GNU Linux-libre 4.19.264-gnu1
[releases.git] / drivers / staging / rtl8723bs / hal / rtl8723b_hal_init.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2007 - 2013 Realtek Corporation. All rights reserved.
5  *
6  ******************************************************************************/
7 #define _HAL_INIT_C_
8
9 #include <linux/firmware.h>
10 #include <linux/slab.h>
11 #include <drv_types.h>
12 #include <rtw_debug.h>
13 #include <rtl8723b_hal.h>
14 #include "hal_com_h2c.h"
15
16 static void _FWDownloadEnable(struct adapter *padapter, bool enable)
17 {
18         u8 tmp, count = 0;
19
20         if (enable) {
21                 /*  8051 enable */
22                 tmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
23                 rtw_write8(padapter, REG_SYS_FUNC_EN+1, tmp|0x04);
24
25                 tmp = rtw_read8(padapter, REG_MCUFWDL);
26                 rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
27
28                 do {
29                         tmp = rtw_read8(padapter, REG_MCUFWDL);
30                         if (tmp & 0x01)
31                                 break;
32                         rtw_write8(padapter, REG_MCUFWDL, tmp|0x01);
33                         msleep(1);
34                 } while (count++ < 100);
35
36                 if (count > 0)
37                         DBG_871X("%s: !!!!!!!!Write 0x80 Fail!: count = %d\n", __func__, count);
38
39                 /*  8051 reset */
40                 tmp = rtw_read8(padapter, REG_MCUFWDL+2);
41                 rtw_write8(padapter, REG_MCUFWDL+2, tmp&0xf7);
42         } else {
43                 /*  MCU firmware download disable. */
44                 tmp = rtw_read8(padapter, REG_MCUFWDL);
45                 rtw_write8(padapter, REG_MCUFWDL, tmp&0xfe);
46         }
47 }
48
49 static int _BlockWrite(struct adapter *padapter, void *buffer, u32 buffSize)
50 {
51         int ret = _SUCCESS;
52
53         u32 blockSize_p1 = 4; /*  (Default) Phase #1 : PCI muse use 4-byte write to download FW */
54         u32 blockSize_p2 = 8; /*  Phase #2 : Use 8-byte, if Phase#1 use big size to write FW. */
55         u32 blockSize_p3 = 1; /*  Phase #3 : Use 1-byte, the remnant of FW image. */
56         u32 blockCount_p1 = 0, blockCount_p2 = 0, blockCount_p3 = 0;
57         u32 remainSize_p1 = 0, remainSize_p2 = 0;
58         u8 *bufferPtr = buffer;
59         u32 i = 0, offset = 0;
60
61 /*      printk("====>%s %d\n", __func__, __LINE__); */
62
63         /* 3 Phase #1 */
64         blockCount_p1 = buffSize / blockSize_p1;
65         remainSize_p1 = buffSize % blockSize_p1;
66
67         if (blockCount_p1) {
68                 RT_TRACE(
69                         _module_hal_init_c_,
70                         _drv_notice_,
71                         (
72                                 "_BlockWrite: [P1] buffSize(%d) blockSize_p1(%d) blockCount_p1(%d) remainSize_p1(%d)\n",
73                                 buffSize,
74                                 blockSize_p1,
75                                 blockCount_p1,
76                                 remainSize_p1
77                         )
78                 );
79         }
80
81         for (i = 0; i < blockCount_p1; i++) {
82                 ret = rtw_write32(padapter, (FW_8723B_START_ADDRESS + i * blockSize_p1), *((u32 *)(bufferPtr + i * blockSize_p1)));
83                 if (ret == _FAIL) {
84                         printk("====>%s %d i:%d\n", __func__, __LINE__, i);
85                         goto exit;
86                 }
87         }
88
89         /* 3 Phase #2 */
90         if (remainSize_p1) {
91                 offset = blockCount_p1 * blockSize_p1;
92
93                 blockCount_p2 = remainSize_p1/blockSize_p2;
94                 remainSize_p2 = remainSize_p1%blockSize_p2;
95
96                 if (blockCount_p2) {
97                                 RT_TRACE(
98                                         _module_hal_init_c_,
99                                         _drv_notice_,
100                                         (
101                                                 "_BlockWrite: [P2] buffSize_p2(%d) blockSize_p2(%d) blockCount_p2(%d) remainSize_p2(%d)\n",
102                                                 (buffSize-offset),
103                                                 blockSize_p2,
104                                                 blockCount_p2,
105                                                 remainSize_p2
106                                         )
107                                 );
108                 }
109
110         }
111
112         /* 3 Phase #3 */
113         if (remainSize_p2) {
114                 offset = (blockCount_p1 * blockSize_p1) + (blockCount_p2 * blockSize_p2);
115
116                 blockCount_p3 = remainSize_p2 / blockSize_p3;
117
118                 RT_TRACE(_module_hal_init_c_, _drv_notice_,
119                                 ("_BlockWrite: [P3] buffSize_p3(%d) blockSize_p3(%d) blockCount_p3(%d)\n",
120                                 (buffSize-offset), blockSize_p3, blockCount_p3));
121
122                 for (i = 0; i < blockCount_p3; i++) {
123                         ret = rtw_write8(padapter, (FW_8723B_START_ADDRESS + offset + i), *(bufferPtr + offset + i));
124
125                         if (ret == _FAIL) {
126                                 printk("====>%s %d i:%d\n", __func__, __LINE__, i);
127                                 goto exit;
128                         }
129                 }
130         }
131 exit:
132         return ret;
133 }
134
135 static int _PageWrite(
136         struct adapter *padapter,
137         u32 page,
138         void *buffer,
139         u32 size
140 )
141 {
142         u8 value8;
143         u8 u8Page = (u8) (page & 0x07);
144
145         value8 = (rtw_read8(padapter, REG_MCUFWDL+2) & 0xF8) | u8Page;
146         rtw_write8(padapter, REG_MCUFWDL+2, value8);
147
148         return _BlockWrite(padapter, buffer, size);
149 }
150
151 static int _WriteFW(struct adapter *padapter, void *buffer, u32 size)
152 {
153         /*  Since we need dynamic decide method of dwonload fw, so we call this function to get chip version. */
154         /*  We can remove _ReadChipVersion from ReadpadapterInfo8192C later. */
155         int ret = _SUCCESS;
156         u32 pageNums, remainSize;
157         u32 page, offset;
158         u8 *bufferPtr = buffer;
159
160         pageNums = size / MAX_DLFW_PAGE_SIZE;
161         /* RT_ASSERT((pageNums <= 4), ("Page numbers should not greater then 4\n")); */
162         remainSize = size % MAX_DLFW_PAGE_SIZE;
163
164         for (page = 0; page < pageNums; page++) {
165                 offset = page * MAX_DLFW_PAGE_SIZE;
166                 ret = _PageWrite(padapter, page, bufferPtr+offset, MAX_DLFW_PAGE_SIZE);
167
168                 if (ret == _FAIL) {
169                         printk("====>%s %d\n", __func__, __LINE__);
170                         goto exit;
171                 }
172         }
173
174         if (remainSize) {
175                 offset = pageNums * MAX_DLFW_PAGE_SIZE;
176                 page = pageNums;
177                 ret = _PageWrite(padapter, page, bufferPtr+offset, remainSize);
178
179                 if (ret == _FAIL) {
180                         printk("====>%s %d\n", __func__, __LINE__);
181                         goto exit;
182                 }
183         }
184         RT_TRACE(_module_hal_init_c_, _drv_info_, ("_WriteFW Done- for Normal chip.\n"));
185
186 exit:
187         return ret;
188 }
189
190 void _8051Reset8723(struct adapter *padapter)
191 {
192         u8 cpu_rst;
193         u8 io_rst;
194
195
196         /*  Reset 8051(WLMCU) IO wrapper */
197         /*  0x1c[8] = 0 */
198         /*  Suggested by Isaac@SD1 and Gimmy@SD1, coding by Lucas@20130624 */
199         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
200         io_rst &= ~BIT(0);
201         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
202
203         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
204         cpu_rst &= ~BIT(2);
205         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
206
207         /*  Enable 8051 IO wrapper */
208         /*  0x1c[8] = 1 */
209         io_rst = rtw_read8(padapter, REG_RSV_CTRL+1);
210         io_rst |= BIT(0);
211         rtw_write8(padapter, REG_RSV_CTRL+1, io_rst);
212
213         cpu_rst = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
214         cpu_rst |= BIT(2);
215         rtw_write8(padapter, REG_SYS_FUNC_EN+1, cpu_rst);
216
217         DBG_8192C("%s: Finish\n", __func__);
218 }
219
220 u8 g_fwdl_chksum_fail = 0;
221
222 static s32 polling_fwdl_chksum(
223         struct adapter *adapter, u32 min_cnt, u32 timeout_ms
224 )
225 {
226         s32 ret = _FAIL;
227         u32 value32;
228         unsigned long start = jiffies;
229         u32 cnt = 0;
230
231         /* polling CheckSum report */
232         do {
233                 cnt++;
234                 value32 = rtw_read32(adapter, REG_MCUFWDL);
235                 if (value32 & FWDL_ChkSum_rpt || adapter->bSurpriseRemoved || adapter->bDriverStopped)
236                         break;
237                 yield();
238         } while (jiffies_to_msecs(jiffies-start) < timeout_ms || cnt < min_cnt);
239
240         if (!(value32 & FWDL_ChkSum_rpt)) {
241                 goto exit;
242         }
243
244         if (g_fwdl_chksum_fail) {
245                 DBG_871X("%s: fwdl test case: fwdl_chksum_fail\n", __func__);
246                 g_fwdl_chksum_fail--;
247                 goto exit;
248         }
249
250         ret = _SUCCESS;
251
252 exit:
253         DBG_871X(
254                 "%s: Checksum report %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
255                 __func__,
256                 (ret == _SUCCESS) ? "OK" : "Fail",
257                 cnt,
258                 jiffies_to_msecs(jiffies-start),
259                 value32
260         );
261
262         return ret;
263 }
264
265 u8 g_fwdl_wintint_rdy_fail = 0;
266
267 static s32 _FWFreeToGo(struct adapter *adapter, u32 min_cnt, u32 timeout_ms)
268 {
269         s32 ret = _FAIL;
270         u32 value32;
271         unsigned long start = jiffies;
272         u32 cnt = 0;
273
274         value32 = rtw_read32(adapter, REG_MCUFWDL);
275         value32 |= MCUFWDL_RDY;
276         value32 &= ~WINTINI_RDY;
277         rtw_write32(adapter, REG_MCUFWDL, value32);
278
279         _8051Reset8723(adapter);
280
281         /*  polling for FW ready */
282         do {
283                 cnt++;
284                 value32 = rtw_read32(adapter, REG_MCUFWDL);
285                 if (value32 & WINTINI_RDY || adapter->bSurpriseRemoved || adapter->bDriverStopped)
286                         break;
287                 yield();
288         } while (jiffies_to_msecs(jiffies - start) < timeout_ms || cnt < min_cnt);
289
290         if (!(value32 & WINTINI_RDY)) {
291                 goto exit;
292         }
293
294         if (g_fwdl_wintint_rdy_fail) {
295                 DBG_871X("%s: fwdl test case: wintint_rdy_fail\n", __func__);
296                 g_fwdl_wintint_rdy_fail--;
297                 goto exit;
298         }
299
300         ret = _SUCCESS;
301
302 exit:
303         DBG_871X(
304                 "%s: Polling FW ready %s! (%u, %dms), REG_MCUFWDL:0x%08x\n",
305                 __func__,
306                 (ret == _SUCCESS) ? "OK" : "Fail",
307                 cnt,
308                 jiffies_to_msecs(jiffies-start),
309                 value32
310         );
311
312         return ret;
313 }
314
315 #define IS_FW_81xxC(padapter)   (((GET_HAL_DATA(padapter))->FirmwareSignature & 0xFFF0) == 0x88C0)
316
317 void rtl8723b_FirmwareSelfReset(struct adapter *padapter)
318 {
319         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
320         u8 u1bTmp;
321         u8 Delay = 100;
322
323         if (
324                 !(IS_FW_81xxC(padapter) && ((pHalData->FirmwareVersion < 0x21) || (pHalData->FirmwareVersion == 0x21 && pHalData->FirmwareSubVersion < 0x01)))
325         ) { /*  after 88C Fw v33.1 */
326                 /* 0x1cf = 0x20. Inform 8051 to reset. 2009.12.25. tynli_test */
327                 rtw_write8(padapter, REG_HMETFR+3, 0x20);
328
329                 u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
330                 while (u1bTmp & BIT2) {
331                         Delay--;
332                         if (Delay == 0)
333                                 break;
334                         udelay(50);
335                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
336                 }
337                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("-%s: 8051 reset success (%d)\n", __func__, Delay));
338
339                 if (Delay == 0) {
340                         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("%s: Force 8051 reset!!!\n", __func__));
341                         /* force firmware reset */
342                         u1bTmp = rtw_read8(padapter, REG_SYS_FUNC_EN+1);
343                         rtw_write8(padapter, REG_SYS_FUNC_EN+1, u1bTmp&(~BIT2));
344                 }
345         }
346 }
347
348 /*  */
349 /*      Description: */
350 /*              Download 8192C firmware code. */
351 /*  */
352 /*  */
353 s32 rtl8723b_FirmwareDownload(struct adapter *padapter, bool  bUsedWoWLANFw)
354 {
355         s32 rtStatus = _SUCCESS;
356         u8 write_fw = 0;
357         unsigned long fwdl_start_time;
358         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
359         struct rt_firmware *pFirmware;
360         struct rt_firmware *pBTFirmware;
361         struct rt_firmware_hdr *pFwHdr = NULL;
362         u8 *pFirmwareBuf;
363         u32 FirmwareLen;
364         const struct firmware *fw;
365         struct device *device = dvobj_to_dev(padapter->dvobj);
366         u8 *fwfilepath;
367         struct dvobj_priv *psdpriv = padapter->dvobj;
368         struct debug_priv *pdbgpriv = &psdpriv->drv_dbg;
369         u8 tmp_ps;
370
371         RT_TRACE(_module_hal_init_c_, _drv_info_, ("+%s\n", __func__));
372 #ifdef CONFIG_WOWLAN
373         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("+%s, bUsedWoWLANFw:%d\n", __func__, bUsedWoWLANFw));
374 #endif
375         pFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
376         if (!pFirmware)
377                 return _FAIL;
378         pBTFirmware = kzalloc(sizeof(struct rt_firmware), GFP_KERNEL);
379         if (!pBTFirmware) {
380                 kfree(pFirmware);
381                 return _FAIL;
382         }
383         tmp_ps = rtw_read8(padapter, 0xa3);
384         tmp_ps &= 0xf8;
385         tmp_ps |= 0x02;
386         /* 1. write 0xA3[:2:0] = 3b'010 */
387         rtw_write8(padapter, 0xa3, tmp_ps);
388         /* 2. read power_state = 0xA0[1:0] */
389         tmp_ps = rtw_read8(padapter, 0xa0);
390         tmp_ps &= 0x03;
391         if (tmp_ps != 0x01) {
392                 DBG_871X(FUNC_ADPT_FMT" tmp_ps =%x\n", FUNC_ADPT_ARG(padapter), tmp_ps);
393                 pdbgpriv->dbg_downloadfw_pwr_state_cnt++;
394         }
395
396 #ifdef CONFIG_WOWLAN
397         if (bUsedWoWLANFw)
398                 fwfilepath = "/*(DEBLOBBED)*/";
399         else
400 #endif /*  CONFIG_WOWLAN */
401                 fwfilepath = "/*(DEBLOBBED)*/";
402
403         pr_info("rtl8723bs: acquire FW from file:%s\n", fwfilepath);
404
405         rtStatus = reject_firmware(&fw, fwfilepath, device);
406         if (rtStatus) {
407                 pr_err("Request firmware failed with error 0x%x\n", rtStatus);
408                 rtStatus = _FAIL;
409                 goto exit;
410         }
411
412         if (!fw) {
413                 pr_err("Firmware %s not available\n", fwfilepath);
414                 rtStatus = _FAIL;
415                 goto exit;
416         }
417
418         if (fw->size > FW_8723B_SIZE) {
419                 rtStatus = _FAIL;
420                 RT_TRACE(
421                         _module_hal_init_c_,
422                         _drv_err_,
423                         ("Firmware size exceed 0x%X. Check it.\n", FW_8188E_SIZE)
424                 );
425                 goto exit;
426         }
427
428         pFirmware->fw_buffer_sz = kmemdup(fw->data, fw->size, GFP_KERNEL);
429         if (!pFirmware->fw_buffer_sz) {
430                 rtStatus = _FAIL;
431                 goto exit;
432         }
433
434         pFirmware->fw_length = fw->size;
435         release_firmware(fw);
436         if (pFirmware->fw_length > FW_8723B_SIZE) {
437                 rtStatus = _FAIL;
438                 DBG_871X_LEVEL(_drv_emerg_, "Firmware size:%u exceed %u\n", pFirmware->fw_length, FW_8723B_SIZE);
439                 goto release_fw1;
440         }
441
442         pFirmwareBuf = pFirmware->fw_buffer_sz;
443         FirmwareLen = pFirmware->fw_length;
444
445         /*  To Check Fw header. Added by tynli. 2009.12.04. */
446         pFwHdr = (struct rt_firmware_hdr *)pFirmwareBuf;
447
448         pHalData->FirmwareVersion =  le16_to_cpu(pFwHdr->version);
449         pHalData->FirmwareSubVersion = le16_to_cpu(pFwHdr->subversion);
450         pHalData->FirmwareSignature = le16_to_cpu(pFwHdr->signature);
451
452         DBG_871X(
453                 "%s: fw_ver =%x fw_subver =%04x sig = 0x%x, Month =%02x, Date =%02x, Hour =%02x, Minute =%02x\n",
454                 __func__,
455                 pHalData->FirmwareVersion,
456                 pHalData->FirmwareSubVersion,
457                 pHalData->FirmwareSignature,
458                 pFwHdr->month,
459                 pFwHdr->date,
460                 pFwHdr->hour,
461                 pFwHdr->minute
462         );
463
464         if (IS_FW_HEADER_EXIST_8723B(pFwHdr)) {
465                 DBG_871X("%s(): Shift for fw header!\n", __func__);
466                 /*  Shift 32 bytes for FW header */
467                 pFirmwareBuf = pFirmwareBuf + 32;
468                 FirmwareLen = FirmwareLen - 32;
469         }
470
471         /*  Suggested by Filen. If 8051 is running in RAM code, driver should inform Fw to reset by itself, */
472         /*  or it will cause download Fw fail. 2010.02.01. by tynli. */
473         if (rtw_read8(padapter, REG_MCUFWDL) & RAM_DL_SEL) { /* 8051 RAM code */
474                 rtw_write8(padapter, REG_MCUFWDL, 0x00);
475                 rtl8723b_FirmwareSelfReset(padapter);
476         }
477
478         _FWDownloadEnable(padapter, true);
479         fwdl_start_time = jiffies;
480         while (
481                 !padapter->bDriverStopped &&
482                 !padapter->bSurpriseRemoved &&
483                 (write_fw++ < 3 || jiffies_to_msecs(jiffies - fwdl_start_time) < 500)
484         ) {
485                 /* reset FWDL chksum */
486                 rtw_write8(padapter, REG_MCUFWDL, rtw_read8(padapter, REG_MCUFWDL)|FWDL_ChkSum_rpt);
487
488                 rtStatus = _WriteFW(padapter, pFirmwareBuf, FirmwareLen);
489                 if (rtStatus != _SUCCESS)
490                         continue;
491
492                 rtStatus = polling_fwdl_chksum(padapter, 5, 50);
493                 if (rtStatus == _SUCCESS)
494                         break;
495         }
496         _FWDownloadEnable(padapter, false);
497         if (_SUCCESS != rtStatus)
498                 goto fwdl_stat;
499
500         rtStatus = _FWFreeToGo(padapter, 10, 200);
501         if (_SUCCESS != rtStatus)
502                 goto fwdl_stat;
503
504 fwdl_stat:
505         DBG_871X(
506                 "FWDL %s. write_fw:%u, %dms\n",
507                 (rtStatus == _SUCCESS)?"success":"fail",
508                 write_fw,
509                 jiffies_to_msecs(jiffies - fwdl_start_time)
510         );
511
512 exit:
513         kfree(pFirmware->fw_buffer_sz);
514         kfree(pFirmware);
515 release_fw1:
516         kfree(pBTFirmware);
517         DBG_871X(" <=== rtl8723b_FirmwareDownload()\n");
518         return rtStatus;
519 }
520
521 void rtl8723b_InitializeFirmwareVars(struct adapter *padapter)
522 {
523         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
524
525         /*  Init Fw LPS related. */
526         adapter_to_pwrctl(padapter)->bFwCurrentInPSMode = false;
527
528         /* Init H2C cmd. */
529         rtw_write8(padapter, REG_HMETFR, 0x0f);
530
531         /*  Init H2C counter. by tynli. 2009.12.09. */
532         pHalData->LastHMEBoxNum = 0;
533 /* pHalData->H2CQueueHead = 0; */
534 /* pHalData->H2CQueueTail = 0; */
535 /* pHalData->H2CStopInsertQueue = false; */
536 }
537
538 #if defined(CONFIG_WOWLAN) || defined(CONFIG_AP_WOWLAN)
539 /*  */
540
541 /*  */
542 /*  Description: Prepare some information to Fw for WoWLAN. */
543 /* (1) Download wowlan Fw. */
544 /* (2) Download RSVD page packets. */
545 /* (3) Enable AP offload if needed. */
546 /*  */
547 /*  2011.04.12 by tynli. */
548 /*  */
549 void SetFwRelatedForWoWLAN8723b(
550         struct adapter *padapter, u8 bHostIsGoingtoSleep
551 )
552 {
553         int     status = _FAIL;
554         /*  */
555         /*  1. Before WoWLAN we need to re-download WoWLAN Fw. */
556         /*  */
557         status = rtl8723b_FirmwareDownload(padapter, bHostIsGoingtoSleep);
558         if (status != _SUCCESS) {
559                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware failed!!\n");
560                 return;
561         } else {
562                 DBG_871X("SetFwRelatedForWoWLAN8723b(): Re-Download Firmware Success !!\n");
563         }
564         /*  */
565         /*  2. Re-Init the variables about Fw related setting. */
566         /*  */
567         rtl8723b_InitializeFirmwareVars(padapter);
568 }
569 #endif /* CONFIG_WOWLAN */
570
571 static void rtl8723b_free_hal_data(struct adapter *padapter)
572 {
573 }
574
575 /*  */
576 /*                              Efuse related code */
577 /*  */
578 static u8 hal_EfuseSwitchToBank(
579         struct adapter *padapter, u8 bank, bool bPseudoTest
580 )
581 {
582         u8 bRet = false;
583         u32 value32 = 0;
584 #ifdef HAL_EFUSE_MEMORY
585         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
586         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
587 #endif
588
589
590         DBG_8192C("%s: Efuse switch bank to %d\n", __func__, bank);
591         if (bPseudoTest) {
592 #ifdef HAL_EFUSE_MEMORY
593                 pEfuseHal->fakeEfuseBank = bank;
594 #else
595                 fakeEfuseBank = bank;
596 #endif
597                 bRet = true;
598         } else {
599                 value32 = rtw_read32(padapter, EFUSE_TEST);
600                 bRet = true;
601                 switch (bank) {
602                 case 0:
603                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
604                         break;
605                 case 1:
606                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_0);
607                         break;
608                 case 2:
609                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_1);
610                         break;
611                 case 3:
612                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_BT_SEL_2);
613                         break;
614                 default:
615                         value32 = (value32 & ~EFUSE_SEL_MASK) | EFUSE_SEL(EFUSE_WIFI_SEL_0);
616                         bRet = false;
617                         break;
618                 }
619                 rtw_write32(padapter, EFUSE_TEST, value32);
620         }
621
622         return bRet;
623 }
624
625 static void Hal_GetEfuseDefinition(
626         struct adapter *padapter,
627         u8 efuseType,
628         u8 type,
629         void *pOut,
630         bool bPseudoTest
631 )
632 {
633         switch (type) {
634         case TYPE_EFUSE_MAX_SECTION:
635                 {
636                         u8 *pMax_section;
637                         pMax_section = pOut;
638
639                         if (efuseType == EFUSE_WIFI)
640                                 *pMax_section = EFUSE_MAX_SECTION_8723B;
641                         else
642                                 *pMax_section = EFUSE_BT_MAX_SECTION;
643                 }
644                 break;
645
646         case TYPE_EFUSE_REAL_CONTENT_LEN:
647                 {
648                         u16 *pu2Tmp;
649                         pu2Tmp = pOut;
650
651                         if (efuseType == EFUSE_WIFI)
652                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
653                         else
654                                 *pu2Tmp = EFUSE_BT_REAL_CONTENT_LEN;
655                 }
656                 break;
657
658         case TYPE_AVAILABLE_EFUSE_BYTES_BANK:
659                 {
660                         u16 *pu2Tmp;
661                         pu2Tmp = pOut;
662
663                         if (efuseType == EFUSE_WIFI)
664                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
665                         else
666                                 *pu2Tmp = (EFUSE_BT_REAL_BANK_CONTENT_LEN-EFUSE_PROTECT_BYTES_BANK);
667                 }
668                 break;
669
670         case TYPE_AVAILABLE_EFUSE_BYTES_TOTAL:
671                 {
672                         u16 *pu2Tmp;
673                         pu2Tmp = pOut;
674
675                         if (efuseType == EFUSE_WIFI)
676                                 *pu2Tmp = (EFUSE_REAL_CONTENT_LEN_8723B-EFUSE_OOB_PROTECT_BYTES);
677                         else
678                                 *pu2Tmp = (EFUSE_BT_REAL_CONTENT_LEN-(EFUSE_PROTECT_BYTES_BANK*3));
679                 }
680                 break;
681
682         case TYPE_EFUSE_MAP_LEN:
683                 {
684                         u16 *pu2Tmp;
685                         pu2Tmp = pOut;
686
687                         if (efuseType == EFUSE_WIFI)
688                                 *pu2Tmp = EFUSE_MAX_MAP_LEN;
689                         else
690                                 *pu2Tmp = EFUSE_BT_MAP_LEN;
691                 }
692                 break;
693
694         case TYPE_EFUSE_PROTECT_BYTES_BANK:
695                 {
696                         u8 *pu1Tmp;
697                         pu1Tmp = pOut;
698
699                         if (efuseType == EFUSE_WIFI)
700                                 *pu1Tmp = EFUSE_OOB_PROTECT_BYTES;
701                         else
702                                 *pu1Tmp = EFUSE_PROTECT_BYTES_BANK;
703                 }
704                 break;
705
706         case TYPE_EFUSE_CONTENT_LEN_BANK:
707                 {
708                         u16 *pu2Tmp;
709                         pu2Tmp = pOut;
710
711                         if (efuseType == EFUSE_WIFI)
712                                 *pu2Tmp = EFUSE_REAL_CONTENT_LEN_8723B;
713                         else
714                                 *pu2Tmp = EFUSE_BT_REAL_BANK_CONTENT_LEN;
715                 }
716                 break;
717
718         default:
719                 {
720                         u8 *pu1Tmp;
721                         pu1Tmp = pOut;
722                         *pu1Tmp = 0;
723                 }
724                 break;
725         }
726 }
727
728 #define VOLTAGE_V25             0x03
729 #define LDOE25_SHIFT    28
730
731 /*  */
732 /*      The following is for compile ok */
733 /*      That should be merged with the original in the future */
734 /*  */
735 #define EFUSE_ACCESS_ON_8723                    0x69    /*  For RTL8723 only. */
736 #define EFUSE_ACCESS_OFF_8723                   0x00    /*  For RTL8723 only. */
737 #define REG_EFUSE_ACCESS_8723                   0x00CF  /*  Efuse access protection for RTL8723 */
738
739 /*  */
740 static void Hal_BT_EfusePowerSwitch(
741         struct adapter *padapter, u8 bWrite, u8 PwrState
742 )
743 {
744         u8 tempval;
745         if (PwrState == true) {
746                 /*  enable BT power cut */
747                 /*  0x6A[14] = 1 */
748                 tempval = rtw_read8(padapter, 0x6B);
749                 tempval |= BIT(6);
750                 rtw_write8(padapter, 0x6B, tempval);
751
752                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
753                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
754                 msleep(1);
755                 /*  disable BT output isolation */
756                 /*  0x6A[15] = 0 */
757                 tempval = rtw_read8(padapter, 0x6B);
758                 tempval &= ~BIT(7);
759                 rtw_write8(padapter, 0x6B, tempval);
760         } else {
761                 /*  enable BT output isolation */
762                 /*  0x6A[15] = 1 */
763                 tempval = rtw_read8(padapter, 0x6B);
764                 tempval |= BIT(7);
765                 rtw_write8(padapter, 0x6B, tempval);
766
767                 /*  Attention!! Between 0x6A[14] and 0x6A[15] setting need 100us delay */
768                 /*  So don't wirte 0x6A[14]= 1 and 0x6A[15]= 0 together! */
769
770                 /*  disable BT power cut */
771                 /*  0x6A[14] = 1 */
772                 tempval = rtw_read8(padapter, 0x6B);
773                 tempval &= ~BIT(6);
774                 rtw_write8(padapter, 0x6B, tempval);
775         }
776
777 }
778 static void Hal_EfusePowerSwitch(
779         struct adapter *padapter, u8 bWrite, u8 PwrState
780 )
781 {
782         u8 tempval;
783         u16 tmpV16;
784
785
786         if (PwrState == true) {
787                 /*  To avoid cannot access efuse regsiters after disable/enable several times during DTM test. */
788                 /*  Suggested by SD1 IsaacHsu. 2013.07.08, added by tynli. */
789                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
790                 if (tempval & BIT(0)) { /*  SDIO local register is suspend */
791                         u8 count = 0;
792
793
794                         tempval &= ~BIT(0);
795                         rtw_write8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL, tempval);
796
797                         /*  check 0x86[1:0]= 10'2h, wait power state to leave suspend */
798                         do {
799                                 tempval = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HSUS_CTRL);
800                                 tempval &= 0x3;
801                                 if (tempval == 0x02)
802                                         break;
803
804                                 count++;
805                                 if (count >= 100)
806                                         break;
807
808                                 mdelay(10);
809                         } while (1);
810
811                         if (count >= 100) {
812                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend fail! Local 0x86 =%#X\n",
813                                         FUNC_ADPT_ARG(padapter), tempval);
814                         } else {
815                                 DBG_8192C(FUNC_ADPT_FMT ": Leave SDIO local register suspend OK! Local 0x86 =%#X\n",
816                                         FUNC_ADPT_ARG(padapter), tempval);
817                         }
818                 }
819
820                 rtw_write8(padapter, REG_EFUSE_ACCESS_8723, EFUSE_ACCESS_ON_8723);
821
822                 /*  Reset: 0x0000h[28], default valid */
823                 tmpV16 =  rtw_read16(padapter, REG_SYS_FUNC_EN);
824                 if (!(tmpV16 & FEN_ELDR)) {
825                         tmpV16 |= FEN_ELDR;
826                         rtw_write16(padapter, REG_SYS_FUNC_EN, tmpV16);
827                 }
828
829                 /*  Clock: Gated(0x0008h[5]) 8M(0x0008h[1]) clock from ANA, default valid */
830                 tmpV16 = rtw_read16(padapter, REG_SYS_CLKR);
831                 if ((!(tmpV16 & LOADER_CLK_EN))  || (!(tmpV16 & ANA8M))) {
832                         tmpV16 |= (LOADER_CLK_EN | ANA8M);
833                         rtw_write16(padapter, REG_SYS_CLKR, tmpV16);
834                 }
835
836                 if (bWrite == true) {
837                         /*  Enable LDO 2.5V before read/write action */
838                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
839                         tempval &= 0x0F;
840                         tempval |= (VOLTAGE_V25 << 4);
841                         rtw_write8(padapter, EFUSE_TEST+3, (tempval | 0x80));
842
843                         /* rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_ON); */
844                 }
845         } else {
846                 rtw_write8(padapter, REG_EFUSE_ACCESS, EFUSE_ACCESS_OFF);
847
848                 if (bWrite == true) {
849                         /*  Disable LDO 2.5V after read/write action */
850                         tempval = rtw_read8(padapter, EFUSE_TEST+3);
851                         rtw_write8(padapter, EFUSE_TEST+3, (tempval & 0x7F));
852                 }
853
854         }
855 }
856
857 static void hal_ReadEFuse_WiFi(
858         struct adapter *padapter,
859         u16 _offset,
860         u16 _size_byte,
861         u8 *pbuf,
862         bool bPseudoTest
863 )
864 {
865 #ifdef HAL_EFUSE_MEMORY
866         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
867         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
868 #endif
869         u8 *efuseTbl = NULL;
870         u16 eFuse_Addr = 0;
871         u8 offset, wden;
872         u8 efuseHeader, efuseExtHdr, efuseData;
873         u16 i, total, used;
874         u8 efuse_usage = 0;
875
876         /* DBG_871X("YJ: ====>%s():_offset =%d _size_byte =%d bPseudoTest =%d\n", __func__, _offset, _size_byte, bPseudoTest); */
877         /*  */
878         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
879         /*  */
880         if ((_offset+_size_byte) > EFUSE_MAX_MAP_LEN) {
881                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
882                 return;
883         }
884
885         efuseTbl = rtw_malloc(EFUSE_MAX_MAP_LEN);
886         if (efuseTbl == NULL) {
887                 DBG_8192C("%s: alloc efuseTbl fail!\n", __func__);
888                 return;
889         }
890         /*  0xff will be efuse default value instead of 0x00. */
891         memset(efuseTbl, 0xFF, EFUSE_MAX_MAP_LEN);
892
893
894 #ifdef DEBUG
895 if (0) {
896         for (i = 0; i < 256; i++)
897                 efuse_OneByteRead(padapter, i, &efuseTbl[i], false);
898         DBG_871X("Efuse Content:\n");
899         for (i = 0; i < 256; i++) {
900                 if (i % 16 == 0)
901                         printk("\n");
902                 printk("%02X ", efuseTbl[i]);
903         }
904         printk("\n");
905 }
906 #endif
907
908
909         /*  switch bank back to bank 0 for later BT and wifi use. */
910         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
911
912         while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
913                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
914                 if (efuseHeader == 0xFF) {
915                         DBG_8192C("%s: data end at address =%#x\n", __func__, eFuse_Addr-1);
916                         break;
917                 }
918                 /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseHeader); */
919
920                 /*  Check PG header for section num. */
921                 if (EXT_HEADER(efuseHeader)) { /* extended header */
922                         offset = GET_HDR_OFFSET_2_0(efuseHeader);
923                         /* DBG_8192C("%s: extended header offset = 0x%X\n", __func__, offset); */
924
925                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
926                         /* DBG_8192C("%s: efuse[0x%X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseExtHdr); */
927                         if (ALL_WORDS_DISABLED(efuseExtHdr))
928                                 continue;
929
930                         offset |= ((efuseExtHdr & 0xF0) >> 1);
931                         wden = (efuseExtHdr & 0x0F);
932                 } else {
933                         offset = ((efuseHeader >> 4) & 0x0f);
934                         wden = (efuseHeader & 0x0f);
935                 }
936                 /* DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
937
938                 if (offset < EFUSE_MAX_SECTION_8723B) {
939                         u16 addr;
940                         /*  Get word enable value from PG header */
941 /*                      DBG_8192C("%s: Offset =%d Worden = 0x%X\n", __func__, offset, wden); */
942
943                         addr = offset * PGPKT_DATA_SIZE;
944                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
945                                 /*  Check word enable condition in the section */
946                                 if (!(wden & (0x01<<i))) {
947                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
948 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
949                                         efuseTbl[addr] = efuseData;
950
951                                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
952 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData); */
953                                         efuseTbl[addr+1] = efuseData;
954                                 }
955                                 addr += 2;
956                         }
957                 } else {
958                         DBG_8192C(KERN_ERR "%s: offset(%d) is illegal!!\n", __func__, offset);
959                         eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
960                 }
961         }
962
963         /*  Copy from Efuse map to output pointer memory!!! */
964         for (i = 0; i < _size_byte; i++)
965                 pbuf[i] = efuseTbl[_offset+i];
966
967 #ifdef DEBUG
968 if (1) {
969         DBG_871X("Efuse Realmap:\n");
970         for (i = 0; i < _size_byte; i++) {
971                 if (i % 16 == 0)
972                         printk("\n");
973                 printk("%02X ", pbuf[i]);
974         }
975         printk("\n");
976 }
977 #endif
978         /*  Calculate Efuse utilization */
979         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
980         used = eFuse_Addr - 1;
981         efuse_usage = (u8)((used*100)/total);
982         if (bPseudoTest) {
983 #ifdef HAL_EFUSE_MEMORY
984                 pEfuseHal->fakeEfuseUsedBytes = used;
985 #else
986                 fakeEfuseUsedBytes = used;
987 #endif
988         } else {
989                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&used);
990                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_USAGE, (u8 *)&efuse_usage);
991         }
992
993         kfree(efuseTbl);
994 }
995
996 static void hal_ReadEFuse_BT(
997         struct adapter *padapter,
998         u16 _offset,
999         u16 _size_byte,
1000         u8 *pbuf,
1001         bool bPseudoTest
1002 )
1003 {
1004 #ifdef HAL_EFUSE_MEMORY
1005         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1006         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1007 #endif
1008         u8 *efuseTbl;
1009         u8 bank;
1010         u16 eFuse_Addr;
1011         u8 efuseHeader, efuseExtHdr, efuseData;
1012         u8 offset, wden;
1013         u16 i, total, used;
1014         u8 efuse_usage;
1015
1016
1017         /*  */
1018         /*  Do NOT excess total size of EFuse table. Added by Roger, 2008.11.10. */
1019         /*  */
1020         if ((_offset+_size_byte) > EFUSE_BT_MAP_LEN) {
1021                 DBG_8192C("%s: Invalid offset(%#x) with read bytes(%#x)!!\n", __func__, _offset, _size_byte);
1022                 return;
1023         }
1024
1025         efuseTbl = rtw_malloc(EFUSE_BT_MAP_LEN);
1026         if (efuseTbl == NULL) {
1027                 DBG_8192C("%s: efuseTbl malloc fail!\n", __func__);
1028                 return;
1029         }
1030         /*  0xff will be efuse default value instead of 0x00. */
1031         memset(efuseTbl, 0xFF, EFUSE_BT_MAP_LEN);
1032
1033         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &total, bPseudoTest);
1034
1035         for (bank = 1; bank < 3; bank++) { /*  8723b Max bake 0~2 */
1036                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1037                         DBG_8192C("%s: hal_EfuseSwitchToBank Fail!!\n", __func__);
1038                         goto exit;
1039                 }
1040
1041                 eFuse_Addr = 0;
1042
1043                 while (AVAILABLE_EFUSE_ADDR(eFuse_Addr)) {
1044                         efuse_OneByteRead(padapter, eFuse_Addr++, &efuseHeader, bPseudoTest);
1045                         if (efuseHeader == 0xFF)
1046                                 break;
1047                         DBG_8192C("%s: efuse[%#X]= 0x%02x (header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseHeader);
1048
1049                         /*  Check PG header for section num. */
1050                         if (EXT_HEADER(efuseHeader)) { /* extended header */
1051                                 offset = GET_HDR_OFFSET_2_0(efuseHeader);
1052                                 DBG_8192C("%s: extended header offset_2_0 = 0x%X\n", __func__, offset);
1053
1054                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseExtHdr, bPseudoTest);
1055                                 DBG_8192C("%s: efuse[%#X]= 0x%02x (ext header)\n", __func__, (((bank-1)*EFUSE_REAL_CONTENT_LEN_8723B)+eFuse_Addr-1), efuseExtHdr);
1056                                 if (ALL_WORDS_DISABLED(efuseExtHdr))
1057                                         continue;
1058
1059
1060                                 offset |= ((efuseExtHdr & 0xF0) >> 1);
1061                                 wden = (efuseExtHdr & 0x0F);
1062                         } else {
1063                                 offset = ((efuseHeader >> 4) & 0x0f);
1064                                 wden = (efuseHeader & 0x0f);
1065                         }
1066
1067                         if (offset < EFUSE_BT_MAX_SECTION) {
1068                                 u16 addr;
1069
1070                                 /*  Get word enable value from PG header */
1071                                 DBG_8192C("%s: Offset =%d Worden =%#X\n", __func__, offset, wden);
1072
1073                                 addr = offset * PGPKT_DATA_SIZE;
1074                                 for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1075                                         /*  Check word enable condition in the section */
1076                                         if (!(wden & (0x01<<i))) {
1077                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1078                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1079                                                 efuseTbl[addr] = efuseData;
1080
1081                                                 efuse_OneByteRead(padapter, eFuse_Addr++, &efuseData, bPseudoTest);
1082                                                 DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, eFuse_Addr-1, efuseData);
1083                                                 efuseTbl[addr+1] = efuseData;
1084                                         }
1085                                         addr += 2;
1086                                 }
1087                         } else {
1088                                 DBG_8192C("%s: offset(%d) is illegal!!\n", __func__, offset);
1089                                 eFuse_Addr += Efuse_CalculateWordCnts(wden)*2;
1090                         }
1091                 }
1092
1093                 if ((eFuse_Addr-1) < total) {
1094                         DBG_8192C("%s: bank(%d) data end at %#x\n", __func__, bank, eFuse_Addr-1);
1095                         break;
1096                 }
1097         }
1098
1099         /*  switch bank back to bank 0 for later BT and wifi use. */
1100         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1101
1102         /*  Copy from Efuse map to output pointer memory!!! */
1103         for (i = 0; i < _size_byte; i++)
1104                 pbuf[i] = efuseTbl[_offset+i];
1105
1106         /*  */
1107         /*  Calculate Efuse utilization. */
1108         /*  */
1109         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &total, bPseudoTest);
1110         used = (EFUSE_BT_REAL_BANK_CONTENT_LEN*(bank-1)) + eFuse_Addr - 1;
1111         DBG_8192C("%s: bank(%d) data end at %#x , used =%d\n", __func__, bank, eFuse_Addr-1, used);
1112         efuse_usage = (u8)((used*100)/total);
1113         if (bPseudoTest) {
1114 #ifdef HAL_EFUSE_MEMORY
1115                 pEfuseHal->fakeBTEfuseUsedBytes = used;
1116 #else
1117                 fakeBTEfuseUsedBytes = used;
1118 #endif
1119         } else {
1120                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&used);
1121                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BT_USAGE, (u8 *)&efuse_usage);
1122         }
1123
1124 exit:
1125         kfree(efuseTbl);
1126 }
1127
1128 static void Hal_ReadEFuse(
1129         struct adapter *padapter,
1130         u8 efuseType,
1131         u16 _offset,
1132         u16 _size_byte,
1133         u8 *pbuf,
1134         bool bPseudoTest
1135 )
1136 {
1137         if (efuseType == EFUSE_WIFI)
1138                 hal_ReadEFuse_WiFi(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1139         else
1140                 hal_ReadEFuse_BT(padapter, _offset, _size_byte, pbuf, bPseudoTest);
1141 }
1142
1143 static u16 hal_EfuseGetCurrentSize_WiFi(
1144         struct adapter *padapter, bool bPseudoTest
1145 )
1146 {
1147 #ifdef HAL_EFUSE_MEMORY
1148         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1149         PEFUSE_HAL              pEfuseHal = &pHalData->EfuseHal;
1150 #endif
1151         u16 efuse_addr = 0;
1152         u16 start_addr = 0; /*  for debug */
1153         u8 hoffset = 0, hworden = 0;
1154         u8 efuse_data, word_cnts = 0;
1155         u32 count = 0; /*  for debug */
1156
1157
1158         if (bPseudoTest) {
1159 #ifdef HAL_EFUSE_MEMORY
1160                 efuse_addr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1161 #else
1162                 efuse_addr = (u16)fakeEfuseUsedBytes;
1163 #endif
1164         } else
1165                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1166
1167         start_addr = efuse_addr;
1168         DBG_8192C("%s: start_efuse_addr = 0x%X\n", __func__, efuse_addr);
1169
1170         /*  switch bank back to bank 0 for later BT and wifi use. */
1171         hal_EfuseSwitchToBank(padapter, 0, bPseudoTest);
1172
1173         count = 0;
1174         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1175                 if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1176                         DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1177                         goto error;
1178                 }
1179
1180                 if (efuse_data == 0xFF)
1181                         break;
1182
1183                 if ((start_addr != 0) && (efuse_addr == start_addr)) {
1184                         count++;
1185                         DBG_8192C(FUNC_ADPT_FMT ": [WARNING] efuse raw 0x%X = 0x%02X not 0xFF!!(%d times)\n",
1186                                 FUNC_ADPT_ARG(padapter), efuse_addr, efuse_data, count);
1187
1188                         efuse_data = 0xFF;
1189                         if (count < 4) {
1190                                 /*  try again! */
1191
1192                                 if (count > 2) {
1193                                         /*  try again form address 0 */
1194                                         efuse_addr = 0;
1195                                         start_addr = 0;
1196                                 }
1197
1198                                 continue;
1199                         }
1200
1201                         goto error;
1202                 }
1203
1204                 if (EXT_HEADER(efuse_data)) {
1205                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1206                         efuse_addr++;
1207                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1208                         if (ALL_WORDS_DISABLED(efuse_data))
1209                                 continue;
1210
1211                         hoffset |= ((efuse_data & 0xF0) >> 1);
1212                         hworden = efuse_data & 0x0F;
1213                 } else {
1214                         hoffset = (efuse_data>>4) & 0x0F;
1215                         hworden = efuse_data & 0x0F;
1216                 }
1217
1218                 word_cnts = Efuse_CalculateWordCnts(hworden);
1219                 efuse_addr += (word_cnts*2)+1;
1220         }
1221
1222         if (bPseudoTest) {
1223 #ifdef HAL_EFUSE_MEMORY
1224                 pEfuseHal->fakeEfuseUsedBytes = efuse_addr;
1225 #else
1226                 fakeEfuseUsedBytes = efuse_addr;
1227 #endif
1228         } else
1229                 rtw_hal_set_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&efuse_addr);
1230
1231         goto exit;
1232
1233 error:
1234         /*  report max size to prevent wirte efuse */
1235         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_addr, bPseudoTest);
1236
1237 exit:
1238         DBG_8192C("%s: CurrentSize =%d\n", __func__, efuse_addr);
1239
1240         return efuse_addr;
1241 }
1242
1243 static u16 hal_EfuseGetCurrentSize_BT(struct adapter *padapter, u8 bPseudoTest)
1244 {
1245 #ifdef HAL_EFUSE_MEMORY
1246         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1247         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1248 #endif
1249         u16 btusedbytes;
1250         u16 efuse_addr;
1251         u8 bank, startBank;
1252         u8 hoffset = 0, hworden = 0;
1253         u8 efuse_data, word_cnts = 0;
1254         u16 retU2 = 0;
1255
1256         if (bPseudoTest) {
1257 #ifdef HAL_EFUSE_MEMORY
1258                 btusedbytes = pEfuseHal->fakeBTEfuseUsedBytes;
1259 #else
1260                 btusedbytes = fakeBTEfuseUsedBytes;
1261 #endif
1262         } else
1263                 rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&btusedbytes);
1264
1265         efuse_addr = (u16)((btusedbytes%EFUSE_BT_REAL_BANK_CONTENT_LEN));
1266         startBank = (u8)(1+(btusedbytes/EFUSE_BT_REAL_BANK_CONTENT_LEN));
1267
1268         DBG_8192C("%s: start from bank =%d addr = 0x%X\n", __func__, startBank, efuse_addr);
1269
1270         EFUSE_GetEfuseDefinition(padapter, EFUSE_BT, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &retU2, bPseudoTest);
1271
1272         for (bank = startBank; bank < 3; bank++) {
1273                 if (hal_EfuseSwitchToBank(padapter, bank, bPseudoTest) == false) {
1274                         DBG_8192C(KERN_ERR "%s: switch bank(%d) Fail!!\n", __func__, bank);
1275                         /* bank = EFUSE_MAX_BANK; */
1276                         break;
1277                 }
1278
1279                 /*  only when bank is switched we have to reset the efuse_addr. */
1280                 if (bank != startBank)
1281                         efuse_addr = 0;
1282 #if 1
1283
1284                 while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1285                         if (efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) == false) {
1286                                 DBG_8192C(KERN_ERR "%s: efuse_OneByteRead Fail! addr = 0x%X !!\n", __func__, efuse_addr);
1287                                 /* bank = EFUSE_MAX_BANK; */
1288                                 break;
1289                         }
1290                         DBG_8192C("%s: efuse_OneByteRead ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1291
1292                         if (efuse_data == 0xFF)
1293                                 break;
1294
1295                         if (EXT_HEADER(efuse_data)) {
1296                                 hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1297                                 efuse_addr++;
1298                                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1299                                 DBG_8192C("%s: efuse_OneByteRead EXT_HEADER ! addr = 0x%X !efuse_data = 0x%X! bank =%d\n", __func__, efuse_addr, efuse_data, bank);
1300
1301                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1302                                         efuse_addr++;
1303                                         continue;
1304                                 }
1305
1306 /*                              hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1); */
1307                                 hoffset |= ((efuse_data & 0xF0) >> 1);
1308                                 hworden = efuse_data & 0x0F;
1309                         } else {
1310                                 hoffset = (efuse_data>>4) & 0x0F;
1311                                 hworden =  efuse_data & 0x0F;
1312                         }
1313
1314                         DBG_8192C(FUNC_ADPT_FMT": Offset =%d Worden =%#X\n",
1315                                 FUNC_ADPT_ARG(padapter), hoffset, hworden);
1316
1317                         word_cnts = Efuse_CalculateWordCnts(hworden);
1318                         /* read next header */
1319                         efuse_addr += (word_cnts*2)+1;
1320                 }
1321 #else
1322         while (
1323                 bContinual &&
1324                 efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest) &&
1325                 AVAILABLE_EFUSE_ADDR(efuse_addr)
1326         ) {
1327                         if (efuse_data != 0xFF) {
1328                                 if ((efuse_data&0x1F) == 0x0F) { /* extended header */
1329                                         hoffset = efuse_data;
1330                                         efuse_addr++;
1331                                         efuse_OneByteRead(padapter, efuse_addr, &efuse_data, bPseudoTest);
1332                                         if ((efuse_data & 0x0F) == 0x0F) {
1333                                                 efuse_addr++;
1334                                                 continue;
1335                                         } else {
1336                                                 hoffset = ((hoffset & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1337                                                 hworden = efuse_data & 0x0F;
1338                                         }
1339                                 } else {
1340                                         hoffset = (efuse_data>>4) & 0x0F;
1341                                         hworden =  efuse_data & 0x0F;
1342                                 }
1343                                 word_cnts = Efuse_CalculateWordCnts(hworden);
1344                                 /* read next header */
1345                                 efuse_addr = efuse_addr + (word_cnts*2)+1;
1346                         } else
1347                                 bContinual = false;
1348                 }
1349 #endif
1350
1351
1352                 /*  Check if we need to check next bank efuse */
1353                 if (efuse_addr < retU2)
1354                         break; /*  don't need to check next bank. */
1355         }
1356
1357         retU2 = ((bank-1)*EFUSE_BT_REAL_BANK_CONTENT_LEN)+efuse_addr;
1358         if (bPseudoTest) {
1359                 pEfuseHal->fakeBTEfuseUsedBytes = retU2;
1360                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->fakeBTEfuseUsedBytes)); */
1361         } else {
1362                 pEfuseHal->BTEfuseUsedBytes = retU2;
1363                 /* RT_DISP(FEEPROM, EFUSE_PG, ("Hal_EfuseGetCurrentSize_BT92C(), already use %u bytes\n", pEfuseHal->BTEfuseUsedBytes)); */
1364         }
1365
1366         DBG_8192C("%s: CurrentSize =%d\n", __func__, retU2);
1367         return retU2;
1368 }
1369
1370 static u16 Hal_EfuseGetCurrentSize(
1371         struct adapter *padapter, u8 efuseType, bool bPseudoTest
1372 )
1373 {
1374         u16 ret = 0;
1375
1376         if (efuseType == EFUSE_WIFI)
1377                 ret = hal_EfuseGetCurrentSize_WiFi(padapter, bPseudoTest);
1378         else
1379                 ret = hal_EfuseGetCurrentSize_BT(padapter, bPseudoTest);
1380
1381         return ret;
1382 }
1383
1384 static u8 Hal_EfuseWordEnableDataWrite(
1385         struct adapter *padapter,
1386         u16 efuse_addr,
1387         u8 word_en,
1388         u8 *data,
1389         bool bPseudoTest
1390 )
1391 {
1392         u16 tmpaddr = 0;
1393         u16 start_addr = efuse_addr;
1394         u8 badworden = 0x0F;
1395         u8 tmpdata[PGPKT_DATA_SIZE];
1396
1397
1398 /*      DBG_8192C("%s: efuse_addr =%#x word_en =%#x\n", __func__, efuse_addr, word_en); */
1399         memset(tmpdata, 0xFF, PGPKT_DATA_SIZE);
1400
1401         if (!(word_en & BIT(0))) {
1402                 tmpaddr = start_addr;
1403                 efuse_OneByteWrite(padapter, start_addr++, data[0], bPseudoTest);
1404                 efuse_OneByteWrite(padapter, start_addr++, data[1], bPseudoTest);
1405
1406                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[0], bPseudoTest);
1407                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[1], bPseudoTest);
1408                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1])) {
1409                         badworden &= (~BIT(0));
1410                 }
1411         }
1412         if (!(word_en & BIT(1))) {
1413                 tmpaddr = start_addr;
1414                 efuse_OneByteWrite(padapter, start_addr++, data[2], bPseudoTest);
1415                 efuse_OneByteWrite(padapter, start_addr++, data[3], bPseudoTest);
1416
1417                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[2], bPseudoTest);
1418                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[3], bPseudoTest);
1419                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3])) {
1420                         badworden &= (~BIT(1));
1421                 }
1422         }
1423
1424         if (!(word_en & BIT(2))) {
1425                 tmpaddr = start_addr;
1426                 efuse_OneByteWrite(padapter, start_addr++, data[4], bPseudoTest);
1427                 efuse_OneByteWrite(padapter, start_addr++, data[5], bPseudoTest);
1428
1429                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[4], bPseudoTest);
1430                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[5], bPseudoTest);
1431                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5])) {
1432                         badworden &= (~BIT(2));
1433                 }
1434         }
1435
1436         if (!(word_en & BIT(3))) {
1437                 tmpaddr = start_addr;
1438                 efuse_OneByteWrite(padapter, start_addr++, data[6], bPseudoTest);
1439                 efuse_OneByteWrite(padapter, start_addr++, data[7], bPseudoTest);
1440
1441                 efuse_OneByteRead(padapter, tmpaddr, &tmpdata[6], bPseudoTest);
1442                 efuse_OneByteRead(padapter, tmpaddr+1, &tmpdata[7], bPseudoTest);
1443                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7])) {
1444                         badworden &= (~BIT(3));
1445                 }
1446         }
1447
1448         return badworden;
1449 }
1450
1451 static s32 Hal_EfusePgPacketRead(
1452         struct adapter *padapter,
1453         u8 offset,
1454         u8 *data,
1455         bool bPseudoTest
1456 )
1457 {
1458         u8 efuse_data, word_cnts = 0;
1459         u16 efuse_addr = 0;
1460         u8 hoffset = 0, hworden = 0;
1461         u8 i;
1462         u8 max_section = 0;
1463         s32     ret;
1464
1465
1466         if (data == NULL)
1467                 return false;
1468
1469         EFUSE_GetEfuseDefinition(padapter, EFUSE_WIFI, TYPE_EFUSE_MAX_SECTION, &max_section, bPseudoTest);
1470         if (offset > max_section) {
1471                 DBG_8192C("%s: Packet offset(%d) is illegal(>%d)!\n", __func__, offset, max_section);
1472                 return false;
1473         }
1474
1475         memset(data, 0xFF, PGPKT_DATA_SIZE);
1476         ret = true;
1477
1478         /*  */
1479         /*  <Roger_TODO> Efuse has been pre-programmed dummy 5Bytes at the end of Efuse by CP. */
1480         /*  Skip dummy parts to prevent unexpected data read from Efuse. */
1481         /*  By pass right now. 2009.02.19. */
1482         /*  */
1483         while (AVAILABLE_EFUSE_ADDR(efuse_addr)) {
1484                 if (efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest) == false) {
1485                         ret = false;
1486                         break;
1487                 }
1488
1489                 if (efuse_data == 0xFF)
1490                         break;
1491
1492                 if (EXT_HEADER(efuse_data)) {
1493                         hoffset = GET_HDR_OFFSET_2_0(efuse_data);
1494                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1495                         if (ALL_WORDS_DISABLED(efuse_data)) {
1496                                 DBG_8192C("%s: Error!! All words disabled!\n", __func__);
1497                                 continue;
1498                         }
1499
1500                         hoffset |= ((efuse_data & 0xF0) >> 1);
1501                         hworden = efuse_data & 0x0F;
1502                 } else {
1503                         hoffset = (efuse_data>>4) & 0x0F;
1504                         hworden =  efuse_data & 0x0F;
1505                 }
1506
1507                 if (hoffset == offset) {
1508                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
1509                                 /*  Check word enable condition in the section */
1510                                 if (!(hworden & (0x01<<i))) {
1511                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1512 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1513                                         data[i*2] = efuse_data;
1514
1515                                         efuse_OneByteRead(padapter, efuse_addr++, &efuse_data, bPseudoTest);
1516 /*                                      DBG_8192C("%s: efuse[%#X]= 0x%02X\n", __func__, efuse_addr+tmpidx, efuse_data); */
1517                                         data[(i*2)+1] = efuse_data;
1518                                 }
1519                         }
1520                 } else {
1521                         word_cnts = Efuse_CalculateWordCnts(hworden);
1522                         efuse_addr += word_cnts*2;
1523                 }
1524         }
1525
1526         return ret;
1527 }
1528
1529 static u8 hal_EfusePgCheckAvailableAddr(
1530         struct adapter *padapter, u8 efuseType, u8 bPseudoTest
1531 )
1532 {
1533         u16 max_available = 0;
1534         u16 current_size;
1535
1536
1537         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &max_available, bPseudoTest);
1538 /*      DBG_8192C("%s: max_available =%d\n", __func__, max_available); */
1539
1540         current_size = Efuse_GetCurrentSize(padapter, efuseType, bPseudoTest);
1541         if (current_size >= max_available) {
1542                 DBG_8192C("%s: Error!! current_size(%d)>max_available(%d)\n", __func__, current_size, max_available);
1543                 return false;
1544         }
1545         return true;
1546 }
1547
1548 static void hal_EfuseConstructPGPkt(
1549         u8 offset,
1550         u8 word_en,
1551         u8 *pData,
1552         PPGPKT_STRUCT pTargetPkt
1553 )
1554 {
1555         memset(pTargetPkt->data, 0xFF, PGPKT_DATA_SIZE);
1556         pTargetPkt->offset = offset;
1557         pTargetPkt->word_en = word_en;
1558         efuse_WordEnableDataRead(word_en, pData, pTargetPkt->data);
1559         pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1560 }
1561
1562 static u8 hal_EfusePartialWriteCheck(
1563         struct adapter *padapter,
1564         u8 efuseType,
1565         u16 *pAddr,
1566         PPGPKT_STRUCT pTargetPkt,
1567         u8 bPseudoTest
1568 )
1569 {
1570         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1571         PEFUSE_HAL pEfuseHal = &pHalData->EfuseHal;
1572         u8 bRet = false;
1573         u16 startAddr = 0, efuse_max_available_len = 0, efuse_max = 0;
1574         u8 efuse_data = 0;
1575
1576         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_TOTAL, &efuse_max_available_len, bPseudoTest);
1577         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_EFUSE_CONTENT_LEN_BANK, &efuse_max, bPseudoTest);
1578
1579         if (efuseType == EFUSE_WIFI) {
1580                 if (bPseudoTest) {
1581 #ifdef HAL_EFUSE_MEMORY
1582                         startAddr = (u16)pEfuseHal->fakeEfuseUsedBytes;
1583 #else
1584                         startAddr = (u16)fakeEfuseUsedBytes;
1585 #endif
1586                 } else
1587                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BYTES, (u8 *)&startAddr);
1588         } else {
1589                 if (bPseudoTest) {
1590 #ifdef HAL_EFUSE_MEMORY
1591                         startAddr = (u16)pEfuseHal->fakeBTEfuseUsedBytes;
1592 #else
1593                         startAddr = (u16)fakeBTEfuseUsedBytes;
1594 #endif
1595                 } else
1596                         rtw_hal_get_hwreg(padapter, HW_VAR_EFUSE_BT_BYTES, (u8 *)&startAddr);
1597         }
1598         startAddr %= efuse_max;
1599         DBG_8192C("%s: startAddr =%#X\n", __func__, startAddr);
1600
1601         while (1) {
1602                 if (startAddr >= efuse_max_available_len) {
1603                         bRet = false;
1604                         DBG_8192C("%s: startAddr(%d) >= efuse_max_available_len(%d)\n", __func__, startAddr, efuse_max_available_len);
1605                         break;
1606                 }
1607
1608                 if (efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest) && (efuse_data != 0xFF)) {
1609 #if 1
1610                         bRet = false;
1611                         DBG_8192C("%s: Something Wrong! last bytes(%#X = 0x%02X) is not 0xFF\n",
1612                                 __func__, startAddr, efuse_data);
1613                         break;
1614 #else
1615                         if (EXT_HEADER(efuse_data)) {
1616                                 cur_header = efuse_data;
1617                                 startAddr++;
1618                                 efuse_OneByteRead(padapter, startAddr, &efuse_data, bPseudoTest);
1619                                 if (ALL_WORDS_DISABLED(efuse_data)) {
1620                                         DBG_8192C("%s: Error condition, all words disabled!", __func__);
1621                                         bRet = false;
1622                                         break;
1623                                 } else {
1624                                         curPkt.offset = ((cur_header & 0xE0) >> 5) | ((efuse_data & 0xF0) >> 1);
1625                                         curPkt.word_en = efuse_data & 0x0F;
1626                                 }
1627                         } else {
1628                                 cur_header  =  efuse_data;
1629                                 curPkt.offset = (cur_header>>4) & 0x0F;
1630                                 curPkt.word_en = cur_header & 0x0F;
1631                         }
1632
1633                         curPkt.word_cnts = Efuse_CalculateWordCnts(curPkt.word_en);
1634                         /*  if same header is found but no data followed */
1635                         /*  write some part of data followed by the header. */
1636                         if (
1637                                 (curPkt.offset == pTargetPkt->offset) &&
1638                                 (hal_EfuseCheckIfDatafollowed(padapter, curPkt.word_cnts, startAddr+1, bPseudoTest) == false) &&
1639                                 wordEnMatched(pTargetPkt, &curPkt, &matched_wden) == true
1640                         ) {
1641                                 DBG_8192C("%s: Need to partial write data by the previous wrote header\n", __func__);
1642                                 /*  Here to write partial data */
1643                                 badworden = Efuse_WordEnableDataWrite(padapter, startAddr+1, matched_wden, pTargetPkt->data, bPseudoTest);
1644                                 if (badworden != 0x0F) {
1645                                         u32 PgWriteSuccess = 0;
1646                                         /*  if write fail on some words, write these bad words again */
1647                                         if (efuseType == EFUSE_WIFI)
1648                                                 PgWriteSuccess = Efuse_PgPacketWrite(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1649                                         else
1650                                                 PgWriteSuccess = Efuse_PgPacketWrite_BT(padapter, pTargetPkt->offset, badworden, pTargetPkt->data, bPseudoTest);
1651
1652                                         if (!PgWriteSuccess) {
1653                                                 bRet = false;   /*  write fail, return */
1654                                                 break;
1655                                         }
1656                                 }
1657                                 /*  partial write ok, update the target packet for later use */
1658                                 for (i = 0; i < 4; i++) {
1659                                         if ((matched_wden & (0x1<<i)) == 0) { /*  this word has been written */
1660                                                 pTargetPkt->word_en |= (0x1<<i);        /*  disable the word */
1661                                         }
1662                                 }
1663                                 pTargetPkt->word_cnts = Efuse_CalculateWordCnts(pTargetPkt->word_en);
1664                         }
1665                         /*  read from next header */
1666                         startAddr = startAddr + (curPkt.word_cnts*2) + 1;
1667 #endif
1668                 } else {
1669                         /*  not used header, 0xff */
1670                         *pAddr = startAddr;
1671 /*                      DBG_8192C("%s: Started from unused header offset =%d\n", __func__, startAddr)); */
1672                         bRet = true;
1673                         break;
1674                 }
1675         }
1676
1677         return bRet;
1678 }
1679
1680 static u8 hal_EfusePgPacketWrite1ByteHeader(
1681         struct adapter *padapter,
1682         u8 efuseType,
1683         u16 *pAddr,
1684         PPGPKT_STRUCT pTargetPkt,
1685         u8 bPseudoTest
1686 )
1687 {
1688         u8 pg_header = 0, tmp_header = 0;
1689         u16 efuse_addr = *pAddr;
1690         u8 repeatcnt = 0;
1691
1692
1693 /*      DBG_8192C("%s\n", __func__); */
1694         pg_header = ((pTargetPkt->offset << 4) & 0xf0) | pTargetPkt->word_en;
1695
1696         do {
1697                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1698                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1699                 if (tmp_header != 0xFF)
1700                         break;
1701                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1702                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1703                         return false;
1704                 }
1705         } while (1);
1706
1707         if (tmp_header != pg_header) {
1708                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1709                 return false;
1710         }
1711
1712         *pAddr = efuse_addr;
1713
1714         return true;
1715 }
1716
1717 static u8 hal_EfusePgPacketWrite2ByteHeader(
1718         struct adapter *padapter,
1719         u8 efuseType,
1720         u16 *pAddr,
1721         PPGPKT_STRUCT pTargetPkt,
1722         u8 bPseudoTest
1723 )
1724 {
1725         u16 efuse_addr, efuse_max_available_len = 0;
1726         u8 pg_header = 0, tmp_header = 0;
1727         u8 repeatcnt = 0;
1728
1729
1730 /*      DBG_8192C("%s\n", __func__); */
1731         EFUSE_GetEfuseDefinition(padapter, efuseType, TYPE_AVAILABLE_EFUSE_BYTES_BANK, &efuse_max_available_len, bPseudoTest);
1732
1733         efuse_addr = *pAddr;
1734         if (efuse_addr >= efuse_max_available_len) {
1735                 DBG_8192C("%s: addr(%d) over available (%d)!!\n", __func__,
1736                           efuse_addr, efuse_max_available_len);
1737                 return false;
1738         }
1739
1740         pg_header = ((pTargetPkt->offset & 0x07) << 5) | 0x0F;
1741 /*      DBG_8192C("%s: pg_header = 0x%x\n", __func__, pg_header); */
1742
1743         do {
1744                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1745                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1746                 if (tmp_header != 0xFF)
1747                         break;
1748                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1749                         DBG_8192C("%s: Repeat over limit for pg_header!!\n", __func__);
1750                         return false;
1751                 }
1752         } while (1);
1753
1754         if (tmp_header != pg_header) {
1755                 DBG_8192C(KERN_ERR "%s: PG Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1756                 return false;
1757         }
1758
1759         /*  to write ext_header */
1760         efuse_addr++;
1761         pg_header = ((pTargetPkt->offset & 0x78) << 1) | pTargetPkt->word_en;
1762
1763         do {
1764                 efuse_OneByteWrite(padapter, efuse_addr, pg_header, bPseudoTest);
1765                 efuse_OneByteRead(padapter, efuse_addr, &tmp_header, bPseudoTest);
1766                 if (tmp_header != 0xFF)
1767                         break;
1768                 if (repeatcnt++ > EFUSE_REPEAT_THRESHOLD_) {
1769                         DBG_8192C("%s: Repeat over limit for ext_header!!\n", __func__);
1770                         return false;
1771                 }
1772         } while (1);
1773
1774         if (tmp_header != pg_header) { /* offset PG fail */
1775                 DBG_8192C(KERN_ERR "%s: PG EXT Header Fail!!(pg = 0x%02X read = 0x%02X)\n", __func__, pg_header, tmp_header);
1776                 return false;
1777         }
1778
1779         *pAddr = efuse_addr;
1780
1781         return true;
1782 }
1783
1784 static u8 hal_EfusePgPacketWriteHeader(
1785         struct adapter *padapter,
1786         u8 efuseType,
1787         u16 *pAddr,
1788         PPGPKT_STRUCT pTargetPkt,
1789         u8 bPseudoTest
1790 )
1791 {
1792         u8 bRet = false;
1793
1794         if (pTargetPkt->offset >= EFUSE_MAX_SECTION_BASE)
1795                 bRet = hal_EfusePgPacketWrite2ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1796         else
1797                 bRet = hal_EfusePgPacketWrite1ByteHeader(padapter, efuseType, pAddr, pTargetPkt, bPseudoTest);
1798
1799         return bRet;
1800 }
1801
1802 static u8 hal_EfusePgPacketWriteData(
1803         struct adapter *padapter,
1804         u8 efuseType,
1805         u16 *pAddr,
1806         PPGPKT_STRUCT pTargetPkt,
1807         u8 bPseudoTest
1808 )
1809 {
1810         u16 efuse_addr;
1811         u8 badworden;
1812
1813
1814         efuse_addr = *pAddr;
1815         badworden = Efuse_WordEnableDataWrite(padapter, efuse_addr+1, pTargetPkt->word_en, pTargetPkt->data, bPseudoTest);
1816         if (badworden != 0x0F) {
1817                 DBG_8192C("%s: Fail!!\n", __func__);
1818                 return false;
1819         }
1820
1821 /*      DBG_8192C("%s: ok\n", __func__); */
1822         return true;
1823 }
1824
1825 static s32 Hal_EfusePgPacketWrite(
1826         struct adapter *padapter,
1827         u8 offset,
1828         u8 word_en,
1829         u8 *pData,
1830         bool bPseudoTest
1831 )
1832 {
1833         PGPKT_STRUCT targetPkt;
1834         u16 startAddr = 0;
1835         u8 efuseType = EFUSE_WIFI;
1836
1837         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1838                 return false;
1839
1840         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1841
1842         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1843                 return false;
1844
1845         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1846                 return false;
1847
1848         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1849                 return false;
1850
1851         return true;
1852 }
1853
1854 static bool Hal_EfusePgPacketWrite_BT(
1855         struct adapter *padapter,
1856         u8 offset,
1857         u8 word_en,
1858         u8 *pData,
1859         bool bPseudoTest
1860 )
1861 {
1862         PGPKT_STRUCT targetPkt;
1863         u16 startAddr = 0;
1864         u8 efuseType = EFUSE_BT;
1865
1866         if (!hal_EfusePgCheckAvailableAddr(padapter, efuseType, bPseudoTest))
1867                 return false;
1868
1869         hal_EfuseConstructPGPkt(offset, word_en, pData, &targetPkt);
1870
1871         if (!hal_EfusePartialWriteCheck(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1872                 return false;
1873
1874         if (!hal_EfusePgPacketWriteHeader(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1875                 return false;
1876
1877         if (!hal_EfusePgPacketWriteData(padapter, efuseType, &startAddr, &targetPkt, bPseudoTest))
1878                 return false;
1879
1880         return true;
1881 }
1882
1883 static HAL_VERSION ReadChipVersion8723B(struct adapter *padapter)
1884 {
1885         u32 value32;
1886         HAL_VERSION ChipVersion;
1887         struct hal_com_data *pHalData;
1888
1889 /* YJ, TODO, move read chip type here */
1890         pHalData = GET_HAL_DATA(padapter);
1891
1892         value32 = rtw_read32(padapter, REG_SYS_CFG);
1893         ChipVersion.ICType = CHIP_8723B;
1894         ChipVersion.ChipType = ((value32 & RTL_ID) ? TEST_CHIP : NORMAL_CHIP);
1895         ChipVersion.RFType = RF_TYPE_1T1R;
1896         ChipVersion.VendorType = ((value32 & VENDOR_ID) ? CHIP_VENDOR_UMC : CHIP_VENDOR_TSMC);
1897         ChipVersion.CUTVersion = (value32 & CHIP_VER_RTL_MASK)>>CHIP_VER_RTL_SHIFT; /*  IC version (CUT) */
1898
1899         /*  For regulator mode. by tynli. 2011.01.14 */
1900         pHalData->RegulatorMode = ((value32 & SPS_SEL) ? RT_LDO_REGULATOR : RT_SWITCHING_REGULATOR);
1901
1902         value32 = rtw_read32(padapter, REG_GPIO_OUTSTS);
1903         ChipVersion.ROMVer = ((value32 & RF_RL_ID) >> 20);      /*  ROM code version. */
1904
1905         /*  For multi-function consideration. Added by Roger, 2010.10.06. */
1906         pHalData->MultiFunc = RT_MULTI_FUNC_NONE;
1907         value32 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
1908         pHalData->MultiFunc |= ((value32 & WL_FUNC_EN) ? RT_MULTI_FUNC_WIFI : 0);
1909         pHalData->MultiFunc |= ((value32 & BT_FUNC_EN) ? RT_MULTI_FUNC_BT : 0);
1910         pHalData->MultiFunc |= ((value32 & GPS_FUNC_EN) ? RT_MULTI_FUNC_GPS : 0);
1911         pHalData->PolarityCtl = ((value32 & WL_HWPDN_SL) ? RT_POLARITY_HIGH_ACT : RT_POLARITY_LOW_ACT);
1912 #if 1
1913         dump_chip_info(ChipVersion);
1914 #endif
1915         pHalData->VersionID = ChipVersion;
1916         if (IS_1T2R(ChipVersion))
1917                 pHalData->rf_type = RF_1T2R;
1918         else if (IS_2T2R(ChipVersion))
1919                 pHalData->rf_type = RF_2T2R;
1920         else
1921                 pHalData->rf_type = RF_1T1R;
1922
1923         MSG_8192C("RF_Type is %x!!\n", pHalData->rf_type);
1924
1925         return ChipVersion;
1926 }
1927
1928 static void rtl8723b_read_chip_version(struct adapter *padapter)
1929 {
1930         ReadChipVersion8723B(padapter);
1931 }
1932
1933 void rtl8723b_InitBeaconParameters(struct adapter *padapter)
1934 {
1935         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1936         u16 val16;
1937         u8 val8;
1938
1939
1940         val8 = DIS_TSF_UDT;
1941         val16 = val8 | (val8 << 8); /*  port0 and port1 */
1942
1943         /*  Enable prot0 beacon function for PSTDMA */
1944         val16 |= EN_BCN_FUNCTION;
1945
1946         rtw_write16(padapter, REG_BCN_CTRL, val16);
1947
1948         /*  TODO: Remove these magic number */
1949         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0x6404);/*  ms */
1950         /*  Firmware will control REG_DRVERLYINT when power saving is enable, */
1951         /*  so don't set this register on STA mode. */
1952         if (check_fwstate(&padapter->mlmepriv, WIFI_STATION_STATE) == false)
1953                 rtw_write8(padapter, REG_DRVERLYINT, DRIVER_EARLY_INT_TIME_8723B); /*  5ms */
1954         rtw_write8(padapter, REG_BCNDMATIM, BCN_DMA_ATIME_INT_TIME_8723B); /*  2ms */
1955
1956         /*  Suggested by designer timchen. Change beacon AIFS to the largest number */
1957         /*  beacause test chip does not contension before sending beacon. by tynli. 2009.11.03 */
1958         rtw_write16(padapter, REG_BCNTCFG, 0x660F);
1959
1960         pHalData->RegBcnCtrlVal = rtw_read8(padapter, REG_BCN_CTRL);
1961         pHalData->RegTxPause = rtw_read8(padapter, REG_TXPAUSE);
1962         pHalData->RegFwHwTxQCtrl = rtw_read8(padapter, REG_FWHW_TXQ_CTRL+2);
1963         pHalData->RegReg542 = rtw_read8(padapter, REG_TBTT_PROHIBIT+2);
1964         pHalData->RegCR_1 = rtw_read8(padapter, REG_CR+1);
1965 }
1966
1967 void _InitBurstPktLen_8723BS(struct adapter *Adapter)
1968 {
1969         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
1970
1971         rtw_write8(Adapter, 0x4c7, rtw_read8(Adapter, 0x4c7)|BIT(7)); /* enable single pkt ampdu */
1972         rtw_write8(Adapter, REG_RX_PKT_LIMIT_8723B, 0x18);              /* for VHT packet length 11K */
1973         rtw_write8(Adapter, REG_MAX_AGGR_NUM_8723B, 0x1F);
1974         rtw_write8(Adapter, REG_PIFS_8723B, 0x00);
1975         rtw_write8(Adapter, REG_FWHW_TXQ_CTRL_8723B, rtw_read8(Adapter, REG_FWHW_TXQ_CTRL)&(~BIT(7)));
1976         if (pHalData->AMPDUBurstMode)
1977                 rtw_write8(Adapter, REG_AMPDU_BURST_MODE_8723B,  0x5F);
1978         rtw_write8(Adapter, REG_AMPDU_MAX_TIME_8723B, 0x70);
1979
1980         /*  ARFB table 9 for 11ac 5G 2SS */
1981         rtw_write32(Adapter, REG_ARFR0_8723B, 0x00000010);
1982         if (IS_NORMAL_CHIP(pHalData->VersionID))
1983                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0xfffff000);
1984         else
1985                 rtw_write32(Adapter, REG_ARFR0_8723B+4, 0x3e0ff000);
1986
1987         /*  ARFB table 10 for 11ac 5G 1SS */
1988         rtw_write32(Adapter, REG_ARFR1_8723B, 0x00000010);
1989         rtw_write32(Adapter, REG_ARFR1_8723B+4, 0x003ff000);
1990 }
1991
1992 static void ResumeTxBeacon(struct adapter *padapter)
1993 {
1994         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
1995
1996
1997         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
1998         /*  which should be read from register to a global variable. */
1999
2000         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+ResumeTxBeacon\n"));
2001
2002         pHalData->RegFwHwTxQCtrl |= BIT(6);
2003         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2004         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0xff);
2005         pHalData->RegReg542 |= BIT(0);
2006         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2007 }
2008
2009 static void StopTxBeacon(struct adapter *padapter)
2010 {
2011         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2012
2013
2014         /*  2010.03.01. Marked by tynli. No need to call workitem beacause we record the value */
2015         /*  which should be read from register to a global variable. */
2016
2017         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("+StopTxBeacon\n"));
2018
2019         pHalData->RegFwHwTxQCtrl &= ~BIT(6);
2020         rtw_write8(padapter, REG_FWHW_TXQ_CTRL+2, pHalData->RegFwHwTxQCtrl);
2021         rtw_write8(padapter, REG_TBTT_PROHIBIT+1, 0x64);
2022         pHalData->RegReg542 &= ~BIT(0);
2023         rtw_write8(padapter, REG_TBTT_PROHIBIT+2, pHalData->RegReg542);
2024
2025         CheckFwRsvdPageContent(padapter);  /*  2010.06.23. Added by tynli. */
2026 }
2027
2028 static void _BeaconFunctionEnable(struct adapter *padapter, u8 Enable, u8 Linked)
2029 {
2030         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT | EN_BCN_FUNCTION | DIS_BCNQ_SUB);
2031         rtw_write8(padapter, REG_RD_CTRL+1, 0x6F);
2032 }
2033
2034 static void rtl8723b_SetBeaconRelatedRegisters(struct adapter *padapter)
2035 {
2036         u8 val8;
2037         u32 value32;
2038         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2039         struct mlme_ext_info *pmlmeinfo = &pmlmeext->mlmext_info;
2040         u32 bcn_ctrl_reg;
2041
2042         /* reset TSF, enable update TSF, correcting TSF On Beacon */
2043
2044         /* REG_BCN_INTERVAL */
2045         /* REG_BCNDMATIM */
2046         /* REG_ATIMWND */
2047         /* REG_TBTT_PROHIBIT */
2048         /* REG_DRVERLYINT */
2049         /* REG_BCN_MAX_ERR */
2050         /* REG_BCNTCFG (0x510) */
2051         /* REG_DUAL_TSF_RST */
2052         /* REG_BCN_CTRL (0x550) */
2053
2054
2055         bcn_ctrl_reg = REG_BCN_CTRL;
2056
2057         /*  */
2058         /*  ATIM window */
2059         /*  */
2060         rtw_write16(padapter, REG_ATIMWND, 2);
2061
2062         /*  */
2063         /*  Beacon interval (in unit of TU). */
2064         /*  */
2065         rtw_write16(padapter, REG_BCN_INTERVAL, pmlmeinfo->bcn_interval);
2066
2067         rtl8723b_InitBeaconParameters(padapter);
2068
2069         rtw_write8(padapter, REG_SLOT, 0x09);
2070
2071         /*  */
2072         /*  Reset TSF Timer to zero, added by Roger. 2008.06.24 */
2073         /*  */
2074         value32 = rtw_read32(padapter, REG_TCR);
2075         value32 &= ~TSFRST;
2076         rtw_write32(padapter, REG_TCR, value32);
2077
2078         value32 |= TSFRST;
2079         rtw_write32(padapter, REG_TCR, value32);
2080
2081         /*  NOTE: Fix test chip's bug (about contention windows's randomness) */
2082         if (check_fwstate(&padapter->mlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE|WIFI_AP_STATE) == true) {
2083                 rtw_write8(padapter, REG_RXTSF_OFFSET_CCK, 0x50);
2084                 rtw_write8(padapter, REG_RXTSF_OFFSET_OFDM, 0x50);
2085         }
2086
2087         _BeaconFunctionEnable(padapter, true, true);
2088
2089         ResumeTxBeacon(padapter);
2090         val8 = rtw_read8(padapter, bcn_ctrl_reg);
2091         val8 |= DIS_BCNQ_SUB;
2092         rtw_write8(padapter, bcn_ctrl_reg, val8);
2093 }
2094
2095 static void rtl8723b_GetHalODMVar(
2096         struct adapter *Adapter,
2097         enum HAL_ODM_VARIABLE eVariable,
2098         void *pValue1,
2099         void *pValue2
2100 )
2101 {
2102         GetHalODMVar(Adapter, eVariable, pValue1, pValue2);
2103 }
2104
2105 static void rtl8723b_SetHalODMVar(
2106         struct adapter *Adapter,
2107         enum HAL_ODM_VARIABLE eVariable,
2108         void *pValue1,
2109         bool bSet
2110 )
2111 {
2112         SetHalODMVar(Adapter, eVariable, pValue1, bSet);
2113 }
2114
2115 static void hal_notch_filter_8723b(struct adapter *adapter, bool enable)
2116 {
2117         if (enable) {
2118                 DBG_871X("Enable notch filter\n");
2119                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) | BIT1);
2120         } else {
2121                 DBG_871X("Disable notch filter\n");
2122                 rtw_write8(adapter, rOFDM0_RxDSP+1, rtw_read8(adapter, rOFDM0_RxDSP+1) & ~BIT1);
2123         }
2124 }
2125
2126 static void UpdateHalRAMask8723B(struct adapter *padapter, u32 mac_id, u8 rssi_level)
2127 {
2128         u32 mask, rate_bitmap;
2129         u8 shortGIrate = false;
2130         struct sta_info *psta;
2131         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2132         struct dm_priv *pdmpriv = &pHalData->dmpriv;
2133         struct mlme_ext_priv *pmlmeext = &padapter->mlmeextpriv;
2134         struct mlme_ext_info *pmlmeinfo = &(pmlmeext->mlmext_info);
2135
2136         DBG_871X("%s(): mac_id =%d rssi_level =%d\n", __func__, mac_id, rssi_level);
2137
2138         if (mac_id >= NUM_STA) /* CAM_SIZE */
2139                 return;
2140
2141         psta = pmlmeinfo->FW_sta_info[mac_id].psta;
2142         if (psta == NULL)
2143                 return;
2144
2145         shortGIrate = query_ra_short_GI(psta);
2146
2147         mask = psta->ra_mask;
2148
2149         rate_bitmap = 0xffffffff;
2150         rate_bitmap = ODM_Get_Rate_Bitmap(&pHalData->odmpriv, mac_id, mask, rssi_level);
2151         DBG_871X("%s => mac_id:%d, networkType:0x%02x, mask:0x%08x\n\t ==> rssi_level:%d, rate_bitmap:0x%08x\n",
2152                         __func__, mac_id, psta->wireless_mode, mask, rssi_level, rate_bitmap);
2153
2154         mask &= rate_bitmap;
2155
2156         rate_bitmap = rtw_btcoex_GetRaMask(padapter);
2157         mask &= ~rate_bitmap;
2158
2159 #ifdef CONFIG_CMCC_TEST
2160         if (pmlmeext->cur_wireless_mode & WIRELESS_11G) {
2161                 if (mac_id == 0) {
2162                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2163                         mask &= 0xffffff00; /* disable CCK & <24M OFDM rate for 11G mode for CMCC */
2164                         DBG_871X("CMCC_BT update raid entry, mask = 0x%x\n", mask);
2165                 }
2166         }
2167 #endif
2168
2169         if (pHalData->fw_ractrl == true) {
2170                 rtl8723b_set_FwMacIdConfig_cmd(padapter, mac_id, psta->raid, psta->bw_mode, shortGIrate, mask);
2171         }
2172
2173         /* set correct initial date rate for each mac_id */
2174         pdmpriv->INIDATA_RATE[mac_id] = psta->init_rate;
2175         DBG_871X("%s(): mac_id =%d raid = 0x%x bw =%d mask = 0x%x init_rate = 0x%x\n", __func__, mac_id, psta->raid, psta->bw_mode, mask, psta->init_rate);
2176 }
2177
2178
2179 void rtl8723b_set_hal_ops(struct hal_ops *pHalFunc)
2180 {
2181         pHalFunc->free_hal_data = &rtl8723b_free_hal_data;
2182
2183         pHalFunc->dm_init = &rtl8723b_init_dm_priv;
2184
2185         pHalFunc->read_chip_version = &rtl8723b_read_chip_version;
2186
2187         pHalFunc->UpdateRAMaskHandler = &UpdateHalRAMask8723B;
2188
2189         pHalFunc->set_bwmode_handler = &PHY_SetBWMode8723B;
2190         pHalFunc->set_channel_handler = &PHY_SwChnl8723B;
2191         pHalFunc->set_chnl_bw_handler = &PHY_SetSwChnlBWMode8723B;
2192
2193         pHalFunc->set_tx_power_level_handler = &PHY_SetTxPowerLevel8723B;
2194         pHalFunc->get_tx_power_level_handler = &PHY_GetTxPowerLevel8723B;
2195
2196         pHalFunc->hal_dm_watchdog = &rtl8723b_HalDmWatchDog;
2197         pHalFunc->hal_dm_watchdog_in_lps = &rtl8723b_HalDmWatchDog_in_LPS;
2198
2199
2200         pHalFunc->SetBeaconRelatedRegistersHandler = &rtl8723b_SetBeaconRelatedRegisters;
2201
2202         pHalFunc->Add_RateATid = &rtl8723b_Add_RateATid;
2203
2204         pHalFunc->run_thread = &rtl8723b_start_thread;
2205         pHalFunc->cancel_thread = &rtl8723b_stop_thread;
2206
2207         pHalFunc->read_bbreg = &PHY_QueryBBReg_8723B;
2208         pHalFunc->write_bbreg = &PHY_SetBBReg_8723B;
2209         pHalFunc->read_rfreg = &PHY_QueryRFReg_8723B;
2210         pHalFunc->write_rfreg = &PHY_SetRFReg_8723B;
2211
2212         /*  Efuse related function */
2213         pHalFunc->BTEfusePowerSwitch = &Hal_BT_EfusePowerSwitch;
2214         pHalFunc->EfusePowerSwitch = &Hal_EfusePowerSwitch;
2215         pHalFunc->ReadEFuse = &Hal_ReadEFuse;
2216         pHalFunc->EFUSEGetEfuseDefinition = &Hal_GetEfuseDefinition;
2217         pHalFunc->EfuseGetCurrentSize = &Hal_EfuseGetCurrentSize;
2218         pHalFunc->Efuse_PgPacketRead = &Hal_EfusePgPacketRead;
2219         pHalFunc->Efuse_PgPacketWrite = &Hal_EfusePgPacketWrite;
2220         pHalFunc->Efuse_WordEnableDataWrite = &Hal_EfuseWordEnableDataWrite;
2221         pHalFunc->Efuse_PgPacketWrite_BT = &Hal_EfusePgPacketWrite_BT;
2222
2223         pHalFunc->GetHalODMVarHandler = &rtl8723b_GetHalODMVar;
2224         pHalFunc->SetHalODMVarHandler = &rtl8723b_SetHalODMVar;
2225
2226         pHalFunc->xmit_thread_handler = &hal_xmit_handler;
2227         pHalFunc->hal_notch_filter = &hal_notch_filter_8723b;
2228
2229         pHalFunc->c2h_handler = c2h_handler_8723b;
2230         pHalFunc->c2h_id_filter_ccx = c2h_id_filter_ccx_8723b;
2231
2232         pHalFunc->fill_h2c_cmd = &FillH2CCmd8723B;
2233 }
2234
2235 void rtl8723b_InitAntenna_Selection(struct adapter *padapter)
2236 {
2237         struct hal_com_data *pHalData;
2238         u8 val;
2239
2240
2241         pHalData = GET_HAL_DATA(padapter);
2242
2243         val = rtw_read8(padapter, REG_LEDCFG2);
2244         /*  Let 8051 take control antenna settting */
2245         val |= BIT(7); /*  DPDT_SEL_EN, 0x4C[23] */
2246         rtw_write8(padapter, REG_LEDCFG2, val);
2247 }
2248
2249 void rtl8723b_init_default_value(struct adapter *padapter)
2250 {
2251         struct hal_com_data *pHalData;
2252         struct dm_priv *pdmpriv;
2253         u8 i;
2254
2255
2256         pHalData = GET_HAL_DATA(padapter);
2257         pdmpriv = &pHalData->dmpriv;
2258
2259         padapter->registrypriv.wireless_mode = WIRELESS_11BG_24N;
2260
2261         /*  init default value */
2262         pHalData->fw_ractrl = false;
2263         pHalData->bIQKInitialized = false;
2264         if (!adapter_to_pwrctl(padapter)->bkeepfwalive)
2265                 pHalData->LastHMEBoxNum = 0;
2266
2267         pHalData->bIQKInitialized = false;
2268
2269         /*  init dm default value */
2270         pdmpriv->TM_Trigger = 0;/* for IQK */
2271 /*      pdmpriv->binitialized = false; */
2272 /*      pdmpriv->prv_traffic_idx = 3; */
2273 /*      pdmpriv->initialize = 0; */
2274
2275         pdmpriv->ThermalValue_HP_index = 0;
2276         for (i = 0; i < HP_THERMAL_NUM; i++)
2277                 pdmpriv->ThermalValue_HP[i] = 0;
2278
2279         /*  init Efuse variables */
2280         pHalData->EfuseUsedBytes = 0;
2281         pHalData->EfuseUsedPercentage = 0;
2282 #ifdef HAL_EFUSE_MEMORY
2283         pHalData->EfuseHal.fakeEfuseBank = 0;
2284         pHalData->EfuseHal.fakeEfuseUsedBytes = 0;
2285         memset(pHalData->EfuseHal.fakeEfuseContent, 0xFF, EFUSE_MAX_HW_SIZE);
2286         memset(pHalData->EfuseHal.fakeEfuseInitMap, 0xFF, EFUSE_MAX_MAP_LEN);
2287         memset(pHalData->EfuseHal.fakeEfuseModifiedMap, 0xFF, EFUSE_MAX_MAP_LEN);
2288         pHalData->EfuseHal.BTEfuseUsedBytes = 0;
2289         pHalData->EfuseHal.BTEfuseUsedPercentage = 0;
2290         memset(pHalData->EfuseHal.BTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2291         memset(pHalData->EfuseHal.BTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2292         memset(pHalData->EfuseHal.BTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2293         pHalData->EfuseHal.fakeBTEfuseUsedBytes = 0;
2294         memset(pHalData->EfuseHal.fakeBTEfuseContent, 0xFF, EFUSE_MAX_BT_BANK*EFUSE_MAX_HW_SIZE);
2295         memset(pHalData->EfuseHal.fakeBTEfuseInitMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2296         memset(pHalData->EfuseHal.fakeBTEfuseModifiedMap, 0xFF, EFUSE_BT_MAX_MAP_LEN);
2297 #endif
2298 }
2299
2300 u8 GetEEPROMSize8723B(struct adapter *padapter)
2301 {
2302         u8 size = 0;
2303         u32 cr;
2304
2305         cr = rtw_read16(padapter, REG_9346CR);
2306         /*  6: EEPROM used is 93C46, 4: boot from E-Fuse. */
2307         size = (cr & BOOT_FROM_EEPROM) ? 6 : 4;
2308
2309         MSG_8192C("EEPROM type is %s\n", size == 4 ? "E-FUSE" : "93C46");
2310
2311         return size;
2312 }
2313
2314 /*  */
2315 /*  */
2316 /*  LLT R/W/Init function */
2317 /*  */
2318 /*  */
2319 s32 rtl8723b_InitLLTTable(struct adapter *padapter)
2320 {
2321         unsigned long start, passing_time;
2322         u32 val32;
2323         s32 ret;
2324
2325
2326         ret = _FAIL;
2327
2328         val32 = rtw_read32(padapter, REG_AUTO_LLT);
2329         val32 |= BIT_AUTO_INIT_LLT;
2330         rtw_write32(padapter, REG_AUTO_LLT, val32);
2331
2332         start = jiffies;
2333
2334         do {
2335                 val32 = rtw_read32(padapter, REG_AUTO_LLT);
2336                 if (!(val32 & BIT_AUTO_INIT_LLT)) {
2337                         ret = _SUCCESS;
2338                         break;
2339                 }
2340
2341                 passing_time = jiffies_to_msecs(jiffies - start);
2342                 if (passing_time > 1000) {
2343                         DBG_8192C(
2344                                 "%s: FAIL!! REG_AUTO_LLT(0x%X) =%08x\n",
2345                                 __func__,
2346                                 REG_AUTO_LLT,
2347                                 val32
2348                         );
2349                         break;
2350                 }
2351
2352                 msleep(1);
2353         } while (1);
2354
2355         return ret;
2356 }
2357
2358 static bool Hal_GetChnlGroup8723B(u8 Channel, u8 *pGroup)
2359 {
2360         bool bIn24G = true;
2361
2362         if (Channel <= 14) {
2363                 bIn24G = true;
2364
2365                 if (1  <= Channel && Channel <= 2)
2366                         *pGroup = 0;
2367                 else if (3  <= Channel && Channel <= 5)
2368                         *pGroup = 1;
2369                 else if (6  <= Channel && Channel <= 8)
2370                         *pGroup = 2;
2371                 else if (9  <= Channel && Channel <= 11)
2372                         *pGroup = 3;
2373                 else if (12 <= Channel && Channel <= 14)
2374                         *pGroup = 4;
2375                 else {
2376                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 2.4 G, but Channel %d in Group not found\n", Channel));
2377                 }
2378         } else {
2379                 bIn24G = false;
2380
2381                 if (36   <= Channel && Channel <=  42)
2382                         *pGroup = 0;
2383                 else if (44   <= Channel && Channel <=  48)
2384                         *pGroup = 1;
2385                 else if (50   <= Channel && Channel <=  58)
2386                         *pGroup = 2;
2387                 else if (60   <= Channel && Channel <=  64)
2388                         *pGroup = 3;
2389                 else if (100  <= Channel && Channel <= 106)
2390                         *pGroup = 4;
2391                 else if (108  <= Channel && Channel <= 114)
2392                         *pGroup = 5;
2393                 else if (116  <= Channel && Channel <= 122)
2394                         *pGroup = 6;
2395                 else if (124  <= Channel && Channel <= 130)
2396                         *pGroup = 7;
2397                 else if (132  <= Channel && Channel <= 138)
2398                         *pGroup = 8;
2399                 else if (140  <= Channel && Channel <= 144)
2400                         *pGroup = 9;
2401                 else if (149  <= Channel && Channel <= 155)
2402                         *pGroup = 10;
2403                 else if (157  <= Channel && Channel <= 161)
2404                         *pGroup = 11;
2405                 else if (165  <= Channel && Channel <= 171)
2406                         *pGroup = 12;
2407                 else if (173  <= Channel && Channel <= 177)
2408                         *pGroup = 13;
2409                 else {
2410                         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("==>Hal_GetChnlGroup8723B in 5G, but Channel %d in Group not found\n", Channel));
2411                 }
2412
2413         }
2414         RT_TRACE(
2415                 _module_hci_hal_init_c_,
2416                 _drv_info_,
2417                 (
2418                         "<==Hal_GetChnlGroup8723B,  (%s) Channel = %d, Group =%d,\n",
2419                         bIn24G ? "2.4G" : "5G",
2420                         Channel,
2421                         *pGroup
2422                 )
2423         );
2424         return bIn24G;
2425 }
2426
2427 void Hal_InitPGData(struct adapter *padapter, u8 *PROMContent)
2428 {
2429         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2430
2431         if (false == pEEPROM->bautoload_fail_flag) { /*  autoload OK. */
2432                 if (!pEEPROM->EepromOrEfuse) {
2433                         /*  Read EFUSE real map to shadow. */
2434                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2435                         memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2436                 }
2437         } else {/* autoload fail */
2438                 RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("AutoLoad Fail reported from CR9346!!\n"));
2439                 if (false == pEEPROM->EepromOrEfuse)
2440                         EFUSE_ShadowMapUpdate(padapter, EFUSE_WIFI, false);
2441                 memcpy((void *)PROMContent, (void *)pEEPROM->efuse_eeprom_data, HWSET_MAX_SIZE_8723B);
2442         }
2443 }
2444
2445 void Hal_EfuseParseIDCode(struct adapter *padapter, u8 *hwinfo)
2446 {
2447         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2448 /*      struct hal_com_data     *pHalData = GET_HAL_DATA(padapter); */
2449         u16 EEPROMId;
2450
2451
2452         /*  Checl 0x8129 again for making sure autoload status!! */
2453         EEPROMId = le16_to_cpu(*((__le16 *)hwinfo));
2454         if (EEPROMId != RTL_EEPROM_ID) {
2455                 DBG_8192C("EEPROM ID(%#x) is invalid!!\n", EEPROMId);
2456                 pEEPROM->bautoload_fail_flag = true;
2457         } else
2458                 pEEPROM->bautoload_fail_flag = false;
2459
2460         RT_TRACE(_module_hal_init_c_, _drv_notice_, ("EEPROM ID = 0x%04x\n", EEPROMId));
2461 }
2462
2463 static void Hal_ReadPowerValueFromPROM_8723B(
2464         struct adapter *Adapter,
2465         struct TxPowerInfo24G *pwrInfo24G,
2466         u8 *PROMContent,
2467         bool AutoLoadFail
2468 )
2469 {
2470         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2471         u32 rfPath, eeAddr = EEPROM_TX_PWR_INX_8723B, group, TxCount = 0;
2472
2473         memset(pwrInfo24G, 0, sizeof(struct TxPowerInfo24G));
2474
2475         if (0xFF == PROMContent[eeAddr+1])
2476                 AutoLoadFail = true;
2477
2478         if (AutoLoadFail) {
2479                 DBG_871X("%s(): Use Default value!\n", __func__);
2480                 for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2481                         /* 2.4G default value */
2482                         for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2483                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2484                                 pwrInfo24G->IndexBW40_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2485                         }
2486
2487                         for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2488                                 if (TxCount == 0) {
2489                                         pwrInfo24G->BW20_Diff[rfPath][0] = EEPROM_DEFAULT_24G_HT20_DIFF;
2490                                         pwrInfo24G->OFDM_Diff[rfPath][0] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2491                                 } else {
2492                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2493                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2494                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2495                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2496                                 }
2497                         }
2498                 }
2499
2500                 return;
2501         }
2502
2503         pHalData->bTXPowerDataReadFromEEPORM = true;            /* YJ, move, 120316 */
2504
2505         for (rfPath = 0; rfPath < MAX_RF_PATH; rfPath++) {
2506                 /* 2 2.4G default value */
2507                 for (group = 0; group < MAX_CHNL_GROUP_24G; group++) {
2508                         pwrInfo24G->IndexCCK_Base[rfPath][group] =      PROMContent[eeAddr++];
2509                         if (pwrInfo24G->IndexCCK_Base[rfPath][group] == 0xFF)
2510                                 pwrInfo24G->IndexCCK_Base[rfPath][group] = EEPROM_DEFAULT_24G_INDEX;
2511                 }
2512
2513                 for (group = 0; group < MAX_CHNL_GROUP_24G-1; group++) {
2514                         pwrInfo24G->IndexBW40_Base[rfPath][group] =     PROMContent[eeAddr++];
2515                         if (pwrInfo24G->IndexBW40_Base[rfPath][group] == 0xFF)
2516                                 pwrInfo24G->IndexBW40_Base[rfPath][group] =     EEPROM_DEFAULT_24G_INDEX;
2517                 }
2518
2519                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2520                         if (TxCount == 0) {
2521                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] = 0;
2522                                 if (PROMContent[eeAddr] == 0xFF)
2523                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        EEPROM_DEFAULT_24G_HT20_DIFF;
2524                                 else {
2525                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] =        (PROMContent[eeAddr]&0xf0)>>4;
2526                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2527                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2528                                 }
2529
2530                                 if (PROMContent[eeAddr] == 0xFF)
2531                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_24G_OFDM_DIFF;
2532                                 else {
2533                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2534                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2535                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2536                                 }
2537                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] = 0;
2538                                 eeAddr++;
2539                         } else {
2540                                 if (PROMContent[eeAddr] == 0xFF)
2541                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2542                                 else {
2543                                         pwrInfo24G->BW40_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2544                                         if (pwrInfo24G->BW40_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2545                                                 pwrInfo24G->BW40_Diff[rfPath][TxCount] |= 0xF0;
2546                                 }
2547
2548                                 if (PROMContent[eeAddr] == 0xFF)
2549                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2550                                 else {
2551                                         pwrInfo24G->BW20_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2552                                         if (pwrInfo24G->BW20_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2553                                                 pwrInfo24G->BW20_Diff[rfPath][TxCount] |= 0xF0;
2554                                 }
2555                                 eeAddr++;
2556
2557                                 if (PROMContent[eeAddr] == 0xFF)
2558                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2559                                 else {
2560                                         pwrInfo24G->OFDM_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0xf0)>>4;
2561                                         if (pwrInfo24G->OFDM_Diff[rfPath][TxCount] & BIT3)              /* 4bit sign number to 8 bit sign number */
2562                                                 pwrInfo24G->OFDM_Diff[rfPath][TxCount] |= 0xF0;
2563                                 }
2564
2565                                 if (PROMContent[eeAddr] == 0xFF)
2566                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = EEPROM_DEFAULT_DIFF;
2567                                 else {
2568                                         pwrInfo24G->CCK_Diff[rfPath][TxCount] = (PROMContent[eeAddr]&0x0f);
2569                                         if (pwrInfo24G->CCK_Diff[rfPath][TxCount] & BIT3)               /* 4bit sign number to 8 bit sign number */
2570                                                 pwrInfo24G->CCK_Diff[rfPath][TxCount] |= 0xF0;
2571                                 }
2572                                 eeAddr++;
2573                         }
2574                 }
2575         }
2576 }
2577
2578
2579 void Hal_EfuseParseTxPowerInfo_8723B(
2580         struct adapter *padapter, u8 *PROMContent, bool AutoLoadFail
2581 )
2582 {
2583         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2584         struct TxPowerInfo24G   pwrInfo24G;
2585         u8      rfPath, ch, TxCount = 1;
2586
2587         Hal_ReadPowerValueFromPROM_8723B(padapter, &pwrInfo24G, PROMContent, AutoLoadFail);
2588         for (rfPath = 0 ; rfPath < MAX_RF_PATH ; rfPath++) {
2589                 for (ch = 0 ; ch < CHANNEL_MAX_NUMBER; ch++) {
2590                         u8 group = 0;
2591
2592                         Hal_GetChnlGroup8723B(ch+1, &group);
2593
2594                         if (ch == 14-1) {
2595                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][5];
2596                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2597                         } else {
2598                                 pHalData->Index24G_CCK_Base[rfPath][ch] = pwrInfo24G.IndexCCK_Base[rfPath][group];
2599                                 pHalData->Index24G_BW40_Base[rfPath][ch] = pwrInfo24G.IndexBW40_Base[rfPath][group];
2600                         }
2601 #ifdef DEBUG
2602                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("======= Path %d, ChannelIndex %d, Group %d =======\n", rfPath, ch, group));
2603                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_CCK_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_CCK_Base[rfPath][ch]));
2604                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("Index24G_BW40_Base[%d][%d] = 0x%x\n", rfPath, ch, pHalData->Index24G_BW40_Base[rfPath][ch]));
2605 #endif
2606                 }
2607
2608                 for (TxCount = 0; TxCount < MAX_TX_COUNT; TxCount++) {
2609                         pHalData->CCK_24G_Diff[rfPath][TxCount] = pwrInfo24G.CCK_Diff[rfPath][TxCount];
2610                         pHalData->OFDM_24G_Diff[rfPath][TxCount] = pwrInfo24G.OFDM_Diff[rfPath][TxCount];
2611                         pHalData->BW20_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW20_Diff[rfPath][TxCount];
2612                         pHalData->BW40_24G_Diff[rfPath][TxCount] = pwrInfo24G.BW40_Diff[rfPath][TxCount];
2613
2614 #ifdef DEBUG
2615                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("--------------------------------------- 2.4G ---------------------------------------\n"));
2616                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("CCK_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->CCK_24G_Diff[rfPath][TxCount]));
2617                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("OFDM_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->OFDM_24G_Diff[rfPath][TxCount]));
2618                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW20_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW20_24G_Diff[rfPath][TxCount]));
2619                         RT_TRACE(_module_hci_hal_init_c_, _drv_info_, ("BW40_24G_Diff[%d][%d]= %d\n", rfPath, TxCount, pHalData->BW40_24G_Diff[rfPath][TxCount]));
2620 #endif
2621                 }
2622         }
2623
2624         /*  2010/10/19 MH Add Regulator recognize for CU. */
2625         if (!AutoLoadFail) {
2626                 pHalData->EEPROMRegulatory = (PROMContent[EEPROM_RF_BOARD_OPTION_8723B]&0x7);   /* bit0~2 */
2627                 if (PROMContent[EEPROM_RF_BOARD_OPTION_8723B] == 0xFF)
2628                         pHalData->EEPROMRegulatory = (EEPROM_DEFAULT_BOARD_OPTION&0x7); /* bit0~2 */
2629         } else
2630                 pHalData->EEPROMRegulatory = 0;
2631
2632         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROMRegulatory = 0x%x\n", pHalData->EEPROMRegulatory));
2633 }
2634
2635 void Hal_EfuseParseBTCoexistInfo_8723B(
2636         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2637 )
2638 {
2639         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2640         u8 tempval;
2641         u32 tmpu4;
2642
2643         if (!AutoLoadFail) {
2644                 tmpu4 = rtw_read32(padapter, REG_MULTI_FUNC_CTRL);
2645                 if (tmpu4 & BT_FUNC_EN)
2646                         pHalData->EEPROMBluetoothCoexist = true;
2647                 else
2648                         pHalData->EEPROMBluetoothCoexist = false;
2649
2650                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2651
2652                 tempval = hwinfo[EEPROM_RF_BT_SETTING_8723B];
2653                 if (tempval != 0xFF) {
2654                         pHalData->EEPROMBluetoothAntNum = tempval & BIT(0);
2655                         /*  EFUSE_0xC3[6] == 0, S1(Main)-ODM_RF_PATH_A; */
2656                         /*  EFUSE_0xC3[6] == 1, S0(Aux)-ODM_RF_PATH_B */
2657                         pHalData->ant_path = (tempval & BIT(6))?ODM_RF_PATH_B:ODM_RF_PATH_A;
2658                 } else {
2659                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2660                         if (pHalData->PackageType == PACKAGE_QFN68)
2661                                 pHalData->ant_path = ODM_RF_PATH_B;
2662                         else
2663                                 pHalData->ant_path = ODM_RF_PATH_A;
2664                 }
2665         } else {
2666                 pHalData->EEPROMBluetoothCoexist = false;
2667                 pHalData->EEPROMBluetoothType = BT_RTL8723B;
2668                 pHalData->EEPROMBluetoothAntNum = Ant_x1;
2669                 pHalData->ant_path = ODM_RF_PATH_A;
2670         }
2671
2672         if (padapter->registrypriv.ant_num > 0) {
2673                 DBG_8192C(
2674                         "%s: Apply driver defined antenna number(%d) to replace origin(%d)\n",
2675                         __func__,
2676                         padapter->registrypriv.ant_num,
2677                         pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2678                 );
2679
2680                 switch (padapter->registrypriv.ant_num) {
2681                 case 1:
2682                         pHalData->EEPROMBluetoothAntNum = Ant_x1;
2683                         break;
2684                 case 2:
2685                         pHalData->EEPROMBluetoothAntNum = Ant_x2;
2686                         break;
2687                 default:
2688                         DBG_8192C(
2689                                 "%s: Discard invalid driver defined antenna number(%d)!\n",
2690                                 __func__,
2691                                 padapter->registrypriv.ant_num
2692                         );
2693                         break;
2694                 }
2695         }
2696
2697         rtw_btcoex_SetBTCoexist(padapter, pHalData->EEPROMBluetoothCoexist);
2698         rtw_btcoex_SetChipType(padapter, pHalData->EEPROMBluetoothType);
2699         rtw_btcoex_SetPGAntNum(padapter, pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1);
2700         if (pHalData->EEPROMBluetoothAntNum == Ant_x1)
2701                 rtw_btcoex_SetSingleAntPath(padapter, pHalData->ant_path);
2702
2703         DBG_8192C(
2704                 "%s: %s BT-coex, ant_num =%d\n",
2705                 __func__,
2706                 pHalData->EEPROMBluetoothCoexist == true ? "Enable" : "Disable",
2707                 pHalData->EEPROMBluetoothAntNum == Ant_x2 ? 2 : 1
2708         );
2709 }
2710
2711 void Hal_EfuseParseEEPROMVer_8723B(
2712         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2713 )
2714 {
2715         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2716
2717 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2718         if (!AutoLoadFail)
2719                 pHalData->EEPROMVersion = hwinfo[EEPROM_VERSION_8723B];
2720         else
2721                 pHalData->EEPROMVersion = 1;
2722         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("Hal_EfuseParseEEPROMVer(), EEVer = %d\n",
2723                 pHalData->EEPROMVersion));
2724 }
2725
2726
2727
2728 void Hal_EfuseParsePackageType_8723B(
2729         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2730 )
2731 {
2732         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2733         u8 package;
2734         u8 efuseContent;
2735
2736         Efuse_PowerSwitch(padapter, false, true);
2737         efuse_OneByteRead(padapter, 0x1FB, &efuseContent, false);
2738         DBG_871X("%s phy efuse read 0x1FB =%x\n", __func__, efuseContent);
2739         Efuse_PowerSwitch(padapter, false, false);
2740
2741         package = efuseContent & 0x7;
2742         switch (package) {
2743         case 0x4:
2744                 pHalData->PackageType = PACKAGE_TFBGA79;
2745                 break;
2746         case 0x5:
2747                 pHalData->PackageType = PACKAGE_TFBGA90;
2748                 break;
2749         case 0x6:
2750                 pHalData->PackageType = PACKAGE_QFN68;
2751                 break;
2752         case 0x7:
2753                 pHalData->PackageType = PACKAGE_TFBGA80;
2754                 break;
2755
2756         default:
2757                 pHalData->PackageType = PACKAGE_DEFAULT;
2758                 break;
2759         }
2760
2761         DBG_871X("PackageType = 0x%X\n", pHalData->PackageType);
2762 }
2763
2764
2765 void Hal_EfuseParseVoltage_8723B(
2766         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2767 )
2768 {
2769         struct eeprom_priv *pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
2770
2771         /* memcpy(pEEPROM->adjuseVoltageVal, &hwinfo[EEPROM_Voltage_ADDR_8723B], 1); */
2772         DBG_871X("%s hwinfo[EEPROM_Voltage_ADDR_8723B] =%02x\n", __func__, hwinfo[EEPROM_Voltage_ADDR_8723B]);
2773         pEEPROM->adjuseVoltageVal = (hwinfo[EEPROM_Voltage_ADDR_8723B] & 0xf0) >> 4;
2774         DBG_871X("%s pEEPROM->adjuseVoltageVal =%x\n", __func__, pEEPROM->adjuseVoltageVal);
2775 }
2776
2777 void Hal_EfuseParseChnlPlan_8723B(
2778         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2779 )
2780 {
2781         padapter->mlmepriv.ChannelPlan = hal_com_config_channel_plan(
2782                 padapter,
2783                 hwinfo ? hwinfo[EEPROM_ChannelPlan_8723B] : 0xFF,
2784                 padapter->registrypriv.channel_plan,
2785                 RT_CHANNEL_DOMAIN_WORLD_NULL,
2786                 AutoLoadFail
2787         );
2788
2789         Hal_ChannelPlanToRegulation(padapter, padapter->mlmepriv.ChannelPlan);
2790
2791         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ChannelPlan = 0x%02x\n", padapter->mlmepriv.ChannelPlan));
2792 }
2793
2794 void Hal_EfuseParseCustomerID_8723B(
2795         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2796 )
2797 {
2798         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2799
2800 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2801         if (!AutoLoadFail)
2802                 pHalData->EEPROMCustomerID = hwinfo[EEPROM_CustomID_8723B];
2803         else
2804                 pHalData->EEPROMCustomerID = 0;
2805
2806         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM Customer ID: 0x%2x\n", pHalData->EEPROMCustomerID));
2807 }
2808
2809 void Hal_EfuseParseAntennaDiversity_8723B(
2810         struct adapter *padapter,
2811         u8 *hwinfo,
2812         bool AutoLoadFail
2813 )
2814 {
2815 }
2816
2817 void Hal_EfuseParseXtal_8723B(
2818         struct adapter *padapter, u8 *hwinfo, bool AutoLoadFail
2819 )
2820 {
2821         struct hal_com_data     *pHalData = GET_HAL_DATA(padapter);
2822
2823 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2824         if (!AutoLoadFail) {
2825                 pHalData->CrystalCap = hwinfo[EEPROM_XTAL_8723B];
2826                 if (pHalData->CrystalCap == 0xFF)
2827                         pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;    /* what value should 8812 set? */
2828         } else
2829                 pHalData->CrystalCap = EEPROM_Default_CrystalCap_8723B;
2830
2831         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM CrystalCap: 0x%2x\n", pHalData->CrystalCap));
2832 }
2833
2834
2835 void Hal_EfuseParseThermalMeter_8723B(
2836         struct adapter *padapter, u8 *PROMContent, u8 AutoLoadFail
2837 )
2838 {
2839         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
2840
2841 /*      RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("%s(): AutoLoadFail = %d\n", __func__, AutoLoadFail)); */
2842         /*  */
2843         /*  ThermalMeter from EEPROM */
2844         /*  */
2845         if (false == AutoLoadFail)
2846                 pHalData->EEPROMThermalMeter = PROMContent[EEPROM_THERMAL_METER_8723B];
2847         else
2848                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2849
2850         if ((pHalData->EEPROMThermalMeter == 0xff) || (true == AutoLoadFail)) {
2851                 pHalData->bAPKThermalMeterIgnore = true;
2852                 pHalData->EEPROMThermalMeter = EEPROM_Default_ThermalMeter_8723B;
2853         }
2854
2855         RT_TRACE(_module_hci_hal_init_c_, _drv_notice_, ("EEPROM ThermalMeter = 0x%x\n", pHalData->EEPROMThermalMeter));
2856 }
2857
2858
2859 void Hal_ReadRFGainOffset(
2860         struct adapter *Adapter, u8 *PROMContent, bool AutoloadFail
2861 )
2862 {
2863         /*  */
2864         /*  BB_RF Gain Offset from EEPROM */
2865         /*  */
2866
2867         if (!AutoloadFail) {
2868                 Adapter->eeprompriv.EEPROMRFGainOffset = PROMContent[EEPROM_RF_GAIN_OFFSET];
2869                 DBG_871X("AutoloadFail =%x,\n", AutoloadFail);
2870                 Adapter->eeprompriv.EEPROMRFGainVal = EFUSE_Read1Byte(Adapter, EEPROM_RF_GAIN_VAL);
2871                 DBG_871X("Adapter->eeprompriv.EEPROMRFGainVal =%x\n", Adapter->eeprompriv.EEPROMRFGainVal);
2872         } else {
2873                 Adapter->eeprompriv.EEPROMRFGainOffset = 0;
2874                 Adapter->eeprompriv.EEPROMRFGainVal = 0xFF;
2875                 DBG_871X("else AutoloadFail =%x,\n", AutoloadFail);
2876         }
2877         DBG_871X("EEPRORFGainOffset = 0x%02x\n", Adapter->eeprompriv.EEPROMRFGainOffset);
2878 }
2879
2880 u8 BWMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2881 {
2882         u8 BWSettingOfDesc = 0;
2883         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2884
2885         /* DBG_871X("BWMapping pHalData->CurrentChannelBW %d, pattrib->bwmode %d\n", pHalData->CurrentChannelBW, pattrib->bwmode); */
2886
2887         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2888                 if (pattrib->bwmode == CHANNEL_WIDTH_80)
2889                         BWSettingOfDesc = 2;
2890                 else if (pattrib->bwmode == CHANNEL_WIDTH_40)
2891                         BWSettingOfDesc = 1;
2892                 else
2893                         BWSettingOfDesc = 0;
2894         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2895                 if ((pattrib->bwmode == CHANNEL_WIDTH_40) || (pattrib->bwmode == CHANNEL_WIDTH_80))
2896                         BWSettingOfDesc = 1;
2897                 else
2898                         BWSettingOfDesc = 0;
2899         } else
2900                 BWSettingOfDesc = 0;
2901
2902         /* if (pTcb->bBTTxPacket) */
2903         /*      BWSettingOfDesc = 0; */
2904
2905         return BWSettingOfDesc;
2906 }
2907
2908 u8 SCMapping_8723B(struct adapter *Adapter, struct pkt_attrib *pattrib)
2909 {
2910         u8 SCSettingOfDesc = 0;
2911         struct hal_com_data *pHalData = GET_HAL_DATA(Adapter);
2912
2913         /* DBG_871X("SCMapping: pHalData->CurrentChannelBW %d, pHalData->nCur80MhzPrimeSC %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur80MhzPrimeSC, pHalData->nCur40MhzPrimeSC); */
2914
2915         if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_80) {
2916                 if (pattrib->bwmode == CHANNEL_WIDTH_80) {
2917                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2918                 } else if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2919                         if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER)
2920                                 SCSettingOfDesc = VHT_DATA_SC_40_LOWER_OF_80MHZ;
2921                         else if (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER)
2922                                 SCSettingOfDesc = VHT_DATA_SC_40_UPPER_OF_80MHZ;
2923                         else
2924                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2925                 } else {
2926                         if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2927                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWEST_OF_80MHZ;
2928                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER))
2929                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2930                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2931                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2932                         else if ((pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) && (pHalData->nCur80MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER))
2933                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPERST_OF_80MHZ;
2934                         else
2935                                 DBG_871X("SCMapping: Not Correct Primary40MHz Setting\n");
2936                 }
2937         } else if (pHalData->CurrentChannelBW == CHANNEL_WIDTH_40) {
2938                 /* DBG_871X("SCMapping: HT Case: pHalData->CurrentChannelBW %d, pHalData->nCur40MhzPrimeSC %d\n", pHalData->CurrentChannelBW, pHalData->nCur40MhzPrimeSC); */
2939
2940                 if (pattrib->bwmode == CHANNEL_WIDTH_40) {
2941                         SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2942                 } else if (pattrib->bwmode == CHANNEL_WIDTH_20) {
2943                         if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_UPPER) {
2944                                 SCSettingOfDesc = VHT_DATA_SC_20_UPPER_OF_80MHZ;
2945                         } else if (pHalData->nCur40MhzPrimeSC == HAL_PRIME_CHNL_OFFSET_LOWER) {
2946                                 SCSettingOfDesc = VHT_DATA_SC_20_LOWER_OF_80MHZ;
2947                         } else {
2948                                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2949                         }
2950                 }
2951         } else {
2952                 SCSettingOfDesc = VHT_DATA_SC_DONOT_CARE;
2953         }
2954
2955         return SCSettingOfDesc;
2956 }
2957
2958 static void rtl8723b_cal_txdesc_chksum(struct tx_desc *ptxdesc)
2959 {
2960         u16 *usPtr = (u16 *)ptxdesc;
2961         u32 count;
2962         u32 index;
2963         u16 checksum = 0;
2964
2965
2966         /*  Clear first */
2967         ptxdesc->txdw7 &= cpu_to_le32(0xffff0000);
2968
2969         /*  checksume is always calculated by first 32 bytes, */
2970         /*  and it doesn't depend on TX DESC length. */
2971         /*  Thomas, Lucas@SD4, 20130515 */
2972         count = 16;
2973
2974         for (index = 0; index < count; index++) {
2975                 checksum |= le16_to_cpu(*(__le16 *)(usPtr + index));
2976         }
2977
2978         ptxdesc->txdw7 |= cpu_to_le32(checksum & 0x0000ffff);
2979 }
2980
2981 static u8 fill_txdesc_sectype(struct pkt_attrib *pattrib)
2982 {
2983         u8 sectype = 0;
2984         if ((pattrib->encrypt > 0) && !pattrib->bswenc) {
2985                 switch (pattrib->encrypt) {
2986                 /*  SEC_TYPE */
2987                 case _WEP40_:
2988                 case _WEP104_:
2989                 case _TKIP_:
2990                 case _TKIP_WTMIC_:
2991                         sectype = 1;
2992                         break;
2993
2994                 case _AES_:
2995                         sectype = 3;
2996                         break;
2997
2998                 case _NO_PRIVACY_:
2999                 default:
3000                         break;
3001                 }
3002         }
3003         return sectype;
3004 }
3005
3006 static void fill_txdesc_vcs_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3007 {
3008         /* DBG_8192C("cvs_mode =%d\n", pattrib->vcs_mode); */
3009
3010         if (pattrib->vcs_mode) {
3011                 switch (pattrib->vcs_mode) {
3012                 case RTS_CTS:
3013                         ptxdesc->rtsen = 1;
3014                         /*  ENABLE HW RTS */
3015                         ptxdesc->hw_rts_en = 1;
3016                         break;
3017
3018                 case CTS_TO_SELF:
3019                         ptxdesc->cts2self = 1;
3020                         break;
3021
3022                 case NONE_VCS:
3023                 default:
3024                         break;
3025                 }
3026
3027                 ptxdesc->rtsrate = 8; /*  RTS Rate =24M */
3028                 ptxdesc->rts_ratefb_lmt = 0xF;
3029
3030                 if (padapter->mlmeextpriv.mlmext_info.preamble_mode == PREAMBLE_SHORT)
3031                         ptxdesc->rts_short = 1;
3032
3033                 /*  Set RTS BW */
3034                 if (pattrib->ht_en)
3035                         ptxdesc->rts_sc = SCMapping_8723B(padapter, pattrib);
3036         }
3037 }
3038
3039 static void fill_txdesc_phy_8723b(struct adapter *padapter, struct pkt_attrib *pattrib, PTXDESC_8723B ptxdesc)
3040 {
3041         /* DBG_8192C("bwmode =%d, ch_off =%d\n", pattrib->bwmode, pattrib->ch_offset); */
3042
3043         if (pattrib->ht_en) {
3044                 ptxdesc->data_bw = BWMapping_8723B(padapter, pattrib);
3045
3046                 ptxdesc->data_sc = SCMapping_8723B(padapter, pattrib);
3047         }
3048 }
3049
3050 static void rtl8723b_fill_default_txdesc(
3051         struct xmit_frame *pxmitframe, u8 *pbuf
3052 )
3053 {
3054         struct adapter *padapter;
3055         struct hal_com_data *pHalData;
3056         struct dm_priv *pdmpriv;
3057         struct mlme_ext_priv *pmlmeext;
3058         struct mlme_ext_info *pmlmeinfo;
3059         struct pkt_attrib *pattrib;
3060         PTXDESC_8723B ptxdesc;
3061         s32 bmcst;
3062
3063         memset(pbuf, 0, TXDESC_SIZE);
3064
3065         padapter = pxmitframe->padapter;
3066         pHalData = GET_HAL_DATA(padapter);
3067         pdmpriv = &pHalData->dmpriv;
3068         pmlmeext = &padapter->mlmeextpriv;
3069         pmlmeinfo = &(pmlmeext->mlmext_info);
3070
3071         pattrib = &pxmitframe->attrib;
3072         bmcst = IS_MCAST(pattrib->ra);
3073
3074         ptxdesc = (PTXDESC_8723B)pbuf;
3075
3076         if (pxmitframe->frame_tag == DATA_FRAMETAG) {
3077                 u8 drv_userate = 0;
3078
3079                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3080                 ptxdesc->rate_id = pattrib->raid;
3081                 ptxdesc->qsel = pattrib->qsel;
3082                 ptxdesc->seq = pattrib->seqnum;
3083
3084                 ptxdesc->sectype = fill_txdesc_sectype(pattrib);
3085                 fill_txdesc_vcs_8723b(padapter, pattrib, ptxdesc);
3086
3087                 if (pattrib->icmp_pkt == 1 && padapter->registrypriv.wifi_spec == 1)
3088                         drv_userate = 1;
3089
3090                 if (
3091                         (pattrib->ether_type != 0x888e) &&
3092                         (pattrib->ether_type != 0x0806) &&
3093                         (pattrib->ether_type != 0x88B4) &&
3094                         (pattrib->dhcp_pkt != 1) &&
3095                         (drv_userate != 1)
3096 #ifdef CONFIG_AUTO_AP_MODE
3097                         && (pattrib->pctrl != true)
3098 #endif
3099                 ) {
3100                         /*  Non EAP & ARP & DHCP type data packet */
3101
3102                         if (pattrib->ampdu_en == true) {
3103                                 ptxdesc->agg_en = 1; /*  AGG EN */
3104                                 ptxdesc->max_agg_num = 0x1f;
3105                                 ptxdesc->ampdu_density = pattrib->ampdu_spacing;
3106                         } else
3107                                 ptxdesc->bk = 1; /*  AGG BK */
3108
3109                         fill_txdesc_phy_8723b(padapter, pattrib, ptxdesc);
3110
3111                         ptxdesc->data_ratefb_lmt = 0x1F;
3112
3113                         if (pHalData->fw_ractrl == false) {
3114                                 ptxdesc->userate = 1;
3115
3116                                 if (pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & BIT(7))
3117                                         ptxdesc->data_short = 1;
3118
3119                                 ptxdesc->datarate = pHalData->dmpriv.INIDATA_RATE[pattrib->mac_id] & 0x7F;
3120                         }
3121
3122                         if (padapter->fix_rate != 0xFF) { /*  modify data rate by iwpriv */
3123                                 ptxdesc->userate = 1;
3124                                 if (padapter->fix_rate & BIT(7))
3125                                         ptxdesc->data_short = 1;
3126
3127                                 ptxdesc->datarate = (padapter->fix_rate & 0x7F);
3128                                 ptxdesc->disdatafb = 1;
3129                         }
3130
3131                         if (pattrib->ldpc)
3132                                 ptxdesc->data_ldpc = 1;
3133                         if (pattrib->stbc)
3134                                 ptxdesc->data_stbc = 1;
3135
3136 #ifdef CONFIG_CMCC_TEST
3137                         ptxdesc->data_short = 1; /* use cck short premble */
3138 #endif
3139                 } else {
3140                         /*  EAP data packet and ARP packet. */
3141                         /*  Use the 1M data rate to send the EAP/ARP packet. */
3142                         /*  This will maybe make the handshake smooth. */
3143
3144                         ptxdesc->bk = 1; /*  AGG BK */
3145                         ptxdesc->userate = 1; /*  driver uses rate */
3146                         if (pmlmeinfo->preamble_mode == PREAMBLE_SHORT)
3147                                 ptxdesc->data_short = 1;/*  DATA_SHORT */
3148                         ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3149                         DBG_871X("YJ: %s(): ARP Data: userate =%d, datarate = 0x%x\n", __func__, ptxdesc->userate, ptxdesc->datarate);
3150                 }
3151
3152                 ptxdesc->usb_txagg_num = pxmitframe->agg_num;
3153         } else if (pxmitframe->frame_tag == MGNT_FRAMETAG) {
3154 /*              RT_TRACE(_module_hal_xmit_c_, _drv_notice_, ("%s: MGNT_FRAMETAG\n", __func__)); */
3155
3156                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3157                 ptxdesc->qsel = pattrib->qsel;
3158                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3159                 ptxdesc->seq = pattrib->seqnum;
3160                 ptxdesc->userate = 1; /*  driver uses rate, 1M */
3161
3162                 ptxdesc->mbssid = pattrib->mbssid & 0xF;
3163
3164                 ptxdesc->rty_lmt_en = 1; /*  retry limit enable */
3165                 if (pattrib->retry_ctrl == true) {
3166                         ptxdesc->data_rt_lmt = 6;
3167                 } else {
3168                         ptxdesc->data_rt_lmt = 12;
3169                 }
3170
3171                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3172
3173                 /*  CCX-TXRPT ack for xmit mgmt frames. */
3174                 if (pxmitframe->ack_report) {
3175                         #ifdef DBG_CCX
3176                         DBG_8192C("%s set spe_rpt\n", __func__);
3177                         #endif
3178                         ptxdesc->spe_rpt = 1;
3179                         ptxdesc->sw_define = (u8)(GET_PRIMARY_ADAPTER(padapter)->xmitpriv.seq_no);
3180                 }
3181         } else if (pxmitframe->frame_tag == TXAGG_FRAMETAG) {
3182                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: TXAGG_FRAMETAG\n", __func__));
3183         } else {
3184                 RT_TRACE(_module_hal_xmit_c_, _drv_warning_, ("%s: frame_tag = 0x%x\n", __func__, pxmitframe->frame_tag));
3185
3186                 ptxdesc->macid = pattrib->mac_id; /*  CAM_ID(MAC_ID) */
3187                 ptxdesc->rate_id = pattrib->raid; /*  Rate ID */
3188                 ptxdesc->qsel = pattrib->qsel;
3189                 ptxdesc->seq = pattrib->seqnum;
3190                 ptxdesc->userate = 1; /*  driver uses rate */
3191                 ptxdesc->datarate = MRateToHwRate(pmlmeext->tx_rate);
3192         }
3193
3194         ptxdesc->pktlen = pattrib->last_txcmdsz;
3195         ptxdesc->offset = TXDESC_SIZE + OFFSET_SZ;
3196
3197         if (bmcst)
3198                 ptxdesc->bmc = 1;
3199
3200         /*  2009.11.05. tynli_test. Suggested by SD4 Filen for FW LPS. */
3201         /*  (1) The sequence number of each non-Qos frame / broadcast / multicast / */
3202         /*  mgnt frame should be controled by Hw because Fw will also send null data */
3203         /*  which we cannot control when Fw LPS enable. */
3204         /*  --> default enable non-Qos data sequense number. 2010.06.23. by tynli. */
3205         /*  (2) Enable HW SEQ control for beacon packet, because we use Hw beacon. */
3206         /*  (3) Use HW Qos SEQ to control the seq num of Ext port non-Qos packets. */
3207         /*  2010.06.23. Added by tynli. */
3208         if (!pattrib->qos_en) /*  Hw set sequence number */
3209                 ptxdesc->en_hwseq = 1; /*  HWSEQ_EN */
3210 }
3211
3212 /*
3213  *Description:
3214  *
3215  *Parameters:
3216  *      pxmitframe      xmitframe
3217  *      pbuf            where to fill tx desc
3218  */
3219 void rtl8723b_update_txdesc(struct xmit_frame *pxmitframe, u8 *pbuf)
3220 {
3221         struct tx_desc *pdesc;
3222
3223         rtl8723b_fill_default_txdesc(pxmitframe, pbuf);
3224
3225         pdesc = (struct tx_desc *)pbuf;
3226         pdesc->txdw0 = pdesc->txdw0;
3227         pdesc->txdw1 = pdesc->txdw1;
3228         pdesc->txdw2 = pdesc->txdw2;
3229         pdesc->txdw3 = pdesc->txdw3;
3230         pdesc->txdw4 = pdesc->txdw4;
3231         pdesc->txdw5 = pdesc->txdw5;
3232         pdesc->txdw6 = pdesc->txdw6;
3233         pdesc->txdw7 = pdesc->txdw7;
3234         pdesc->txdw8 = pdesc->txdw8;
3235         pdesc->txdw9 = pdesc->txdw9;
3236
3237         rtl8723b_cal_txdesc_chksum(pdesc);
3238 }
3239
3240 /*  */
3241 /*  Description: In normal chip, we should send some packet to Hw which will be used by Fw */
3242 /*                      in FW LPS mode. The function is to fill the Tx descriptor of this packets, then */
3243 /*                      Fw can tell Hw to send these packet derectly. */
3244 /*  Added by tynli. 2009.10.15. */
3245 /*  */
3246 /* type1:pspoll, type2:null */
3247 void rtl8723b_fill_fake_txdesc(
3248         struct adapter *padapter,
3249         u8 *pDesc,
3250         u32 BufferLen,
3251         u8 IsPsPoll,
3252         u8 IsBTQosNull,
3253         u8 bDataFrame
3254 )
3255 {
3256         /*  Clear all status */
3257         memset(pDesc, 0, TXDESC_SIZE);
3258
3259         SET_TX_DESC_FIRST_SEG_8723B(pDesc, 1); /* bFirstSeg; */
3260         SET_TX_DESC_LAST_SEG_8723B(pDesc, 1); /* bLastSeg; */
3261
3262         SET_TX_DESC_OFFSET_8723B(pDesc, 0x28); /*  Offset = 32 */
3263
3264         SET_TX_DESC_PKT_SIZE_8723B(pDesc, BufferLen); /*  Buffer size + command header */
3265         SET_TX_DESC_QUEUE_SEL_8723B(pDesc, QSLT_MGNT); /*  Fixed queue of Mgnt queue */
3266
3267         /*  Set NAVUSEHDR to prevent Ps-poll AId filed to be changed to error vlaue by Hw. */
3268         if (true == IsPsPoll) {
3269                 SET_TX_DESC_NAV_USE_HDR_8723B(pDesc, 1);
3270         } else {
3271                 SET_TX_DESC_HWSEQ_EN_8723B(pDesc, 1); /*  Hw set sequence number */
3272                 SET_TX_DESC_HWSEQ_SEL_8723B(pDesc, 0);
3273         }
3274
3275         if (true == IsBTQosNull) {
3276                 SET_TX_DESC_BT_INT_8723B(pDesc, 1);
3277         }
3278
3279         SET_TX_DESC_USE_RATE_8723B(pDesc, 1); /*  use data rate which is set by Sw */
3280         SET_TX_DESC_OWN_8723B((u8 *)pDesc, 1);
3281
3282         SET_TX_DESC_TX_RATE_8723B(pDesc, DESC8723B_RATE1M);
3283
3284         /*  */
3285         /*  Encrypt the data frame if under security mode excepct null data. Suggested by CCW. */
3286         /*  */
3287         if (true == bDataFrame) {
3288                 u32 EncAlg;
3289
3290                 EncAlg = padapter->securitypriv.dot11PrivacyAlgrthm;
3291                 switch (EncAlg) {
3292                 case _NO_PRIVACY_:
3293                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3294                         break;
3295                 case _WEP40_:
3296                 case _WEP104_:
3297                 case _TKIP_:
3298                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x1);
3299                         break;
3300                 case _SMS4_:
3301                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x2);
3302                         break;
3303                 case _AES_:
3304                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x3);
3305                         break;
3306                 default:
3307                         SET_TX_DESC_SEC_TYPE_8723B(pDesc, 0x0);
3308                         break;
3309                 }
3310         }
3311
3312         /*  USB interface drop packet if the checksum of descriptor isn't correct. */
3313         /*  Using this checksum can let hardware recovery from packet bulk out error (e.g. Cancel URC, Bulk out error.). */
3314         rtl8723b_cal_txdesc_chksum((struct tx_desc *)pDesc);
3315 }
3316
3317 static void hw_var_set_opmode(struct adapter *padapter, u8 variable, u8 *val)
3318 {
3319         u8 val8;
3320         u8 mode = *((u8 *)val);
3321
3322         {
3323                 /*  disable Port0 TSF update */
3324                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3325                 val8 |= DIS_TSF_UDT;
3326                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3327
3328                 /*  set net_type */
3329                 Set_MSR(padapter, mode);
3330                 DBG_871X("#### %s() -%d iface_type(0) mode = %d ####\n", __func__, __LINE__, mode);
3331
3332                 if ((mode == _HW_STATE_STATION_) || (mode == _HW_STATE_NOLINK_)) {
3333                         {
3334                                 StopTxBeacon(padapter);
3335 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3336 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3337                                 rtw_write8(padapter, REG_DRVERLYINT, 0x05); /*  restore early int time to 5ms */
3338                                 UpdateInterruptMask8812AU(padapter, true, 0, IMR_BCNDMAINT0_8723B);
3339 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3340
3341 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3342                                 UpdateInterruptMask8812AU(padapter, true, 0, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B));
3343 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3344
3345 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3346                         }
3347
3348                         /*  disable atim wnd */
3349                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_ATIM);
3350                         /* rtw_write8(padapter, REG_BCN_CTRL, 0x18); */
3351                 } else if ((mode == _HW_STATE_ADHOC_) /*|| (mode == _HW_STATE_AP_)*/) {
3352                         ResumeTxBeacon(padapter);
3353                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|EN_BCN_FUNCTION|DIS_BCNQ_SUB);
3354                 } else if (mode == _HW_STATE_AP_) {
3355 #ifdef CONFIG_INTERRUPT_BASED_TXBCN
3356 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT
3357                         UpdateInterruptMask8723BU(padapter, true, IMR_BCNDMAINT0_8723B, 0);
3358 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_EARLY_INT */
3359
3360 #ifdef CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR
3361                         UpdateInterruptMask8723BU(padapter, true, (IMR_TXBCN0ERR_8723B|IMR_TXBCN0OK_8723B), 0);
3362 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN_BCN_OK_ERR */
3363
3364 #endif /*  CONFIG_INTERRUPT_BASED_TXBCN */
3365
3366                         ResumeTxBeacon(padapter);
3367
3368                         rtw_write8(padapter, REG_BCN_CTRL, DIS_TSF_UDT|DIS_BCNQ_SUB);
3369
3370                         /* Set RCR */
3371                         rtw_write32(padapter, REG_RCR, 0x7000208e);/* CBSSID_DATA must set to 0, reject ICV_ERR packet */
3372                         /* enable to rx data frame */
3373                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3374                         /* enable to rx ps-poll */
3375                         rtw_write16(padapter, REG_RXFLTMAP1, 0x0400);
3376
3377                         /* Beacon Control related register for first time */
3378                         rtw_write8(padapter, REG_BCNDMATIM, 0x02); /*  2ms */
3379
3380                         /* rtw_write8(padapter, REG_BCN_MAX_ERR, 0xFF); */
3381                         rtw_write8(padapter, REG_ATIMWND, 0x0a); /*  10ms */
3382                         rtw_write16(padapter, REG_BCNTCFG, 0x00);
3383                         rtw_write16(padapter, REG_TBTT_PROHIBIT, 0xff04);
3384                         rtw_write16(padapter, REG_TSFTR_SYN_OFFSET, 0x7fff);/*  +32767 (~32ms) */
3385
3386                         /* reset TSF */
3387                         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3388
3389                         /* enable BCN0 Function for if1 */
3390                         /* don't enable update TSF0 for if1 (due to TSF update when beacon/probe rsp are received) */
3391                         rtw_write8(padapter, REG_BCN_CTRL, (DIS_TSF_UDT|EN_BCN_FUNCTION|EN_TXBCN_RPT|DIS_BCNQ_SUB));
3392
3393                         /* SW_BCN_SEL - Port0 */
3394                         /* rtw_write8(Adapter, REG_DWBCN1_CTRL_8192E+2, rtw_read8(Adapter, REG_DWBCN1_CTRL_8192E+2) & ~BIT4); */
3395                         rtw_hal_set_hwreg(padapter, HW_VAR_DL_BCN_SEL, NULL);
3396
3397                         /*  select BCN on port 0 */
3398                         rtw_write8(
3399                                 padapter,
3400                                 REG_CCK_CHECK_8723B,
3401                                 (rtw_read8(padapter, REG_CCK_CHECK_8723B)&~BIT_BCN_PORT_SEL)
3402                         );
3403
3404                         /*  dis BCN1 ATIM  WND if if2 is station */
3405                         val8 = rtw_read8(padapter, REG_BCN_CTRL_1);
3406                         val8 |= DIS_ATIM;
3407                         rtw_write8(padapter, REG_BCN_CTRL_1, val8);
3408                 }
3409         }
3410 }
3411
3412 static void hw_var_set_macaddr(struct adapter *padapter, u8 variable, u8 *val)
3413 {
3414         u8 idx = 0;
3415         u32 reg_macid;
3416
3417         reg_macid = REG_MACID;
3418
3419         for (idx = 0 ; idx < 6; idx++)
3420                 rtw_write8(GET_PRIMARY_ADAPTER(padapter), (reg_macid+idx), val[idx]);
3421 }
3422
3423 static void hw_var_set_bssid(struct adapter *padapter, u8 variable, u8 *val)
3424 {
3425         u8 idx = 0;
3426         u32 reg_bssid;
3427
3428         reg_bssid = REG_BSSID;
3429
3430         for (idx = 0 ; idx < 6; idx++)
3431                 rtw_write8(padapter, (reg_bssid+idx), val[idx]);
3432 }
3433
3434 static void hw_var_set_bcn_func(struct adapter *padapter, u8 variable, u8 *val)
3435 {
3436         u32 bcn_ctrl_reg;
3437
3438         bcn_ctrl_reg = REG_BCN_CTRL;
3439
3440         if (*(u8 *)val)
3441                 rtw_write8(padapter, bcn_ctrl_reg, (EN_BCN_FUNCTION | EN_TXBCN_RPT));
3442         else {
3443                 u8 val8;
3444                 val8 = rtw_read8(padapter, bcn_ctrl_reg);
3445                 val8 &= ~(EN_BCN_FUNCTION | EN_TXBCN_RPT);
3446
3447                 /*  Always enable port0 beacon function for PSTDMA */
3448                 if (REG_BCN_CTRL == bcn_ctrl_reg)
3449                         val8 |= EN_BCN_FUNCTION;
3450
3451                 rtw_write8(padapter, bcn_ctrl_reg, val8);
3452         }
3453 }
3454
3455 static void hw_var_set_correct_tsf(struct adapter *padapter, u8 variable, u8 *val)
3456 {
3457         u8 val8;
3458         u64 tsf;
3459         struct mlme_ext_priv *pmlmeext;
3460         struct mlme_ext_info *pmlmeinfo;
3461
3462
3463         pmlmeext = &padapter->mlmeextpriv;
3464         pmlmeinfo = &pmlmeext->mlmext_info;
3465
3466         tsf = pmlmeext->TSFValue-rtw_modular64(pmlmeext->TSFValue, (pmlmeinfo->bcn_interval*1024))-1024; /* us */
3467
3468         if (
3469                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3470                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3471         )
3472                 StopTxBeacon(padapter);
3473
3474         {
3475                 /*  disable related TSF function */
3476                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3477                 val8 &= ~EN_BCN_FUNCTION;
3478                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3479
3480                 rtw_write32(padapter, REG_TSFTR, tsf);
3481                 rtw_write32(padapter, REG_TSFTR+4, tsf>>32);
3482
3483                 /*  enable related TSF function */
3484                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3485                 val8 |= EN_BCN_FUNCTION;
3486                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3487         }
3488
3489         if (
3490                 ((pmlmeinfo->state&0x03) == WIFI_FW_ADHOC_STATE) ||
3491                 ((pmlmeinfo->state&0x03) == WIFI_FW_AP_STATE)
3492         )
3493                 ResumeTxBeacon(padapter);
3494 }
3495
3496 static void hw_var_set_mlme_disconnect(struct adapter *padapter, u8 variable, u8 *val)
3497 {
3498         u8 val8;
3499
3500         /*  Set RCR to not to receive data frame when NO LINK state */
3501         /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR) & ~RCR_ADF); */
3502         /*  reject all data frames */
3503         rtw_write16(padapter, REG_RXFLTMAP2, 0);
3504
3505         /*  reset TSF */
3506         rtw_write8(padapter, REG_DUAL_TSF_RST, BIT(0));
3507
3508         /*  disable update TSF */
3509         val8 = rtw_read8(padapter, REG_BCN_CTRL);
3510         val8 |= DIS_TSF_UDT;
3511         rtw_write8(padapter, REG_BCN_CTRL, val8);
3512 }
3513
3514 static void hw_var_set_mlme_sitesurvey(struct adapter *padapter, u8 variable, u8 *val)
3515 {
3516         u32 value_rcr, rcr_clear_bit, reg_bcn_ctl;
3517         u16 value_rxfltmap2;
3518         u8 val8;
3519         struct hal_com_data *pHalData;
3520         struct mlme_priv *pmlmepriv;
3521
3522
3523         pHalData = GET_HAL_DATA(padapter);
3524         pmlmepriv = &padapter->mlmepriv;
3525
3526         reg_bcn_ctl = REG_BCN_CTRL;
3527
3528         rcr_clear_bit = RCR_CBSSID_BCN;
3529
3530         /*  config RCR to receive different BSSID & not to receive data frame */
3531         value_rxfltmap2 = 0;
3532
3533         if ((check_fwstate(pmlmepriv, WIFI_AP_STATE) == true))
3534                 rcr_clear_bit = RCR_CBSSID_BCN;
3535
3536         value_rcr = rtw_read32(padapter, REG_RCR);
3537
3538         if (*((u8 *)val)) {
3539                 /*  under sitesurvey */
3540                 value_rcr &= ~(rcr_clear_bit);
3541                 rtw_write32(padapter, REG_RCR, value_rcr);
3542
3543                 rtw_write16(padapter, REG_RXFLTMAP2, value_rxfltmap2);
3544
3545                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3546                         /*  disable update TSF */
3547                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3548                         val8 |= DIS_TSF_UDT;
3549                         rtw_write8(padapter, reg_bcn_ctl, val8);
3550                 }
3551
3552                 /*  Save orignal RRSR setting. */
3553                 pHalData->RegRRSR = rtw_read16(padapter, REG_RRSR);
3554         } else {
3555                 /*  sitesurvey done */
3556                 if (check_fwstate(pmlmepriv, (_FW_LINKED|WIFI_AP_STATE)))
3557                         /*  enable to rx data frame */
3558                         rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3559
3560                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE | WIFI_ADHOC_STATE | WIFI_ADHOC_MASTER_STATE)) {
3561                         /*  enable update TSF */
3562                         val8 = rtw_read8(padapter, reg_bcn_ctl);
3563                         val8 &= ~DIS_TSF_UDT;
3564                         rtw_write8(padapter, reg_bcn_ctl, val8);
3565                 }
3566
3567                 value_rcr |= rcr_clear_bit;
3568                 rtw_write32(padapter, REG_RCR, value_rcr);
3569
3570                 /*  Restore orignal RRSR setting. */
3571                 rtw_write16(padapter, REG_RRSR, pHalData->RegRRSR);
3572         }
3573 }
3574
3575 static void hw_var_set_mlme_join(struct adapter *padapter, u8 variable, u8 *val)
3576 {
3577         u8 val8;
3578         u16 val16;
3579         u32 val32;
3580         u8 RetryLimit;
3581         u8 type;
3582         struct hal_com_data *pHalData;
3583         struct mlme_priv *pmlmepriv;
3584         struct eeprom_priv *pEEPROM;
3585
3586
3587         RetryLimit = 0x30;
3588         type = *(u8 *)val;
3589         pHalData = GET_HAL_DATA(padapter);
3590         pmlmepriv = &padapter->mlmepriv;
3591         pEEPROM = GET_EEPROM_EFUSE_PRIV(padapter);
3592
3593         if (type == 0) { /*  prepare to join */
3594                 /* enable to rx data frame.Accept all data frame */
3595                 /* rtw_write32(padapter, REG_RCR, rtw_read32(padapter, REG_RCR)|RCR_ADF); */
3596                 rtw_write16(padapter, REG_RXFLTMAP2, 0xFFFF);
3597
3598                 val32 = rtw_read32(padapter, REG_RCR);
3599                 if (padapter->in_cta_test)
3600                         val32 &= ~(RCR_CBSSID_DATA | RCR_CBSSID_BCN);/*  RCR_ADF */
3601                 else
3602                         val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3603                 rtw_write32(padapter, REG_RCR, val32);
3604
3605                 if (check_fwstate(pmlmepriv, WIFI_STATION_STATE) == true)
3606                         RetryLimit = (pEEPROM->CustomerID == RT_CID_CCX) ? 7 : 48;
3607                 else /*  Ad-hoc Mode */
3608                         RetryLimit = 0x7;
3609         } else if (type == 1) /* joinbss_event call back when join res < 0 */
3610                 rtw_write16(padapter, REG_RXFLTMAP2, 0x00);
3611         else if (type == 2) { /* sta add event call back */
3612                 /* enable update TSF */
3613                 val8 = rtw_read8(padapter, REG_BCN_CTRL);
3614                 val8 &= ~DIS_TSF_UDT;
3615                 rtw_write8(padapter, REG_BCN_CTRL, val8);
3616
3617                 if (check_fwstate(pmlmepriv, WIFI_ADHOC_STATE|WIFI_ADHOC_MASTER_STATE))
3618                         RetryLimit = 0x7;
3619         }
3620
3621         val16 = (RetryLimit << RETRY_LIMIT_SHORT_SHIFT) | (RetryLimit << RETRY_LIMIT_LONG_SHIFT);
3622         rtw_write16(padapter, REG_RL, val16);
3623 }
3624
3625 void CCX_FwC2HTxRpt_8723b(struct adapter *padapter, u8 *pdata, u8 len)
3626 {
3627         u8 seq_no;
3628
3629 #define GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(_Header)    LE_BITS_TO_1BYTE((_Header + 0), 6, 1)
3630 #define GET_8723B_C2H_TX_RPT_RETRY_OVER(_Header)        LE_BITS_TO_1BYTE((_Header + 0), 7, 1)
3631
3632         /* DBG_871X("%s, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x, 0x%x\n", __func__, */
3633         /*              *pdata, *(pdata+1), *(pdata+2), *(pdata+3), *(pdata+4), *(pdata+5), *(pdata+6), *(pdata+7)); */
3634
3635         seq_no = *(pdata+6);
3636
3637         if (GET_8723B_C2H_TX_RPT_RETRY_OVER(pdata) | GET_8723B_C2H_TX_RPT_LIFE_TIME_OVER(pdata)) {
3638                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3639         }
3640 /*
3641         else if (seq_no != padapter->xmitpriv.seq_no) {
3642                 DBG_871X("tx_seq_no =%d, rpt_seq_no =%d\n", padapter->xmitpriv.seq_no, seq_no);
3643                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_CCX_PKT_FAIL);
3644         }
3645 */
3646         else
3647                 rtw_ack_tx_done(&padapter->xmitpriv, RTW_SCTX_DONE_SUCCESS);
3648 }
3649
3650 s32 c2h_id_filter_ccx_8723b(u8 *buf)
3651 {
3652         struct c2h_evt_hdr_88xx *c2h_evt = (struct c2h_evt_hdr_88xx *)buf;
3653         s32 ret = false;
3654         if (c2h_evt->id == C2H_CCX_TX_RPT)
3655                 ret = true;
3656
3657         return ret;
3658 }
3659
3660
3661 s32 c2h_handler_8723b(struct adapter *padapter, u8 *buf)
3662 {
3663         struct c2h_evt_hdr_88xx *pC2hEvent = (struct c2h_evt_hdr_88xx *)buf;
3664         s32 ret = _SUCCESS;
3665         u8 index = 0;
3666
3667         if (pC2hEvent == NULL) {
3668                 DBG_8192C("%s(): pC2hEventis NULL\n", __func__);
3669                 ret = _FAIL;
3670                 goto exit;
3671         }
3672
3673         switch (pC2hEvent->id) {
3674         case C2H_AP_RPT_RSP:
3675                 break;
3676         case C2H_DBG:
3677                 {
3678                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("c2h_handler_8723b: %s\n", pC2hEvent->payload));
3679                 }
3680                 break;
3681
3682         case C2H_CCX_TX_RPT:
3683 /*                      CCX_FwC2HTxRpt(padapter, QueueID, pC2hEvent->payload); */
3684                 break;
3685
3686         case C2H_EXT_RA_RPT:
3687 /*                      C2HExtRaRptHandler(padapter, pC2hEvent->payload, C2hEvent.CmdLen); */
3688                 break;
3689
3690         case C2H_HW_INFO_EXCH:
3691                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3692                 for (index = 0; index < pC2hEvent->plen; index++) {
3693                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, pC2hEvent->payload[index]));
3694                 }
3695                 break;
3696
3697         case C2H_8723B_BT_INFO:
3698                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->plen, pC2hEvent->payload);
3699                 break;
3700
3701         default:
3702                 break;
3703         }
3704
3705         /*  Clear event to notify FW we have read the command. */
3706         /*  Note: */
3707         /*      If this field isn't clear, the FW won't update the next command message. */
3708 /*      rtw_write8(padapter, REG_C2HEVT_CLEAR, C2H_EVT_HOST_CLOSE); */
3709 exit:
3710         return ret;
3711 }
3712
3713 static void process_c2h_event(struct adapter *padapter, PC2H_EVT_HDR pC2hEvent, u8 *c2hBuf)
3714 {
3715         u8 index = 0;
3716
3717         if (c2hBuf == NULL) {
3718                 DBG_8192C("%s c2hbuff is NULL\n", __func__);
3719                 return;
3720         }
3721
3722         switch (pC2hEvent->CmdID) {
3723         case C2H_AP_RPT_RSP:
3724                 break;
3725         case C2H_DBG:
3726                 {
3727                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("C2HCommandHandler: %s\n", c2hBuf));
3728                 }
3729                 break;
3730
3731         case C2H_CCX_TX_RPT:
3732 /*                      CCX_FwC2HTxRpt(padapter, QueueID, tmpBuf); */
3733                 break;
3734
3735         case C2H_EXT_RA_RPT:
3736 /*                      C2HExtRaRptHandler(padapter, tmpBuf, C2hEvent.CmdLen); */
3737                 break;
3738
3739         case C2H_HW_INFO_EXCH:
3740                 RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], C2H_HW_INFO_EXCH\n"));
3741                 for (index = 0; index < pC2hEvent->CmdLen; index++) {
3742                         RT_TRACE(_module_hal_init_c_, _drv_info_, ("[BT], tmpBuf[%d]= 0x%x\n", index, c2hBuf[index]));
3743                 }
3744                 break;
3745
3746         case C2H_8723B_BT_INFO:
3747                 rtw_btcoex_BtInfoNotify(padapter, pC2hEvent->CmdLen, c2hBuf);
3748                 break;
3749
3750         default:
3751                 break;
3752         }
3753 }
3754
3755 void C2HPacketHandler_8723B(struct adapter *padapter, u8 *pbuffer, u16 length)
3756 {
3757         C2H_EVT_HDR     C2hEvent;
3758         u8 *tmpBuf = NULL;
3759 #ifdef CONFIG_WOWLAN
3760         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
3761
3762         if (pwrpriv->wowlan_mode == true) {
3763                 DBG_871X("%s(): return because wowolan_mode ==true! CMDID =%d\n", __func__, pbuffer[0]);
3764                 return;
3765         }
3766 #endif
3767         C2hEvent.CmdID = pbuffer[0];
3768         C2hEvent.CmdSeq = pbuffer[1];
3769         C2hEvent.CmdLen = length-2;
3770         tmpBuf = pbuffer+2;
3771
3772         /* DBG_871X("%s C2hEvent.CmdID:%x C2hEvent.CmdLen:%x C2hEvent.CmdSeq:%x\n", */
3773         /*              __func__, C2hEvent.CmdID, C2hEvent.CmdLen, C2hEvent.CmdSeq); */
3774         RT_PRINT_DATA(_module_hal_init_c_, _drv_notice_, "C2HPacketHandler_8723B(): Command Content:\n", tmpBuf, C2hEvent.CmdLen);
3775
3776         process_c2h_event(padapter, &C2hEvent, tmpBuf);
3777         /* c2h_handler_8723b(padapter,&C2hEvent); */
3778         return;
3779 }
3780
3781 void SetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
3782 {
3783         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
3784         u8 val8;
3785         u32 val32;
3786
3787         switch (variable) {
3788         case HW_VAR_MEDIA_STATUS:
3789                 val8 = rtw_read8(padapter, MSR) & 0x0c;
3790                 val8 |= *val;
3791                 rtw_write8(padapter, MSR, val8);
3792                 break;
3793
3794         case HW_VAR_MEDIA_STATUS1:
3795                 val8 = rtw_read8(padapter, MSR) & 0x03;
3796                 val8 |= *val << 2;
3797                 rtw_write8(padapter, MSR, val8);
3798                 break;
3799
3800         case HW_VAR_SET_OPMODE:
3801                 hw_var_set_opmode(padapter, variable, val);
3802                 break;
3803
3804         case HW_VAR_MAC_ADDR:
3805                 hw_var_set_macaddr(padapter, variable, val);
3806                 break;
3807
3808         case HW_VAR_BSSID:
3809                 hw_var_set_bssid(padapter, variable, val);
3810                 break;
3811
3812         case HW_VAR_BASIC_RATE:
3813         {
3814                 struct mlme_ext_info *mlmext_info = &padapter->mlmeextpriv.mlmext_info;
3815                 u16 input_b = 0, masked = 0, ioted = 0, BrateCfg = 0;
3816                 u16 rrsr_2g_force_mask = (RRSR_11M|RRSR_5_5M|RRSR_1M);
3817                 u16 rrsr_2g_allow_mask = (RRSR_24M|RRSR_12M|RRSR_6M|RRSR_CCK_RATES);
3818
3819                 HalSetBrateCfg(padapter, val, &BrateCfg);
3820                 input_b = BrateCfg;
3821
3822                 /* apply force and allow mask */
3823                 BrateCfg |= rrsr_2g_force_mask;
3824                 BrateCfg &= rrsr_2g_allow_mask;
3825                 masked = BrateCfg;
3826
3827                 #ifdef CONFIG_CMCC_TEST
3828                 BrateCfg |= (RRSR_11M|RRSR_5_5M|RRSR_1M); /* use 11M to send ACK */
3829                 BrateCfg |= (RRSR_24M|RRSR_18M|RRSR_12M); /* CMCC_OFDM_ACK 12/18/24M */
3830                 #endif
3831
3832                 /* IOT consideration */
3833                 if (mlmext_info->assoc_AP_vendor == HT_IOT_PEER_CISCO) {
3834                         /* if peer is cisco and didn't use ofdm rate, we enable 6M ack */
3835                         if ((BrateCfg & (RRSR_24M|RRSR_12M|RRSR_6M)) == 0)
3836                                 BrateCfg |= RRSR_6M;
3837                 }
3838                 ioted = BrateCfg;
3839
3840                 pHalData->BasicRateSet = BrateCfg;
3841
3842                 DBG_8192C("HW_VAR_BASIC_RATE: %#x -> %#x -> %#x\n", input_b, masked, ioted);
3843
3844                 /*  Set RRSR rate table. */
3845                 rtw_write16(padapter, REG_RRSR, BrateCfg);
3846                 rtw_write8(padapter, REG_RRSR+2, rtw_read8(padapter, REG_RRSR+2)&0xf0);
3847         }
3848                 break;
3849
3850         case HW_VAR_TXPAUSE:
3851                 rtw_write8(padapter, REG_TXPAUSE, *val);
3852                 break;
3853
3854         case HW_VAR_BCN_FUNC:
3855                 hw_var_set_bcn_func(padapter, variable, val);
3856                 break;
3857
3858         case HW_VAR_CORRECT_TSF:
3859                 hw_var_set_correct_tsf(padapter, variable, val);
3860                 break;
3861
3862         case HW_VAR_CHECK_BSSID:
3863                 {
3864                         u32 val32;
3865                         val32 = rtw_read32(padapter, REG_RCR);
3866                         if (*val)
3867                                 val32 |= RCR_CBSSID_DATA|RCR_CBSSID_BCN;
3868                         else
3869                                 val32 &= ~(RCR_CBSSID_DATA|RCR_CBSSID_BCN);
3870                         rtw_write32(padapter, REG_RCR, val32);
3871                 }
3872                 break;
3873
3874         case HW_VAR_MLME_DISCONNECT:
3875                 hw_var_set_mlme_disconnect(padapter, variable, val);
3876                 break;
3877
3878         case HW_VAR_MLME_SITESURVEY:
3879                 hw_var_set_mlme_sitesurvey(padapter, variable,  val);
3880
3881                 rtw_btcoex_ScanNotify(padapter, *val?true:false);
3882                 break;
3883
3884         case HW_VAR_MLME_JOIN:
3885                 hw_var_set_mlme_join(padapter, variable, val);
3886
3887                 switch (*val) {
3888                 case 0:
3889                         /*  prepare to join */
3890                         rtw_btcoex_ConnectNotify(padapter, true);
3891                         break;
3892                 case 1:
3893                         /*  joinbss_event callback when join res < 0 */
3894                         rtw_btcoex_ConnectNotify(padapter, false);
3895                         break;
3896                 case 2:
3897                         /*  sta add event callback */
3898 /*                              rtw_btcoex_MediaStatusNotify(padapter, RT_MEDIA_CONNECT); */
3899                         break;
3900                 }
3901                 break;
3902
3903         case HW_VAR_ON_RCR_AM:
3904                 val32 = rtw_read32(padapter, REG_RCR);
3905                 val32 |= RCR_AM;
3906                 rtw_write32(padapter, REG_RCR, val32);
3907                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3908                 break;
3909
3910         case HW_VAR_OFF_RCR_AM:
3911                 val32 = rtw_read32(padapter, REG_RCR);
3912                 val32 &= ~RCR_AM;
3913                 rtw_write32(padapter, REG_RCR, val32);
3914                 DBG_8192C("%s, %d, RCR = %x\n", __func__, __LINE__, rtw_read32(padapter, REG_RCR));
3915                 break;
3916
3917         case HW_VAR_BEACON_INTERVAL:
3918                 rtw_write16(padapter, REG_BCN_INTERVAL, *((u16 *)val));
3919                 break;
3920
3921         case HW_VAR_SLOT_TIME:
3922                 rtw_write8(padapter, REG_SLOT, *val);
3923                 break;
3924
3925         case HW_VAR_RESP_SIFS:
3926                 /* SIFS_Timer = 0x0a0a0808; */
3927                 /* RESP_SIFS for CCK */
3928                 rtw_write8(padapter, REG_RESP_SIFS_CCK, val[0]); /*  SIFS_T2T_CCK (0x08) */
3929                 rtw_write8(padapter, REG_RESP_SIFS_CCK+1, val[1]); /* SIFS_R2T_CCK(0x08) */
3930                 /* RESP_SIFS for OFDM */
3931                 rtw_write8(padapter, REG_RESP_SIFS_OFDM, val[2]); /* SIFS_T2T_OFDM (0x0a) */
3932                 rtw_write8(padapter, REG_RESP_SIFS_OFDM+1, val[3]); /* SIFS_R2T_OFDM(0x0a) */
3933                 break;
3934
3935         case HW_VAR_ACK_PREAMBLE:
3936                 {
3937                         u8 regTmp;
3938                         u8 bShortPreamble = *val;
3939
3940                         /*  Joseph marked out for Netgear 3500 TKIP channel 7 issue.(Temporarily) */
3941                         /* regTmp = (pHalData->nCur40MhzPrimeSC)<<5; */
3942                         regTmp = 0;
3943                         if (bShortPreamble)
3944                                 regTmp |= 0x80;
3945                         rtw_write8(padapter, REG_RRSR+2, regTmp);
3946                 }
3947                 break;
3948
3949         case HW_VAR_CAM_EMPTY_ENTRY:
3950                 {
3951                         u8 ucIndex = *val;
3952                         u8 i;
3953                         u32 ulCommand = 0;
3954                         u32 ulContent = 0;
3955                         u32 ulEncAlgo = CAM_AES;
3956
3957                         for (i = 0; i < CAM_CONTENT_COUNT; i++) {
3958                                 /*  filled id in CAM config 2 byte */
3959                                 if (i == 0) {
3960                                         ulContent |= (ucIndex & 0x03) | ((u16)(ulEncAlgo)<<2);
3961                                         /* ulContent |= CAM_VALID; */
3962                                 } else
3963                                         ulContent = 0;
3964
3965                                 /*  polling bit, and No Write enable, and address */
3966                                 ulCommand = CAM_CONTENT_COUNT*ucIndex+i;
3967                                 ulCommand = ulCommand | CAM_POLLINIG | CAM_WRITE;
3968                                 /*  write content 0 is equall to mark invalid */
3969                                 rtw_write32(padapter, WCAMI, ulContent);  /* mdelay(40); */
3970                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A4: %lx\n", ulContent)); */
3971                                 rtw_write32(padapter, RWCAM, ulCommand);  /* mdelay(40); */
3972                                 /* RT_TRACE(COMP_SEC, DBG_LOUD, ("CAM_empty_entry(): WRITE A0: %lx\n", ulCommand)); */
3973                         }
3974                 }
3975                 break;
3976
3977         case HW_VAR_CAM_INVALID_ALL:
3978                 rtw_write32(padapter, RWCAM, BIT(31)|BIT(30));
3979                 break;
3980
3981         case HW_VAR_CAM_WRITE:
3982                 {
3983                         u32 cmd;
3984                         u32 *cam_val = (u32 *)val;
3985
3986                         rtw_write32(padapter, WCAMI, cam_val[0]);
3987
3988                         cmd = CAM_POLLINIG | CAM_WRITE | cam_val[1];
3989                         rtw_write32(padapter, RWCAM, cmd);
3990                 }
3991                 break;
3992
3993         case HW_VAR_AC_PARAM_VO:
3994                 rtw_write32(padapter, REG_EDCA_VO_PARAM, *((u32 *)val));
3995                 break;
3996
3997         case HW_VAR_AC_PARAM_VI:
3998                 rtw_write32(padapter, REG_EDCA_VI_PARAM, *((u32 *)val));
3999                 break;
4000
4001         case HW_VAR_AC_PARAM_BE:
4002                 pHalData->AcParam_BE = ((u32 *)(val))[0];
4003                 rtw_write32(padapter, REG_EDCA_BE_PARAM, *((u32 *)val));
4004                 break;
4005
4006         case HW_VAR_AC_PARAM_BK:
4007                 rtw_write32(padapter, REG_EDCA_BK_PARAM, *((u32 *)val));
4008                 break;
4009
4010         case HW_VAR_ACM_CTRL:
4011                 {
4012                         u8 ctrl = *((u8 *)val);
4013                         u8 hwctrl = 0;
4014
4015                         if (ctrl != 0) {
4016                                 hwctrl |= AcmHw_HwEn;
4017
4018                                 if (ctrl & BIT(1)) /*  BE */
4019                                         hwctrl |= AcmHw_BeqEn;
4020
4021                                 if (ctrl & BIT(2)) /*  VI */
4022                                         hwctrl |= AcmHw_ViqEn;
4023
4024                                 if (ctrl & BIT(3)) /*  VO */
4025                                         hwctrl |= AcmHw_VoqEn;
4026                         }
4027
4028                         DBG_8192C("[HW_VAR_ACM_CTRL] Write 0x%02X\n", hwctrl);
4029                         rtw_write8(padapter, REG_ACMHWCTRL, hwctrl);
4030                 }
4031                 break;
4032
4033         case HW_VAR_AMPDU_FACTOR:
4034                 {
4035                         u32 AMPDULen =  (*((u8 *)val));
4036
4037                         if (AMPDULen < HT_AGG_SIZE_32K)
4038                                 AMPDULen = (0x2000 << (*((u8 *)val)))-1;
4039                         else
4040                                 AMPDULen = 0x7fff;
4041
4042                         rtw_write32(padapter, REG_AMPDU_MAX_LENGTH_8723B, AMPDULen);
4043                 }
4044                 break;
4045
4046         case HW_VAR_H2C_FW_PWRMODE:
4047                 {
4048                         u8 psmode = *val;
4049
4050                         /*  Forece leave RF low power mode for 1T1R to prevent conficting setting in Fw power */
4051                         /*  saving sequence. 2010.06.07. Added by tynli. Suggested by SD3 yschang. */
4052                         if (psmode != PS_MODE_ACTIVE) {
4053                                 ODM_RF_Saving(&pHalData->odmpriv, true);
4054                         }
4055
4056                         /* if (psmode != PS_MODE_ACTIVE)        { */
4057                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, true); */
4058                         /*  else { */
4059                         /*      rtl8723b_set_lowpwr_lps_cmd(padapter, false); */
4060                         /*  */
4061                         rtl8723b_set_FwPwrMode_cmd(padapter, psmode);
4062                 }
4063                 break;
4064         case HW_VAR_H2C_PS_TUNE_PARAM:
4065                 rtl8723b_set_FwPsTuneParam_cmd(padapter);
4066                 break;
4067
4068         case HW_VAR_H2C_FW_JOINBSSRPT:
4069                 rtl8723b_set_FwJoinBssRpt_cmd(padapter, *val);
4070                 break;
4071
4072         case HW_VAR_INITIAL_GAIN:
4073                 {
4074                         DIG_T *pDigTable = &pHalData->odmpriv.DM_DigTable;
4075                         u32 rx_gain = *(u32 *)val;
4076
4077                         if (rx_gain == 0xff) {/* restore rx gain */
4078                                 ODM_Write_DIG(&pHalData->odmpriv, pDigTable->BackupIGValue);
4079                         } else {
4080                                 pDigTable->BackupIGValue = pDigTable->CurIGValue;
4081                                 ODM_Write_DIG(&pHalData->odmpriv, rx_gain);
4082                         }
4083                 }
4084                 break;
4085
4086         case HW_VAR_EFUSE_USAGE:
4087                 pHalData->EfuseUsedPercentage = *val;
4088                 break;
4089
4090         case HW_VAR_EFUSE_BYTES:
4091                 pHalData->EfuseUsedBytes = *((u16 *)val);
4092                 break;
4093
4094         case HW_VAR_EFUSE_BT_USAGE:
4095 #ifdef HAL_EFUSE_MEMORY
4096                 pHalData->EfuseHal.BTEfuseUsedPercentage = *val;
4097 #endif
4098                 break;
4099
4100         case HW_VAR_EFUSE_BT_BYTES:
4101 #ifdef HAL_EFUSE_MEMORY
4102                 pHalData->EfuseHal.BTEfuseUsedBytes = *((u16 *)val);
4103 #else
4104                 BTEfuseUsedBytes = *((u16 *)val);
4105 #endif
4106                 break;
4107
4108         case HW_VAR_FIFO_CLEARN_UP:
4109                 {
4110                         #define RW_RELEASE_EN           BIT(18)
4111                         #define RXDMA_IDLE                      BIT(17)
4112
4113                         struct pwrctrl_priv *pwrpriv = adapter_to_pwrctl(padapter);
4114                         u8 trycnt = 100;
4115
4116                         /*  pause tx */
4117                         rtw_write8(padapter, REG_TXPAUSE, 0xff);
4118
4119                         /*  keep sn */
4120                         padapter->xmitpriv.nqos_ssn = rtw_read16(padapter, REG_NQOS_SEQ);
4121
4122                         if (pwrpriv->bkeepfwalive != true) {
4123                                 /* RX DMA stop */
4124                                 val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4125                                 val32 |= RW_RELEASE_EN;
4126                                 rtw_write32(padapter, REG_RXPKT_NUM, val32);
4127                                 do {
4128                                         val32 = rtw_read32(padapter, REG_RXPKT_NUM);
4129                                         val32 &= RXDMA_IDLE;
4130                                         if (val32)
4131                                                 break;
4132
4133                                         DBG_871X("%s: [HW_VAR_FIFO_CLEARN_UP] val =%x times:%d\n", __func__, val32, trycnt);
4134                                 } while (--trycnt);
4135
4136                                 if (trycnt == 0) {
4137                                         DBG_8192C("[HW_VAR_FIFO_CLEARN_UP] Stop RX DMA failed......\n");
4138                                 }
4139
4140                                 /*  RQPN Load 0 */
4141                                 rtw_write16(padapter, REG_RQPN_NPQ, 0);
4142                                 rtw_write32(padapter, REG_RQPN, 0x80000000);
4143                                 mdelay(2);
4144                         }
4145                 }
4146                 break;
4147
4148         case HW_VAR_APFM_ON_MAC:
4149                 pHalData->bMacPwrCtrlOn = *val;
4150                 DBG_8192C("%s: bMacPwrCtrlOn =%d\n", __func__, pHalData->bMacPwrCtrlOn);
4151                 break;
4152
4153         case HW_VAR_NAV_UPPER:
4154                 {
4155                         u32 usNavUpper = *((u32 *)val);
4156
4157                         if (usNavUpper > HAL_NAV_UPPER_UNIT_8723B * 0xFF) {
4158                                 RT_TRACE(_module_hal_init_c_, _drv_notice_, ("The setting value (0x%08X us) of NAV_UPPER is larger than (%d * 0xFF)!!!\n", usNavUpper, HAL_NAV_UPPER_UNIT_8723B));
4159                                 break;
4160                         }
4161
4162                         /*  The value of ((usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B) */
4163                         /*  is getting the upper integer. */
4164                         usNavUpper = (usNavUpper + HAL_NAV_UPPER_UNIT_8723B - 1) / HAL_NAV_UPPER_UNIT_8723B;
4165                         rtw_write8(padapter, REG_NAV_UPPER, (u8)usNavUpper);
4166                 }
4167                 break;
4168
4169         case HW_VAR_H2C_MEDIA_STATUS_RPT:
4170                 {
4171                         u16 mstatus_rpt = (*(u16 *)val);
4172                         u8 mstatus, macId;
4173
4174                         mstatus = (u8) (mstatus_rpt & 0xFF);
4175                         macId = (u8)(mstatus_rpt >> 8);
4176                         rtl8723b_set_FwMediaStatusRpt_cmd(padapter, mstatus, macId);
4177                 }
4178                 break;
4179         case HW_VAR_BCN_VALID:
4180                 {
4181                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2, write 1 to clear, Clear by sw */
4182                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4183                         val8 |= BIT(0);
4184                         rtw_write8(padapter, REG_TDECTRL+2, val8);
4185                 }
4186                 break;
4187
4188         case HW_VAR_DL_BCN_SEL:
4189                 {
4190                         /*  SW_BCN_SEL - Port0 */
4191                         val8 = rtw_read8(padapter, REG_DWBCN1_CTRL_8723B+2);
4192                         val8 &= ~BIT(4);
4193                         rtw_write8(padapter, REG_DWBCN1_CTRL_8723B+2, val8);
4194                 }
4195                 break;
4196
4197         case HW_VAR_DO_IQK:
4198                 pHalData->bNeedIQK = true;
4199                 break;
4200
4201         case HW_VAR_DL_RSVD_PAGE:
4202                 if (check_fwstate(&padapter->mlmepriv, WIFI_AP_STATE) == true)
4203                         rtl8723b_download_BTCoex_AP_mode_rsvd_page(padapter);
4204                 else
4205                         rtl8723b_download_rsvd_page(padapter, RT_MEDIA_CONNECT);
4206                 break;
4207
4208         case HW_VAR_MACID_SLEEP:
4209                 /*  Input is MACID */
4210                 val32 = *(u32 *)val;
4211                 if (val32 > 31) {
4212                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] Invalid macid(%d)\n",
4213                                 FUNC_ADPT_ARG(padapter), val32);
4214                         break;
4215                 }
4216                 val8 = (u8)val32; /*  macid is between 0~31 */
4217
4218                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4219                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_SLEEP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4220                         FUNC_ADPT_ARG(padapter), val8, val32);
4221                 if (val32 & BIT(val8))
4222                         break;
4223                 val32 |= BIT(val8);
4224                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4225                 break;
4226
4227         case HW_VAR_MACID_WAKEUP:
4228                 /*  Input is MACID */
4229                 val32 = *(u32 *)val;
4230                 if (val32 > 31) {
4231                         DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] Invalid macid(%d)\n",
4232                                 FUNC_ADPT_ARG(padapter), val32);
4233                         break;
4234                 }
4235                 val8 = (u8)val32; /*  macid is between 0~31 */
4236
4237                 val32 = rtw_read32(padapter, REG_MACID_SLEEP);
4238                 DBG_8192C(FUNC_ADPT_FMT ": [HW_VAR_MACID_WAKEUP] macid =%d, org MACID_SLEEP = 0x%08X\n",
4239                         FUNC_ADPT_ARG(padapter), val8, val32);
4240                 if (!(val32 & BIT(val8)))
4241                         break;
4242                 val32 &= ~BIT(val8);
4243                 rtw_write32(padapter, REG_MACID_SLEEP, val32);
4244                 break;
4245
4246         default:
4247                 SetHwReg(padapter, variable, val);
4248                 break;
4249         }
4250 }
4251
4252 void GetHwReg8723B(struct adapter *padapter, u8 variable, u8 *val)
4253 {
4254         struct hal_com_data *pHalData = GET_HAL_DATA(padapter);
4255         u8 val8;
4256         u16 val16;
4257
4258         switch (variable) {
4259         case HW_VAR_TXPAUSE:
4260                 *val = rtw_read8(padapter, REG_TXPAUSE);
4261                 break;
4262
4263         case HW_VAR_BCN_VALID:
4264                 {
4265                         /*  BCN_VALID, BIT16 of REG_TDECTRL = BIT0 of REG_TDECTRL+2 */
4266                         val8 = rtw_read8(padapter, REG_TDECTRL+2);
4267                         *val = (BIT(0) & val8) ? true : false;
4268                 }
4269                 break;
4270
4271         case HW_VAR_FWLPS_RF_ON:
4272                 {
4273                         /*  When we halt NIC, we should check if FW LPS is leave. */
4274                         u32 valRCR;
4275
4276                         if (
4277                                 (padapter->bSurpriseRemoved == true) ||
4278                                 (adapter_to_pwrctl(padapter)->rf_pwrstate == rf_off)
4279                         ) {
4280                                 /*  If it is in HW/SW Radio OFF or IPS state, we do not check Fw LPS Leave, */
4281                                 /*  because Fw is unload. */
4282                                 *val = true;
4283                         } else {
4284                                 valRCR = rtw_read32(padapter, REG_RCR);
4285                                 valRCR &= 0x00070000;
4286                                 if (valRCR)
4287                                         *val = false;
4288                                 else
4289                                         *val = true;
4290                         }
4291                 }
4292                 break;
4293
4294         case HW_VAR_EFUSE_USAGE:
4295                 *val = pHalData->EfuseUsedPercentage;
4296                 break;
4297
4298         case HW_VAR_EFUSE_BYTES:
4299                 *((u16 *)val) = pHalData->EfuseUsedBytes;
4300                 break;
4301
4302         case HW_VAR_EFUSE_BT_USAGE:
4303 #ifdef HAL_EFUSE_MEMORY
4304                 *val = pHalData->EfuseHal.BTEfuseUsedPercentage;
4305 #endif
4306                 break;
4307
4308         case HW_VAR_EFUSE_BT_BYTES:
4309 #ifdef HAL_EFUSE_MEMORY
4310                 *((u16 *)val) = pHalData->EfuseHal.BTEfuseUsedBytes;
4311 #else
4312                 *((u16 *)val) = BTEfuseUsedBytes;
4313 #endif
4314                 break;
4315
4316         case HW_VAR_APFM_ON_MAC:
4317                 *val = pHalData->bMacPwrCtrlOn;
4318                 break;
4319         case HW_VAR_CHK_HI_QUEUE_EMPTY:
4320                 val16 = rtw_read16(padapter, REG_TXPKT_EMPTY);
4321                 *val = (val16 & BIT(10)) ? true:false;
4322                 break;
4323 #ifdef CONFIG_WOWLAN
4324         case HW_VAR_RPWM_TOG:
4325                 *val = rtw_read8(padapter, SDIO_LOCAL_BASE|SDIO_REG_HRPWM1) & BIT7;
4326                 break;
4327         case HW_VAR_WAKEUP_REASON:
4328                 *val = rtw_read8(padapter, REG_WOWLAN_WAKE_REASON);
4329                 if (*val == 0xEA)
4330                         *val = 0;
4331                 break;
4332         case HW_VAR_SYS_CLKR:
4333                 *val = rtw_read8(padapter, REG_SYS_CLKR);
4334                 break;
4335 #endif
4336         default:
4337                 GetHwReg(padapter, variable, val);
4338                 break;
4339         }
4340 }
4341
4342 /*
4343  *Description:
4344  *      Change default setting of specified variable.
4345  */
4346 u8 SetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4347 {
4348         struct hal_com_data *pHalData;
4349         u8 bResult;
4350
4351
4352         pHalData = GET_HAL_DATA(padapter);
4353         bResult = _SUCCESS;
4354
4355         switch (variable) {
4356         default:
4357                 bResult = SetHalDefVar(padapter, variable, pval);
4358                 break;
4359         }
4360
4361         return bResult;
4362 }
4363
4364 /*
4365  *Description:
4366  *      Query setting of specified variable.
4367  */
4368 u8 GetHalDefVar8723B(struct adapter *padapter, enum HAL_DEF_VARIABLE variable, void *pval)
4369 {
4370         struct hal_com_data *pHalData;
4371         u8 bResult;
4372
4373
4374         pHalData = GET_HAL_DATA(padapter);
4375         bResult = _SUCCESS;
4376
4377         switch (variable) {
4378         case HAL_DEF_MAX_RECVBUF_SZ:
4379                 *((u32 *)pval) = MAX_RECVBUF_SZ;
4380                 break;
4381
4382         case HAL_DEF_RX_PACKET_OFFSET:
4383                 *((u32 *)pval) = RXDESC_SIZE + DRVINFO_SZ*8;
4384                 break;
4385
4386         case HW_VAR_MAX_RX_AMPDU_FACTOR:
4387                 /*  Stanley@BB.SD3 suggests 16K can get stable performance */
4388                 /*  The experiment was done on SDIO interface */
4389                 /*  coding by Lucas@20130730 */
4390                 *(u32 *)pval = MAX_AMPDU_FACTOR_16K;
4391                 break;
4392         case HAL_DEF_TX_LDPC:
4393         case HAL_DEF_RX_LDPC:
4394                 *((u8 *)pval) = false;
4395                 break;
4396         case HAL_DEF_TX_STBC:
4397                 *((u8 *)pval) = 0;
4398                 break;
4399         case HAL_DEF_RX_STBC:
4400                 *((u8 *)pval) = 1;
4401                 break;
4402         case HAL_DEF_EXPLICIT_BEAMFORMER:
4403         case HAL_DEF_EXPLICIT_BEAMFORMEE:
4404                 *((u8 *)pval) = false;
4405                 break;
4406
4407         case HW_DEF_RA_INFO_DUMP:
4408                 {
4409                         u8 mac_id = *(u8 *)pval;
4410                         u32 cmd;
4411                         u32 ra_info1, ra_info2;
4412                         u32 rate_mask1, rate_mask2;
4413                         u8 curr_tx_rate, curr_tx_sgi, hight_rate, lowest_rate;
4414
4415                         DBG_8192C("============ RA status check  Mac_id:%d ===================\n", mac_id);
4416
4417                         cmd = 0x40000100 | mac_id;
4418                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4419                         msleep(10);
4420                         ra_info1 = rtw_read32(padapter, 0x2F0);
4421                         curr_tx_rate = ra_info1&0x7F;
4422                         curr_tx_sgi = (ra_info1>>7)&0x01;
4423                         DBG_8192C("[ ra_info1:0x%08x ] =>cur_tx_rate = %s, cur_sgi:%d, PWRSTS = 0x%02x \n",
4424                                 ra_info1,
4425                                 HDATA_RATE(curr_tx_rate),
4426                                 curr_tx_sgi,
4427                                 (ra_info1>>8)  & 0x07);
4428
4429                         cmd = 0x40000400 | mac_id;
4430                         rtw_write32(padapter, REG_HMEBOX_DBG_2_8723B, cmd);
4431                         msleep(10);
4432                         ra_info1 = rtw_read32(padapter, 0x2F0);
4433                         ra_info2 = rtw_read32(padapter, 0x2F4);
4434                         rate_mask1 = rtw_read32(padapter, 0x2F8);
4435                         rate_mask2 = rtw_read32(padapter, 0x2FC);
4436                         hight_rate = ra_info2&0xFF;
4437                         lowest_rate = (ra_info2>>8)  & 0xFF;
4438
4439                         DBG_8192C("[ ra_info1:0x%08x ] =>RSSI =%d, BW_setting = 0x%02x, DISRA = 0x%02x, VHT_EN = 0x%02x\n",
4440                                 ra_info1,
4441                                 ra_info1&0xFF,
4442                                 (ra_info1>>8)  & 0xFF,
4443                                 (ra_info1>>16) & 0xFF,
4444                                 (ra_info1>>24) & 0xFF);
4445
4446                         DBG_8192C("[ ra_info2:0x%08x ] =>hight_rate =%s, lowest_rate =%s, SGI = 0x%02x, RateID =%d\n",
4447                                 ra_info2,
4448                                 HDATA_RATE(hight_rate),
4449                                 HDATA_RATE(lowest_rate),
4450                                 (ra_info2>>16) & 0xFF,
4451                                 (ra_info2>>24) & 0xFF);
4452
4453                         DBG_8192C("rate_mask2 = 0x%08x, rate_mask1 = 0x%08x\n", rate_mask2, rate_mask1);
4454
4455                 }
4456                 break;
4457
4458         case HAL_DEF_TX_PAGE_BOUNDARY:
4459                 if (!padapter->registrypriv.wifi_spec) {
4460                         *(u8 *)pval = TX_PAGE_BOUNDARY_8723B;
4461                 } else {
4462                         *(u8 *)pval = WMM_NORMAL_TX_PAGE_BOUNDARY_8723B;
4463                 }
4464                 break;
4465
4466         case HAL_DEF_MACID_SLEEP:
4467                 *(u8 *)pval = true; /*  support macid sleep */
4468                 break;
4469
4470         default:
4471                 bResult = GetHalDefVar(padapter, variable, pval);
4472                 break;
4473         }
4474
4475         return bResult;
4476 }
4477
4478 #ifdef CONFIG_WOWLAN
4479 void Hal_DetectWoWMode(struct adapter *padapter)
4480 {
4481         adapter_to_pwrctl(padapter)->bSupportRemoteWakeup = true;
4482         DBG_871X("%s\n", __func__);
4483 }
4484 #endif /* CONFIG_WOWLAN */
4485
4486 void rtl8723b_start_thread(struct adapter *padapter)
4487 {
4488 #ifndef CONFIG_SDIO_TX_TASKLET
4489         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4490
4491         xmitpriv->SdioXmitThread = kthread_run(rtl8723bs_xmit_thread, padapter, "RTWHALXT");
4492         if (IS_ERR(xmitpriv->SdioXmitThread)) {
4493                 RT_TRACE(_module_hal_xmit_c_, _drv_err_, ("%s: start rtl8723bs_xmit_thread FAIL!!\n", __func__));
4494         }
4495 #endif
4496 }
4497
4498 void rtl8723b_stop_thread(struct adapter *padapter)
4499 {
4500 #ifndef CONFIG_SDIO_TX_TASKLET
4501         struct xmit_priv *xmitpriv = &padapter->xmitpriv;
4502
4503         /*  stop xmit_buf_thread */
4504         if (xmitpriv->SdioXmitThread) {
4505                 up(&xmitpriv->SdioXmitSema);
4506                 down(&xmitpriv->SdioXmitTerminateSema);
4507                 xmitpriv->SdioXmitThread = NULL;
4508         }
4509 #endif
4510 }
4511
4512 #if defined(CONFIG_CHECK_BT_HANG)
4513 extern void check_bt_status_work(void *data);
4514 void rtl8723bs_init_checkbthang_workqueue(struct adapter *adapter)
4515 {
4516         adapter->priv_checkbt_wq = alloc_workqueue("sdio_wq", 0, 0);
4517         INIT_DELAYED_WORK(&adapter->checkbt_work, (void *)check_bt_status_work);
4518 }
4519
4520 void rtl8723bs_free_checkbthang_workqueue(struct adapter *adapter)
4521 {
4522         if (adapter->priv_checkbt_wq) {
4523                 cancel_delayed_work_sync(&adapter->checkbt_work);
4524                 flush_workqueue(adapter->priv_checkbt_wq);
4525                 destroy_workqueue(adapter->priv_checkbt_wq);
4526                 adapter->priv_checkbt_wq = NULL;
4527         }
4528 }
4529
4530 void rtl8723bs_cancle_checkbthang_workqueue(struct adapter *adapter)
4531 {
4532         if (adapter->priv_checkbt_wq)
4533                 cancel_delayed_work_sync(&adapter->checkbt_work);
4534 }
4535
4536 void rtl8723bs_hal_check_bt_hang(struct adapter *adapter)
4537 {
4538         if (adapter->priv_checkbt_wq)
4539                 queue_delayed_work(adapter->priv_checkbt_wq, &(adapter->checkbt_work), 0);
4540 }
4541 #endif