GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / staging / gasket / gasket_page_table.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Implementation of Gasket page table support.
4  *
5  * Copyright (C) 2018 Google, Inc.
6  */
7
8 /*
9  * Implementation of Gasket page table support.
10  *
11  * This file assumes 4kB pages throughout; can be factored out when necessary.
12  *
13  * Address format is as follows:
14  * Simple addresses - those whose containing pages are directly placed in the
15  * device's address translation registers - are laid out as:
16  * [ 63 - 40: Unused | 39 - 28: 0 | 27 - 12: page index | 11 - 0: page offset ]
17  * page index:  The index of the containing page in the device's address
18  *              translation registers.
19  * page offset: The index of the address into the containing page.
20  *
21  * Extended address - those whose containing pages are contained in a second-
22  * level page table whose address is present in the device's address translation
23  * registers - are laid out as:
24  * [ 63 - 40: Unused | 39: flag | 38 - 37: 0 | 36 - 21: dev/level 0 index |
25  *   20 - 12: host/level 1 index | 11 - 0: page offset ]
26  * flag:        Marker indicating that this is an extended address. Always 1.
27  * dev index:   The index of the first-level page in the device's extended
28  *              address translation registers.
29  * host index:  The index of the containing page in the [host-resident] second-
30  *              level page table.
31  * page offset: The index of the address into the containing [second-level]
32  *              page.
33  */
34 #include "gasket_page_table.h"
35
36 #include <linux/device.h>
37 #include <linux/file.h>
38 #include <linux/init.h>
39 #include <linux/kernel.h>
40 #include <linux/module.h>
41 #include <linux/moduleparam.h>
42 #include <linux/pagemap.h>
43 #include <linux/vmalloc.h>
44
45 #include "gasket_constants.h"
46 #include "gasket_core.h"
47
48 /* Constants & utility macros */
49 /* The number of pages that can be mapped into each second-level page table. */
50 #define GASKET_PAGES_PER_SUBTABLE 512
51
52 /* The starting position of the page index in a simple virtual address. */
53 #define GASKET_SIMPLE_PAGE_SHIFT 12
54
55 /* Flag indicating that a [device] slot is valid for use. */
56 #define GASKET_VALID_SLOT_FLAG 1
57
58 /*
59  * The starting position of the level 0 page index (i.e., the entry in the
60  * device's extended address registers) in an extended address.
61  * Also can be thought of as (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)),
62  * or (12 + 9).
63  */
64 #define GASKET_EXTENDED_LVL0_SHIFT 21
65
66 /*
67  * Number of first level pages that Gasket chips support. Equivalent to
68  * log2(NUM_LVL0_PAGE_TABLES)
69  *
70  * At a maximum, allowing for a 34 bits address space (or 16GB)
71  *   = GASKET_EXTENDED_LVL0_WIDTH + (log2(PAGE_SIZE) + log2(PAGES_PER_SUBTABLE)
72  * or, = 13 + 9 + 12
73  */
74 #define GASKET_EXTENDED_LVL0_WIDTH 13
75
76 /*
77  * The starting position of the level 1 page index (i.e., the entry in the
78  * host second-level/sub- table) in an extended address.
79  */
80 #define GASKET_EXTENDED_LVL1_SHIFT 12
81
82 /* Type declarations */
83 /* Valid states for a struct gasket_page_table_entry. */
84 enum pte_status {
85         PTE_FREE,
86         PTE_INUSE,
87 };
88
89 /*
90  * Mapping metadata for a single page.
91  *
92  * In this file, host-side page table entries are referred to as that (or PTEs).
93  * Where device vs. host entries are differentiated, device-side or -visible
94  * entries are called "slots". A slot may be either an entry in the device's
95  * address translation table registers or an entry in a second-level page
96  * table ("subtable").
97  *
98  * The full data in this structure is visible on the host [of course]. Only
99  * the address contained in dma_addr is communicated to the device; that points
100  * to the actual page mapped and described by this structure.
101  */
102 struct gasket_page_table_entry {
103         /* The status of this entry/slot: free or in use. */
104         enum pte_status status;
105
106         /* Address of the page in DMA space. */
107         dma_addr_t dma_addr;
108
109         /* Linux page descriptor for the page described by this structure. */
110         struct page *page;
111
112         /*
113          * Index for alignment into host vaddrs.
114          * When a user specifies a host address for a mapping, that address may
115          * not be page-aligned. Offset is the index into the containing page of
116          * the host address (i.e., host_vaddr & (PAGE_SIZE - 1)).
117          * This is necessary for translating between user-specified addresses
118          * and page-aligned addresses.
119          */
120         int offset;
121
122         /*
123          * If this is an extended and first-level entry, sublevel points
124          * to the second-level entries underneath this entry.
125          */
126         struct gasket_page_table_entry *sublevel;
127 };
128
129 /*
130  * Maintains virtual to physical address mapping for a coherent page that is
131  * allocated by this module for a given device.
132  * Note that coherent pages mappings virt mapping cannot be tracked by the
133  * Linux kernel, and coherent pages don't have a struct page associated,
134  * hence Linux kernel cannot perform a get_user_page_xx() on a phys address
135  * that was allocated coherent.
136  * This structure trivially implements this mechanism.
137  */
138 struct gasket_coherent_page_entry {
139         /* Phys address, dma'able by the owner device */
140         dma_addr_t paddr;
141
142         /* Kernel virtual address */
143         u64 user_virt;
144
145         /* User virtual address that was mapped by the mmap kernel subsystem */
146         u64 kernel_virt;
147
148         /*
149          * Whether this page has been mapped into a user land process virtual
150          * space
151          */
152         u32 in_use;
153 };
154
155 /*
156  * [Host-side] page table descriptor.
157  *
158  * This structure tracks the metadata necessary to manage both simple and
159  * extended page tables.
160  */
161 struct gasket_page_table {
162         /* The config used to create this page table. */
163         struct gasket_page_table_config config;
164
165         /* The number of simple (single-level) entries in the page table. */
166         uint num_simple_entries;
167
168         /* The number of extended (two-level) entries in the page table. */
169         uint num_extended_entries;
170
171         /* Array of [host-side] page table entries. */
172         struct gasket_page_table_entry *entries;
173
174         /* Number of actively mapped kernel pages in this table. */
175         uint num_active_pages;
176
177         /* Device register: base of/first slot in the page table. */
178         u64 __iomem *base_slot;
179
180         /* Device register: holds the offset indicating the start of the
181          * extended address region of the device's address translation table.
182          */
183         u64 __iomem *extended_offset_reg;
184
185         /* Device structure for the underlying device. Only used for logging. */
186         struct device *device;
187
188         /* PCI system descriptor for the underlying device. */
189         struct pci_dev *pci_dev;
190
191         /* Location of the extended address bit for this Gasket device. */
192         u64 extended_flag;
193
194         /* Mutex to protect page table internals. */
195         struct mutex mutex;
196
197         /* Number of coherent pages accessible thru by this page table */
198         int num_coherent_pages;
199
200         /*
201          * List of coherent memory (physical) allocated for a device.
202          *
203          * This structure also remembers the user virtual mapping, this is
204          * hacky, but we need to do this because the kernel doesn't keep track
205          * of the user coherent pages (pfn pages), and virt to coherent page
206          * mapping.
207          * TODO: use find_vma() APIs to convert host address to vm_area, to
208          * dma_addr_t instead of storing user virtu address in
209          * gasket_coherent_page_entry
210          *
211          * Note that the user virtual mapping is created by the driver, in
212          * gasket_mmap function, so user_virt belongs in the driver anyhow.
213          */
214         struct gasket_coherent_page_entry *coherent_pages;
215 };
216
217 /* See gasket_page_table.h for description. */
218 int gasket_page_table_init(struct gasket_page_table **ppg_tbl,
219                            const struct gasket_bar_data *bar_data,
220                            const struct gasket_page_table_config *page_table_config,
221                            struct device *device, struct pci_dev *pci_dev)
222 {
223         ulong bytes;
224         struct gasket_page_table *pg_tbl;
225         ulong total_entries = page_table_config->total_entries;
226
227         /*
228          * TODO: Verify config->total_entries against value read from the
229          * hardware register that contains the page table size.
230          */
231         if (total_entries == ULONG_MAX) {
232                 dev_dbg(device, "Error reading page table size. "
233                         "Initializing page table with size 0\n");
234                 total_entries = 0;
235         }
236
237         dev_dbg(device,
238                 "Attempting to initialize page table of size 0x%lx\n",
239                 total_entries);
240
241         dev_dbg(device,
242                 "Table has base reg 0x%x, extended offset reg 0x%x\n",
243                 page_table_config->base_reg,
244                 page_table_config->extended_reg);
245
246         *ppg_tbl = kzalloc(sizeof(**ppg_tbl), GFP_KERNEL);
247         if (!*ppg_tbl) {
248                 dev_dbg(device, "No memory for page table\n");
249                 return -ENOMEM;
250         }
251
252         pg_tbl = *ppg_tbl;
253         bytes = total_entries * sizeof(struct gasket_page_table_entry);
254         if (bytes != 0) {
255                 pg_tbl->entries = vzalloc(bytes);
256                 if (!pg_tbl->entries) {
257                         dev_dbg(device,
258                                 "No memory for address translation metadata\n");
259                         kfree(pg_tbl);
260                         *ppg_tbl = NULL;
261                         return -ENOMEM;
262                 }
263         }
264
265         mutex_init(&pg_tbl->mutex);
266         memcpy(&pg_tbl->config, page_table_config, sizeof(*page_table_config));
267         if (pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_NORMAL ||
268             pg_tbl->config.mode == GASKET_PAGE_TABLE_MODE_SIMPLE) {
269                 pg_tbl->num_simple_entries = total_entries;
270                 pg_tbl->num_extended_entries = 0;
271                 pg_tbl->extended_flag = 1ull << page_table_config->extended_bit;
272         } else {
273                 pg_tbl->num_simple_entries = 0;
274                 pg_tbl->num_extended_entries = total_entries;
275                 pg_tbl->extended_flag = 0;
276         }
277         pg_tbl->num_active_pages = 0;
278         pg_tbl->base_slot =
279                 (u64 __iomem *)&bar_data->virt_base[page_table_config->base_reg];
280         pg_tbl->extended_offset_reg =
281                 (u64 __iomem *)&bar_data->virt_base[page_table_config->extended_reg];
282         pg_tbl->device = get_device(device);
283         pg_tbl->pci_dev = pci_dev;
284
285         dev_dbg(device, "Page table initialized successfully\n");
286
287         return 0;
288 }
289
290 /*
291  * Check if a range of PTEs is free.
292  * The page table mutex must be held by the caller.
293  */
294 static bool gasket_is_pte_range_free(struct gasket_page_table_entry *ptes,
295                                      uint num_entries)
296 {
297         int i;
298
299         for (i = 0; i < num_entries; i++) {
300                 if (ptes[i].status != PTE_FREE)
301                         return false;
302         }
303
304         return true;
305 }
306
307 /*
308  * Free a second level page [sub]table.
309  * The page table mutex must be held before this call.
310  */
311 static void gasket_free_extended_subtable(struct gasket_page_table *pg_tbl,
312                                           struct gasket_page_table_entry *pte,
313                                           u64 __iomem *slot)
314 {
315         /* Release the page table from the driver */
316         pte->status = PTE_FREE;
317
318         /* Release the page table from the device */
319         writeq(0, slot);
320         /* Force sync around the address release. */
321         mb();
322
323         if (pte->dma_addr)
324                 dma_unmap_page(pg_tbl->device, pte->dma_addr, PAGE_SIZE,
325                                DMA_BIDIRECTIONAL);
326
327         vfree(pte->sublevel);
328
329         if (pte->page)
330                 free_page((ulong)page_address(pte->page));
331
332         memset(pte, 0, sizeof(struct gasket_page_table_entry));
333 }
334
335 /*
336  * Actually perform collection.
337  * The page table mutex must be held by the caller.
338  */
339 static void
340 gasket_page_table_garbage_collect_nolock(struct gasket_page_table *pg_tbl)
341 {
342         struct gasket_page_table_entry *pte;
343         u64 __iomem *slot;
344
345         /* XXX FIX ME XXX -- more efficient to keep a usage count */
346         /* rather than scanning the second level page tables */
347
348         for (pte = pg_tbl->entries + pg_tbl->num_simple_entries,
349              slot = pg_tbl->base_slot + pg_tbl->num_simple_entries;
350              pte < pg_tbl->entries + pg_tbl->config.total_entries;
351              pte++, slot++) {
352                 if (pte->status == PTE_INUSE) {
353                         if (gasket_is_pte_range_free(pte->sublevel,
354                                                      GASKET_PAGES_PER_SUBTABLE))
355                                 gasket_free_extended_subtable(pg_tbl, pte,
356                                                               slot);
357                 }
358         }
359 }
360
361 /* See gasket_page_table.h for description. */
362 void gasket_page_table_garbage_collect(struct gasket_page_table *pg_tbl)
363 {
364         mutex_lock(&pg_tbl->mutex);
365         gasket_page_table_garbage_collect_nolock(pg_tbl);
366         mutex_unlock(&pg_tbl->mutex);
367 }
368
369 /* See gasket_page_table.h for description. */
370 void gasket_page_table_cleanup(struct gasket_page_table *pg_tbl)
371 {
372         /* Deallocate free second-level tables. */
373         gasket_page_table_garbage_collect(pg_tbl);
374
375         /* TODO: Check that all PTEs have been freed? */
376
377         vfree(pg_tbl->entries);
378         pg_tbl->entries = NULL;
379
380         put_device(pg_tbl->device);
381         kfree(pg_tbl);
382 }
383
384 /* See gasket_page_table.h for description. */
385 int gasket_page_table_partition(struct gasket_page_table *pg_tbl,
386                                 uint num_simple_entries)
387 {
388         int i, start;
389
390         mutex_lock(&pg_tbl->mutex);
391         if (num_simple_entries > pg_tbl->config.total_entries) {
392                 mutex_unlock(&pg_tbl->mutex);
393                 return -EINVAL;
394         }
395
396         gasket_page_table_garbage_collect_nolock(pg_tbl);
397
398         start = min(pg_tbl->num_simple_entries, num_simple_entries);
399
400         for (i = start; i < pg_tbl->config.total_entries; i++) {
401                 if (pg_tbl->entries[i].status != PTE_FREE) {
402                         dev_err(pg_tbl->device, "entry %d is not free\n", i);
403                         mutex_unlock(&pg_tbl->mutex);
404                         return -EBUSY;
405                 }
406         }
407
408         pg_tbl->num_simple_entries = num_simple_entries;
409         pg_tbl->num_extended_entries =
410                 pg_tbl->config.total_entries - num_simple_entries;
411         writeq(num_simple_entries, pg_tbl->extended_offset_reg);
412
413         mutex_unlock(&pg_tbl->mutex);
414         return 0;
415 }
416 EXPORT_SYMBOL(gasket_page_table_partition);
417
418 /*
419  * Return whether a host buffer was mapped as coherent memory.
420  *
421  * A Gasket page_table currently support one contiguous dma range, mapped to one
422  * contiguous virtual memory range. Check if the host_addr is within that range.
423  */
424 static int is_coherent(struct gasket_page_table *pg_tbl, ulong host_addr)
425 {
426         u64 min, max;
427
428         /* whether the host address is within user virt range */
429         if (!pg_tbl->coherent_pages)
430                 return 0;
431
432         min = (u64)pg_tbl->coherent_pages[0].user_virt;
433         max = min + PAGE_SIZE * pg_tbl->num_coherent_pages;
434
435         return min <= host_addr && host_addr < max;
436 }
437
438 /*
439  * Get and map last level page table buffers.
440  *
441  * slots is the location(s) to write device-mapped page address. If this is a
442  * simple mapping, these will be address translation registers. If this is
443  * an extended mapping, these will be within a second-level page table
444  * allocated by the host and so must have their __iomem attribute casted away.
445  */
446 static int gasket_perform_mapping(struct gasket_page_table *pg_tbl,
447                                   struct gasket_page_table_entry *ptes,
448                                   u64 __iomem *slots, ulong host_addr,
449                                   uint num_pages, int is_simple_mapping)
450 {
451         int ret;
452         ulong offset;
453         struct page *page;
454         dma_addr_t dma_addr;
455         ulong page_addr;
456         int i;
457
458         for (i = 0; i < num_pages; i++) {
459                 page_addr = host_addr + i * PAGE_SIZE;
460                 offset = page_addr & (PAGE_SIZE - 1);
461                 dev_dbg(pg_tbl->device, "%s i %d\n", __func__, i);
462                 if (is_coherent(pg_tbl, host_addr)) {
463                         u64 off =
464                                 (u64)host_addr -
465                                 (u64)pg_tbl->coherent_pages[0].user_virt;
466                         ptes[i].page = NULL;
467                         ptes[i].offset = offset;
468                         ptes[i].dma_addr = pg_tbl->coherent_pages[0].paddr +
469                                            off + i * PAGE_SIZE;
470                 } else {
471                         ret = get_user_pages_fast(page_addr - offset, 1, 1,
472                                                   &page);
473
474                         if (ret <= 0) {
475                                 dev_err(pg_tbl->device,
476                                         "get user pages failed for addr=0x%lx, "
477                                         "offset=0x%lx [ret=%d]\n",
478                                         page_addr, offset, ret);
479                                 return ret ? ret : -ENOMEM;
480                         }
481                         ++pg_tbl->num_active_pages;
482
483                         ptes[i].page = page;
484                         ptes[i].offset = offset;
485
486                         /* Map the page into DMA space. */
487                         ptes[i].dma_addr =
488                                 dma_map_page(pg_tbl->device, page, 0, PAGE_SIZE,
489                                              DMA_BIDIRECTIONAL);
490                         dev_dbg(pg_tbl->device,
491                                 "%s i %d pte %p pfn %p -> mapped %llx\n",
492                                 __func__, i, &ptes[i],
493                                 (void *)page_to_pfn(page),
494                                 (unsigned long long)ptes[i].dma_addr);
495
496                         if (ptes[i].dma_addr == -1) {
497                                 dev_dbg(pg_tbl->device,
498                                         "%s i %d -> fail to map page %llx "
499                                         "[pfn %p ohys %p]\n",
500                                         __func__, i,
501                                         (unsigned long long)ptes[i].dma_addr,
502                                         (void *)page_to_pfn(page),
503                                         (void *)page_to_phys(page));
504                                 return -1;
505                         }
506                         /* Wait until the page is mapped. */
507                         mb();
508                 }
509
510                 /* Make the DMA-space address available to the device. */
511                 dma_addr = (ptes[i].dma_addr + offset) | GASKET_VALID_SLOT_FLAG;
512
513                 if (is_simple_mapping) {
514                         writeq(dma_addr, &slots[i]);
515                 } else {
516                         ((u64 __force *)slots)[i] = dma_addr;
517                         /* Extended page table vectors are in DRAM,
518                          * and so need to be synced each time they are updated.
519                          */
520                         dma_map_single(pg_tbl->device,
521                                        (void *)&((u64 __force *)slots)[i],
522                                        sizeof(u64), DMA_TO_DEVICE);
523                 }
524                 ptes[i].status = PTE_INUSE;
525         }
526         return 0;
527 }
528
529 /*
530  * Return the index of the page for the address in the simple table.
531  * Does not perform validity checking.
532  */
533 static int gasket_simple_page_idx(struct gasket_page_table *pg_tbl,
534                                   ulong dev_addr)
535 {
536         return (dev_addr >> GASKET_SIMPLE_PAGE_SHIFT) &
537                 (pg_tbl->config.total_entries - 1);
538 }
539
540 /*
541  * Return the level 0 page index for the given address.
542  * Does not perform validity checking.
543  */
544 static ulong gasket_extended_lvl0_page_idx(struct gasket_page_table *pg_tbl,
545                                            ulong dev_addr)
546 {
547         return (dev_addr >> GASKET_EXTENDED_LVL0_SHIFT) &
548                ((1 << GASKET_EXTENDED_LVL0_WIDTH) - 1);
549 }
550
551 /*
552  * Return the level 1 page index for the given address.
553  * Does not perform validity checking.
554  */
555 static ulong gasket_extended_lvl1_page_idx(struct gasket_page_table *pg_tbl,
556                                            ulong dev_addr)
557 {
558         return (dev_addr >> GASKET_EXTENDED_LVL1_SHIFT) &
559                (GASKET_PAGES_PER_SUBTABLE - 1);
560 }
561
562 /*
563  * Allocate page table entries in a simple table.
564  * The page table mutex must be held by the caller.
565  */
566 static int gasket_alloc_simple_entries(struct gasket_page_table *pg_tbl,
567                                        ulong dev_addr, uint num_pages)
568 {
569         if (!gasket_is_pte_range_free(pg_tbl->entries +
570                                       gasket_simple_page_idx(pg_tbl, dev_addr),
571                                       num_pages))
572                 return -EBUSY;
573
574         return 0;
575 }
576
577 /* Safely return a page to the OS. */
578 static bool gasket_release_page(struct page *page)
579 {
580         if (!page)
581                 return false;
582
583         if (!PageReserved(page))
584                 SetPageDirty(page);
585         put_page(page);
586
587         return true;
588 }
589
590 /*
591  * Unmap and release mapped pages.
592  * The page table mutex must be held by the caller.
593  */
594 static void gasket_perform_unmapping(struct gasket_page_table *pg_tbl,
595                                      struct gasket_page_table_entry *ptes,
596                                      u64 __iomem *slots, uint num_pages,
597                                      int is_simple_mapping)
598 {
599         int i;
600         /*
601          * For each page table entry and corresponding entry in the device's
602          * address translation table:
603          */
604         for (i = 0; i < num_pages; i++) {
605                 /* release the address from the device, */
606                 if (is_simple_mapping || ptes[i].status == PTE_INUSE)
607                         writeq(0, &slots[i]);
608                 else
609                         ((u64 __force *)slots)[i] = 0;
610                 /* Force sync around the address release. */
611                 mb();
612
613                 /* release the address from the driver, */
614                 if (ptes[i].status == PTE_INUSE) {
615                         if (ptes[i].dma_addr) {
616                                 dma_unmap_page(pg_tbl->device, ptes[i].dma_addr,
617                                                PAGE_SIZE, DMA_FROM_DEVICE);
618                         }
619                         if (gasket_release_page(ptes[i].page))
620                                 --pg_tbl->num_active_pages;
621                 }
622                 ptes[i].status = PTE_FREE;
623
624                 /* and clear the PTE. */
625                 memset(&ptes[i], 0, sizeof(struct gasket_page_table_entry));
626         }
627 }
628
629 /*
630  * Unmap and release pages mapped to simple addresses.
631  * The page table mutex must be held by the caller.
632  */
633 static void gasket_unmap_simple_pages(struct gasket_page_table *pg_tbl,
634                                       ulong dev_addr, uint num_pages)
635 {
636         uint slot = gasket_simple_page_idx(pg_tbl, dev_addr);
637
638         gasket_perform_unmapping(pg_tbl, pg_tbl->entries + slot,
639                                  pg_tbl->base_slot + slot, num_pages, 1);
640 }
641
642 /*
643  * Unmap and release buffers to extended addresses.
644  * The page table mutex must be held by the caller.
645  */
646 static void gasket_unmap_extended_pages(struct gasket_page_table *pg_tbl,
647                                         ulong dev_addr, uint num_pages)
648 {
649         uint slot_idx, remain, len;
650         struct gasket_page_table_entry *pte;
651         u64 __iomem *slot_base;
652
653         remain = num_pages;
654         slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
655         pte = pg_tbl->entries + pg_tbl->num_simple_entries +
656               gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
657
658         while (remain > 0) {
659                 /* TODO: Add check to ensure pte remains valid? */
660                 len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
661
662                 if (pte->status == PTE_INUSE) {
663                         slot_base = (u64 __iomem *)(page_address(pte->page) +
664                                                     pte->offset);
665                         gasket_perform_unmapping(pg_tbl,
666                                                  pte->sublevel + slot_idx,
667                                                  slot_base + slot_idx, len, 0);
668                 }
669
670                 remain -= len;
671                 slot_idx = 0;
672                 pte++;
673         }
674 }
675
676 /* Evaluates to nonzero if the specified virtual address is simple. */
677 static inline bool gasket_addr_is_simple(struct gasket_page_table *pg_tbl,
678                                          ulong addr)
679 {
680         return !((addr) & (pg_tbl)->extended_flag);
681 }
682
683 /*
684  * Convert (simple, page, offset) into a device address.
685  * Examples:
686  * Simple page 0, offset 32:
687  *  Input (0, 0, 32), Output 0x20
688  * Simple page 1000, offset 511:
689  *  Input (0, 1000, 512), Output 0x3E81FF
690  * Extended page 0, offset 32:
691  *  Input (0, 0, 32), Output 0x8000000020
692  * Extended page 1000, offset 511:
693  *  Input (1, 1000, 512), Output 0x8003E81FF
694  */
695 static ulong gasket_components_to_dev_address(struct gasket_page_table *pg_tbl,
696                                               int is_simple, uint page_index,
697                                               uint offset)
698 {
699         ulong lvl0_index, lvl1_index;
700
701         if (is_simple) {
702                 /* Return simple addresses directly. */
703                 lvl0_index = page_index & (pg_tbl->config.total_entries - 1);
704                 return (lvl0_index << GASKET_SIMPLE_PAGE_SHIFT) | offset;
705         }
706
707         /*
708          * This could be compressed into fewer statements, but
709          * A) the compiler should optimize it
710          * B) this is not slow
711          * C) this is an uncommon operation
712          * D) this is actually readable this way.
713          */
714         lvl0_index = page_index / GASKET_PAGES_PER_SUBTABLE;
715         lvl1_index = page_index & (GASKET_PAGES_PER_SUBTABLE - 1);
716         return (pg_tbl)->extended_flag |
717                (lvl0_index << GASKET_EXTENDED_LVL0_SHIFT) |
718                (lvl1_index << GASKET_EXTENDED_LVL1_SHIFT) | offset;
719 }
720
721 /*
722  * Validity checking for simple addresses.
723  *
724  * Verify that address translation commutes (from address to/from page + offset)
725  * and that the requested page range starts and ends within the set of
726  * currently-partitioned simple pages.
727  */
728 static bool gasket_is_simple_dev_addr_bad(struct gasket_page_table *pg_tbl,
729                                           ulong dev_addr, uint num_pages)
730 {
731         ulong page_offset = dev_addr & (PAGE_SIZE - 1);
732         ulong page_index =
733                 (dev_addr / PAGE_SIZE) & (pg_tbl->config.total_entries - 1);
734
735         if (gasket_components_to_dev_address(pg_tbl, 1, page_index,
736                                              page_offset) != dev_addr) {
737                 dev_err(pg_tbl->device, "address is invalid, 0x%lX\n",
738                         dev_addr);
739                 return true;
740         }
741
742         if (page_index >= pg_tbl->num_simple_entries) {
743                 dev_err(pg_tbl->device,
744                         "starting slot at %lu is too large, max is < %u\n",
745                         page_index, pg_tbl->num_simple_entries);
746                 return true;
747         }
748
749         if (page_index + num_pages > pg_tbl->num_simple_entries) {
750                 dev_err(pg_tbl->device,
751                         "ending slot at %lu is too large, max is <= %u\n",
752                         page_index + num_pages, pg_tbl->num_simple_entries);
753                 return true;
754         }
755
756         return false;
757 }
758
759 /*
760  * Validity checking for extended addresses.
761  *
762  * Verify that address translation commutes (from address to/from page +
763  * offset) and that the requested page range starts and ends within the set of
764  * currently-partitioned extended pages.
765  */
766 static bool gasket_is_extended_dev_addr_bad(struct gasket_page_table *pg_tbl,
767                                             ulong dev_addr, uint num_pages)
768 {
769         /* Starting byte index of dev_addr into the first mapped page */
770         ulong page_offset = dev_addr & (PAGE_SIZE - 1);
771         ulong page_global_idx, page_lvl0_idx;
772         ulong num_lvl0_pages;
773         ulong addr;
774
775         /* check if the device address is out of bound */
776         addr = dev_addr & ~((pg_tbl)->extended_flag);
777         if (addr >> (GASKET_EXTENDED_LVL0_WIDTH + GASKET_EXTENDED_LVL0_SHIFT)) {
778                 dev_err(pg_tbl->device, "device address out of bounds: 0x%lx\n",
779                         dev_addr);
780                 return true;
781         }
782
783         /* Find the starting sub-page index in the space of all sub-pages. */
784         page_global_idx = (dev_addr / PAGE_SIZE) &
785                 (pg_tbl->config.total_entries * GASKET_PAGES_PER_SUBTABLE - 1);
786
787         /* Find the starting level 0 index. */
788         page_lvl0_idx = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
789
790         /* Get the count of affected level 0 pages. */
791         num_lvl0_pages = (num_pages + GASKET_PAGES_PER_SUBTABLE - 1) /
792                 GASKET_PAGES_PER_SUBTABLE;
793
794         if (gasket_components_to_dev_address(pg_tbl, 0, page_global_idx,
795                                              page_offset) != dev_addr) {
796                 dev_err(pg_tbl->device, "address is invalid: 0x%lx\n",
797                         dev_addr);
798                 return true;
799         }
800
801         if (page_lvl0_idx >= pg_tbl->num_extended_entries) {
802                 dev_err(pg_tbl->device,
803                         "starting level 0 slot at %lu is too large, max is < "
804                         "%u\n", page_lvl0_idx, pg_tbl->num_extended_entries);
805                 return true;
806         }
807
808         if (page_lvl0_idx + num_lvl0_pages > pg_tbl->num_extended_entries) {
809                 dev_err(pg_tbl->device,
810                         "ending level 0 slot at %lu is too large, max is <= %u\n",
811                         page_lvl0_idx + num_lvl0_pages,
812                         pg_tbl->num_extended_entries);
813                 return true;
814         }
815
816         return false;
817 }
818
819 /*
820  * Non-locking entry to unmapping routines.
821  * The page table mutex must be held by the caller.
822  */
823 static void gasket_page_table_unmap_nolock(struct gasket_page_table *pg_tbl,
824                                            ulong dev_addr, uint num_pages)
825 {
826         if (!num_pages)
827                 return;
828
829         if (gasket_addr_is_simple(pg_tbl, dev_addr))
830                 gasket_unmap_simple_pages(pg_tbl, dev_addr, num_pages);
831         else
832                 gasket_unmap_extended_pages(pg_tbl, dev_addr, num_pages);
833 }
834
835 /*
836  * Allocate and map pages to simple addresses.
837  * If there is an error, no pages are mapped.
838  */
839 static int gasket_map_simple_pages(struct gasket_page_table *pg_tbl,
840                                    ulong host_addr, ulong dev_addr,
841                                    uint num_pages)
842 {
843         int ret;
844         uint slot_idx = gasket_simple_page_idx(pg_tbl, dev_addr);
845
846         ret = gasket_alloc_simple_entries(pg_tbl, dev_addr, num_pages);
847         if (ret) {
848                 dev_err(pg_tbl->device,
849                         "page table slots %u (@ 0x%lx) to %u are not available\n",
850                         slot_idx, dev_addr, slot_idx + num_pages - 1);
851                 return ret;
852         }
853
854         ret = gasket_perform_mapping(pg_tbl, pg_tbl->entries + slot_idx,
855                                      pg_tbl->base_slot + slot_idx, host_addr,
856                                      num_pages, 1);
857
858         if (ret) {
859                 gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
860                 dev_err(pg_tbl->device, "gasket_perform_mapping %d\n", ret);
861         }
862         return ret;
863 }
864
865 /*
866  * Allocate a second level page table.
867  * The page table mutex must be held by the caller.
868  */
869 static int gasket_alloc_extended_subtable(struct gasket_page_table *pg_tbl,
870                                           struct gasket_page_table_entry *pte,
871                                           u64 __iomem *slot)
872 {
873         ulong page_addr, subtable_bytes;
874         dma_addr_t dma_addr;
875
876         /* XXX FIX ME XXX this is inefficient for non-4K page sizes */
877
878         /* GFP_DMA flag must be passed to architectures for which
879          * part of the memory range is not considered DMA'able.
880          * This seems to be the case for Juno board with 4.5.0 Linaro kernel
881          */
882         page_addr = get_zeroed_page(GFP_KERNEL | GFP_DMA);
883         if (!page_addr)
884                 return -ENOMEM;
885         pte->page = virt_to_page((void *)page_addr);
886         pte->offset = 0;
887
888         subtable_bytes = sizeof(struct gasket_page_table_entry) *
889                 GASKET_PAGES_PER_SUBTABLE;
890         pte->sublevel = vzalloc(subtable_bytes);
891         if (!pte->sublevel) {
892                 free_page(page_addr);
893                 memset(pte, 0, sizeof(struct gasket_page_table_entry));
894                 return -ENOMEM;
895         }
896
897         /* Map the page into DMA space. */
898         pte->dma_addr = dma_map_page(pg_tbl->device, pte->page, 0, PAGE_SIZE,
899                                      DMA_BIDIRECTIONAL);
900         /* Wait until the page is mapped. */
901         mb();
902
903         /* make the addresses available to the device */
904         dma_addr = (pte->dma_addr + pte->offset) | GASKET_VALID_SLOT_FLAG;
905         writeq(dma_addr, slot);
906
907         pte->status = PTE_INUSE;
908
909         return 0;
910 }
911
912 /*
913  * Allocate slots in an extended page table.  Check to see if a range of page
914  * table slots are available. If necessary, memory is allocated for second level
915  * page tables.
916  *
917  * Note that memory for second level page tables is allocated as needed, but
918  * that memory is only freed on the final close of the device file, when the
919  * page tables are repartitioned, or the the device is removed.  If there is an
920  * error or if the full range of slots is not available, any memory
921  * allocated for second level page tables remains allocated until final close,
922  * repartition, or device removal.
923  *
924  * The page table mutex must be held by the caller.
925  */
926 static int gasket_alloc_extended_entries(struct gasket_page_table *pg_tbl,
927                                          ulong dev_addr, uint num_entries)
928 {
929         int ret = 0;
930         uint remain, subtable_slot_idx, len;
931         struct gasket_page_table_entry *pte;
932         u64 __iomem *slot;
933
934         remain = num_entries;
935         subtable_slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
936         pte = pg_tbl->entries + pg_tbl->num_simple_entries +
937               gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
938         slot = pg_tbl->base_slot + pg_tbl->num_simple_entries +
939                gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
940
941         while (remain > 0) {
942                 len = min(remain,
943                           GASKET_PAGES_PER_SUBTABLE - subtable_slot_idx);
944
945                 if (pte->status == PTE_FREE) {
946                         ret = gasket_alloc_extended_subtable(pg_tbl, pte, slot);
947                         if (ret) {
948                                 dev_err(pg_tbl->device,
949                                         "no memory for extended addr subtable\n");
950                                 return ret;
951                         }
952                 } else {
953                         if (!gasket_is_pte_range_free(pte->sublevel +
954                                                       subtable_slot_idx, len))
955                                 return -EBUSY;
956                 }
957
958                 remain -= len;
959                 subtable_slot_idx = 0;
960                 pte++;
961                 slot++;
962         }
963
964         return 0;
965 }
966
967 /*
968  * gasket_map_extended_pages - Get and map buffers to extended addresses.
969  * If there is an error, no pages are mapped.
970  */
971 static int gasket_map_extended_pages(struct gasket_page_table *pg_tbl,
972                                      ulong host_addr, ulong dev_addr,
973                                      uint num_pages)
974 {
975         int ret;
976         ulong dev_addr_end;
977         uint slot_idx, remain, len;
978         struct gasket_page_table_entry *pte;
979         u64 __iomem *slot_base;
980
981         ret = gasket_alloc_extended_entries(pg_tbl, dev_addr, num_pages);
982         if (ret) {
983                 dev_addr_end = dev_addr + (num_pages / PAGE_SIZE) - 1;
984                 dev_err(pg_tbl->device,
985                         "page table slots (%lu,%lu) (@ 0x%lx) to (%lu,%lu) are "
986                         "not available\n",
987                         gasket_extended_lvl0_page_idx(pg_tbl, dev_addr),
988                         dev_addr,
989                         gasket_extended_lvl1_page_idx(pg_tbl, dev_addr),
990                         gasket_extended_lvl0_page_idx(pg_tbl, dev_addr_end),
991                         gasket_extended_lvl1_page_idx(pg_tbl, dev_addr_end));
992                 return ret;
993         }
994
995         remain = num_pages;
996         slot_idx = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
997         pte = pg_tbl->entries + pg_tbl->num_simple_entries +
998               gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
999
1000         while (remain > 0) {
1001                 len = min(remain, GASKET_PAGES_PER_SUBTABLE - slot_idx);
1002
1003                 slot_base =
1004                         (u64 __iomem *)(page_address(pte->page) + pte->offset);
1005                 ret = gasket_perform_mapping(pg_tbl, pte->sublevel + slot_idx,
1006                                              slot_base + slot_idx, host_addr,
1007                                              len, 0);
1008                 if (ret) {
1009                         gasket_page_table_unmap_nolock(pg_tbl, dev_addr,
1010                                                        num_pages);
1011                         return ret;
1012                 }
1013
1014                 remain -= len;
1015                 slot_idx = 0;
1016                 pte++;
1017                 host_addr += len * PAGE_SIZE;
1018         }
1019
1020         return 0;
1021 }
1022
1023 /*
1024  * See gasket_page_table.h for general description.
1025  *
1026  * gasket_page_table_map calls either gasket_map_simple_pages() or
1027  * gasket_map_extended_pages() to actually perform the mapping.
1028  *
1029  * The page table mutex is held for the entire operation.
1030  */
1031 int gasket_page_table_map(struct gasket_page_table *pg_tbl, ulong host_addr,
1032                           ulong dev_addr, uint num_pages)
1033 {
1034         int ret;
1035
1036         if (!num_pages)
1037                 return 0;
1038
1039         mutex_lock(&pg_tbl->mutex);
1040
1041         if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
1042                 ret = gasket_map_simple_pages(pg_tbl, host_addr, dev_addr,
1043                                               num_pages);
1044         } else {
1045                 ret = gasket_map_extended_pages(pg_tbl, host_addr, dev_addr,
1046                                                 num_pages);
1047         }
1048
1049         mutex_unlock(&pg_tbl->mutex);
1050
1051         dev_dbg(pg_tbl->device,
1052                 "%s done: ha %llx daddr %llx num %d, ret %d\n",
1053                 __func__, (unsigned long long)host_addr,
1054                 (unsigned long long)dev_addr, num_pages, ret);
1055         return ret;
1056 }
1057 EXPORT_SYMBOL(gasket_page_table_map);
1058
1059 /*
1060  * See gasket_page_table.h for general description.
1061  *
1062  * gasket_page_table_unmap takes the page table lock and calls either
1063  * gasket_unmap_simple_pages() or gasket_unmap_extended_pages() to
1064  * actually unmap the pages from device space.
1065  *
1066  * The page table mutex is held for the entire operation.
1067  */
1068 void gasket_page_table_unmap(struct gasket_page_table *pg_tbl, ulong dev_addr,
1069                              uint num_pages)
1070 {
1071         if (!num_pages)
1072                 return;
1073
1074         mutex_lock(&pg_tbl->mutex);
1075         gasket_page_table_unmap_nolock(pg_tbl, dev_addr, num_pages);
1076         mutex_unlock(&pg_tbl->mutex);
1077 }
1078 EXPORT_SYMBOL(gasket_page_table_unmap);
1079
1080 static void gasket_page_table_unmap_all_nolock(struct gasket_page_table *pg_tbl)
1081 {
1082         gasket_unmap_simple_pages(pg_tbl,
1083                                   gasket_components_to_dev_address(pg_tbl, 1, 0,
1084                                                                    0),
1085                                   pg_tbl->num_simple_entries);
1086         gasket_unmap_extended_pages(pg_tbl,
1087                                     gasket_components_to_dev_address(pg_tbl, 0,
1088                                                                      0, 0),
1089                                     pg_tbl->num_extended_entries *
1090                                     GASKET_PAGES_PER_SUBTABLE);
1091 }
1092
1093 /* See gasket_page_table.h for description. */
1094 void gasket_page_table_unmap_all(struct gasket_page_table *pg_tbl)
1095 {
1096         mutex_lock(&pg_tbl->mutex);
1097         gasket_page_table_unmap_all_nolock(pg_tbl);
1098         mutex_unlock(&pg_tbl->mutex);
1099 }
1100 EXPORT_SYMBOL(gasket_page_table_unmap_all);
1101
1102 /* See gasket_page_table.h for description. */
1103 void gasket_page_table_reset(struct gasket_page_table *pg_tbl)
1104 {
1105         mutex_lock(&pg_tbl->mutex);
1106         gasket_page_table_unmap_all_nolock(pg_tbl);
1107         writeq(pg_tbl->config.total_entries, pg_tbl->extended_offset_reg);
1108         mutex_unlock(&pg_tbl->mutex);
1109 }
1110
1111 /* See gasket_page_table.h for description. */
1112 int gasket_page_table_lookup_page(
1113         struct gasket_page_table *pg_tbl, ulong dev_addr, struct page **ppage,
1114         ulong *poffset)
1115 {
1116         uint page_num;
1117         struct gasket_page_table_entry *pte;
1118
1119         mutex_lock(&pg_tbl->mutex);
1120         if (gasket_addr_is_simple(pg_tbl, dev_addr)) {
1121                 page_num = gasket_simple_page_idx(pg_tbl, dev_addr);
1122                 if (page_num >= pg_tbl->num_simple_entries)
1123                         goto fail;
1124
1125                 pte = pg_tbl->entries + page_num;
1126                 if (pte->status != PTE_INUSE)
1127                         goto fail;
1128         } else {
1129                 /* Find the level 0 entry, */
1130                 page_num = gasket_extended_lvl0_page_idx(pg_tbl, dev_addr);
1131                 if (page_num >= pg_tbl->num_extended_entries)
1132                         goto fail;
1133
1134                 pte = pg_tbl->entries + pg_tbl->num_simple_entries + page_num;
1135                 if (pte->status != PTE_INUSE)
1136                         goto fail;
1137
1138                 /* and its contained level 1 entry. */
1139                 page_num = gasket_extended_lvl1_page_idx(pg_tbl, dev_addr);
1140                 pte = pte->sublevel + page_num;
1141                 if (pte->status != PTE_INUSE)
1142                         goto fail;
1143         }
1144
1145         *ppage = pte->page;
1146         *poffset = pte->offset;
1147         mutex_unlock(&pg_tbl->mutex);
1148         return 0;
1149
1150 fail:
1151         *ppage = NULL;
1152         *poffset = 0;
1153         mutex_unlock(&pg_tbl->mutex);
1154         return -1;
1155 }
1156
1157 /* See gasket_page_table.h for description. */
1158 bool gasket_page_table_are_addrs_bad(
1159         struct gasket_page_table *pg_tbl, ulong host_addr, ulong dev_addr,
1160         ulong bytes)
1161 {
1162         if (host_addr & (PAGE_SIZE - 1)) {
1163                 dev_err(pg_tbl->device,
1164                         "host mapping address 0x%lx must be page aligned\n",
1165                         host_addr);
1166                 return true;
1167         }
1168
1169         return gasket_page_table_is_dev_addr_bad(pg_tbl, dev_addr, bytes);
1170 }
1171 EXPORT_SYMBOL(gasket_page_table_are_addrs_bad);
1172
1173 /* See gasket_page_table.h for description. */
1174 bool gasket_page_table_is_dev_addr_bad(
1175         struct gasket_page_table *pg_tbl, ulong dev_addr, ulong bytes)
1176 {
1177         uint num_pages = bytes / PAGE_SIZE;
1178
1179         if (bytes & (PAGE_SIZE - 1)) {
1180                 dev_err(pg_tbl->device,
1181                         "mapping size 0x%lX must be page aligned\n", bytes);
1182                 return true;
1183         }
1184
1185         if (num_pages == 0) {
1186                 dev_err(pg_tbl->device,
1187                         "requested mapping is less than one page: %lu / %lu\n",
1188                         bytes, PAGE_SIZE);
1189                 return true;
1190         }
1191
1192         if (gasket_addr_is_simple(pg_tbl, dev_addr))
1193                 return gasket_is_simple_dev_addr_bad(pg_tbl, dev_addr,
1194                                                      num_pages);
1195         return gasket_is_extended_dev_addr_bad(pg_tbl, dev_addr, num_pages);
1196 }
1197 EXPORT_SYMBOL(gasket_page_table_is_dev_addr_bad);
1198
1199 /* See gasket_page_table.h for description. */
1200 uint gasket_page_table_max_size(struct gasket_page_table *page_table)
1201 {
1202         if (!page_table)
1203                 return 0;
1204         return page_table->config.total_entries;
1205 }
1206 EXPORT_SYMBOL(gasket_page_table_max_size);
1207
1208 /* See gasket_page_table.h for description. */
1209 uint gasket_page_table_num_entries(struct gasket_page_table *pg_tbl)
1210 {
1211         if (!pg_tbl)
1212                 return 0;
1213         return pg_tbl->num_simple_entries + pg_tbl->num_extended_entries;
1214 }
1215 EXPORT_SYMBOL(gasket_page_table_num_entries);
1216
1217 /* See gasket_page_table.h for description. */
1218 uint gasket_page_table_num_simple_entries(struct gasket_page_table *pg_tbl)
1219 {
1220         if (!pg_tbl)
1221                 return 0;
1222         return pg_tbl->num_simple_entries;
1223 }
1224 EXPORT_SYMBOL(gasket_page_table_num_simple_entries);
1225
1226 /* See gasket_page_table.h for description. */
1227 uint gasket_page_table_num_active_pages(struct gasket_page_table *pg_tbl)
1228 {
1229         if (!pg_tbl)
1230                 return 0;
1231         return pg_tbl->num_active_pages;
1232 }
1233 EXPORT_SYMBOL(gasket_page_table_num_active_pages);
1234
1235 /* See gasket_page_table.h */
1236 int gasket_page_table_system_status(struct gasket_page_table *page_table)
1237 {
1238         if (!page_table)
1239                 return GASKET_STATUS_LAMED;
1240
1241         if (gasket_page_table_num_entries(page_table) == 0) {
1242                 dev_dbg(page_table->device, "Page table size is 0\n");
1243                 return GASKET_STATUS_LAMED;
1244         }
1245
1246         return GASKET_STATUS_ALIVE;
1247 }
1248
1249 /* Record the host_addr to coherent dma memory mapping. */
1250 int gasket_set_user_virt(
1251         struct gasket_dev *gasket_dev, u64 size, dma_addr_t dma_address,
1252         ulong vma)
1253 {
1254         int j;
1255         struct gasket_page_table *pg_tbl;
1256
1257         unsigned int num_pages = size / PAGE_SIZE;
1258
1259         /*
1260          * TODO: for future chipset, better handling of the case where multiple
1261          * page tables are supported on a given device
1262          */
1263         pg_tbl = gasket_dev->page_table[0];
1264         if (!pg_tbl) {
1265                 dev_dbg(gasket_dev->dev, "%s: invalid page table index\n",
1266                         __func__);
1267                 return 0;
1268         }
1269         for (j = 0; j < num_pages; j++) {
1270                 pg_tbl->coherent_pages[j].user_virt =
1271                         (u64)vma + j * PAGE_SIZE;
1272         }
1273         return 0;
1274 }
1275
1276 /* Allocate a block of coherent memory. */
1277 int gasket_alloc_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
1278                                  dma_addr_t *dma_address, u64 index)
1279 {
1280         dma_addr_t handle;
1281         void *mem;
1282         int j;
1283         unsigned int num_pages = (size + PAGE_SIZE - 1) / PAGE_SIZE;
1284         const struct gasket_driver_desc *driver_desc =
1285                 gasket_get_driver_desc(gasket_dev);
1286
1287         if (!gasket_dev->page_table[index])
1288                 return -EFAULT;
1289
1290         if (num_pages == 0)
1291                 return -EINVAL;
1292
1293         mem = dma_alloc_coherent(gasket_get_device(gasket_dev),
1294                                  num_pages * PAGE_SIZE, &handle, 0);
1295         if (!mem)
1296                 goto nomem;
1297
1298         gasket_dev->page_table[index]->num_coherent_pages = num_pages;
1299
1300         /* allocate the physical memory block */
1301         gasket_dev->page_table[index]->coherent_pages =
1302                 kcalloc(num_pages, sizeof(struct gasket_coherent_page_entry),
1303                         GFP_KERNEL);
1304         if (!gasket_dev->page_table[index]->coherent_pages)
1305                 goto nomem;
1306         *dma_address = 0;
1307
1308         gasket_dev->coherent_buffer.length_bytes =
1309                 PAGE_SIZE * (num_pages);
1310         gasket_dev->coherent_buffer.phys_base = handle;
1311         gasket_dev->coherent_buffer.virt_base = mem;
1312
1313         *dma_address = driver_desc->coherent_buffer_description.base;
1314         for (j = 0; j < num_pages; j++) {
1315                 gasket_dev->page_table[index]->coherent_pages[j].paddr =
1316                         handle + j * PAGE_SIZE;
1317                 gasket_dev->page_table[index]->coherent_pages[j].kernel_virt =
1318                         (u64)mem + j * PAGE_SIZE;
1319         }
1320
1321         if (*dma_address == 0)
1322                 goto nomem;
1323         return 0;
1324
1325 nomem:
1326         if (mem) {
1327                 dma_free_coherent(gasket_get_device(gasket_dev),
1328                                   num_pages * PAGE_SIZE, mem, handle);
1329         }
1330
1331         if (gasket_dev->page_table[index]->coherent_pages) {
1332                 kfree(gasket_dev->page_table[index]->coherent_pages);
1333                 gasket_dev->page_table[index]->coherent_pages = NULL;
1334         }
1335         gasket_dev->page_table[index]->num_coherent_pages = 0;
1336         return -ENOMEM;
1337 }
1338
1339 /* Free a block of coherent memory. */
1340 int gasket_free_coherent_memory(struct gasket_dev *gasket_dev, u64 size,
1341                                 dma_addr_t dma_address, u64 index)
1342 {
1343         const struct gasket_driver_desc *driver_desc;
1344
1345         if (!gasket_dev->page_table[index])
1346                 return -EFAULT;
1347
1348         driver_desc = gasket_get_driver_desc(gasket_dev);
1349
1350         if (driver_desc->coherent_buffer_description.base != dma_address)
1351                 return -EADDRNOTAVAIL;
1352
1353         if (gasket_dev->coherent_buffer.length_bytes) {
1354                 dma_free_coherent(gasket_get_device(gasket_dev),
1355                                   gasket_dev->coherent_buffer.length_bytes,
1356                                   gasket_dev->coherent_buffer.virt_base,
1357                                   gasket_dev->coherent_buffer.phys_base);
1358                 gasket_dev->coherent_buffer.length_bytes = 0;
1359                 gasket_dev->coherent_buffer.virt_base = NULL;
1360                 gasket_dev->coherent_buffer.phys_base = 0;
1361         }
1362         return 0;
1363 }
1364
1365 /* Release all coherent memory. */
1366 void gasket_free_coherent_memory_all(
1367         struct gasket_dev *gasket_dev, u64 index)
1368 {
1369         if (!gasket_dev->page_table[index])
1370                 return;
1371
1372         if (gasket_dev->coherent_buffer.length_bytes) {
1373                 dma_free_coherent(gasket_get_device(gasket_dev),
1374                                   gasket_dev->coherent_buffer.length_bytes,
1375                                   gasket_dev->coherent_buffer.virt_base,
1376                                   gasket_dev->coherent_buffer.phys_base);
1377                 gasket_dev->coherent_buffer.length_bytes = 0;
1378                 gasket_dev->coherent_buffer.virt_base = NULL;
1379                 gasket_dev->coherent_buffer.phys_base = 0;
1380         }
1381 }