GNU Linux-libre 4.9.337-gnu1
[releases.git] / drivers / staging / comedi / drivers / s626.c
1 /*
2  * comedi/drivers/s626.c
3  * Sensoray s626 Comedi driver
4  *
5  * COMEDI - Linux Control and Measurement Device Interface
6  * Copyright (C) 2000 David A. Schleef <ds@schleef.org>
7  *
8  * Based on Sensoray Model 626 Linux driver Version 0.2
9  * Copyright (C) 2002-2004 Sensoray Co., Inc.
10  *
11  * This program is free software; you can redistribute it and/or modify
12  * it under the terms of the GNU General Public License as published by
13  * the Free Software Foundation; either version 2 of the License, or
14  * (at your option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  */
21
22 /*
23  * Driver: s626
24  * Description: Sensoray 626 driver
25  * Devices: [Sensoray] 626 (s626)
26  * Authors: Gianluca Palli <gpalli@deis.unibo.it>,
27  * Updated: Fri, 15 Feb 2008 10:28:42 +0000
28  * Status: experimental
29
30  * Configuration options: not applicable, uses PCI auto config
31
32  * INSN_CONFIG instructions:
33  *   analog input:
34  *    none
35  *
36  *   analog output:
37  *    none
38  *
39  *   digital channel:
40  *    s626 has 3 dio subdevices (2,3 and 4) each with 16 i/o channels
41  *    supported configuration options:
42  *    INSN_CONFIG_DIO_QUERY
43  *    COMEDI_INPUT
44  *    COMEDI_OUTPUT
45  *
46  *   encoder:
47  *    Every channel must be configured before reading.
48  *
49  *   Example code
50  *
51  *    insn.insn=INSN_CONFIG;   //configuration instruction
52  *    insn.n=1;                //number of operation (must be 1)
53  *    insn.data=&initialvalue; //initial value loaded into encoder
54  *                             //during configuration
55  *    insn.subdev=5;           //encoder subdevice
56  *    insn.chanspec=CR_PACK(encoder_channel,0,AREF_OTHER); //encoder_channel
57  *                                                         //to configure
58  *
59  *    comedi_do_insn(cf,&insn); //executing configuration
60  */
61
62 #include <linux/module.h>
63 #include <linux/delay.h>
64 #include <linux/interrupt.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67
68 #include "../comedi_pci.h"
69
70 #include "s626.h"
71
72 struct s626_buffer_dma {
73         dma_addr_t physical_base;
74         void *logical_base;
75 };
76
77 struct s626_private {
78         uint8_t ai_cmd_running;         /* ai_cmd is running */
79         unsigned int ai_sample_timer;   /* time between samples in
80                                          * units of the timer */
81         int ai_convert_count;           /* conversion counter */
82         unsigned int ai_convert_timer;  /* time between conversion in
83                                          * units of the timer */
84         uint16_t counter_int_enabs;     /* counter interrupt enable mask
85                                          * for MISC2 register */
86         uint8_t adc_items;              /* number of items in ADC poll list */
87         struct s626_buffer_dma rps_buf; /* DMA buffer used to hold ADC (RPS1)
88                                          * program */
89         struct s626_buffer_dma ana_buf; /* DMA buffer used to receive ADC data
90                                          * and hold DAC data */
91         uint32_t *dac_wbuf;             /* pointer to logical adrs of DMA buffer
92                                          * used to hold DAC data */
93         uint16_t dacpol;                /* image of DAC polarity register */
94         uint8_t trim_setpoint[12];      /* images of TrimDAC setpoints */
95         uint32_t i2c_adrs;              /* I2C device address for onboard EEPROM
96                                          * (board rev dependent) */
97 };
98
99 /* Counter overflow/index event flag masks for RDMISC2. */
100 #define S626_INDXMASK(C) (1 << (((C) > 2) ? ((C) * 2 - 1) : ((C) * 2 +  4)))
101 #define S626_OVERMASK(C) (1 << (((C) > 2) ? ((C) * 2 + 5) : ((C) * 2 + 10)))
102
103 /*
104  * Enable/disable a function or test status bit(s) that are accessed
105  * through Main Control Registers 1 or 2.
106  */
107 static void s626_mc_enable(struct comedi_device *dev,
108                            unsigned int cmd, unsigned int reg)
109 {
110         unsigned int val = (cmd << 16) | cmd;
111
112         mmiowb();
113         writel(val, dev->mmio + reg);
114 }
115
116 static void s626_mc_disable(struct comedi_device *dev,
117                             unsigned int cmd, unsigned int reg)
118 {
119         writel(cmd << 16, dev->mmio + reg);
120         mmiowb();
121 }
122
123 static bool s626_mc_test(struct comedi_device *dev,
124                          unsigned int cmd, unsigned int reg)
125 {
126         unsigned int val;
127
128         val = readl(dev->mmio + reg);
129
130         return (val & cmd) ? true : false;
131 }
132
133 #define S626_BUGFIX_STREG(REGADRS)   ((REGADRS) - 4)
134
135 /* Write a time slot control record to TSL2. */
136 #define S626_VECTPORT(VECTNUM)          (S626_P_TSL2 + ((VECTNUM) << 2))
137
138 static const struct comedi_lrange s626_range_table = {
139         2, {
140                 BIP_RANGE(5),
141                 BIP_RANGE(10)
142         }
143 };
144
145 /*
146  * Execute a DEBI transfer.  This must be called from within a critical section.
147  */
148 static void s626_debi_transfer(struct comedi_device *dev)
149 {
150         static const int timeout = 10000;
151         int i;
152
153         /* Initiate upload of shadow RAM to DEBI control register */
154         s626_mc_enable(dev, S626_MC2_UPLD_DEBI, S626_P_MC2);
155
156         /*
157          * Wait for completion of upload from shadow RAM to
158          * DEBI control register.
159          */
160         for (i = 0; i < timeout; i++) {
161                 if (s626_mc_test(dev, S626_MC2_UPLD_DEBI, S626_P_MC2))
162                         break;
163                 udelay(1);
164         }
165         if (i == timeout)
166                 dev_err(dev->class_dev,
167                         "Timeout while uploading to DEBI control register\n");
168
169         /* Wait until DEBI transfer is done */
170         for (i = 0; i < timeout; i++) {
171                 if (!(readl(dev->mmio + S626_P_PSR) & S626_PSR_DEBI_S))
172                         break;
173                 udelay(1);
174         }
175         if (i == timeout)
176                 dev_err(dev->class_dev, "DEBI transfer timeout\n");
177 }
178
179 /*
180  * Read a value from a gate array register.
181  */
182 static uint16_t s626_debi_read(struct comedi_device *dev, uint16_t addr)
183 {
184         /* Set up DEBI control register value in shadow RAM */
185         writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
186
187         /*  Execute the DEBI transfer. */
188         s626_debi_transfer(dev);
189
190         return readl(dev->mmio + S626_P_DEBIAD);
191 }
192
193 /*
194  * Write a value to a gate array register.
195  */
196 static void s626_debi_write(struct comedi_device *dev, uint16_t addr,
197                             uint16_t wdata)
198 {
199         /* Set up DEBI control register value in shadow RAM */
200         writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
201         writel(wdata, dev->mmio + S626_P_DEBIAD);
202
203         /*  Execute the DEBI transfer. */
204         s626_debi_transfer(dev);
205 }
206
207 /*
208  * Replace the specified bits in a gate array register.  Imports: mask
209  * specifies bits that are to be preserved, wdata is new value to be
210  * or'd with the masked original.
211  */
212 static void s626_debi_replace(struct comedi_device *dev, unsigned int addr,
213                               unsigned int mask, unsigned int wdata)
214 {
215         unsigned int val;
216
217         addr &= 0xffff;
218         writel(S626_DEBI_CMD_RDWORD | addr, dev->mmio + S626_P_DEBICMD);
219         s626_debi_transfer(dev);
220
221         writel(S626_DEBI_CMD_WRWORD | addr, dev->mmio + S626_P_DEBICMD);
222         val = readl(dev->mmio + S626_P_DEBIAD);
223         val &= mask;
224         val |= wdata;
225         writel(val & 0xffff, dev->mmio + S626_P_DEBIAD);
226         s626_debi_transfer(dev);
227 }
228
229 /* **************  EEPROM ACCESS FUNCTIONS  ************** */
230
231 static int s626_i2c_handshake_eoc(struct comedi_device *dev,
232                                   struct comedi_subdevice *s,
233                                   struct comedi_insn *insn,
234                                   unsigned long context)
235 {
236         bool status;
237
238         status = s626_mc_test(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
239         if (status)
240                 return 0;
241         return -EBUSY;
242 }
243
244 static int s626_i2c_handshake(struct comedi_device *dev, uint32_t val)
245 {
246         unsigned int ctrl;
247         int ret;
248
249         /* Write I2C command to I2C Transfer Control shadow register */
250         writel(val, dev->mmio + S626_P_I2CCTRL);
251
252         /*
253          * Upload I2C shadow registers into working registers and
254          * wait for upload confirmation.
255          */
256         s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
257         ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
258         if (ret)
259                 return ret;
260
261         /* Wait until I2C bus transfer is finished or an error occurs */
262         do {
263                 ctrl = readl(dev->mmio + S626_P_I2CCTRL);
264         } while ((ctrl & (S626_I2C_BUSY | S626_I2C_ERR)) == S626_I2C_BUSY);
265
266         /* Return non-zero if I2C error occurred */
267         return ctrl & S626_I2C_ERR;
268 }
269
270 /* Read uint8_t from EEPROM. */
271 static uint8_t s626_i2c_read(struct comedi_device *dev, uint8_t addr)
272 {
273         struct s626_private *devpriv = dev->private;
274
275         /*
276          * Send EEPROM target address:
277          *  Byte2 = I2C command: write to I2C EEPROM device.
278          *  Byte1 = EEPROM internal target address.
279          *  Byte0 = Not sent.
280          */
281         if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
282                                                 devpriv->i2c_adrs) |
283                                     S626_I2C_B1(S626_I2C_ATTRSTOP, addr) |
284                                     S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
285                 /* Abort function and declare error if handshake failed. */
286                 return 0;
287
288         /*
289          * Execute EEPROM read:
290          *  Byte2 = I2C command: read from I2C EEPROM device.
291          *  Byte1 receives uint8_t from EEPROM.
292          *  Byte0 = Not sent.
293          */
294         if (s626_i2c_handshake(dev, S626_I2C_B2(S626_I2C_ATTRSTART,
295                                                 (devpriv->i2c_adrs | 1)) |
296                                     S626_I2C_B1(S626_I2C_ATTRSTOP, 0) |
297                                     S626_I2C_B0(S626_I2C_ATTRNOP, 0)))
298                 /* Abort function and declare error if handshake failed. */
299                 return 0;
300
301         return (readl(dev->mmio + S626_P_I2CCTRL) >> 16) & 0xff;
302 }
303
304 /* ***********  DAC FUNCTIONS *********** */
305
306 /* TrimDac LogicalChan-to-PhysicalChan mapping table. */
307 static const uint8_t s626_trimchan[] = { 10, 9, 8, 3, 2, 7, 6, 1, 0, 5, 4 };
308
309 /* TrimDac LogicalChan-to-EepromAdrs mapping table. */
310 static const uint8_t s626_trimadrs[] = {
311         0x40, 0x41, 0x42, 0x50, 0x51, 0x52, 0x53, 0x60, 0x61, 0x62, 0x63
312 };
313
314 enum {
315         s626_send_dac_wait_not_mc1_a2out,
316         s626_send_dac_wait_ssr_af2_out,
317         s626_send_dac_wait_fb_buffer2_msb_00,
318         s626_send_dac_wait_fb_buffer2_msb_ff
319 };
320
321 static int s626_send_dac_eoc(struct comedi_device *dev,
322                              struct comedi_subdevice *s,
323                              struct comedi_insn *insn,
324                              unsigned long context)
325 {
326         unsigned int status;
327
328         switch (context) {
329         case s626_send_dac_wait_not_mc1_a2out:
330                 status = readl(dev->mmio + S626_P_MC1);
331                 if (!(status & S626_MC1_A2OUT))
332                         return 0;
333                 break;
334         case s626_send_dac_wait_ssr_af2_out:
335                 status = readl(dev->mmio + S626_P_SSR);
336                 if (status & S626_SSR_AF2_OUT)
337                         return 0;
338                 break;
339         case s626_send_dac_wait_fb_buffer2_msb_00:
340                 status = readl(dev->mmio + S626_P_FB_BUFFER2);
341                 if (!(status & 0xff000000))
342                         return 0;
343                 break;
344         case s626_send_dac_wait_fb_buffer2_msb_ff:
345                 status = readl(dev->mmio + S626_P_FB_BUFFER2);
346                 if (status & 0xff000000)
347                         return 0;
348                 break;
349         default:
350                 return -EINVAL;
351         }
352         return -EBUSY;
353 }
354
355 /*
356  * Private helper function: Transmit serial data to DAC via Audio
357  * channel 2.  Assumes: (1) TSL2 slot records initialized, and (2)
358  * dacpol contains valid target image.
359  */
360 static int s626_send_dac(struct comedi_device *dev, uint32_t val)
361 {
362         struct s626_private *devpriv = dev->private;
363         int ret;
364
365         /* START THE SERIAL CLOCK RUNNING ------------- */
366
367         /*
368          * Assert DAC polarity control and enable gating of DAC serial clock
369          * and audio bit stream signals.  At this point in time we must be
370          * assured of being in time slot 0.  If we are not in slot 0, the
371          * serial clock and audio stream signals will be disabled; this is
372          * because the following s626_debi_write statement (which enables
373          * signals to be passed through the gate array) would execute before
374          * the trailing edge of WS1/WS3 (which turns off the signals), thus
375          * causing the signals to be inactive during the DAC write.
376          */
377         s626_debi_write(dev, S626_LP_DACPOL, devpriv->dacpol);
378
379         /* TRANSFER OUTPUT DWORD VALUE INTO A2'S OUTPUT FIFO ---------------- */
380
381         /* Copy DAC setpoint value to DAC's output DMA buffer. */
382         /* writel(val, dev->mmio + (uint32_t)devpriv->dac_wbuf); */
383         *devpriv->dac_wbuf = val;
384
385         /*
386          * Enable the output DMA transfer. This will cause the DMAC to copy
387          * the DAC's data value to A2's output FIFO. The DMA transfer will
388          * then immediately terminate because the protection address is
389          * reached upon transfer of the first DWORD value.
390          */
391         s626_mc_enable(dev, S626_MC1_A2OUT, S626_P_MC1);
392
393         /* While the DMA transfer is executing ... */
394
395         /*
396          * Reset Audio2 output FIFO's underflow flag (along with any
397          * other FIFO underflow/overflow flags). When set, this flag
398          * will indicate that we have emerged from slot 0.
399          */
400         writel(S626_ISR_AFOU, dev->mmio + S626_P_ISR);
401
402         /*
403          * Wait for the DMA transfer to finish so that there will be data
404          * available in the FIFO when time slot 1 tries to transfer a DWORD
405          * from the FIFO to the output buffer register.  We test for DMA
406          * Done by polling the DMAC enable flag; this flag is automatically
407          * cleared when the transfer has finished.
408          */
409         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
410                              s626_send_dac_wait_not_mc1_a2out);
411         if (ret) {
412                 dev_err(dev->class_dev, "DMA transfer timeout\n");
413                 return ret;
414         }
415
416         /* START THE OUTPUT STREAM TO THE TARGET DAC -------------------- */
417
418         /*
419          * FIFO data is now available, so we enable execution of time slots
420          * 1 and higher by clearing the EOS flag in slot 0.  Note that SD3
421          * will be shifted in and stored in FB_BUFFER2 for end-of-slot-list
422          * detection.
423          */
424         writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2,
425                dev->mmio + S626_VECTPORT(0));
426
427         /*
428          * Wait for slot 1 to execute to ensure that the Packet will be
429          * transmitted.  This is detected by polling the Audio2 output FIFO
430          * underflow flag, which will be set when slot 1 execution has
431          * finished transferring the DAC's data DWORD from the output FIFO
432          * to the output buffer register.
433          */
434         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
435                              s626_send_dac_wait_ssr_af2_out);
436         if (ret) {
437                 dev_err(dev->class_dev,
438                         "TSL timeout waiting for slot 1 to execute\n");
439                 return ret;
440         }
441
442         /*
443          * Set up to trap execution at slot 0 when the TSL sequencer cycles
444          * back to slot 0 after executing the EOS in slot 5.  Also,
445          * simultaneously shift out and in the 0x00 that is ALWAYS the value
446          * stored in the last byte to be shifted out of the FIFO's DWORD
447          * buffer register.
448          */
449         writel(S626_XSD2 | S626_XFIFO_2 | S626_RSD2 | S626_SIB_A2 | S626_EOS,
450                dev->mmio + S626_VECTPORT(0));
451
452         /* WAIT FOR THE TRANSACTION TO FINISH ----------------------- */
453
454         /*
455          * Wait for the TSL to finish executing all time slots before
456          * exiting this function.  We must do this so that the next DAC
457          * write doesn't start, thereby enabling clock/chip select signals:
458          *
459          * 1. Before the TSL sequence cycles back to slot 0, which disables
460          *    the clock/cs signal gating and traps slot // list execution.
461          *    we have not yet finished slot 5 then the clock/cs signals are
462          *    still gated and we have not finished transmitting the stream.
463          *
464          * 2. While slots 2-5 are executing due to a late slot 0 trap.  In
465          *    this case, the slot sequence is currently repeating, but with
466          *    clock/cs signals disabled.  We must wait for slot 0 to trap
467          *    execution before setting up the next DAC setpoint DMA transfer
468          *    and enabling the clock/cs signals.  To detect the end of slot 5,
469          *    we test for the FB_BUFFER2 MSB contents to be equal to 0xFF.  If
470          *    the TSL has not yet finished executing slot 5 ...
471          */
472         if (readl(dev->mmio + S626_P_FB_BUFFER2) & 0xff000000) {
473                 /*
474                  * The trap was set on time and we are still executing somewhere
475                  * in slots 2-5, so we now wait for slot 0 to execute and trap
476                  * TSL execution.  This is detected when FB_BUFFER2 MSB changes
477                  * from 0xFF to 0x00, which slot 0 causes to happen by shifting
478                  * out/in on SD2 the 0x00 that is always referenced by slot 5.
479                  */
480                 ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
481                                      s626_send_dac_wait_fb_buffer2_msb_00);
482                 if (ret) {
483                         dev_err(dev->class_dev,
484                                 "TSL timeout waiting for slot 0 to execute\n");
485                         return ret;
486                 }
487         }
488         /*
489          * Either (1) we were too late setting the slot 0 trap; the TSL
490          * sequencer restarted slot 0 before we could set the EOS trap flag,
491          * or (2) we were not late and execution is now trapped at slot 0.
492          * In either case, we must now change slot 0 so that it will store
493          * value 0xFF (instead of 0x00) to FB_BUFFER2 next time it executes.
494          * In order to do this, we reprogram slot 0 so that it will shift in
495          * SD3, which is driven only by a pull-up resistor.
496          */
497         writel(S626_RSD3 | S626_SIB_A2 | S626_EOS,
498                dev->mmio + S626_VECTPORT(0));
499
500         /*
501          * Wait for slot 0 to execute, at which time the TSL is setup for
502          * the next DAC write.  This is detected when FB_BUFFER2 MSB changes
503          * from 0x00 to 0xFF.
504          */
505         ret = comedi_timeout(dev, NULL, NULL, s626_send_dac_eoc,
506                              s626_send_dac_wait_fb_buffer2_msb_ff);
507         if (ret) {
508                 dev_err(dev->class_dev,
509                         "TSL timeout waiting for slot 0 to execute\n");
510                 return ret;
511         }
512         return 0;
513 }
514
515 /*
516  * Private helper function: Write setpoint to an application DAC channel.
517  */
518 static int s626_set_dac(struct comedi_device *dev,
519                         uint16_t chan, int16_t dacdata)
520 {
521         struct s626_private *devpriv = dev->private;
522         uint16_t signmask;
523         uint32_t ws_image;
524         uint32_t val;
525
526         /*
527          * Adjust DAC data polarity and set up Polarity Control Register image.
528          */
529         signmask = 1 << chan;
530         if (dacdata < 0) {
531                 dacdata = -dacdata;
532                 devpriv->dacpol |= signmask;
533         } else {
534                 devpriv->dacpol &= ~signmask;
535         }
536
537         /* Limit DAC setpoint value to valid range. */
538         if ((uint16_t)dacdata > 0x1FFF)
539                 dacdata = 0x1FFF;
540
541         /*
542          * Set up TSL2 records (aka "vectors") for DAC update.  Vectors V2
543          * and V3 transmit the setpoint to the target DAC.  V4 and V5 send
544          * data to a non-existent TrimDac channel just to keep the clock
545          * running after sending data to the target DAC.  This is necessary
546          * to eliminate the clock glitch that would otherwise occur at the
547          * end of the target DAC's serial data stream.  When the sequence
548          * restarts at V0 (after executing V5), the gate array automatically
549          * disables gating for the DAC clock and all DAC chip selects.
550          */
551
552         /* Choose DAC chip select to be asserted */
553         ws_image = (chan & 2) ? S626_WS1 : S626_WS2;
554         /* Slot 2: Transmit high data byte to target DAC */
555         writel(S626_XSD2 | S626_XFIFO_1 | ws_image,
556                dev->mmio + S626_VECTPORT(2));
557         /* Slot 3: Transmit low data byte to target DAC */
558         writel(S626_XSD2 | S626_XFIFO_0 | ws_image,
559                dev->mmio + S626_VECTPORT(3));
560         /* Slot 4: Transmit to non-existent TrimDac channel to keep clock */
561         writel(S626_XSD2 | S626_XFIFO_3 | S626_WS3,
562                dev->mmio + S626_VECTPORT(4));
563         /* Slot 5: running after writing target DAC's low data byte */
564         writel(S626_XSD2 | S626_XFIFO_2 | S626_WS3 | S626_EOS,
565                dev->mmio + S626_VECTPORT(5));
566
567         /*
568          * Construct and transmit target DAC's serial packet:
569          * (A10D DDDD), (DDDD DDDD), (0x0F), (0x00) where A is chan<0>,
570          * and D<12:0> is the DAC setpoint.  Append a WORD value (that writes
571          * to a  non-existent TrimDac channel) that serves to keep the clock
572          * running after the packet has been sent to the target DAC.
573          */
574         val = 0x0F000000;       /* Continue clock after target DAC data
575                                  * (write to non-existent trimdac). */
576         val |= 0x00004000;      /* Address the two main dual-DAC devices
577                                  * (TSL's chip select enables target device). */
578         val |= ((uint32_t)(chan & 1) << 15);    /* Address the DAC channel
579                                                  * within the device. */
580         val |= (uint32_t)dacdata;       /* Include DAC setpoint data. */
581         return s626_send_dac(dev, val);
582 }
583
584 static int s626_write_trim_dac(struct comedi_device *dev,
585                                uint8_t logical_chan, uint8_t dac_data)
586 {
587         struct s626_private *devpriv = dev->private;
588         uint32_t chan;
589
590         /*
591          * Save the new setpoint in case the application needs to read it back
592          * later.
593          */
594         devpriv->trim_setpoint[logical_chan] = (uint8_t)dac_data;
595
596         /* Map logical channel number to physical channel number. */
597         chan = s626_trimchan[logical_chan];
598
599         /*
600          * Set up TSL2 records for TrimDac write operation.  All slots shift
601          * 0xFF in from pulled-up SD3 so that the end of the slot sequence
602          * can be detected.
603          */
604
605         /* Slot 2: Send high uint8_t to target TrimDac */
606         writel(S626_XSD2 | S626_XFIFO_1 | S626_WS3,
607                dev->mmio + S626_VECTPORT(2));
608         /* Slot 3: Send low uint8_t to target TrimDac */
609         writel(S626_XSD2 | S626_XFIFO_0 | S626_WS3,
610                dev->mmio + S626_VECTPORT(3));
611         /* Slot 4: Send NOP high uint8_t to DAC0 to keep clock running */
612         writel(S626_XSD2 | S626_XFIFO_3 | S626_WS1,
613                dev->mmio + S626_VECTPORT(4));
614         /* Slot 5: Send NOP low  uint8_t to DAC0 */
615         writel(S626_XSD2 | S626_XFIFO_2 | S626_WS1 | S626_EOS,
616                dev->mmio + S626_VECTPORT(5));
617
618         /*
619          * Construct and transmit target DAC's serial packet:
620          * (0000 AAAA), (DDDD DDDD), (0x00), (0x00) where A<3:0> is the
621          * DAC channel's address, and D<7:0> is the DAC setpoint.  Append a
622          * WORD value (that writes a channel 0 NOP command to a non-existent
623          * main DAC channel) that serves to keep the clock running after the
624          * packet has been sent to the target DAC.
625          */
626
627         /*
628          * Address the DAC channel within the trimdac device.
629          * Include DAC setpoint data.
630          */
631         return s626_send_dac(dev, (chan << 8) | dac_data);
632 }
633
634 static int s626_load_trim_dacs(struct comedi_device *dev)
635 {
636         uint8_t i;
637         int ret;
638
639         /* Copy TrimDac setpoint values from EEPROM to TrimDacs. */
640         for (i = 0; i < ARRAY_SIZE(s626_trimchan); i++) {
641                 ret = s626_write_trim_dac(dev, i,
642                                           s626_i2c_read(dev, s626_trimadrs[i]));
643                 if (ret)
644                         return ret;
645         }
646         return 0;
647 }
648
649 /* ******  COUNTER FUNCTIONS  ******* */
650
651 /*
652  * All counter functions address a specific counter by means of the
653  * "Counter" argument, which is a logical counter number.  The Counter
654  * argument may have any of the following legal values: 0=0A, 1=1A,
655  * 2=2A, 3=0B, 4=1B, 5=2B.
656  */
657
658 /*
659  * Return/set a counter pair's latch trigger source.  0: On read
660  * access, 1: A index latches A, 2: B index latches B, 3: A overflow
661  * latches B.
662  */
663 static void s626_set_latch_source(struct comedi_device *dev,
664                                   unsigned int chan, uint16_t value)
665 {
666         s626_debi_replace(dev, S626_LP_CRB(chan),
667                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_LATCHSRC),
668                           S626_SET_CRB_LATCHSRC(value));
669 }
670
671 /*
672  * Write value into counter preload register.
673  */
674 static void s626_preload(struct comedi_device *dev,
675                          unsigned int chan, uint32_t value)
676 {
677         s626_debi_write(dev, S626_LP_CNTR(chan), value);
678         s626_debi_write(dev, S626_LP_CNTR(chan) + 2, value >> 16);
679 }
680
681 /* ******  PRIVATE COUNTER FUNCTIONS ****** */
682
683 /*
684  * Reset a counter's index and overflow event capture flags.
685  */
686 static void s626_reset_cap_flags(struct comedi_device *dev,
687                                  unsigned int chan)
688 {
689         uint16_t set;
690
691         set = S626_SET_CRB_INTRESETCMD(1);
692         if (chan < 3)
693                 set |= S626_SET_CRB_INTRESET_A(1);
694         else
695                 set |= S626_SET_CRB_INTRESET_B(1);
696
697         s626_debi_replace(dev, S626_LP_CRB(chan), ~S626_CRBMSK_INTCTRL, set);
698 }
699
700 /*
701  * Set the operating mode for the specified counter.  The setup
702  * parameter is treated as a COUNTER_SETUP data type.  The following
703  * parameters are programmable (all other parms are ignored): ClkMult,
704  * ClkPol, ClkEnab, IndexSrc, IndexPol, LoadSrc.
705  */
706 static void s626_set_mode_a(struct comedi_device *dev,
707                             unsigned int chan, uint16_t setup,
708                             uint16_t disable_int_src)
709 {
710         struct s626_private *devpriv = dev->private;
711         uint16_t cra;
712         uint16_t crb;
713         unsigned int cntsrc, clkmult, clkpol;
714
715         /* Initialize CRA and CRB images. */
716         /* Preload trigger is passed through. */
717         cra = S626_SET_CRA_LOADSRC_A(S626_GET_STD_LOADSRC(setup));
718         /* IndexSrc is passed through. */
719         cra |= S626_SET_CRA_INDXSRC_A(S626_GET_STD_INDXSRC(setup));
720
721         /* Reset any pending CounterA event captures. */
722         crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_A(1);
723         /* Clock enable is passed through. */
724         crb |= S626_SET_CRB_CLKENAB_A(S626_GET_STD_CLKENAB(setup));
725
726         /* Force IntSrc to Disabled if disable_int_src is asserted. */
727         if (!disable_int_src)
728                 cra |= S626_SET_CRA_INTSRC_A(S626_GET_STD_INTSRC(setup));
729
730         /* Populate all mode-dependent attributes of CRA & CRB images. */
731         clkpol = S626_GET_STD_CLKPOL(setup);
732         switch (S626_GET_STD_ENCMODE(setup)) {
733         case S626_ENCMODE_EXTENDER: /* Extender Mode: */
734                 /* Force to Timer mode (Extender valid only for B counters). */
735                 /* Fall through to case S626_ENCMODE_TIMER: */
736         case S626_ENCMODE_TIMER:        /* Timer Mode: */
737                 /* CntSrcA<1> selects system clock */
738                 cntsrc = S626_CNTSRC_SYSCLK;
739                 /* Count direction (CntSrcA<0>) obtained from ClkPol. */
740                 cntsrc |= clkpol;
741                 /* ClkPolA behaves as always-on clock enable. */
742                 clkpol = 1;
743                 /* ClkMult must be 1x. */
744                 clkmult = S626_CLKMULT_1X;
745                 break;
746         default:                /* Counter Mode: */
747                 /* Select ENC_C and ENC_D as clock/direction inputs. */
748                 cntsrc = S626_CNTSRC_ENCODER;
749                 /* Clock polarity is passed through. */
750                 /* Force multiplier to x1 if not legal, else pass through. */
751                 clkmult = S626_GET_STD_CLKMULT(setup);
752                 if (clkmult == S626_CLKMULT_SPECIAL)
753                         clkmult = S626_CLKMULT_1X;
754                 break;
755         }
756         cra |= S626_SET_CRA_CNTSRC_A(cntsrc) | S626_SET_CRA_CLKPOL_A(clkpol) |
757                S626_SET_CRA_CLKMULT_A(clkmult);
758
759         /*
760          * Force positive index polarity if IndxSrc is software-driven only,
761          * otherwise pass it through.
762          */
763         if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
764                 cra |= S626_SET_CRA_INDXPOL_A(S626_GET_STD_INDXPOL(setup));
765
766         /*
767          * If IntSrc has been forced to Disabled, update the MISC2 interrupt
768          * enable mask to indicate the counter interrupt is disabled.
769          */
770         if (disable_int_src)
771                 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
772                                                 S626_INDXMASK(chan));
773
774         /*
775          * While retaining CounterB and LatchSrc configurations, program the
776          * new counter operating mode.
777          */
778         s626_debi_replace(dev, S626_LP_CRA(chan),
779                           S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B, cra);
780         s626_debi_replace(dev, S626_LP_CRB(chan),
781                           ~(S626_CRBMSK_INTCTRL | S626_CRBMSK_CLKENAB_A), crb);
782 }
783
784 static void s626_set_mode_b(struct comedi_device *dev,
785                             unsigned int chan, uint16_t setup,
786                             uint16_t disable_int_src)
787 {
788         struct s626_private *devpriv = dev->private;
789         uint16_t cra;
790         uint16_t crb;
791         unsigned int cntsrc, clkmult, clkpol;
792
793         /* Initialize CRA and CRB images. */
794         /* IndexSrc is passed through. */
795         cra = S626_SET_CRA_INDXSRC_B(S626_GET_STD_INDXSRC(setup));
796
797         /* Reset event captures and disable interrupts. */
798         crb = S626_SET_CRB_INTRESETCMD(1) | S626_SET_CRB_INTRESET_B(1);
799         /* Clock enable is passed through. */
800         crb |= S626_SET_CRB_CLKENAB_B(S626_GET_STD_CLKENAB(setup));
801         /* Preload trigger source is passed through. */
802         crb |= S626_SET_CRB_LOADSRC_B(S626_GET_STD_LOADSRC(setup));
803
804         /* Force IntSrc to Disabled if disable_int_src is asserted. */
805         if (!disable_int_src)
806                 crb |= S626_SET_CRB_INTSRC_B(S626_GET_STD_INTSRC(setup));
807
808         /* Populate all mode-dependent attributes of CRA & CRB images. */
809         clkpol = S626_GET_STD_CLKPOL(setup);
810         switch (S626_GET_STD_ENCMODE(setup)) {
811         case S626_ENCMODE_TIMER:        /* Timer Mode: */
812                 /* CntSrcB<1> selects system clock */
813                 cntsrc = S626_CNTSRC_SYSCLK;
814                 /* with direction (CntSrcB<0>) obtained from ClkPol. */
815                 cntsrc |= clkpol;
816                 /* ClkPolB behaves as always-on clock enable. */
817                 clkpol = 1;
818                 /* ClkMultB must be 1x. */
819                 clkmult = S626_CLKMULT_1X;
820                 break;
821         case S626_ENCMODE_EXTENDER:     /* Extender Mode: */
822                 /* CntSrcB source is OverflowA (same as "timer") */
823                 cntsrc = S626_CNTSRC_SYSCLK;
824                 /* with direction obtained from ClkPol. */
825                 cntsrc |= clkpol;
826                 /* ClkPolB controls IndexB -- always set to active. */
827                 clkpol = 1;
828                 /* ClkMultB selects OverflowA as the clock source. */
829                 clkmult = S626_CLKMULT_SPECIAL;
830                 break;
831         default:                /* Counter Mode: */
832                 /* Select ENC_C and ENC_D as clock/direction inputs. */
833                 cntsrc = S626_CNTSRC_ENCODER;
834                 /* ClkPol is passed through. */
835                 /* Force ClkMult to x1 if not legal, otherwise pass through. */
836                 clkmult = S626_GET_STD_CLKMULT(setup);
837                 if (clkmult == S626_CLKMULT_SPECIAL)
838                         clkmult = S626_CLKMULT_1X;
839                 break;
840         }
841         cra |= S626_SET_CRA_CNTSRC_B(cntsrc);
842         crb |= S626_SET_CRB_CLKPOL_B(clkpol) | S626_SET_CRB_CLKMULT_B(clkmult);
843
844         /*
845          * Force positive index polarity if IndxSrc is software-driven only,
846          * otherwise pass it through.
847          */
848         if (S626_GET_STD_INDXSRC(setup) != S626_INDXSRC_SOFT)
849                 crb |= S626_SET_CRB_INDXPOL_B(S626_GET_STD_INDXPOL(setup));
850
851         /*
852          * If IntSrc has been forced to Disabled, update the MISC2 interrupt
853          * enable mask to indicate the counter interrupt is disabled.
854          */
855         if (disable_int_src)
856                 devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
857                                                 S626_INDXMASK(chan));
858
859         /*
860          * While retaining CounterA and LatchSrc configurations, program the
861          * new counter operating mode.
862          */
863         s626_debi_replace(dev, S626_LP_CRA(chan),
864                           ~(S626_CRAMSK_INDXSRC_B | S626_CRAMSK_CNTSRC_B), cra);
865         s626_debi_replace(dev, S626_LP_CRB(chan),
866                           S626_CRBMSK_CLKENAB_A | S626_CRBMSK_LATCHSRC, crb);
867 }
868
869 static void s626_set_mode(struct comedi_device *dev,
870                           unsigned int chan,
871                           uint16_t setup, uint16_t disable_int_src)
872 {
873         if (chan < 3)
874                 s626_set_mode_a(dev, chan, setup, disable_int_src);
875         else
876                 s626_set_mode_b(dev, chan, setup, disable_int_src);
877 }
878
879 /*
880  * Return/set a counter's enable.  enab: 0=always enabled, 1=enabled by index.
881  */
882 static void s626_set_enable(struct comedi_device *dev,
883                             unsigned int chan, uint16_t enab)
884 {
885         unsigned int mask = S626_CRBMSK_INTCTRL;
886         unsigned int set;
887
888         if (chan < 3) {
889                 mask |= S626_CRBMSK_CLKENAB_A;
890                 set = S626_SET_CRB_CLKENAB_A(enab);
891         } else {
892                 mask |= S626_CRBMSK_CLKENAB_B;
893                 set = S626_SET_CRB_CLKENAB_B(enab);
894         }
895         s626_debi_replace(dev, S626_LP_CRB(chan), ~mask, set);
896 }
897
898 /*
899  * Return/set the event that will trigger transfer of the preload
900  * register into the counter.  0=ThisCntr_Index, 1=ThisCntr_Overflow,
901  * 2=OverflowA (B counters only), 3=disabled.
902  */
903 static void s626_set_load_trig(struct comedi_device *dev,
904                                unsigned int chan, uint16_t trig)
905 {
906         uint16_t reg;
907         uint16_t mask;
908         uint16_t set;
909
910         if (chan < 3) {
911                 reg = S626_LP_CRA(chan);
912                 mask = S626_CRAMSK_LOADSRC_A;
913                 set = S626_SET_CRA_LOADSRC_A(trig);
914         } else {
915                 reg = S626_LP_CRB(chan);
916                 mask = S626_CRBMSK_LOADSRC_B | S626_CRBMSK_INTCTRL;
917                 set = S626_SET_CRB_LOADSRC_B(trig);
918         }
919         s626_debi_replace(dev, reg, ~mask, set);
920 }
921
922 /*
923  * Return/set counter interrupt source and clear any captured
924  * index/overflow events.  int_source: 0=Disabled, 1=OverflowOnly,
925  * 2=IndexOnly, 3=IndexAndOverflow.
926  */
927 static void s626_set_int_src(struct comedi_device *dev,
928                              unsigned int chan, uint16_t int_source)
929 {
930         struct s626_private *devpriv = dev->private;
931         uint16_t cra_reg = S626_LP_CRA(chan);
932         uint16_t crb_reg = S626_LP_CRB(chan);
933
934         if (chan < 3) {
935                 /* Reset any pending counter overflow or index captures */
936                 s626_debi_replace(dev, crb_reg, ~S626_CRBMSK_INTCTRL,
937                                   S626_SET_CRB_INTRESETCMD(1) |
938                                   S626_SET_CRB_INTRESET_A(1));
939
940                 /* Program counter interrupt source */
941                 s626_debi_replace(dev, cra_reg, ~S626_CRAMSK_INTSRC_A,
942                                   S626_SET_CRA_INTSRC_A(int_source));
943         } else {
944                 uint16_t crb;
945
946                 /* Cache writeable CRB register image */
947                 crb = s626_debi_read(dev, crb_reg);
948                 crb &= ~S626_CRBMSK_INTCTRL;
949
950                 /* Reset any pending counter overflow or index captures */
951                 s626_debi_write(dev, crb_reg,
952                                 crb | S626_SET_CRB_INTRESETCMD(1) |
953                                 S626_SET_CRB_INTRESET_B(1));
954
955                 /* Program counter interrupt source */
956                 s626_debi_write(dev, crb_reg,
957                                 (crb & ~S626_CRBMSK_INTSRC_B) |
958                                 S626_SET_CRB_INTSRC_B(int_source));
959         }
960
961         /* Update MISC2 interrupt enable mask. */
962         devpriv->counter_int_enabs &= ~(S626_OVERMASK(chan) |
963                                         S626_INDXMASK(chan));
964         switch (int_source) {
965         case 0:
966         default:
967                 break;
968         case 1:
969                 devpriv->counter_int_enabs |= S626_OVERMASK(chan);
970                 break;
971         case 2:
972                 devpriv->counter_int_enabs |= S626_INDXMASK(chan);
973                 break;
974         case 3:
975                 devpriv->counter_int_enabs |= (S626_OVERMASK(chan) |
976                                                S626_INDXMASK(chan));
977                 break;
978         }
979 }
980
981 /*
982  * Generate an index pulse.
983  */
984 static void s626_pulse_index(struct comedi_device *dev,
985                              unsigned int chan)
986 {
987         if (chan < 3) {
988                 uint16_t cra;
989
990                 cra = s626_debi_read(dev, S626_LP_CRA(chan));
991
992                 /* Pulse index */
993                 s626_debi_write(dev, S626_LP_CRA(chan),
994                                 (cra ^ S626_CRAMSK_INDXPOL_A));
995                 s626_debi_write(dev, S626_LP_CRA(chan), cra);
996         } else {
997                 uint16_t crb;
998
999                 crb = s626_debi_read(dev, S626_LP_CRB(chan));
1000                 crb &= ~S626_CRBMSK_INTCTRL;
1001
1002                 /* Pulse index */
1003                 s626_debi_write(dev, S626_LP_CRB(chan),
1004                                 (crb ^ S626_CRBMSK_INDXPOL_B));
1005                 s626_debi_write(dev, S626_LP_CRB(chan), crb);
1006         }
1007 }
1008
1009 static unsigned int s626_ai_reg_to_uint(unsigned int data)
1010 {
1011         return ((data >> 18) & 0x3fff) ^ 0x2000;
1012 }
1013
1014 static int s626_dio_set_irq(struct comedi_device *dev, unsigned int chan)
1015 {
1016         unsigned int group = chan / 16;
1017         unsigned int mask = 1 << (chan - (16 * group));
1018         unsigned int status;
1019
1020         /* set channel to capture positive edge */
1021         status = s626_debi_read(dev, S626_LP_RDEDGSEL(group));
1022         s626_debi_write(dev, S626_LP_WREDGSEL(group), mask | status);
1023
1024         /* enable interrupt on selected channel */
1025         status = s626_debi_read(dev, S626_LP_RDINTSEL(group));
1026         s626_debi_write(dev, S626_LP_WRINTSEL(group), mask | status);
1027
1028         /* enable edge capture write command */
1029         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_EDCAP);
1030
1031         /* enable edge capture on selected channel */
1032         status = s626_debi_read(dev, S626_LP_RDCAPSEL(group));
1033         s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask | status);
1034
1035         return 0;
1036 }
1037
1038 static int s626_dio_reset_irq(struct comedi_device *dev, unsigned int group,
1039                               unsigned int mask)
1040 {
1041         /* disable edge capture write command */
1042         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1043
1044         /* enable edge capture on selected channel */
1045         s626_debi_write(dev, S626_LP_WRCAPSEL(group), mask);
1046
1047         return 0;
1048 }
1049
1050 static int s626_dio_clear_irq(struct comedi_device *dev)
1051 {
1052         unsigned int group;
1053
1054         /* disable edge capture write command */
1055         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1056
1057         /* clear all dio pending events and interrupt */
1058         for (group = 0; group < S626_DIO_BANKS; group++)
1059                 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1060
1061         return 0;
1062 }
1063
1064 static void s626_handle_dio_interrupt(struct comedi_device *dev,
1065                                       uint16_t irqbit, uint8_t group)
1066 {
1067         struct s626_private *devpriv = dev->private;
1068         struct comedi_subdevice *s = dev->read_subdev;
1069         struct comedi_cmd *cmd = &s->async->cmd;
1070
1071         s626_dio_reset_irq(dev, group, irqbit);
1072
1073         if (devpriv->ai_cmd_running) {
1074                 /* check if interrupt is an ai acquisition start trigger */
1075                 if ((irqbit >> (cmd->start_arg - (16 * group))) == 1 &&
1076                     cmd->start_src == TRIG_EXT) {
1077                         /* Start executing the RPS program */
1078                         s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1079
1080                         if (cmd->scan_begin_src == TRIG_EXT)
1081                                 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1082                 }
1083                 if ((irqbit >> (cmd->scan_begin_arg - (16 * group))) == 1 &&
1084                     cmd->scan_begin_src == TRIG_EXT) {
1085                         /* Trigger ADC scan loop start */
1086                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1087
1088                         if (cmd->convert_src == TRIG_EXT) {
1089                                 devpriv->ai_convert_count = cmd->chanlist_len;
1090
1091                                 s626_dio_set_irq(dev, cmd->convert_arg);
1092                         }
1093
1094                         if (cmd->convert_src == TRIG_TIMER) {
1095                                 devpriv->ai_convert_count = cmd->chanlist_len;
1096                                 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1097                         }
1098                 }
1099                 if ((irqbit >> (cmd->convert_arg - (16 * group))) == 1 &&
1100                     cmd->convert_src == TRIG_EXT) {
1101                         /* Trigger ADC scan loop start */
1102                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1103
1104                         devpriv->ai_convert_count--;
1105                         if (devpriv->ai_convert_count > 0)
1106                                 s626_dio_set_irq(dev, cmd->convert_arg);
1107                 }
1108         }
1109 }
1110
1111 static void s626_check_dio_interrupts(struct comedi_device *dev)
1112 {
1113         uint16_t irqbit;
1114         uint8_t group;
1115
1116         for (group = 0; group < S626_DIO_BANKS; group++) {
1117                 /* read interrupt type */
1118                 irqbit = s626_debi_read(dev, S626_LP_RDCAPFLG(group));
1119
1120                 /* check if interrupt is generated from dio channels */
1121                 if (irqbit) {
1122                         s626_handle_dio_interrupt(dev, irqbit, group);
1123                         return;
1124                 }
1125         }
1126 }
1127
1128 static void s626_check_counter_interrupts(struct comedi_device *dev)
1129 {
1130         struct s626_private *devpriv = dev->private;
1131         struct comedi_subdevice *s = dev->read_subdev;
1132         struct comedi_async *async = s->async;
1133         struct comedi_cmd *cmd = &async->cmd;
1134         uint16_t irqbit;
1135
1136         /* read interrupt type */
1137         irqbit = s626_debi_read(dev, S626_LP_RDMISC2);
1138
1139         /* check interrupt on counters */
1140         if (irqbit & S626_IRQ_COINT1A) {
1141                 /* clear interrupt capture flag */
1142                 s626_reset_cap_flags(dev, 0);
1143         }
1144         if (irqbit & S626_IRQ_COINT2A) {
1145                 /* clear interrupt capture flag */
1146                 s626_reset_cap_flags(dev, 1);
1147         }
1148         if (irqbit & S626_IRQ_COINT3A) {
1149                 /* clear interrupt capture flag */
1150                 s626_reset_cap_flags(dev, 2);
1151         }
1152         if (irqbit & S626_IRQ_COINT1B) {
1153                 /* clear interrupt capture flag */
1154                 s626_reset_cap_flags(dev, 3);
1155         }
1156         if (irqbit & S626_IRQ_COINT2B) {
1157                 /* clear interrupt capture flag */
1158                 s626_reset_cap_flags(dev, 4);
1159
1160                 if (devpriv->ai_convert_count > 0) {
1161                         devpriv->ai_convert_count--;
1162                         if (devpriv->ai_convert_count == 0)
1163                                 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1164
1165                         if (cmd->convert_src == TRIG_TIMER) {
1166                                 /* Trigger ADC scan loop start */
1167                                 s626_mc_enable(dev, S626_MC2_ADC_RPS,
1168                                                S626_P_MC2);
1169                         }
1170                 }
1171         }
1172         if (irqbit & S626_IRQ_COINT3B) {
1173                 /* clear interrupt capture flag */
1174                 s626_reset_cap_flags(dev, 5);
1175
1176                 if (cmd->scan_begin_src == TRIG_TIMER) {
1177                         /* Trigger ADC scan loop start */
1178                         s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2);
1179                 }
1180
1181                 if (cmd->convert_src == TRIG_TIMER) {
1182                         devpriv->ai_convert_count = cmd->chanlist_len;
1183                         s626_set_enable(dev, 4, S626_CLKENAB_ALWAYS);
1184                 }
1185         }
1186 }
1187
1188 static bool s626_handle_eos_interrupt(struct comedi_device *dev)
1189 {
1190         struct s626_private *devpriv = dev->private;
1191         struct comedi_subdevice *s = dev->read_subdev;
1192         struct comedi_async *async = s->async;
1193         struct comedi_cmd *cmd = &async->cmd;
1194         /*
1195          * Init ptr to DMA buffer that holds new ADC data.  We skip the
1196          * first uint16_t in the buffer because it contains junk data
1197          * from the final ADC of the previous poll list scan.
1198          */
1199         uint32_t *readaddr = (uint32_t *)devpriv->ana_buf.logical_base + 1;
1200         int i;
1201
1202         /* get the data and hand it over to comedi */
1203         for (i = 0; i < cmd->chanlist_len; i++) {
1204                 unsigned short tempdata;
1205
1206                 /*
1207                  * Convert ADC data to 16-bit integer values and copy
1208                  * to application buffer.
1209                  */
1210                 tempdata = s626_ai_reg_to_uint(*readaddr);
1211                 readaddr++;
1212
1213                 comedi_buf_write_samples(s, &tempdata, 1);
1214         }
1215
1216         if (cmd->stop_src == TRIG_COUNT && async->scans_done >= cmd->stop_arg)
1217                 async->events |= COMEDI_CB_EOA;
1218
1219         if (async->events & COMEDI_CB_CANCEL_MASK)
1220                 devpriv->ai_cmd_running = 0;
1221
1222         if (devpriv->ai_cmd_running && cmd->scan_begin_src == TRIG_EXT)
1223                 s626_dio_set_irq(dev, cmd->scan_begin_arg);
1224
1225         comedi_handle_events(dev, s);
1226
1227         return !devpriv->ai_cmd_running;
1228 }
1229
1230 static irqreturn_t s626_irq_handler(int irq, void *d)
1231 {
1232         struct comedi_device *dev = d;
1233         unsigned long flags;
1234         uint32_t irqtype, irqstatus;
1235
1236         if (!dev->attached)
1237                 return IRQ_NONE;
1238         /* lock to avoid race with comedi_poll */
1239         spin_lock_irqsave(&dev->spinlock, flags);
1240
1241         /* save interrupt enable register state */
1242         irqstatus = readl(dev->mmio + S626_P_IER);
1243
1244         /* read interrupt type */
1245         irqtype = readl(dev->mmio + S626_P_ISR);
1246
1247         /* disable master interrupt */
1248         writel(0, dev->mmio + S626_P_IER);
1249
1250         /* clear interrupt */
1251         writel(irqtype, dev->mmio + S626_P_ISR);
1252
1253         switch (irqtype) {
1254         case S626_IRQ_RPS1:     /* end_of_scan occurs */
1255                 if (s626_handle_eos_interrupt(dev))
1256                         irqstatus = 0;
1257                 break;
1258         case S626_IRQ_GPIO3:    /* check dio and counter interrupt */
1259                 /* s626_dio_clear_irq(dev); */
1260                 s626_check_dio_interrupts(dev);
1261                 s626_check_counter_interrupts(dev);
1262                 break;
1263         }
1264
1265         /* enable interrupt */
1266         writel(irqstatus, dev->mmio + S626_P_IER);
1267
1268         spin_unlock_irqrestore(&dev->spinlock, flags);
1269         return IRQ_HANDLED;
1270 }
1271
1272 /*
1273  * This function builds the RPS program for hardware driven acquisition.
1274  */
1275 static void s626_reset_adc(struct comedi_device *dev, uint8_t *ppl)
1276 {
1277         struct s626_private *devpriv = dev->private;
1278         struct comedi_subdevice *s = dev->read_subdev;
1279         struct comedi_cmd *cmd = &s->async->cmd;
1280         uint32_t *rps;
1281         uint32_t jmp_adrs;
1282         uint16_t i;
1283         uint16_t n;
1284         uint32_t local_ppl;
1285
1286         /* Stop RPS program in case it is currently running */
1287         s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1288
1289         /* Set starting logical address to write RPS commands. */
1290         rps = (uint32_t *)devpriv->rps_buf.logical_base;
1291
1292         /* Initialize RPS instruction pointer */
1293         writel((uint32_t)devpriv->rps_buf.physical_base,
1294                dev->mmio + S626_P_RPSADDR1);
1295
1296         /* Construct RPS program in rps_buf DMA buffer */
1297         if (cmd->scan_begin_src != TRIG_FOLLOW) {
1298                 /* Wait for Start trigger. */
1299                 *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1300                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1301         }
1302
1303         /*
1304          * SAA7146 BUG WORKAROUND Do a dummy DEBI Write.  This is necessary
1305          * because the first RPS DEBI Write following a non-RPS DEBI write
1306          * seems to always fail.  If we don't do this dummy write, the ADC
1307          * gain might not be set to the value required for the first slot in
1308          * the poll list; the ADC gain would instead remain unchanged from
1309          * the previously programmed value.
1310          */
1311         /* Write DEBI Write command and address to shadow RAM. */
1312         *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1313         *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1314         *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1315         /* Write DEBI immediate data  to shadow RAM: */
1316         *rps++ = S626_GSEL_BIPOLAR5V;   /* arbitrary immediate data  value. */
1317         *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1318         /* Reset "shadow RAM  uploaded" flag. */
1319         /* Invoke shadow RAM upload. */
1320         *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1321         /* Wait for shadow upload to finish. */
1322         *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1323
1324         /*
1325          * Digitize all slots in the poll list. This is implemented as a
1326          * for loop to limit the slot count to 16 in case the application
1327          * forgot to set the S626_EOPL flag in the final slot.
1328          */
1329         for (devpriv->adc_items = 0; devpriv->adc_items < 16;
1330              devpriv->adc_items++) {
1331                 /*
1332                  * Convert application's poll list item to private board class
1333                  * format.  Each app poll list item is an uint8_t with form
1334                  * (EOPL,x,x,RANGE,CHAN<3:0>), where RANGE code indicates 0 =
1335                  * +-10V, 1 = +-5V, and EOPL = End of Poll List marker.
1336                  */
1337                 local_ppl = (*ppl << 8) | (*ppl & 0x10 ? S626_GSEL_BIPOLAR5V :
1338                                            S626_GSEL_BIPOLAR10V);
1339
1340                 /* Switch ADC analog gain. */
1341                 /* Write DEBI command and address to shadow RAM. */
1342                 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1343                 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_GSEL;
1344                 /* Write DEBI immediate data to shadow RAM. */
1345                 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1346                 *rps++ = local_ppl;
1347                 /* Reset "shadow RAM uploaded" flag. */
1348                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1349                 /* Invoke shadow RAM upload. */
1350                 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1351                 /* Wait for shadow upload to finish. */
1352                 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1353                 /* Select ADC analog input channel. */
1354                 *rps++ = S626_RPS_LDREG | (S626_P_DEBICMD >> 2);
1355                 /* Write DEBI command and address to shadow RAM. */
1356                 *rps++ = S626_DEBI_CMD_WRWORD | S626_LP_ISEL;
1357                 *rps++ = S626_RPS_LDREG | (S626_P_DEBIAD >> 2);
1358                 /* Write DEBI immediate data to shadow RAM. */
1359                 *rps++ = local_ppl;
1360                 /* Reset "shadow RAM uploaded" flag. */
1361                 *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_DEBI;
1362                 /* Invoke shadow RAM upload. */
1363                 *rps++ = S626_RPS_UPLOAD | S626_RPS_DEBI;
1364                 /* Wait for shadow upload to finish. */
1365                 *rps++ = S626_RPS_PAUSE | S626_RPS_DEBI;
1366
1367                 /*
1368                  * Delay at least 10 microseconds for analog input settling.
1369                  * Instead of padding with NOPs, we use S626_RPS_JUMP
1370                  * instructions here; this allows us to produce a longer delay
1371                  * than is possible with NOPs because each S626_RPS_JUMP
1372                  * flushes the RPS' instruction prefetch pipeline.
1373                  */
1374                 jmp_adrs =
1375                         (uint32_t)devpriv->rps_buf.physical_base +
1376                         (uint32_t)((unsigned long)rps -
1377                                    (unsigned long)devpriv->
1378                                                   rps_buf.logical_base);
1379                 for (i = 0; i < (10 * S626_RPSCLK_PER_US / 2); i++) {
1380                         jmp_adrs += 8;  /* Repeat to implement time delay: */
1381                         /* Jump to next RPS instruction. */
1382                         *rps++ = S626_RPS_JUMP;
1383                         *rps++ = jmp_adrs;
1384                 }
1385
1386                 if (cmd->convert_src != TRIG_NOW) {
1387                         /* Wait for Start trigger. */
1388                         *rps++ = S626_RPS_PAUSE | S626_RPS_SIGADC;
1389                         *rps++ = S626_RPS_CLRSIGNAL | S626_RPS_SIGADC;
1390                 }
1391                 /* Start ADC by pulsing GPIO1. */
1392                 /* Begin ADC Start pulse. */
1393                 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1394                 *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1395                 *rps++ = S626_RPS_NOP;
1396                 /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1397                 /* End ADC Start pulse. */
1398                 *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1399                 *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1400                 /*
1401                  * Wait for ADC to complete (GPIO2 is asserted high when ADC not
1402                  * busy) and for data from previous conversion to shift into FB
1403                  * BUFFER 1 register.
1404                  */
1405                 /* Wait for ADC done. */
1406                 *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;
1407
1408                 /* Transfer ADC data from FB BUFFER 1 register to DMA buffer. */
1409                 *rps++ = S626_RPS_STREG |
1410                          (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1411                 *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1412                          (devpriv->adc_items << 2);
1413
1414                 /*
1415                  * If this slot's EndOfPollList flag is set, all channels have
1416                  * now been processed.
1417                  */
1418                 if (*ppl++ & S626_EOPL) {
1419                         devpriv->adc_items++; /* Adjust poll list item count. */
1420                         break;  /* Exit poll list processing loop. */
1421                 }
1422         }
1423
1424         /*
1425          * VERSION 2.01 CHANGE: DELAY CHANGED FROM 250NS to 2US.  Allow the
1426          * ADC to stabilize for 2 microseconds before starting the final
1427          * (dummy) conversion.  This delay is necessary to allow sufficient
1428          * time between last conversion finished and the start of the dummy
1429          * conversion.  Without this delay, the last conversion's data value
1430          * is sometimes set to the previous conversion's data value.
1431          */
1432         for (n = 0; n < (2 * S626_RPSCLK_PER_US); n++)
1433                 *rps++ = S626_RPS_NOP;
1434
1435         /*
1436          * Start a dummy conversion to cause the data from the last
1437          * conversion of interest to be shifted in.
1438          */
1439         /* Begin ADC Start pulse. */
1440         *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2);
1441         *rps++ = S626_GPIO_BASE | S626_GPIO1_LO;
1442         *rps++ = S626_RPS_NOP;
1443         /* VERSION 2.03 CHANGE: STRETCH OUT ADC START PULSE. */
1444         *rps++ = S626_RPS_LDREG | (S626_P_GPIO >> 2); /* End ADC Start pulse. */
1445         *rps++ = S626_GPIO_BASE | S626_GPIO1_HI;
1446
1447         /*
1448          * Wait for the data from the last conversion of interest to arrive
1449          * in FB BUFFER 1 register.
1450          */
1451         *rps++ = S626_RPS_PAUSE | S626_RPS_GPIO2;       /* Wait for ADC done. */
1452
1453         /* Transfer final ADC data from FB BUFFER 1 register to DMA buffer. */
1454         *rps++ = S626_RPS_STREG | (S626_BUGFIX_STREG(S626_P_FB_BUFFER1) >> 2);
1455         *rps++ = (uint32_t)devpriv->ana_buf.physical_base +
1456                  (devpriv->adc_items << 2);
1457
1458         /* Indicate ADC scan loop is finished. */
1459         /* Signal ReadADC() that scan is done. */
1460         /* *rps++= S626_RPS_CLRSIGNAL | S626_RPS_SIGADC; */
1461
1462         /* invoke interrupt */
1463         if (devpriv->ai_cmd_running == 1)
1464                 *rps++ = S626_RPS_IRQ;
1465
1466         /* Restart RPS program at its beginning. */
1467         *rps++ = S626_RPS_JUMP; /* Branch to start of RPS program. */
1468         *rps++ = (uint32_t)devpriv->rps_buf.physical_base;
1469
1470         /* End of RPS program build */
1471 }
1472
1473 static int s626_ai_eoc(struct comedi_device *dev,
1474                        struct comedi_subdevice *s,
1475                        struct comedi_insn *insn,
1476                        unsigned long context)
1477 {
1478         unsigned int status;
1479
1480         status = readl(dev->mmio + S626_P_PSR);
1481         if (status & S626_PSR_GPIO2)
1482                 return 0;
1483         return -EBUSY;
1484 }
1485
1486 static int s626_ai_insn_read(struct comedi_device *dev,
1487                              struct comedi_subdevice *s,
1488                              struct comedi_insn *insn,
1489                              unsigned int *data)
1490 {
1491         uint16_t chan = CR_CHAN(insn->chanspec);
1492         uint16_t range = CR_RANGE(insn->chanspec);
1493         uint16_t adc_spec = 0;
1494         uint32_t gpio_image;
1495         uint32_t tmp;
1496         int ret;
1497         int n;
1498
1499         /*
1500          * Convert application's ADC specification into form
1501          *  appropriate for register programming.
1502          */
1503         if (range == 0)
1504                 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR5V);
1505         else
1506                 adc_spec = (chan << 8) | (S626_GSEL_BIPOLAR10V);
1507
1508         /* Switch ADC analog gain. */
1509         s626_debi_write(dev, S626_LP_GSEL, adc_spec);   /* Set gain. */
1510
1511         /* Select ADC analog input channel. */
1512         s626_debi_write(dev, S626_LP_ISEL, adc_spec);   /* Select channel. */
1513
1514         for (n = 0; n < insn->n; n++) {
1515                 /* Delay 10 microseconds for analog input settling. */
1516                 udelay(10);
1517
1518                 /* Start ADC by pulsing GPIO1 low */
1519                 gpio_image = readl(dev->mmio + S626_P_GPIO);
1520                 /* Assert ADC Start command */
1521                 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1522                 /* and stretch it out */
1523                 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1524                 writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1525                 /* Negate ADC Start command */
1526                 writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1527
1528                 /*
1529                  * Wait for ADC to complete (GPIO2 is asserted high when
1530                  * ADC not busy) and for data from previous conversion to
1531                  * shift into FB BUFFER 1 register.
1532                  */
1533
1534                 /* Wait for ADC done */
1535                 ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1536                 if (ret)
1537                         return ret;
1538
1539                 /* Fetch ADC data */
1540                 if (n != 0) {
1541                         tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1542                         data[n - 1] = s626_ai_reg_to_uint(tmp);
1543                 }
1544
1545                 /*
1546                  * Allow the ADC to stabilize for 4 microseconds before
1547                  * starting the next (final) conversion.  This delay is
1548                  * necessary to allow sufficient time between last
1549                  * conversion finished and the start of the next
1550                  * conversion.  Without this delay, the last conversion's
1551                  * data value is sometimes set to the previous
1552                  * conversion's data value.
1553                  */
1554                 udelay(4);
1555         }
1556
1557         /*
1558          * Start a dummy conversion to cause the data from the
1559          * previous conversion to be shifted in.
1560          */
1561         gpio_image = readl(dev->mmio + S626_P_GPIO);
1562         /* Assert ADC Start command */
1563         writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1564         /* and stretch it out */
1565         writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1566         writel(gpio_image & ~S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1567         /* Negate ADC Start command */
1568         writel(gpio_image | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
1569
1570         /* Wait for the data to arrive in FB BUFFER 1 register. */
1571
1572         /* Wait for ADC done */
1573         ret = comedi_timeout(dev, s, insn, s626_ai_eoc, 0);
1574         if (ret)
1575                 return ret;
1576
1577         /* Fetch ADC data from audio interface's input shift register. */
1578
1579         /* Fetch ADC data */
1580         if (n != 0) {
1581                 tmp = readl(dev->mmio + S626_P_FB_BUFFER1);
1582                 data[n - 1] = s626_ai_reg_to_uint(tmp);
1583         }
1584
1585         return n;
1586 }
1587
1588 static int s626_ai_load_polllist(uint8_t *ppl, struct comedi_cmd *cmd)
1589 {
1590         int n;
1591
1592         for (n = 0; n < cmd->chanlist_len; n++) {
1593                 if (CR_RANGE(cmd->chanlist[n]) == 0)
1594                         ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_5V;
1595                 else
1596                         ppl[n] = CR_CHAN(cmd->chanlist[n]) | S626_RANGE_10V;
1597         }
1598         if (n != 0)
1599                 ppl[n - 1] |= S626_EOPL;
1600
1601         return n;
1602 }
1603
1604 static int s626_ai_inttrig(struct comedi_device *dev,
1605                            struct comedi_subdevice *s,
1606                            unsigned int trig_num)
1607 {
1608         struct comedi_cmd *cmd = &s->async->cmd;
1609
1610         if (trig_num != cmd->start_arg)
1611                 return -EINVAL;
1612
1613         /* Start executing the RPS program */
1614         s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1615
1616         s->async->inttrig = NULL;
1617
1618         return 1;
1619 }
1620
1621 /*
1622  * This function doesn't require a particular form, this is just what
1623  * happens to be used in some of the drivers.  It should convert ns
1624  * nanoseconds to a counter value suitable for programming the device.
1625  * Also, it should adjust ns so that it cooresponds to the actual time
1626  * that the device will use.
1627  */
1628 static int s626_ns_to_timer(unsigned int *nanosec, unsigned int flags)
1629 {
1630         int divider, base;
1631
1632         base = 500;             /* 2MHz internal clock */
1633
1634         switch (flags & CMDF_ROUND_MASK) {
1635         case CMDF_ROUND_NEAREST:
1636         default:
1637                 divider = DIV_ROUND_CLOSEST(*nanosec, base);
1638                 break;
1639         case CMDF_ROUND_DOWN:
1640                 divider = (*nanosec) / base;
1641                 break;
1642         case CMDF_ROUND_UP:
1643                 divider = DIV_ROUND_UP(*nanosec, base);
1644                 break;
1645         }
1646
1647         *nanosec = base * divider;
1648         return divider - 1;
1649 }
1650
1651 static void s626_timer_load(struct comedi_device *dev,
1652                             unsigned int chan, int tick)
1653 {
1654         uint16_t setup =
1655                 /* Preload upon index. */
1656                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
1657                 /* Disable hardware index. */
1658                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
1659                 /* Operating mode is Timer. */
1660                 S626_SET_STD_ENCMODE(S626_ENCMODE_TIMER) |
1661                 /* Count direction is Down. */
1662                 S626_SET_STD_CLKPOL(S626_CNTDIR_DOWN) |
1663                 /* Clock multiplier is 1x. */
1664                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
1665                 /* Enabled by index */
1666                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
1667         uint16_t value_latchsrc = S626_LATCHSRC_A_INDXA;
1668         /* uint16_t enab = S626_CLKENAB_ALWAYS; */
1669
1670         s626_set_mode(dev, chan, setup, false);
1671
1672         /* Set the preload register */
1673         s626_preload(dev, chan, tick);
1674
1675         /*
1676          * Software index pulse forces the preload register to load
1677          * into the counter
1678          */
1679         s626_set_load_trig(dev, chan, 0);
1680         s626_pulse_index(dev, chan);
1681
1682         /* set reload on counter overflow */
1683         s626_set_load_trig(dev, chan, 1);
1684
1685         /* set interrupt on overflow */
1686         s626_set_int_src(dev, chan, S626_INTSRC_OVER);
1687
1688         s626_set_latch_source(dev, chan, value_latchsrc);
1689         /* s626_set_enable(dev, chan, (uint16_t)(enab != 0)); */
1690 }
1691
1692 /* TO COMPLETE  */
1693 static int s626_ai_cmd(struct comedi_device *dev, struct comedi_subdevice *s)
1694 {
1695         struct s626_private *devpriv = dev->private;
1696         uint8_t ppl[16];
1697         struct comedi_cmd *cmd = &s->async->cmd;
1698         int tick;
1699
1700         if (devpriv->ai_cmd_running) {
1701                 dev_err(dev->class_dev,
1702                         "s626_ai_cmd: Another ai_cmd is running\n");
1703                 return -EBUSY;
1704         }
1705         /* disable interrupt */
1706         writel(0, dev->mmio + S626_P_IER);
1707
1708         /* clear interrupt request */
1709         writel(S626_IRQ_RPS1 | S626_IRQ_GPIO3, dev->mmio + S626_P_ISR);
1710
1711         /* clear any pending interrupt */
1712         s626_dio_clear_irq(dev);
1713         /* s626_enc_clear_irq(dev); */
1714
1715         /* reset ai_cmd_running flag */
1716         devpriv->ai_cmd_running = 0;
1717
1718         s626_ai_load_polllist(ppl, cmd);
1719         devpriv->ai_cmd_running = 1;
1720         devpriv->ai_convert_count = 0;
1721
1722         switch (cmd->scan_begin_src) {
1723         case TRIG_FOLLOW:
1724                 break;
1725         case TRIG_TIMER:
1726                 /*
1727                  * set a counter to generate adc trigger at scan_begin_arg
1728                  * interval
1729                  */
1730                 tick = s626_ns_to_timer(&cmd->scan_begin_arg, cmd->flags);
1731
1732                 /* load timer value and enable interrupt */
1733                 s626_timer_load(dev, 5, tick);
1734                 s626_set_enable(dev, 5, S626_CLKENAB_ALWAYS);
1735                 break;
1736         case TRIG_EXT:
1737                 /* set the digital line and interrupt for scan trigger */
1738                 if (cmd->start_src != TRIG_EXT)
1739                         s626_dio_set_irq(dev, cmd->scan_begin_arg);
1740                 break;
1741         }
1742
1743         switch (cmd->convert_src) {
1744         case TRIG_NOW:
1745                 break;
1746         case TRIG_TIMER:
1747                 /*
1748                  * set a counter to generate adc trigger at convert_arg
1749                  * interval
1750                  */
1751                 tick = s626_ns_to_timer(&cmd->convert_arg, cmd->flags);
1752
1753                 /* load timer value and enable interrupt */
1754                 s626_timer_load(dev, 4, tick);
1755                 s626_set_enable(dev, 4, S626_CLKENAB_INDEX);
1756                 break;
1757         case TRIG_EXT:
1758                 /* set the digital line and interrupt for convert trigger */
1759                 if (cmd->scan_begin_src != TRIG_EXT &&
1760                     cmd->start_src == TRIG_EXT)
1761                         s626_dio_set_irq(dev, cmd->convert_arg);
1762                 break;
1763         }
1764
1765         s626_reset_adc(dev, ppl);
1766
1767         switch (cmd->start_src) {
1768         case TRIG_NOW:
1769                 /* Trigger ADC scan loop start */
1770                 /* s626_mc_enable(dev, S626_MC2_ADC_RPS, S626_P_MC2); */
1771
1772                 /* Start executing the RPS program */
1773                 s626_mc_enable(dev, S626_MC1_ERPS1, S626_P_MC1);
1774                 s->async->inttrig = NULL;
1775                 break;
1776         case TRIG_EXT:
1777                 /* configure DIO channel for acquisition trigger */
1778                 s626_dio_set_irq(dev, cmd->start_arg);
1779                 s->async->inttrig = NULL;
1780                 break;
1781         case TRIG_INT:
1782                 s->async->inttrig = s626_ai_inttrig;
1783                 break;
1784         }
1785
1786         /* enable interrupt */
1787         writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1, dev->mmio + S626_P_IER);
1788
1789         return 0;
1790 }
1791
1792 static int s626_ai_cmdtest(struct comedi_device *dev,
1793                            struct comedi_subdevice *s, struct comedi_cmd *cmd)
1794 {
1795         int err = 0;
1796         unsigned int arg;
1797
1798         /* Step 1 : check if triggers are trivially valid */
1799
1800         err |= comedi_check_trigger_src(&cmd->start_src,
1801                                         TRIG_NOW | TRIG_INT | TRIG_EXT);
1802         err |= comedi_check_trigger_src(&cmd->scan_begin_src,
1803                                         TRIG_TIMER | TRIG_EXT | TRIG_FOLLOW);
1804         err |= comedi_check_trigger_src(&cmd->convert_src,
1805                                         TRIG_TIMER | TRIG_EXT | TRIG_NOW);
1806         err |= comedi_check_trigger_src(&cmd->scan_end_src, TRIG_COUNT);
1807         err |= comedi_check_trigger_src(&cmd->stop_src, TRIG_COUNT | TRIG_NONE);
1808
1809         if (err)
1810                 return 1;
1811
1812         /* Step 2a : make sure trigger sources are unique */
1813
1814         err |= comedi_check_trigger_is_unique(cmd->start_src);
1815         err |= comedi_check_trigger_is_unique(cmd->scan_begin_src);
1816         err |= comedi_check_trigger_is_unique(cmd->convert_src);
1817         err |= comedi_check_trigger_is_unique(cmd->stop_src);
1818
1819         /* Step 2b : and mutually compatible */
1820
1821         if (err)
1822                 return 2;
1823
1824         /* Step 3: check if arguments are trivially valid */
1825
1826         switch (cmd->start_src) {
1827         case TRIG_NOW:
1828         case TRIG_INT:
1829                 err |= comedi_check_trigger_arg_is(&cmd->start_arg, 0);
1830                 break;
1831         case TRIG_EXT:
1832                 err |= comedi_check_trigger_arg_max(&cmd->start_arg, 39);
1833                 break;
1834         }
1835
1836         if (cmd->scan_begin_src == TRIG_EXT)
1837                 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 39);
1838         if (cmd->convert_src == TRIG_EXT)
1839                 err |= comedi_check_trigger_arg_max(&cmd->convert_arg, 39);
1840
1841 #define S626_MAX_SPEED  200000  /* in nanoseconds */
1842 #define S626_MIN_SPEED  2000000000      /* in nanoseconds */
1843
1844         if (cmd->scan_begin_src == TRIG_TIMER) {
1845                 err |= comedi_check_trigger_arg_min(&cmd->scan_begin_arg,
1846                                                     S626_MAX_SPEED);
1847                 err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg,
1848                                                     S626_MIN_SPEED);
1849         } else {
1850                 /*
1851                  * external trigger
1852                  * should be level/edge, hi/lo specification here
1853                  * should specify multiple external triggers
1854                  * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1855                  */
1856         }
1857         if (cmd->convert_src == TRIG_TIMER) {
1858                 err |= comedi_check_trigger_arg_min(&cmd->convert_arg,
1859                                                     S626_MAX_SPEED);
1860                 err |= comedi_check_trigger_arg_max(&cmd->convert_arg,
1861                                                     S626_MIN_SPEED);
1862         } else {
1863                 /*
1864                  * external trigger - see above
1865                  * err |= comedi_check_trigger_arg_max(&cmd->scan_begin_arg, 9);
1866                  */
1867         }
1868
1869         err |= comedi_check_trigger_arg_is(&cmd->scan_end_arg,
1870                                            cmd->chanlist_len);
1871
1872         if (cmd->stop_src == TRIG_COUNT)
1873                 err |= comedi_check_trigger_arg_min(&cmd->stop_arg, 1);
1874         else    /* TRIG_NONE */
1875                 err |= comedi_check_trigger_arg_is(&cmd->stop_arg, 0);
1876
1877         if (err)
1878                 return 3;
1879
1880         /* step 4: fix up any arguments */
1881
1882         if (cmd->scan_begin_src == TRIG_TIMER) {
1883                 arg = cmd->scan_begin_arg;
1884                 s626_ns_to_timer(&arg, cmd->flags);
1885                 err |= comedi_check_trigger_arg_is(&cmd->scan_begin_arg, arg);
1886         }
1887
1888         if (cmd->convert_src == TRIG_TIMER) {
1889                 arg = cmd->convert_arg;
1890                 s626_ns_to_timer(&arg, cmd->flags);
1891                 err |= comedi_check_trigger_arg_is(&cmd->convert_arg, arg);
1892
1893                 if (cmd->scan_begin_src == TRIG_TIMER) {
1894                         arg = cmd->convert_arg * cmd->scan_end_arg;
1895                         err |= comedi_check_trigger_arg_min(&cmd->
1896                                                             scan_begin_arg,
1897                                                             arg);
1898                 }
1899         }
1900
1901         if (err)
1902                 return 4;
1903
1904         return 0;
1905 }
1906
1907 static int s626_ai_cancel(struct comedi_device *dev, struct comedi_subdevice *s)
1908 {
1909         struct s626_private *devpriv = dev->private;
1910
1911         /* Stop RPS program in case it is currently running */
1912         s626_mc_disable(dev, S626_MC1_ERPS1, S626_P_MC1);
1913
1914         /* disable master interrupt */
1915         writel(0, dev->mmio + S626_P_IER);
1916
1917         devpriv->ai_cmd_running = 0;
1918
1919         return 0;
1920 }
1921
1922 static int s626_ao_insn_write(struct comedi_device *dev,
1923                               struct comedi_subdevice *s,
1924                               struct comedi_insn *insn,
1925                               unsigned int *data)
1926 {
1927         unsigned int chan = CR_CHAN(insn->chanspec);
1928         int i;
1929
1930         for (i = 0; i < insn->n; i++) {
1931                 int16_t dacdata = (int16_t)data[i];
1932                 int ret;
1933
1934                 dacdata -= (0x1fff);
1935
1936                 ret = s626_set_dac(dev, chan, dacdata);
1937                 if (ret)
1938                         return ret;
1939
1940                 s->readback[chan] = data[i];
1941         }
1942
1943         return insn->n;
1944 }
1945
1946 /* *************** DIGITAL I/O FUNCTIONS *************** */
1947
1948 /*
1949  * All DIO functions address a group of DIO channels by means of
1950  * "group" argument.  group may be 0, 1 or 2, which correspond to DIO
1951  * ports A, B and C, respectively.
1952  */
1953
1954 static void s626_dio_init(struct comedi_device *dev)
1955 {
1956         uint16_t group;
1957
1958         /* Prepare to treat writes to WRCapSel as capture disables. */
1959         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_NOEDCAP);
1960
1961         /* For each group of sixteen channels ... */
1962         for (group = 0; group < S626_DIO_BANKS; group++) {
1963                 /* Disable all interrupts */
1964                 s626_debi_write(dev, S626_LP_WRINTSEL(group), 0);
1965                 /* Disable all event captures */
1966                 s626_debi_write(dev, S626_LP_WRCAPSEL(group), 0xffff);
1967                 /* Init all DIOs to default edge polarity */
1968                 s626_debi_write(dev, S626_LP_WREDGSEL(group), 0);
1969                 /* Program all outputs to inactive state */
1970                 s626_debi_write(dev, S626_LP_WRDOUT(group), 0);
1971         }
1972 }
1973
1974 static int s626_dio_insn_bits(struct comedi_device *dev,
1975                               struct comedi_subdevice *s,
1976                               struct comedi_insn *insn,
1977                               unsigned int *data)
1978 {
1979         unsigned long group = (unsigned long)s->private;
1980
1981         if (comedi_dio_update_state(s, data))
1982                 s626_debi_write(dev, S626_LP_WRDOUT(group), s->state);
1983
1984         data[1] = s626_debi_read(dev, S626_LP_RDDIN(group));
1985
1986         return insn->n;
1987 }
1988
1989 static int s626_dio_insn_config(struct comedi_device *dev,
1990                                 struct comedi_subdevice *s,
1991                                 struct comedi_insn *insn,
1992                                 unsigned int *data)
1993 {
1994         unsigned long group = (unsigned long)s->private;
1995         int ret;
1996
1997         ret = comedi_dio_insn_config(dev, s, insn, data, 0);
1998         if (ret)
1999                 return ret;
2000
2001         s626_debi_write(dev, S626_LP_WRDOUT(group), s->io_bits);
2002
2003         return insn->n;
2004 }
2005
2006 /*
2007  * Now this function initializes the value of the counter (data[0])
2008  * and set the subdevice. To complete with trigger and interrupt
2009  * configuration.
2010  *
2011  * FIXME: data[0] is supposed to be an INSN_CONFIG_xxx constant indicating
2012  * what is being configured, but this function appears to be using data[0]
2013  * as a variable.
2014  */
2015 static int s626_enc_insn_config(struct comedi_device *dev,
2016                                 struct comedi_subdevice *s,
2017                                 struct comedi_insn *insn, unsigned int *data)
2018 {
2019         unsigned int chan = CR_CHAN(insn->chanspec);
2020         uint16_t setup =
2021                 /* Preload upon index. */
2022                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2023                 /* Disable hardware index. */
2024                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2025                 /* Operating mode is Counter. */
2026                 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2027                 /* Active high clock. */
2028                 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2029                 /* Clock multiplier is 1x. */
2030                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2031                 /* Enabled by index */
2032                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2033         /* uint16_t disable_int_src = true; */
2034         /* uint32_t Preloadvalue;              //Counter initial value */
2035         uint16_t value_latchsrc = S626_LATCHSRC_AB_READ;
2036         uint16_t enab = S626_CLKENAB_ALWAYS;
2037
2038         /* (data==NULL) ? (Preloadvalue=0) : (Preloadvalue=data[0]); */
2039
2040         s626_set_mode(dev, chan, setup, true);
2041         s626_preload(dev, chan, data[0]);
2042         s626_pulse_index(dev, chan);
2043         s626_set_latch_source(dev, chan, value_latchsrc);
2044         s626_set_enable(dev, chan, (enab != 0));
2045
2046         return insn->n;
2047 }
2048
2049 static int s626_enc_insn_read(struct comedi_device *dev,
2050                               struct comedi_subdevice *s,
2051                               struct comedi_insn *insn,
2052                               unsigned int *data)
2053 {
2054         unsigned int chan = CR_CHAN(insn->chanspec);
2055         uint16_t cntr_latch_reg = S626_LP_CNTR(chan);
2056         int i;
2057
2058         for (i = 0; i < insn->n; i++) {
2059                 unsigned int val;
2060
2061                 /*
2062                  * Read the counter's output latch LSW/MSW.
2063                  * Latches on LSW read.
2064                  */
2065                 val = s626_debi_read(dev, cntr_latch_reg);
2066                 val |= (s626_debi_read(dev, cntr_latch_reg + 2) << 16);
2067                 data[i] = val;
2068         }
2069
2070         return insn->n;
2071 }
2072
2073 static int s626_enc_insn_write(struct comedi_device *dev,
2074                                struct comedi_subdevice *s,
2075                                struct comedi_insn *insn, unsigned int *data)
2076 {
2077         unsigned int chan = CR_CHAN(insn->chanspec);
2078
2079         /* Set the preload register */
2080         s626_preload(dev, chan, data[0]);
2081
2082         /*
2083          * Software index pulse forces the preload register to load
2084          * into the counter
2085          */
2086         s626_set_load_trig(dev, chan, 0);
2087         s626_pulse_index(dev, chan);
2088         s626_set_load_trig(dev, chan, 2);
2089
2090         return 1;
2091 }
2092
2093 static void s626_write_misc2(struct comedi_device *dev, uint16_t new_image)
2094 {
2095         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WENABLE);
2096         s626_debi_write(dev, S626_LP_WRMISC2, new_image);
2097         s626_debi_write(dev, S626_LP_MISC1, S626_MISC1_WDISABLE);
2098 }
2099
2100 static void s626_counters_init(struct comedi_device *dev)
2101 {
2102         int chan;
2103         uint16_t setup =
2104                 /* Preload upon index. */
2105                 S626_SET_STD_LOADSRC(S626_LOADSRC_INDX) |
2106                 /* Disable hardware index. */
2107                 S626_SET_STD_INDXSRC(S626_INDXSRC_SOFT) |
2108                 /* Operating mode is counter. */
2109                 S626_SET_STD_ENCMODE(S626_ENCMODE_COUNTER) |
2110                 /* Active high clock. */
2111                 S626_SET_STD_CLKPOL(S626_CLKPOL_POS) |
2112                 /* Clock multiplier is 1x. */
2113                 S626_SET_STD_CLKMULT(S626_CLKMULT_1X) |
2114                 /* Enabled by index */
2115                 S626_SET_STD_CLKENAB(S626_CLKENAB_INDEX);
2116
2117         /*
2118          * Disable all counter interrupts and clear any captured counter events.
2119          */
2120         for (chan = 0; chan < S626_ENCODER_CHANNELS; chan++) {
2121                 s626_set_mode(dev, chan, setup, true);
2122                 s626_set_int_src(dev, chan, 0);
2123                 s626_reset_cap_flags(dev, chan);
2124                 s626_set_enable(dev, chan, S626_CLKENAB_ALWAYS);
2125         }
2126 }
2127
2128 static int s626_allocate_dma_buffers(struct comedi_device *dev)
2129 {
2130         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2131         struct s626_private *devpriv = dev->private;
2132         void *addr;
2133         dma_addr_t appdma;
2134
2135         addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2136         if (!addr)
2137                 return -ENOMEM;
2138         devpriv->ana_buf.logical_base = addr;
2139         devpriv->ana_buf.physical_base = appdma;
2140
2141         addr = pci_alloc_consistent(pcidev, S626_DMABUF_SIZE, &appdma);
2142         if (!addr)
2143                 return -ENOMEM;
2144         devpriv->rps_buf.logical_base = addr;
2145         devpriv->rps_buf.physical_base = appdma;
2146
2147         return 0;
2148 }
2149
2150 static void s626_free_dma_buffers(struct comedi_device *dev)
2151 {
2152         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2153         struct s626_private *devpriv = dev->private;
2154
2155         if (!devpriv)
2156                 return;
2157
2158         if (devpriv->rps_buf.logical_base)
2159                 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2160                                     devpriv->rps_buf.logical_base,
2161                                     devpriv->rps_buf.physical_base);
2162         if (devpriv->ana_buf.logical_base)
2163                 pci_free_consistent(pcidev, S626_DMABUF_SIZE,
2164                                     devpriv->ana_buf.logical_base,
2165                                     devpriv->ana_buf.physical_base);
2166 }
2167
2168 static int s626_initialize(struct comedi_device *dev)
2169 {
2170         struct s626_private *devpriv = dev->private;
2171         dma_addr_t phys_buf;
2172         uint16_t chan;
2173         int i;
2174         int ret;
2175
2176         /* Enable DEBI and audio pins, enable I2C interface */
2177         s626_mc_enable(dev, S626_MC1_DEBI | S626_MC1_AUDIO | S626_MC1_I2C,
2178                        S626_P_MC1);
2179
2180         /*
2181          * Configure DEBI operating mode
2182          *
2183          *  Local bus is 16 bits wide
2184          *  Declare DEBI transfer timeout interval
2185          *  Set up byte lane steering
2186          *  Intel-compatible local bus (DEBI never times out)
2187          */
2188         writel(S626_DEBI_CFG_SLAVE16 |
2189                (S626_DEBI_TOUT << S626_DEBI_CFG_TOUT_BIT) | S626_DEBI_SWAP |
2190                S626_DEBI_CFG_INTEL, dev->mmio + S626_P_DEBICFG);
2191
2192         /* Disable MMU paging */
2193         writel(S626_DEBI_PAGE_DISABLE, dev->mmio + S626_P_DEBIPAGE);
2194
2195         /* Init GPIO so that ADC Start* is negated */
2196         writel(S626_GPIO_BASE | S626_GPIO1_HI, dev->mmio + S626_P_GPIO);
2197
2198         /* I2C device address for onboard eeprom (revb) */
2199         devpriv->i2c_adrs = 0xA0;
2200
2201         /*
2202          * Issue an I2C ABORT command to halt any I2C
2203          * operation in progress and reset BUSY flag.
2204          */
2205         writel(S626_I2C_CLKSEL | S626_I2C_ABORT,
2206                dev->mmio + S626_P_I2CSTAT);
2207         s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2208         ret = comedi_timeout(dev, NULL, NULL, s626_i2c_handshake_eoc, 0);
2209         if (ret)
2210                 return ret;
2211
2212         /*
2213          * Per SAA7146 data sheet, write to STATUS
2214          * reg twice to reset all  I2C error flags.
2215          */
2216         for (i = 0; i < 2; i++) {
2217                 writel(S626_I2C_CLKSEL, dev->mmio + S626_P_I2CSTAT);
2218                 s626_mc_enable(dev, S626_MC2_UPLD_IIC, S626_P_MC2);
2219                 ret = comedi_timeout(dev, NULL,
2220                                      NULL, s626_i2c_handshake_eoc, 0);
2221                 if (ret)
2222                         return ret;
2223         }
2224
2225         /*
2226          * Init audio interface functional attributes: set DAC/ADC
2227          * serial clock rates, invert DAC serial clock so that
2228          * DAC data setup times are satisfied, enable DAC serial
2229          * clock out.
2230          */
2231         writel(S626_ACON2_INIT, dev->mmio + S626_P_ACON2);
2232
2233         /*
2234          * Set up TSL1 slot list, which is used to control the
2235          * accumulation of ADC data: S626_RSD1 = shift data in on SD1.
2236          * S626_SIB_A1  = store data uint8_t at next available location
2237          * in FB BUFFER1 register.
2238          */
2239         writel(S626_RSD1 | S626_SIB_A1, dev->mmio + S626_P_TSL1);
2240         writel(S626_RSD1 | S626_SIB_A1 | S626_EOS,
2241                dev->mmio + S626_P_TSL1 + 4);
2242
2243         /* Enable TSL1 slot list so that it executes all the time */
2244         writel(S626_ACON1_ADCSTART, dev->mmio + S626_P_ACON1);
2245
2246         /*
2247          * Initialize RPS registers used for ADC
2248          */
2249
2250         /* Physical start of RPS program */
2251         writel((uint32_t)devpriv->rps_buf.physical_base,
2252                dev->mmio + S626_P_RPSADDR1);
2253         /* RPS program performs no explicit mem writes */
2254         writel(0, dev->mmio + S626_P_RPSPAGE1);
2255         /* Disable RPS timeouts */
2256         writel(0, dev->mmio + S626_P_RPS1_TOUT);
2257
2258 #if 0
2259         /*
2260          * SAA7146 BUG WORKAROUND
2261          *
2262          * Initialize SAA7146 ADC interface to a known state by
2263          * invoking ADCs until FB BUFFER 1 register shows that it
2264          * is correctly receiving ADC data. This is necessary
2265          * because the SAA7146 ADC interface does not start up in
2266          * a defined state after a PCI reset.
2267          */
2268         {
2269                 struct comedi_subdevice *s = dev->read_subdev;
2270                 uint8_t poll_list;
2271                 uint16_t adc_data;
2272                 uint16_t start_val;
2273                 uint16_t index;
2274                 unsigned int data[16];
2275
2276                 /* Create a simple polling list for analog input channel 0 */
2277                 poll_list = S626_EOPL;
2278                 s626_reset_adc(dev, &poll_list);
2279
2280                 /* Get initial ADC value */
2281                 s626_ai_rinsn(dev, s, NULL, data);
2282                 start_val = data[0];
2283
2284                 /*
2285                  * VERSION 2.01 CHANGE: TIMEOUT ADDED TO PREVENT HANGED
2286                  * EXECUTION.
2287                  *
2288                  * Invoke ADCs until the new ADC value differs from the initial
2289                  * value or a timeout occurs.  The timeout protects against the
2290                  * possibility that the driver is restarting and the ADC data is
2291                  * a fixed value resulting from the applied ADC analog input
2292                  * being unusually quiet or at the rail.
2293                  */
2294                 for (index = 0; index < 500; index++) {
2295                         s626_ai_rinsn(dev, s, NULL, data);
2296                         adc_data = data[0];
2297                         if (adc_data != start_val)
2298                                 break;
2299                 }
2300         }
2301 #endif  /* SAA7146 BUG WORKAROUND */
2302
2303         /*
2304          * Initialize the DAC interface
2305          */
2306
2307         /*
2308          * Init Audio2's output DMAC attributes:
2309          *   burst length = 1 DWORD
2310          *   threshold = 1 DWORD.
2311          */
2312         writel(0, dev->mmio + S626_P_PCI_BT_A);
2313
2314         /*
2315          * Init Audio2's output DMA physical addresses.  The protection
2316          * address is set to 1 DWORD past the base address so that a
2317          * single DWORD will be transferred each time a DMA transfer is
2318          * enabled.
2319          */
2320         phys_buf = devpriv->ana_buf.physical_base +
2321                    (S626_DAC_WDMABUF_OS * sizeof(uint32_t));
2322         writel((uint32_t)phys_buf, dev->mmio + S626_P_BASEA2_OUT);
2323         writel((uint32_t)(phys_buf + sizeof(uint32_t)),
2324                dev->mmio + S626_P_PROTA2_OUT);
2325
2326         /*
2327          * Cache Audio2's output DMA buffer logical address.  This is
2328          * where DAC data is buffered for A2 output DMA transfers.
2329          */
2330         devpriv->dac_wbuf = (uint32_t *)devpriv->ana_buf.logical_base +
2331                             S626_DAC_WDMABUF_OS;
2332
2333         /*
2334          * Audio2's output channels does not use paging.  The
2335          * protection violation handling bit is set so that the
2336          * DMAC will automatically halt and its PCI address pointer
2337          * will be reset when the protection address is reached.
2338          */
2339         writel(8, dev->mmio + S626_P_PAGEA2_OUT);
2340
2341         /*
2342          * Initialize time slot list 2 (TSL2), which is used to control
2343          * the clock generation for and serialization of data to be sent
2344          * to the DAC devices.  Slot 0 is a NOP that is used to trap TSL
2345          * execution; this permits other slots to be safely modified
2346          * without first turning off the TSL sequencer (which is
2347          * apparently impossible to do).  Also, SD3 (which is driven by a
2348          * pull-up resistor) is shifted in and stored to the MSB of
2349          * FB_BUFFER2 to be used as evidence that the slot sequence has
2350          * not yet finished executing.
2351          */
2352
2353         /* Slot 0: Trap TSL execution, shift 0xFF into FB_BUFFER2 */
2354         writel(S626_XSD2 | S626_RSD3 | S626_SIB_A2 | S626_EOS,
2355                dev->mmio + S626_VECTPORT(0));
2356
2357         /*
2358          * Initialize slot 1, which is constant.  Slot 1 causes a
2359          * DWORD to be transferred from audio channel 2's output FIFO
2360          * to the FIFO's output buffer so that it can be serialized
2361          * and sent to the DAC during subsequent slots.  All remaining
2362          * slots are dynamically populated as required by the target
2363          * DAC device.
2364          */
2365
2366         /* Slot 1: Fetch DWORD from Audio2's output FIFO */
2367         writel(S626_LF_A2, dev->mmio + S626_VECTPORT(1));
2368
2369         /* Start DAC's audio interface (TSL2) running */
2370         writel(S626_ACON1_DACSTART, dev->mmio + S626_P_ACON1);
2371
2372         /*
2373          * Init Trim DACs to calibrated values.  Do it twice because the
2374          * SAA7146 audio channel does not always reset properly and
2375          * sometimes causes the first few TrimDAC writes to malfunction.
2376          */
2377         s626_load_trim_dacs(dev);
2378         ret = s626_load_trim_dacs(dev);
2379         if (ret)
2380                 return ret;
2381
2382         /*
2383          * Manually init all gate array hardware in case this is a soft
2384          * reset (we have no way of determining whether this is a warm
2385          * or cold start).  This is necessary because the gate array will
2386          * reset only in response to a PCI hard reset; there is no soft
2387          * reset function.
2388          */
2389
2390         /*
2391          * Init all DAC outputs to 0V and init all DAC setpoint and
2392          * polarity images.
2393          */
2394         for (chan = 0; chan < S626_DAC_CHANNELS; chan++) {
2395                 ret = s626_set_dac(dev, chan, 0);
2396                 if (ret)
2397                         return ret;
2398         }
2399
2400         /* Init counters */
2401         s626_counters_init(dev);
2402
2403         /*
2404          * Without modifying the state of the Battery Backup enab, disable
2405          * the watchdog timer, set DIO channels 0-5 to operate in the
2406          * standard DIO (vs. counter overflow) mode, disable the battery
2407          * charger, and reset the watchdog interval selector to zero.
2408          */
2409         s626_write_misc2(dev, (s626_debi_read(dev, S626_LP_RDMISC2) &
2410                                S626_MISC2_BATT_ENABLE));
2411
2412         /* Initialize the digital I/O subsystem */
2413         s626_dio_init(dev);
2414
2415         return 0;
2416 }
2417
2418 static int s626_auto_attach(struct comedi_device *dev,
2419                             unsigned long context_unused)
2420 {
2421         struct pci_dev *pcidev = comedi_to_pci_dev(dev);
2422         struct s626_private *devpriv;
2423         struct comedi_subdevice *s;
2424         int ret;
2425
2426         devpriv = comedi_alloc_devpriv(dev, sizeof(*devpriv));
2427         if (!devpriv)
2428                 return -ENOMEM;
2429
2430         ret = comedi_pci_enable(dev);
2431         if (ret)
2432                 return ret;
2433
2434         dev->mmio = pci_ioremap_bar(pcidev, 0);
2435         if (!dev->mmio)
2436                 return -ENOMEM;
2437
2438         /* disable master interrupt */
2439         writel(0, dev->mmio + S626_P_IER);
2440
2441         /* soft reset */
2442         writel(S626_MC1_SOFT_RESET, dev->mmio + S626_P_MC1);
2443
2444         /* DMA FIXME DMA// */
2445
2446         ret = s626_allocate_dma_buffers(dev);
2447         if (ret)
2448                 return ret;
2449
2450         if (pcidev->irq) {
2451                 ret = request_irq(pcidev->irq, s626_irq_handler, IRQF_SHARED,
2452                                   dev->board_name, dev);
2453
2454                 if (ret == 0)
2455                         dev->irq = pcidev->irq;
2456         }
2457
2458         ret = comedi_alloc_subdevices(dev, 6);
2459         if (ret)
2460                 return ret;
2461
2462         s = &dev->subdevices[0];
2463         /* analog input subdevice */
2464         s->type         = COMEDI_SUBD_AI;
2465         s->subdev_flags = SDF_READABLE | SDF_DIFF;
2466         s->n_chan       = S626_ADC_CHANNELS;
2467         s->maxdata      = 0x3fff;
2468         s->range_table  = &s626_range_table;
2469         s->len_chanlist = S626_ADC_CHANNELS;
2470         s->insn_read    = s626_ai_insn_read;
2471         if (dev->irq) {
2472                 dev->read_subdev = s;
2473                 s->subdev_flags |= SDF_CMD_READ;
2474                 s->do_cmd       = s626_ai_cmd;
2475                 s->do_cmdtest   = s626_ai_cmdtest;
2476                 s->cancel       = s626_ai_cancel;
2477         }
2478
2479         s = &dev->subdevices[1];
2480         /* analog output subdevice */
2481         s->type         = COMEDI_SUBD_AO;
2482         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2483         s->n_chan       = S626_DAC_CHANNELS;
2484         s->maxdata      = 0x3fff;
2485         s->range_table  = &range_bipolar10;
2486         s->insn_write   = s626_ao_insn_write;
2487
2488         ret = comedi_alloc_subdev_readback(s);
2489         if (ret)
2490                 return ret;
2491
2492         s = &dev->subdevices[2];
2493         /* digital I/O subdevice */
2494         s->type         = COMEDI_SUBD_DIO;
2495         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2496         s->n_chan       = 16;
2497         s->maxdata      = 1;
2498         s->io_bits      = 0xffff;
2499         s->private      = (void *)0;    /* DIO group 0 */
2500         s->range_table  = &range_digital;
2501         s->insn_config  = s626_dio_insn_config;
2502         s->insn_bits    = s626_dio_insn_bits;
2503
2504         s = &dev->subdevices[3];
2505         /* digital I/O subdevice */
2506         s->type         = COMEDI_SUBD_DIO;
2507         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2508         s->n_chan       = 16;
2509         s->maxdata      = 1;
2510         s->io_bits      = 0xffff;
2511         s->private      = (void *)1;    /* DIO group 1 */
2512         s->range_table  = &range_digital;
2513         s->insn_config  = s626_dio_insn_config;
2514         s->insn_bits    = s626_dio_insn_bits;
2515
2516         s = &dev->subdevices[4];
2517         /* digital I/O subdevice */
2518         s->type         = COMEDI_SUBD_DIO;
2519         s->subdev_flags = SDF_WRITABLE | SDF_READABLE;
2520         s->n_chan       = 16;
2521         s->maxdata      = 1;
2522         s->io_bits      = 0xffff;
2523         s->private      = (void *)2;    /* DIO group 2 */
2524         s->range_table  = &range_digital;
2525         s->insn_config  = s626_dio_insn_config;
2526         s->insn_bits    = s626_dio_insn_bits;
2527
2528         s = &dev->subdevices[5];
2529         /* encoder (counter) subdevice */
2530         s->type         = COMEDI_SUBD_COUNTER;
2531         s->subdev_flags = SDF_WRITABLE | SDF_READABLE | SDF_LSAMPL;
2532         s->n_chan       = S626_ENCODER_CHANNELS;
2533         s->maxdata      = 0xffffff;
2534         s->range_table  = &range_unknown;
2535         s->insn_config  = s626_enc_insn_config;
2536         s->insn_read    = s626_enc_insn_read;
2537         s->insn_write   = s626_enc_insn_write;
2538
2539         return s626_initialize(dev);
2540 }
2541
2542 static void s626_detach(struct comedi_device *dev)
2543 {
2544         struct s626_private *devpriv = dev->private;
2545
2546         if (devpriv) {
2547                 /* stop ai_command */
2548                 devpriv->ai_cmd_running = 0;
2549
2550                 if (dev->mmio) {
2551                         /* interrupt mask */
2552                         /* Disable master interrupt */
2553                         writel(0, dev->mmio + S626_P_IER);
2554                         /* Clear board's IRQ status flag */
2555                         writel(S626_IRQ_GPIO3 | S626_IRQ_RPS1,
2556                                dev->mmio + S626_P_ISR);
2557
2558                         /* Disable the watchdog timer and battery charger. */
2559                         s626_write_misc2(dev, 0);
2560
2561                         /* Close all interfaces on 7146 device */
2562                         writel(S626_MC1_SHUTDOWN, dev->mmio + S626_P_MC1);
2563                         writel(S626_ACON1_BASE, dev->mmio + S626_P_ACON1);
2564                 }
2565         }
2566         comedi_pci_detach(dev);
2567         s626_free_dma_buffers(dev);
2568 }
2569
2570 static struct comedi_driver s626_driver = {
2571         .driver_name    = "s626",
2572         .module         = THIS_MODULE,
2573         .auto_attach    = s626_auto_attach,
2574         .detach         = s626_detach,
2575 };
2576
2577 static int s626_pci_probe(struct pci_dev *dev,
2578                           const struct pci_device_id *id)
2579 {
2580         return comedi_pci_auto_config(dev, &s626_driver, id->driver_data);
2581 }
2582
2583 /*
2584  * For devices with vendor:device id == 0x1131:0x7146 you must specify
2585  * also subvendor:subdevice ids, because otherwise it will conflict with
2586  * Philips SAA7146 media/dvb based cards.
2587  */
2588 static const struct pci_device_id s626_pci_table[] = {
2589         { PCI_DEVICE_SUB(PCI_VENDOR_ID_PHILIPS, PCI_DEVICE_ID_PHILIPS_SAA7146,
2590                          0x6000, 0x0272) },
2591         { 0 }
2592 };
2593 MODULE_DEVICE_TABLE(pci, s626_pci_table);
2594
2595 static struct pci_driver s626_pci_driver = {
2596         .name           = "s626",
2597         .id_table       = s626_pci_table,
2598         .probe          = s626_pci_probe,
2599         .remove         = comedi_pci_auto_unconfig,
2600 };
2601 module_comedi_pci_driver(s626_driver, s626_pci_driver);
2602
2603 MODULE_AUTHOR("Gianluca Palli <gpalli@deis.unibo.it>");
2604 MODULE_DESCRIPTION("Sensoray 626 Comedi driver module");
2605 MODULE_LICENSE("GPL");