GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / staging / lustre / lnet / lnet / nidstrings.c
1 /*
2  * GPL HEADER START
3  *
4  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 only,
8  * as published by the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but
11  * WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
13  * General Public License version 2 for more details (a copy is included
14  * in the LICENSE file that accompanied this code).
15  *
16  * You should have received a copy of the GNU General Public License
17  * version 2 along with this program; If not, see
18  * http://www.gnu.org/licenses/gpl-2.0.html
19  *
20  * GPL HEADER END
21  */
22 /*
23  * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Use is subject to license terms.
25  *
26  * Copyright (c) 2011, 2012, Intel Corporation.
27  */
28 /*
29  * This file is part of Lustre, http://www.lustre.org/
30  * Lustre is a trademark of Sun Microsystems, Inc.
31  *
32  * lnet/lnet/nidstrings.c
33  *
34  * Author: Phil Schwan <phil@clusterfs.com>
35  */
36
37 #define DEBUG_SUBSYSTEM S_LNET
38
39 #include <linux/libcfs/libcfs.h>
40 #include <uapi/linux/lnet/nidstr.h>
41
42 /* max value for numeric network address */
43 #define MAX_NUMERIC_VALUE 0xffffffff
44
45 #define IPSTRING_LENGTH 16
46
47 /* CAVEAT VENDITOR! Keep the canonical string representation of nets/nids
48  * consistent in all conversion functions.  Some code fragments are copied
49  * around for the sake of clarity...
50  */
51
52 /* CAVEAT EMPTOR! Racey temporary buffer allocation!
53  * Choose the number of nidstrings to support the MAXIMUM expected number of
54  * concurrent users.  If there are more, the returned string will be volatile.
55  * NB this number must allow for a process to be descheduled for a timeslice
56  * between getting its string and using it.
57  */
58
59 static char      libcfs_nidstrings[LNET_NIDSTR_COUNT][LNET_NIDSTR_SIZE];
60 static int       libcfs_nidstring_idx;
61
62 static DEFINE_SPINLOCK(libcfs_nidstring_lock);
63
64 static struct netstrfns *libcfs_namenum2netstrfns(const char *name);
65
66 char *
67 libcfs_next_nidstring(void)
68 {
69         char *str;
70         unsigned long flags;
71
72         spin_lock_irqsave(&libcfs_nidstring_lock, flags);
73
74         str = libcfs_nidstrings[libcfs_nidstring_idx++];
75         if (libcfs_nidstring_idx == ARRAY_SIZE(libcfs_nidstrings))
76                 libcfs_nidstring_idx = 0;
77
78         spin_unlock_irqrestore(&libcfs_nidstring_lock, flags);
79         return str;
80 }
81 EXPORT_SYMBOL(libcfs_next_nidstring);
82
83 /**
84  * Nid range list syntax.
85  * \verbatim
86  *
87  * <nidlist>         :== <nidrange> [ ' ' <nidrange> ]
88  * <nidrange>        :== <addrrange> '@' <net>
89  * <addrrange>       :== '*' |
90  *                       <ipaddr_range> |
91  *                       <cfs_expr_list>
92  * <ipaddr_range>    :== <cfs_expr_list>.<cfs_expr_list>.<cfs_expr_list>.
93  *                       <cfs_expr_list>
94  * <cfs_expr_list>   :== <number> |
95  *                       <expr_list>
96  * <expr_list>       :== '[' <range_expr> [ ',' <range_expr>] ']'
97  * <range_expr>      :== <number> |
98  *                       <number> '-' <number> |
99  *                       <number> '-' <number> '/' <number>
100  * <net>             :== <netname> | <netname><number>
101  * <netname>         :== "lo" | "tcp" | "o2ib" | "cib" | "openib" | "iib" |
102  *                       "vib" | "ra" | "elan" | "mx" | "ptl"
103  * \endverbatim
104  */
105
106 /**
107  * Structure to represent \<nidrange\> token of the syntax.
108  *
109  * One of this is created for each \<net\> parsed.
110  */
111 struct nidrange {
112         /**
113          * Link to list of this structures which is built on nid range
114          * list parsing.
115          */
116         struct list_head nr_link;
117         /**
118          * List head for addrrange::ar_link.
119          */
120         struct list_head nr_addrranges;
121         /**
122          * Flag indicating that *@<net> is found.
123          */
124         int nr_all;
125         /**
126          * Pointer to corresponding element of libcfs_netstrfns.
127          */
128         struct netstrfns *nr_netstrfns;
129         /**
130          * Number of network. E.g. 5 if \<net\> is "elan5".
131          */
132         int nr_netnum;
133 };
134
135 /**
136  * Structure to represent \<addrrange\> token of the syntax.
137  */
138 struct addrrange {
139         /**
140          * Link to nidrange::nr_addrranges.
141          */
142         struct list_head ar_link;
143         /**
144          * List head for cfs_expr_list::el_list.
145          */
146         struct list_head ar_numaddr_ranges;
147 };
148
149 /**
150  * Parses \<addrrange\> token on the syntax.
151  *
152  * Allocates struct addrrange and links to \a nidrange via
153  * (nidrange::nr_addrranges)
154  *
155  * \retval 0 if \a src parses to '*' | \<ipaddr_range\> | \<cfs_expr_list\>
156  * \retval -errno otherwise
157  */
158 static int
159 parse_addrange(const struct cfs_lstr *src, struct nidrange *nidrange)
160 {
161         struct addrrange *addrrange;
162
163         if (src->ls_len == 1 && src->ls_str[0] == '*') {
164                 nidrange->nr_all = 1;
165                 return 0;
166         }
167
168         LIBCFS_ALLOC(addrrange, sizeof(struct addrrange));
169         if (!addrrange)
170                 return -ENOMEM;
171         list_add_tail(&addrrange->ar_link, &nidrange->nr_addrranges);
172         INIT_LIST_HEAD(&addrrange->ar_numaddr_ranges);
173
174         return nidrange->nr_netstrfns->nf_parse_addrlist(src->ls_str,
175                                                 src->ls_len,
176                                                 &addrrange->ar_numaddr_ranges);
177 }
178
179 /**
180  * Finds or creates struct nidrange.
181  *
182  * Checks if \a src is a valid network name, looks for corresponding
183  * nidrange on the ist of nidranges (\a nidlist), creates new struct
184  * nidrange if it is not found.
185  *
186  * \retval pointer to struct nidrange matching network specified via \a src
187  * \retval NULL if \a src does not match any network
188  */
189 static struct nidrange *
190 add_nidrange(const struct cfs_lstr *src,
191              struct list_head *nidlist)
192 {
193         struct netstrfns *nf;
194         struct nidrange *nr;
195         int endlen;
196         unsigned int netnum;
197
198         if (src->ls_len >= LNET_NIDSTR_SIZE)
199                 return NULL;
200
201         nf = libcfs_namenum2netstrfns(src->ls_str);
202         if (!nf)
203                 return NULL;
204         endlen = src->ls_len - strlen(nf->nf_name);
205         if (!endlen)
206                 /* network name only, e.g. "elan" or "tcp" */
207                 netnum = 0;
208         else {
209                 /*
210                  * e.g. "elan25" or "tcp23", refuse to parse if
211                  * network name is not appended with decimal or
212                  * hexadecimal number
213                  */
214                 if (!cfs_str2num_check(src->ls_str + strlen(nf->nf_name),
215                                        endlen, &netnum, 0, MAX_NUMERIC_VALUE))
216                         return NULL;
217         }
218
219         list_for_each_entry(nr, nidlist, nr_link) {
220                 if (nr->nr_netstrfns != nf)
221                         continue;
222                 if (nr->nr_netnum != netnum)
223                         continue;
224                 return nr;
225         }
226
227         LIBCFS_ALLOC(nr, sizeof(struct nidrange));
228         if (!nr)
229                 return NULL;
230         list_add_tail(&nr->nr_link, nidlist);
231         INIT_LIST_HEAD(&nr->nr_addrranges);
232         nr->nr_netstrfns = nf;
233         nr->nr_all = 0;
234         nr->nr_netnum = netnum;
235
236         return nr;
237 }
238
239 /**
240  * Parses \<nidrange\> token of the syntax.
241  *
242  * \retval 1 if \a src parses to \<addrrange\> '@' \<net\>
243  * \retval 0 otherwise
244  */
245 static int
246 parse_nidrange(struct cfs_lstr *src, struct list_head *nidlist)
247 {
248         struct cfs_lstr addrrange;
249         struct cfs_lstr net;
250         struct nidrange *nr;
251
252         if (!cfs_gettok(src, '@', &addrrange))
253                 goto failed;
254
255         if (!cfs_gettok(src, '@', &net) || src->ls_str)
256                 goto failed;
257
258         nr = add_nidrange(&net, nidlist);
259         if (!nr)
260                 goto failed;
261
262         if (parse_addrange(&addrrange, nr))
263                 goto failed;
264
265         return 1;
266 failed:
267         return 0;
268 }
269
270 /**
271  * Frees addrrange structures of \a list.
272  *
273  * For each struct addrrange structure found on \a list it frees
274  * cfs_expr_list list attached to it and frees the addrrange itself.
275  *
276  * \retval none
277  */
278 static void
279 free_addrranges(struct list_head *list)
280 {
281         while (!list_empty(list)) {
282                 struct addrrange *ar;
283
284                 ar = list_entry(list->next, struct addrrange, ar_link);
285
286                 cfs_expr_list_free_list(&ar->ar_numaddr_ranges);
287                 list_del(&ar->ar_link);
288                 LIBCFS_FREE(ar, sizeof(struct addrrange));
289         }
290 }
291
292 /**
293  * Frees nidrange strutures of \a list.
294  *
295  * For each struct nidrange structure found on \a list it frees
296  * addrrange list attached to it and frees the nidrange itself.
297  *
298  * \retval none
299  */
300 void
301 cfs_free_nidlist(struct list_head *list)
302 {
303         struct list_head *pos, *next;
304         struct nidrange *nr;
305
306         list_for_each_safe(pos, next, list) {
307                 nr = list_entry(pos, struct nidrange, nr_link);
308                 free_addrranges(&nr->nr_addrranges);
309                 list_del(pos);
310                 LIBCFS_FREE(nr, sizeof(struct nidrange));
311         }
312 }
313 EXPORT_SYMBOL(cfs_free_nidlist);
314
315 /**
316  * Parses nid range list.
317  *
318  * Parses with rigorous syntax and overflow checking \a str into
319  * \<nidrange\> [ ' ' \<nidrange\> ], compiles \a str into set of
320  * structures and links that structure to \a nidlist. The resulting
321  * list can be used to match a NID againts set of NIDS defined by \a
322  * str.
323  * \see cfs_match_nid
324  *
325  * \retval 1 on success
326  * \retval 0 otherwise
327  */
328 int
329 cfs_parse_nidlist(char *str, int len, struct list_head *nidlist)
330 {
331         struct cfs_lstr src;
332         struct cfs_lstr res;
333         int rc;
334
335         src.ls_str = str;
336         src.ls_len = len;
337         INIT_LIST_HEAD(nidlist);
338         while (src.ls_str) {
339                 rc = cfs_gettok(&src, ' ', &res);
340                 if (!rc) {
341                         cfs_free_nidlist(nidlist);
342                         return 0;
343                 }
344                 rc = parse_nidrange(&res, nidlist);
345                 if (!rc) {
346                         cfs_free_nidlist(nidlist);
347                         return 0;
348                 }
349         }
350         return 1;
351 }
352 EXPORT_SYMBOL(cfs_parse_nidlist);
353
354 /**
355  * Matches a nid (\a nid) against the compiled list of nidranges (\a nidlist).
356  *
357  * \see cfs_parse_nidlist()
358  *
359  * \retval 1 on match
360  * \retval 0  otherwises
361  */
362 int cfs_match_nid(lnet_nid_t nid, struct list_head *nidlist)
363 {
364         struct nidrange *nr;
365         struct addrrange *ar;
366
367         list_for_each_entry(nr, nidlist, nr_link) {
368                 if (nr->nr_netstrfns->nf_type != LNET_NETTYP(LNET_NIDNET(nid)))
369                         continue;
370                 if (nr->nr_netnum != LNET_NETNUM(LNET_NIDNET(nid)))
371                         continue;
372                 if (nr->nr_all)
373                         return 1;
374                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link)
375                         if (nr->nr_netstrfns->nf_match_addr(LNET_NIDADDR(nid),
376                                                             &ar->ar_numaddr_ranges))
377                                 return 1;
378         }
379         return 0;
380 }
381 EXPORT_SYMBOL(cfs_match_nid);
382
383 /**
384  * Print the network part of the nidrange \a nr into the specified \a buffer.
385  *
386  * \retval number of characters written
387  */
388 static int
389 cfs_print_network(char *buffer, int count, struct nidrange *nr)
390 {
391         struct netstrfns *nf = nr->nr_netstrfns;
392
393         if (!nr->nr_netnum)
394                 return scnprintf(buffer, count, "@%s", nf->nf_name);
395         else
396                 return scnprintf(buffer, count, "@%s%u",
397                                  nf->nf_name, nr->nr_netnum);
398 }
399
400 /**
401  * Print a list of addrrange (\a addrranges) into the specified \a buffer.
402  * At max \a count characters can be printed into \a buffer.
403  *
404  * \retval number of characters written
405  */
406 static int
407 cfs_print_addrranges(char *buffer, int count, struct list_head *addrranges,
408                      struct nidrange *nr)
409 {
410         int i = 0;
411         struct addrrange *ar;
412         struct netstrfns *nf = nr->nr_netstrfns;
413
414         list_for_each_entry(ar, addrranges, ar_link) {
415                 if (i)
416                         i += scnprintf(buffer + i, count - i, " ");
417                 i += nf->nf_print_addrlist(buffer + i, count - i,
418                                            &ar->ar_numaddr_ranges);
419                 i += cfs_print_network(buffer + i, count - i, nr);
420         }
421         return i;
422 }
423
424 /**
425  * Print a list of nidranges (\a nidlist) into the specified \a buffer.
426  * At max \a count characters can be printed into \a buffer.
427  * Nidranges are separated by a space character.
428  *
429  * \retval number of characters written
430  */
431 int cfs_print_nidlist(char *buffer, int count, struct list_head *nidlist)
432 {
433         int i = 0;
434         struct nidrange *nr;
435
436         if (count <= 0)
437                 return 0;
438
439         list_for_each_entry(nr, nidlist, nr_link) {
440                 if (i)
441                         i += scnprintf(buffer + i, count - i, " ");
442
443                 if (nr->nr_all) {
444                         LASSERT(list_empty(&nr->nr_addrranges));
445                         i += scnprintf(buffer + i, count - i, "*");
446                         i += cfs_print_network(buffer + i, count - i, nr);
447                 } else {
448                         i += cfs_print_addrranges(buffer + i, count - i,
449                                                   &nr->nr_addrranges, nr);
450                 }
451         }
452         return i;
453 }
454 EXPORT_SYMBOL(cfs_print_nidlist);
455
456 /**
457  * Determines minimum and maximum addresses for a single
458  * numeric address range
459  *
460  * \param       ar
461  * \param       min_nid
462  * \param       max_nid
463  */
464 static void cfs_ip_ar_min_max(struct addrrange *ar, __u32 *min_nid,
465                               __u32 *max_nid)
466 {
467         struct cfs_expr_list *el;
468         struct cfs_range_expr *re;
469         __u32 tmp_ip_addr = 0;
470         unsigned int min_ip[4] = {0};
471         unsigned int max_ip[4] = {0};
472         int re_count = 0;
473
474         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
475                 list_for_each_entry(re, &el->el_exprs, re_link) {
476                         min_ip[re_count] = re->re_lo;
477                         max_ip[re_count] = re->re_hi;
478                         re_count++;
479                 }
480         }
481
482         tmp_ip_addr = ((min_ip[0] << 24) | (min_ip[1] << 16) |
483                        (min_ip[2] << 8) | min_ip[3]);
484
485         if (min_nid)
486                 *min_nid = tmp_ip_addr;
487
488         tmp_ip_addr = ((max_ip[0] << 24) | (max_ip[1] << 16) |
489                        (max_ip[2] << 8) | max_ip[3]);
490
491         if (max_nid)
492                 *max_nid = tmp_ip_addr;
493 }
494
495 /**
496  * Determines minimum and maximum addresses for a single
497  * numeric address range
498  *
499  * \param       ar
500  * \param       min_nid
501  * \param       max_nid
502  */
503 static void cfs_num_ar_min_max(struct addrrange *ar, __u32 *min_nid,
504                                __u32 *max_nid)
505 {
506         struct cfs_expr_list *el;
507         struct cfs_range_expr *re;
508         unsigned int min_addr = 0;
509         unsigned int max_addr = 0;
510
511         list_for_each_entry(el, &ar->ar_numaddr_ranges, el_link) {
512                 list_for_each_entry(re, &el->el_exprs, re_link) {
513                         if (re->re_lo < min_addr || !min_addr)
514                                 min_addr = re->re_lo;
515                         if (re->re_hi > max_addr)
516                                 max_addr = re->re_hi;
517                 }
518         }
519
520         if (min_nid)
521                 *min_nid = min_addr;
522         if (max_nid)
523                 *max_nid = max_addr;
524 }
525
526 /**
527  * Determines whether an expression list in an nidrange contains exactly
528  * one contiguous address range. Calls the correct netstrfns for the LND
529  *
530  * \param       *nidlist
531  *
532  * \retval      true if contiguous
533  * \retval      false if not contiguous
534  */
535 bool cfs_nidrange_is_contiguous(struct list_head *nidlist)
536 {
537         struct nidrange *nr;
538         struct netstrfns *nf = NULL;
539         char *lndname = NULL;
540         int netnum = -1;
541
542         list_for_each_entry(nr, nidlist, nr_link) {
543                 nf = nr->nr_netstrfns;
544                 if (!lndname)
545                         lndname = nf->nf_name;
546                 if (netnum == -1)
547                         netnum = nr->nr_netnum;
548
549                 if (strcmp(lndname, nf->nf_name) ||
550                     netnum != nr->nr_netnum)
551                         return false;
552         }
553
554         if (!nf)
555                 return false;
556
557         if (!nf->nf_is_contiguous(nidlist))
558                 return false;
559
560         return true;
561 }
562 EXPORT_SYMBOL(cfs_nidrange_is_contiguous);
563
564 /**
565  * Determines whether an expression list in an num nidrange contains exactly
566  * one contiguous address range.
567  *
568  * \param       *nidlist
569  *
570  * \retval      true if contiguous
571  * \retval      false if not contiguous
572  */
573 static bool cfs_num_is_contiguous(struct list_head *nidlist)
574 {
575         struct nidrange *nr;
576         struct addrrange *ar;
577         struct cfs_expr_list *el;
578         struct cfs_range_expr *re;
579         int last_hi = 0;
580         __u32 last_end_nid = 0;
581         __u32 current_start_nid = 0;
582         __u32 current_end_nid = 0;
583
584         list_for_each_entry(nr, nidlist, nr_link) {
585                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
586                         cfs_num_ar_min_max(ar, &current_start_nid,
587                                            &current_end_nid);
588                         if (last_end_nid &&
589                             (current_start_nid - last_end_nid != 1))
590                                 return false;
591                         last_end_nid = current_end_nid;
592                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
593                                             el_link) {
594                                 list_for_each_entry(re, &el->el_exprs,
595                                                     re_link) {
596                                         if (re->re_stride > 1)
597                                                 return false;
598                                         else if (last_hi &&
599                                                  re->re_hi - last_hi != 1)
600                                                 return false;
601                                         last_hi = re->re_hi;
602                                 }
603                         }
604                 }
605         }
606
607         return true;
608 }
609
610 /**
611  * Determines whether an expression list in an ip nidrange contains exactly
612  * one contiguous address range.
613  *
614  * \param       *nidlist
615  *
616  * \retval      true if contiguous
617  * \retval      false if not contiguous
618  */
619 static bool cfs_ip_is_contiguous(struct list_head *nidlist)
620 {
621         struct nidrange *nr;
622         struct addrrange *ar;
623         struct cfs_expr_list *el;
624         struct cfs_range_expr *re;
625         int expr_count;
626         int last_hi = 255;
627         int last_diff = 0;
628         __u32 last_end_nid = 0;
629         __u32 current_start_nid = 0;
630         __u32 current_end_nid = 0;
631
632         list_for_each_entry(nr, nidlist, nr_link) {
633                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
634                         last_hi = 255;
635                         last_diff = 0;
636                         cfs_ip_ar_min_max(ar, &current_start_nid,
637                                           &current_end_nid);
638                         if (last_end_nid &&
639                             (current_start_nid - last_end_nid != 1))
640                                 return false;
641                         last_end_nid = current_end_nid;
642                         list_for_each_entry(el, &ar->ar_numaddr_ranges,
643                                             el_link) {
644                                 expr_count = 0;
645                                 list_for_each_entry(re, &el->el_exprs,
646                                                     re_link) {
647                                         expr_count++;
648                                         if (re->re_stride > 1 ||
649                                             (last_diff > 0 && last_hi != 255) ||
650                                             (last_diff > 0 && last_hi == 255 &&
651                                              re->re_lo > 0))
652                                                 return false;
653                                         last_hi = re->re_hi;
654                                         last_diff = re->re_hi - re->re_lo;
655                                 }
656                         }
657                 }
658         }
659
660         return true;
661 }
662
663 /**
664  * Takes a linked list of nidrange expressions, determines the minimum
665  * and maximum nid and creates appropriate nid structures
666  *
667  * \param       *nidlist
668  * \param       *min_nid
669  * \param       *max_nid
670  */
671 void cfs_nidrange_find_min_max(struct list_head *nidlist, char *min_nid,
672                                char *max_nid, size_t nidstr_length)
673 {
674         struct nidrange *nr;
675         struct netstrfns *nf = NULL;
676         int netnum = -1;
677         __u32 min_addr;
678         __u32 max_addr;
679         char *lndname = NULL;
680         char min_addr_str[IPSTRING_LENGTH];
681         char max_addr_str[IPSTRING_LENGTH];
682
683         list_for_each_entry(nr, nidlist, nr_link) {
684                 nf = nr->nr_netstrfns;
685                 lndname = nf->nf_name;
686                 if (netnum == -1)
687                         netnum = nr->nr_netnum;
688
689                 nf->nf_min_max(nidlist, &min_addr, &max_addr);
690         }
691         nf->nf_addr2str(min_addr, min_addr_str, sizeof(min_addr_str));
692         nf->nf_addr2str(max_addr, max_addr_str, sizeof(max_addr_str));
693
694         snprintf(min_nid, nidstr_length, "%s@%s%d", min_addr_str, lndname,
695                  netnum);
696         snprintf(max_nid, nidstr_length, "%s@%s%d", max_addr_str, lndname,
697                  netnum);
698 }
699 EXPORT_SYMBOL(cfs_nidrange_find_min_max);
700
701 /**
702  * Determines the min and max NID values for num LNDs
703  *
704  * \param       *nidlist
705  * \param       *min_nid
706  * \param       *max_nid
707  */
708 static void cfs_num_min_max(struct list_head *nidlist, __u32 *min_nid,
709                             __u32 *max_nid)
710 {
711         struct nidrange *nr;
712         struct addrrange *ar;
713         unsigned int tmp_min_addr = 0;
714         unsigned int tmp_max_addr = 0;
715         unsigned int min_addr = 0;
716         unsigned int max_addr = 0;
717
718         list_for_each_entry(nr, nidlist, nr_link) {
719                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
720                         cfs_num_ar_min_max(ar, &tmp_min_addr,
721                                            &tmp_max_addr);
722                         if (tmp_min_addr < min_addr || !min_addr)
723                                 min_addr = tmp_min_addr;
724                         if (tmp_max_addr > max_addr)
725                                 max_addr = tmp_min_addr;
726                 }
727         }
728         *max_nid = max_addr;
729         *min_nid = min_addr;
730 }
731
732 /**
733  * Takes an nidlist and determines the minimum and maximum
734  * ip addresses.
735  *
736  * \param       *nidlist
737  * \param       *min_nid
738  * \param       *max_nid
739  */
740 static void cfs_ip_min_max(struct list_head *nidlist, __u32 *min_nid,
741                            __u32 *max_nid)
742 {
743         struct nidrange *nr;
744         struct addrrange *ar;
745         __u32 tmp_min_ip_addr = 0;
746         __u32 tmp_max_ip_addr = 0;
747         __u32 min_ip_addr = 0;
748         __u32 max_ip_addr = 0;
749
750         list_for_each_entry(nr, nidlist, nr_link) {
751                 list_for_each_entry(ar, &nr->nr_addrranges, ar_link) {
752                         cfs_ip_ar_min_max(ar, &tmp_min_ip_addr,
753                                           &tmp_max_ip_addr);
754                         if (tmp_min_ip_addr < min_ip_addr || !min_ip_addr)
755                                 min_ip_addr = tmp_min_ip_addr;
756                         if (tmp_max_ip_addr > max_ip_addr)
757                                 max_ip_addr = tmp_max_ip_addr;
758                 }
759         }
760
761         if (min_nid)
762                 *min_nid = min_ip_addr;
763         if (max_nid)
764                 *max_nid = max_ip_addr;
765 }
766
767 static int
768 libcfs_lo_str2addr(const char *str, int nob, __u32 *addr)
769 {
770         *addr = 0;
771         return 1;
772 }
773
774 static void
775 libcfs_ip_addr2str(__u32 addr, char *str, size_t size)
776 {
777         snprintf(str, size, "%u.%u.%u.%u",
778                  (addr >> 24) & 0xff, (addr >> 16) & 0xff,
779                  (addr >> 8) & 0xff, addr & 0xff);
780 }
781
782 /*
783  * CAVEAT EMPTOR XscanfX
784  * I use "%n" at the end of a sscanf format to detect trailing junk.  However
785  * sscanf may return immediately if it sees the terminating '0' in a string, so
786  * I initialise the %n variable to the expected length.  If sscanf sets it;
787  * fine, if it doesn't, then the scan ended at the end of the string, which is
788  * fine too :)
789  */
790 static int
791 libcfs_ip_str2addr(const char *str, int nob, __u32 *addr)
792 {
793         unsigned int    a;
794         unsigned int    b;
795         unsigned int    c;
796         unsigned int    d;
797         int             n = nob; /* XscanfX */
798
799         /* numeric IP? */
800         if (sscanf(str, "%u.%u.%u.%u%n", &a, &b, &c, &d, &n) >= 4 &&
801             n == nob &&
802             !(a & ~0xff) && !(b & ~0xff) &&
803             !(c & ~0xff) && !(d & ~0xff)) {
804                 *addr = ((a << 24) | (b << 16) | (c << 8) | d);
805                 return 1;
806         }
807
808         return 0;
809 }
810
811 /* Used by lnet/config.c so it can't be static */
812 int
813 cfs_ip_addr_parse(char *str, int len, struct list_head *list)
814 {
815         struct cfs_expr_list *el;
816         struct cfs_lstr src;
817         int rc;
818         int i;
819
820         src.ls_str = str;
821         src.ls_len = len;
822         i = 0;
823
824         while (src.ls_str) {
825                 struct cfs_lstr res;
826
827                 if (!cfs_gettok(&src, '.', &res)) {
828                         rc = -EINVAL;
829                         goto out;
830                 }
831
832                 rc = cfs_expr_list_parse(res.ls_str, res.ls_len, 0, 255, &el);
833                 if (rc)
834                         goto out;
835
836                 list_add_tail(&el->el_link, list);
837                 i++;
838         }
839
840         if (i == 4)
841                 return 0;
842
843         rc = -EINVAL;
844 out:
845         cfs_expr_list_free_list(list);
846
847         return rc;
848 }
849
850 static int
851 libcfs_ip_addr_range_print(char *buffer, int count, struct list_head *list)
852 {
853         int i = 0, j = 0;
854         struct cfs_expr_list *el;
855
856         list_for_each_entry(el, list, el_link) {
857                 LASSERT(j++ < 4);
858                 if (i)
859                         i += scnprintf(buffer + i, count - i, ".");
860                 i += cfs_expr_list_print(buffer + i, count - i, el);
861         }
862         return i;
863 }
864
865 /**
866  * Matches address (\a addr) against address set encoded in \a list.
867  *
868  * \retval 1 if \a addr matches
869  * \retval 0 otherwise
870  */
871 int
872 cfs_ip_addr_match(__u32 addr, struct list_head *list)
873 {
874         struct cfs_expr_list *el;
875         int i = 0;
876
877         list_for_each_entry_reverse(el, list, el_link) {
878                 if (!cfs_expr_list_match(addr & 0xff, el))
879                         return 0;
880                 addr >>= 8;
881                 i++;
882         }
883
884         return i == 4;
885 }
886
887 static void
888 libcfs_decnum_addr2str(__u32 addr, char *str, size_t size)
889 {
890         snprintf(str, size, "%u", addr);
891 }
892
893 static int
894 libcfs_num_str2addr(const char *str, int nob, __u32 *addr)
895 {
896         int     n;
897
898         n = nob;
899         if (sscanf(str, "0x%x%n", addr, &n) >= 1 && n == nob)
900                 return 1;
901
902         n = nob;
903         if (sscanf(str, "0X%x%n", addr, &n) >= 1 && n == nob)
904                 return 1;
905
906         n = nob;
907         if (sscanf(str, "%u%n", addr, &n) >= 1 && n == nob)
908                 return 1;
909
910         return 0;
911 }
912
913 /**
914  * Nf_parse_addrlist method for networks using numeric addresses.
915  *
916  * Examples of such networks are gm and elan.
917  *
918  * \retval 0 if \a str parsed to numeric address
919  * \retval errno otherwise
920  */
921 static int
922 libcfs_num_parse(char *str, int len, struct list_head *list)
923 {
924         struct cfs_expr_list *el;
925         int     rc;
926
927         rc = cfs_expr_list_parse(str, len, 0, MAX_NUMERIC_VALUE, &el);
928         if (!rc)
929                 list_add_tail(&el->el_link, list);
930
931         return rc;
932 }
933
934 static int
935 libcfs_num_addr_range_print(char *buffer, int count, struct list_head *list)
936 {
937         int i = 0, j = 0;
938         struct cfs_expr_list *el;
939
940         list_for_each_entry(el, list, el_link) {
941                 LASSERT(j++ < 1);
942                 i += cfs_expr_list_print(buffer + i, count - i, el);
943         }
944         return i;
945 }
946
947 /*
948  * Nf_match_addr method for networks using numeric addresses
949  *
950  * \retval 1 on match
951  * \retval 0 otherwise
952  */
953 static int
954 libcfs_num_match(__u32 addr, struct list_head *numaddr)
955 {
956         struct cfs_expr_list *el;
957
958         LASSERT(!list_empty(numaddr));
959         el = list_entry(numaddr->next, struct cfs_expr_list, el_link);
960
961         return cfs_expr_list_match(addr, el);
962 }
963
964 static struct netstrfns libcfs_netstrfns[] = {
965         { .nf_type              = LOLND,
966           .nf_name              = "lo",
967           .nf_modname           = "klolnd",
968           .nf_addr2str          = libcfs_decnum_addr2str,
969           .nf_str2addr          = libcfs_lo_str2addr,
970           .nf_parse_addrlist    = libcfs_num_parse,
971           .nf_print_addrlist    = libcfs_num_addr_range_print,
972           .nf_match_addr        = libcfs_num_match,
973           .nf_is_contiguous     = cfs_num_is_contiguous,
974           .nf_min_max           = cfs_num_min_max },
975         { .nf_type              = SOCKLND,
976           .nf_name              = "tcp",
977           .nf_modname           = "ksocklnd",
978           .nf_addr2str          = libcfs_ip_addr2str,
979           .nf_str2addr          = libcfs_ip_str2addr,
980           .nf_parse_addrlist    = cfs_ip_addr_parse,
981           .nf_print_addrlist    = libcfs_ip_addr_range_print,
982           .nf_match_addr        = cfs_ip_addr_match,
983           .nf_is_contiguous     = cfs_ip_is_contiguous,
984           .nf_min_max           = cfs_ip_min_max },
985         { .nf_type              = O2IBLND,
986           .nf_name              = "o2ib",
987           .nf_modname           = "ko2iblnd",
988           .nf_addr2str          = libcfs_ip_addr2str,
989           .nf_str2addr          = libcfs_ip_str2addr,
990           .nf_parse_addrlist    = cfs_ip_addr_parse,
991           .nf_print_addrlist    = libcfs_ip_addr_range_print,
992           .nf_match_addr        = cfs_ip_addr_match,
993           .nf_is_contiguous     = cfs_ip_is_contiguous,
994           .nf_min_max           = cfs_ip_min_max },
995         { .nf_type              = GNILND,
996           .nf_name              = "gni",
997           .nf_modname           = "kgnilnd",
998           .nf_addr2str          = libcfs_decnum_addr2str,
999           .nf_str2addr          = libcfs_num_str2addr,
1000           .nf_parse_addrlist    = libcfs_num_parse,
1001           .nf_print_addrlist    = libcfs_num_addr_range_print,
1002           .nf_match_addr        = libcfs_num_match,
1003           .nf_is_contiguous     = cfs_num_is_contiguous,
1004           .nf_min_max           = cfs_num_min_max },
1005         { .nf_type              = GNIIPLND,
1006           .nf_name              = "gip",
1007           .nf_modname           = "kgnilnd",
1008           .nf_addr2str          = libcfs_ip_addr2str,
1009           .nf_str2addr          = libcfs_ip_str2addr,
1010           .nf_parse_addrlist    = cfs_ip_addr_parse,
1011           .nf_print_addrlist    = libcfs_ip_addr_range_print,
1012           .nf_match_addr        = cfs_ip_addr_match,
1013           .nf_is_contiguous     = cfs_ip_is_contiguous,
1014           .nf_min_max           = cfs_ip_min_max },
1015 };
1016
1017 static const size_t libcfs_nnetstrfns = ARRAY_SIZE(libcfs_netstrfns);
1018
1019 static struct netstrfns *
1020 libcfs_lnd2netstrfns(__u32 lnd)
1021 {
1022         int i;
1023
1024         for (i = 0; i < libcfs_nnetstrfns; i++)
1025                 if (lnd == libcfs_netstrfns[i].nf_type)
1026                         return &libcfs_netstrfns[i];
1027
1028         return NULL;
1029 }
1030
1031 static struct netstrfns *
1032 libcfs_namenum2netstrfns(const char *name)
1033 {
1034         struct netstrfns *nf;
1035         int i;
1036
1037         for (i = 0; i < libcfs_nnetstrfns; i++) {
1038                 nf = &libcfs_netstrfns[i];
1039                 if (!strncmp(name, nf->nf_name, strlen(nf->nf_name)))
1040                         return nf;
1041         }
1042         return NULL;
1043 }
1044
1045 static struct netstrfns *
1046 libcfs_name2netstrfns(const char *name)
1047 {
1048         int    i;
1049
1050         for (i = 0; i < libcfs_nnetstrfns; i++)
1051                 if (!strcmp(libcfs_netstrfns[i].nf_name, name))
1052                         return &libcfs_netstrfns[i];
1053
1054         return NULL;
1055 }
1056
1057 int
1058 libcfs_isknown_lnd(__u32 lnd)
1059 {
1060         return !!libcfs_lnd2netstrfns(lnd);
1061 }
1062 EXPORT_SYMBOL(libcfs_isknown_lnd);
1063
1064 char *
1065 libcfs_lnd2modname(__u32 lnd)
1066 {
1067         struct netstrfns *nf = libcfs_lnd2netstrfns(lnd);
1068
1069         return nf ? nf->nf_modname : NULL;
1070 }
1071 EXPORT_SYMBOL(libcfs_lnd2modname);
1072
1073 int
1074 libcfs_str2lnd(const char *str)
1075 {
1076         struct netstrfns *nf = libcfs_name2netstrfns(str);
1077
1078         if (nf)
1079                 return nf->nf_type;
1080
1081         return -ENXIO;
1082 }
1083 EXPORT_SYMBOL(libcfs_str2lnd);
1084
1085 char *
1086 libcfs_lnd2str_r(__u32 lnd, char *buf, size_t buf_size)
1087 {
1088         struct netstrfns *nf;
1089
1090         nf = libcfs_lnd2netstrfns(lnd);
1091         if (!nf)
1092                 snprintf(buf, buf_size, "?%u?", lnd);
1093         else
1094                 snprintf(buf, buf_size, "%s", nf->nf_name);
1095
1096         return buf;
1097 }
1098 EXPORT_SYMBOL(libcfs_lnd2str_r);
1099
1100 char *
1101 libcfs_net2str_r(__u32 net, char *buf, size_t buf_size)
1102 {
1103         __u32 nnum = LNET_NETNUM(net);
1104         __u32 lnd = LNET_NETTYP(net);
1105         struct netstrfns *nf;
1106
1107         nf = libcfs_lnd2netstrfns(lnd);
1108         if (!nf)
1109                 snprintf(buf, buf_size, "<%u:%u>", lnd, nnum);
1110         else if (!nnum)
1111                 snprintf(buf, buf_size, "%s", nf->nf_name);
1112         else
1113                 snprintf(buf, buf_size, "%s%u", nf->nf_name, nnum);
1114
1115         return buf;
1116 }
1117 EXPORT_SYMBOL(libcfs_net2str_r);
1118
1119 char *
1120 libcfs_nid2str_r(lnet_nid_t nid, char *buf, size_t buf_size)
1121 {
1122         __u32 addr = LNET_NIDADDR(nid);
1123         __u32 net = LNET_NIDNET(nid);
1124         __u32 nnum = LNET_NETNUM(net);
1125         __u32 lnd = LNET_NETTYP(net);
1126         struct netstrfns *nf;
1127
1128         if (nid == LNET_NID_ANY) {
1129                 strncpy(buf, "<?>", buf_size);
1130                 buf[buf_size - 1] = '\0';
1131                 return buf;
1132         }
1133
1134         nf = libcfs_lnd2netstrfns(lnd);
1135         if (!nf) {
1136                 snprintf(buf, buf_size, "%x@<%u:%u>", addr, lnd, nnum);
1137         } else {
1138                 size_t addr_len;
1139
1140                 nf->nf_addr2str(addr, buf, buf_size);
1141                 addr_len = strlen(buf);
1142                 if (!nnum)
1143                         snprintf(buf + addr_len, buf_size - addr_len, "@%s",
1144                                  nf->nf_name);
1145                 else
1146                         snprintf(buf + addr_len, buf_size - addr_len, "@%s%u",
1147                                  nf->nf_name, nnum);
1148         }
1149
1150         return buf;
1151 }
1152 EXPORT_SYMBOL(libcfs_nid2str_r);
1153
1154 static struct netstrfns *
1155 libcfs_str2net_internal(const char *str, __u32 *net)
1156 {
1157         struct netstrfns *nf = NULL;
1158         int nob;
1159         unsigned int netnum;
1160         int i;
1161
1162         for (i = 0; i < libcfs_nnetstrfns; i++) {
1163                 nf = &libcfs_netstrfns[i];
1164                 if (!strncmp(str, nf->nf_name, strlen(nf->nf_name)))
1165                         break;
1166         }
1167
1168         if (i == libcfs_nnetstrfns)
1169                 return NULL;
1170
1171         nob = strlen(nf->nf_name);
1172
1173         if (strlen(str) == (unsigned int)nob) {
1174                 netnum = 0;
1175         } else {
1176                 if (nf->nf_type == LOLND) /* net number not allowed */
1177                         return NULL;
1178
1179                 str += nob;
1180                 i = strlen(str);
1181                 if (sscanf(str, "%u%n", &netnum, &i) < 1 ||
1182                     i != (int)strlen(str))
1183                         return NULL;
1184         }
1185
1186         *net = LNET_MKNET(nf->nf_type, netnum);
1187         return nf;
1188 }
1189
1190 __u32
1191 libcfs_str2net(const char *str)
1192 {
1193         __u32  net;
1194
1195         if (libcfs_str2net_internal(str, &net))
1196                 return net;
1197
1198         return LNET_NIDNET(LNET_NID_ANY);
1199 }
1200 EXPORT_SYMBOL(libcfs_str2net);
1201
1202 lnet_nid_t
1203 libcfs_str2nid(const char *str)
1204 {
1205         const char *sep = strchr(str, '@');
1206         struct netstrfns *nf;
1207         __u32 net;
1208         __u32 addr;
1209
1210         if (sep) {
1211                 nf = libcfs_str2net_internal(sep + 1, &net);
1212                 if (!nf)
1213                         return LNET_NID_ANY;
1214         } else {
1215                 sep = str + strlen(str);
1216                 net = LNET_MKNET(SOCKLND, 0);
1217                 nf = libcfs_lnd2netstrfns(SOCKLND);
1218                 LASSERT(nf);
1219         }
1220
1221         if (!nf->nf_str2addr(str, (int)(sep - str), &addr))
1222                 return LNET_NID_ANY;
1223
1224         return LNET_MKNID(net, addr);
1225 }
1226 EXPORT_SYMBOL(libcfs_str2nid);
1227
1228 char *
1229 libcfs_id2str(struct lnet_process_id id)
1230 {
1231         char *str = libcfs_next_nidstring();
1232
1233         if (id.pid == LNET_PID_ANY) {
1234                 snprintf(str, LNET_NIDSTR_SIZE,
1235                          "LNET_PID_ANY-%s", libcfs_nid2str(id.nid));
1236                 return str;
1237         }
1238
1239         snprintf(str, LNET_NIDSTR_SIZE, "%s%u-%s",
1240                  id.pid & LNET_PID_USERFLAG ? "U" : "",
1241                  id.pid & ~LNET_PID_USERFLAG, libcfs_nid2str(id.nid));
1242         return str;
1243 }
1244 EXPORT_SYMBOL(libcfs_id2str);
1245
1246 int
1247 libcfs_str2anynid(lnet_nid_t *nidp, const char *str)
1248 {
1249         if (!strcmp(str, "*")) {
1250                 *nidp = LNET_NID_ANY;
1251                 return 1;
1252         }
1253
1254         *nidp = libcfs_str2nid(str);
1255         return *nidp != LNET_NID_ANY;
1256 }
1257 EXPORT_SYMBOL(libcfs_str2anynid);