GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / staging / rtl8188eu / core / rtw_efuse.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2011 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _RTW_EFUSE_C_
16
17 #include <osdep_service.h>
18 #include <drv_types.h>
19 #include <rtw_efuse.h>
20 #include <usb_ops_linux.h>
21 #include <rtl8188e_hal.h>
22 #include <rtw_iol.h>
23
24 #define REG_EFUSE_CTRL          0x0030
25 #define EFUSE_CTRL                      REG_EFUSE_CTRL          /*  E-Fuse Control. */
26
27 enum{
28                 VOLTAGE_V25                                             = 0x03,
29                 LDOE25_SHIFT                                            = 28,
30         };
31
32 /*
33  * Function:    Efuse_PowerSwitch
34  *
35  * Overview:    When we want to enable write operation, we should change to
36  *                              pwr on state. When we stop write, we should switch to 500k mode
37  *                              and disable LDO 2.5V.
38  */
39
40 void Efuse_PowerSwitch(
41                 struct adapter *pAdapter,
42                 u8 bWrite,
43                 u8 PwrState)
44 {
45         u8 tempval;
46         u16     tmpV16;
47
48         if (PwrState) {
49                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON);
50
51                 /*  1.2V Power: From VDDON with Power Cut(0x0000h[15]), defualt valid */
52                 tmpV16 = usb_read16(pAdapter, REG_SYS_ISO_CTRL);
53                 if (!(tmpV16 & PWC_EV12V)) {
54                         tmpV16 |= PWC_EV12V;
55                          usb_write16(pAdapter, REG_SYS_ISO_CTRL, tmpV16);
56                 }
57                 /*  Reset: 0x0000h[28], default valid */
58                 tmpV16 =  usb_read16(pAdapter, REG_SYS_FUNC_EN);
59                 if (!(tmpV16 & FEN_ELDR)) {
60                         tmpV16 |= FEN_ELDR;
61                         usb_write16(pAdapter, REG_SYS_FUNC_EN, tmpV16);
62                 }
63
64                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
65                 tmpV16 = usb_read16(pAdapter, REG_SYS_CLKR);
66                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
67                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
68                         usb_write16(pAdapter, REG_SYS_CLKR, tmpV16);
69                 }
70
71                 if (bWrite) {
72                         /*  Enable LDO 2.5V before read/write action */
73                         tempval = usb_read8(pAdapter, EFUSE_TEST+3);
74                         tempval &= 0x0F;
75                         tempval |= (VOLTAGE_V25 << 4);
76                         usb_write8(pAdapter, EFUSE_TEST+3, (tempval | 0x80));
77                 }
78         } else {
79                 usb_write8(pAdapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
80
81                 if (bWrite) {
82                         /*  Disable LDO 2.5V after read/write action */
83                         tempval = usb_read8(pAdapter, EFUSE_TEST+3);
84                         usb_write8(pAdapter, EFUSE_TEST+3, (tempval & 0x7F));
85                 }
86         }
87 }
88
89 static void
90 efuse_phymap_to_logical(u8 *phymap, u16 _offset, u16 _size_byte, u8  *pbuf)
91 {
92         u8 *efuseTbl = NULL;
93         u8 rtemp8;
94         u16     eFuse_Addr = 0;
95         u8 offset, wren;
96         u16     i, j;
97         u16     **eFuseWord = NULL;
98         u16     efuse_utilized = 0;
99         u8 u1temp = 0;
100
101         efuseTbl = kzalloc(EFUSE_MAP_LEN_88E, GFP_KERNEL);
102         if (!efuseTbl)
103                 return;
104
105         eFuseWord = (u16 **)rtw_malloc2d(EFUSE_MAX_SECTION_88E, EFUSE_MAX_WORD_UNIT, sizeof(u16));
106         if (!eFuseWord) {
107                 DBG_88E("%s: alloc eFuseWord fail!\n", __func__);
108                 goto eFuseWord_failed;
109         }
110
111         /*  0. Refresh efuse init map as all oxFF. */
112         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++)
113                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
114                         eFuseWord[i][j] = 0xFFFF;
115
116         /*  */
117         /*  1. Read the first byte to check if efuse is empty!!! */
118         /*  */
119         /*  */
120         rtemp8 = *(phymap+eFuse_Addr);
121         if (rtemp8 != 0xFF) {
122                 efuse_utilized++;
123                 eFuse_Addr++;
124         } else {
125                 DBG_88E("EFUSE is empty efuse_Addr-%d efuse_data =%x\n", eFuse_Addr, rtemp8);
126                 goto exit;
127         }
128
129         /*  */
130         /*  2. Read real efuse content. Filter PG header and every section data. */
131         /*  */
132         while ((rtemp8 != 0xFF) && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
133                 /*  Check PG header for section num. */
134                 if ((rtemp8 & 0x1F) == 0x0F) {          /* extended header */
135                         u1temp = (rtemp8 & 0xE0) >> 5;
136                         rtemp8 = *(phymap+eFuse_Addr);
137                         if ((rtemp8 & 0x0F) == 0x0F) {
138                                 eFuse_Addr++;
139                                 rtemp8 = *(phymap+eFuse_Addr);
140
141                                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E))
142                                         eFuse_Addr++;
143                                 continue;
144                         } else {
145                                 offset = ((rtemp8 & 0xF0) >> 1) | u1temp;
146                                 wren = rtemp8 & 0x0F;
147                                 eFuse_Addr++;
148                         }
149                 } else {
150                         offset = (rtemp8 >> 4) & 0x0f;
151                         wren = rtemp8 & 0x0f;
152                 }
153
154                 if (offset < EFUSE_MAX_SECTION_88E) {
155                         /*  Get word enable value from PG header */
156                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
157                                 /*  Check word enable condition in the section */
158                                 if (!(wren & 0x01)) {
159                                         rtemp8 = *(phymap+eFuse_Addr);
160                                         eFuse_Addr++;
161                                         efuse_utilized++;
162                                         eFuseWord[offset][i] = (rtemp8 & 0xff);
163                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
164                                                 break;
165                                         rtemp8 = *(phymap+eFuse_Addr);
166                                         eFuse_Addr++;
167                                         efuse_utilized++;
168                                         eFuseWord[offset][i] |= (((u16)rtemp8 << 8) & 0xff00);
169
170                                         if (eFuse_Addr >= EFUSE_REAL_CONTENT_LEN_88E)
171                                                 break;
172                                 }
173                                 wren >>= 1;
174                         }
175                 }
176                 /*  Read next PG header */
177                 rtemp8 = *(phymap+eFuse_Addr);
178
179                 if (rtemp8 != 0xFF && (eFuse_Addr < EFUSE_REAL_CONTENT_LEN_88E)) {
180                         efuse_utilized++;
181                         eFuse_Addr++;
182                 }
183         }
184
185         /*  */
186         /*  3. Collect 16 sections and 4 word unit into Efuse map. */
187         /*  */
188         for (i = 0; i < EFUSE_MAX_SECTION_88E; i++) {
189                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
190                         efuseTbl[(i*8)+(j*2)] = (eFuseWord[i][j] & 0xff);
191                         efuseTbl[(i*8)+((j*2)+1)] = ((eFuseWord[i][j] >> 8) & 0xff);
192                 }
193         }
194
195         /*  */
196         /*  4. Copy from Efuse map to output pointer memory!!! */
197         /*  */
198         for (i = 0; i < _size_byte; i++)
199                 pbuf[i] = efuseTbl[_offset+i];
200
201         /*  */
202         /*  5. Calculate Efuse utilization. */
203         /*  */
204
205 exit:
206         kfree(eFuseWord);
207
208 eFuseWord_failed:
209         kfree(efuseTbl);
210 }
211
212 static void efuse_read_phymap_from_txpktbuf(
213         struct adapter  *adapter,
214         int bcnhead,    /* beacon head, where FW store len(2-byte) and efuse physical map. */
215         u8 *content,    /* buffer to store efuse physical map */
216         u16 *size       /* for efuse content: the max byte to read. will update to byte read */
217         )
218 {
219         u16 dbg_addr = 0;
220         unsigned long start = 0;
221         u8 reg_0x143 = 0;
222         u32 lo32 = 0, hi32 = 0;
223         u16 len = 0, count = 0;
224         int i = 0;
225         u16 limit = *size;
226
227         u8 *pos = content;
228
229         if (bcnhead < 0) /* if not valid */
230                 bcnhead = usb_read8(adapter, REG_TDECTRL+1);
231
232         DBG_88E("%s bcnhead:%d\n", __func__, bcnhead);
233
234         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
235
236         dbg_addr = bcnhead*128/8; /* 8-bytes addressing */
237
238         while (1) {
239                 usb_write16(adapter, REG_PKTBUF_DBG_ADDR, dbg_addr+i);
240
241                 usb_write8(adapter, REG_TXPKTBUF_DBG, 0);
242                 start = jiffies;
243                 while (!(reg_0x143 = usb_read8(adapter, REG_TXPKTBUF_DBG)) &&
244                        jiffies_to_msecs(jiffies - start) < 1000) {
245                         DBG_88E("%s polling reg_0x143:0x%02x, reg_0x106:0x%02x\n", __func__, reg_0x143, usb_read8(adapter, 0x106));
246                         usleep_range(1000, 2000);
247                 }
248
249                 lo32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_L);
250                 hi32 = usb_read32(adapter, REG_PKTBUF_DBG_DATA_H);
251
252                 if (i == 0) {
253                         u8 lenc[2];
254                         u16 lenbak, aaabak;
255                         u16 aaa;
256                         lenc[0] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L);
257                         lenc[1] = usb_read8(adapter, REG_PKTBUF_DBG_DATA_L+1);
258
259                         aaabak = le16_to_cpup((__le16 *)lenc);
260                         lenbak = le16_to_cpu(*((__le16 *)lenc));
261                         aaa = le16_to_cpup((__le16 *)&lo32);
262                         len = le16_to_cpu(*((__le16 *)&lo32));
263
264                         limit = min_t(u16, len-2, limit);
265
266                         DBG_88E("%s len:%u, lenbak:%u, aaa:%u, aaabak:%u\n", __func__, len, lenbak, aaa, aaabak);
267
268                         memcpy(pos, ((u8 *)&lo32)+2, (limit >= count+2) ? 2 : limit-count);
269                         count += (limit >= count+2) ? 2 : limit-count;
270                         pos = content+count;
271
272                 } else {
273                         memcpy(pos, ((u8 *)&lo32), (limit >= count+4) ? 4 : limit-count);
274                         count += (limit >= count+4) ? 4 : limit-count;
275                         pos = content+count;
276                 }
277
278                 if (limit > count && len-2 > count) {
279                         memcpy(pos, (u8 *)&hi32, (limit >= count+4) ? 4 : limit-count);
280                         count += (limit >= count+4) ? 4 : limit-count;
281                         pos = content+count;
282                 }
283
284                 if (limit <= count || len-2 <= count)
285                         break;
286                 i++;
287         }
288         usb_write8(adapter, REG_PKT_BUFF_ACCESS_CTRL, DISABLE_TRXPKT_BUF_ACCESS);
289         DBG_88E("%s read count:%u\n", __func__, count);
290         *size = count;
291 }
292
293 static s32 iol_read_efuse(struct adapter *padapter, u8 txpktbuf_bndy, u16 offset, u16 size_byte, u8 *logical_map)
294 {
295         s32 status = _FAIL;
296         u8 physical_map[512];
297         u16 size = 512;
298
299         usb_write8(padapter, REG_TDECTRL+1, txpktbuf_bndy);
300         memset(physical_map, 0xFF, 512);
301         usb_write8(padapter, REG_PKT_BUFF_ACCESS_CTRL, TXPKT_BUF_SELECT);
302         status = iol_execute(padapter, CMD_READ_EFUSE_MAP);
303         if (status == _SUCCESS)
304                 efuse_read_phymap_from_txpktbuf(padapter, txpktbuf_bndy, physical_map, &size);
305         efuse_phymap_to_logical(physical_map, offset, size_byte, logical_map);
306         return status;
307 }
308
309 void efuse_ReadEFuse(struct adapter *Adapter, u8 efuseType, u16 _offset, u16 _size_byte, u8 *pbuf)
310 {
311
312         if (rtw_IOL_applied(Adapter)) {
313                 rtw_hal_power_on(Adapter);
314                 iol_mode_enable(Adapter, 1);
315                 iol_read_efuse(Adapter, 0, _offset, _size_byte, pbuf);
316                 iol_mode_enable(Adapter, 0);
317         }
318 }
319
320 u8 Efuse_WordEnableDataWrite(struct adapter *pAdapter, u16 efuse_addr, u8 word_en, u8 *data)
321 {
322         u16     tmpaddr = 0;
323         u16     start_addr = efuse_addr;
324         u8 badworden = 0x0F;
325         u8 tmpdata[8];
326
327         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
328
329         if (!(word_en & BIT(0))) {
330                 tmpaddr = start_addr;
331                 efuse_OneByteWrite(pAdapter, start_addr++, data[0]);
332                 efuse_OneByteWrite(pAdapter, start_addr++, data[1]);
333
334                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[0]);
335                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[1]);
336                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
337                         badworden &= (~BIT(0));
338         }
339         if (!(word_en & BIT(1))) {
340                 tmpaddr = start_addr;
341                 efuse_OneByteWrite(pAdapter, start_addr++, data[2]);
342                 efuse_OneByteWrite(pAdapter, start_addr++, data[3]);
343
344                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[2]);
345                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[3]);
346                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
347                         badworden &= (~BIT(1));
348         }
349         if (!(word_en & BIT(2))) {
350                 tmpaddr = start_addr;
351                 efuse_OneByteWrite(pAdapter, start_addr++, data[4]);
352                 efuse_OneByteWrite(pAdapter, start_addr++, data[5]);
353
354                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[4]);
355                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[5]);
356                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
357                         badworden &= (~BIT(2));
358         }
359         if (!(word_en & BIT(3))) {
360                 tmpaddr = start_addr;
361                 efuse_OneByteWrite(pAdapter, start_addr++, data[6]);
362                 efuse_OneByteWrite(pAdapter, start_addr++, data[7]);
363
364                 efuse_OneByteRead(pAdapter, tmpaddr, &tmpdata[6]);
365                 efuse_OneByteRead(pAdapter, tmpaddr+1, &tmpdata[7]);
366                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
367                         badworden &= (~BIT(3));
368         }
369         return badworden;
370 }
371
372 static u16 Efuse_GetCurrentSize(struct adapter *pAdapter)
373 {
374         int     bContinual = true;
375         u16     efuse_addr = 0;
376         u8 hoffset = 0, hworden = 0;
377         u8 efuse_data, word_cnts = 0;
378
379         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
380
381         while (bContinual &&
382                efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) &&
383                AVAILABLE_EFUSE_ADDR(efuse_addr)) {
384                 if (efuse_data != 0xFF) {
385                         if ((efuse_data&0x1F) == 0x0F) {                /* extended header */
386                                 hoffset = efuse_data;
387                                 efuse_addr++;
388                                 efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
389                                 if ((efuse_data & 0x0F) == 0x0F) {
390                                         efuse_addr++;
391                                         continue;
392                                 } else {
393                                         hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
394                                         hworden = efuse_data & 0x0F;
395                                 }
396                         } else {
397                                 hoffset = (efuse_data>>4) & 0x0F;
398                                 hworden =  efuse_data & 0x0F;
399                         }
400                         word_cnts = Efuse_CalculateWordCnts(hworden);
401                         /* read next header */
402                         efuse_addr = efuse_addr + (word_cnts*2)+1;
403                 } else {
404                         bContinual = false;
405                 }
406         }
407
408         rtw_hal_set_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
409
410         return efuse_addr;
411 }
412
413 int Efuse_PgPacketRead(struct adapter *pAdapter, u8 offset, u8 *data)
414 {
415         u8 ReadState = PG_STATE_HEADER;
416         int     bContinual = true;
417         int     bDataEmpty = true;
418         u8 efuse_data, word_cnts = 0;
419         u16     efuse_addr = 0;
420         u8 hoffset = 0, hworden = 0;
421         u8 tmpidx = 0;
422         u8 tmpdata[8];
423         u8 tmp_header = 0;
424
425         if (!data)
426                 return false;
427         if (offset > EFUSE_MAX_SECTION_88E)
428                 return false;
429
430         memset(data, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
431         memset(tmpdata, 0xff, sizeof(u8) * PGPKT_DATA_SIZE);
432
433         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
434         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
435         /*  By pass right now. 2009.02.19. */
436         while (bContinual && AVAILABLE_EFUSE_ADDR(efuse_addr)) {
437                 /*   Header Read ------------- */
438                 if (ReadState & PG_STATE_HEADER) {
439                         if (efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data) && (efuse_data != 0xFF)) {
440                                 if (EXT_HEADER(efuse_data)) {
441                                         tmp_header = efuse_data;
442                                         efuse_addr++;
443                                         efuse_OneByteRead(pAdapter, efuse_addr, &efuse_data);
444                                         if (!ALL_WORDS_DISABLED(efuse_data)) {
445                                                 hoffset = ((tmp_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
446                                                 hworden = efuse_data & 0x0F;
447                                         } else {
448                                                 DBG_88E("Error, All words disabled\n");
449                                                 efuse_addr++;
450                                                 continue;
451                                         }
452                                 } else {
453                                         hoffset = (efuse_data>>4) & 0x0F;
454                                         hworden =  efuse_data & 0x0F;
455                                 }
456                                 word_cnts = Efuse_CalculateWordCnts(hworden);
457                                 bDataEmpty = true;
458
459                                 if (hoffset == offset) {
460                                         for (tmpidx = 0; tmpidx < word_cnts*2; tmpidx++) {
461                                                 if (efuse_OneByteRead(pAdapter, efuse_addr+1+tmpidx, &efuse_data)) {
462                                                         tmpdata[tmpidx] = efuse_data;
463                                                         if (efuse_data != 0xff)
464                                                                 bDataEmpty = false;
465                                                 }
466                                         }
467                                         if (bDataEmpty == false) {
468                                                 ReadState = PG_STATE_DATA;
469                                         } else {/* read next header */
470                                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
471                                                 ReadState = PG_STATE_HEADER;
472                                         }
473                                 } else {/* read next header */
474                                         efuse_addr = efuse_addr + (word_cnts*2)+1;
475                                         ReadState = PG_STATE_HEADER;
476                                 }
477                         } else {
478                                 bContinual = false;
479                         }
480                 } else if (ReadState & PG_STATE_DATA) {
481                         /*   Data section Read ------------- */
482                         efuse_WordEnableDataRead(hworden, tmpdata, data);
483                         efuse_addr = efuse_addr + (word_cnts*2)+1;
484                         ReadState = PG_STATE_HEADER;
485                 }
486
487         }
488
489         if ((data[0] == 0xff) && (data[1] == 0xff) && (data[2] == 0xff)  && (data[3] == 0xff) &&
490             (data[4] == 0xff) && (data[5] == 0xff) && (data[6] == 0xff)  && (data[7] == 0xff))
491                 return false;
492         else
493                 return true;
494 }
495
496 static bool hal_EfuseFixHeaderProcess(struct adapter *pAdapter, u8 efuseType, struct pgpkt *pFixPkt, u16 *pAddr)
497 {
498         u8 originaldata[8], badworden = 0;
499         u16     efuse_addr = *pAddr;
500         u32     PgWriteSuccess = 0;
501
502         memset(originaldata, 0xff, 8);
503
504         if (Efuse_PgPacketRead(pAdapter, pFixPkt->offset, originaldata)) {
505                 /* check if data exist */
506                 badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pFixPkt->word_en, originaldata);
507
508                 if (badworden != 0xf) { /*  write fail */
509                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pFixPkt->offset, badworden, originaldata);
510
511                         if (!PgWriteSuccess)
512                                 return false;
513                         else
514                                 efuse_addr = Efuse_GetCurrentSize(pAdapter);
515                 } else {
516                         efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
517                 }
518         } else {
519                 efuse_addr = efuse_addr + (pFixPkt->word_cnts*2) + 1;
520         }
521         *pAddr = efuse_addr;
522         return true;
523 }
524
525 static bool hal_EfusePgPacketWrite2ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
526 {
527         bool bRet = false;
528         u16 efuse_addr = *pAddr;
529         u16 efuse_max_available_len =
530                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
531         u8 pg_header = 0, tmp_header = 0, pg_header_temp = 0;
532         u8 repeatcnt = 0;
533
534         while (efuse_addr < efuse_max_available_len) {
535                 pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
536                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
537                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
538
539                 while (tmp_header == 0xFF) {
540                         if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
541                                 return false;
542
543                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
544                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
545                 }
546
547                 /* to write ext_header */
548                 if (tmp_header == pg_header) {
549                         efuse_addr++;
550                         pg_header_temp = pg_header;
551                         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
552
553                         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
554                         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
555
556                         while (tmp_header == 0xFF) {
557                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
558                                         return false;
559
560                                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
561                                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
562                         }
563
564                         if ((tmp_header & 0x0F) == 0x0F) {      /* word_en PG fail */
565                                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
566                                         return false;
567                                 }
568                                 efuse_addr++;
569                                 continue;
570                         } else if (pg_header != tmp_header) {   /* offset PG fail */
571                                 struct pgpkt    fixPkt;
572                                 fixPkt.offset = ((pg_header_temp & 0xE0) >> 5) | ((tmp_header & 0xF0) >> 1);
573                                 fixPkt.word_en = tmp_header & 0x0F;
574                                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
575                                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
576                                         return false;
577                         } else {
578                                 bRet = true;
579                                 break;
580                         }
581                 } else if ((tmp_header & 0x1F) == 0x0F) {               /* wrong extended header */
582                         efuse_addr += 2;
583                         continue;
584                 }
585         }
586
587         *pAddr = efuse_addr;
588         return bRet;
589 }
590
591 static bool hal_EfusePgPacketWrite1ByteHeader(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
592 {
593         bool bRet = false;
594         u8 pg_header = 0, tmp_header = 0;
595         u16     efuse_addr = *pAddr;
596         u8 repeatcnt = 0;
597
598         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
599
600         efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
601         efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
602
603         while (tmp_header == 0xFF) {
604                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_)
605                         return false;
606                 efuse_OneByteWrite(pAdapter, efuse_addr, pg_header);
607                 efuse_OneByteRead(pAdapter, efuse_addr, &tmp_header);
608         }
609
610         if (pg_header == tmp_header) {
611                 bRet = true;
612         } else {
613                 struct pgpkt    fixPkt;
614                 fixPkt.offset = (tmp_header>>4) & 0x0F;
615                 fixPkt.word_en = tmp_header & 0x0F;
616                 fixPkt.word_cnts = Efuse_CalculateWordCnts(fixPkt.word_en);
617                 if (!hal_EfuseFixHeaderProcess(pAdapter, efuseType, &fixPkt, &efuse_addr))
618                         return false;
619         }
620
621         *pAddr = efuse_addr;
622         return bRet;
623 }
624
625 static bool hal_EfusePgPacketWriteData(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
626 {
627         u16     efuse_addr = *pAddr;
628         u8 badworden = 0;
629         u32     PgWriteSuccess = 0;
630
631         badworden = 0x0f;
632         badworden = Efuse_WordEnableDataWrite(pAdapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data);
633         if (badworden == 0x0F) {
634                 /*  write ok */
635                 return true;
636         }
637         /* reorganize other pg packet */
638         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
639         if (!PgWriteSuccess)
640                 return false;
641         else
642                 return true;
643 }
644
645 static bool
646 hal_EfusePgPacketWriteHeader(
647                                 struct adapter *pAdapter,
648                                 u8 efuseType,
649                                 u16                             *pAddr,
650                                 struct pgpkt *pTargetPkt)
651 {
652         bool bRet = false;
653
654         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
655                 bRet = hal_EfusePgPacketWrite2ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
656         else
657                 bRet = hal_EfusePgPacketWrite1ByteHeader(pAdapter, efuseType, pAddr, pTargetPkt);
658
659         return bRet;
660 }
661
662 static bool wordEnMatched(struct pgpkt *pTargetPkt, struct pgpkt *pCurPkt,
663                           u8 *pWden)
664 {
665         u8 match_word_en = 0x0F;        /*  default all words are disabled */
666
667         /*  check if the same words are enabled both target and current PG packet */
668         if (((pTargetPkt->word_en & BIT(0)) == 0) &&
669             ((pCurPkt->word_en & BIT(0)) == 0))
670                 match_word_en &= ~BIT(0);                               /*  enable word 0 */
671         if (((pTargetPkt->word_en & BIT(1)) == 0) &&
672             ((pCurPkt->word_en & BIT(1)) == 0))
673                 match_word_en &= ~BIT(1);                               /*  enable word 1 */
674         if (((pTargetPkt->word_en & BIT(2)) == 0) &&
675             ((pCurPkt->word_en & BIT(2)) == 0))
676                 match_word_en &= ~BIT(2);                               /*  enable word 2 */
677         if (((pTargetPkt->word_en & BIT(3)) == 0) &&
678             ((pCurPkt->word_en & BIT(3)) == 0))
679                 match_word_en &= ~BIT(3);                               /*  enable word 3 */
680
681         *pWden = match_word_en;
682
683         if (match_word_en != 0xf)
684                 return true;
685         else
686                 return false;
687 }
688
689 static bool hal_EfuseCheckIfDatafollowed(struct adapter *pAdapter, u8 word_cnts, u16 startAddr)
690 {
691         bool bRet = false;
692         u8 i, efuse_data;
693
694         for (i = 0; i < (word_cnts*2); i++) {
695                 if (efuse_OneByteRead(pAdapter, (startAddr+i), &efuse_data) && (efuse_data != 0xFF))
696                         bRet = true;
697         }
698         return bRet;
699 }
700
701 static bool hal_EfusePartialWriteCheck(struct adapter *pAdapter, u8 efuseType, u16 *pAddr, struct pgpkt *pTargetPkt)
702 {
703         bool bRet = false;
704         u8 i, efuse_data = 0, cur_header = 0;
705         u8 matched_wden = 0, badworden = 0;
706         u16 startAddr = 0;
707         u16 efuse_max_available_len =
708                 EFUSE_REAL_CONTENT_LEN_88E - EFUSE_OOB_PROTECT_BYTES_88E;
709         struct pgpkt curPkt;
710
711         rtw_hal_get_hwreg(pAdapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
712         startAddr %= EFUSE_REAL_CONTENT_LEN;
713
714         while (1) {
715                 if (startAddr >= efuse_max_available_len) {
716                         bRet = false;
717                         break;
718                 }
719
720                 if (efuse_OneByteRead(pAdapter, startAddr, &efuse_data) && (efuse_data != 0xFF)) {
721                         if (EXT_HEADER(efuse_data)) {
722                                 cur_header = efuse_data;
723                                 startAddr++;
724                                 efuse_OneByteRead(pAdapter, startAddr, &efuse_data);
725                                 if (ALL_WORDS_DISABLED(efuse_data)) {
726                                         bRet = false;
727                                         break;
728                                 } else {
729                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
730                                         curPkt.word_en = efuse_data & 0x0F;
731                                 }
732                         } else {
733                                 cur_header  =  efuse_data;
734                                 curPkt.offset = (cur_header>>4) & 0x0F;
735                                 curPkt.word_en = cur_header & 0x0F;
736                         }
737
738                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
739                         /*  if same header is found but no data followed */
740                         /*  write some part of data followed by the header. */
741                         if ((curPkt.offset == pTargetPkt->offset) &&
742                             (!hal_EfuseCheckIfDatafollowed(pAdapter, curPkt.word_cnts, startAddr+1)) &&
743                             wordEnMatched(pTargetPkt, &curPkt, &matched_wden)) {
744                                 /*  Here to write partial data */
745                                 badworden = Efuse_WordEnableDataWrite(pAdapter, startAddr+1, matched_wden, pTargetPkt->data);
746                                 if (badworden != 0x0F) {
747                                         u32     PgWriteSuccess = 0;
748                                         /*  if write fail on some words, write these bad words again */
749
750                                         PgWriteSuccess = Efuse_PgPacketWrite(pAdapter, pTargetPkt->offset, badworden, pTargetPkt->data);
751
752                                         if (!PgWriteSuccess) {
753                                                 bRet = false;   /*  write fail, return */
754                                                 break;
755                                         }
756                                 }
757                                 /*  partial write ok, update the target packet for later use */
758                                 for (i = 0; i < 4; i++) {
759                                         if ((matched_wden & (0x1<<i)) == 0)     /*  this word has been written */
760                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
761                                 }
762                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
763                         }
764                         /*  read from next header */
765                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
766                 } else {
767                         /*  not used header, 0xff */
768                         *pAddr = startAddr;
769                         bRet = true;
770                         break;
771                 }
772         }
773         return bRet;
774 }
775
776 static bool
777 hal_EfusePgCheckAvailableAddr(
778                 struct adapter *pAdapter,
779                 u8 efuseType
780         )
781 {
782         if (Efuse_GetCurrentSize(pAdapter) >= EFUSE_MAP_LEN_88E)
783                 return false;
784         return true;
785 }
786
787 static void hal_EfuseConstructPGPkt(u8 offset, u8 word_en, u8 *pData, struct pgpkt *pTargetPkt)
788 {
789         memset((void *)pTargetPkt->data, 0xFF, sizeof(u8)*8);
790         pTargetPkt->offset = offset;
791         pTargetPkt->word_en = word_en;
792         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
793         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
794 }
795
796 bool Efuse_PgPacketWrite(struct adapter *pAdapter, u8 offset, u8 word_en, u8 *pData)
797 {
798         struct pgpkt    targetPkt;
799         u16                     startAddr = 0;
800         u8 efuseType = EFUSE_WIFI;
801
802         if (!hal_EfusePgCheckAvailableAddr(pAdapter, efuseType))
803                 return false;
804
805         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
806
807         if (!hal_EfusePartialWriteCheck(pAdapter, efuseType, &startAddr, &targetPkt))
808                 return false;
809
810         if (!hal_EfusePgPacketWriteHeader(pAdapter, efuseType, &startAddr, &targetPkt))
811                 return false;
812
813         if (!hal_EfusePgPacketWriteData(pAdapter, efuseType, &startAddr, &targetPkt))
814                 return false;
815
816         return true;
817 }
818
819 u8 Efuse_CalculateWordCnts(u8 word_en)
820 {
821         u8 word_cnts = 0;
822         if (!(word_en & BIT(0)))
823                 word_cnts++; /*  0 : write enable */
824         if (!(word_en & BIT(1)))
825                 word_cnts++;
826         if (!(word_en & BIT(2)))
827                 word_cnts++;
828         if (!(word_en & BIT(3)))
829                 word_cnts++;
830         return word_cnts;
831 }
832
833 u8 efuse_OneByteRead(struct adapter *pAdapter, u16 addr, u8 *data)
834 {
835         u8 tmpidx = 0;
836         u8 result;
837
838         usb_write8(pAdapter, EFUSE_CTRL+1, (u8)(addr & 0xff));
839         usb_write8(pAdapter, EFUSE_CTRL+2, ((u8)((addr>>8) & 0x03)) |
840                    (usb_read8(pAdapter, EFUSE_CTRL+2) & 0xFC));
841
842         usb_write8(pAdapter, EFUSE_CTRL+3,  0x72);/* read cmd */
843
844         while (!(0x80 & usb_read8(pAdapter, EFUSE_CTRL+3)) && (tmpidx < 100))
845                 tmpidx++;
846         if (tmpidx < 100) {
847                 *data = usb_read8(pAdapter, EFUSE_CTRL);
848                 result = true;
849         } else {
850                 *data = 0xff;
851                 result = false;
852         }
853         return result;
854 }
855
856 u8 efuse_OneByteWrite(struct adapter *pAdapter, u16 addr, u8 data)
857 {
858         u8 tmpidx = 0;
859         u8 result;
860
861         usb_write8(pAdapter, EFUSE_CTRL+1, (u8)(addr&0xff));
862         usb_write8(pAdapter, EFUSE_CTRL+2,
863                    (usb_read8(pAdapter, EFUSE_CTRL+2) & 0xFC) |
864                    (u8)((addr>>8) & 0x03));
865         usb_write8(pAdapter, EFUSE_CTRL, data);/* data */
866
867         usb_write8(pAdapter, EFUSE_CTRL+3, 0xF2);/* write cmd */
868
869         while ((0x80 &  usb_read8(pAdapter, EFUSE_CTRL+3)) && (tmpidx < 100))
870                 tmpidx++;
871
872         if (tmpidx < 100)
873                 result = true;
874         else
875                 result = false;
876
877         return result;
878 }
879
880 /*
881  * Overview:   Read allowed word in current efuse section data.
882  */
883 void efuse_WordEnableDataRead(u8 word_en, u8 *sourdata, u8 *targetdata)
884 {
885         if (!(word_en & BIT(0))) {
886                 targetdata[0] = sourdata[0];
887                 targetdata[1] = sourdata[1];
888         }
889         if (!(word_en & BIT(1))) {
890                 targetdata[2] = sourdata[2];
891                 targetdata[3] = sourdata[3];
892         }
893         if (!(word_en & BIT(2))) {
894                 targetdata[4] = sourdata[4];
895                 targetdata[5] = sourdata[5];
896         }
897         if (!(word_en & BIT(3))) {
898                 targetdata[6] = sourdata[6];
899                 targetdata[7] = sourdata[7];
900         }
901 }
902
903 /*
904  * Overview:    Read All Efuse content
905  */
906 static void Efuse_ReadAllMap(struct adapter *pAdapter, u8 efuseType, u8 *Efuse)
907 {
908         Efuse_PowerSwitch(pAdapter, false, true);
909
910         efuse_ReadEFuse(pAdapter, efuseType, 0, EFUSE_MAP_LEN_88E, Efuse);
911
912         Efuse_PowerSwitch(pAdapter, false, false);
913 }
914
915 /*
916  * Overview:    Transfer current EFUSE content to shadow init and modify map.
917  */
918 void EFUSE_ShadowMapUpdate(
919         struct adapter *pAdapter,
920         u8 efuseType)
921 {
922         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(pAdapter);
923
924         if (pEEPROM->bautoload_fail_flag)
925                 memset(pEEPROM->efuse_eeprom_data, 0xFF, EFUSE_MAP_LEN_88E);
926         else
927                 Efuse_ReadAllMap(pAdapter, efuseType, pEEPROM->efuse_eeprom_data);
928 }