GNU Linux-libre 4.14.290-gnu1
[releases.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 /******************************************************************************
2  *
3  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms of version 2 of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12  * more details.
13  *
14  ******************************************************************************/
15 #define _HAL_INIT_C_
16
17 #include <linux/firmware.h>
18 #include <linux/slab.h>
19 #include <drv_types.h>
20 #include <rtw_debug.h>
21 #include <rtl8723b_hal.h>
22 #include "hal_com_h2c.h"
23
24 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
25 {
26         u8 tmp, count = 0;
27
28         if (enable) {
29                 /*  8051 enable */
30                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
31                 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
32
33                 tmp = rtw_read8(padapter, REG_MCUFWDL);
34                 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
35
36                 do {
37                         tmp = rtw_read8(padapter, REG_MCUFWDL);
38                         if (tmp & 0x01)
39                                 break;
40                         rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
41                         msleep(1);
42                 } while (count++ < 100);
43
44                 if (count > 0)
45                         DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
46
47                 /*  8051 reset */
48                 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
49                 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
50         } else {
51                 /*  MCU firmware download disable. */
52                 tmp = rtw_read8(padapter, REG_MCUFWDL);
53                 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
54         }
55 }
56
57 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
58 {
59         int ret = _SUCCESS;
60
61         u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
62         u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
63         u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
64         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
65         u32 remainSize_p1 = 0, remainSize_p2 = 0;
66         u8 *bufferPtr = buffer;
67         u32 i = 0, offset = 0;
68
69 /*      printk("====>%s %d\n", __func__, __LINE__); */
70
71         /* 3 Phase #1 */
72         blockCount_p1 = buffSize / blockSize_p1;
73         remainSize_p1 = buffSize % blockSize_p1;
74
75         if (blockCount_p1) {
76                 RT_TRACE(
77                         _module_hal_init_c_,
78                         _drv_notice_,
79                         (
80                                 "_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
81                                 buffSize,
82                                 blockSize_p1,
83                                 blockCount_p1,
84                                 remainSize_p1
85                         )
86                 );
87         }
88
89         for (i = 0; i < blockCount_p1; i++) {
90                 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
91                 if (ret == _FAIL) {
92                         printk("====>%s %d i:%d\n", __func__, __LINE__, i);
93                         goto exit;
94                 }
95         }
96
97         /* 3 Phase #2 */
98         if (remainSize_p1) {
99                 offset = blockCount_p1 * blockSize_p1;
100
101                 blockCount_p2 = remainSize_p1/blockSize_p2;
102                 remainSize_p2 = remainSize_p1%blockSize_p2;
103
104                 if (blockCount_p2) {
105                                 RT_TRACE(
106                                         _module_hal_init_c_,
107                                         _drv_notice_,
108                                         (
109                                                 "_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
110                                                 (buffSize-offset),
111                                                 blockSize_p2,
112                                                 blockCount_p2,
113                                                 remainSize_p2
114                                         )
115                                 );
116                 }
117
118         }
119
120         /* 3 Phase #3 */
121         if (remainSize_p2) {
122                 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
123
124                 blockCount_p3 = remainSize_p2 / blockSize_p3;
125
126                 RT_TRACE(_module_hal_init_c_, _drv_notice_,
127                                 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
128                                 (buffSize-offset), blockSize_p3, blockCount_p3));
129
130                 for (i = 0; i < blockCount_p3; i++) {
131                         ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
132
133                         if (ret == _FAIL) {
134                                 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
135                                 goto exit;
136                         }
137                 }
138         }
139 exit:
140         return ret;
141 }
142
143 static int _PageWrite(
144         struct adapter *padapter,
145         u32 page,
146         void *buffer,
147         u32 size
148 )
149 {
150         u8 value8;
151         u8 u8Page = (u8) (page & 0x07);
152
153         value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
154         rtw_write8(padapter, REG_MCUFWDL+2, value8);
155
156         return _BlockWrite(padapter, buffer, size);
157 }
158
159 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
160 {
161         /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
162         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
163         int ret = _SUCCESS;
164         u32 pageNums, remainSize;
165         u32 page, offset;
166         u8 *bufferPtr = buffer;
167
168         pageNums = size / MAX_DLFW_PAGE_SIZE;
169         /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
170         remainSize = size % MAX_DLFW_PAGE_SIZE;
171
172         for (page = 0; page < pageNums; page++) {
173                 offset = page * MAX_DLFW_PAGE_SIZE;
174                 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
175
176                 if (ret == _FAIL) {
177                         printk("====>%s %d\n", __func__, __LINE__);
178                         goto exit;
179                 }
180         }
181
182         if (remainSize) {
183                 offset = pageNums * MAX_DLFW_PAGE_SIZE;
184                 page = pageNums;
185                 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
186
187                 if (ret == _FAIL) {
188                         printk("====>%s %d\n", __func__, __LINE__);
189                         goto exit;
190                 }
191         }
192         RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
193
194 exit:
195         return ret;
196 }
197
198 void _8051Reset8723(struct adapter *padapter)
199 {
200         u8 cpu_rst;
201         u8 io_rst;
202
203
204         /*  Reset 8051(WLMCU) IO wrapper */
205         /*  0x1c[8] = 0 */
206         /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
207         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
208         io_rst &= ~BIT(0);
209         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
210
211         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
212         cpu_rst &= ~BIT(2);
213         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
214
215         /*  Enable 8051 IO wrapper */
216         /*  0x1c[8] = 1 */
217         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
218         io_rst |= BIT(0);
219         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
220
221         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
222         cpu_rst |= BIT(2);
223         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
224
225         DBG_8192C("%s: Finish\n", __func__);
226 }
227
228 u8 g_fwdl_chksum_fail = 0;
229
230 static s32 polling_fwdl_chksum(
231         struct adapter *adapter, u32 min_cnt, u32 timeout_ms
232 )
233 {
234         s32 ret = _FAIL;
235         u32 value32;
236         unsigned long start = jiffies;
237         u32 cnt = 0;
238
239         /* polling CheckSum report */
240         do {
241                 cnt++;
242                 value32 = rtw_read32(adapter, REG_MCUFWDL);
243                 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
244                         break;
245                 yield();
246         } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
247
248         if (!(value32 & FWDL_ChkSum_rpt)) {
249                 goto exit;
250         }
251
252         if (g_fwdl_chksum_fail) {
253                 DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
254                 g_fwdl_chksum_fail--;
255                 goto exit;
256         }
257
258         ret = _SUCCESS;
259
260 exit:
261         DBG_871X(
262                 "%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
263                 __func__,
264                 (ret == _SUCCESS) ? "OK" : "Fail",
265                 cnt,
266                 jiffies_to_msecs(jiffies-start),
267                 value32
268         );
269
270         return ret;
271 }
272
273 u8 g_fwdl_wintint_rdy_fail = 0;
274
275 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
276 {
277         s32 ret = _FAIL;
278         u32 value32;
279         unsigned long start = jiffies;
280         u32 cnt = 0;
281
282         value32 = rtw_read32(adapter, REG_MCUFWDL);
283         value32 |= MCUFWDL_RDY;
284         value32 &= ~WINTINI_RDY;
285         rtw_write32(adapter, REG_MCUFWDL, value32);
286
287         _8051Reset8723(adapter);
288
289         /*  polling for FW ready */
290         do {
291                 cnt++;
292                 value32 = rtw_read32(adapter, REG_MCUFWDL);
293                 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
294                         break;
295                 yield();
296         } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
297
298         if (!(value32 & WINTINI_RDY)) {
299                 goto exit;
300         }
301
302         if (g_fwdl_wintint_rdy_fail) {
303                 DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
304                 g_fwdl_wintint_rdy_fail--;
305                 goto exit;
306         }
307
308         ret = _SUCCESS;
309
310 exit:
311         DBG_871X(
312                 "%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
313                 __func__,
314                 (ret == _SUCCESS) ? "OK" : "Fail",
315                 cnt,
316                 jiffies_to_msecs(jiffies-start),
317                 value32
318         );
319
320         return ret;
321 }
322
323 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
324
325 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
326 {
327         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
328         u8 u1bTmp;
329         u8 Delay = 100;
330
331         if (
332                 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
333         ) { /*  after 88C Fw v33.1 */
334                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
335                 rtw_write8(padapter, REG_HMETFR+3, 0x20);
336
337                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
338                 while (u1bTmp & BIT2) {
339                         Delay--;
340                         if (Delay == 0)
341                                 break;
342                         udelay(50);
343                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
344                 }
345                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
346
347                 if (Delay == 0) {
348                         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
349                         /* force firmware reset */
350                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
351                         rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
352                 }
353         }
354 }
355
356 /*  */
357 /*      Description: */
358 /*              Download 8192C firmware code. */
359 /*  */
360 /*  */
361 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
362 {
363         s32 rtStatus = _SUCCESS;
364         u8 write_fw = 0;
365         unsigned long fwdl_start_time;
366         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
367         struct rt_firmware *pFirmware;
368         struct rt_firmware *pBTFirmware;
369         struct rt_firmware_hdr *pFwHdr = NULL;
370         u8 *pFirmwareBuf;
371         u32 FirmwareLen;
372         const struct firmware *fw;
373         struct device *device = dvobj_to_dev(padapter->dvobj);
374         u8 *fwfilepath;
375         struct dvobj_priv *psdpriv = padapter->dvobj;
376         struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
377         u8 tmp_ps;
378
379         RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
380 #ifdef CONFIG_WOWLAN
381         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
382 #endif
383         pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
384         if (!pFirmware)
385                 return _FAIL;
386         pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
387         if (!pBTFirmware) {
388                 kfree(pFirmware);
389                 return _FAIL;
390         }
391         tmp_ps = rtw_read8(padapter, 0xa3);
392         tmp_ps &= 0xf8;
393         tmp_ps |= 0x02;
394         /* 1. write 0xA3[:2:0] = 3b'010 */
395         rtw_write8(padapter, 0xa3, tmp_ps);
396         /* 2. read power_state = 0xA0[1:0] */
397         tmp_ps = rtw_read8(padapter, 0xa0);
398         tmp_ps &= 0x03;
399         if (tmp_ps != 0x01) {
400                 DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
401                 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
402         }
403
404 #ifdef CONFIG_WOWLAN
405         if (bUsedWoWLANFw)
406                 fwfilepath = "/*(DEBLOBBED)*/";
407         else
408 #endif /*  CONFIG_WOWLAN */
409                 fwfilepath = "/*(DEBLOBBED)*/";
410
411         pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
412
413         rtStatus = reject_firmware(&fw, fwfilepath, device);
414         if (rtStatus) {
415                 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
416                 rtStatus = _FAIL;
417                 goto exit;
418         }
419
420         if (!fw) {
421                 pr_err("Firmware %s not available\n", fwfilepath);
422                 rtStatus = _FAIL;
423                 goto exit;
424         }
425
426         if (fw->size > FW_8723B_SIZE) {
427                 rtStatus = _FAIL;
428                 RT_TRACE(
429                         _module_hal_init_c_,
430                         _drv_err_,
431                         ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
432                 );
433                 goto exit;
434         }
435
436         pFirmware->szFwBuffer = kzalloc(fw->size, GFP_KERNEL);
437         if (!pFirmware->szFwBuffer) {
438                 rtStatus = _FAIL;
439                 goto exit;
440         }
441
442         memcpy(pFirmware->szFwBuffer, fw->data, fw->size);
443         pFirmware->ulFwLength = fw->size;
444         release_firmware(fw);
445         if (pFirmware->ulFwLength > FW_8723B_SIZE) {
446                 rtStatus = _FAIL;
447                 DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->ulFwLength, FW_8723B_SIZE);
448                 goto release_fw1;
449         }
450
451         pFirmwareBuf = pFirmware->szFwBuffer;
452         FirmwareLen = pFirmware->ulFwLength;
453
454         /*  To Check Fw header. Added by tynli. 2009.12.04. */
455         pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
456
457         pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->Version);
458         pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->Subversion);
459         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->Signature);
460
461         DBG_871X(
462                 "%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
463                 __func__,
464                 pHalData->FirmwareVersion,
465                 pHalData->FirmwareSubVersion,
466                 pHalData->FirmwareSignature,
467                 pFwHdr->Month,
468                 pFwHdr->Date,
469                 pFwHdr->Hour,
470                 pFwHdr->Minute
471         );
472
473         if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
474                 DBG_871X("%s(): Shift for fw header!\n", __func__);
475                 /*  Shift 32 bytes for FW header */
476                 pFirmwareBuf = pFirmwareBuf + 32;
477                 FirmwareLen = FirmwareLen - 32;
478         }
479
480         /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
481         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
482         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
483                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
484                 rtl8723b_FirmwareSelfReset(padapter);
485         }
486
487         _FWDownloadEnable(padapter, true);
488         fwdl_start_time = jiffies;
489         while (
490                 !padapter->bDriverStopped &&
491                 !padapter->bSurpriseRemoved &&
492                 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
493         ) {
494                 /* reset FWDL chksum */
495                 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
496
497                 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
498                 if (rtStatus != _SUCCESS)
499                         continue;
500
501                 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
502                 if (rtStatus == _SUCCESS)
503                         break;
504         }
505         _FWDownloadEnable(padapter, false);
506         if (_SUCCESS != rtStatus)
507                 goto fwdl_stat;
508
509         rtStatus = _FWFreeToGo(padapter, 10, 200);
510         if (_SUCCESS != rtStatus)
511                 goto fwdl_stat;
512
513 fwdl_stat:
514         DBG_871X(
515                 "FWDL %s. write_fw:%u, %dms\n",
516                 (rtStatus == _SUCCESS)?"success":"fail",
517                 write_fw,
518                 jiffies_to_msecs(jiffies - fwdl_start_time)
519         );
520
521 exit:
522         kfree(pFirmware->szFwBuffer);
523         kfree(pFirmware);
524 release_fw1:
525         kfree(pBTFirmware);
526         DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
527         return rtStatus;
528 }
529
530 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
531 {
532         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
533
534         /*  Init Fw LPS related. */
535         adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
536
537         /* Init H2C cmd. */
538         rtw_write8(padapter, REG_HMETFR, 0x0f);
539
540         /*  Init H2C counter. by tynli. 2009.12.09. */
541         pHalData->LastHMEBoxNum = 0;
542 /* pHalData->H2CQueueHead = 0; */
543 /* pHalData->H2CQueueTail = 0; */
544 /* pHalData->H2CStopInsertQueue = false; */
545 }
546
547 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
548 /*  */
549
550 /*  */
551 /*  Description: Prepare some information to Fw for WoWLAN. */
552 /* (1) Download wowlan Fw. */
553 /* (2) Download RSVD page packets. */
554 /* (3) Enable AP offload if needed. */
555 /*  */
556 /*  2011.04.12 by tynli. */
557 /*  */
558 void SetFwRelatedForWoWLAN8723b(
559         struct adapter *padapter, u8 bHostIsGoingtoSleep
560 )
561 {
562         int     status = _FAIL;
563         /*  */
564         /*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
565         /*  */
566         status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
567         if (status != _SUCCESS) {
568                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
569                 return;
570         } else {
571                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
572         }
573         /*  */
574         /*  2. Re-Init the variables about Fw related setting. */
575         /*  */
576         rtl8723b_InitializeFirmwareVars(padapter);
577 }
578 #endif /* CONFIG_WOWLAN */
579
580 static void rtl8723b_free_hal_data(struct adapter *padapter)
581 {
582 }
583
584 /*  */
585 /*                              Efuse related code */
586 /*  */
587 static u8 hal_EfuseSwitchToBank(
588         struct adapter *padapter, u8 bank, bool bPseudoTest
589 )
590 {
591         u8 bRet = false;
592         u32 value32 = 0;
593 #ifdef HAL_EFUSE_MEMORY
594         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
595         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
596 #endif
597
598
599         DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
600         if (bPseudoTest) {
601 #ifdef HAL_EFUSE_MEMORY
602                 pEfuseHal->fakeEfuseBank = bank;
603 #else
604                 fakeEfuseBank = bank;
605 #endif
606                 bRet = true;
607         } else {
608                 value32 = rtw_read32(padapter, EFUSE_TEST);
609                 bRet = true;
610                 switch (bank) {
611                 case 0:
612                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
613                         break;
614                 case 1:
615                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
616                         break;
617                 case 2:
618                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
619                         break;
620                 case 3:
621                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
622                         break;
623                 default:
624                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
625                         bRet = false;
626                         break;
627                 }
628                 rtw_write32(padapter, EFUSE_TEST, value32);
629         }
630
631         return bRet;
632 }
633
634 static void Hal_GetEfuseDefinition(
635         struct adapter *padapter,
636         u8 efuseType,
637         u8 type,
638         void *pOut,
639         bool bPseudoTest
640 )
641 {
642         switch (type) {
643         case TYPE_EFUSE_MAX_SECTION:
644                 {
645                         u8 *pMax_section;
646                         pMax_section = pOut;
647
648                         if (efuseType == EFUSE_WIFI)
649                                 *pMax_section = EFUSE_MAX_SECTION_8723B;
650                         else
651                                 *pMax_section = EFUSE_BT_MAX_SECTION;
652                 }
653                 break;
654
655         case TYPE_EFUSE_REAL_CONTENT_LEN:
656                 {
657                         u16 *pu2Tmp;
658                         pu2Tmp = pOut;
659
660                         if (efuseType == EFUSE_WIFI)
661                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
662                         else
663                                 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
664                 }
665                 break;
666
667         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
668                 {
669                         u16 *pu2Tmp;
670                         pu2Tmp = pOut;
671
672                         if (efuseType == EFUSE_WIFI)
673                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
674                         else
675                                 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
676                 }
677                 break;
678
679         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
680                 {
681                         u16 *pu2Tmp;
682                         pu2Tmp = pOut;
683
684                         if (efuseType == EFUSE_WIFI)
685                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
686                         else
687                                 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
688                 }
689                 break;
690
691         case TYPE_EFUSE_MAP_LEN:
692                 {
693                         u16 *pu2Tmp;
694                         pu2Tmp = pOut;
695
696                         if (efuseType == EFUSE_WIFI)
697                                 *pu2Tmp = EFUSE_MAX_MAP_LEN;
698                         else
699                                 *pu2Tmp = EFUSE_BT_MAP_LEN;
700                 }
701                 break;
702
703         case TYPE_EFUSE_PROTECT_BYTES_BANK:
704                 {
705                         u8 *pu1Tmp;
706                         pu1Tmp = pOut;
707
708                         if (efuseType == EFUSE_WIFI)
709                                 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
710                         else
711                                 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
712                 }
713                 break;
714
715         case TYPE_EFUSE_CONTENT_LEN_BANK:
716                 {
717                         u16 *pu2Tmp;
718                         pu2Tmp = pOut;
719
720                         if (efuseType == EFUSE_WIFI)
721                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
722                         else
723                                 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
724                 }
725                 break;
726
727         default:
728                 {
729                         u8 *pu1Tmp;
730                         pu1Tmp = pOut;
731                         *pu1Tmp = 0;
732                 }
733                 break;
734         }
735 }
736
737 #define VOLTAGE_V25             0x03
738 #define LDOE25_SHIFT    28
739
740 /*  */
741 /*      The following is for compile ok */
742 /*      That should be merged with the original in the future */
743 /*  */
744 #define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
745 #define EFUSE_ACCESS_OFF_8723                   0x00    /*  For RTL8723 only. */
746 #define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
747
748 /*  */
749 static void Hal_BT_EfusePowerSwitch(
750         struct adapter *padapter, u8 bWrite, u8 PwrState
751 )
752 {
753         u8 tempval;
754         if (PwrState == true) {
755                 /*  enable BT power cut */
756                 /*  0x6A[14] = 1 */
757                 tempval = rtw_read8(padapter, 0x6B);
758                 tempval |= BIT(6);
759                 rtw_write8(padapter, 0x6B, tempval);
760
761                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
762                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
763                 msleep(1);
764                 /*  disable BT output isolation */
765                 /*  0x6A[15] = 0 */
766                 tempval = rtw_read8(padapter, 0x6B);
767                 tempval &= ~BIT(7);
768                 rtw_write8(padapter, 0x6B, tempval);
769         } else {
770                 /*  enable BT output isolation */
771                 /*  0x6A[15] = 1 */
772                 tempval = rtw_read8(padapter, 0x6B);
773                 tempval |= BIT(7);
774                 rtw_write8(padapter, 0x6B, tempval);
775
776                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
777                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
778
779                 /*  disable BT power cut */
780                 /*  0x6A[14] = 1 */
781                 tempval = rtw_read8(padapter, 0x6B);
782                 tempval &= ~BIT(6);
783                 rtw_write8(padapter, 0x6B, tempval);
784         }
785
786 }
787 static void Hal_EfusePowerSwitch(
788         struct adapter *padapter, u8 bWrite, u8 PwrState
789 )
790 {
791         u8 tempval;
792         u16 tmpV16;
793
794
795         if (PwrState == true) {
796                 /*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
797                 /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
798                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
799                 if (tempval & BIT(0)) { /*  SDIO local register is suspend */
800                         u8 count = 0;
801
802
803                         tempval &= ~BIT(0);
804                         rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
805
806                         /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
807                         do {
808                                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
809                                 tempval &= 0x3;
810                                 if (tempval == 0x02)
811                                         break;
812
813                                 count++;
814                                 if (count >= 100)
815                                         break;
816
817                                 mdelay(10);
818                         } while (1);
819
820                         if (count >= 100) {
821                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
822                                         FUNC_ADPT_ARG(padapter), tempval);
823                         } else {
824                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
825                                         FUNC_ADPT_ARG(padapter), tempval);
826                         }
827                 }
828
829                 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
830
831                 /*  Reset: 0x0000h[28], default valid */
832                 tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
833                 if (!(tmpV16 & FEN_ELDR)) {
834                         tmpV16 |= FEN_ELDR;
835                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
836                 }
837
838                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
839                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
840                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
841                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
842                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
843                 }
844
845                 if (bWrite == true) {
846                         /*  Enable LDO 2.5V before read/write action */
847                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
848                         tempval &= 0x0F;
849                         tempval |= (VOLTAGE_V25 << 4);
850                         rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
851
852                         /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
853                 }
854         } else {
855                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
856
857                 if (bWrite == true) {
858                         /*  Disable LDO 2.5V after read/write action */
859                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
860                         rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
861                 }
862
863         }
864 }
865
866 static void hal_ReadEFuse_WiFi(
867         struct adapter *padapter,
868         u16 _offset,
869         u16 _size_byte,
870         u8 *pbuf,
871         bool bPseudoTest
872 )
873 {
874 #ifdef HAL_EFUSE_MEMORY
875         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
876         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
877 #endif
878         u8 *efuseTbl = NULL;
879         u16 eFuse_Addr = 0;
880         u8 offset, wden;
881         u8 efuseHeader, efuseExtHdr, efuseData;
882         u16 i, total, used;
883         u8 efuse_usage = 0;
884
885         /* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
886         /*  */
887         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
888         /*  */
889         if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
890                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
891                 return;
892         }
893
894         efuseTbl = (u8 *)rtw_malloc(EFUSE_MAX_MAP_LEN);
895         if (efuseTbl == NULL) {
896                 DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
897                 return;
898         }
899         /*  0xff will be efuse default value instead of 0x00. */
900         memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
901
902
903 #ifdef DEBUG
904 if (0) {
905         for (i = 0; i < 256; i++)
906                 efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
907         DBG_871X("Efuse Content:\n");
908         for (i = 0; i < 256; i++) {
909                 if (i % 16 == 0)
910                         printk("\n");
911                 printk("%02X ", efuseTbl[i]);
912         }
913         printk("\n");
914 }
915 #endif
916
917
918         /*  switch bank back to bank 0 for later BT and wifi use. */
919         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
920
921         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
922                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
923                 if (efuseHeader == 0xFF) {
924                         DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
925                         break;
926                 }
927                 /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
928
929                 /*  Check PG header for section num. */
930                 if (EXT_HEADER(efuseHeader)) { /* extended header */
931                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
932                         /* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
933
934                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
935                         /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
936                         if (ALL_WORDS_DISABLED(efuseExtHdr))
937                                 continue;
938
939                         offset |= ((efuseExtHdr & 0xF0) >> 1);
940                         wden = (efuseExtHdr & 0x0F);
941                 } else {
942                         offset = ((efuseHeader >> 4) & 0x0f);
943                         wden = (efuseHeader & 0x0f);
944                 }
945                 /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
946
947                 if (offset < EFUSE_MAX_SECTION_8723B) {
948                         u16 addr;
949                         /*  Get word enable value from PG header */
950 /*                      DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
951
952                         addr = offset * PGPKT_DATA_SIZE;
953                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
954                                 /*  Check word enable condition in the section */
955                                 if (!(wden & (0x01<<i))) {
956                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
957 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
958                                         efuseTbl[addr] = efuseData;
959
960                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
961 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
962                                         efuseTbl[addr+1] = efuseData;
963                                 }
964                                 addr += 2;
965                         }
966                 } else {
967                         DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
968                         eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
969                 }
970         }
971
972         /*  Copy from Efuse map to output pointer memory!!! */
973         for (i = 0; i < _size_byte; i++)
974                 pbuf[i] = efuseTbl[_offset+i];
975
976 #ifdef DEBUG
977 if (1) {
978         DBG_871X("Efuse Realmap:\n");
979         for (i = 0; i < _size_byte; i++) {
980                 if (i % 16 == 0)
981                         printk("\n");
982                 printk("%02X ", pbuf[i]);
983         }
984         printk("\n");
985 }
986 #endif
987         /*  Calculate Efuse utilization */
988         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
989         used = eFuse_Addr - 1;
990         efuse_usage = (u8)((used*100)/total);
991         if (bPseudoTest) {
992 #ifdef HAL_EFUSE_MEMORY
993                 pEfuseHal->fakeEfuseUsedBytes = used;
994 #else
995                 fakeEfuseUsedBytes = used;
996 #endif
997         } else {
998                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
999                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
1000         }
1001
1002         kfree(efuseTbl);
1003 }
1004
1005 static void hal_ReadEFuse_BT(
1006         struct adapter *padapter,
1007         u16 _offset,
1008         u16 _size_byte,
1009         u8 *pbuf,
1010         bool bPseudoTest
1011 )
1012 {
1013 #ifdef HAL_EFUSE_MEMORY
1014         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1015         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1016 #endif
1017         u8 *efuseTbl;
1018         u8 bank;
1019         u16 eFuse_Addr;
1020         u8 efuseHeader, efuseExtHdr, efuseData;
1021         u8 offset, wden;
1022         u16 i, total, used;
1023         u8 efuse_usage;
1024
1025
1026         /*  */
1027         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1028         /*  */
1029         if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1030                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1031                 return;
1032         }
1033
1034         efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1035         if (efuseTbl == NULL) {
1036                 DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1037                 return;
1038         }
1039         /*  0xff will be efuse default value instead of 0x00. */
1040         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1041
1042         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1043
1044         for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1045                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1046                         DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1047                         goto exit;
1048                 }
1049
1050                 eFuse_Addr = 0;
1051
1052                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1053                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1054                         if (efuseHeader == 0xFF)
1055                                 break;
1056                         DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1057
1058                         /*  Check PG header for section num. */
1059                         if (EXT_HEADER(efuseHeader)) { /* extended header */
1060                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
1061                                 DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1062
1063                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1064                                 DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1065                                 if (ALL_WORDS_DISABLED(efuseExtHdr))
1066                                         continue;
1067
1068
1069                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
1070                                 wden = (efuseExtHdr & 0x0F);
1071                         } else {
1072                                 offset = ((efuseHeader >> 4) & 0x0f);
1073                                 wden = (efuseHeader & 0x0f);
1074                         }
1075
1076                         if (offset < EFUSE_BT_MAX_SECTION) {
1077                                 u16 addr;
1078
1079                                 /*  Get word enable value from PG header */
1080                                 DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1081
1082                                 addr = offset * PGPKT_DATA_SIZE;
1083                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1084                                         /*  Check word enable condition in the section */
1085                                         if (!(wden & (0x01<<i))) {
1086                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1087                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1088                                                 efuseTbl[addr] = efuseData;
1089
1090                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1091                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1092                                                 efuseTbl[addr+1] = efuseData;
1093                                         }
1094                                         addr += 2;
1095                                 }
1096                         } else {
1097                                 DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1098                                 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1099                         }
1100                 }
1101
1102                 if ((eFuse_Addr-1) < total) {
1103                         DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1104                         break;
1105                 }
1106         }
1107
1108         /*  switch bank back to bank 0 for later BT and wifi use. */
1109         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1110
1111         /*  Copy from Efuse map to output pointer memory!!! */
1112         for (i = 0; i < _size_byte; i++)
1113                 pbuf[i] = efuseTbl[_offset+i];
1114
1115         /*  */
1116         /*  Calculate Efuse utilization. */
1117         /*  */
1118         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1119         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1120         DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1121         efuse_usage = (u8)((used*100)/total);
1122         if (bPseudoTest) {
1123 #ifdef HAL_EFUSE_MEMORY
1124                 pEfuseHal->fakeBTEfuseUsedBytes = used;
1125 #else
1126                 fakeBTEfuseUsedBytes = used;
1127 #endif
1128         } else {
1129                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1130                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1131         }
1132
1133 exit:
1134         kfree(efuseTbl);
1135 }
1136
1137 static void Hal_ReadEFuse(
1138         struct adapter *padapter,
1139         u8 efuseType,
1140         u16 _offset,
1141         u16 _size_byte,
1142         u8 *pbuf,
1143         bool bPseudoTest
1144 )
1145 {
1146         if (efuseType == EFUSE_WIFI)
1147                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1148         else
1149                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1150 }
1151
1152 static u16 hal_EfuseGetCurrentSize_WiFi(
1153         struct adapter *padapter, bool bPseudoTest
1154 )
1155 {
1156 #ifdef HAL_EFUSE_MEMORY
1157         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1158         PEFUSE_HAL              pEfuseHal = &pHalData->EfuseHal;
1159 #endif
1160         u16 efuse_addr = 0;
1161         u16 start_addr = 0; /*  for debug */
1162         u8 hoffset = 0, hworden = 0;
1163         u8 efuse_data, word_cnts = 0;
1164         u32 count = 0; /*  for debug */
1165
1166
1167         if (bPseudoTest) {
1168 #ifdef HAL_EFUSE_MEMORY
1169                 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1170 #else
1171                 efuse_addr = (u16)fakeEfuseUsedBytes;
1172 #endif
1173         } else
1174                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1175
1176         start_addr = efuse_addr;
1177         DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1178
1179         /*  switch bank back to bank 0 for later BT and wifi use. */
1180         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1181
1182         count = 0;
1183         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1184                 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1185                         DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1186                         goto error;
1187                 }
1188
1189                 if (efuse_data == 0xFF)
1190                         break;
1191
1192                 if ((start_addr != 0) && (efuse_addr == start_addr)) {
1193                         count++;
1194                         DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1195                                 FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1196
1197                         efuse_data = 0xFF;
1198                         if (count < 4) {
1199                                 /*  try again! */
1200
1201                                 if (count > 2) {
1202                                         /*  try again form address 0 */
1203                                         efuse_addr = 0;
1204                                         start_addr = 0;
1205                                 }
1206
1207                                 continue;
1208                         }
1209
1210                         goto error;
1211                 }
1212
1213                 if (EXT_HEADER(efuse_data)) {
1214                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1215                         efuse_addr++;
1216                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1217                         if (ALL_WORDS_DISABLED(efuse_data))
1218                                 continue;
1219
1220                         hoffset |= ((efuse_data & 0xF0) >> 1);
1221                         hworden = efuse_data & 0x0F;
1222                 } else {
1223                         hoffset = (efuse_data>>4) & 0x0F;
1224                         hworden = efuse_data & 0x0F;
1225                 }
1226
1227                 word_cnts = Efuse_CalculateWordCnts(hworden);
1228                 efuse_addr += (word_cnts*2)+1;
1229         }
1230
1231         if (bPseudoTest) {
1232 #ifdef HAL_EFUSE_MEMORY
1233                 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1234 #else
1235                 fakeEfuseUsedBytes = efuse_addr;
1236 #endif
1237         } else
1238                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1239
1240         goto exit;
1241
1242 error:
1243         /*  report max size to prevent wirte efuse */
1244         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1245
1246 exit:
1247         DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1248
1249         return efuse_addr;
1250 }
1251
1252 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1253 {
1254 #ifdef HAL_EFUSE_MEMORY
1255         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1256         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1257 #endif
1258         u16 btusedbytes;
1259         u16 efuse_addr;
1260         u8 bank, startBank;
1261         u8 hoffset = 0, hworden = 0;
1262         u8 efuse_data, word_cnts = 0;
1263         u16 retU2 = 0;
1264
1265         if (bPseudoTest) {
1266 #ifdef HAL_EFUSE_MEMORY
1267                 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1268 #else
1269                 btusedbytes = fakeBTEfuseUsedBytes;
1270 #endif
1271         } else
1272                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1273
1274         efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1275         startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1276
1277         DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1278
1279         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1280
1281         for (bank = startBank; bank < 3; bank++) {
1282                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1283                         DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1284                         /* bank = EFUSE_MAX_BANK; */
1285                         break;
1286                 }
1287
1288                 /*  only when bank is switched we have to reset the efuse_addr. */
1289                 if (bank != startBank)
1290                         efuse_addr = 0;
1291 #if 1
1292
1293                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1294                         if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1295                                 DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1296                                 /* bank = EFUSE_MAX_BANK; */
1297                                 break;
1298                         }
1299                         DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300
1301                         if (efuse_data == 0xFF)
1302                                 break;
1303
1304                         if (EXT_HEADER(efuse_data)) {
1305                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1306                                 efuse_addr++;
1307                                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1308                                 DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1309
1310                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1311                                         efuse_addr++;
1312                                         continue;
1313                                 }
1314
1315 /*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1316                                 hoffset |= ((efuse_data & 0xF0) >> 1);
1317                                 hworden = efuse_data & 0x0F;
1318                         } else {
1319                                 hoffset = (efuse_data>>4) & 0x0F;
1320                                 hworden =  efuse_data & 0x0F;
1321                         }
1322
1323                         DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1324                                 FUNC_ADPT_ARG(padapter), hoffset, hworden);
1325
1326                         word_cnts = Efuse_CalculateWordCnts(hworden);
1327                         /* read next header */
1328                         efuse_addr += (word_cnts*2)+1;
1329                 }
1330 #else
1331         while (
1332                 bContinual &&
1333                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1334                 AVAILABLE_EFUSE_ADDR(efuse_addr)
1335         ) {
1336                         if (efuse_data != 0xFF) {
1337                                 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1338                                         hoffset = efuse_data;
1339                                         efuse_addr++;
1340                                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1341                                         if ((efuse_data & 0x0F) == 0x0F) {
1342                                                 efuse_addr++;
1343                                                 continue;
1344                                         } else {
1345                                                 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1346                                                 hworden = efuse_data & 0x0F;
1347                                         }
1348                                 } else {
1349                                         hoffset = (efuse_data>>4) & 0x0F;
1350                                         hworden =  efuse_data & 0x0F;
1351                                 }
1352                                 word_cnts = Efuse_CalculateWordCnts(hworden);
1353                                 /* read next header */
1354                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
1355                         } else
1356                                 bContinual = false;
1357                 }
1358 #endif
1359
1360
1361                 /*  Check if we need to check next bank efuse */
1362                 if (efuse_addr < retU2)
1363                         break; /*  don't need to check next bank. */
1364         }
1365
1366         retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1367         if (bPseudoTest) {
1368                 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1369                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1370         } else {
1371                 pEfuseHal->BTEfuseUsedBytes = retU2;
1372                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1373         }
1374
1375         DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1376         return retU2;
1377 }
1378
1379 static u16 Hal_EfuseGetCurrentSize(
1380         struct adapter *padapter, u8 efuseType, bool bPseudoTest
1381 )
1382 {
1383         u16 ret = 0;
1384
1385         if (efuseType == EFUSE_WIFI)
1386                 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1387         else
1388                 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1389
1390         return ret;
1391 }
1392
1393 static u8 Hal_EfuseWordEnableDataWrite(
1394         struct adapter *padapter,
1395         u16 efuse_addr,
1396         u8 word_en,
1397         u8 *data,
1398         bool bPseudoTest
1399 )
1400 {
1401         u16 tmpaddr = 0;
1402         u16 start_addr = efuse_addr;
1403         u8 badworden = 0x0F;
1404         u8 tmpdata[PGPKT_DATA_SIZE];
1405
1406
1407 /*      DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1408         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1409
1410         if (!(word_en & BIT(0))) {
1411                 tmpaddr = start_addr;
1412                 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1413                 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1414
1415                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1416                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1417                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1418                         badworden &= (~BIT(0));
1419                 }
1420         }
1421         if (!(word_en & BIT(1))) {
1422                 tmpaddr = start_addr;
1423                 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1424                 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1425
1426                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1427                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1428                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1429                         badworden &= (~BIT(1));
1430                 }
1431         }
1432
1433         if (!(word_en & BIT(2))) {
1434                 tmpaddr = start_addr;
1435                 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1436                 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1437
1438                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1439                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1440                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1441                         badworden &= (~BIT(2));
1442                 }
1443         }
1444
1445         if (!(word_en & BIT(3))) {
1446                 tmpaddr = start_addr;
1447                 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1448                 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1449
1450                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1451                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1452                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1453                         badworden &= (~BIT(3));
1454                 }
1455         }
1456
1457         return badworden;
1458 }
1459
1460 static s32 Hal_EfusePgPacketRead(
1461         struct adapter *padapter,
1462         u8 offset,
1463         u8 *data,
1464         bool bPseudoTest
1465 )
1466 {
1467         u8 efuse_data, word_cnts = 0;
1468         u16 efuse_addr = 0;
1469         u8 hoffset = 0, hworden = 0;
1470         u8 i;
1471         u8 max_section = 0;
1472         s32     ret;
1473
1474
1475         if (data == NULL)
1476                 return false;
1477
1478         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1479         if (offset > max_section) {
1480                 DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1481                 return false;
1482         }
1483
1484         memset(data, 0xFF, PGPKT_DATA_SIZE);
1485         ret = true;
1486
1487         /*  */
1488         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1489         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1490         /*  By pass right now. 2009.02.19. */
1491         /*  */
1492         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1493                 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1494                         ret = false;
1495                         break;
1496                 }
1497
1498                 if (efuse_data == 0xFF)
1499                         break;
1500
1501                 if (EXT_HEADER(efuse_data)) {
1502                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1503                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1504                         if (ALL_WORDS_DISABLED(efuse_data)) {
1505                                 DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1506                                 continue;
1507                         }
1508
1509                         hoffset |= ((efuse_data & 0xF0) >> 1);
1510                         hworden = efuse_data & 0x0F;
1511                 } else {
1512                         hoffset = (efuse_data>>4) & 0x0F;
1513                         hworden =  efuse_data & 0x0F;
1514                 }
1515
1516                 if (hoffset == offset) {
1517                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1518                                 /*  Check word enable condition in the section */
1519                                 if (!(hworden & (0x01<<i))) {
1520                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1521 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1522                                         data[i*2] = efuse_data;
1523
1524                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1525 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1526                                         data[(i*2)+1] = efuse_data;
1527                                 }
1528                         }
1529                 } else {
1530                         word_cnts = Efuse_CalculateWordCnts(hworden);
1531                         efuse_addr += word_cnts*2;
1532                 }
1533         }
1534
1535         return ret;
1536 }
1537
1538 static u8 hal_EfusePgCheckAvailableAddr(
1539         struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1540 )
1541 {
1542         u16 max_available = 0;
1543         u16 current_size;
1544
1545
1546         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1547 /*      DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1548
1549         current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1550         if (current_size >= max_available) {
1551                 DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1552                 return false;
1553         }
1554         return true;
1555 }
1556
1557 static void hal_EfuseConstructPGPkt(
1558         u8 offset,
1559         u8 word_en,
1560         u8 *pData,
1561         PPGPKT_STRUCT pTargetPkt
1562 )
1563 {
1564         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1565         pTargetPkt->offset = offset;
1566         pTargetPkt->word_en = word_en;
1567         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1568         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1569 }
1570
1571 static u8 hal_EfusePartialWriteCheck(
1572         struct adapter *padapter,
1573         u8 efuseType,
1574         u16 *pAddr,
1575         PPGPKT_STRUCT pTargetPkt,
1576         u8 bPseudoTest
1577 )
1578 {
1579         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1580         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1581         u8 bRet = false;
1582         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1583         u8 efuse_data = 0;
1584
1585         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1586         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1587
1588         if (efuseType == EFUSE_WIFI) {
1589                 if (bPseudoTest) {
1590 #ifdef HAL_EFUSE_MEMORY
1591                         startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1592 #else
1593                         startAddr = (u16)fakeEfuseUsedBytes;
1594 #endif
1595                 } else
1596                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1597         } else {
1598                 if (bPseudoTest) {
1599 #ifdef HAL_EFUSE_MEMORY
1600                         startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1601 #else
1602                         startAddr = (u16)fakeBTEfuseUsedBytes;
1603 #endif
1604                 } else
1605                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1606         }
1607         startAddr %= efuse_max;
1608         DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1609
1610         while (1) {
1611                 if (startAddr >= efuse_max_available_len) {
1612                         bRet = false;
1613                         DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1614                         break;
1615                 }
1616
1617                 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1618 #if 1
1619                         bRet = false;
1620                         DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1621                                 __func__, startAddr, efuse_data);
1622                         break;
1623 #else
1624                         if (EXT_HEADER(efuse_data)) {
1625                                 cur_header = efuse_data;
1626                                 startAddr++;
1627                                 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1628                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1629                                         DBG_8192C("%s: Error condition, all words disabled!", __func__);
1630                                         bRet = false;
1631                                         break;
1632                                 } else {
1633                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1634                                         curPkt.word_en = efuse_data & 0x0F;
1635                                 }
1636                         } else {
1637                                 cur_header  =  efuse_data;
1638                                 curPkt.offset = (cur_header>>4) & 0x0F;
1639                                 curPkt.word_en = cur_header & 0x0F;
1640                         }
1641
1642                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1643                         /*  if same header is found but no data followed */
1644                         /*  write some part of data followed by the header. */
1645                         if (
1646                                 (curPkt.offset == pTargetPkt->offset) &&
1647                                 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1648                                 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1649                         ) {
1650                                 DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1651                                 /*  Here to write partial data */
1652                                 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1653                                 if (badworden != 0x0F) {
1654                                         u32 PgWriteSuccess = 0;
1655                                         /*  if write fail on some words, write these bad words again */
1656                                         if (efuseType == EFUSE_WIFI)
1657                                                 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1658                                         else
1659                                                 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1660
1661                                         if (!PgWriteSuccess) {
1662                                                 bRet = false;   /*  write fail, return */
1663                                                 break;
1664                                         }
1665                                 }
1666                                 /*  partial write ok, update the target packet for later use */
1667                                 for (i = 0; i < 4; i++) {
1668                                         if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1669                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1670                                         }
1671                                 }
1672                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1673                         }
1674                         /*  read from next header */
1675                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1676 #endif
1677                 } else {
1678                         /*  not used header, 0xff */
1679                         *pAddr = startAddr;
1680 /*                      DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1681                         bRet = true;
1682                         break;
1683                 }
1684         }
1685
1686         return bRet;
1687 }
1688
1689 static u8 hal_EfusePgPacketWrite1ByteHeader(
1690         struct adapter *padapter,
1691         u8 efuseType,
1692         u16 *pAddr,
1693         PPGPKT_STRUCT pTargetPkt,
1694         u8 bPseudoTest
1695 )
1696 {
1697         u8 pg_header = 0, tmp_header = 0;
1698         u16 efuse_addr = *pAddr;
1699         u8 repeatcnt = 0;
1700
1701
1702 /*      DBG_8192C("%s\n", __func__); */
1703         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1704
1705         do {
1706                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1707                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1708                 if (tmp_header != 0xFF)
1709                         break;
1710                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1711                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1712                         return false;
1713                 }
1714         } while (1);
1715
1716         if (tmp_header != pg_header) {
1717                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1718                 return false;
1719         }
1720
1721         *pAddr = efuse_addr;
1722
1723         return true;
1724 }
1725
1726 static u8 hal_EfusePgPacketWrite2ByteHeader(
1727         struct adapter *padapter,
1728         u8 efuseType,
1729         u16 *pAddr,
1730         PPGPKT_STRUCT pTargetPkt,
1731         u8 bPseudoTest
1732 )
1733 {
1734         u16 efuse_addr, efuse_max_available_len = 0;
1735         u8 pg_header = 0, tmp_header = 0;
1736         u8 repeatcnt = 0;
1737
1738
1739 /*      DBG_8192C("%s\n", __func__); */
1740         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1741
1742         efuse_addr = *pAddr;
1743         if (efuse_addr >= efuse_max_available_len) {
1744                 DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1745                           efuse_addr, efuse_max_available_len);
1746                 return false;
1747         }
1748
1749         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1750 /*      DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1751
1752         do {
1753                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1754                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1755                 if (tmp_header != 0xFF)
1756                         break;
1757                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1758                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1759                         return false;
1760                 }
1761         } while (1);
1762
1763         if (tmp_header != pg_header) {
1764                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1765                 return false;
1766         }
1767
1768         /*  to write ext_header */
1769         efuse_addr++;
1770         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1771
1772         do {
1773                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1774                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1775                 if (tmp_header != 0xFF)
1776                         break;
1777                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1778                         DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1779                         return false;
1780                 }
1781         } while (1);
1782
1783         if (tmp_header != pg_header) { /* offset PG fail */
1784                 DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1785                 return false;
1786         }
1787
1788         *pAddr = efuse_addr;
1789
1790         return true;
1791 }
1792
1793 static u8 hal_EfusePgPacketWriteHeader(
1794         struct adapter *padapter,
1795         u8 efuseType,
1796         u16 *pAddr,
1797         PPGPKT_STRUCT pTargetPkt,
1798         u8 bPseudoTest
1799 )
1800 {
1801         u8 bRet = false;
1802
1803         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1804                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1805         else
1806                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1807
1808         return bRet;
1809 }
1810
1811 static u8 hal_EfusePgPacketWriteData(
1812         struct adapter *padapter,
1813         u8 efuseType,
1814         u16 *pAddr,
1815         PPGPKT_STRUCT pTargetPkt,
1816         u8 bPseudoTest
1817 )
1818 {
1819         u16 efuse_addr;
1820         u8 badworden;
1821
1822
1823         efuse_addr = *pAddr;
1824         badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1825         if (badworden != 0x0F) {
1826                 DBG_8192C("%s: Fail!!\n", __func__);
1827                 return false;
1828         }
1829
1830 /*      DBG_8192C("%s: ok\n", __func__); */
1831         return true;
1832 }
1833
1834 static s32 Hal_EfusePgPacketWrite(
1835         struct adapter *padapter,
1836         u8 offset,
1837         u8 word_en,
1838         u8 *pData,
1839         bool bPseudoTest
1840 )
1841 {
1842         PGPKT_STRUCT targetPkt;
1843         u16 startAddr = 0;
1844         u8 efuseType = EFUSE_WIFI;
1845
1846         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1847                 return false;
1848
1849         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1850
1851         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1852                 return false;
1853
1854         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1855                 return false;
1856
1857         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1858                 return false;
1859
1860         return true;
1861 }
1862
1863 static bool Hal_EfusePgPacketWrite_BT(
1864         struct adapter *padapter,
1865         u8 offset,
1866         u8 word_en,
1867         u8 *pData,
1868         bool bPseudoTest
1869 )
1870 {
1871         PGPKT_STRUCT targetPkt;
1872         u16 startAddr = 0;
1873         u8 efuseType = EFUSE_BT;
1874
1875         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1876                 return false;
1877
1878         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1879
1880         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1881                 return false;
1882
1883         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1884                 return false;
1885
1886         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1887                 return false;
1888
1889         return true;
1890 }
1891
1892 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1893 {
1894         u32 value32;
1895         HAL_VERSION ChipVersion;
1896         struct hal_com_data *pHalData;
1897
1898 /* YJ, TODO, move read chip type here */
1899         pHalData = GET_HAL_DATA(padapter);
1900
1901         value32 = rtw_read32(padapter, REG_SYS_CFG);
1902         ChipVersion.ICType = CHIP_8723B;
1903         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1904         ChipVersion.RFType = RF_TYPE_1T1R;
1905         ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1906         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1907
1908         /*  For regulator mode. by tynli. 2011.01.14 */
1909         pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1910
1911         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1912         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1913
1914         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1915         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1916         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1917         pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1918         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1919         pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1920         pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1921 #if 1
1922         dump_chip_info(ChipVersion);
1923 #endif
1924         pHalData->VersionID = ChipVersion;
1925         if (IS_1T2R(ChipVersion))
1926                 pHalData->rf_type = RF_1T2R;
1927         else if (IS_2T2R(ChipVersion))
1928                 pHalData->rf_type = RF_2T2R;
1929         else
1930                 pHalData->rf_type = RF_1T1R;
1931
1932         MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1933
1934         return ChipVersion;
1935 }
1936
1937 static void rtl8723b_read_chip_version(struct adapter *padapter)
1938 {
1939         ReadChipVersion8723B(padapter);
1940 }
1941
1942 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1943 {
1944         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1945         u16 val16;
1946         u8 val8;
1947
1948
1949         val8 = DIS_TSF_UDT;
1950         val16 = val8 | (val8 << 8); /*  port0 and port1 */
1951
1952         /*  Enable prot0 beacon function for PSTDMA */
1953         val16 |= EN_BCN_FUNCTION;
1954
1955         rtw_write16(padapter, REG_BCN_CTRL, val16);
1956
1957         /*  TODO: Remove these magic number */
1958         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1959         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1960         /*  so don't set this register on STA mode. */
1961         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1962                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1963         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1964
1965         /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1966         /*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1967         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1968
1969         pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1970         pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1971         pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1972         pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1973         pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1974 }
1975
1976 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1977 {
1978         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1979
1980         rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1981         rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1982         rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1983         rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1984         rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1985         if (pHalData->AMPDUBurstMode)
1986                 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1987         rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1988
1989         /*  ARFB table 9 for 11ac 5G 2SS */
1990         rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1991         if (IS_NORMAL_CHIP(pHalData->VersionID))
1992                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1993         else
1994                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1995
1996         /*  ARFB table 10 for 11ac 5G 1SS */
1997         rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1998         rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1999 }
2000
2001 static void ResumeTxBeacon(struct adapter *padapter)
2002 {
2003         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2004
2005
2006         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2007         /*  which should be read from register to a global variable. */
2008
2009         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2010
2011         pHalData->RegFwHwTxQCtrl |= BIT(6);
2012         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2013         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2014         pHalData->RegReg542 |= BIT(0);
2015         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2016 }
2017
2018 static void StopTxBeacon(struct adapter *padapter)
2019 {
2020         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2021
2022
2023         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2024         /*  which should be read from register to a global variable. */
2025
2026         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2027
2028         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2029         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2030         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2031         pHalData->RegReg542 &= ~BIT(0);
2032         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2033
2034         CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2035 }
2036
2037 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2038 {
2039         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2040         rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2041 }
2042
2043 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2044 {
2045         u8 val8;
2046         u32 value32;
2047         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2048         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2049         u32 bcn_ctrl_reg;
2050
2051         /* reset TSF, enable update TSF, correcting TSF On Beacon */
2052
2053         /* REG_BCN_INTERVAL */
2054         /* REG_BCNDMATIM */
2055         /* REG_ATIMWND */
2056         /* REG_TBTT_PROHIBIT */
2057         /* REG_DRVERLYINT */
2058         /* REG_BCN_MAX_ERR */
2059         /* REG_BCNTCFG (0x510) */
2060         /* REG_DUAL_TSF_RST */
2061         /* REG_BCN_CTRL (0x550) */
2062
2063
2064         bcn_ctrl_reg = REG_BCN_CTRL;
2065
2066         /*  */
2067         /*  ATIM window */
2068         /*  */
2069         rtw_write16(padapter, REG_ATIMWND, 2);
2070
2071         /*  */
2072         /*  Beacon interval (in unit of TU). */
2073         /*  */
2074         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2075
2076         rtl8723b_InitBeaconParameters(padapter);
2077
2078         rtw_write8(padapter, REG_SLOT, 0x09);
2079
2080         /*  */
2081         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2082         /*  */
2083         value32 = rtw_read32(padapter, REG_TCR);
2084         value32 &= ~TSFRST;
2085         rtw_write32(padapter, REG_TCR, value32);
2086
2087         value32 |= TSFRST;
2088         rtw_write32(padapter, REG_TCR, value32);
2089
2090         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2091         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2092                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2093                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2094         }
2095
2096         _BeaconFunctionEnable(padapter, true, true);
2097
2098         ResumeTxBeacon(padapter);
2099         val8 = rtw_read8(padapter, bcn_ctrl_reg);
2100         val8 |= DIS_BCNQ_SUB;
2101         rtw_write8(padapter, bcn_ctrl_reg, val8);
2102 }
2103
2104 static void rtl8723b_GetHalODMVar(
2105         struct adapter *Adapter,
2106         enum HAL_ODM_VARIABLE eVariable,
2107         void *pValue1,
2108         void *pValue2
2109 )
2110 {
2111         GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2112 }
2113
2114 static void rtl8723b_SetHalODMVar(
2115         struct adapter *Adapter,
2116         enum HAL_ODM_VARIABLE eVariable,
2117         void *pValue1,
2118         bool bSet
2119 )
2120 {
2121         SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2122 }
2123
2124 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2125 {
2126         if (enable) {
2127                 DBG_871X("Enable notch filter\n");
2128                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2129         } else {
2130                 DBG_871X("Disable notch filter\n");
2131                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2132         }
2133 }
2134
2135 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2136 {
2137         u32 mask, rate_bitmap;
2138         u8 shortGIrate = false;
2139         struct sta_info *psta;
2140         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2141         struct dm_priv *pdmpriv = &pHalData->dmpriv;
2142         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2143         struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2144
2145         DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2146
2147         if (mac_id >= NUM_STA) /* CAM_SIZE */
2148                 return;
2149
2150         psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2151         if (psta == NULL)
2152                 return;
2153
2154         shortGIrate = query_ra_short_GI(psta);
2155
2156         mask = psta->ra_mask;
2157
2158         rate_bitmap = 0xffffffff;
2159         rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2160         DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2161                         __func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2162
2163         mask &= rate_bitmap;
2164
2165         rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2166         mask &= ~rate_bitmap;
2167
2168 #ifdef CONFIG_CMCC_TEST
2169         if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2170                 if (mac_id == 0) {
2171                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2172                         mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2173                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2174                 }
2175         }
2176 #endif
2177
2178         if (pHalData->fw_ractrl == true) {
2179                 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2180         }
2181
2182         /* set correct initial date rate for each mac_id */
2183         pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2184         DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2185 }
2186
2187
2188 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2189 {
2190         pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2191
2192         pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2193
2194         pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2195
2196         pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2197
2198         pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2199         pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2200         pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2201
2202         pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2203         pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2204
2205         pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2206         pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2207
2208
2209         pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2210
2211         pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2212
2213         pHalFunc->run_thread = &rtl8723b_start_thread;
2214         pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2215
2216         pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2217         pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2218         pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2219         pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2220
2221         /*  Efuse related function */
2222         pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2223         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2224         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2225         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2226         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2227         pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2228         pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2229         pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2230         pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2231
2232         pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2233         pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2234
2235         pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2236         pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2237
2238         pHalFunc->c2h_handler = c2h_handler_8723b;
2239         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2240
2241         pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2242 }
2243
2244 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2245 {
2246         struct hal_com_data *pHalData;
2247         u8 val;
2248
2249
2250         pHalData = GET_HAL_DATA(padapter);
2251
2252         val = rtw_read8(padapter, REG_LEDCFG2);
2253         /*  Let 8051 take control antenna settting */
2254         val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2255         rtw_write8(padapter, REG_LEDCFG2, val);
2256 }
2257
2258 void rtl8723b_init_default_value(struct adapter *padapter)
2259 {
2260         struct hal_com_data *pHalData;
2261         struct dm_priv *pdmpriv;
2262         u8 i;
2263
2264
2265         pHalData = GET_HAL_DATA(padapter);
2266         pdmpriv = &pHalData->dmpriv;
2267
2268         padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2269
2270         /*  init default value */
2271         pHalData->fw_ractrl = false;
2272         pHalData->bIQKInitialized = false;
2273         if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2274                 pHalData->LastHMEBoxNum = 0;
2275
2276         pHalData->bIQKInitialized = false;
2277
2278         /*  init dm default value */
2279         pdmpriv->TM_Trigger = 0;/* for IQK */
2280 /*      pdmpriv->binitialized = false; */
2281 /*      pdmpriv->prv_traffic_idx = 3; */
2282 /*      pdmpriv->initialize = 0; */
2283
2284         pdmpriv->ThermalValue_HP_index = 0;
2285         for (i = 0; i < HP_THERMAL_NUM; i++)
2286                 pdmpriv->ThermalValue_HP[i] = 0;
2287
2288         /*  init Efuse variables */
2289         pHalData->EfuseUsedBytes = 0;
2290         pHalData->EfuseUsedPercentage = 0;
2291 #ifdef HAL_EFUSE_MEMORY
2292         pHalData->EfuseHal.fakeEfuseBank = 0;
2293         pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2294         memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2295         memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2296         memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2297         pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2298         pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2299         memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2300         memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2301         memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2302         pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2303         memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2304         memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2305         memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2306 #endif
2307 }
2308
2309 u8 GetEEPROMSize8723B(struct adapter *padapter)
2310 {
2311         u8 size = 0;
2312         u32 cr;
2313
2314         cr = rtw_read16(padapter, REG_9346CR);
2315         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2316         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2317
2318         MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2319
2320         return size;
2321 }
2322
2323 /*  */
2324 /*  */
2325 /*  LLT R/W/Init function */
2326 /*  */
2327 /*  */
2328 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2329 {
2330         unsigned long start, passing_time;
2331         u32 val32;
2332         s32 ret;
2333
2334
2335         ret = _FAIL;
2336
2337         val32 = rtw_read32(padapter, REG_AUTO_LLT);
2338         val32 |= BIT_AUTO_INIT_LLT;
2339         rtw_write32(padapter, REG_AUTO_LLT, val32);
2340
2341         start = jiffies;
2342
2343         do {
2344                 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2345                 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2346                         ret = _SUCCESS;
2347                         break;
2348                 }
2349
2350                 passing_time = jiffies_to_msecs(jiffies - start);
2351                 if (passing_time > 1000) {
2352                         DBG_8192C(
2353                                 "%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2354                                 __func__,
2355                                 REG_AUTO_LLT,
2356                                 val32
2357                         );
2358                         break;
2359                 }
2360
2361                 msleep(1);
2362         } while (1);
2363
2364         return ret;
2365 }
2366
2367 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2368 {
2369         bool bIn24G = true;
2370
2371         if (Channel <= 14) {
2372                 bIn24G = true;
2373
2374                 if (1  <= Channel && Channel <= 2)
2375                         *pGroup = 0;
2376                 else if (3  <= Channel && Channel <= 5)
2377                         *pGroup = 1;
2378                 else if (6  <= Channel && Channel <= 8)
2379                         *pGroup = 2;
2380                 else if (9  <= Channel && Channel <= 11)
2381                         *pGroup = 3;
2382                 else if (12 <= Channel && Channel <= 14)
2383                         *pGroup = 4;
2384                 else {
2385                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2386                 }
2387         } else {
2388                 bIn24G = false;
2389
2390                 if (36   <= Channel && Channel <=  42)
2391                         *pGroup = 0;
2392                 else if (44   <= Channel && Channel <=  48)
2393                         *pGroup = 1;
2394                 else if (50   <= Channel && Channel <=  58)
2395                         *pGroup = 2;
2396                 else if (60   <= Channel && Channel <=  64)
2397                         *pGroup = 3;
2398                 else if (100  <= Channel && Channel <= 106)
2399                         *pGroup = 4;
2400                 else if (108  <= Channel && Channel <= 114)
2401                         *pGroup = 5;
2402                 else if (116  <= Channel && Channel <= 122)
2403                         *pGroup = 6;
2404                 else if (124  <= Channel && Channel <= 130)
2405                         *pGroup = 7;
2406                 else if (132  <= Channel && Channel <= 138)
2407                         *pGroup = 8;
2408                 else if (140  <= Channel && Channel <= 144)
2409                         *pGroup = 9;
2410                 else if (149  <= Channel && Channel <= 155)
2411                         *pGroup = 10;
2412                 else if (157  <= Channel && Channel <= 161)
2413                         *pGroup = 11;
2414                 else if (165  <= Channel && Channel <= 171)
2415                         *pGroup = 12;
2416                 else if (173  <= Channel && Channel <= 177)
2417                         *pGroup = 13;
2418                 else {
2419                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2420                 }
2421
2422         }
2423         RT_TRACE(
2424                 _module_hci_hal_init_c_,
2425                 _drv_info_,
2426                 (
2427                         "<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2428                         bIn24G ? "2.4G" : "5G",
2429                         Channel,
2430                         *pGroup
2431                 )
2432         );
2433         return bIn24G;
2434 }
2435
2436 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2437 {
2438         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2439
2440         if (false == pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2441                 if (!pEEPROM->EepromOrEfuse) {
2442                         /*  Read EFUSE real map to shadow. */
2443                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2444                         memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2445                 }
2446         } else {/* autoload fail */
2447                 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2448                 if (false == pEEPROM->EepromOrEfuse)
2449                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2450                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2451         }
2452 }
2453
2454 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2455 {
2456         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2457 /*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2458         u16 EEPROMId;
2459
2460
2461         /*  Checl 0x8129 again for making sure autoload status!! */
2462         EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2463         if (EEPROMId != RTL_EEPROM_ID) {
2464                 DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2465                 pEEPROM->bautoload_fail_flag = true;
2466         } else
2467                 pEEPROM->bautoload_fail_flag = false;
2468
2469         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2470 }
2471
2472 static void Hal_ReadPowerValueFromPROM_8723B(
2473         struct adapter *Adapter,
2474         struct TxPowerInfo24G *pwrInfo24G,
2475         u8 *PROMContent,
2476         bool AutoLoadFail
2477 )
2478 {
2479         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2480         u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2481
2482         memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2483
2484         if (0xFF == PROMContent[eeAddr+1])
2485                 AutoLoadFail = true;
2486
2487         if (AutoLoadFail) {
2488                 DBG_871X("%s(): Use Default value!\n", __func__);
2489                 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2490                         /* 2.4G default value */
2491                         for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2492                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2493                                 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2494                         }
2495
2496                         for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2497                                 if (TxCount == 0) {
2498                                         pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2499                                         pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2500                                 } else {
2501                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2502                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2503                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2504                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2505                                 }
2506                         }
2507                 }
2508
2509                 return;
2510         }
2511
2512         pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2513
2514         for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2515                 /* 2 2.4G default value */
2516                 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2517                         pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2518                         if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2519                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2520                 }
2521
2522                 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2523                         pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2524                         if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2525                                 pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2526                 }
2527
2528                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2529                         if (TxCount == 0) {
2530                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2531                                 if (PROMContent[eeAddr] == 0xFF)
2532                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2533                                 else {
2534                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2535                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2536                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2537                                 }
2538
2539                                 if (PROMContent[eeAddr] == 0xFF)
2540                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2541                                 else {
2542                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2543                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2544                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2545                                 }
2546                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2547                                 eeAddr++;
2548                         } else {
2549                                 if (PROMContent[eeAddr] == 0xFF)
2550                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2551                                 else {
2552                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2553                                         if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2554                                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2555                                 }
2556
2557                                 if (PROMContent[eeAddr] == 0xFF)
2558                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559                                 else {
2560                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2561                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2562                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2563                                 }
2564                                 eeAddr++;
2565
2566                                 if (PROMContent[eeAddr] == 0xFF)
2567                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2568                                 else {
2569                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2570                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2571                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2572                                 }
2573
2574                                 if (PROMContent[eeAddr] == 0xFF)
2575                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2576                                 else {
2577                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2578                                         if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2579                                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2580                                 }
2581                                 eeAddr++;
2582                         }
2583                 }
2584         }
2585 }
2586
2587
2588 void Hal_EfuseParseTxPowerInfo_8723B(
2589         struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2590 )
2591 {
2592         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2593         struct TxPowerInfo24G   pwrInfo24G;
2594         u8      rfPath, ch, TxCount = 1;
2595
2596         Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2597         for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2598                 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2599                         u8 group = 0;
2600
2601                         Hal_GetChnlGroup8723B(ch+1, &group);
2602
2603                         if (ch == 14-1) {
2604                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2605                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2606                         } else {
2607                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2608                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2609                         }
2610 #ifdef DEBUG
2611                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2612                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2613                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2614 #endif
2615                 }
2616
2617                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2618                         pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2619                         pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2620                         pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2621                         pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2622
2623 #ifdef DEBUG
2624                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2625                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2626                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2627                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2628                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2629 #endif
2630                 }
2631         }
2632
2633         /*  2010/10/19 MH Add Regulator recognize for CU. */
2634         if (!AutoLoadFail) {
2635                 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2636                 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2637                         pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2638         } else
2639                 pHalData->EEPROMRegulatory = 0;
2640
2641         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2642 }
2643
2644 void Hal_EfuseParseBTCoexistInfo_8723B(
2645         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2646 )
2647 {
2648         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2649         u8 tempval;
2650         u32 tmpu4;
2651
2652         if (!AutoLoadFail) {
2653                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2654                 if (tmpu4 & BT_FUNC_EN)
2655                         pHalData->EEPROMBluetoothCoexist = true;
2656                 else
2657                         pHalData->EEPROMBluetoothCoexist = false;
2658
2659                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2660
2661                 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2662                 if (tempval != 0xFF) {
2663                         pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2664                         /*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2665                         /*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2666                         pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2667                 } else {
2668                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669                         if (pHalData->PackageType == PACKAGE_QFN68)
2670                                 pHalData->ant_path = ODM_RF_PATH_B;
2671                         else
2672                                 pHalData->ant_path = ODM_RF_PATH_A;
2673                 }
2674         } else {
2675                 pHalData->EEPROMBluetoothCoexist = false;
2676                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2677                 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2678                 pHalData->ant_path = ODM_RF_PATH_A;
2679         }
2680
2681         if (padapter->registrypriv.ant_num > 0) {
2682                 DBG_8192C(
2683                         "%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2684                         __func__,
2685                         padapter->registrypriv.ant_num,
2686                         pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2687                 );
2688
2689                 switch (padapter->registrypriv.ant_num) {
2690                 case 1:
2691                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2692                         break;
2693                 case 2:
2694                         pHalData->EEPROMBluetoothAntNum = Ant_x2;
2695                         break;
2696                 default:
2697                         DBG_8192C(
2698                                 "%s: Discard invalid driver defined antenna number(%d)!\n",
2699                                 __func__,
2700                                 padapter->registrypriv.ant_num
2701                         );
2702                         break;
2703                 }
2704         }
2705
2706         rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2707         rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2708         rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2709         if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2710                 rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2711
2712         DBG_8192C(
2713                 "%s: %s BT-coex, ant_num =%d\n",
2714                 __func__,
2715                 pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2716                 pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2717         );
2718 }
2719
2720 void Hal_EfuseParseEEPROMVer_8723B(
2721         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2722 )
2723 {
2724         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2725
2726 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2727         if (!AutoLoadFail)
2728                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2729         else
2730                 pHalData->EEPROMVersion = 1;
2731         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2732                 pHalData->EEPROMVersion));
2733 }
2734
2735
2736
2737 void Hal_EfuseParsePackageType_8723B(
2738         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2739 )
2740 {
2741         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2742         u8 package;
2743         u8 efuseContent;
2744
2745         Efuse_PowerSwitch(padapter, false, true);
2746         efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2747         DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2748         Efuse_PowerSwitch(padapter, false, false);
2749
2750         package = efuseContent & 0x7;
2751         switch (package) {
2752         case 0x4:
2753                 pHalData->PackageType = PACKAGE_TFBGA79;
2754                 break;
2755         case 0x5:
2756                 pHalData->PackageType = PACKAGE_TFBGA90;
2757                 break;
2758         case 0x6:
2759                 pHalData->PackageType = PACKAGE_QFN68;
2760                 break;
2761         case 0x7:
2762                 pHalData->PackageType = PACKAGE_TFBGA80;
2763                 break;
2764
2765         default:
2766                 pHalData->PackageType = PACKAGE_DEFAULT;
2767                 break;
2768         }
2769
2770         DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2771 }
2772
2773
2774 void Hal_EfuseParseVoltage_8723B(
2775         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2776 )
2777 {
2778         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2779
2780         /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2781         DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2782         pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2783         DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2784 }
2785
2786 void Hal_EfuseParseChnlPlan_8723B(
2787         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2788 )
2789 {
2790         padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2791                 padapter,
2792                 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2793                 padapter->registrypriv.channel_plan,
2794                 RT_CHANNEL_DOMAIN_WORLD_NULL,
2795                 AutoLoadFail
2796         );
2797
2798         Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2799
2800         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2801 }
2802
2803 void Hal_EfuseParseCustomerID_8723B(
2804         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2805 )
2806 {
2807         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2808
2809 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2810         if (!AutoLoadFail)
2811                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2812         else
2813                 pHalData->EEPROMCustomerID = 0;
2814
2815         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2816 }
2817
2818 void Hal_EfuseParseAntennaDiversity_8723B(
2819         struct adapter *padapter,
2820         u8 *hwinfo,
2821         bool AutoLoadFail
2822 )
2823 {
2824 }
2825
2826 void Hal_EfuseParseXtal_8723B(
2827         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2828 )
2829 {
2830         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2831
2832 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2833         if (!AutoLoadFail) {
2834                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2835                 if (pHalData->CrystalCap == 0xFF)
2836                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2837         } else
2838                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2839
2840         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2841 }
2842
2843
2844 void Hal_EfuseParseThermalMeter_8723B(
2845         struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2846 )
2847 {
2848         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2849
2850 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2851         /*  */
2852         /*  ThermalMeter from EEPROM */
2853         /*  */
2854         if (false == AutoLoadFail)
2855                 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2856         else
2857                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2858
2859         if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2860                 pHalData->bAPKThermalMeterIgnore = true;
2861                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2862         }
2863
2864         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2865 }
2866
2867
2868 void Hal_ReadRFGainOffset(
2869         struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2870 )
2871 {
2872         /*  */
2873         /*  BB_RF Gain Offset from EEPROM */
2874         /*  */
2875
2876         if (!AutoloadFail) {
2877                 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2878                 DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2879                 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2880                 DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2881         } else {
2882                 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2883                 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2884                 DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2885         }
2886         DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2887 }
2888
2889 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2890 {
2891         u8 BWSettingOfDesc = 0;
2892         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2893
2894         /* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2895
2896         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2897                 if (pattrib->bwmode == CHANNEL_WIDTH_80)
2898                         BWSettingOfDesc = 2;
2899                 else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2900                         BWSettingOfDesc = 1;
2901                 else
2902                         BWSettingOfDesc = 0;
2903         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2904                 if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2905                         BWSettingOfDesc = 1;
2906                 else
2907                         BWSettingOfDesc = 0;
2908         } else
2909                 BWSettingOfDesc = 0;
2910
2911         /* if (pTcb->bBTTxPacket) */
2912         /*      BWSettingOfDesc = 0; */
2913
2914         return BWSettingOfDesc;
2915 }
2916
2917 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2918 {
2919         u8 SCSettingOfDesc = 0;
2920         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2921
2922         /* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2923
2924         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2925                 if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2926                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2927                 } else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2928                         if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2929                                 SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2930                         else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2931                                 SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2932                         else
2933                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2934                 } else {
2935                         if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2936                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2937                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2938                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2939                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2940                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2941                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2942                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2943                         else
2944                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2945                 }
2946         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2947                 /* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2948
2949                 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2950                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2951                 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2952                         if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2953                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2954                         } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2955                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2956                         } else {
2957                                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2958                         }
2959                 }
2960         } else {
2961                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2962         }
2963
2964         return SCSettingOfDesc;
2965 }
2966
2967 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2968 {
2969         u16 *usPtr = (u16 *)ptxdesc;
2970         u32 count;
2971         u32 index;
2972         u16 checksum = 0;
2973
2974
2975         /*  Clear first */
2976         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2977
2978         /*  checksume is always calculated by first 32 bytes, */
2979         /*  and it doesn't depend on TX DESC length. */
2980         /*  Thomas, Lucas@SD4, 20130515 */
2981         count = 16;
2982
2983         for (index = 0; index < count; index++) {
2984                 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2985         }
2986
2987         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2988 }
2989
2990 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2991 {
2992         u8 sectype = 0;
2993         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2994                 switch (pattrib->encrypt) {
2995                 /*  SEC_TYPE */
2996                 case _WEP40_:
2997                 case _WEP104_:
2998                 case _TKIP_:
2999                 case _TKIP_WTMIC_:
3000                         sectype = 1;
3001                         break;
3002
3003                 case _AES_:
3004                         sectype = 3;
3005                         break;
3006
3007                 case _NO_PRIVACY_:
3008                 default:
3009                         break;
3010                 }
3011         }
3012         return sectype;
3013 }
3014
3015 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3016 {
3017         /* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3018
3019         if (pattrib->vcs_mode) {
3020                 switch (pattrib->vcs_mode) {
3021                 case RTS_CTS:
3022                         ptxdesc->rtsen = 1;
3023                         /*  ENABLE HW RTS */
3024                         ptxdesc->hw_rts_en = 1;
3025                         break;
3026
3027                 case CTS_TO_SELF:
3028                         ptxdesc->cts2self = 1;
3029                         break;
3030
3031                 case NONE_VCS:
3032                 default:
3033                         break;
3034                 }
3035
3036                 ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3037                 ptxdesc->rts_ratefb_lmt = 0xF;
3038
3039                 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3040                         ptxdesc->rts_short = 1;
3041
3042                 /*  Set RTS BW */
3043                 if (pattrib->ht_en)
3044                         ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3045         }
3046 }
3047
3048 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3049 {
3050         /* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3051
3052         if (pattrib->ht_en) {
3053                 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3054
3055                 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3056         }
3057 }
3058
3059 static void rtl8723b_fill_default_txdesc(
3060         struct xmit_frame *pxmitframe, u8 *pbuf
3061 )
3062 {
3063         struct adapter *padapter;
3064         struct hal_com_data *pHalData;
3065         struct dm_priv *pdmpriv;
3066         struct mlme_ext_priv *pmlmeext;
3067         struct mlme_ext_info *pmlmeinfo;
3068         struct pkt_attrib *pattrib;
3069         PTXDESC_8723B ptxdesc;
3070         s32 bmcst;
3071
3072         memset(pbuf, 0, TXDESC_SIZE);
3073
3074         padapter = pxmitframe->padapter;
3075         pHalData = GET_HAL_DATA(padapter);
3076         pdmpriv = &pHalData->dmpriv;
3077         pmlmeext = &padapter->mlmeextpriv;
3078         pmlmeinfo = &(pmlmeext->mlmext_info);
3079
3080         pattrib = &pxmitframe->attrib;
3081         bmcst = IS_MCAST(pattrib->ra);
3082
3083         ptxdesc = (PTXDESC_8723B)pbuf;
3084
3085         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3086                 u8 drv_userate = 0;
3087
3088                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3089                 ptxdesc->rate_id = pattrib->raid;
3090                 ptxdesc->qsel = pattrib->qsel;
3091                 ptxdesc->seq = pattrib->seqnum;
3092
3093                 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3094                 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3095
3096                 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3097                         drv_userate = 1;
3098
3099                 if (
3100                         (pattrib->ether_type != 0x888e) &&
3101                         (pattrib->ether_type != 0x0806) &&
3102                         (pattrib->ether_type != 0x88B4) &&
3103                         (pattrib->dhcp_pkt != 1) &&
3104                         (drv_userate != 1)
3105 #ifdef CONFIG_AUTO_AP_MODE
3106                         && (pattrib->pctrl != true)
3107 #endif
3108                 ) {
3109                         /*  Non EAP & ARP & DHCP type data packet */
3110
3111                         if (pattrib->ampdu_en == true) {
3112                                 ptxdesc->agg_en = 1; /*  AGG EN */
3113                                 ptxdesc->max_agg_num = 0x1f;
3114                                 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3115                         } else
3116                                 ptxdesc->bk = 1; /*  AGG BK */
3117
3118                         fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3119
3120                         ptxdesc->data_ratefb_lmt = 0x1F;
3121
3122                         if (pHalData->fw_ractrl == false) {
3123                                 ptxdesc->userate = 1;
3124
3125                                 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3126                                         ptxdesc->data_short = 1;
3127
3128                                 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3129                         }
3130
3131                         if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3132                                 ptxdesc->userate = 1;
3133                                 if (padapter->fix_rate & BIT(7))
3134                                         ptxdesc->data_short = 1;
3135
3136                                 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3137                                 ptxdesc->disdatafb = 1;
3138                         }
3139
3140                         if (pattrib->ldpc)
3141                                 ptxdesc->data_ldpc = 1;
3142                         if (pattrib->stbc)
3143                                 ptxdesc->data_stbc = 1;
3144
3145 #ifdef CONFIG_CMCC_TEST
3146                         ptxdesc->data_short = 1; /* use cck short premble */
3147 #endif
3148                 } else {
3149                         /*  EAP data packet and ARP packet. */
3150                         /*  Use the 1M data rate to send the EAP/ARP packet. */
3151                         /*  This will maybe make the handshake smooth. */
3152
3153                         ptxdesc->bk = 1; /*  AGG BK */
3154                         ptxdesc->userate = 1; /*  driver uses rate */
3155                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3156                                 ptxdesc->data_short = 1;/*  DATA_SHORT */
3157                         ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3158                         DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3159                 }
3160
3161                 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3162         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3163 /*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3164
3165                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3166                 ptxdesc->qsel = pattrib->qsel;
3167                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3168                 ptxdesc->seq = pattrib->seqnum;
3169                 ptxdesc->userate = 1; /*  driver uses rate, 1M */
3170
3171                 ptxdesc->mbssid = pattrib->mbssid & 0xF;
3172
3173                 ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3174                 if (pattrib->retry_ctrl == true) {
3175                         ptxdesc->data_rt_lmt = 6;
3176                 } else {
3177                         ptxdesc->data_rt_lmt = 12;
3178                 }
3179
3180                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3181
3182                 /*  CCX-TXRPT ack for xmit mgmt frames. */
3183                 if (pxmitframe->ack_report) {
3184                         #ifdef DBG_CCX
3185                         DBG_8192C("%s set spe_rpt\n", __func__);
3186                         #endif
3187                         ptxdesc->spe_rpt = 1;
3188                         ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3189                 }
3190         } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3191                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3192         } else {
3193                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3194
3195                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3196                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3197                 ptxdesc->qsel = pattrib->qsel;
3198                 ptxdesc->seq = pattrib->seqnum;
3199                 ptxdesc->userate = 1; /*  driver uses rate */
3200                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3201         }
3202
3203         ptxdesc->pktlen = pattrib->last_txcmdsz;
3204         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3205
3206         if (bmcst)
3207                 ptxdesc->bmc = 1;
3208
3209         /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3210         /*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3211         /*  mgnt frame should be controled by Hw because Fw will also send null data */
3212         /*  which we cannot control when Fw LPS enable. */
3213         /*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3214         /*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3215         /*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3216         /*  2010.06.23. Added by tynli. */
3217         if (!pattrib->qos_en) /*  Hw set sequence number */
3218                 ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3219 }
3220
3221 /*
3222  *Description:
3223  *
3224  *Parameters:
3225  *      pxmitframe      xmitframe
3226  *      pbuf            where to fill tx desc
3227  */
3228 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3229 {
3230         struct tx_desc *pdesc;
3231
3232         rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3233
3234         pdesc = (struct tx_desc *)pbuf;
3235         pdesc->txdw0 = pdesc->txdw0;
3236         pdesc->txdw1 = pdesc->txdw1;
3237         pdesc->txdw2 = pdesc->txdw2;
3238         pdesc->txdw3 = pdesc->txdw3;
3239         pdesc->txdw4 = pdesc->txdw4;
3240         pdesc->txdw5 = pdesc->txdw5;
3241         pdesc->txdw6 = pdesc->txdw6;
3242         pdesc->txdw7 = pdesc->txdw7;
3243         pdesc->txdw8 = pdesc->txdw8;
3244         pdesc->txdw9 = pdesc->txdw9;
3245
3246         rtl8723b_cal_txdesc_chksum(pdesc);
3247 }
3248
3249 /*  */
3250 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3251 /*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3252 /*                      Fw can tell Hw to send these packet derectly. */
3253 /*  Added by tynli. 2009.10.15. */
3254 /*  */
3255 /* type1:pspoll, type2:null */
3256 void rtl8723b_fill_fake_txdesc(
3257         struct adapter *padapter,
3258         u8 *pDesc,
3259         u32 BufferLen,
3260         u8 IsPsPoll,
3261         u8 IsBTQosNull,
3262         u8 bDataFrame
3263 )
3264 {
3265         /*  Clear all status */
3266         memset(pDesc, 0, TXDESC_SIZE);
3267
3268         SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3269         SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3270
3271         SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3272
3273         SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3274         SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3275
3276         /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3277         if (true == IsPsPoll) {
3278                 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3279         } else {
3280                 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3281                 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3282         }
3283
3284         if (true == IsBTQosNull) {
3285                 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3286         }
3287
3288         SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3289         SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3290
3291         SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3292
3293         /*  */
3294         /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3295         /*  */
3296         if (true == bDataFrame) {
3297                 u32 EncAlg;
3298
3299                 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3300                 switch (EncAlg) {
3301                 case _NO_PRIVACY_:
3302                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3303                         break;
3304                 case _WEP40_:
3305                 case _WEP104_:
3306                 case _TKIP_:
3307                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3308                         break;
3309                 case _SMS4_:
3310                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3311                         break;
3312                 case _AES_:
3313                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3314                         break;
3315                 default:
3316                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3317                         break;
3318                 }
3319         }
3320
3321         /*  USB interface drop packet if the checksum of descriptor isn't correct. */
3322         /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3323         rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3324 }
3325
3326 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3327 {
3328         u8 val8;
3329         u8 mode = *((u8 *)val);
3330
3331         {
3332                 /*  disable Port0 TSF update */
3333                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3334                 val8 |= DIS_TSF_UDT;
3335                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3336
3337                 /*  set net_type */
3338                 Set_MSR(padapter, mode);
3339                 DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3340
3341                 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3342                         {
3343                                 StopTxBeacon(padapter);
3344 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3345 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3346                                 rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3347                                 UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3348 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3349
3350 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3351                                 UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3352 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3353
3354 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3355                         }
3356
3357                         /*  disable atim wnd */
3358                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3359                         /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3360                 } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
3361                         ResumeTxBeacon(padapter);
3362                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3363                 } else if (mode == _HW_STATE_AP_) {
3364 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3365 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3366                         UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3367 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3368
3369 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3370                         UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3371 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3372
3373 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3374
3375                         ResumeTxBeacon(padapter);
3376
3377                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3378
3379                         /* Set RCR */
3380                         rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3381                         /* enable to rx data frame */
3382                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3383                         /* enable to rx ps-poll */
3384                         rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3385
3386                         /* Beacon Control related register for first time */
3387                         rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3388
3389                         /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3390                         rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3391                         rtw_write16(padapter, REG_BCNTCFG, 0x00);
3392                         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3393                         rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3394
3395                         /* reset TSF */
3396                         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3397
3398                         /* enable BCN0 Function for if1 */
3399                         /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3400                         rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3401
3402                         /* SW_BCN_SEL - Port0 */
3403                         /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3404                         rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3405
3406                         /*  select BCN on port 0 */
3407                         rtw_write8(
3408                                 padapter,
3409                                 REG_CCK_CHECK_8723B,
3410                                 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3411                         );
3412
3413                         /*  dis BCN1 ATIM  WND if if2 is station */
3414                         val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3415                         val8 |= DIS_ATIM;
3416                         rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3417                 }
3418         }
3419 }
3420
3421 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3422 {
3423         u8 idx = 0;
3424         u32 reg_macid;
3425
3426         reg_macid = REG_MACID;
3427
3428         for (idx = 0 ; idx < 6; idx++)
3429                 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3430 }
3431
3432 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3433 {
3434         u8 idx = 0;
3435         u32 reg_bssid;
3436
3437         reg_bssid = REG_BSSID;
3438
3439         for (idx = 0 ; idx < 6; idx++)
3440                 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3441 }
3442
3443 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3444 {
3445         u32 bcn_ctrl_reg;
3446
3447         bcn_ctrl_reg = REG_BCN_CTRL;
3448
3449         if (*(u8 *)val)
3450                 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3451         else {
3452                 u8 val8;
3453                 val8 = rtw_read8(padapter, bcn_ctrl_reg);
3454                 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3455
3456                 /*  Always enable port0 beacon function for PSTDMA */
3457                 if (REG_BCN_CTRL == bcn_ctrl_reg)
3458                         val8 |= EN_BCN_FUNCTION;
3459
3460                 rtw_write8(padapter, bcn_ctrl_reg, val8);
3461         }
3462 }
3463
3464 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3465 {
3466         u8 val8;
3467         u64 tsf;
3468         struct mlme_ext_priv *pmlmeext;
3469         struct mlme_ext_info *pmlmeinfo;
3470
3471
3472         pmlmeext = &padapter->mlmeextpriv;
3473         pmlmeinfo = &pmlmeext->mlmext_info;
3474
3475         tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3476
3477         if (
3478                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3479                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3480         )
3481                 StopTxBeacon(padapter);
3482
3483         {
3484                 /*  disable related TSF function */
3485                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3486                 val8 &= ~EN_BCN_FUNCTION;
3487                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3488
3489                 rtw_write32(padapter, REG_TSFTR, tsf);
3490                 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3491
3492                 /*  enable related TSF function */
3493                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3494                 val8 |= EN_BCN_FUNCTION;
3495                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3496         }
3497
3498         if (
3499                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3500                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3501         )
3502                 ResumeTxBeacon(padapter);
3503 }
3504
3505 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3506 {
3507         u8 val8;
3508
3509         /*  Set RCR to not to receive data frame when NO LINK state */
3510         /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3511         /*  reject all data frames */
3512         rtw_write16(padapter, REG_RXFLTMAP2, 0);
3513
3514         /*  reset TSF */
3515         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3516
3517         /*  disable update TSF */
3518         val8 = rtw_read8(padapter, REG_BCN_CTRL);
3519         val8 |= DIS_TSF_UDT;
3520         rtw_write8(padapter, REG_BCN_CTRL, val8);
3521 }
3522
3523 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3524 {
3525         u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3526         u16 value_rxfltmap2;
3527         u8 val8;
3528         struct hal_com_data *pHalData;
3529         struct mlme_priv *pmlmepriv;
3530
3531
3532         pHalData = GET_HAL_DATA(padapter);
3533         pmlmepriv = &padapter->mlmepriv;
3534
3535         reg_bcn_ctl = REG_BCN_CTRL;
3536
3537         rcr_clear_bit = RCR_CBSSID_BCN;
3538
3539         /*  config RCR to receive different BSSID & not to receive data frame */
3540         value_rxfltmap2 = 0;
3541
3542         if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3543                 rcr_clear_bit = RCR_CBSSID_BCN;
3544
3545         value_rcr = rtw_read32(padapter, REG_RCR);
3546
3547         if (*((u8 *)val)) {
3548                 /*  under sitesurvey */
3549                 value_rcr &= ~(rcr_clear_bit);
3550                 rtw_write32(padapter, REG_RCR, value_rcr);
3551
3552                 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3553
3554                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3555                         /*  disable update TSF */
3556                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3557                         val8 |= DIS_TSF_UDT;
3558                         rtw_write8(padapter, reg_bcn_ctl, val8);
3559                 }
3560
3561                 /*  Save orignal RRSR setting. */
3562                 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3563         } else {
3564                 /*  sitesurvey done */
3565                 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3566                         /*  enable to rx data frame */
3567                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3568
3569                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3570                         /*  enable update TSF */
3571                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3572                         val8 &= ~DIS_TSF_UDT;
3573                         rtw_write8(padapter, reg_bcn_ctl, val8);
3574                 }
3575
3576                 value_rcr |= rcr_clear_bit;
3577                 rtw_write32(padapter, REG_RCR, value_rcr);
3578
3579                 /*  Restore orignal RRSR setting. */
3580                 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3581         }
3582 }
3583
3584 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3585 {
3586         u8 val8;
3587         u16 val16;
3588         u32 val32;
3589         u8 RetryLimit;
3590         u8 type;
3591         struct hal_com_data *pHalData;
3592         struct mlme_priv *pmlmepriv;
3593         struct eeprom_priv *pEEPROM;
3594
3595
3596         RetryLimit = 0x30;
3597         type = *(u8 *)val;
3598         pHalData = GET_HAL_DATA(padapter);
3599         pmlmepriv = &padapter->mlmepriv;
3600         pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3601
3602         if (type == 0) { /*  prepare to join */
3603                 /* enable to rx data frame.Accept all data frame */
3604                 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3605                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3606
3607                 val32 = rtw_read32(padapter, REG_RCR);
3608                 if (padapter->in_cta_test)
3609                         val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3610                 else
3611                         val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3612                 rtw_write32(padapter, REG_RCR, val32);
3613
3614                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3615                         RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3616                 else /*  Ad-hoc Mode */
3617                         RetryLimit = 0x7;
3618         } else if (type == 1) /* joinbss_event call back when join res < 0 */
3619                 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3620         else if (type == 2) { /* sta add event call back */
3621                 /* enable update TSF */
3622                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3623                 val8 &= ~DIS_TSF_UDT;
3624                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3625
3626                 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3627                         RetryLimit = 0x7;
3628         }
3629
3630         val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3631         rtw_write16(padapter, REG_RL, val16);
3632 }
3633
3634 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3635 {
3636         u8 seq_no;
3637
3638 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3639 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3640
3641         /* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3642         /*              *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3643
3644         seq_no = *(pdata+6);
3645
3646         if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3647                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3648         }
3649 /*
3650         else if (seq_no != padapter->xmitpriv.seq_no) {
3651                 DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3652                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3653         }
3654 */
3655         else
3656                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3657 }
3658
3659 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3660 {
3661         struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3662         s32 ret = false;
3663         if (c2h_evt->id == C2H_CCX_TX_RPT)
3664                 ret = true;
3665
3666         return ret;
3667 }
3668
3669
3670 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3671 {
3672         struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3673         s32 ret = _SUCCESS;
3674         u8 index = 0;
3675
3676         if (pC2hEvent == NULL) {
3677                 DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3678                 ret = _FAIL;
3679                 goto exit;
3680         }
3681
3682         switch (pC2hEvent->id) {
3683         case C2H_AP_RPT_RSP:
3684                 break;
3685         case C2H_DBG:
3686                 {
3687                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3688                 }
3689                 break;
3690
3691         case C2H_CCX_TX_RPT:
3692 /*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3693                 break;
3694
3695         case C2H_EXT_RA_RPT:
3696 /*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3697                 break;
3698
3699         case C2H_HW_INFO_EXCH:
3700                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3701                 for (index = 0; index < pC2hEvent->plen; index++) {
3702                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3703                 }
3704                 break;
3705
3706         case C2H_8723B_BT_INFO:
3707                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3708                 break;
3709
3710         default:
3711                 break;
3712         }
3713
3714         /*  Clear event to notify FW we have read the command. */
3715         /*  Note: */
3716         /*      If this field isn't clear, the FW won't update the next command message. */
3717 /*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3718 exit:
3719         return ret;
3720 }
3721
3722 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3723 {
3724         u8 index = 0;
3725
3726         if (c2hBuf == NULL) {
3727                 DBG_8192C("%s c2hbuff is NULL\n", __func__);
3728                 return;
3729         }
3730
3731         switch (pC2hEvent->CmdID) {
3732         case C2H_AP_RPT_RSP:
3733                 break;
3734         case C2H_DBG:
3735                 {
3736                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3737                 }
3738                 break;
3739
3740         case C2H_CCX_TX_RPT:
3741 /*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3742                 break;
3743
3744         case C2H_EXT_RA_RPT:
3745 /*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3746                 break;
3747
3748         case C2H_HW_INFO_EXCH:
3749                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3750                 for (index = 0; index < pC2hEvent->CmdLen; index++) {
3751                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3752                 }
3753                 break;
3754
3755         case C2H_8723B_BT_INFO:
3756                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3757                 break;
3758
3759         default:
3760                 break;
3761         }
3762 }
3763
3764 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3765 {
3766         C2H_EVT_HDR     C2hEvent;
3767         u8 *tmpBuf = NULL;
3768 #ifdef CONFIG_WOWLAN
3769         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3770
3771         if (pwrpriv->wowlan_mode == true) {
3772                 DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3773                 return;
3774         }
3775 #endif
3776         C2hEvent.CmdID = pbuffer[0];
3777         C2hEvent.CmdSeq = pbuffer[1];
3778         C2hEvent.CmdLen = length-2;
3779         tmpBuf = pbuffer+2;
3780
3781         /* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3782         /*              __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3783         RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3784
3785         process_c2h_event(padapter, &C2hEvent, tmpBuf);
3786         /* c2h_handler_8723b(padapter,&C2hEvent); */
3787         return;
3788 }
3789
3790 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3791 {
3792         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3793         u8 val8;
3794         u32 val32;
3795
3796         switch (variable) {
3797         case HW_VAR_MEDIA_STATUS:
3798                 val8 = rtw_read8(padapter, MSR) & 0x0c;
3799                 val8 |= *val;
3800                 rtw_write8(padapter, MSR, val8);
3801                 break;
3802
3803         case HW_VAR_MEDIA_STATUS1:
3804                 val8 = rtw_read8(padapter, MSR) & 0x03;
3805                 val8 |= *val << 2;
3806                 rtw_write8(padapter, MSR, val8);
3807                 break;
3808
3809         case HW_VAR_SET_OPMODE:
3810                 hw_var_set_opmode(padapter, variable, val);
3811                 break;
3812
3813         case HW_VAR_MAC_ADDR:
3814                 hw_var_set_macaddr(padapter, variable, val);
3815                 break;
3816
3817         case HW_VAR_BSSID:
3818                 hw_var_set_bssid(padapter, variable, val);
3819                 break;
3820
3821         case HW_VAR_BASIC_RATE:
3822         {
3823                 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3824                 u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3825                 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3826                 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3827
3828                 HalSetBrateCfg(padapter, val, &BrateCfg);
3829                 input_b = BrateCfg;
3830
3831                 /* apply force and allow mask */
3832                 BrateCfg |= rrsr_2g_force_mask;
3833                 BrateCfg &= rrsr_2g_allow_mask;
3834                 masked = BrateCfg;
3835
3836                 #ifdef CONFIG_CMCC_TEST
3837                 BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3838                 BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3839                 #endif
3840
3841                 /* IOT consideration */
3842                 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3843                         /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3844                         if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3845                                 BrateCfg |= RRSR_6M;
3846                 }
3847                 ioted = BrateCfg;
3848
3849                 pHalData->BasicRateSet = BrateCfg;
3850
3851                 DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3852
3853                 /*  Set RRSR rate table. */
3854                 rtw_write16(padapter, REG_RRSR, BrateCfg);
3855                 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3856         }
3857                 break;
3858
3859         case HW_VAR_TXPAUSE:
3860                 rtw_write8(padapter, REG_TXPAUSE, *val);
3861                 break;
3862
3863         case HW_VAR_BCN_FUNC:
3864                 hw_var_set_bcn_func(padapter, variable, val);
3865                 break;
3866
3867         case HW_VAR_CORRECT_TSF:
3868                 hw_var_set_correct_tsf(padapter, variable, val);
3869                 break;
3870
3871         case HW_VAR_CHECK_BSSID:
3872                 {
3873                         u32 val32;
3874                         val32 = rtw_read32(padapter, REG_RCR);
3875                         if (*val)
3876                                 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3877                         else
3878                                 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3879                         rtw_write32(padapter, REG_RCR, val32);
3880                 }
3881                 break;
3882
3883         case HW_VAR_MLME_DISCONNECT:
3884                 hw_var_set_mlme_disconnect(padapter, variable, val);
3885                 break;
3886
3887         case HW_VAR_MLME_SITESURVEY:
3888                 hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3889
3890                 rtw_btcoex_ScanNotify(padapter, *val?true:false);
3891                 break;
3892
3893         case HW_VAR_MLME_JOIN:
3894                 hw_var_set_mlme_join(padapter, variable, val);
3895
3896                 switch (*val) {
3897                 case 0:
3898                         /*  prepare to join */
3899                         rtw_btcoex_ConnectNotify(padapter, true);
3900                         break;
3901                 case 1:
3902                         /*  joinbss_event callback when join res < 0 */
3903                         rtw_btcoex_ConnectNotify(padapter, false);
3904                         break;
3905                 case 2:
3906                         /*  sta add event callback */
3907 /*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3908                         break;
3909                 }
3910                 break;
3911
3912         case HW_VAR_ON_RCR_AM:
3913                 val32 = rtw_read32(padapter, REG_RCR);
3914                 val32 |= RCR_AM;
3915                 rtw_write32(padapter, REG_RCR, val32);
3916                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3917                 break;
3918
3919         case HW_VAR_OFF_RCR_AM:
3920                 val32 = rtw_read32(padapter, REG_RCR);
3921                 val32 &= ~RCR_AM;
3922                 rtw_write32(padapter, REG_RCR, val32);
3923                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3924                 break;
3925
3926         case HW_VAR_BEACON_INTERVAL:
3927                 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3928                 break;
3929
3930         case HW_VAR_SLOT_TIME:
3931                 rtw_write8(padapter, REG_SLOT, *val);
3932                 break;
3933
3934         case HW_VAR_RESP_SIFS:
3935                 /* SIFS_Timer = 0x0a0a0808; */
3936                 /* RESP_SIFS for CCK */
3937                 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3938                 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3939                 /* RESP_SIFS for OFDM */
3940                 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3941                 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3942                 break;
3943
3944         case HW_VAR_ACK_PREAMBLE:
3945                 {
3946                         u8 regTmp;
3947                         u8 bShortPreamble = *val;
3948
3949                         /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3950                         /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3951                         regTmp = 0;
3952                         if (bShortPreamble)
3953                                 regTmp |= 0x80;
3954                         rtw_write8(padapter, REG_RRSR+2, regTmp);
3955                 }
3956                 break;
3957
3958         case HW_VAR_CAM_EMPTY_ENTRY:
3959                 {
3960                         u8 ucIndex = *val;
3961                         u8 i;
3962                         u32 ulCommand = 0;
3963                         u32 ulContent = 0;
3964                         u32 ulEncAlgo = CAM_AES;
3965
3966                         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3967                                 /*  filled id in CAM config 2 byte */
3968                                 if (i == 0) {
3969                                         ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3970                                         /* ulContent |= CAM_VALID; */
3971                                 } else
3972                                         ulContent = 0;
3973
3974                                 /*  polling bit, and No Write enable, and address */
3975                                 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3976                                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3977                                 /*  write content 0 is equall to mark invalid */
3978                                 rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3979                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3980                                 rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3981                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3982                         }
3983                 }
3984                 break;
3985
3986         case HW_VAR_CAM_INVALID_ALL:
3987                 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3988                 break;
3989
3990         case HW_VAR_CAM_WRITE:
3991                 {
3992                         u32 cmd;
3993                         u32 *cam_val = (u32 *)val;
3994
3995                         rtw_write32(padapter, WCAMI, cam_val[0]);
3996
3997                         cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3998                         rtw_write32(padapter, RWCAM, cmd);
3999                 }
4000                 break;
4001
4002         case HW_VAR_AC_PARAM_VO:
4003                 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
4004                 break;
4005
4006         case HW_VAR_AC_PARAM_VI:
4007                 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
4008                 break;
4009
4010         case HW_VAR_AC_PARAM_BE:
4011                 pHalData->AcParam_BE = ((u32 *)(val))[0];
4012                 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4013                 break;
4014
4015         case HW_VAR_AC_PARAM_BK:
4016                 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4017                 break;
4018
4019         case HW_VAR_ACM_CTRL:
4020                 {
4021                         u8 ctrl = *((u8 *)val);
4022                         u8 hwctrl = 0;
4023
4024                         if (ctrl != 0) {
4025                                 hwctrl |= AcmHw_HwEn;
4026
4027                                 if (ctrl & BIT(1)) /*  BE */
4028                                         hwctrl |= AcmHw_BeqEn;
4029
4030                                 if (ctrl & BIT(2)) /*  VI */
4031                                         hwctrl |= AcmHw_ViqEn;
4032
4033                                 if (ctrl & BIT(3)) /*  VO */
4034                                         hwctrl |= AcmHw_VoqEn;
4035                         }
4036
4037                         DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4038                         rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4039                 }
4040                 break;
4041
4042         case HW_VAR_AMPDU_FACTOR:
4043                 {
4044                         u32 AMPDULen =  (*((u8 *)val));
4045
4046                         if (AMPDULen < HT_AGG_SIZE_32K)
4047                                 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4048                         else
4049                                 AMPDULen = 0x7fff;
4050
4051                         rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4052                 }
4053                 break;
4054
4055         case HW_VAR_H2C_FW_PWRMODE:
4056                 {
4057                         u8 psmode = *val;
4058
4059                         /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4060                         /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4061                         if (psmode != PS_MODE_ACTIVE) {
4062                                 ODM_RF_Saving(&pHalData->odmpriv, true);
4063                         }
4064
4065                         /* if (psmode != PS_MODE_ACTIVE)        { */
4066                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4067                         /*  else { */
4068                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4069                         /*  */
4070                         rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4071                 }
4072                 break;
4073         case HW_VAR_H2C_PS_TUNE_PARAM:
4074                 rtl8723b_set_FwPsTuneParam_cmd(padapter);
4075                 break;
4076
4077         case HW_VAR_H2C_FW_JOINBSSRPT:
4078                 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4079                 break;
4080
4081         case HW_VAR_INITIAL_GAIN:
4082                 {
4083                         DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4084                         u32 rx_gain = *(u32 *)val;
4085
4086                         if (rx_gain == 0xff) {/* restore rx gain */
4087                                 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4088                         } else {
4089                                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
4090                                 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4091                         }
4092                 }
4093                 break;
4094
4095         case HW_VAR_EFUSE_USAGE:
4096                 pHalData->EfuseUsedPercentage = *val;
4097                 break;
4098
4099         case HW_VAR_EFUSE_BYTES:
4100                 pHalData->EfuseUsedBytes = *((u16 *)val);
4101                 break;
4102
4103         case HW_VAR_EFUSE_BT_USAGE:
4104 #ifdef HAL_EFUSE_MEMORY
4105                 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4106 #endif
4107                 break;
4108
4109         case HW_VAR_EFUSE_BT_BYTES:
4110 #ifdef HAL_EFUSE_MEMORY
4111                 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4112 #else
4113                 BTEfuseUsedBytes = *((u16 *)val);
4114 #endif
4115                 break;
4116
4117         case HW_VAR_FIFO_CLEARN_UP:
4118                 {
4119                         #define RW_RELEASE_EN           BIT(18)
4120                         #define RXDMA_IDLE                      BIT(17)
4121
4122                         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4123                         u8 trycnt = 100;
4124
4125                         /*  pause tx */
4126                         rtw_write8(padapter, REG_TXPAUSE, 0xff);
4127
4128                         /*  keep sn */
4129                         padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4130
4131                         if (pwrpriv->bkeepfwalive != true) {
4132                                 /* RX DMA stop */
4133                                 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4134                                 val32 |= RW_RELEASE_EN;
4135                                 rtw_write32(padapter, REG_RXPKT_NUM, val32);
4136                                 do {
4137                                         val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4138                                         val32 &= RXDMA_IDLE;
4139                                         if (val32)
4140                                                 break;
4141
4142                                         DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4143                                 } while (--trycnt);
4144
4145                                 if (trycnt == 0) {
4146                                         DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4147                                 }
4148
4149                                 /*  RQPN Load 0 */
4150                                 rtw_write16(padapter, REG_RQPN_NPQ, 0);
4151                                 rtw_write32(padapter, REG_RQPN, 0x80000000);
4152                                 mdelay(2);
4153                         }
4154                 }
4155                 break;
4156
4157         case HW_VAR_APFM_ON_MAC:
4158                 pHalData->bMacPwrCtrlOn = *val;
4159                 DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4160                 break;
4161
4162         case HW_VAR_NAV_UPPER:
4163                 {
4164                         u32 usNavUpper = *((u32 *)val);
4165
4166                         if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4167                                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4168                                 break;
4169                         }
4170
4171                         /*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4172                         /*  is getting the upper integer. */
4173                         usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4174                         rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4175                 }
4176                 break;
4177
4178         case HW_VAR_H2C_MEDIA_STATUS_RPT:
4179                 {
4180                         u16 mstatus_rpt = (*(u16 *)val);
4181                         u8 mstatus, macId;
4182
4183                         mstatus = (u8) (mstatus_rpt & 0xFF);
4184                         macId = (u8)(mstatus_rpt >> 8);
4185                         rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4186                 }
4187                 break;
4188         case HW_VAR_BCN_VALID:
4189                 {
4190                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4191                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4192                         val8 |= BIT(0);
4193                         rtw_write8(padapter, REG_TDECTRL+2, val8);
4194                 }
4195                 break;
4196
4197         case HW_VAR_DL_BCN_SEL:
4198                 {
4199                         /*  SW_BCN_SEL - Port0 */
4200                         val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4201                         val8 &= ~BIT(4);
4202                         rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4203                 }
4204                 break;
4205
4206         case HW_VAR_DO_IQK:
4207                 pHalData->bNeedIQK = true;
4208                 break;
4209
4210         case HW_VAR_DL_RSVD_PAGE:
4211                 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4212                         rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4213                 else
4214                         rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4215                 break;
4216
4217         case HW_VAR_MACID_SLEEP:
4218                 /*  Input is MACID */
4219                 val32 = *(u32 *)val;
4220                 if (val32 > 31) {
4221                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4222                                 FUNC_ADPT_ARG(padapter), val32);
4223                         break;
4224                 }
4225                 val8 = (u8)val32; /*  macid is between 0~31 */
4226
4227                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4228                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4229                         FUNC_ADPT_ARG(padapter), val8, val32);
4230                 if (val32 & BIT(val8))
4231                         break;
4232                 val32 |= BIT(val8);
4233                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4234                 break;
4235
4236         case HW_VAR_MACID_WAKEUP:
4237                 /*  Input is MACID */
4238                 val32 = *(u32 *)val;
4239                 if (val32 > 31) {
4240                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4241                                 FUNC_ADPT_ARG(padapter), val32);
4242                         break;
4243                 }
4244                 val8 = (u8)val32; /*  macid is between 0~31 */
4245
4246                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4247                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4248                         FUNC_ADPT_ARG(padapter), val8, val32);
4249                 if (!(val32 & BIT(val8)))
4250                         break;
4251                 val32 &= ~BIT(val8);
4252                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4253                 break;
4254
4255         default:
4256                 SetHwReg(padapter, variable, val);
4257                 break;
4258         }
4259 }
4260
4261 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4262 {
4263         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4264         u8 val8;
4265         u16 val16;
4266
4267         switch (variable) {
4268         case HW_VAR_TXPAUSE:
4269                 *val = rtw_read8(padapter, REG_TXPAUSE);
4270                 break;
4271
4272         case HW_VAR_BCN_VALID:
4273                 {
4274                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4275                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4276                         *val = (BIT(0) & val8) ? true : false;
4277                 }
4278                 break;
4279
4280         case HW_VAR_FWLPS_RF_ON:
4281                 {
4282                         /*  When we halt NIC, we should check if FW LPS is leave. */
4283                         u32 valRCR;
4284
4285                         if (
4286                                 (padapter->bSurpriseRemoved == true) ||
4287                                 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4288                         ) {
4289                                 /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4290                                 /*  because Fw is unload. */
4291                                 *val = true;
4292                         } else {
4293                                 valRCR = rtw_read32(padapter, REG_RCR);
4294                                 valRCR &= 0x00070000;
4295                                 if (valRCR)
4296                                         *val = false;
4297                                 else
4298                                         *val = true;
4299                         }
4300                 }
4301                 break;
4302
4303         case HW_VAR_EFUSE_USAGE:
4304                 *val = pHalData->EfuseUsedPercentage;
4305                 break;
4306
4307         case HW_VAR_EFUSE_BYTES:
4308                 *((u16 *)val) = pHalData->EfuseUsedBytes;
4309                 break;
4310
4311         case HW_VAR_EFUSE_BT_USAGE:
4312 #ifdef HAL_EFUSE_MEMORY
4313                 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4314 #endif
4315                 break;
4316
4317         case HW_VAR_EFUSE_BT_BYTES:
4318 #ifdef HAL_EFUSE_MEMORY
4319                 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4320 #else
4321                 *((u16 *)val) = BTEfuseUsedBytes;
4322 #endif
4323                 break;
4324
4325         case HW_VAR_APFM_ON_MAC:
4326                 *val = pHalData->bMacPwrCtrlOn;
4327                 break;
4328         case HW_VAR_CHK_HI_QUEUE_EMPTY:
4329                 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4330                 *val = (val16 & BIT(10)) ? true:false;
4331                 break;
4332 #ifdef CONFIG_WOWLAN
4333         case HW_VAR_RPWM_TOG:
4334                 *val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4335                 break;
4336         case HW_VAR_WAKEUP_REASON:
4337                 *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4338                 if (*val == 0xEA)
4339                         *val = 0;
4340                 break;
4341         case HW_VAR_SYS_CLKR:
4342                 *val = rtw_read8(padapter, REG_SYS_CLKR);
4343                 break;
4344 #endif
4345         default:
4346                 GetHwReg(padapter, variable, val);
4347                 break;
4348         }
4349 }
4350
4351 /*
4352  *Description:
4353  *      Change default setting of specified variable.
4354  */
4355 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4356 {
4357         struct hal_com_data *pHalData;
4358         u8 bResult;
4359
4360
4361         pHalData = GET_HAL_DATA(padapter);
4362         bResult = _SUCCESS;
4363
4364         switch (variable) {
4365         default:
4366                 bResult = SetHalDefVar(padapter, variable, pval);
4367                 break;
4368         }
4369
4370         return bResult;
4371 }
4372
4373 /*
4374  *Description:
4375  *      Query setting of specified variable.
4376  */
4377 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4378 {
4379         struct hal_com_data *pHalData;
4380         u8 bResult;
4381
4382
4383         pHalData = GET_HAL_DATA(padapter);
4384         bResult = _SUCCESS;
4385
4386         switch (variable) {
4387         case HAL_DEF_MAX_RECVBUF_SZ:
4388                 *((u32 *)pval) = MAX_RECVBUF_SZ;
4389                 break;
4390
4391         case HAL_DEF_RX_PACKET_OFFSET:
4392                 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4393                 break;
4394
4395         case HW_VAR_MAX_RX_AMPDU_FACTOR:
4396                 /*  Stanley@BB.SD3 suggests 16K can get stable performance */
4397                 /*  The experiment was done on SDIO interface */
4398                 /*  coding by Lucas@20130730 */
4399                 *(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4400                 break;
4401         case HAL_DEF_TX_LDPC:
4402         case HAL_DEF_RX_LDPC:
4403                 *((u8 *)pval) = false;
4404                 break;
4405         case HAL_DEF_TX_STBC:
4406                 *((u8 *)pval) = 0;
4407                 break;
4408         case HAL_DEF_RX_STBC:
4409                 *((u8 *)pval) = 1;
4410                 break;
4411         case HAL_DEF_EXPLICIT_BEAMFORMER:
4412         case HAL_DEF_EXPLICIT_BEAMFORMEE:
4413                 *((u8 *)pval) = false;
4414                 break;
4415
4416         case HW_DEF_RA_INFO_DUMP:
4417                 {
4418                         u8 mac_id = *(u8 *)pval;
4419                         u32 cmd;
4420                         u32 ra_info1, ra_info2;
4421                         u32 rate_mask1, rate_mask2;
4422                         u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4423
4424                         DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4425
4426                         cmd = 0x40000100 | mac_id;
4427                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4428                         msleep(10);
4429                         ra_info1 = rtw_read32(padapter, 0x2F0);
4430                         curr_tx_rate = ra_info1&0x7F;
4431                         curr_tx_sgi = (ra_info1>>7)&0x01;
4432                         DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4433                                 ra_info1,
4434                                 HDATA_RATE(curr_tx_rate),
4435                                 curr_tx_sgi,
4436                                 (ra_info1>>8)  & 0x07);
4437
4438                         cmd = 0x40000400 | mac_id;
4439                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4440                         msleep(10);
4441                         ra_info1 = rtw_read32(padapter, 0x2F0);
4442                         ra_info2 = rtw_read32(padapter, 0x2F4);
4443                         rate_mask1 = rtw_read32(padapter, 0x2F8);
4444                         rate_mask2 = rtw_read32(padapter, 0x2FC);
4445                         hight_rate = ra_info2&0xFF;
4446                         lowest_rate = (ra_info2>>8)  & 0xFF;
4447
4448                         DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4449                                 ra_info1,
4450                                 ra_info1&0xFF,
4451                                 (ra_info1>>8)  & 0xFF,
4452                                 (ra_info1>>16) & 0xFF,
4453                                 (ra_info1>>24) & 0xFF);
4454
4455                         DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4456                                 ra_info2,
4457                                 HDATA_RATE(hight_rate),
4458                                 HDATA_RATE(lowest_rate),
4459                                 (ra_info2>>16) & 0xFF,
4460                                 (ra_info2>>24) & 0xFF);
4461
4462                         DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4463
4464                 }
4465                 break;
4466
4467         case HAL_DEF_TX_PAGE_BOUNDARY:
4468                 if (!padapter->registrypriv.wifi_spec) {
4469                         *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4470                 } else {
4471                         *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4472                 }
4473                 break;
4474
4475         case HAL_DEF_MACID_SLEEP:
4476                 *(u8 *)pval = true; /*  support macid sleep */
4477                 break;
4478
4479         default:
4480                 bResult = GetHalDefVar(padapter, variable, pval);
4481                 break;
4482         }
4483
4484         return bResult;
4485 }
4486
4487 #ifdef CONFIG_WOWLAN
4488 void Hal_DetectWoWMode(struct adapter *padapter)
4489 {
4490         adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4491         DBG_871X("%s\n", __func__);
4492 }
4493 #endif /* CONFIG_WOWLAN */
4494
4495 void rtl8723b_start_thread(struct adapter *padapter)
4496 {
4497 #ifndef CONFIG_SDIO_TX_TASKLET
4498         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4499
4500         xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4501         if (IS_ERR(xmitpriv->SdioXmitThread)) {
4502                 RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4503         }
4504 #endif
4505 }
4506
4507 void rtl8723b_stop_thread(struct adapter *padapter)
4508 {
4509 #ifndef CONFIG_SDIO_TX_TASKLET
4510         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4511
4512         /*  stop xmit_buf_thread */
4513         if (xmitpriv->SdioXmitThread) {
4514                 up(&xmitpriv->SdioXmitSema);
4515                 down(&xmitpriv->SdioXmitTerminateSema);
4516                 xmitpriv->SdioXmitThread = NULL;
4517         }
4518 #endif
4519 }
4520
4521 #if defined(CONFIG_CHECK_BT_HANG)
4522 extern void check_bt_status_work(void *data);
4523 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4524 {
4525         adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4526         INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4527 }
4528
4529 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4530 {
4531         if (adapter->priv_checkbt_wq) {
4532                 cancel_delayed_work_sync(&adapter->checkbt_work);
4533                 flush_workqueue(adapter->priv_checkbt_wq);
4534                 destroy_workqueue(adapter->priv_checkbt_wq);
4535                 adapter->priv_checkbt_wq = NULL;
4536         }
4537 }
4538
4539 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4540 {
4541         if (adapter->priv_checkbt_wq)
4542                 cancel_delayed_work_sync(&adapter->checkbt_work);
4543 }
4544
4545 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4546 {
4547         if (adapter->priv_checkbt_wq)
4548                 queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4549 }
4550 #endif