struct pch_spi_data *data)
642 {
643         struct spi_message *pmsg, *tmp;
644         dev_dbg(&data->master->dev, "%s called\n", __func__);
645         /* Invoke complete callback
646          * [To the spi core..indicating end of transfer] */
647         data->current_msg->status = 0;
648
649         if (data->current_msg->complete) {
650                 dev_dbg(&data->master->dev,
651                         "%s:Invoking callback of SPI core\n", __func__);
652                 data->current_msg->complete(data->current_msg->context);
653         }
654
655         /* update status in global variable */
656         data->bcurrent_msg_processing = false;
657
658         dev_dbg(&data->master->dev,
659                 "%s:data->bcurrent_msg_processing = false\n", __func__);
660
661         data->current_msg = NULL;
662         data->cur_trans = NULL;
663
664         /* check if we have items in list and not suspending
665          * return 1 if list empty */
666         if ((list_empty(&data->queue) == 0) &&
667             (!data->board_dat->suspend_sts) &&
668             (data->status != STATUS_EXITING)) {
669                 /* We have some more work to do (either there is more tranint
670                  * bpw;sfer requests in the current message or there are
671                  *more messages)
672                  */
673                 dev_dbg(&data->master->dev, "%s:Invoke queue_work\n", __func__);
674                 schedule_work(&data->work);
675         } else if (data->board_dat->suspend_sts ||
676                    data->status == STATUS_EXITING) {
677                 dev_dbg(&data->master->dev,
678                         "%s suspend/remove initiated, flushing queue\n",
679                         __func__);
680                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
681                         pmsg->status = -EIO;
682
683                         if (pmsg->complete)
684                                 pmsg->complete(pmsg->context);
685
686                         /* delete from queue */
687                         list_del_init(&pmsg->queue);
688                 }
689         }
690 }
691
692 static void pch_spi_set_ir(struct pch_spi_data *data)
693 {
694         /* enable interrupts, set threshold, enable SPI */
695         if ((data->bpw_len) > PCH_MAX_FIFO_DEPTH)
696                 /* set receive threshold to PCH_RX_THOLD */
697                 pch_spi_setclr_reg(data->master, PCH_SPCR,
698                                    PCH_RX_THOLD << SPCR_RFIC_FIELD |
699                                    SPCR_FIE_BIT | SPCR_RFIE_BIT |
700                                    SPCR_ORIE_BIT | SPCR_SPE_BIT,
701                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
702         else
703                 /* set receive threshold to maximum */
704                 pch_spi_setclr_reg(data->master, PCH_SPCR,
705                                    PCH_RX_THOLD_MAX << SPCR_RFIC_FIELD |
706                                    SPCR_FIE_BIT | SPCR_ORIE_BIT |
707                                    SPCR_SPE_BIT,
708                                    MASK_RFIC_SPCR_BITS | PCH_ALL);
709
710         /* Wait until the transfer completes; go to sleep after
711                                  initiating the transfer. */
712         dev_dbg(&data->master->dev,
713                 "%s:waiting for transfer to get over\n", __func__);
714
715         wait_event_interruptible(data->wait, data->transfer_complete);
716
717         /* clear all interrupts */
718         pch_spi_writereg(data->master, PCH_SPSR,
719                          pch_spi_readreg(data->master, PCH_SPSR));
720         /* Disable interrupts and SPI transfer */
721         pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL | SPCR_SPE_BIT);
722         /* clear FIFO */
723         pch_spi_clear_fifo(data->master);
724 }
725
726 static void pch_spi_copy_rx_data(struct pch_spi_data *data, int bpw)
727 {
728         int j;
729         u8 *rx_buf;
730         u16 *rx_sbuf;
731
732         /* copy Rx Data */
733         if (!data->cur_trans->rx_buf)
734                 return;
735
736         if (bpw == 8) {
737                 rx_buf = data->cur_trans->rx_buf;
738                 for (j = 0; j < data->bpw_len; j++)
739                         *rx_buf++ = data->pkt_rx_buff[j] & 0xFF;
740         } else {
741                 rx_sbuf = data->cur_trans->rx_buf;
742                 for (j = 0; j < data->bpw_len; j++)
743                         *rx_sbuf++ = data->pkt_rx_buff[j];
744         }
745 }
746
747 static void pch_spi_copy_rx_data_for_dma(struct pch_spi_data *data, int bpw)
748 {
749         int j;
750         u8 *rx_buf;
751         u16 *rx_sbuf;
752         const u8 *rx_dma_buf;
753         const u16 *rx_dma_sbuf;
754
755         /* copy Rx Data */
756         if (!data->cur_trans->rx_buf)
757                 return;
758
759         if (bpw == 8) {
760                 rx_buf = data->cur_trans->rx_buf;
761                 rx_dma_buf = data->dma.rx_buf_virt;
762                 for (j = 0; j < data->bpw_len; j++)
763                         *rx_buf++ = *rx_dma_buf++ & 0xFF;
764                 data->cur_trans->rx_buf = rx_buf;
765         } else {
766                 rx_sbuf = data->cur_trans->rx_buf;
767                 rx_dma_sbuf = data->dma.rx_buf_virt;
768                 for (j = 0; j < data->bpw_len; j++)
769                         *rx_sbuf++ = *rx_dma_sbuf++;
770                 data->cur_trans->rx_buf = rx_sbuf;
771         }
772 }
773
774 static int pch_spi_start_transfer(struct pch_spi_data *data)
775 {
776         struct pch_spi_dma_ctrl *dma;
777         unsigned long flags;
778         int rtn;
779
780         dma = &data->dma;
781
782         spin_lock_irqsave(&data->lock, flags);
783
784         /* disable interrupts, SPI set enable */
785         pch_spi_setclr_reg(data->master, PCH_SPCR, SPCR_SPE_BIT, PCH_ALL);
786
787         spin_unlock_irqrestore(&data->lock, flags);
788
789         /* Wait until the transfer completes; go to sleep after
790                                  initiating the transfer. */
791         dev_dbg(&data->master->dev,
792                 "%s:waiting for transfer to get over\n", __func__);
793         rtn = wait_event_interruptible_timeout(data->wait,
794                                                data->transfer_complete,
795                                                msecs_to_jiffies(2 * HZ));
796         if (!rtn)
797                 dev_err(&data->master->dev,
798                         "%s wait-event timeout\n", __func__);
799
800         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_rx_p, dma->nent,
801                             DMA_FROM_DEVICE);
802
803         dma_sync_sg_for_cpu(&data->master->dev, dma->sg_tx_p, dma->nent,
804                             DMA_FROM_DEVICE);
805         memset(data->dma.tx_buf_virt, 0, PAGE_SIZE);
806
807         async_tx_ack(dma->desc_rx);
808         async_tx_ack(dma->desc_tx);
809         kfree(dma->sg_tx_p);
810         kfree(dma->sg_rx_p);
811
812         spin_lock_irqsave(&data->lock, flags);
813
814         /* clear fifo threshold, disable interrupts, disable SPI transfer */
815         pch_spi_setclr_reg(data->master, PCH_SPCR, 0,
816                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS | PCH_ALL |
817                            SPCR_SPE_BIT);
818         /* clear all interrupts */
819         pch_spi_writereg(data->master, PCH_SPSR,
820                          pch_spi_readreg(data->master, PCH_SPSR));
821         /* clear FIFO */
822         pch_spi_clear_fifo(data->master);
823
824         spin_unlock_irqrestore(&data->lock, flags);
825
826         return rtn;
827 }
828
829 static void pch_dma_rx_complete(void *arg)
830 {
831         struct pch_spi_data *data = arg;
832
833         /* transfer is completed;inform pch_spi_process_messages_dma */
834         data->transfer_complete = true;
835         wake_up_interruptible(&data->wait);
836 }
837
838 static bool pch_spi_filter(struct dma_chan *chan, void *slave)
839 {
840         struct pch_dma_slave *param = slave;
841
842         if ((chan->chan_id == param->chan_id) &&
843             (param->dma_dev == chan->device->dev)) {
844                 chan->private = param;
845                 return true;
846         } else {
847                 return false;
848         }
849 }
850
851 static void pch_spi_request_dma(struct pch_spi_data *data, int bpw)
852 {
853         dma_cap_mask_t mask;
854         struct dma_chan *chan;
855         struct pci_dev *dma_dev;
856         struct pch_dma_slave *param;
857         struct pch_spi_dma_ctrl *dma;
858         unsigned int width;
859
860         if (bpw == 8)
861                 width = PCH_DMA_WIDTH_1_BYTE;
862         else
863                 width = PCH_DMA_WIDTH_2_BYTES;
864
865         dma = &data->dma;
866         dma_cap_zero(mask);
867         dma_cap_set(DMA_SLAVE, mask);
868
869         /* Get DMA's dev information */
870         dma_dev = pci_get_slot(data->board_dat->pdev->bus,
871                         PCI_DEVFN(PCI_SLOT(data->board_dat->pdev->devfn), 0));
872
873         /* Set Tx DMA */
874         param = &dma->param_tx;
875         param->dma_dev = &dma_dev->dev;
876         param->chan_id = data->ch * 2; /* Tx = 0, 2 */;
877         param->tx_reg = data->io_base_addr + PCH_SPDWR;
878         param->width = width;
879         chan = dma_request_channel(mask, pch_spi_filter, param);
880         if (!chan) {
881                 dev_err(&data->master->dev,
882                         "ERROR: dma_request_channel FAILS(Tx)\n");
883                 data->use_dma = 0;
884                 return;
885         }
886         dma->chan_tx = chan;
887
888         /* Set Rx DMA */
889         param = &dma->param_rx;
890         param->dma_dev = &dma_dev->dev;
891         param->chan_id = data->ch * 2 + 1; /* Rx = Tx + 1 */;
892         param->rx_reg = data->io_base_addr + PCH_SPDRR;
893         param->width = width;
894         chan = dma_request_channel(mask, pch_spi_filter, param);
895         if (!chan) {
896                 dev_err(&data->master->dev,
897                         "ERROR: dma_request_channel FAILS(Rx)\n");
898                 dma_release_channel(dma->chan_tx);
899                 dma->chan_tx = NULL;
900                 data->use_dma = 0;
901                 return;
902         }
903         dma->chan_rx = chan;
904 }
905
906 static void pch_spi_release_dma(struct pch_spi_data *data)
907 {
908         struct pch_spi_dma_ctrl *dma;
909
910         dma = &data->dma;
911         if (dma->chan_tx) {
912                 dma_release_channel(dma->chan_tx);
913                 dma->chan_tx = NULL;
914         }
915         if (dma->chan_rx) {
916                 dma_release_channel(dma->chan_rx);
917                 dma->chan_rx = NULL;
918         }
919 }
920
921 static void pch_spi_handle_dma(struct pch_spi_data *data, int *bpw)
922 {
923         const u8 *tx_buf;
924         const u16 *tx_sbuf;
925         u8 *tx_dma_buf;
926         u16 *tx_dma_sbuf;
927         struct scatterlist *sg;
928         struct dma_async_tx_descriptor *desc_tx;
929         struct dma_async_tx_descriptor *desc_rx;
930         int num;
931         int i;
932         int size;
933         int rem;
934         int head;
935         unsigned long flags;
936         struct pch_spi_dma_ctrl *dma;
937
938         dma = &data->dma;
939
940         /* set baud rate if needed */
941         if (data->cur_trans->speed_hz) {
942                 dev_dbg(&data->master->dev, "%s:setting baud rate\n", __func__);
943                 spin_lock_irqsave(&data->lock, flags);
944                 pch_spi_set_baud_rate(data->master, data->cur_trans->speed_hz);
945                 spin_unlock_irqrestore(&data->lock, flags);
946         }
947
948         /* set bits per word if needed */
949         if (data->cur_trans->bits_per_word &&
950             (data->current_msg->spi->bits_per_word !=
951              data->cur_trans->bits_per_word)) {
952                 dev_dbg(&data->master->dev, "%s:set bits per word\n", __func__);
953                 spin_lock_irqsave(&data->lock, flags);
954                 pch_spi_set_bits_per_word(data->master,
955                                           data->cur_trans->bits_per_word);
956                 spin_unlock_irqrestore(&data->lock, flags);
957                 *bpw = data->cur_trans->bits_per_word;
958         } else {
959                 *bpw = data->current_msg->spi->bits_per_word;
960         }
961         data->bpw_len = data->cur_trans->len / (*bpw / 8);
962
963         if (data->bpw_len > PCH_BUF_SIZE) {
964                 data->bpw_len = PCH_BUF_SIZE;
965                 data->cur_trans->len -= PCH_BUF_SIZE;
966         }
967
968         /* copy Tx Data */
969         if (data->cur_trans->tx_buf != NULL) {
970                 if (*bpw == 8) {
971                         tx_buf = data->cur_trans->tx_buf;
972                         tx_dma_buf = dma->tx_buf_virt;
973                         for (i = 0; i < data->bpw_len; i++)
974                                 *tx_dma_buf++ = *tx_buf++;
975                 } else {
976                         tx_sbuf = data->cur_trans->tx_buf;
977                         tx_dma_sbuf = dma->tx_buf_virt;
978                         for (i = 0; i < data->bpw_len; i++)
979                                 *tx_dma_sbuf++ = *tx_sbuf++;
980                 }
981         }
982
983         /* Calculate Rx parameter for DMA transmitting */
984         if (data->bpw_len > PCH_DMA_TRANS_SIZE) {
985                 if (data->bpw_len % PCH_DMA_TRANS_SIZE) {
986                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
987                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE;
988                 } else {
989                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
990                         rem = PCH_DMA_TRANS_SIZE;
991                 }
992                 size = PCH_DMA_TRANS_SIZE;
993         } else {
994                 num = 1;
995                 size = data->bpw_len;
996                 rem = data->bpw_len;
997         }
998         dev_dbg(&data->master->dev, "%s num=%d size=%d rem=%d\n",
999                 __func__, num, size, rem);
1000         spin_lock_irqsave(&data->lock, flags);
1001
1002         /* set receive fifo threshold and transmit fifo threshold */
1003         pch_spi_setclr_reg(data->master, PCH_SPCR,
1004                            ((size - 1) << SPCR_RFIC_FIELD) |
1005                            (PCH_TX_THOLD << SPCR_TFIC_FIELD),
1006                            MASK_RFIC_SPCR_BITS | MASK_TFIC_SPCR_BITS);
1007
1008         spin_unlock_irqrestore(&data->lock, flags);
1009
1010         /* RX */
1011         dma->sg_rx_p = kcalloc(num, sizeof(*dma->sg_rx_p), GFP_ATOMIC);
1012         if (!dma->sg_rx_p)
1013                 return;
1014
1015         sg_init_table(dma->sg_rx_p, num); /* Initialize SG table */
1016         /* offset, length setting */
1017         sg = dma->sg_rx_p;
1018         for (i = 0; i < num; i++, sg++) {
1019                 if (i == (num - 2)) {
1020                         sg->offset = size * i;
1021                         sg->offset = sg->offset * (*bpw / 8);
1022                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), rem,
1023                                     sg->offset);
1024                         sg_dma_len(sg) = rem;
1025                 } else if (i == (num - 1)) {
1026                         sg->offset = size * (i - 1) + rem;
1027                         sg->offset = sg->offset * (*bpw / 8);
1028                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1029                                     sg->offset);
1030                         sg_dma_len(sg) = size;
1031                 } else {
1032                         sg->offset = size * i;
1033                         sg->offset = sg->offset * (*bpw / 8);
1034                         sg_set_page(sg, virt_to_page(dma->rx_buf_virt), size,
1035                                     sg->offset);
1036                         sg_dma_len(sg) = size;
1037                 }
1038                 sg_dma_address(sg) = dma->rx_buf_dma + sg->offset;
1039         }
1040         sg = dma->sg_rx_p;
1041         desc_rx = dmaengine_prep_slave_sg(dma->chan_rx, sg,
1042                                         num, DMA_DEV_TO_MEM,
1043                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1044         if (!desc_rx) {
1045                 dev_err(&data->master->dev,
1046                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1047                 return;
1048         }
1049         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_FROM_DEVICE);
1050         desc_rx->callback = pch_dma_rx_complete;
1051         desc_rx->callback_param = data;
1052         dma->nent = num;
1053         dma->desc_rx = desc_rx;
1054
1055         /* Calculate Tx parameter for DMA transmitting */
1056         if (data->bpw_len > PCH_MAX_FIFO_DEPTH) {
1057                 head = PCH_MAX_FIFO_DEPTH - PCH_DMA_TRANS_SIZE;
1058                 if (data->bpw_len % PCH_DMA_TRANS_SIZE > 4) {
1059                         num = data->bpw_len / PCH_DMA_TRANS_SIZE + 1;
1060                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE - head;
1061                 } else {
1062                         num = data->bpw_len / PCH_DMA_TRANS_SIZE;
1063                         rem = data->bpw_len % PCH_DMA_TRANS_SIZE +
1064                               PCH_DMA_TRANS_SIZE - head;
1065                 }
1066                 size = PCH_DMA_TRANS_SIZE;
1067         } else {
1068                 num = 1;
1069                 size = data->bpw_len;
1070                 rem = data->bpw_len;
1071                 head = 0;
1072         }
1073
1074         dma->sg_tx_p = kcalloc(num, sizeof(*dma->sg_tx_p), GFP_ATOMIC);
1075         if (!dma->sg_tx_p)
1076                 return;
1077
1078         sg_init_table(dma->sg_tx_p, num); /* Initialize SG table */
1079         /* offset, length setting */
1080         sg = dma->sg_tx_p;
1081         for (i = 0; i < num; i++, sg++) {
1082                 if (i == 0) {
1083                         sg->offset = 0;
1084                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size + head,
1085                                     sg->offset);
1086                         sg_dma_len(sg) = size + head;
1087                 } else if (i == (num - 1)) {
1088                         sg->offset = head + size * i;
1089                         sg->offset = sg->offset * (*bpw / 8);
1090                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), rem,
1091                                     sg->offset);
1092                         sg_dma_len(sg) = rem;
1093                 } else {
1094                         sg->offset = head + size * i;
1095                         sg->offset = sg->offset * (*bpw / 8);
1096                         sg_set_page(sg, virt_to_page(dma->tx_buf_virt), size,
1097                                     sg->offset);
1098                         sg_dma_len(sg) = size;
1099                 }
1100                 sg_dma_address(sg) = dma->tx_buf_dma + sg->offset;
1101         }
1102         sg = dma->sg_tx_p;
1103         desc_tx = dmaengine_prep_slave_sg(dma->chan_tx,
1104                                         sg, num, DMA_MEM_TO_DEV,
1105                                         DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1106         if (!desc_tx) {
1107                 dev_err(&data->master->dev,
1108                         "%s:dmaengine_prep_slave_sg Failed\n", __func__);
1109                 return;
1110         }
1111         dma_sync_sg_for_device(&data->master->dev, sg, num, DMA_TO_DEVICE);
1112         desc_tx->callback = NULL;
1113         desc_tx->callback_param = data;
1114         dma->nent = num;
1115         dma->desc_tx = desc_tx;
1116
1117         dev_dbg(&data->master->dev, "%s:Pulling down SSN low - writing 0x2 to SSNXCR\n", __func__);
1118
1119         spin_lock_irqsave(&data->lock, flags);
1120         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_LOW);
1121         desc_rx->tx_submit(desc_rx);
1122         desc_tx->tx_submit(desc_tx);
1123         spin_unlock_irqrestore(&data->lock, flags);
1124
1125         /* reset transfer complete flag */
1126         data->transfer_complete = false;
1127 }
1128
1129 static void pch_spi_process_messages(struct work_struct *pwork)
1130 {
1131         struct spi_message *pmsg, *tmp;
1132         struct pch_spi_data *data;
1133         int bpw;
1134
1135         data = container_of(pwork, struct pch_spi_data, work);
1136         dev_dbg(&data->master->dev, "%s data initialized\n", __func__);
1137
1138         spin_lock(&data->lock);
1139         /* check if suspend has been initiated;if yes flush queue */
1140         if (data->board_dat->suspend_sts || (data->status == STATUS_EXITING)) {
1141                 dev_dbg(&data->master->dev,
1142                         "%s suspend/remove initiated, flushing queue\n", __func__);
1143                 list_for_each_entry_safe(pmsg, tmp, data->queue.next, queue) {
1144                         pmsg->status = -EIO;
1145
1146                         if (pmsg->complete) {
1147                                 spin_unlock(&data->lock);
1148                                 pmsg->complete(pmsg->context);
1149                                 spin_lock(&data->lock);
1150                         }
1151
1152                         /* delete from queue */
1153                         list_del_init(&pmsg->queue);
1154                 }
1155
1156                 spin_unlock(&data->lock);
1157                 return;
1158         }
1159
1160         data->bcurrent_msg_processing = true;
1161         dev_dbg(&data->master->dev,
1162                 "%s Set data->bcurrent_msg_processing= true\n", __func__);
1163
1164         /* Get the message from the queue and delete it from there. */
1165         data->current_msg = list_entry(data->queue.next, struct spi_message,
1166                                         queue);
1167
1168         list_del_init(&data->current_msg->queue);
1169
1170         data->current_msg->status = 0;
1171
1172         pch_spi_select_chip(data, data->current_msg->spi);
1173
1174         spin_unlock(&data->lock);
1175
1176         if (data->use_dma)
1177                 pch_spi_request_dma(data,
1178                                     data->current_msg->spi->bits_per_word);
1179         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_NO_CONTROL);
1180         do {
1181                 int cnt;
1182                 /* If we are already processing a message get the next
1183                 transfer structure from the message otherwise retrieve
1184                 the 1st transfer request from the message. */
1185                 spin_lock(&data->lock);
1186                 if (data->cur_trans == NULL) {
1187                         data->cur_trans =
1188                                 list_entry(data->current_msg->transfers.next,
1189                                            struct spi_transfer, transfer_list);
1190                         dev_dbg(&data->master->dev,
1191                                 "%s :Getting 1st transfer message\n",
1192                                 __func__);
1193                 } else {
1194                         data->cur_trans =
1195                                 list_entry(data->cur_trans->transfer_list.next,
1196                                            struct spi_transfer, transfer_list);
1197                         dev_dbg(&data->master->dev,
1198                                 "%s :Getting next transfer message\n",
1199                                 __func__);
1200                 }
1201                 spin_unlock(&data->lock);
1202
1203                 if (!data->cur_trans->len)
1204                         goto out;
1205                 cnt = (data->cur_trans->len - 1) / PCH_BUF_SIZE + 1;
1206                 data->save_total_len = data->cur_trans->len;
1207                 if (data->use_dma) {
1208                         int i;
1209                         char *save_rx_buf = data->cur_trans->rx_buf;
1210                         for (i = 0; i < cnt; i ++) {
1211                                 pch_spi_handle_dma(data, &bpw);
1212                                 if (!pch_spi_start_transfer(data)) {
1213                                         data->transfer_complete = true;
1214                                         data->current_msg->status = -EIO;
1215                                         data->current_msg->complete
1216                                                    (data->current_msg->context);
1217                                         data->bcurrent_msg_processing = false;
1218                                         data->current_msg = NULL;
1219                                         data->cur_trans = NULL;
1220                                         goto out;
1221                                 }
1222                                 pch_spi_copy_rx_data_for_dma(data, bpw);
1223                         }
1224                         data->cur_trans->rx_buf = save_rx_buf;
1225                 } else {
1226                         pch_spi_set_tx(data, &bpw);
1227                         pch_spi_set_ir(data);
1228                         pch_spi_copy_rx_data(data, bpw);
1229                         kfree(data->pkt_rx_buff);
1230                         data->pkt_rx_buff = NULL;
1231                         kfree(data->pkt_tx_buff);
1232                         data->pkt_tx_buff = NULL;
1233                 }
1234                 /* increment message count */
1235                 data->cur_trans->len = data->save_total_len;
1236                 data->current_msg->actual_length += data->cur_trans->len;
1237
1238                 dev_dbg(&data->master->dev,
1239                         "%s:data->current_msg->actual_length=%d\n",
1240                         __func__, data->current_msg->actual_length);
1241
1242                 /* check for delay */
1243                 if (data->cur_trans->delay_usecs) {
1244                         dev_dbg(&data->master->dev, "%s:delay in usec=%d\n",
1245                                 __func__, data->cur_trans->delay_usecs);
1246                         udelay(data->cur_trans->delay_usecs);
1247                 }
1248
1249                 spin_lock(&data->lock);
1250
1251                 /* No more transfer in this message. */
1252                 if ((data->cur_trans->transfer_list.next) ==
1253                     &(data->current_msg->transfers)) {
1254                         pch_spi_nomore_transfer(data);
1255                 }
1256
1257                 spin_unlock(&data->lock);
1258
1259         } while (data->cur_trans != NULL);
1260
1261 out:
1262         pch_spi_writereg(data->master, PCH_SSNXCR, SSN_HIGH);
1263         if (data->use_dma)
1264                 pch_spi_release_dma(data);
1265 }
1266
1267 static void pch_spi_free_resources(struct pch_spi_board_data *board_dat,
1268                                    struct pch_spi_data *data)
1269 {
1270         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1271
1272         flush_work(&data->work);
1273 }
1274
1275 static int pch_spi_get_resources(struct pch_spi_board_data *board_dat,
1276                                  struct pch_spi_data *data)
1277 {
1278         dev_dbg(&board_dat->pdev->dev, "%s ENTRY\n", __func__);
1279
1280         /* reset PCH SPI h/w */
1281         pch_spi_reset(data->master);
1282         dev_dbg(&board_dat->pdev->dev,
1283                 "%s pch_spi_reset invoked successfully\n", __func__);
1284
1285         dev_dbg(&board_dat->pdev->dev, "%s data->irq_reg_sts=true\n", __func__);
1286
1287         return 0;
1288 }
1289
1290 static void pch_free_dma_buf(struct pch_spi_board_data *board_dat,
1291                              struct pch_spi_data *data)
1292 {
1293         struct pch_spi_dma_ctrl *dma;
1294
1295         dma = &data->dma;
1296         if (dma->tx_buf_dma)
1297                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1298                                   dma->tx_buf_virt, dma->tx_buf_dma);
1299         if (dma->rx_buf_dma)
1300                 dma_free_coherent(&board_dat->pdev->dev, PCH_BUF_SIZE,
1301                                   dma->rx_buf_virt, dma->rx_buf_dma);
1302 }
1303
1304 static int pch_alloc_dma_buf(struct pch_spi_board_data *board_dat,
1305                               struct pch_spi_data *data)
1306 {
1307         struct pch_spi_dma_ctrl *dma;
1308         int ret;
1309
1310         dma = &data->dma;
1311         ret = 0;
1312         /* Get Consistent memory for Tx DMA */
1313         dma->tx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1314                                 PCH_BUF_SIZE, &dma->tx_buf_dma, GFP_KERNEL);
1315         if (!dma->tx_buf_virt)
1316                 ret = -ENOMEM;
1317
1318         /* Get Consistent memory for Rx DMA */
1319         dma->rx_buf_virt = dma_alloc_coherent(&board_dat->pdev->dev,
1320                                 PCH_BUF_SIZE, &dma->rx_buf_dma, GFP_KERNEL);
1321         if (!dma->rx_buf_virt)
1322                 ret = -ENOMEM;
1323
1324         return ret;
1325 }
1326
1327 static int pch_spi_pd_probe(struct platform_device *plat_dev)
1328 {
1329         int ret;
1330         struct spi_master *master;
1331         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1332         struct pch_spi_data *data;
1333
1334         dev_dbg(&plat_dev->dev, "%s:debug\n", __func__);
1335
1336         master = spi_alloc_master(&board_dat->pdev->dev,
1337                                   sizeof(struct pch_spi_data));
1338         if (!master) {
1339                 dev_err(&plat_dev->dev, "spi_alloc_master[%d] failed.\n",
1340                         plat_dev->id);
1341                 return -ENOMEM;
1342         }
1343
1344         data = spi_master_get_devdata(master);
1345         data->master = master;
1346
1347         platform_set_drvdata(plat_dev, data);
1348
1349         /* baseaddress + address offset) */
1350         data->io_base_addr = pci_resource_start(board_dat->pdev, 1) +
1351                                          PCH_ADDRESS_SIZE * plat_dev->id;
1352         data->io_remap_addr = pci_iomap(board_dat->pdev, 1, 0);
1353         if (!data->io_remap_addr) {
1354                 dev_err(&plat_dev->dev, "%s pci_iomap failed\n", __func__);
1355                 ret = -ENOMEM;
1356                 goto err_pci_iomap;
1357         }
1358         data->io_remap_addr += PCH_ADDRESS_SIZE * plat_dev->id;
1359
1360         dev_dbg(&plat_dev->dev, "[ch%d] remap_addr=%p\n",
1361                 plat_dev->id, data->io_remap_addr);
1362
1363         /* initialize members of SPI master */
1364         master->num_chipselect = PCH_MAX_CS;
1365         master->transfer = pch_spi_transfer;
1366         master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST;
1367         master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16);
1368         master->max_speed_hz = PCH_MAX_BAUDRATE;
1369
1370         data->board_dat = board_dat;
1371         data->plat_dev = plat_dev;
1372         data->n_curnt_chip = 255;
1373         data->status = STATUS_RUNNING;
1374         data->ch = plat_dev->id;
1375         data->use_dma = use_dma;
1376
1377         INIT_LIST_HEAD(&data->queue);
1378         spin_lock_init(&data->lock);
1379         INIT_WORK(&data->work, pch_spi_process_messages);
1380         init_waitqueue_head(&data->wait);
1381
1382         ret = pch_spi_get_resources(board_dat, data);
1383         if (ret) {
1384                 dev_err(&plat_dev->dev, "%s fail(retval=%d)\n", __func__, ret);
1385                 goto err_spi_get_resources;
1386         }
1387
1388         ret = request_irq(board_dat->pdev->irq, pch_spi_handler,
1389                           IRQF_SHARED, KBUILD_MODNAME, data);
1390         if (ret) {
1391                 dev_err(&plat_dev->dev,
1392                         "%s request_irq failed\n", __func__);
1393                 goto err_request_irq;
1394         }
1395         data->irq_reg_sts = true;
1396
1397         pch_spi_set_master_mode(master);
1398
1399         if (use_dma) {
1400                 dev_info(&plat_dev->dev, "Use DMA for data transfers\n");
1401                 ret = pch_alloc_dma_buf(board_dat, data);
1402                 if (ret)
1403                         goto err_spi_register_master;
1404         }
1405
1406         ret = spi_register_master(master);
1407         if (ret != 0) {
1408                 dev_err(&plat_dev->dev,
1409                         "%s spi_register_master FAILED\n", __func__);
1410                 goto err_spi_register_master;
1411         }
1412
1413         return 0;
1414
1415 err_spi_register_master:
1416         pch_free_dma_buf(board_dat, data);
1417         free_irq(board_dat->pdev->irq, data);
1418 err_request_irq:
1419         pch_spi_free_resources(board_dat, data);
1420 err_spi_get_resources:
1421         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1422 err_pci_iomap:
1423         spi_master_put(master);
1424
1425         return ret;
1426 }
1427
1428 static int pch_spi_pd_remove(struct platform_device *plat_dev)
1429 {
1430         struct pch_spi_board_data *board_dat = dev_get_platdata(&plat_dev->dev);
1431         struct pch_spi_data *data = platform_get_drvdata(plat_dev);
1432         int count;
1433         unsigned long flags;
1434
1435         dev_dbg(&plat_dev->dev, "%s:[ch%d] irq=%d\n",
1436                 __func__, plat_dev->id, board_dat->pdev->irq);
1437
1438         if (use_dma)
1439                 pch_free_dma_buf(board_dat, data);
1440
1441         /* check for any pending messages; no action is taken if the queue
1442          * is still full; but at least we tried.  Unload anyway */
1443         count = 500;
1444         spin_lock_irqsave(&data->lock, flags);
1445         data->status = STATUS_EXITING;
1446         while ((list_empty(&data->queue) == 0) && --count) {
1447                 dev_dbg(&board_dat->pdev->dev, "%s :queue not empty\n",
1448                         __func__);
1449                 spin_unlock_irqrestore(&data->lock, flags);
1450                 msleep(PCH_SLEEP_TIME);
1451                 spin_lock_irqsave(&data->lock, flags);
1452         }
1453         spin_unlock_irqrestore(&data->lock, flags);
1454
1455         pch_spi_free_resources(board_dat, data);
1456         /* disable interrupts & free IRQ */
1457         if (data->irq_reg_sts) {
1458                 /* disable interrupts */
1459                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1460                 data->irq_reg_sts = false;
1461                 free_irq(board_dat->pdev->irq, data);
1462         }
1463
1464         pci_iounmap(board_dat->pdev, data->io_remap_addr);
1465         spi_unregister_master(data->master);
1466
1467         return 0;
1468 }
1469 #ifdef CONFIG_PM
1470 static int pch_spi_pd_suspend(struct platform_device *pd_dev,
1471                               pm_message_t state)
1472 {
1473         u8 count;
1474         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1475         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1476
1477         dev_dbg(&pd_dev->dev, "%s ENTRY\n", __func__);
1478
1479         if (!board_dat) {
1480                 dev_err(&pd_dev->dev,
1481                         "%s pci_get_drvdata returned NULL\n", __func__);
1482                 return -EFAULT;
1483         }
1484
1485         /* check if the current message is processed:
1486            Only after thats done the transfer will be suspended */
1487         count = 255;
1488         while ((--count) > 0) {
1489                 if (!(data->bcurrent_msg_processing))
1490                         break;
1491                 msleep(PCH_SLEEP_TIME);
1492         }
1493
1494         /* Free IRQ */
1495         if (data->irq_reg_sts) {
1496                 /* disable all interrupts */
1497                 pch_spi_setclr_reg(data->master, PCH_SPCR, 0, PCH_ALL);
1498                 pch_spi_reset(data->master);
1499                 free_irq(board_dat->pdev->irq, data);
1500
1501                 data->irq_reg_sts = false;
1502                 dev_dbg(&pd_dev->dev,
1503                         "%s free_irq invoked successfully.\n", __func__);
1504         }
1505
1506         return 0;
1507 }
1508
1509 static int pch_spi_pd_resume(struct platform_device *pd_dev)
1510 {
1511         struct pch_spi_board_data *board_dat = dev_get_platdata(&pd_dev->dev);
1512         struct pch_spi_data *data = platform_get_drvdata(pd_dev);
1513         int retval;
1514
1515         if (!board_dat) {
1516                 dev_err(&pd_dev->dev,
1517                         "%s pci_get_drvdata returned NULL\n", __func__);
1518                 return -EFAULT;
1519         }
1520
1521         if (!data->irq_reg_sts) {
1522                 /* register IRQ */
1523                 retval = request_irq(board_dat->pdev->irq, pch_spi_handler,
1524                                      IRQF_SHARED, KBUILD_MODNAME, data);
1525                 if (retval < 0) {
1526                         dev_err(&pd_dev->dev,
1527                                 "%s request_irq failed\n", __func__);
1528                         return retval;
1529                 }
1530
1531                 /* reset PCH SPI h/w */
1532                 pch_spi_reset(data->master);
1533                 pch_spi_set_master_mode(data->master);
1534                 data->irq_reg_sts = true;
1535         }
1536         return 0;
1537 }
1538 #else
1539 #define pch_spi_pd_suspend NULL
1540 #define pch_spi_pd_resume NULL
1541 #endif
1542
1543 static struct platform_driver pch_spi_pd_driver = {
1544         .driver = {
1545                 .name = "pch-spi",
1546         },
1547         .probe = pch_spi_pd_probe,
1548         .remove = pch_spi_pd_remove,
1549         .suspend = pch_spi_pd_suspend,
1550         .resume = pch_spi_pd_resume
1551 };
1552
1553 static int pch_spi_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1554 {
1555         struct pch_spi_board_data *board_dat;
1556         struct platform_device *pd_dev = NULL;
1557         int retval;
1558         int i;
1559         struct pch_pd_dev_save *pd_dev_save;
1560
1561         pd_dev_save = kzalloc(sizeof(*pd_dev_save), GFP_KERNEL);
1562         if (!pd_dev_save)
1563                 return -ENOMEM;
1564
1565         board_dat = kzalloc(sizeof(*board_dat), GFP_KERNEL);
1566         if (!board_dat) {
1567                 retval = -ENOMEM;
1568                 goto err_no_mem;
1569         }
1570
1571         retval = pci_request_regions(pdev, KBUILD_MODNAME);
1572         if (retval) {
1573                 dev_err(&pdev->dev, "%s request_region failed\n", __func__);
1574                 goto pci_request_regions;
1575         }
1576
1577         board_dat->pdev = pdev;
1578         board_dat->num = id->driver_data;
1579         pd_dev_save->num = id->driver_data;
1580         pd_dev_save->board_dat = board_dat;
1581
1582         retval = pci_enable_device(pdev);
1583         if (retval) {
1584                 dev_err(&pdev->dev, "%s pci_enable_device failed\n", __func__);
1585                 goto pci_enable_device;
1586         }
1587
1588         for (i = 0; i < board_dat->num; i++) {
1589                 pd_dev = platform_device_alloc("pch-spi", i);
1590                 if (!pd_dev) {
1591                         dev_err(&pdev->dev, "platform_device_alloc failed\n");
1592                         retval = -ENOMEM;
1593                         goto err_platform_device;
1594                 }
1595                 pd_dev_save->pd_save[i] = pd_dev;
1596                 pd_dev->dev.parent = &pdev->dev;
1597
1598                 retval = platform_device_add_data(pd_dev, board_dat,
1599                                                   sizeof(*board_dat));
1600                 if (retval) {
1601                         dev_err(&pdev->dev,
1602                                 "platform_device_add_data failed\n");
1603                         platform_device_put(pd_dev);
1604                         goto err_platform_device;
1605                 }
1606
1607                 retval = platform_device_add(pd_dev);
1608                 if (retval) {
1609                         dev_err(&pdev->dev, "platform_device_add failed\n");
1610                         platform_device_put(pd_dev);
1611                         goto err_platform_device;
1612                 }
1613         }
1614
1615         pci_set_drvdata(pdev, pd_dev_save);
1616
1617         return 0;
1618
1619 err_platform_device:
1620         while (--i >= 0)
1621                 platform_device_unregister(pd_dev_save->pd_save[i]);
1622         pci_disable_device(pdev);
1623 pci_enable_device:
1624         pci_release_regions(pdev);
1625 pci_request_regions:
1626         kfree(board_dat);
1627 err_no_mem:
1628         kfree(pd_dev_save);
1629
1630         return retval;
1631 }
1632
1633 static void pch_spi_remove(struct pci_dev *pdev)
1634 {
1635         int i;
1636         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1637
1638         dev_dbg(&pdev->dev, "%s ENTRY:pdev=%p\n", __func__, pdev);
1639
1640         for (i = 0; i < pd_dev_save->num; i++)
1641                 platform_device_unregister(pd_dev_save->pd_save[i]);
1642
1643         pci_disable_device(pdev);
1644         pci_release_regions(pdev);
1645         kfree(pd_dev_save->board_dat);
1646         kfree(pd_dev_save);
1647 }
1648
1649 #ifdef CONFIG_PM
1650 static int pch_spi_suspend(struct pci_dev *pdev, pm_message_t state)
1651 {
1652         int retval;
1653         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1654
1655         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1656
1657         pd_dev_save->board_dat->suspend_sts = true;
1658
1659         /* save config space */
1660         retval = pci_save_state(pdev);
1661         if (retval == 0) {
1662                 pci_enable_wake(pdev, PCI_D3hot, 0);
1663                 pci_disable_device(pdev);
1664                 pci_set_power_state(pdev, PCI_D3hot);
1665         } else {
1666                 dev_err(&pdev->dev, "%s pci_save_state failed\n", __func__);
1667         }
1668
1669         return retval;
1670 }
1671
1672 static int pch_spi_resume(struct pci_dev *pdev)
1673 {
1674         int retval;
1675         struct pch_pd_dev_save *pd_dev_save = pci_get_drvdata(pdev);
1676         dev_dbg(&pdev->dev, "%s ENTRY\n", __func__);
1677
1678         pci_set_power_state(pdev, PCI_D0);
1679         pci_restore_state(pdev);
1680
1681         retval = pci_enable_device(pdev);
1682         if (retval < 0) {
1683                 dev_err(&pdev->dev,
1684                         "%s pci_enable_device failed\n", __func__);
1685         } else {
1686                 pci_enable_wake(pdev, PCI_D3hot, 0);
1687
1688                 /* set suspend status to false */
1689                 pd_dev_save->board_dat->suspend_sts = false;
1690         }
1691
1692         return retval;
1693 }
1694 #else
1695 #define pch_spi_suspend NULL
1696 #define pch_spi_resume NULL
1697
1698 #endif
1699
1700 static struct pci_driver pch_spi_pcidev_driver = {
1701         .name = "pch_spi",
1702         .id_table = pch_spi_pcidev_id,
1703         .probe = pch_spi_probe,
1704         .remove = pch_spi_remove,
1705         .suspend = pch_spi_suspend,
1706         .resume = pch_spi_resume,
1707 };
1708
1709 static int __init pch_spi_init(void)
1710 {
1711         int ret;
1712         ret = platform_driver_register(&pch_spi_pd_driver);
1713         if (ret)
1714                 return ret;
1715
1716         ret = pci_register_driver(&pch_spi_pcidev_driver);
1717         if (ret) {
1718                 platform_driver_unregister(&pch_spi_pd_driver);
1719                 return ret;
1720         }
1721
1722         return 0;
1723 }
1724 module_init(pch_spi_init);
1725
1726 static void __exit pch_spi_exit(void)
1727 {
1728         pci_unregister_driver(&pch_spi_pcidev_driver);
1729         platform_driver_unregister(&pch_spi_pd_driver);
1730 }
1731 module_exit(pch_spi_exit);
1732
1733 module_param(use_dma, int, 0644);
1734 MODULE_PARM_DESC(use_dma,
1735                  "to use DMA for data transfers pass 1 else 0; default 1");
1736
1737 MODULE_LICENSE("GPL");
1738 MODULE_DESCRIPTION("Intel EG20T PCH/LAPIS Semiconductor ML7xxx IOH SPI Driver");
1739 MODULE_DEVICE_TABLE(pci, pch_spi_pcidev_id);
1740