GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / staging / rtlwifi / efuse.c
1 // SPDX-License-Identifier: GPL-2.0
2 /******************************************************************************
3  *
4  * Copyright(c) 2009-2012  Realtek Corporation.
5  *
6  * Contact Information:
7  * wlanfae <wlanfae@realtek.com>
8  * Realtek Corporation, No. 2, Innovation Road II, Hsinchu Science Park,
9  * Hsinchu 300, Taiwan.
10  *
11  * Larry Finger <Larry.Finger@lwfinger.net>
12  *
13  *****************************************************************************/
14 #include "wifi.h"
15 #include "efuse.h"
16 #include "pci.h"
17 #include <linux/export.h>
18
19 static const u8 MAX_PGPKT_SIZE = 9;
20 static const u8 PGPKT_DATA_SIZE = 8;
21 static const int EFUSE_MAX_SIZE = 512;
22
23 #define START_ADDRESS           0x1000
24 #define REG_MCUFWDL             0x0080
25
26 static const struct efuse_map RTL8712_SDIO_EFUSE_TABLE[] = {
27         {0, 0, 0, 2},
28         {0, 1, 0, 2},
29         {0, 2, 0, 2},
30         {1, 0, 0, 1},
31         {1, 0, 1, 1},
32         {1, 1, 0, 1},
33         {1, 1, 1, 3},
34         {1, 3, 0, 17},
35         {3, 3, 1, 48},
36         {10, 0, 0, 6},
37         {10, 3, 0, 1},
38         {10, 3, 1, 1},
39         {11, 0, 0, 28}
40 };
41
42 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw, u16 offset,
43                                     u8 *value);
44 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw, u16 offset,
45                                     u16 *value);
46 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw, u16 offset,
47                                     u32 *value);
48 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw, u16 offset,
49                                      u8 value);
50 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw, u16 offset,
51                                      u16 value);
52 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw, u16 offset,
53                                      u32 value);
54 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr,
55                                 u8 data);
56 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse);
57 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset,
58                                 u8 *data);
59 static int efuse_pg_packet_write(struct ieee80211_hw *hw, u8 offset,
60                                  u8 word_en, u8 *data);
61 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
62                                         u8 *targetdata);
63 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
64                                   u16 efuse_addr, u8 word_en, u8 *data);
65 static u16 efuse_get_current_size(struct ieee80211_hw *hw);
66 static u8 efuse_calculate_word_cnts(u8 word_en);
67
68 void efuse_initialize(struct ieee80211_hw *hw)
69 {
70         struct rtl_priv *rtlpriv = rtl_priv(hw);
71         u8 bytetemp;
72         u8 temp;
73
74         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1);
75         temp = bytetemp | 0x20;
76         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_FUNC_EN] + 1, temp);
77
78         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1);
79         temp = bytetemp & 0xFE;
80         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[SYS_ISO_CTRL] + 1, temp);
81
82         bytetemp = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3);
83         temp = bytetemp | 0x80;
84         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_TEST] + 3, temp);
85
86         rtl_write_byte(rtlpriv, 0x2F8, 0x3);
87
88         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
89 }
90
91 u8 efuse_read_1byte(struct ieee80211_hw *hw, u16 address)
92 {
93         struct rtl_priv *rtlpriv = rtl_priv(hw);
94         u8 data;
95         u8 bytetemp;
96         u8 temp;
97         u32 k = 0;
98         const u32 efuse_len =
99                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
100
101         if (address < efuse_len) {
102                 temp = address & 0xFF;
103                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
104                                temp);
105                 bytetemp = rtl_read_byte(rtlpriv,
106                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
107                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
108                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
109                                temp);
110
111                 bytetemp = rtl_read_byte(rtlpriv,
112                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
113                 temp = bytetemp & 0x7F;
114                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
115                                temp);
116
117                 bytetemp = rtl_read_byte(rtlpriv,
118                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
119                 while (!(bytetemp & 0x80)) {
120                         bytetemp =
121                            rtl_read_byte(rtlpriv,
122                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
123                         k++;
124                         if (k == 1000) {
125                                 k = 0;
126                                 break;
127                         }
128                 }
129                 data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
130                 return data;
131         }
132         return 0xFF;
133 }
134
135 void efuse_write_1byte(struct ieee80211_hw *hw, u16 address, u8 value)
136 {
137         struct rtl_priv *rtlpriv = rtl_priv(hw);
138         u8 bytetemp;
139         u8 temp;
140         u32 k = 0;
141         const u32 efuse_len =
142                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
143
144         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "Addr=%x Data =%x\n",
145                  address, value);
146
147         if (address < efuse_len) {
148                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], value);
149
150                 temp = address & 0xFF;
151                 rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
152                                temp);
153                 bytetemp = rtl_read_byte(rtlpriv,
154                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
155
156                 temp = ((address >> 8) & 0x03) | (bytetemp & 0xFC);
157                 rtl_write_byte(rtlpriv,
158                                rtlpriv->cfg->maps[EFUSE_CTRL] + 2, temp);
159
160                 bytetemp = rtl_read_byte(rtlpriv,
161                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
162                 temp = bytetemp | 0x80;
163                 rtl_write_byte(rtlpriv,
164                                rtlpriv->cfg->maps[EFUSE_CTRL] + 3, temp);
165
166                 bytetemp = rtl_read_byte(rtlpriv,
167                                          rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
168
169                 while (bytetemp & 0x80) {
170                         bytetemp =
171                             rtl_read_byte(rtlpriv,
172                                           rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
173                         k++;
174                         if (k == 100) {
175                                 k = 0;
176                                 break;
177                         }
178                 }
179         }
180 }
181
182 void read_efuse_byte(struct ieee80211_hw *hw, u16 _offset, u8 *pbuf)
183 {
184         struct rtl_priv *rtlpriv = rtl_priv(hw);
185         u32 value32;
186         u8 readbyte;
187         u16 retry;
188
189         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
190                        (_offset & 0xff));
191         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2);
192         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
193                        ((_offset >> 8) & 0x03) | (readbyte & 0xfc));
194
195         readbyte = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3);
196         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3,
197                        (readbyte & 0x7f));
198
199         retry = 0;
200         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
201         while (!(((value32 >> 24) & 0xff) & 0x80) && (retry < 10000)) {
202                 value32 = rtl_read_dword(rtlpriv,
203                                          rtlpriv->cfg->maps[EFUSE_CTRL]);
204                 retry++;
205         }
206
207         udelay(50);
208         value32 = rtl_read_dword(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
209
210         *pbuf = (u8)(value32 & 0xff);
211 }
212
213 void read_efuse(struct ieee80211_hw *hw, u16 _offset, u16 _size_byte, u8 *pbuf)
214 {
215         struct rtl_priv *rtlpriv = rtl_priv(hw);
216         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
217         u8 *efuse_tbl;
218         u8 rtemp8[1];
219         u16 efuse_addr = 0;
220         u8 offset, wren;
221         u8 u1temp = 0;
222         u16 i;
223         u16 j;
224         const u16 efuse_max_section =
225                 rtlpriv->cfg->maps[EFUSE_MAX_SECTION_MAP];
226         const u32 efuse_len =
227                 rtlpriv->cfg->maps[EFUSE_REAL_CONTENT_SIZE];
228         u16 **efuse_word;
229         u16 efuse_utilized = 0;
230         u8 efuse_usage;
231
232         if ((_offset + _size_byte) > rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]) {
233                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
234                          "%s(): Invalid offset(%#x) with read bytes(%#x)!!\n",
235                          __func__, _offset, _size_byte);
236                 return;
237         }
238
239         /* allocate memory for efuse_tbl and efuse_word */
240         efuse_tbl = kzalloc(rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE],
241                             GFP_ATOMIC);
242         if (!efuse_tbl)
243                 return;
244         efuse_word = kcalloc(EFUSE_MAX_WORD_UNIT, sizeof(u16 *), GFP_ATOMIC);
245         if (!efuse_word)
246                 goto out;
247         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
248                 efuse_word[i] = kcalloc(efuse_max_section, sizeof(u16), GFP_ATOMIC);
249                 if (!efuse_word[i])
250                         goto done;
251         }
252
253         for (i = 0; i < efuse_max_section; i++)
254                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++)
255                         efuse_word[j][i] = 0xFFFF;
256
257         read_efuse_byte(hw, efuse_addr, rtemp8);
258         if (*rtemp8 != 0xFF) {
259                 efuse_utilized++;
260                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
261                         "Addr=%d\n", efuse_addr);
262                 efuse_addr++;
263         }
264
265         while ((*rtemp8 != 0xFF) && (efuse_addr < efuse_len)) {
266                 /*  Check PG header for section num.  */
267                 if ((*rtemp8 & 0x1F) == 0x0F) {/* extended header */
268                         u1temp = ((*rtemp8 & 0xE0) >> 5);
269                         read_efuse_byte(hw, efuse_addr, rtemp8);
270
271                         if ((*rtemp8 & 0x0F) == 0x0F) {
272                                 efuse_addr++;
273                                 read_efuse_byte(hw, efuse_addr, rtemp8);
274
275                                 if (*rtemp8 != 0xFF &&
276                                     (efuse_addr < efuse_len)) {
277                                         efuse_addr++;
278                                 }
279                                 continue;
280                         } else {
281                                 offset = ((*rtemp8 & 0xF0) >> 1) | u1temp;
282                                 wren = (*rtemp8 & 0x0F);
283                                 efuse_addr++;
284                         }
285                 } else {
286                         offset = ((*rtemp8 >> 4) & 0x0f);
287                         wren = (*rtemp8 & 0x0f);
288                 }
289
290                 if (offset < efuse_max_section) {
291                         RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
292                                 "offset-%d Worden=%x\n", offset, wren);
293
294                         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++) {
295                                 if (!(wren & 0x01)) {
296                                         RTPRINT(rtlpriv, FEEPROM,
297                                                 EFUSE_READ_ALL,
298                                                 "Addr=%d\n", efuse_addr);
299
300                                         read_efuse_byte(hw, efuse_addr, rtemp8);
301                                         efuse_addr++;
302                                         efuse_utilized++;
303                                         efuse_word[i][offset] =
304                                                          (*rtemp8 & 0xff);
305
306                                         if (efuse_addr >= efuse_len)
307                                                 break;
308
309                                         RTPRINT(rtlpriv, FEEPROM,
310                                                 EFUSE_READ_ALL,
311                                                 "Addr=%d\n", efuse_addr);
312
313                                         read_efuse_byte(hw, efuse_addr, rtemp8);
314                                         efuse_addr++;
315                                         efuse_utilized++;
316                                         efuse_word[i][offset] |=
317                                             (((u16)*rtemp8 << 8) & 0xff00);
318
319                                         if (efuse_addr >= efuse_len)
320                                                 break;
321                                 }
322
323                                 wren >>= 1;
324                         }
325                 }
326
327                 RTPRINT(rtlpriv, FEEPROM, EFUSE_READ_ALL,
328                         "Addr=%d\n", efuse_addr);
329                 read_efuse_byte(hw, efuse_addr, rtemp8);
330                 if (*rtemp8 != 0xFF && (efuse_addr < efuse_len)) {
331                         efuse_utilized++;
332                         efuse_addr++;
333                 }
334         }
335
336         for (i = 0; i < efuse_max_section; i++) {
337                 for (j = 0; j < EFUSE_MAX_WORD_UNIT; j++) {
338                         efuse_tbl[(i * 8) + (j * 2)] =
339                             (efuse_word[j][i] & 0xff);
340                         efuse_tbl[(i * 8) + ((j * 2) + 1)] =
341                             ((efuse_word[j][i] >> 8) & 0xff);
342                 }
343         }
344
345         for (i = 0; i < _size_byte; i++)
346                 pbuf[i] = efuse_tbl[_offset + i];
347
348         rtlefuse->efuse_usedbytes = efuse_utilized;
349         efuse_usage = (u8)((efuse_utilized * 100) / efuse_len);
350         rtlefuse->efuse_usedpercentage = efuse_usage;
351         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_BYTES,
352                                       (u8 *)&efuse_utilized);
353         rtlpriv->cfg->ops->set_hw_reg(hw, HW_VAR_EFUSE_USAGE,
354                                       &efuse_usage);
355 done:
356         for (i = 0; i < EFUSE_MAX_WORD_UNIT; i++)
357                 kfree(efuse_word[i]);
358         kfree(efuse_word);
359 out:
360         kfree(efuse_tbl);
361 }
362
363 bool efuse_shadow_update_chk(struct ieee80211_hw *hw)
364 {
365         struct rtl_priv *rtlpriv = rtl_priv(hw);
366         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
367         u8 section_idx, i, base;
368         u16 words_need = 0, hdr_num = 0, totalbytes, efuse_used;
369         bool wordchanged, result = true;
370
371         for (section_idx = 0; section_idx < 16; section_idx++) {
372                 base = section_idx * 8;
373                 wordchanged = false;
374
375                 for (i = 0; i < 8; i = i + 2) {
376                         if ((rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
377                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) ||
378                             (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i + 1] !=
379                              rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i +
380                                                                    1])) {
381                                 words_need++;
382                                 wordchanged = true;
383                         }
384                 }
385
386                 if (wordchanged)
387                         hdr_num++;
388         }
389
390         totalbytes = hdr_num + words_need * 2;
391         efuse_used = rtlefuse->efuse_usedbytes;
392
393         if ((totalbytes + efuse_used) >=
394             (EFUSE_MAX_SIZE - rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))
395                 result = false;
396
397         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
398                  "%s(): totalbytes(%#x), hdr_num(%#x), words_need(%#x), efuse_used(%d)\n",
399                  __func__, totalbytes, hdr_num, words_need, efuse_used);
400
401         return result;
402 }
403
404 void efuse_shadow_read(struct ieee80211_hw *hw, u8 type,
405                        u16 offset, u32 *value)
406 {
407         if (type == 1)
408                 efuse_shadow_read_1byte(hw, offset, (u8 *)value);
409         else if (type == 2)
410                 efuse_shadow_read_2byte(hw, offset, (u16 *)value);
411         else if (type == 4)
412                 efuse_shadow_read_4byte(hw, offset, value);
413 }
414
415 void efuse_shadow_write(struct ieee80211_hw *hw, u8 type, u16 offset,
416                         u32 value)
417 {
418         if (type == 1)
419                 efuse_shadow_write_1byte(hw, offset, (u8)value);
420         else if (type == 2)
421                 efuse_shadow_write_2byte(hw, offset, (u16)value);
422         else if (type == 4)
423                 efuse_shadow_write_4byte(hw, offset, value);
424 }
425
426 bool efuse_shadow_update(struct ieee80211_hw *hw)
427 {
428         struct rtl_priv *rtlpriv = rtl_priv(hw);
429         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
430         u16 i, offset, base;
431         u8 word_en = 0x0F;
432         u8 first_pg = false;
433
434         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
435
436         if (!efuse_shadow_update_chk(hw)) {
437                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
438                 memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
439                        &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
440                        rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
441
442                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
443                          "efuse out of capacity!!\n");
444                 return false;
445         }
446         efuse_power_switch(hw, true, true);
447
448         for (offset = 0; offset < 16; offset++) {
449                 word_en = 0x0F;
450                 base = offset * 8;
451
452                 for (i = 0; i < 8; i++) {
453                         if (first_pg) {
454                                 word_en &= ~(BIT(i / 2));
455
456                                 rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
457                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
458                         } else {
459                                 if (rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] !=
460                                     rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i]) {
461                                         word_en &= ~(BIT(i / 2));
462
463                                         rtlefuse->efuse_map[EFUSE_INIT_MAP][base + i] =
464                                             rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base + i];
465                                 }
466                         }
467                 }
468                 if (word_en != 0x0F) {
469                         u8 tmpdata[8];
470
471                         memcpy(tmpdata,
472                                &rtlefuse->efuse_map[EFUSE_MODIFY_MAP][base],
473                                8);
474                         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_LOUD,
475                                       "U-efuse\n", tmpdata, 8);
476
477                         if (!efuse_pg_packet_write(hw, (u8)offset, word_en,
478                                                    tmpdata)) {
479                                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
480                                          "PG section(%#x) fail!!\n", offset);
481                                 break;
482                         }
483                 }
484         }
485
486         efuse_power_switch(hw, true, false);
487         efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
488
489         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
490                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
491                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
492
493         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD, "\n");
494         return true;
495 }
496
497 void rtl_efuse_shadow_map_update(struct ieee80211_hw *hw)
498 {
499         struct rtl_priv *rtlpriv = rtl_priv(hw);
500         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
501
502         if (rtlefuse->autoload_failflag)
503                 memset((&rtlefuse->efuse_map[EFUSE_INIT_MAP][0]),
504                        0xFF, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
505         else
506                 efuse_read_all_map(hw, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0]);
507
508         memcpy(&rtlefuse->efuse_map[EFUSE_MODIFY_MAP][0],
509                &rtlefuse->efuse_map[EFUSE_INIT_MAP][0],
510                rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE]);
511 }
512
513 void efuse_force_write_vendor_id(struct ieee80211_hw *hw)
514 {
515         u8 tmpdata[8] = { 0xFF, 0xFF, 0xEC, 0x10, 0xFF, 0xFF, 0xFF, 0xFF };
516
517         efuse_power_switch(hw, true, true);
518
519         efuse_pg_packet_write(hw, 1, 0xD, tmpdata);
520
521         efuse_power_switch(hw, true, false);
522 }
523
524 void efuse_re_pg_section(struct ieee80211_hw *hw, u8 section_idx)
525 {
526 }
527
528 static void efuse_shadow_read_1byte(struct ieee80211_hw *hw,
529                                     u16 offset, u8 *value)
530 {
531         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
532         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
533 }
534
535 static void efuse_shadow_read_2byte(struct ieee80211_hw *hw,
536                                     u16 offset, u16 *value)
537 {
538         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
539
540         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
541         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
542 }
543
544 static void efuse_shadow_read_4byte(struct ieee80211_hw *hw,
545                                     u16 offset, u32 *value)
546 {
547         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
548
549         *value = rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset];
550         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] << 8;
551         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] << 16;
552         *value |= rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] << 24;
553 }
554
555 static void efuse_shadow_write_1byte(struct ieee80211_hw *hw,
556                                      u16 offset, u8 value)
557 {
558         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
559
560         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value;
561 }
562
563 static void efuse_shadow_write_2byte(struct ieee80211_hw *hw,
564                                      u16 offset, u16 value)
565 {
566         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
567
568         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] = value & 0x00FF;
569         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] = value >> 8;
570 }
571
572 static void efuse_shadow_write_4byte(struct ieee80211_hw *hw,
573                                      u16 offset, u32 value)
574 {
575         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
576
577         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset] =
578             (u8)(value & 0x000000FF);
579         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 1] =
580             (u8)((value >> 8) & 0x0000FF);
581         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 2] =
582             (u8)((value >> 16) & 0x00FF);
583         rtlefuse->efuse_map[EFUSE_MODIFY_MAP][offset + 3] =
584             (u8)((value >> 24) & 0xFF);
585 }
586
587 int efuse_one_byte_read(struct ieee80211_hw *hw, u16 addr, u8 *data)
588 {
589         struct rtl_priv *rtlpriv = rtl_priv(hw);
590         u8 tmpidx = 0;
591         int result;
592
593         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 1,
594                        (u8)(addr & 0xff));
595         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
596                        ((u8)((addr >> 8) & 0x03)) |
597                        (rtl_read_byte(rtlpriv,
598                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 2) &
599                         0xFC));
600
601         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0x72);
602
603         while (!(0x80 & rtl_read_byte(rtlpriv,
604                                       rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
605                (tmpidx < 100)) {
606                 tmpidx++;
607         }
608
609         if (tmpidx < 100) {
610                 *data = rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL]);
611                 result = true;
612         } else {
613                 *data = 0xff;
614                 result = false;
615         }
616         return result;
617 }
618
619 static int efuse_one_byte_write(struct ieee80211_hw *hw, u16 addr, u8 data)
620 {
621         struct rtl_priv *rtlpriv = rtl_priv(hw);
622         u8 tmpidx = 0;
623
624         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
625                  "Addr = %x Data=%x\n", addr, data);
626
627         rtl_write_byte(rtlpriv,
628                        rtlpriv->cfg->maps[EFUSE_CTRL] + 1, (u8)(addr & 0xff));
629         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 2,
630                        (rtl_read_byte(rtlpriv,
631                          rtlpriv->cfg->maps[EFUSE_CTRL] +
632                          2) & 0xFC) | (u8)((addr >> 8) & 0x03));
633
634         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL], data);
635         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3, 0xF2);
636
637         while ((0x80 &
638                 rtl_read_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CTRL] + 3)) &&
639                (tmpidx < 100)) {
640                 tmpidx++;
641         }
642
643         if (tmpidx < 100)
644                 return true;
645         return false;
646 }
647
648 static void efuse_read_all_map(struct ieee80211_hw *hw, u8 *efuse)
649 {
650         struct rtl_priv *rtlpriv = rtl_priv(hw);
651
652         efuse_power_switch(hw, false, true);
653         read_efuse(hw, 0, rtlpriv->cfg->maps[EFUSE_HWSET_MAX_SIZE], efuse);
654         efuse_power_switch(hw, false, false);
655 }
656
657 static void efuse_read_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
658                                   u8 efuse_data, u8 offset, u8 *tmpdata,
659                                   u8 *readstate)
660 {
661         bool dataempty = true;
662         u8 hoffset;
663         u8 tmpidx;
664         u8 hworden;
665         u8 word_cnts;
666
667         hoffset = (efuse_data >> 4) & 0x0F;
668         hworden = efuse_data & 0x0F;
669         word_cnts = efuse_calculate_word_cnts(hworden);
670
671         if (hoffset == offset) {
672                 for (tmpidx = 0; tmpidx < word_cnts * 2; tmpidx++) {
673                         if (efuse_one_byte_read(hw, *efuse_addr + 1 + tmpidx,
674                                                 &efuse_data)) {
675                                 tmpdata[tmpidx] = efuse_data;
676                                 if (efuse_data != 0xff)
677                                         dataempty = false;
678                         }
679                 }
680
681                 if (!dataempty) {
682                         *readstate = PG_STATE_DATA;
683                 } else {
684                         *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
685                         *readstate = PG_STATE_HEADER;
686                 }
687
688         } else {
689                 *efuse_addr = *efuse_addr + (word_cnts * 2) + 1;
690                 *readstate = PG_STATE_HEADER;
691         }
692 }
693
694 static int efuse_pg_packet_read(struct ieee80211_hw *hw, u8 offset, u8 *data)
695 {
696         u8 readstate = PG_STATE_HEADER;
697
698         bool continual = true;
699
700         u8 efuse_data, word_cnts = 0;
701         u16 efuse_addr = 0;
702         u8 tmpdata[8];
703
704         if (!data)
705                 return false;
706         if (offset > 15)
707                 return false;
708
709         memset(data, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
710         memset(tmpdata, 0xff, PGPKT_DATA_SIZE * sizeof(u8));
711
712         while (continual && (efuse_addr < EFUSE_MAX_SIZE)) {
713                 if (readstate & PG_STATE_HEADER) {
714                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
715                             (efuse_data != 0xFF))
716                                 efuse_read_data_case1(hw, &efuse_addr,
717                                                       efuse_data, offset,
718                                                       tmpdata, &readstate);
719                         else
720                                 continual = false;
721                 } else if (readstate & PG_STATE_DATA) {
722                         efuse_word_enable_data_read(0, tmpdata, data);
723                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
724                         readstate = PG_STATE_HEADER;
725                 }
726         }
727
728         if ((data[0] == 0xff) && (data[1] == 0xff) &&
729             (data[2] == 0xff) && (data[3] == 0xff) &&
730             (data[4] == 0xff) && (data[5] == 0xff) &&
731             (data[6] == 0xff) && (data[7] == 0xff))
732                 return false;
733         return true;
734 }
735
736 static void efuse_write_data_case1(struct ieee80211_hw *hw, u16 *efuse_addr,
737                                    u8 efuse_data, u8 offset,
738                                    int *continual, u8 *write_state,
739                                    struct pgpkt_struct *target_pkt,
740                                    int *repeat_times, int *result, u8 word_en)
741 {
742         struct rtl_priv *rtlpriv = rtl_priv(hw);
743         struct pgpkt_struct tmp_pkt;
744         int dataempty = true;
745         u8 originaldata[8 * sizeof(u8)];
746         u8 badworden = 0x0F;
747         u8 match_word_en, tmp_word_en;
748         u8 tmpindex;
749         u8 tmp_header = efuse_data;
750         u8 tmp_word_cnts;
751
752         tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
753         tmp_pkt.word_en = tmp_header & 0x0F;
754         tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
755
756         if (tmp_pkt.offset != target_pkt->offset) {
757                 *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
758                 *write_state = PG_STATE_HEADER;
759         } else {
760                 for (tmpindex = 0; tmpindex < (tmp_word_cnts * 2); tmpindex++) {
761                         if (efuse_one_byte_read(hw,
762                                                 (*efuse_addr + 1 + tmpindex),
763                                                 &efuse_data) &&
764                             (efuse_data != 0xFF))
765                                 dataempty = false;
766                 }
767
768                 if (!dataempty) {
769                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
770                         *write_state = PG_STATE_HEADER;
771                 } else {
772                         match_word_en = 0x0F;
773                         if (!((target_pkt->word_en & BIT(0)) |
774                             (tmp_pkt.word_en & BIT(0))))
775                                 match_word_en &= (~BIT(0));
776
777                         if (!((target_pkt->word_en & BIT(1)) |
778                             (tmp_pkt.word_en & BIT(1))))
779                                 match_word_en &= (~BIT(1));
780
781                         if (!((target_pkt->word_en & BIT(2)) |
782                             (tmp_pkt.word_en & BIT(2))))
783                                 match_word_en &= (~BIT(2));
784
785                         if (!((target_pkt->word_en & BIT(3)) |
786                             (tmp_pkt.word_en & BIT(3))))
787                                 match_word_en &= (~BIT(3));
788
789                         if ((match_word_en & 0x0F) != 0x0F) {
790                                 badworden =
791                                   enable_efuse_data_write(hw,
792                                                           *efuse_addr + 1,
793                                                           tmp_pkt.word_en,
794                                                           target_pkt->data);
795
796                                 if (0x0F != (badworden & 0x0F)) {
797                                         u8 reorg_offset = offset;
798                                         u8 reorg_worden = badworden;
799
800                                         efuse_pg_packet_write(hw, reorg_offset,
801                                                               reorg_worden,
802                                                               originaldata);
803                                 }
804
805                                 tmp_word_en = 0x0F;
806                                 if ((target_pkt->word_en & BIT(0)) ^
807                                     (match_word_en & BIT(0)))
808                                         tmp_word_en &= (~BIT(0));
809
810                                 if ((target_pkt->word_en & BIT(1)) ^
811                                     (match_word_en & BIT(1)))
812                                         tmp_word_en &= (~BIT(1));
813
814                                 if ((target_pkt->word_en & BIT(2)) ^
815                                     (match_word_en & BIT(2)))
816                                         tmp_word_en &= (~BIT(2));
817
818                                 if ((target_pkt->word_en & BIT(3)) ^
819                                     (match_word_en & BIT(3)))
820                                         tmp_word_en &= (~BIT(3));
821
822                                 if ((tmp_word_en & 0x0F) != 0x0F) {
823                                         *efuse_addr =
824                                             efuse_get_current_size(hw);
825                                         target_pkt->offset = offset;
826                                         target_pkt->word_en = tmp_word_en;
827                                 } else {
828                                         *continual = false;
829                                 }
830                                 *write_state = PG_STATE_HEADER;
831                                 *repeat_times += 1;
832                                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
833                                         *continual = false;
834                                         *result = false;
835                                 }
836                         } else {
837                                 *efuse_addr += (2 * tmp_word_cnts) + 1;
838                                 target_pkt->offset = offset;
839                                 target_pkt->word_en = word_en;
840                                 *write_state = PG_STATE_HEADER;
841                         }
842                 }
843         }
844         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse PG_STATE_HEADER-1\n");
845 }
846
847 static void efuse_write_data_case2(struct ieee80211_hw *hw, u16 *efuse_addr,
848                                    int *continual, u8 *write_state,
849                                    struct pgpkt_struct target_pkt,
850                                    int *repeat_times, int *result)
851 {
852         struct rtl_priv *rtlpriv = rtl_priv(hw);
853         struct pgpkt_struct tmp_pkt;
854         u8 pg_header;
855         u8 tmp_header;
856         u8 originaldata[8 * sizeof(u8)];
857         u8 tmp_word_cnts;
858         u8 badworden = 0x0F;
859
860         pg_header = ((target_pkt.offset << 4) & 0xf0) | target_pkt.word_en;
861         efuse_one_byte_write(hw, *efuse_addr, pg_header);
862         efuse_one_byte_read(hw, *efuse_addr, &tmp_header);
863
864         if (tmp_header == pg_header) {
865                 *write_state = PG_STATE_DATA;
866         } else if (tmp_header == 0xFF) {
867                 *write_state = PG_STATE_HEADER;
868                 *repeat_times += 1;
869                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
870                         *continual = false;
871                         *result = false;
872                 }
873         } else {
874                 tmp_pkt.offset = (tmp_header >> 4) & 0x0F;
875                 tmp_pkt.word_en = tmp_header & 0x0F;
876
877                 tmp_word_cnts = efuse_calculate_word_cnts(tmp_pkt.word_en);
878
879                 memset(originaldata, 0xff,  8 * sizeof(u8));
880
881                 if (efuse_pg_packet_read(hw, tmp_pkt.offset, originaldata)) {
882                         badworden = enable_efuse_data_write(hw,
883                                                             *efuse_addr + 1,
884                                                             tmp_pkt.word_en,
885                                                             originaldata);
886
887                         if (0x0F != (badworden & 0x0F)) {
888                                 u8 reorg_offset = tmp_pkt.offset;
889                                 u8 reorg_worden = badworden;
890
891                                 efuse_pg_packet_write(hw, reorg_offset,
892                                                       reorg_worden,
893                                                       originaldata);
894                                 *efuse_addr = efuse_get_current_size(hw);
895                         } else {
896                                 *efuse_addr = *efuse_addr +
897                                               (tmp_word_cnts * 2) + 1;
898                         }
899                 } else {
900                         *efuse_addr = *efuse_addr + (tmp_word_cnts * 2) + 1;
901                 }
902
903                 *write_state = PG_STATE_HEADER;
904                 *repeat_times += 1;
905                 if (*repeat_times > EFUSE_REPEAT_THRESHOLD_) {
906                         *continual = false;
907                         *result = false;
908                 }
909
910                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
911                         "efuse PG_STATE_HEADER-2\n");
912         }
913 }
914
915 static int efuse_pg_packet_write(struct ieee80211_hw *hw,
916                                  u8 offset, u8 word_en, u8 *data)
917 {
918         struct rtl_priv *rtlpriv = rtl_priv(hw);
919         struct pgpkt_struct target_pkt;
920         u8 write_state = PG_STATE_HEADER;
921         int continual = true, dataempty = true, result = true;
922         u16 efuse_addr = 0;
923         u8 efuse_data;
924         u8 target_word_cnts = 0;
925         u8 badworden = 0x0F;
926         static int repeat_times;
927
928         if (efuse_get_current_size(hw) >= (EFUSE_MAX_SIZE -
929                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
930                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
931                         "%s error\n", __func__);
932                 return false;
933         }
934
935         target_pkt.offset = offset;
936         target_pkt.word_en = word_en;
937
938         memset(target_pkt.data, 0xFF,  8 * sizeof(u8));
939
940         efuse_word_enable_data_read(word_en, data, target_pkt.data);
941         target_word_cnts = efuse_calculate_word_cnts(target_pkt.word_en);
942
943         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG, "efuse Power ON\n");
944
945         while (continual && (efuse_addr < (EFUSE_MAX_SIZE -
946                rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN]))) {
947                 if (write_state == PG_STATE_HEADER) {
948                         dataempty = true;
949                         badworden = 0x0F;
950                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
951                                 "efuse PG_STATE_HEADER\n");
952
953                         if (efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
954                             (efuse_data != 0xFF))
955                                 efuse_write_data_case1(hw, &efuse_addr,
956                                                        efuse_data, offset,
957                                                        &continual,
958                                                        &write_state,
959                                                        &target_pkt,
960                                                        &repeat_times, &result,
961                                                        word_en);
962                         else
963                                 efuse_write_data_case2(hw, &efuse_addr,
964                                                        &continual,
965                                                        &write_state,
966                                                        target_pkt,
967                                                        &repeat_times,
968                                                        &result);
969
970                 } else if (write_state == PG_STATE_DATA) {
971                         RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
972                                 "efuse PG_STATE_DATA\n");
973                         badworden = 0x0f;
974                         badworden =
975                             enable_efuse_data_write(hw, efuse_addr + 1,
976                                                     target_pkt.word_en,
977                                                     target_pkt.data);
978
979                         if ((badworden & 0x0F) == 0x0F) {
980                                 continual = false;
981                         } else {
982                                 efuse_addr =
983                                     efuse_addr + (2 * target_word_cnts) + 1;
984
985                                 target_pkt.offset = offset;
986                                 target_pkt.word_en = badworden;
987                                 target_word_cnts =
988                                     efuse_calculate_word_cnts(target_pkt.word_en);
989                                 write_state = PG_STATE_HEADER;
990                                 repeat_times++;
991                                 if (repeat_times > EFUSE_REPEAT_THRESHOLD_) {
992                                         continual = false;
993                                         result = false;
994                                 }
995                                 RTPRINT(rtlpriv, FEEPROM, EFUSE_PG,
996                                         "efuse PG_STATE_HEADER-3\n");
997                         }
998                 }
999         }
1000
1001         if (efuse_addr >= (EFUSE_MAX_SIZE -
1002                 rtlpriv->cfg->maps[EFUSE_OOB_PROTECT_BYTES_LEN])) {
1003                 RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1004                          "efuse_addr(%#x) Out of size!!\n", efuse_addr);
1005         }
1006
1007         return true;
1008 }
1009
1010 static void efuse_word_enable_data_read(u8 word_en, u8 *sourdata,
1011                                         u8 *targetdata)
1012 {
1013         if (!(word_en & BIT(0))) {
1014                 targetdata[0] = sourdata[0];
1015                 targetdata[1] = sourdata[1];
1016         }
1017
1018         if (!(word_en & BIT(1))) {
1019                 targetdata[2] = sourdata[2];
1020                 targetdata[3] = sourdata[3];
1021         }
1022
1023         if (!(word_en & BIT(2))) {
1024                 targetdata[4] = sourdata[4];
1025                 targetdata[5] = sourdata[5];
1026         }
1027
1028         if (!(word_en & BIT(3))) {
1029                 targetdata[6] = sourdata[6];
1030                 targetdata[7] = sourdata[7];
1031         }
1032 }
1033
1034 static u8 enable_efuse_data_write(struct ieee80211_hw *hw,
1035                                   u16 efuse_addr, u8 word_en, u8 *data)
1036 {
1037         struct rtl_priv *rtlpriv = rtl_priv(hw);
1038         u16 tmpaddr;
1039         u16 start_addr = efuse_addr;
1040         u8 badworden = 0x0F;
1041         u8 tmpdata[8];
1042
1043         memset(tmpdata, 0xff, PGPKT_DATA_SIZE);
1044         RT_TRACE(rtlpriv, COMP_EFUSE, DBG_LOUD,
1045                  "word_en = %x efuse_addr=%x\n", word_en, efuse_addr);
1046
1047         if (!(word_en & BIT(0))) {
1048                 tmpaddr = start_addr;
1049                 efuse_one_byte_write(hw, start_addr++, data[0]);
1050                 efuse_one_byte_write(hw, start_addr++, data[1]);
1051
1052                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[0]);
1053                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[1]);
1054                 if ((data[0] != tmpdata[0]) || (data[1] != tmpdata[1]))
1055                         badworden &= (~BIT(0));
1056         }
1057
1058         if (!(word_en & BIT(1))) {
1059                 tmpaddr = start_addr;
1060                 efuse_one_byte_write(hw, start_addr++, data[2]);
1061                 efuse_one_byte_write(hw, start_addr++, data[3]);
1062
1063                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[2]);
1064                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[3]);
1065                 if ((data[2] != tmpdata[2]) || (data[3] != tmpdata[3]))
1066                         badworden &= (~BIT(1));
1067         }
1068
1069         if (!(word_en & BIT(2))) {
1070                 tmpaddr = start_addr;
1071                 efuse_one_byte_write(hw, start_addr++, data[4]);
1072                 efuse_one_byte_write(hw, start_addr++, data[5]);
1073
1074                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[4]);
1075                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[5]);
1076                 if ((data[4] != tmpdata[4]) || (data[5] != tmpdata[5]))
1077                         badworden &= (~BIT(2));
1078         }
1079
1080         if (!(word_en & BIT(3))) {
1081                 tmpaddr = start_addr;
1082                 efuse_one_byte_write(hw, start_addr++, data[6]);
1083                 efuse_one_byte_write(hw, start_addr++, data[7]);
1084
1085                 efuse_one_byte_read(hw, tmpaddr, &tmpdata[6]);
1086                 efuse_one_byte_read(hw, tmpaddr + 1, &tmpdata[7]);
1087                 if ((data[6] != tmpdata[6]) || (data[7] != tmpdata[7]))
1088                         badworden &= (~BIT(3));
1089         }
1090
1091         return badworden;
1092 }
1093
1094 void efuse_power_switch(struct ieee80211_hw *hw, u8 write, u8 pwrstate)
1095 {
1096         struct rtl_priv *rtlpriv = rtl_priv(hw);
1097         struct rtl_hal *rtlhal = rtl_hal(rtl_priv(hw));
1098         u8 tempval;
1099         u16 tmpv16;
1100
1101         if (pwrstate && (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE)) {
1102                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1103                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE) {
1104                         rtl_write_byte(rtlpriv,
1105                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0x69);
1106                 } else {
1107                         tmpv16 =
1108                           rtl_read_word(rtlpriv,
1109                                         rtlpriv->cfg->maps[SYS_ISO_CTRL]);
1110                         if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_PWC_EV12V])) {
1111                                 tmpv16 |= rtlpriv->cfg->maps[EFUSE_PWC_EV12V];
1112                                 rtl_write_word(rtlpriv,
1113                                                rtlpriv->cfg->maps[SYS_ISO_CTRL],
1114                                                tmpv16);
1115                         }
1116                 }
1117                 tmpv16 = rtl_read_word(rtlpriv,
1118                                        rtlpriv->cfg->maps[SYS_FUNC_EN]);
1119                 if (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_FEN_ELDR])) {
1120                         tmpv16 |= rtlpriv->cfg->maps[EFUSE_FEN_ELDR];
1121                         rtl_write_word(rtlpriv,
1122                                        rtlpriv->cfg->maps[SYS_FUNC_EN], tmpv16);
1123                 }
1124
1125                 tmpv16 = rtl_read_word(rtlpriv, rtlpriv->cfg->maps[SYS_CLK]);
1126                 if ((!(tmpv16 & rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN])) ||
1127                     (!(tmpv16 & rtlpriv->cfg->maps[EFUSE_ANA8M]))) {
1128                         tmpv16 |= (rtlpriv->cfg->maps[EFUSE_LOADER_CLK_EN] |
1129                                    rtlpriv->cfg->maps[EFUSE_ANA8M]);
1130                         rtl_write_word(rtlpriv,
1131                                        rtlpriv->cfg->maps[SYS_CLK], tmpv16);
1132                 }
1133         }
1134
1135         if (pwrstate) {
1136                 if (write) {
1137                         tempval = rtl_read_byte(rtlpriv,
1138                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1139                                                 3);
1140
1141                         if (rtlhal->hw_type == HARDWARE_TYPE_RTL8812AE) {
1142                                 tempval &= ~(BIT(3) | BIT(4) | BIT(5) | BIT(6));
1143                                 tempval |= (VOLTAGE_V25 << 3);
1144                         } else if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192SE) {
1145                                 tempval &= 0x0F;
1146                                 tempval |= (VOLTAGE_V25 << 4);
1147                         }
1148
1149                         rtl_write_byte(rtlpriv,
1150                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1151                                        (tempval | 0x80));
1152                 }
1153
1154                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1155                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1156                                        0x03);
1157                 }
1158         } else {
1159                 if (rtlhal->hw_type != HARDWARE_TYPE_RTL8192CE &&
1160                     rtlhal->hw_type != HARDWARE_TYPE_RTL8192DE)
1161                         rtl_write_byte(rtlpriv,
1162                                        rtlpriv->cfg->maps[EFUSE_ACCESS], 0);
1163
1164                 if (write) {
1165                         tempval = rtl_read_byte(rtlpriv,
1166                                                 rtlpriv->cfg->maps[EFUSE_TEST] +
1167                                                 3);
1168                         rtl_write_byte(rtlpriv,
1169                                        rtlpriv->cfg->maps[EFUSE_TEST] + 3,
1170                                        (tempval & 0x7F));
1171                 }
1172
1173                 if (rtlhal->hw_type == HARDWARE_TYPE_RTL8192SE) {
1174                         rtl_write_byte(rtlpriv, rtlpriv->cfg->maps[EFUSE_CLK],
1175                                        0x02);
1176                 }
1177         }
1178 }
1179
1180 static u16 efuse_get_current_size(struct ieee80211_hw *hw)
1181 {
1182         int continual = true;
1183         u16 efuse_addr = 0;
1184         u8 hoffset, hworden;
1185         u8 efuse_data, word_cnts;
1186
1187         while (continual && efuse_one_byte_read(hw, efuse_addr, &efuse_data) &&
1188                (efuse_addr < EFUSE_MAX_SIZE)) {
1189                 if (efuse_data != 0xFF) {
1190                         hoffset = (efuse_data >> 4) & 0x0F;
1191                         hworden = efuse_data & 0x0F;
1192                         word_cnts = efuse_calculate_word_cnts(hworden);
1193                         efuse_addr = efuse_addr + (word_cnts * 2) + 1;
1194                 } else {
1195                         continual = false;
1196                 }
1197         }
1198
1199         return efuse_addr;
1200 }
1201
1202 static u8 efuse_calculate_word_cnts(u8 word_en)
1203 {
1204         u8 word_cnts = 0;
1205
1206         if (!(word_en & BIT(0)))
1207                 word_cnts++;
1208         if (!(word_en & BIT(1)))
1209                 word_cnts++;
1210         if (!(word_en & BIT(2)))
1211                 word_cnts++;
1212         if (!(word_en & BIT(3)))
1213                 word_cnts++;
1214         return word_cnts;
1215 }
1216
1217 int rtl_get_hwinfo(struct ieee80211_hw *hw, struct rtl_priv *rtlpriv,
1218                    int max_size, u8 *hwinfo, int *params)
1219 {
1220         struct rtl_efuse *rtlefuse = rtl_efuse(rtl_priv(hw));
1221         struct rtl_pci_priv *rtlpcipriv = rtl_pcipriv(hw);
1222         struct device *dev = &rtlpcipriv->dev.pdev->dev;
1223         u16 eeprom_id;
1224         u16 i, usvalue;
1225
1226         switch (rtlefuse->epromtype) {
1227         case EEPROM_BOOT_EFUSE:
1228                 rtl_efuse_shadow_map_update(hw);
1229                 break;
1230
1231         case EEPROM_93C46:
1232                 pr_err("RTL8XXX did not boot from eeprom, check it !!\n");
1233                 return 1;
1234
1235         default:
1236                 dev_warn(dev, "no efuse data\n");
1237                 return 1;
1238         }
1239
1240         memcpy(hwinfo, &rtlefuse->efuse_map[EFUSE_INIT_MAP][0], max_size);
1241
1242         RT_PRINT_DATA(rtlpriv, COMP_INIT, DBG_DMESG, "MAP",
1243                       hwinfo, max_size);
1244
1245         eeprom_id = *((u16 *)&hwinfo[0]);
1246         if (eeprom_id != params[0]) {
1247                 RT_TRACE(rtlpriv, COMP_ERR, DBG_WARNING,
1248                          "EEPROM ID(%#x) is invalid!!\n", eeprom_id);
1249                 rtlefuse->autoload_failflag = true;
1250         } else {
1251                 RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD, "Autoload OK\n");
1252                 rtlefuse->autoload_failflag = false;
1253         }
1254
1255         if (rtlefuse->autoload_failflag)
1256                 return 1;
1257
1258         rtlefuse->eeprom_vid = *(u16 *)&hwinfo[params[1]];
1259         rtlefuse->eeprom_did = *(u16 *)&hwinfo[params[2]];
1260         rtlefuse->eeprom_svid = *(u16 *)&hwinfo[params[3]];
1261         rtlefuse->eeprom_smid = *(u16 *)&hwinfo[params[4]];
1262         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1263                  "EEPROMId = 0x%4x\n", eeprom_id);
1264         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1265                  "EEPROM VID = 0x%4x\n", rtlefuse->eeprom_vid);
1266         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1267                  "EEPROM DID = 0x%4x\n", rtlefuse->eeprom_did);
1268         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1269                  "EEPROM SVID = 0x%4x\n", rtlefuse->eeprom_svid);
1270         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1271                  "EEPROM SMID = 0x%4x\n", rtlefuse->eeprom_smid);
1272
1273         for (i = 0; i < 6; i += 2) {
1274                 usvalue = *(u16 *)&hwinfo[params[5] + i];
1275                 *((u16 *)(&rtlefuse->dev_addr[i])) = usvalue;
1276         }
1277         RT_TRACE(rtlpriv, COMP_INIT, DBG_DMESG, "%pM\n", rtlefuse->dev_addr);
1278
1279         rtlefuse->eeprom_channelplan = *&hwinfo[params[6]];
1280         rtlefuse->eeprom_version = *(u16 *)&hwinfo[params[7]];
1281         rtlefuse->txpwr_fromeprom = true;
1282         rtlefuse->eeprom_oemid = *&hwinfo[params[8]];
1283
1284         RT_TRACE(rtlpriv, COMP_INIT, DBG_LOUD,
1285                  "EEPROM Customer ID: 0x%2x\n", rtlefuse->eeprom_oemid);
1286
1287         /* set channel plan to world wide 13 */
1288         rtlefuse->channel_plan = params[9];
1289
1290         return 0;
1291 }
1292
1293 void rtl_fw_block_write(struct ieee80211_hw *hw, const u8 *buffer, u32 size)
1294 {
1295         struct rtl_priv *rtlpriv = rtl_priv(hw);
1296         u8 *pu4byteptr = (u8 *)buffer;
1297         u32 i;
1298
1299         for (i = 0; i < size; i++)
1300                 rtl_write_byte(rtlpriv, (START_ADDRESS + i), *(pu4byteptr + i));
1301 }
1302
1303 void rtl_fw_page_write(struct ieee80211_hw *hw, u32 page, const u8 *buffer,
1304                        u32 size)
1305 {
1306         struct rtl_priv *rtlpriv = rtl_priv(hw);
1307         u8 value8;
1308         u8 u8page = (u8)(page & 0x07);
1309
1310         value8 = (rtl_read_byte(rtlpriv, REG_MCUFWDL + 2) & 0xF8) | u8page;
1311
1312         rtl_write_byte(rtlpriv, (REG_MCUFWDL + 2), value8);
1313         rtl_fw_block_write(hw, buffer, size);
1314 }
1315
1316 void rtl_fill_dummy(u8 *pfwbuf, u32 *pfwlen)
1317 {
1318         u32 fwlen = *pfwlen;
1319         u8 remain = (u8)(fwlen % 4);
1320
1321         remain = (remain == 0) ? 0 : (4 - remain);
1322
1323         while (remain > 0) {
1324                 pfwbuf[fwlen] = 0;
1325                 fwlen++;
1326                 remain--;
1327         }
1328
1329         *pfwlen = fwlen;
1330 }