GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / target / target_core_transport.c
1 /*******************************************************************************
2  * Filename:  target_core_transport.c
3  *
4  * This file contains the Generic Target Engine Core.
5  *
6  * (c) Copyright 2002-2013 Datera, Inc.
7  *
8  * Nicholas A. Bellinger <nab@kernel.org>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23  *
24  ******************************************************************************/
25
26 #include <linux/net.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/timer.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/kthread.h>
33 #include <linux/in.h>
34 #include <linux/cdrom.h>
35 #include <linux/module.h>
36 #include <linux/ratelimit.h>
37 #include <linux/vmalloc.h>
38 #include <asm/unaligned.h>
39 #include <net/sock.h>
40 #include <net/tcp.h>
41 #include <scsi/scsi_proto.h>
42 #include <scsi/scsi_common.h>
43
44 #include <target/target_core_base.h>
45 #include <target/target_core_backend.h>
46 #include <target/target_core_fabric.h>
47
48 #include "target_core_internal.h"
49 #include "target_core_alua.h"
50 #include "target_core_pr.h"
51 #include "target_core_ua.h"
52
53 #define CREATE_TRACE_POINTS
54 #include <trace/events/target.h>
55
56 static struct workqueue_struct *target_completion_wq;
57 static struct kmem_cache *se_sess_cache;
58 struct kmem_cache *se_ua_cache;
59 struct kmem_cache *t10_pr_reg_cache;
60 struct kmem_cache *t10_alua_lu_gp_cache;
61 struct kmem_cache *t10_alua_lu_gp_mem_cache;
62 struct kmem_cache *t10_alua_tg_pt_gp_cache;
63 struct kmem_cache *t10_alua_lba_map_cache;
64 struct kmem_cache *t10_alua_lba_map_mem_cache;
65
66 static void transport_complete_task_attr(struct se_cmd *cmd);
67 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason);
68 static void transport_handle_queue_full(struct se_cmd *cmd,
69                 struct se_device *dev, int err, bool write_pending);
70 static int transport_put_cmd(struct se_cmd *cmd);
71 static void target_complete_ok_work(struct work_struct *work);
72
73 int init_se_kmem_caches(void)
74 {
75         se_sess_cache = kmem_cache_create("se_sess_cache",
76                         sizeof(struct se_session), __alignof__(struct se_session),
77                         0, NULL);
78         if (!se_sess_cache) {
79                 pr_err("kmem_cache_create() for struct se_session"
80                                 " failed\n");
81                 goto out;
82         }
83         se_ua_cache = kmem_cache_create("se_ua_cache",
84                         sizeof(struct se_ua), __alignof__(struct se_ua),
85                         0, NULL);
86         if (!se_ua_cache) {
87                 pr_err("kmem_cache_create() for struct se_ua failed\n");
88                 goto out_free_sess_cache;
89         }
90         t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
91                         sizeof(struct t10_pr_registration),
92                         __alignof__(struct t10_pr_registration), 0, NULL);
93         if (!t10_pr_reg_cache) {
94                 pr_err("kmem_cache_create() for struct t10_pr_registration"
95                                 " failed\n");
96                 goto out_free_ua_cache;
97         }
98         t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
99                         sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
100                         0, NULL);
101         if (!t10_alua_lu_gp_cache) {
102                 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
103                                 " failed\n");
104                 goto out_free_pr_reg_cache;
105         }
106         t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
107                         sizeof(struct t10_alua_lu_gp_member),
108                         __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
109         if (!t10_alua_lu_gp_mem_cache) {
110                 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
111                                 "cache failed\n");
112                 goto out_free_lu_gp_cache;
113         }
114         t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
115                         sizeof(struct t10_alua_tg_pt_gp),
116                         __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
117         if (!t10_alua_tg_pt_gp_cache) {
118                 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
119                                 "cache failed\n");
120                 goto out_free_lu_gp_mem_cache;
121         }
122         t10_alua_lba_map_cache = kmem_cache_create(
123                         "t10_alua_lba_map_cache",
124                         sizeof(struct t10_alua_lba_map),
125                         __alignof__(struct t10_alua_lba_map), 0, NULL);
126         if (!t10_alua_lba_map_cache) {
127                 pr_err("kmem_cache_create() for t10_alua_lba_map_"
128                                 "cache failed\n");
129                 goto out_free_tg_pt_gp_cache;
130         }
131         t10_alua_lba_map_mem_cache = kmem_cache_create(
132                         "t10_alua_lba_map_mem_cache",
133                         sizeof(struct t10_alua_lba_map_member),
134                         __alignof__(struct t10_alua_lba_map_member), 0, NULL);
135         if (!t10_alua_lba_map_mem_cache) {
136                 pr_err("kmem_cache_create() for t10_alua_lba_map_mem_"
137                                 "cache failed\n");
138                 goto out_free_lba_map_cache;
139         }
140
141         target_completion_wq = alloc_workqueue("target_completion",
142                                                WQ_MEM_RECLAIM, 0);
143         if (!target_completion_wq)
144                 goto out_free_lba_map_mem_cache;
145
146         return 0;
147
148 out_free_lba_map_mem_cache:
149         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
150 out_free_lba_map_cache:
151         kmem_cache_destroy(t10_alua_lba_map_cache);
152 out_free_tg_pt_gp_cache:
153         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
154 out_free_lu_gp_mem_cache:
155         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
156 out_free_lu_gp_cache:
157         kmem_cache_destroy(t10_alua_lu_gp_cache);
158 out_free_pr_reg_cache:
159         kmem_cache_destroy(t10_pr_reg_cache);
160 out_free_ua_cache:
161         kmem_cache_destroy(se_ua_cache);
162 out_free_sess_cache:
163         kmem_cache_destroy(se_sess_cache);
164 out:
165         return -ENOMEM;
166 }
167
168 void release_se_kmem_caches(void)
169 {
170         destroy_workqueue(target_completion_wq);
171         kmem_cache_destroy(se_sess_cache);
172         kmem_cache_destroy(se_ua_cache);
173         kmem_cache_destroy(t10_pr_reg_cache);
174         kmem_cache_destroy(t10_alua_lu_gp_cache);
175         kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
176         kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
177         kmem_cache_destroy(t10_alua_lba_map_cache);
178         kmem_cache_destroy(t10_alua_lba_map_mem_cache);
179 }
180
181 /* This code ensures unique mib indexes are handed out. */
182 static DEFINE_SPINLOCK(scsi_mib_index_lock);
183 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
184
185 /*
186  * Allocate a new row index for the entry type specified
187  */
188 u32 scsi_get_new_index(scsi_index_t type)
189 {
190         u32 new_index;
191
192         BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
193
194         spin_lock(&scsi_mib_index_lock);
195         new_index = ++scsi_mib_index[type];
196         spin_unlock(&scsi_mib_index_lock);
197
198         return new_index;
199 }
200
201 void transport_subsystem_check_init(void)
202 {
203         int ret;
204         static int sub_api_initialized;
205
206         if (sub_api_initialized)
207                 return;
208
209         ret = request_module("target_core_iblock");
210         if (ret != 0)
211                 pr_err("Unable to load target_core_iblock\n");
212
213         ret = request_module("target_core_file");
214         if (ret != 0)
215                 pr_err("Unable to load target_core_file\n");
216
217         ret = request_module("target_core_pscsi");
218         if (ret != 0)
219                 pr_err("Unable to load target_core_pscsi\n");
220
221         ret = request_module("target_core_user");
222         if (ret != 0)
223                 pr_err("Unable to load target_core_user\n");
224
225         sub_api_initialized = 1;
226 }
227
228 struct se_session *transport_init_session(enum target_prot_op sup_prot_ops)
229 {
230         struct se_session *se_sess;
231
232         se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
233         if (!se_sess) {
234                 pr_err("Unable to allocate struct se_session from"
235                                 " se_sess_cache\n");
236                 return ERR_PTR(-ENOMEM);
237         }
238         INIT_LIST_HEAD(&se_sess->sess_list);
239         INIT_LIST_HEAD(&se_sess->sess_acl_list);
240         INIT_LIST_HEAD(&se_sess->sess_cmd_list);
241         INIT_LIST_HEAD(&se_sess->sess_wait_list);
242         spin_lock_init(&se_sess->sess_cmd_lock);
243         se_sess->sup_prot_ops = sup_prot_ops;
244
245         return se_sess;
246 }
247 EXPORT_SYMBOL(transport_init_session);
248
249 int transport_alloc_session_tags(struct se_session *se_sess,
250                                  unsigned int tag_num, unsigned int tag_size)
251 {
252         int rc;
253
254         se_sess->sess_cmd_map = kzalloc(tag_num * tag_size,
255                                         GFP_KERNEL | __GFP_NOWARN | __GFP_RETRY_MAYFAIL);
256         if (!se_sess->sess_cmd_map) {
257                 se_sess->sess_cmd_map = vzalloc(tag_num * tag_size);
258                 if (!se_sess->sess_cmd_map) {
259                         pr_err("Unable to allocate se_sess->sess_cmd_map\n");
260                         return -ENOMEM;
261                 }
262         }
263
264         rc = percpu_ida_init(&se_sess->sess_tag_pool, tag_num);
265         if (rc < 0) {
266                 pr_err("Unable to init se_sess->sess_tag_pool,"
267                         " tag_num: %u\n", tag_num);
268                 kvfree(se_sess->sess_cmd_map);
269                 se_sess->sess_cmd_map = NULL;
270                 return -ENOMEM;
271         }
272
273         return 0;
274 }
275 EXPORT_SYMBOL(transport_alloc_session_tags);
276
277 struct se_session *transport_init_session_tags(unsigned int tag_num,
278                                                unsigned int tag_size,
279                                                enum target_prot_op sup_prot_ops)
280 {
281         struct se_session *se_sess;
282         int rc;
283
284         if (tag_num != 0 && !tag_size) {
285                 pr_err("init_session_tags called with percpu-ida tag_num:"
286                        " %u, but zero tag_size\n", tag_num);
287                 return ERR_PTR(-EINVAL);
288         }
289         if (!tag_num && tag_size) {
290                 pr_err("init_session_tags called with percpu-ida tag_size:"
291                        " %u, but zero tag_num\n", tag_size);
292                 return ERR_PTR(-EINVAL);
293         }
294
295         se_sess = transport_init_session(sup_prot_ops);
296         if (IS_ERR(se_sess))
297                 return se_sess;
298
299         rc = transport_alloc_session_tags(se_sess, tag_num, tag_size);
300         if (rc < 0) {
301                 transport_free_session(se_sess);
302                 return ERR_PTR(-ENOMEM);
303         }
304
305         return se_sess;
306 }
307 EXPORT_SYMBOL(transport_init_session_tags);
308
309 /*
310  * Called with spin_lock_irqsave(&struct se_portal_group->session_lock called.
311  */
312 void __transport_register_session(
313         struct se_portal_group *se_tpg,
314         struct se_node_acl *se_nacl,
315         struct se_session *se_sess,
316         void *fabric_sess_ptr)
317 {
318         const struct target_core_fabric_ops *tfo = se_tpg->se_tpg_tfo;
319         unsigned char buf[PR_REG_ISID_LEN];
320         unsigned long flags;
321
322         se_sess->se_tpg = se_tpg;
323         se_sess->fabric_sess_ptr = fabric_sess_ptr;
324         /*
325          * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
326          *
327          * Only set for struct se_session's that will actually be moving I/O.
328          * eg: *NOT* discovery sessions.
329          */
330         if (se_nacl) {
331                 /*
332                  *
333                  * Determine if fabric allows for T10-PI feature bits exposed to
334                  * initiators for device backends with !dev->dev_attrib.pi_prot_type.
335                  *
336                  * If so, then always save prot_type on a per se_node_acl node
337                  * basis and re-instate the previous sess_prot_type to avoid
338                  * disabling PI from below any previously initiator side
339                  * registered LUNs.
340                  */
341                 if (se_nacl->saved_prot_type)
342                         se_sess->sess_prot_type = se_nacl->saved_prot_type;
343                 else if (tfo->tpg_check_prot_fabric_only)
344                         se_sess->sess_prot_type = se_nacl->saved_prot_type =
345                                         tfo->tpg_check_prot_fabric_only(se_tpg);
346                 /*
347                  * If the fabric module supports an ISID based TransportID,
348                  * save this value in binary from the fabric I_T Nexus now.
349                  */
350                 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
351                         memset(&buf[0], 0, PR_REG_ISID_LEN);
352                         se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
353                                         &buf[0], PR_REG_ISID_LEN);
354                         se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
355                 }
356
357                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
358                 /*
359                  * The se_nacl->nacl_sess pointer will be set to the
360                  * last active I_T Nexus for each struct se_node_acl.
361                  */
362                 se_nacl->nacl_sess = se_sess;
363
364                 list_add_tail(&se_sess->sess_acl_list,
365                               &se_nacl->acl_sess_list);
366                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
367         }
368         list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
369
370         pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
371                 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
372 }
373 EXPORT_SYMBOL(__transport_register_session);
374
375 void transport_register_session(
376         struct se_portal_group *se_tpg,
377         struct se_node_acl *se_nacl,
378         struct se_session *se_sess,
379         void *fabric_sess_ptr)
380 {
381         unsigned long flags;
382
383         spin_lock_irqsave(&se_tpg->session_lock, flags);
384         __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
385         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
386 }
387 EXPORT_SYMBOL(transport_register_session);
388
389 struct se_session *
390 target_alloc_session(struct se_portal_group *tpg,
391                      unsigned int tag_num, unsigned int tag_size,
392                      enum target_prot_op prot_op,
393                      const char *initiatorname, void *private,
394                      int (*callback)(struct se_portal_group *,
395                                      struct se_session *, void *))
396 {
397         struct se_session *sess;
398
399         /*
400          * If the fabric driver is using percpu-ida based pre allocation
401          * of I/O descriptor tags, go ahead and perform that setup now..
402          */
403         if (tag_num != 0)
404                 sess = transport_init_session_tags(tag_num, tag_size, prot_op);
405         else
406                 sess = transport_init_session(prot_op);
407
408         if (IS_ERR(sess))
409                 return sess;
410
411         sess->se_node_acl = core_tpg_check_initiator_node_acl(tpg,
412                                         (unsigned char *)initiatorname);
413         if (!sess->se_node_acl) {
414                 transport_free_session(sess);
415                 return ERR_PTR(-EACCES);
416         }
417         /*
418          * Go ahead and perform any remaining fabric setup that is
419          * required before transport_register_session().
420          */
421         if (callback != NULL) {
422                 int rc = callback(tpg, sess, private);
423                 if (rc) {
424                         transport_free_session(sess);
425                         return ERR_PTR(rc);
426                 }
427         }
428
429         transport_register_session(tpg, sess->se_node_acl, sess, private);
430         return sess;
431 }
432 EXPORT_SYMBOL(target_alloc_session);
433
434 ssize_t target_show_dynamic_sessions(struct se_portal_group *se_tpg, char *page)
435 {
436         struct se_session *se_sess;
437         ssize_t len = 0;
438
439         spin_lock_bh(&se_tpg->session_lock);
440         list_for_each_entry(se_sess, &se_tpg->tpg_sess_list, sess_list) {
441                 if (!se_sess->se_node_acl)
442                         continue;
443                 if (!se_sess->se_node_acl->dynamic_node_acl)
444                         continue;
445                 if (strlen(se_sess->se_node_acl->initiatorname) + 1 + len > PAGE_SIZE)
446                         break;
447
448                 len += snprintf(page + len, PAGE_SIZE - len, "%s\n",
449                                 se_sess->se_node_acl->initiatorname);
450                 len += 1; /* Include NULL terminator */
451         }
452         spin_unlock_bh(&se_tpg->session_lock);
453
454         return len;
455 }
456 EXPORT_SYMBOL(target_show_dynamic_sessions);
457
458 static void target_complete_nacl(struct kref *kref)
459 {
460         struct se_node_acl *nacl = container_of(kref,
461                                 struct se_node_acl, acl_kref);
462         struct se_portal_group *se_tpg = nacl->se_tpg;
463
464         if (!nacl->dynamic_stop) {
465                 complete(&nacl->acl_free_comp);
466                 return;
467         }
468
469         mutex_lock(&se_tpg->acl_node_mutex);
470         list_del_init(&nacl->acl_list);
471         mutex_unlock(&se_tpg->acl_node_mutex);
472
473         core_tpg_wait_for_nacl_pr_ref(nacl);
474         core_free_device_list_for_node(nacl, se_tpg);
475         kfree(nacl);
476 }
477
478 void target_put_nacl(struct se_node_acl *nacl)
479 {
480         kref_put(&nacl->acl_kref, target_complete_nacl);
481 }
482 EXPORT_SYMBOL(target_put_nacl);
483
484 void transport_deregister_session_configfs(struct se_session *se_sess)
485 {
486         struct se_node_acl *se_nacl;
487         unsigned long flags;
488         /*
489          * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
490          */
491         se_nacl = se_sess->se_node_acl;
492         if (se_nacl) {
493                 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
494                 if (!list_empty(&se_sess->sess_acl_list))
495                         list_del_init(&se_sess->sess_acl_list);
496                 /*
497                  * If the session list is empty, then clear the pointer.
498                  * Otherwise, set the struct se_session pointer from the tail
499                  * element of the per struct se_node_acl active session list.
500                  */
501                 if (list_empty(&se_nacl->acl_sess_list))
502                         se_nacl->nacl_sess = NULL;
503                 else {
504                         se_nacl->nacl_sess = container_of(
505                                         se_nacl->acl_sess_list.prev,
506                                         struct se_session, sess_acl_list);
507                 }
508                 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
509         }
510 }
511 EXPORT_SYMBOL(transport_deregister_session_configfs);
512
513 void transport_free_session(struct se_session *se_sess)
514 {
515         struct se_node_acl *se_nacl = se_sess->se_node_acl;
516
517         /*
518          * Drop the se_node_acl->nacl_kref obtained from within
519          * core_tpg_get_initiator_node_acl().
520          */
521         if (se_nacl) {
522                 struct se_portal_group *se_tpg = se_nacl->se_tpg;
523                 const struct target_core_fabric_ops *se_tfo = se_tpg->se_tpg_tfo;
524                 unsigned long flags;
525
526                 se_sess->se_node_acl = NULL;
527
528                 /*
529                  * Also determine if we need to drop the extra ->cmd_kref if
530                  * it had been previously dynamically generated, and
531                  * the endpoint is not caching dynamic ACLs.
532                  */
533                 mutex_lock(&se_tpg->acl_node_mutex);
534                 if (se_nacl->dynamic_node_acl &&
535                     !se_tfo->tpg_check_demo_mode_cache(se_tpg)) {
536                         spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
537                         if (list_empty(&se_nacl->acl_sess_list))
538                                 se_nacl->dynamic_stop = true;
539                         spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
540
541                         if (se_nacl->dynamic_stop)
542                                 list_del_init(&se_nacl->acl_list);
543                 }
544                 mutex_unlock(&se_tpg->acl_node_mutex);
545
546                 if (se_nacl->dynamic_stop)
547                         target_put_nacl(se_nacl);
548
549                 target_put_nacl(se_nacl);
550         }
551         if (se_sess->sess_cmd_map) {
552                 percpu_ida_destroy(&se_sess->sess_tag_pool);
553                 kvfree(se_sess->sess_cmd_map);
554         }
555         kmem_cache_free(se_sess_cache, se_sess);
556 }
557 EXPORT_SYMBOL(transport_free_session);
558
559 void transport_deregister_session(struct se_session *se_sess)
560 {
561         struct se_portal_group *se_tpg = se_sess->se_tpg;
562         unsigned long flags;
563
564         if (!se_tpg) {
565                 transport_free_session(se_sess);
566                 return;
567         }
568
569         spin_lock_irqsave(&se_tpg->session_lock, flags);
570         list_del(&se_sess->sess_list);
571         se_sess->se_tpg = NULL;
572         se_sess->fabric_sess_ptr = NULL;
573         spin_unlock_irqrestore(&se_tpg->session_lock, flags);
574
575         pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
576                 se_tpg->se_tpg_tfo->get_fabric_name());
577         /*
578          * If last kref is dropping now for an explicit NodeACL, awake sleeping
579          * ->acl_free_comp caller to wakeup configfs se_node_acl->acl_group
580          * removal context from within transport_free_session() code.
581          *
582          * For dynamic ACL, target_put_nacl() uses target_complete_nacl()
583          * to release all remaining generate_node_acl=1 created ACL resources.
584          */
585
586         transport_free_session(se_sess);
587 }
588 EXPORT_SYMBOL(transport_deregister_session);
589
590 static void target_remove_from_state_list(struct se_cmd *cmd)
591 {
592         struct se_device *dev = cmd->se_dev;
593         unsigned long flags;
594
595         if (!dev)
596                 return;
597
598         spin_lock_irqsave(&dev->execute_task_lock, flags);
599         if (cmd->state_active) {
600                 list_del(&cmd->state_list);
601                 cmd->state_active = false;
602         }
603         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
604 }
605
606 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
607 {
608         unsigned long flags;
609
610         target_remove_from_state_list(cmd);
611
612         /*
613          * Clear struct se_cmd->se_lun before the handoff to FE.
614          */
615         cmd->se_lun = NULL;
616
617         spin_lock_irqsave(&cmd->t_state_lock, flags);
618         /*
619          * Determine if frontend context caller is requesting the stopping of
620          * this command for frontend exceptions.
621          */
622         if (cmd->transport_state & CMD_T_STOP) {
623                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
624                         __func__, __LINE__, cmd->tag);
625
626                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
627
628                 complete_all(&cmd->t_transport_stop_comp);
629                 return 1;
630         }
631         cmd->transport_state &= ~CMD_T_ACTIVE;
632         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
633
634         /*
635          * Some fabric modules like tcm_loop can release their internally
636          * allocated I/O reference and struct se_cmd now.
637          *
638          * Fabric modules are expected to return '1' here if the se_cmd being
639          * passed is released at this point, or zero if not being released.
640          */
641         return cmd->se_tfo->check_stop_free(cmd);
642 }
643
644 static void transport_lun_remove_cmd(struct se_cmd *cmd)
645 {
646         struct se_lun *lun = cmd->se_lun;
647
648         if (!lun)
649                 return;
650
651         if (cmpxchg(&cmd->lun_ref_active, true, false))
652                 percpu_ref_put(&lun->lun_ref);
653 }
654
655 int transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
656 {
657         bool ack_kref = (cmd->se_cmd_flags & SCF_ACK_KREF);
658         int ret = 0;
659
660         if (cmd->se_cmd_flags & SCF_SE_LUN_CMD)
661                 transport_lun_remove_cmd(cmd);
662         /*
663          * Allow the fabric driver to unmap any resources before
664          * releasing the descriptor via TFO->release_cmd()
665          */
666         if (remove)
667                 cmd->se_tfo->aborted_task(cmd);
668
669         if (transport_cmd_check_stop_to_fabric(cmd))
670                 return 1;
671         if (remove && ack_kref)
672                 ret = transport_put_cmd(cmd);
673
674         return ret;
675 }
676
677 static void target_complete_failure_work(struct work_struct *work)
678 {
679         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
680
681         transport_generic_request_failure(cmd,
682                         TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
683 }
684
685 /*
686  * Used when asking transport to copy Sense Data from the underlying
687  * Linux/SCSI struct scsi_cmnd
688  */
689 static unsigned char *transport_get_sense_buffer(struct se_cmd *cmd)
690 {
691         struct se_device *dev = cmd->se_dev;
692
693         WARN_ON(!cmd->se_lun);
694
695         if (!dev)
696                 return NULL;
697
698         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION)
699                 return NULL;
700
701         cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER;
702
703         pr_debug("HBA_[%u]_PLUG[%s]: Requesting sense for SAM STATUS: 0x%02x\n",
704                 dev->se_hba->hba_id, dev->transport->name, cmd->scsi_status);
705         return cmd->sense_buffer;
706 }
707
708 void transport_copy_sense_to_cmd(struct se_cmd *cmd, unsigned char *sense)
709 {
710         unsigned char *cmd_sense_buf;
711         unsigned long flags;
712
713         spin_lock_irqsave(&cmd->t_state_lock, flags);
714         cmd_sense_buf = transport_get_sense_buffer(cmd);
715         if (!cmd_sense_buf) {
716                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
717                 return;
718         }
719
720         cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
721         memcpy(cmd_sense_buf, sense, cmd->scsi_sense_length);
722         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
723 }
724 EXPORT_SYMBOL(transport_copy_sense_to_cmd);
725
726 void target_complete_cmd(struct se_cmd *cmd, u8 scsi_status)
727 {
728         struct se_device *dev = cmd->se_dev;
729         int success;
730         unsigned long flags;
731
732         cmd->scsi_status = scsi_status;
733
734         spin_lock_irqsave(&cmd->t_state_lock, flags);
735         switch (cmd->scsi_status) {
736         case SAM_STAT_CHECK_CONDITION:
737                 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
738                         success = 1;
739                 else
740                         success = 0;
741                 break;
742         default:
743                 success = 1;
744                 break;
745         }
746
747         /*
748          * Check for case where an explicit ABORT_TASK has been received
749          * and transport_wait_for_tasks() will be waiting for completion..
750          */
751         if (cmd->transport_state & CMD_T_ABORTED ||
752             cmd->transport_state & CMD_T_STOP) {
753                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
754                 /*
755                  * If COMPARE_AND_WRITE was stopped by __transport_wait_for_tasks(),
756                  * release se_device->caw_sem obtained by sbc_compare_and_write()
757                  * since target_complete_ok_work() or target_complete_failure_work()
758                  * won't be called to invoke the normal CAW completion callbacks.
759                  */
760                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
761                         up(&dev->caw_sem);
762                 }
763                 complete_all(&cmd->t_transport_stop_comp);
764                 return;
765         } else if (!success) {
766                 INIT_WORK(&cmd->work, target_complete_failure_work);
767         } else {
768                 INIT_WORK(&cmd->work, target_complete_ok_work);
769         }
770
771         cmd->t_state = TRANSPORT_COMPLETE;
772         cmd->transport_state |= (CMD_T_COMPLETE | CMD_T_ACTIVE);
773         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
774
775         if (cmd->se_cmd_flags & SCF_USE_CPUID)
776                 queue_work_on(cmd->cpuid, target_completion_wq, &cmd->work);
777         else
778                 queue_work(target_completion_wq, &cmd->work);
779 }
780 EXPORT_SYMBOL(target_complete_cmd);
781
782 void target_complete_cmd_with_length(struct se_cmd *cmd, u8 scsi_status, int length)
783 {
784         if (scsi_status == SAM_STAT_GOOD && length < cmd->data_length) {
785                 if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
786                         cmd->residual_count += cmd->data_length - length;
787                 } else {
788                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
789                         cmd->residual_count = cmd->data_length - length;
790                 }
791
792                 cmd->data_length = length;
793         }
794
795         target_complete_cmd(cmd, scsi_status);
796 }
797 EXPORT_SYMBOL(target_complete_cmd_with_length);
798
799 static void target_add_to_state_list(struct se_cmd *cmd)
800 {
801         struct se_device *dev = cmd->se_dev;
802         unsigned long flags;
803
804         spin_lock_irqsave(&dev->execute_task_lock, flags);
805         if (!cmd->state_active) {
806                 list_add_tail(&cmd->state_list, &dev->state_list);
807                 cmd->state_active = true;
808         }
809         spin_unlock_irqrestore(&dev->execute_task_lock, flags);
810 }
811
812 /*
813  * Handle QUEUE_FULL / -EAGAIN and -ENOMEM status
814  */
815 static void transport_write_pending_qf(struct se_cmd *cmd);
816 static void transport_complete_qf(struct se_cmd *cmd);
817
818 void target_qf_do_work(struct work_struct *work)
819 {
820         struct se_device *dev = container_of(work, struct se_device,
821                                         qf_work_queue);
822         LIST_HEAD(qf_cmd_list);
823         struct se_cmd *cmd, *cmd_tmp;
824
825         spin_lock_irq(&dev->qf_cmd_lock);
826         list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
827         spin_unlock_irq(&dev->qf_cmd_lock);
828
829         list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
830                 list_del(&cmd->se_qf_node);
831                 atomic_dec_mb(&dev->dev_qf_count);
832
833                 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
834                         " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
835                         (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
836                         (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
837                         : "UNKNOWN");
838
839                 if (cmd->t_state == TRANSPORT_COMPLETE_QF_WP)
840                         transport_write_pending_qf(cmd);
841                 else if (cmd->t_state == TRANSPORT_COMPLETE_QF_OK ||
842                          cmd->t_state == TRANSPORT_COMPLETE_QF_ERR)
843                         transport_complete_qf(cmd);
844         }
845 }
846
847 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
848 {
849         switch (cmd->data_direction) {
850         case DMA_NONE:
851                 return "NONE";
852         case DMA_FROM_DEVICE:
853                 return "READ";
854         case DMA_TO_DEVICE:
855                 return "WRITE";
856         case DMA_BIDIRECTIONAL:
857                 return "BIDI";
858         default:
859                 break;
860         }
861
862         return "UNKNOWN";
863 }
864
865 void transport_dump_dev_state(
866         struct se_device *dev,
867         char *b,
868         int *bl)
869 {
870         *bl += sprintf(b + *bl, "Status: ");
871         if (dev->export_count)
872                 *bl += sprintf(b + *bl, "ACTIVATED");
873         else
874                 *bl += sprintf(b + *bl, "DEACTIVATED");
875
876         *bl += sprintf(b + *bl, "  Max Queue Depth: %d", dev->queue_depth);
877         *bl += sprintf(b + *bl, "  SectorSize: %u  HwMaxSectors: %u\n",
878                 dev->dev_attrib.block_size,
879                 dev->dev_attrib.hw_max_sectors);
880         *bl += sprintf(b + *bl, "        ");
881 }
882
883 void transport_dump_vpd_proto_id(
884         struct t10_vpd *vpd,
885         unsigned char *p_buf,
886         int p_buf_len)
887 {
888         unsigned char buf[VPD_TMP_BUF_SIZE];
889         int len;
890
891         memset(buf, 0, VPD_TMP_BUF_SIZE);
892         len = sprintf(buf, "T10 VPD Protocol Identifier: ");
893
894         switch (vpd->protocol_identifier) {
895         case 0x00:
896                 sprintf(buf+len, "Fibre Channel\n");
897                 break;
898         case 0x10:
899                 sprintf(buf+len, "Parallel SCSI\n");
900                 break;
901         case 0x20:
902                 sprintf(buf+len, "SSA\n");
903                 break;
904         case 0x30:
905                 sprintf(buf+len, "IEEE 1394\n");
906                 break;
907         case 0x40:
908                 sprintf(buf+len, "SCSI Remote Direct Memory Access"
909                                 " Protocol\n");
910                 break;
911         case 0x50:
912                 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
913                 break;
914         case 0x60:
915                 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
916                 break;
917         case 0x70:
918                 sprintf(buf+len, "Automation/Drive Interface Transport"
919                                 " Protocol\n");
920                 break;
921         case 0x80:
922                 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
923                 break;
924         default:
925                 sprintf(buf+len, "Unknown 0x%02x\n",
926                                 vpd->protocol_identifier);
927                 break;
928         }
929
930         if (p_buf)
931                 strncpy(p_buf, buf, p_buf_len);
932         else
933                 pr_debug("%s", buf);
934 }
935
936 void
937 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
938 {
939         /*
940          * Check if the Protocol Identifier Valid (PIV) bit is set..
941          *
942          * from spc3r23.pdf section 7.5.1
943          */
944          if (page_83[1] & 0x80) {
945                 vpd->protocol_identifier = (page_83[0] & 0xf0);
946                 vpd->protocol_identifier_set = 1;
947                 transport_dump_vpd_proto_id(vpd, NULL, 0);
948         }
949 }
950 EXPORT_SYMBOL(transport_set_vpd_proto_id);
951
952 int transport_dump_vpd_assoc(
953         struct t10_vpd *vpd,
954         unsigned char *p_buf,
955         int p_buf_len)
956 {
957         unsigned char buf[VPD_TMP_BUF_SIZE];
958         int ret = 0;
959         int len;
960
961         memset(buf, 0, VPD_TMP_BUF_SIZE);
962         len = sprintf(buf, "T10 VPD Identifier Association: ");
963
964         switch (vpd->association) {
965         case 0x00:
966                 sprintf(buf+len, "addressed logical unit\n");
967                 break;
968         case 0x10:
969                 sprintf(buf+len, "target port\n");
970                 break;
971         case 0x20:
972                 sprintf(buf+len, "SCSI target device\n");
973                 break;
974         default:
975                 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
976                 ret = -EINVAL;
977                 break;
978         }
979
980         if (p_buf)
981                 strncpy(p_buf, buf, p_buf_len);
982         else
983                 pr_debug("%s", buf);
984
985         return ret;
986 }
987
988 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
989 {
990         /*
991          * The VPD identification association..
992          *
993          * from spc3r23.pdf Section 7.6.3.1 Table 297
994          */
995         vpd->association = (page_83[1] & 0x30);
996         return transport_dump_vpd_assoc(vpd, NULL, 0);
997 }
998 EXPORT_SYMBOL(transport_set_vpd_assoc);
999
1000 int transport_dump_vpd_ident_type(
1001         struct t10_vpd *vpd,
1002         unsigned char *p_buf,
1003         int p_buf_len)
1004 {
1005         unsigned char buf[VPD_TMP_BUF_SIZE];
1006         int ret = 0;
1007         int len;
1008
1009         memset(buf, 0, VPD_TMP_BUF_SIZE);
1010         len = sprintf(buf, "T10 VPD Identifier Type: ");
1011
1012         switch (vpd->device_identifier_type) {
1013         case 0x00:
1014                 sprintf(buf+len, "Vendor specific\n");
1015                 break;
1016         case 0x01:
1017                 sprintf(buf+len, "T10 Vendor ID based\n");
1018                 break;
1019         case 0x02:
1020                 sprintf(buf+len, "EUI-64 based\n");
1021                 break;
1022         case 0x03:
1023                 sprintf(buf+len, "NAA\n");
1024                 break;
1025         case 0x04:
1026                 sprintf(buf+len, "Relative target port identifier\n");
1027                 break;
1028         case 0x08:
1029                 sprintf(buf+len, "SCSI name string\n");
1030                 break;
1031         default:
1032                 sprintf(buf+len, "Unsupported: 0x%02x\n",
1033                                 vpd->device_identifier_type);
1034                 ret = -EINVAL;
1035                 break;
1036         }
1037
1038         if (p_buf) {
1039                 if (p_buf_len < strlen(buf)+1)
1040                         return -EINVAL;
1041                 strncpy(p_buf, buf, p_buf_len);
1042         } else {
1043                 pr_debug("%s", buf);
1044         }
1045
1046         return ret;
1047 }
1048
1049 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1050 {
1051         /*
1052          * The VPD identifier type..
1053          *
1054          * from spc3r23.pdf Section 7.6.3.1 Table 298
1055          */
1056         vpd->device_identifier_type = (page_83[1] & 0x0f);
1057         return transport_dump_vpd_ident_type(vpd, NULL, 0);
1058 }
1059 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1060
1061 int transport_dump_vpd_ident(
1062         struct t10_vpd *vpd,
1063         unsigned char *p_buf,
1064         int p_buf_len)
1065 {
1066         unsigned char buf[VPD_TMP_BUF_SIZE];
1067         int ret = 0;
1068
1069         memset(buf, 0, VPD_TMP_BUF_SIZE);
1070
1071         switch (vpd->device_identifier_code_set) {
1072         case 0x01: /* Binary */
1073                 snprintf(buf, sizeof(buf),
1074                         "T10 VPD Binary Device Identifier: %s\n",
1075                         &vpd->device_identifier[0]);
1076                 break;
1077         case 0x02: /* ASCII */
1078                 snprintf(buf, sizeof(buf),
1079                         "T10 VPD ASCII Device Identifier: %s\n",
1080                         &vpd->device_identifier[0]);
1081                 break;
1082         case 0x03: /* UTF-8 */
1083                 snprintf(buf, sizeof(buf),
1084                         "T10 VPD UTF-8 Device Identifier: %s\n",
1085                         &vpd->device_identifier[0]);
1086                 break;
1087         default:
1088                 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1089                         " 0x%02x", vpd->device_identifier_code_set);
1090                 ret = -EINVAL;
1091                 break;
1092         }
1093
1094         if (p_buf)
1095                 strncpy(p_buf, buf, p_buf_len);
1096         else
1097                 pr_debug("%s", buf);
1098
1099         return ret;
1100 }
1101
1102 int
1103 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1104 {
1105         static const char hex_str[] = "0123456789abcdef";
1106         int j = 0, i = 4; /* offset to start of the identifier */
1107
1108         /*
1109          * The VPD Code Set (encoding)
1110          *
1111          * from spc3r23.pdf Section 7.6.3.1 Table 296
1112          */
1113         vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1114         switch (vpd->device_identifier_code_set) {
1115         case 0x01: /* Binary */
1116                 vpd->device_identifier[j++] =
1117                                 hex_str[vpd->device_identifier_type];
1118                 while (i < (4 + page_83[3])) {
1119                         vpd->device_identifier[j++] =
1120                                 hex_str[(page_83[i] & 0xf0) >> 4];
1121                         vpd->device_identifier[j++] =
1122                                 hex_str[page_83[i] & 0x0f];
1123                         i++;
1124                 }
1125                 break;
1126         case 0x02: /* ASCII */
1127         case 0x03: /* UTF-8 */
1128                 while (i < (4 + page_83[3]))
1129                         vpd->device_identifier[j++] = page_83[i++];
1130                 break;
1131         default:
1132                 break;
1133         }
1134
1135         return transport_dump_vpd_ident(vpd, NULL, 0);
1136 }
1137 EXPORT_SYMBOL(transport_set_vpd_ident);
1138
1139 static sense_reason_t
1140 target_check_max_data_sg_nents(struct se_cmd *cmd, struct se_device *dev,
1141                                unsigned int size)
1142 {
1143         u32 mtl;
1144
1145         if (!cmd->se_tfo->max_data_sg_nents)
1146                 return TCM_NO_SENSE;
1147         /*
1148          * Check if fabric enforced maximum SGL entries per I/O descriptor
1149          * exceeds se_cmd->data_length.  If true, set SCF_UNDERFLOW_BIT +
1150          * residual_count and reduce original cmd->data_length to maximum
1151          * length based on single PAGE_SIZE entry scatter-lists.
1152          */
1153         mtl = (cmd->se_tfo->max_data_sg_nents * PAGE_SIZE);
1154         if (cmd->data_length > mtl) {
1155                 /*
1156                  * If an existing CDB overflow is present, calculate new residual
1157                  * based on CDB size minus fabric maximum transfer length.
1158                  *
1159                  * If an existing CDB underflow is present, calculate new residual
1160                  * based on original cmd->data_length minus fabric maximum transfer
1161                  * length.
1162                  *
1163                  * Otherwise, set the underflow residual based on cmd->data_length
1164                  * minus fabric maximum transfer length.
1165                  */
1166                 if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1167                         cmd->residual_count = (size - mtl);
1168                 } else if (cmd->se_cmd_flags & SCF_UNDERFLOW_BIT) {
1169                         u32 orig_dl = size + cmd->residual_count;
1170                         cmd->residual_count = (orig_dl - mtl);
1171                 } else {
1172                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1173                         cmd->residual_count = (cmd->data_length - mtl);
1174                 }
1175                 cmd->data_length = mtl;
1176                 /*
1177                  * Reset sbc_check_prot() calculated protection payload
1178                  * length based upon the new smaller MTL.
1179                  */
1180                 if (cmd->prot_length) {
1181                         u32 sectors = (mtl / dev->dev_attrib.block_size);
1182                         cmd->prot_length = dev->prot_length * sectors;
1183                 }
1184         }
1185         return TCM_NO_SENSE;
1186 }
1187
1188 sense_reason_t
1189 target_cmd_size_check(struct se_cmd *cmd, unsigned int size)
1190 {
1191         struct se_device *dev = cmd->se_dev;
1192
1193         if (cmd->unknown_data_length) {
1194                 cmd->data_length = size;
1195         } else if (size != cmd->data_length) {
1196                 pr_warn_ratelimited("TARGET_CORE[%s]: Expected Transfer Length:"
1197                         " %u does not match SCSI CDB Length: %u for SAM Opcode:"
1198                         " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
1199                                 cmd->data_length, size, cmd->t_task_cdb[0]);
1200
1201                 if (cmd->data_direction == DMA_TO_DEVICE) {
1202                         if (cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) {
1203                                 pr_err_ratelimited("Rejecting underflow/overflow"
1204                                                    " for WRITE data CDB\n");
1205                                 return TCM_INVALID_CDB_FIELD;
1206                         }
1207                         /*
1208                          * Some fabric drivers like iscsi-target still expect to
1209                          * always reject overflow writes.  Reject this case until
1210                          * full fabric driver level support for overflow writes
1211                          * is introduced tree-wide.
1212                          */
1213                         if (size > cmd->data_length) {
1214                                 pr_err_ratelimited("Rejecting overflow for"
1215                                                    " WRITE control CDB\n");
1216                                 return TCM_INVALID_CDB_FIELD;
1217                         }
1218                 }
1219                 /*
1220                  * Reject READ_* or WRITE_* with overflow/underflow for
1221                  * type SCF_SCSI_DATA_CDB.
1222                  */
1223                 if (dev->dev_attrib.block_size != 512)  {
1224                         pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
1225                                 " CDB on non 512-byte sector setup subsystem"
1226                                 " plugin: %s\n", dev->transport->name);
1227                         /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
1228                         return TCM_INVALID_CDB_FIELD;
1229                 }
1230                 /*
1231                  * For the overflow case keep the existing fabric provided
1232                  * ->data_length.  Otherwise for the underflow case, reset
1233                  * ->data_length to the smaller SCSI expected data transfer
1234                  * length.
1235                  */
1236                 if (size > cmd->data_length) {
1237                         cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
1238                         cmd->residual_count = (size - cmd->data_length);
1239                 } else {
1240                         cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
1241                         cmd->residual_count = (cmd->data_length - size);
1242                         cmd->data_length = size;
1243                 }
1244         }
1245
1246         return target_check_max_data_sg_nents(cmd, dev, size);
1247
1248 }
1249
1250 /*
1251  * Used by fabric modules containing a local struct se_cmd within their
1252  * fabric dependent per I/O descriptor.
1253  *
1254  * Preserves the value of @cmd->tag.
1255  */
1256 void transport_init_se_cmd(
1257         struct se_cmd *cmd,
1258         const struct target_core_fabric_ops *tfo,
1259         struct se_session *se_sess,
1260         u32 data_length,
1261         int data_direction,
1262         int task_attr,
1263         unsigned char *sense_buffer)
1264 {
1265         INIT_LIST_HEAD(&cmd->se_delayed_node);
1266         INIT_LIST_HEAD(&cmd->se_qf_node);
1267         INIT_LIST_HEAD(&cmd->se_cmd_list);
1268         INIT_LIST_HEAD(&cmd->state_list);
1269         init_completion(&cmd->t_transport_stop_comp);
1270         init_completion(&cmd->cmd_wait_comp);
1271         spin_lock_init(&cmd->t_state_lock);
1272         INIT_WORK(&cmd->work, NULL);
1273         kref_init(&cmd->cmd_kref);
1274
1275         cmd->se_tfo = tfo;
1276         cmd->se_sess = se_sess;
1277         cmd->data_length = data_length;
1278         cmd->data_direction = data_direction;
1279         cmd->sam_task_attr = task_attr;
1280         cmd->sense_buffer = sense_buffer;
1281
1282         cmd->state_active = false;
1283 }
1284 EXPORT_SYMBOL(transport_init_se_cmd);
1285
1286 static sense_reason_t
1287 transport_check_alloc_task_attr(struct se_cmd *cmd)
1288 {
1289         struct se_device *dev = cmd->se_dev;
1290
1291         /*
1292          * Check if SAM Task Attribute emulation is enabled for this
1293          * struct se_device storage object
1294          */
1295         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1296                 return 0;
1297
1298         if (cmd->sam_task_attr == TCM_ACA_TAG) {
1299                 pr_debug("SAM Task Attribute ACA"
1300                         " emulation is not supported\n");
1301                 return TCM_INVALID_CDB_FIELD;
1302         }
1303
1304         return 0;
1305 }
1306
1307 sense_reason_t
1308 target_setup_cmd_from_cdb(struct se_cmd *cmd, unsigned char *cdb)
1309 {
1310         struct se_device *dev = cmd->se_dev;
1311         sense_reason_t ret;
1312
1313         /*
1314          * Ensure that the received CDB is less than the max (252 + 8) bytes
1315          * for VARIABLE_LENGTH_CMD
1316          */
1317         if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1318                 pr_err("Received SCSI CDB with command_size: %d that"
1319                         " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1320                         scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1321                 return TCM_INVALID_CDB_FIELD;
1322         }
1323         /*
1324          * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1325          * allocate the additional extended CDB buffer now..  Otherwise
1326          * setup the pointer from __t_task_cdb to t_task_cdb.
1327          */
1328         if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1329                 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1330                                                 GFP_KERNEL);
1331                 if (!cmd->t_task_cdb) {
1332                         pr_err("Unable to allocate cmd->t_task_cdb"
1333                                 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1334                                 scsi_command_size(cdb),
1335                                 (unsigned long)sizeof(cmd->__t_task_cdb));
1336                         return TCM_OUT_OF_RESOURCES;
1337                 }
1338         } else
1339                 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1340         /*
1341          * Copy the original CDB into cmd->
1342          */
1343         memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1344
1345         trace_target_sequencer_start(cmd);
1346
1347         ret = dev->transport->parse_cdb(cmd);
1348         if (ret == TCM_UNSUPPORTED_SCSI_OPCODE)
1349                 pr_warn_ratelimited("%s/%s: Unsupported SCSI Opcode 0x%02x, sending CHECK_CONDITION.\n",
1350                                     cmd->se_tfo->get_fabric_name(),
1351                                     cmd->se_sess->se_node_acl->initiatorname,
1352                                     cmd->t_task_cdb[0]);
1353         if (ret)
1354                 return ret;
1355
1356         ret = transport_check_alloc_task_attr(cmd);
1357         if (ret)
1358                 return ret;
1359
1360         cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1361         atomic_long_inc(&cmd->se_lun->lun_stats.cmd_pdus);
1362         return 0;
1363 }
1364 EXPORT_SYMBOL(target_setup_cmd_from_cdb);
1365
1366 /*
1367  * Used by fabric module frontends to queue tasks directly.
1368  * May only be used from process context.
1369  */
1370 int transport_handle_cdb_direct(
1371         struct se_cmd *cmd)
1372 {
1373         sense_reason_t ret;
1374
1375         if (!cmd->se_lun) {
1376                 dump_stack();
1377                 pr_err("cmd->se_lun is NULL\n");
1378                 return -EINVAL;
1379         }
1380         if (in_interrupt()) {
1381                 dump_stack();
1382                 pr_err("transport_generic_handle_cdb cannot be called"
1383                                 " from interrupt context\n");
1384                 return -EINVAL;
1385         }
1386         /*
1387          * Set TRANSPORT_NEW_CMD state and CMD_T_ACTIVE to ensure that
1388          * outstanding descriptors are handled correctly during shutdown via
1389          * transport_wait_for_tasks()
1390          *
1391          * Also, we don't take cmd->t_state_lock here as we only expect
1392          * this to be called for initial descriptor submission.
1393          */
1394         cmd->t_state = TRANSPORT_NEW_CMD;
1395         cmd->transport_state |= CMD_T_ACTIVE;
1396
1397         /*
1398          * transport_generic_new_cmd() is already handling QUEUE_FULL,
1399          * so follow TRANSPORT_NEW_CMD processing thread context usage
1400          * and call transport_generic_request_failure() if necessary..
1401          */
1402         ret = transport_generic_new_cmd(cmd);
1403         if (ret)
1404                 transport_generic_request_failure(cmd, ret);
1405         return 0;
1406 }
1407 EXPORT_SYMBOL(transport_handle_cdb_direct);
1408
1409 sense_reason_t
1410 transport_generic_map_mem_to_cmd(struct se_cmd *cmd, struct scatterlist *sgl,
1411                 u32 sgl_count, struct scatterlist *sgl_bidi, u32 sgl_bidi_count)
1412 {
1413         if (!sgl || !sgl_count)
1414                 return 0;
1415
1416         /*
1417          * Reject SCSI data overflow with map_mem_to_cmd() as incoming
1418          * scatterlists already have been set to follow what the fabric
1419          * passes for the original expected data transfer length.
1420          */
1421         if (cmd->se_cmd_flags & SCF_OVERFLOW_BIT) {
1422                 pr_warn("Rejecting SCSI DATA overflow for fabric using"
1423                         " SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC\n");
1424                 return TCM_INVALID_CDB_FIELD;
1425         }
1426
1427         cmd->t_data_sg = sgl;
1428         cmd->t_data_nents = sgl_count;
1429         cmd->t_bidi_data_sg = sgl_bidi;
1430         cmd->t_bidi_data_nents = sgl_bidi_count;
1431
1432         cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
1433         return 0;
1434 }
1435
1436 /*
1437  * target_submit_cmd_map_sgls - lookup unpacked lun and submit uninitialized
1438  *                       se_cmd + use pre-allocated SGL memory.
1439  *
1440  * @se_cmd: command descriptor to submit
1441  * @se_sess: associated se_sess for endpoint
1442  * @cdb: pointer to SCSI CDB
1443  * @sense: pointer to SCSI sense buffer
1444  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1445  * @data_length: fabric expected data transfer length
1446  * @task_addr: SAM task attribute
1447  * @data_dir: DMA data direction
1448  * @flags: flags for command submission from target_sc_flags_tables
1449  * @sgl: struct scatterlist memory for unidirectional mapping
1450  * @sgl_count: scatterlist count for unidirectional mapping
1451  * @sgl_bidi: struct scatterlist memory for bidirectional READ mapping
1452  * @sgl_bidi_count: scatterlist count for bidirectional READ mapping
1453  * @sgl_prot: struct scatterlist memory protection information
1454  * @sgl_prot_count: scatterlist count for protection information
1455  *
1456  * Task tags are supported if the caller has set @se_cmd->tag.
1457  *
1458  * Returns non zero to signal active I/O shutdown failure.  All other
1459  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1460  * but still return zero here.
1461  *
1462  * This may only be called from process context, and also currently
1463  * assumes internal allocation of fabric payload buffer by target-core.
1464  */
1465 int target_submit_cmd_map_sgls(struct se_cmd *se_cmd, struct se_session *se_sess,
1466                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1467                 u32 data_length, int task_attr, int data_dir, int flags,
1468                 struct scatterlist *sgl, u32 sgl_count,
1469                 struct scatterlist *sgl_bidi, u32 sgl_bidi_count,
1470                 struct scatterlist *sgl_prot, u32 sgl_prot_count)
1471 {
1472         struct se_portal_group *se_tpg;
1473         sense_reason_t rc;
1474         int ret;
1475
1476         se_tpg = se_sess->se_tpg;
1477         BUG_ON(!se_tpg);
1478         BUG_ON(se_cmd->se_tfo || se_cmd->se_sess);
1479         BUG_ON(in_interrupt());
1480         /*
1481          * Initialize se_cmd for target operation.  From this point
1482          * exceptions are handled by sending exception status via
1483          * target_core_fabric_ops->queue_status() callback
1484          */
1485         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1486                                 data_length, data_dir, task_attr, sense);
1487
1488         if (flags & TARGET_SCF_USE_CPUID)
1489                 se_cmd->se_cmd_flags |= SCF_USE_CPUID;
1490         else
1491                 se_cmd->cpuid = WORK_CPU_UNBOUND;
1492
1493         if (flags & TARGET_SCF_UNKNOWN_SIZE)
1494                 se_cmd->unknown_data_length = 1;
1495         /*
1496          * Obtain struct se_cmd->cmd_kref reference and add new cmd to
1497          * se_sess->sess_cmd_list.  A second kref_get here is necessary
1498          * for fabrics using TARGET_SCF_ACK_KREF that expect a second
1499          * kref_put() to happen during fabric packet acknowledgement.
1500          */
1501         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1502         if (ret)
1503                 return ret;
1504         /*
1505          * Signal bidirectional data payloads to target-core
1506          */
1507         if (flags & TARGET_SCF_BIDI_OP)
1508                 se_cmd->se_cmd_flags |= SCF_BIDI;
1509         /*
1510          * Locate se_lun pointer and attach it to struct se_cmd
1511          */
1512         rc = transport_lookup_cmd_lun(se_cmd, unpacked_lun);
1513         if (rc) {
1514                 transport_send_check_condition_and_sense(se_cmd, rc, 0);
1515                 target_put_sess_cmd(se_cmd);
1516                 return 0;
1517         }
1518
1519         rc = target_setup_cmd_from_cdb(se_cmd, cdb);
1520         if (rc != 0) {
1521                 transport_generic_request_failure(se_cmd, rc);
1522                 return 0;
1523         }
1524
1525         /*
1526          * Save pointers for SGLs containing protection information,
1527          * if present.
1528          */
1529         if (sgl_prot_count) {
1530                 se_cmd->t_prot_sg = sgl_prot;
1531                 se_cmd->t_prot_nents = sgl_prot_count;
1532                 se_cmd->se_cmd_flags |= SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC;
1533         }
1534
1535         /*
1536          * When a non zero sgl_count has been passed perform SGL passthrough
1537          * mapping for pre-allocated fabric memory instead of having target
1538          * core perform an internal SGL allocation..
1539          */
1540         if (sgl_count != 0) {
1541                 BUG_ON(!sgl);
1542
1543                 /*
1544                  * A work-around for tcm_loop as some userspace code via
1545                  * scsi-generic do not memset their associated read buffers,
1546                  * so go ahead and do that here for type non-data CDBs.  Also
1547                  * note that this is currently guaranteed to be a single SGL
1548                  * for this case by target core in target_setup_cmd_from_cdb()
1549                  * -> transport_generic_cmd_sequencer().
1550                  */
1551                 if (!(se_cmd->se_cmd_flags & SCF_SCSI_DATA_CDB) &&
1552                      se_cmd->data_direction == DMA_FROM_DEVICE) {
1553                         unsigned char *buf = NULL;
1554
1555                         if (sgl)
1556                                 buf = kmap(sg_page(sgl)) + sgl->offset;
1557
1558                         if (buf) {
1559                                 memset(buf, 0, sgl->length);
1560                                 kunmap(sg_page(sgl));
1561                         }
1562                 }
1563
1564                 rc = transport_generic_map_mem_to_cmd(se_cmd, sgl, sgl_count,
1565                                 sgl_bidi, sgl_bidi_count);
1566                 if (rc != 0) {
1567                         transport_generic_request_failure(se_cmd, rc);
1568                         return 0;
1569                 }
1570         }
1571
1572         /*
1573          * Check if we need to delay processing because of ALUA
1574          * Active/NonOptimized primary access state..
1575          */
1576         core_alua_check_nonop_delay(se_cmd);
1577
1578         transport_handle_cdb_direct(se_cmd);
1579         return 0;
1580 }
1581 EXPORT_SYMBOL(target_submit_cmd_map_sgls);
1582
1583 /*
1584  * target_submit_cmd - lookup unpacked lun and submit uninitialized se_cmd
1585  *
1586  * @se_cmd: command descriptor to submit
1587  * @se_sess: associated se_sess for endpoint
1588  * @cdb: pointer to SCSI CDB
1589  * @sense: pointer to SCSI sense buffer
1590  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1591  * @data_length: fabric expected data transfer length
1592  * @task_addr: SAM task attribute
1593  * @data_dir: DMA data direction
1594  * @flags: flags for command submission from target_sc_flags_tables
1595  *
1596  * Task tags are supported if the caller has set @se_cmd->tag.
1597  *
1598  * Returns non zero to signal active I/O shutdown failure.  All other
1599  * setup exceptions will be returned as a SCSI CHECK_CONDITION response,
1600  * but still return zero here.
1601  *
1602  * This may only be called from process context, and also currently
1603  * assumes internal allocation of fabric payload buffer by target-core.
1604  *
1605  * It also assumes interal target core SGL memory allocation.
1606  */
1607 int target_submit_cmd(struct se_cmd *se_cmd, struct se_session *se_sess,
1608                 unsigned char *cdb, unsigned char *sense, u64 unpacked_lun,
1609                 u32 data_length, int task_attr, int data_dir, int flags)
1610 {
1611         return target_submit_cmd_map_sgls(se_cmd, se_sess, cdb, sense,
1612                         unpacked_lun, data_length, task_attr, data_dir,
1613                         flags, NULL, 0, NULL, 0, NULL, 0);
1614 }
1615 EXPORT_SYMBOL(target_submit_cmd);
1616
1617 static void target_complete_tmr_failure(struct work_struct *work)
1618 {
1619         struct se_cmd *se_cmd = container_of(work, struct se_cmd, work);
1620
1621         se_cmd->se_tmr_req->response = TMR_LUN_DOES_NOT_EXIST;
1622         se_cmd->se_tfo->queue_tm_rsp(se_cmd);
1623
1624         transport_lun_remove_cmd(se_cmd);
1625         transport_cmd_check_stop_to_fabric(se_cmd);
1626 }
1627
1628 static bool target_lookup_lun_from_tag(struct se_session *se_sess, u64 tag,
1629                                        u64 *unpacked_lun)
1630 {
1631         struct se_cmd *se_cmd;
1632         unsigned long flags;
1633         bool ret = false;
1634
1635         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
1636         list_for_each_entry(se_cmd, &se_sess->sess_cmd_list, se_cmd_list) {
1637                 if (se_cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
1638                         continue;
1639
1640                 if (se_cmd->tag == tag) {
1641                         *unpacked_lun = se_cmd->orig_fe_lun;
1642                         ret = true;
1643                         break;
1644                 }
1645         }
1646         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
1647
1648         return ret;
1649 }
1650
1651 /**
1652  * target_submit_tmr - lookup unpacked lun and submit uninitialized se_cmd
1653  *                     for TMR CDBs
1654  *
1655  * @se_cmd: command descriptor to submit
1656  * @se_sess: associated se_sess for endpoint
1657  * @sense: pointer to SCSI sense buffer
1658  * @unpacked_lun: unpacked LUN to reference for struct se_lun
1659  * @fabric_context: fabric context for TMR req
1660  * @tm_type: Type of TM request
1661  * @gfp: gfp type for caller
1662  * @tag: referenced task tag for TMR_ABORT_TASK
1663  * @flags: submit cmd flags
1664  *
1665  * Callable from all contexts.
1666  **/
1667
1668 int target_submit_tmr(struct se_cmd *se_cmd, struct se_session *se_sess,
1669                 unsigned char *sense, u64 unpacked_lun,
1670                 void *fabric_tmr_ptr, unsigned char tm_type,
1671                 gfp_t gfp, u64 tag, int flags)
1672 {
1673         struct se_portal_group *se_tpg;
1674         int ret;
1675
1676         se_tpg = se_sess->se_tpg;
1677         BUG_ON(!se_tpg);
1678
1679         transport_init_se_cmd(se_cmd, se_tpg->se_tpg_tfo, se_sess,
1680                               0, DMA_NONE, TCM_SIMPLE_TAG, sense);
1681         /*
1682          * FIXME: Currently expect caller to handle se_cmd->se_tmr_req
1683          * allocation failure.
1684          */
1685         ret = core_tmr_alloc_req(se_cmd, fabric_tmr_ptr, tm_type, gfp);
1686         if (ret < 0)
1687                 return -ENOMEM;
1688
1689         if (tm_type == TMR_ABORT_TASK)
1690                 se_cmd->se_tmr_req->ref_task_tag = tag;
1691
1692         /* See target_submit_cmd for commentary */
1693         ret = target_get_sess_cmd(se_cmd, flags & TARGET_SCF_ACK_KREF);
1694         if (ret) {
1695                 core_tmr_release_req(se_cmd->se_tmr_req);
1696                 return ret;
1697         }
1698         /*
1699          * If this is ABORT_TASK with no explicit fabric provided LUN,
1700          * go ahead and search active session tags for a match to figure
1701          * out unpacked_lun for the original se_cmd.
1702          */
1703         if (tm_type == TMR_ABORT_TASK && (flags & TARGET_SCF_LOOKUP_LUN_FROM_TAG)) {
1704                 if (!target_lookup_lun_from_tag(se_sess, tag, &unpacked_lun))
1705                         goto failure;
1706         }
1707
1708         ret = transport_lookup_tmr_lun(se_cmd, unpacked_lun);
1709         if (ret)
1710                 goto failure;
1711
1712         transport_generic_handle_tmr(se_cmd);
1713         return 0;
1714
1715         /*
1716          * For callback during failure handling, push this work off
1717          * to process context with TMR_LUN_DOES_NOT_EXIST status.
1718          */
1719 failure:
1720         INIT_WORK(&se_cmd->work, target_complete_tmr_failure);
1721         schedule_work(&se_cmd->work);
1722         return 0;
1723 }
1724 EXPORT_SYMBOL(target_submit_tmr);
1725
1726 /*
1727  * Handle SAM-esque emulation for generic transport request failures.
1728  */
1729 void transport_generic_request_failure(struct se_cmd *cmd,
1730                 sense_reason_t sense_reason)
1731 {
1732         int ret = 0, post_ret = 0;
1733
1734         pr_debug("-----[ Storage Engine Exception; sense_reason %d\n",
1735                  sense_reason);
1736         target_show_cmd("-----[ ", cmd);
1737
1738         /*
1739          * For SAM Task Attribute emulation for failed struct se_cmd
1740          */
1741         transport_complete_task_attr(cmd);
1742
1743         /*
1744          * Handle special case for COMPARE_AND_WRITE failure, where the
1745          * callback is expected to drop the per device ->caw_sem.
1746          */
1747         if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
1748              cmd->transport_complete_callback)
1749                 cmd->transport_complete_callback(cmd, false, &post_ret);
1750
1751         if (transport_check_aborted_status(cmd, 1))
1752                 return;
1753
1754         switch (sense_reason) {
1755         case TCM_NON_EXISTENT_LUN:
1756         case TCM_UNSUPPORTED_SCSI_OPCODE:
1757         case TCM_INVALID_CDB_FIELD:
1758         case TCM_INVALID_PARAMETER_LIST:
1759         case TCM_PARAMETER_LIST_LENGTH_ERROR:
1760         case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
1761         case TCM_UNKNOWN_MODE_PAGE:
1762         case TCM_WRITE_PROTECTED:
1763         case TCM_ADDRESS_OUT_OF_RANGE:
1764         case TCM_CHECK_CONDITION_ABORT_CMD:
1765         case TCM_CHECK_CONDITION_UNIT_ATTENTION:
1766         case TCM_CHECK_CONDITION_NOT_READY:
1767         case TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED:
1768         case TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED:
1769         case TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED:
1770         case TCM_COPY_TARGET_DEVICE_NOT_REACHABLE:
1771         case TCM_TOO_MANY_TARGET_DESCS:
1772         case TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE:
1773         case TCM_TOO_MANY_SEGMENT_DESCS:
1774         case TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE:
1775                 break;
1776         case TCM_OUT_OF_RESOURCES:
1777                 sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1778                 break;
1779         case TCM_RESERVATION_CONFLICT:
1780                 /*
1781                  * No SENSE Data payload for this case, set SCSI Status
1782                  * and queue the response to $FABRIC_MOD.
1783                  *
1784                  * Uses linux/include/scsi/scsi.h SAM status codes defs
1785                  */
1786                 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1787                 /*
1788                  * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1789                  * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1790                  * CONFLICT STATUS.
1791                  *
1792                  * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1793                  */
1794                 if (cmd->se_sess &&
1795                     cmd->se_dev->dev_attrib.emulate_ua_intlck_ctrl == 2) {
1796                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
1797                                                cmd->orig_fe_lun, 0x2C,
1798                                         ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1799                 }
1800                 trace_target_cmd_complete(cmd);
1801                 ret = cmd->se_tfo->queue_status(cmd);
1802                 if (ret)
1803                         goto queue_full;
1804                 goto check_stop;
1805         default:
1806                 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1807                         cmd->t_task_cdb[0], sense_reason);
1808                 sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1809                 break;
1810         }
1811
1812         ret = transport_send_check_condition_and_sense(cmd, sense_reason, 0);
1813         if (ret)
1814                 goto queue_full;
1815
1816 check_stop:
1817         transport_lun_remove_cmd(cmd);
1818         transport_cmd_check_stop_to_fabric(cmd);
1819         return;
1820
1821 queue_full:
1822         transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
1823 }
1824 EXPORT_SYMBOL(transport_generic_request_failure);
1825
1826 void __target_execute_cmd(struct se_cmd *cmd, bool do_checks)
1827 {
1828         sense_reason_t ret;
1829
1830         if (!cmd->execute_cmd) {
1831                 ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1832                 goto err;
1833         }
1834         if (do_checks) {
1835                 /*
1836                  * Check for an existing UNIT ATTENTION condition after
1837                  * target_handle_task_attr() has done SAM task attr
1838                  * checking, and possibly have already defered execution
1839                  * out to target_restart_delayed_cmds() context.
1840                  */
1841                 ret = target_scsi3_ua_check(cmd);
1842                 if (ret)
1843                         goto err;
1844
1845                 ret = target_alua_state_check(cmd);
1846                 if (ret)
1847                         goto err;
1848
1849                 ret = target_check_reservation(cmd);
1850                 if (ret) {
1851                         cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1852                         goto err;
1853                 }
1854         }
1855
1856         ret = cmd->execute_cmd(cmd);
1857         if (!ret)
1858                 return;
1859 err:
1860         spin_lock_irq(&cmd->t_state_lock);
1861         cmd->transport_state &= ~CMD_T_SENT;
1862         spin_unlock_irq(&cmd->t_state_lock);
1863
1864         transport_generic_request_failure(cmd, ret);
1865 }
1866
1867 static int target_write_prot_action(struct se_cmd *cmd)
1868 {
1869         u32 sectors;
1870         /*
1871          * Perform WRITE_INSERT of PI using software emulation when backend
1872          * device has PI enabled, if the transport has not already generated
1873          * PI using hardware WRITE_INSERT offload.
1874          */
1875         switch (cmd->prot_op) {
1876         case TARGET_PROT_DOUT_INSERT:
1877                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_INSERT))
1878                         sbc_dif_generate(cmd);
1879                 break;
1880         case TARGET_PROT_DOUT_STRIP:
1881                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DOUT_STRIP)
1882                         break;
1883
1884                 sectors = cmd->data_length >> ilog2(cmd->se_dev->dev_attrib.block_size);
1885                 cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
1886                                              sectors, 0, cmd->t_prot_sg, 0);
1887                 if (unlikely(cmd->pi_err)) {
1888                         spin_lock_irq(&cmd->t_state_lock);
1889                         cmd->transport_state &= ~CMD_T_SENT;
1890                         spin_unlock_irq(&cmd->t_state_lock);
1891                         transport_generic_request_failure(cmd, cmd->pi_err);
1892                         return -1;
1893                 }
1894                 break;
1895         default:
1896                 break;
1897         }
1898
1899         return 0;
1900 }
1901
1902 static bool target_handle_task_attr(struct se_cmd *cmd)
1903 {
1904         struct se_device *dev = cmd->se_dev;
1905
1906         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
1907                 return false;
1908
1909         cmd->se_cmd_flags |= SCF_TASK_ATTR_SET;
1910
1911         /*
1912          * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1913          * to allow the passed struct se_cmd list of tasks to the front of the list.
1914          */
1915         switch (cmd->sam_task_attr) {
1916         case TCM_HEAD_TAG:
1917                 atomic_inc_mb(&dev->non_ordered);
1918                 pr_debug("Added HEAD_OF_QUEUE for CDB: 0x%02x\n",
1919                          cmd->t_task_cdb[0]);
1920                 return false;
1921         case TCM_ORDERED_TAG:
1922                 atomic_inc_mb(&dev->delayed_cmd_count);
1923
1924                 pr_debug("Added ORDERED for CDB: 0x%02x to ordered list\n",
1925                          cmd->t_task_cdb[0]);
1926                 break;
1927         default:
1928                 /*
1929                  * For SIMPLE and UNTAGGED Task Attribute commands
1930                  */
1931                 atomic_inc_mb(&dev->non_ordered);
1932
1933                 if (atomic_read(&dev->delayed_cmd_count) == 0)
1934                         return false;
1935                 break;
1936         }
1937
1938         if (cmd->sam_task_attr != TCM_ORDERED_TAG) {
1939                 atomic_inc_mb(&dev->delayed_cmd_count);
1940                 /*
1941                  * We will account for this when we dequeue from the delayed
1942                  * list.
1943                  */
1944                 atomic_dec_mb(&dev->non_ordered);
1945         }
1946
1947         spin_lock(&dev->delayed_cmd_lock);
1948         list_add_tail(&cmd->se_delayed_node, &dev->delayed_cmd_list);
1949         spin_unlock(&dev->delayed_cmd_lock);
1950
1951         pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to delayed CMD listn",
1952                 cmd->t_task_cdb[0], cmd->sam_task_attr);
1953         /*
1954          * We may have no non ordered cmds when this function started or we
1955          * could have raced with the last simple/head cmd completing, so kick
1956          * the delayed handler here.
1957          */
1958         schedule_work(&dev->delayed_cmd_work);
1959         return true;
1960 }
1961
1962 static int __transport_check_aborted_status(struct se_cmd *, int);
1963
1964 void target_execute_cmd(struct se_cmd *cmd)
1965 {
1966         /*
1967          * Determine if frontend context caller is requesting the stopping of
1968          * this command for frontend exceptions.
1969          *
1970          * If the received CDB has aleady been aborted stop processing it here.
1971          */
1972         spin_lock_irq(&cmd->t_state_lock);
1973         if (__transport_check_aborted_status(cmd, 1)) {
1974                 spin_unlock_irq(&cmd->t_state_lock);
1975                 return;
1976         }
1977         if (cmd->transport_state & CMD_T_STOP) {
1978                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
1979                         __func__, __LINE__, cmd->tag);
1980
1981                 spin_unlock_irq(&cmd->t_state_lock);
1982                 complete_all(&cmd->t_transport_stop_comp);
1983                 return;
1984         }
1985
1986         cmd->t_state = TRANSPORT_PROCESSING;
1987         cmd->transport_state &= ~CMD_T_PRE_EXECUTE;
1988         cmd->transport_state |= CMD_T_ACTIVE | CMD_T_SENT;
1989         spin_unlock_irq(&cmd->t_state_lock);
1990
1991         if (target_write_prot_action(cmd))
1992                 return;
1993
1994         if (target_handle_task_attr(cmd)) {
1995                 spin_lock_irq(&cmd->t_state_lock);
1996                 cmd->transport_state &= ~CMD_T_SENT;
1997                 spin_unlock_irq(&cmd->t_state_lock);
1998                 return;
1999         }
2000
2001         __target_execute_cmd(cmd, true);
2002 }
2003 EXPORT_SYMBOL(target_execute_cmd);
2004
2005 /*
2006  * Process all commands up to the last received ORDERED task attribute which
2007  * requires another blocking boundary
2008  */
2009 void target_do_delayed_work(struct work_struct *work)
2010 {
2011         struct se_device *dev = container_of(work, struct se_device,
2012                                              delayed_cmd_work);
2013
2014         spin_lock(&dev->delayed_cmd_lock);
2015         while (!dev->ordered_sync_in_progress) {
2016                 struct se_cmd *cmd;
2017
2018                 if (list_empty(&dev->delayed_cmd_list))
2019                         break;
2020
2021                 cmd = list_entry(dev->delayed_cmd_list.next,
2022                                  struct se_cmd, se_delayed_node);
2023
2024                 if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2025                         /*
2026                          * Check if we started with:
2027                          * [ordered] [simple] [ordered]
2028                          * and we are now at the last ordered so we have to wait
2029                          * for the simple cmd.
2030                          */
2031                         if (atomic_read(&dev->non_ordered) > 0)
2032                                 break;
2033
2034                         dev->ordered_sync_in_progress = true;
2035                 }
2036
2037                 list_del(&cmd->se_delayed_node);
2038                 atomic_dec_mb(&dev->delayed_cmd_count);
2039                 spin_unlock(&dev->delayed_cmd_lock);
2040
2041                 if (cmd->sam_task_attr != TCM_ORDERED_TAG)
2042                         atomic_inc_mb(&dev->non_ordered);
2043
2044                 cmd->transport_state |= CMD_T_SENT;
2045
2046                 __target_execute_cmd(cmd, true);
2047
2048                 spin_lock(&dev->delayed_cmd_lock);
2049         }
2050         spin_unlock(&dev->delayed_cmd_lock);
2051 }
2052
2053 /*
2054  * Called from I/O completion to determine which dormant/delayed
2055  * and ordered cmds need to have their tasks added to the execution queue.
2056  */
2057 static void transport_complete_task_attr(struct se_cmd *cmd)
2058 {
2059         struct se_device *dev = cmd->se_dev;
2060
2061         if (dev->transport->transport_flags & TRANSPORT_FLAG_PASSTHROUGH)
2062                 return;
2063
2064         if (!(cmd->se_cmd_flags & SCF_TASK_ATTR_SET))
2065                 goto restart;
2066
2067         if (cmd->sam_task_attr == TCM_SIMPLE_TAG) {
2068                 atomic_dec_mb(&dev->non_ordered);
2069                 dev->dev_cur_ordered_id++;
2070         } else if (cmd->sam_task_attr == TCM_HEAD_TAG) {
2071                 atomic_dec_mb(&dev->non_ordered);
2072                 dev->dev_cur_ordered_id++;
2073                 pr_debug("Incremented dev_cur_ordered_id: %u for HEAD_OF_QUEUE\n",
2074                          dev->dev_cur_ordered_id);
2075         } else if (cmd->sam_task_attr == TCM_ORDERED_TAG) {
2076                 spin_lock(&dev->delayed_cmd_lock);
2077                 dev->ordered_sync_in_progress = false;
2078                 spin_unlock(&dev->delayed_cmd_lock);
2079
2080                 dev->dev_cur_ordered_id++;
2081                 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED\n",
2082                          dev->dev_cur_ordered_id);
2083         }
2084         cmd->se_cmd_flags &= ~SCF_TASK_ATTR_SET;
2085
2086 restart:
2087         if (atomic_read(&dev->delayed_cmd_count) > 0)
2088                 schedule_work(&dev->delayed_cmd_work);
2089 }
2090
2091 static void transport_complete_qf(struct se_cmd *cmd)
2092 {
2093         int ret = 0;
2094
2095         transport_complete_task_attr(cmd);
2096         /*
2097          * If a fabric driver ->write_pending() or ->queue_data_in() callback
2098          * has returned neither -ENOMEM or -EAGAIN, assume it's fatal and
2099          * the same callbacks should not be retried.  Return CHECK_CONDITION
2100          * if a scsi_status is not already set.
2101          *
2102          * If a fabric driver ->queue_status() has returned non zero, always
2103          * keep retrying no matter what..
2104          */
2105         if (cmd->t_state == TRANSPORT_COMPLETE_QF_ERR) {
2106                 if (cmd->scsi_status)
2107                         goto queue_status;
2108
2109                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
2110                 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
2111                 cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
2112                 translate_sense_reason(cmd, TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE);
2113                 goto queue_status;
2114         }
2115
2116         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE)
2117                 goto queue_status;
2118
2119         switch (cmd->data_direction) {
2120         case DMA_FROM_DEVICE:
2121                 if (cmd->scsi_status)
2122                         goto queue_status;
2123
2124                 trace_target_cmd_complete(cmd);
2125                 ret = cmd->se_tfo->queue_data_in(cmd);
2126                 break;
2127         case DMA_TO_DEVICE:
2128                 if (cmd->se_cmd_flags & SCF_BIDI) {
2129                         ret = cmd->se_tfo->queue_data_in(cmd);
2130                         break;
2131                 }
2132                 /* Fall through for DMA_TO_DEVICE */
2133         case DMA_NONE:
2134 queue_status:
2135                 trace_target_cmd_complete(cmd);
2136                 ret = cmd->se_tfo->queue_status(cmd);
2137                 break;
2138         default:
2139                 break;
2140         }
2141
2142         if (ret < 0) {
2143                 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2144                 return;
2145         }
2146         transport_lun_remove_cmd(cmd);
2147         transport_cmd_check_stop_to_fabric(cmd);
2148 }
2149
2150 static void transport_handle_queue_full(struct se_cmd *cmd, struct se_device *dev,
2151                                         int err, bool write_pending)
2152 {
2153         /*
2154          * -EAGAIN or -ENOMEM signals retry of ->write_pending() and/or
2155          * ->queue_data_in() callbacks from new process context.
2156          *
2157          * Otherwise for other errors, transport_complete_qf() will send
2158          * CHECK_CONDITION via ->queue_status() instead of attempting to
2159          * retry associated fabric driver data-transfer callbacks.
2160          */
2161         if (err == -EAGAIN || err == -ENOMEM) {
2162                 cmd->t_state = (write_pending) ? TRANSPORT_COMPLETE_QF_WP :
2163                                                  TRANSPORT_COMPLETE_QF_OK;
2164         } else {
2165                 pr_warn_ratelimited("Got unknown fabric queue status: %d\n", err);
2166                 cmd->t_state = TRANSPORT_COMPLETE_QF_ERR;
2167         }
2168
2169         spin_lock_irq(&dev->qf_cmd_lock);
2170         list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
2171         atomic_inc_mb(&dev->dev_qf_count);
2172         spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
2173
2174         schedule_work(&cmd->se_dev->qf_work_queue);
2175 }
2176
2177 static bool target_read_prot_action(struct se_cmd *cmd)
2178 {
2179         switch (cmd->prot_op) {
2180         case TARGET_PROT_DIN_STRIP:
2181                 if (!(cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_STRIP)) {
2182                         u32 sectors = cmd->data_length >>
2183                                   ilog2(cmd->se_dev->dev_attrib.block_size);
2184
2185                         cmd->pi_err = sbc_dif_verify(cmd, cmd->t_task_lba,
2186                                                      sectors, 0, cmd->t_prot_sg,
2187                                                      0);
2188                         if (cmd->pi_err)
2189                                 return true;
2190                 }
2191                 break;
2192         case TARGET_PROT_DIN_INSERT:
2193                 if (cmd->se_sess->sup_prot_ops & TARGET_PROT_DIN_INSERT)
2194                         break;
2195
2196                 sbc_dif_generate(cmd);
2197                 break;
2198         default:
2199                 break;
2200         }
2201
2202         return false;
2203 }
2204
2205 static void target_complete_ok_work(struct work_struct *work)
2206 {
2207         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
2208         int ret;
2209
2210         /*
2211          * Check if we need to move delayed/dormant tasks from cmds on the
2212          * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
2213          * Attribute.
2214          */
2215         transport_complete_task_attr(cmd);
2216
2217         /*
2218          * Check to schedule QUEUE_FULL work, or execute an existing
2219          * cmd->transport_qf_callback()
2220          */
2221         if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
2222                 schedule_work(&cmd->se_dev->qf_work_queue);
2223
2224         /*
2225          * Check if we need to send a sense buffer from
2226          * the struct se_cmd in question.
2227          */
2228         if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
2229                 WARN_ON(!cmd->scsi_status);
2230                 ret = transport_send_check_condition_and_sense(
2231                                         cmd, 0, 1);
2232                 if (ret)
2233                         goto queue_full;
2234
2235                 transport_lun_remove_cmd(cmd);
2236                 transport_cmd_check_stop_to_fabric(cmd);
2237                 return;
2238         }
2239         /*
2240          * Check for a callback, used by amongst other things
2241          * XDWRITE_READ_10 and COMPARE_AND_WRITE emulation.
2242          */
2243         if (cmd->transport_complete_callback) {
2244                 sense_reason_t rc;
2245                 bool caw = (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE);
2246                 bool zero_dl = !(cmd->data_length);
2247                 int post_ret = 0;
2248
2249                 rc = cmd->transport_complete_callback(cmd, true, &post_ret);
2250                 if (!rc && !post_ret) {
2251                         if (caw && zero_dl)
2252                                 goto queue_rsp;
2253
2254                         return;
2255                 } else if (rc) {
2256                         ret = transport_send_check_condition_and_sense(cmd,
2257                                                 rc, 0);
2258                         if (ret)
2259                                 goto queue_full;
2260
2261                         transport_lun_remove_cmd(cmd);
2262                         transport_cmd_check_stop_to_fabric(cmd);
2263                         return;
2264                 }
2265         }
2266
2267 queue_rsp:
2268         switch (cmd->data_direction) {
2269         case DMA_FROM_DEVICE:
2270                 if (cmd->scsi_status)
2271                         goto queue_status;
2272
2273                 atomic_long_add(cmd->data_length,
2274                                 &cmd->se_lun->lun_stats.tx_data_octets);
2275                 /*
2276                  * Perform READ_STRIP of PI using software emulation when
2277                  * backend had PI enabled, if the transport will not be
2278                  * performing hardware READ_STRIP offload.
2279                  */
2280                 if (target_read_prot_action(cmd)) {
2281                         ret = transport_send_check_condition_and_sense(cmd,
2282                                                 cmd->pi_err, 0);
2283                         if (ret)
2284                                 goto queue_full;
2285
2286                         transport_lun_remove_cmd(cmd);
2287                         transport_cmd_check_stop_to_fabric(cmd);
2288                         return;
2289                 }
2290
2291                 trace_target_cmd_complete(cmd);
2292                 ret = cmd->se_tfo->queue_data_in(cmd);
2293                 if (ret)
2294                         goto queue_full;
2295                 break;
2296         case DMA_TO_DEVICE:
2297                 atomic_long_add(cmd->data_length,
2298                                 &cmd->se_lun->lun_stats.rx_data_octets);
2299                 /*
2300                  * Check if we need to send READ payload for BIDI-COMMAND
2301                  */
2302                 if (cmd->se_cmd_flags & SCF_BIDI) {
2303                         atomic_long_add(cmd->data_length,
2304                                         &cmd->se_lun->lun_stats.tx_data_octets);
2305                         ret = cmd->se_tfo->queue_data_in(cmd);
2306                         if (ret)
2307                                 goto queue_full;
2308                         break;
2309                 }
2310                 /* Fall through for DMA_TO_DEVICE */
2311         case DMA_NONE:
2312 queue_status:
2313                 trace_target_cmd_complete(cmd);
2314                 ret = cmd->se_tfo->queue_status(cmd);
2315                 if (ret)
2316                         goto queue_full;
2317                 break;
2318         default:
2319                 break;
2320         }
2321
2322         transport_lun_remove_cmd(cmd);
2323         transport_cmd_check_stop_to_fabric(cmd);
2324         return;
2325
2326 queue_full:
2327         pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
2328                 " data_direction: %d\n", cmd, cmd->data_direction);
2329
2330         transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
2331 }
2332
2333 void target_free_sgl(struct scatterlist *sgl, int nents)
2334 {
2335         struct scatterlist *sg;
2336         int count;
2337
2338         for_each_sg(sgl, sg, nents, count)
2339                 __free_page(sg_page(sg));
2340
2341         kfree(sgl);
2342 }
2343 EXPORT_SYMBOL(target_free_sgl);
2344
2345 static inline void transport_reset_sgl_orig(struct se_cmd *cmd)
2346 {
2347         /*
2348          * Check for saved t_data_sg that may be used for COMPARE_AND_WRITE
2349          * emulation, and free + reset pointers if necessary..
2350          */
2351         if (!cmd->t_data_sg_orig)
2352                 return;
2353
2354         kfree(cmd->t_data_sg);
2355         cmd->t_data_sg = cmd->t_data_sg_orig;
2356         cmd->t_data_sg_orig = NULL;
2357         cmd->t_data_nents = cmd->t_data_nents_orig;
2358         cmd->t_data_nents_orig = 0;
2359 }
2360
2361 static inline void transport_free_pages(struct se_cmd *cmd)
2362 {
2363         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2364                 target_free_sgl(cmd->t_prot_sg, cmd->t_prot_nents);
2365                 cmd->t_prot_sg = NULL;
2366                 cmd->t_prot_nents = 0;
2367         }
2368
2369         if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) {
2370                 /*
2371                  * Release special case READ buffer payload required for
2372                  * SG_TO_MEM_NOALLOC to function with COMPARE_AND_WRITE
2373                  */
2374                 if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) {
2375                         target_free_sgl(cmd->t_bidi_data_sg,
2376                                            cmd->t_bidi_data_nents);
2377                         cmd->t_bidi_data_sg = NULL;
2378                         cmd->t_bidi_data_nents = 0;
2379                 }
2380                 transport_reset_sgl_orig(cmd);
2381                 return;
2382         }
2383         transport_reset_sgl_orig(cmd);
2384
2385         target_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
2386         cmd->t_data_sg = NULL;
2387         cmd->t_data_nents = 0;
2388
2389         target_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
2390         cmd->t_bidi_data_sg = NULL;
2391         cmd->t_bidi_data_nents = 0;
2392 }
2393
2394 /**
2395  * transport_put_cmd - release a reference to a command
2396  * @cmd:       command to release
2397  *
2398  * This routine releases our reference to the command and frees it if possible.
2399  */
2400 static int transport_put_cmd(struct se_cmd *cmd)
2401 {
2402         BUG_ON(!cmd->se_tfo);
2403         /*
2404          * If this cmd has been setup with target_get_sess_cmd(), drop
2405          * the kref and call ->release_cmd() in kref callback.
2406          */
2407         return target_put_sess_cmd(cmd);
2408 }
2409
2410 void *transport_kmap_data_sg(struct se_cmd *cmd)
2411 {
2412         struct scatterlist *sg = cmd->t_data_sg;
2413         struct page **pages;
2414         int i;
2415
2416         /*
2417          * We need to take into account a possible offset here for fabrics like
2418          * tcm_loop who may be using a contig buffer from the SCSI midlayer for
2419          * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
2420          */
2421         if (!cmd->t_data_nents)
2422                 return NULL;
2423
2424         BUG_ON(!sg);
2425         if (cmd->t_data_nents == 1)
2426                 return kmap(sg_page(sg)) + sg->offset;
2427
2428         /* >1 page. use vmap */
2429         pages = kmalloc_array(cmd->t_data_nents, sizeof(*pages), GFP_KERNEL);
2430         if (!pages)
2431                 return NULL;
2432
2433         /* convert sg[] to pages[] */
2434         for_each_sg(cmd->t_data_sg, sg, cmd->t_data_nents, i) {
2435                 pages[i] = sg_page(sg);
2436         }
2437
2438         cmd->t_data_vmap = vmap(pages, cmd->t_data_nents,  VM_MAP, PAGE_KERNEL);
2439         kfree(pages);
2440         if (!cmd->t_data_vmap)
2441                 return NULL;
2442
2443         return cmd->t_data_vmap + cmd->t_data_sg[0].offset;
2444 }
2445 EXPORT_SYMBOL(transport_kmap_data_sg);
2446
2447 void transport_kunmap_data_sg(struct se_cmd *cmd)
2448 {
2449         if (!cmd->t_data_nents) {
2450                 return;
2451         } else if (cmd->t_data_nents == 1) {
2452                 kunmap(sg_page(cmd->t_data_sg));
2453                 return;
2454         }
2455
2456         vunmap(cmd->t_data_vmap);
2457         cmd->t_data_vmap = NULL;
2458 }
2459 EXPORT_SYMBOL(transport_kunmap_data_sg);
2460
2461 int
2462 target_alloc_sgl(struct scatterlist **sgl, unsigned int *nents, u32 length,
2463                  bool zero_page, bool chainable)
2464 {
2465         struct scatterlist *sg;
2466         struct page *page;
2467         gfp_t zero_flag = (zero_page) ? __GFP_ZERO : 0;
2468         unsigned int nalloc, nent;
2469         int i = 0;
2470
2471         nalloc = nent = DIV_ROUND_UP(length, PAGE_SIZE);
2472         if (chainable)
2473                 nalloc++;
2474         sg = kmalloc_array(nalloc, sizeof(struct scatterlist), GFP_KERNEL);
2475         if (!sg)
2476                 return -ENOMEM;
2477
2478         sg_init_table(sg, nalloc);
2479
2480         while (length) {
2481                 u32 page_len = min_t(u32, length, PAGE_SIZE);
2482                 page = alloc_page(GFP_KERNEL | zero_flag);
2483                 if (!page)
2484                         goto out;
2485
2486                 sg_set_page(&sg[i], page, page_len, 0);
2487                 length -= page_len;
2488                 i++;
2489         }
2490         *sgl = sg;
2491         *nents = nent;
2492         return 0;
2493
2494 out:
2495         while (i > 0) {
2496                 i--;
2497                 __free_page(sg_page(&sg[i]));
2498         }
2499         kfree(sg);
2500         return -ENOMEM;
2501 }
2502 EXPORT_SYMBOL(target_alloc_sgl);
2503
2504 /*
2505  * Allocate any required resources to execute the command.  For writes we
2506  * might not have the payload yet, so notify the fabric via a call to
2507  * ->write_pending instead. Otherwise place it on the execution queue.
2508  */
2509 sense_reason_t
2510 transport_generic_new_cmd(struct se_cmd *cmd)
2511 {
2512         unsigned long flags;
2513         int ret = 0;
2514         bool zero_flag = !(cmd->se_cmd_flags & SCF_SCSI_DATA_CDB);
2515
2516         if (cmd->prot_op != TARGET_PROT_NORMAL &&
2517             !(cmd->se_cmd_flags & SCF_PASSTHROUGH_PROT_SG_TO_MEM_NOALLOC)) {
2518                 ret = target_alloc_sgl(&cmd->t_prot_sg, &cmd->t_prot_nents,
2519                                        cmd->prot_length, true, false);
2520                 if (ret < 0)
2521                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2522         }
2523
2524         /*
2525          * Determine is the TCM fabric module has already allocated physical
2526          * memory, and is directly calling transport_generic_map_mem_to_cmd()
2527          * beforehand.
2528          */
2529         if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
2530             cmd->data_length) {
2531
2532                 if ((cmd->se_cmd_flags & SCF_BIDI) ||
2533                     (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)) {
2534                         u32 bidi_length;
2535
2536                         if (cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE)
2537                                 bidi_length = cmd->t_task_nolb *
2538                                               cmd->se_dev->dev_attrib.block_size;
2539                         else
2540                                 bidi_length = cmd->data_length;
2541
2542                         ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2543                                                &cmd->t_bidi_data_nents,
2544                                                bidi_length, zero_flag, false);
2545                         if (ret < 0)
2546                                 return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2547                 }
2548
2549                 ret = target_alloc_sgl(&cmd->t_data_sg, &cmd->t_data_nents,
2550                                        cmd->data_length, zero_flag, false);
2551                 if (ret < 0)
2552                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2553         } else if ((cmd->se_cmd_flags & SCF_COMPARE_AND_WRITE) &&
2554                     cmd->data_length) {
2555                 /*
2556                  * Special case for COMPARE_AND_WRITE with fabrics
2557                  * using SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC.
2558                  */
2559                 u32 caw_length = cmd->t_task_nolb *
2560                                  cmd->se_dev->dev_attrib.block_size;
2561
2562                 ret = target_alloc_sgl(&cmd->t_bidi_data_sg,
2563                                        &cmd->t_bidi_data_nents,
2564                                        caw_length, zero_flag, false);
2565                 if (ret < 0)
2566                         return TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
2567         }
2568         /*
2569          * If this command is not a write we can execute it right here,
2570          * for write buffers we need to notify the fabric driver first
2571          * and let it call back once the write buffers are ready.
2572          */
2573         target_add_to_state_list(cmd);
2574         if (cmd->data_direction != DMA_TO_DEVICE || cmd->data_length == 0) {
2575                 target_execute_cmd(cmd);
2576                 return 0;
2577         }
2578
2579         spin_lock_irqsave(&cmd->t_state_lock, flags);
2580         cmd->t_state = TRANSPORT_WRITE_PENDING;
2581         /*
2582          * Determine if frontend context caller is requesting the stopping of
2583          * this command for frontend exceptions.
2584          */
2585         if (cmd->transport_state & CMD_T_STOP) {
2586                 pr_debug("%s:%d CMD_T_STOP for ITT: 0x%08llx\n",
2587                          __func__, __LINE__, cmd->tag);
2588
2589                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2590
2591                 complete_all(&cmd->t_transport_stop_comp);
2592                 return 0;
2593         }
2594         cmd->transport_state &= ~CMD_T_ACTIVE;
2595         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2596
2597         ret = cmd->se_tfo->write_pending(cmd);
2598         if (ret)
2599                 goto queue_full;
2600
2601         return 0;
2602
2603 queue_full:
2604         pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
2605         transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2606         return 0;
2607 }
2608 EXPORT_SYMBOL(transport_generic_new_cmd);
2609
2610 static void transport_write_pending_qf(struct se_cmd *cmd)
2611 {
2612         unsigned long flags;
2613         int ret;
2614         bool stop;
2615
2616         spin_lock_irqsave(&cmd->t_state_lock, flags);
2617         stop = (cmd->transport_state & (CMD_T_STOP | CMD_T_ABORTED));
2618         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2619
2620         if (stop) {
2621                 pr_debug("%s:%d CMD_T_STOP|CMD_T_ABORTED for ITT: 0x%08llx\n",
2622                         __func__, __LINE__, cmd->tag);
2623                 complete_all(&cmd->t_transport_stop_comp);
2624                 return;
2625         }
2626
2627         ret = cmd->se_tfo->write_pending(cmd);
2628         if (ret) {
2629                 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
2630                          cmd);
2631                 transport_handle_queue_full(cmd, cmd->se_dev, ret, true);
2632         }
2633 }
2634
2635 static bool
2636 __transport_wait_for_tasks(struct se_cmd *, bool, bool *, bool *,
2637                            unsigned long *flags);
2638
2639 static void target_wait_free_cmd(struct se_cmd *cmd, bool *aborted, bool *tas)
2640 {
2641         unsigned long flags;
2642
2643         spin_lock_irqsave(&cmd->t_state_lock, flags);
2644         __transport_wait_for_tasks(cmd, true, aborted, tas, &flags);
2645         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2646 }
2647
2648 int transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
2649 {
2650         int ret = 0;
2651         bool aborted = false, tas = false;
2652
2653         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
2654                 if (wait_for_tasks && (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
2655                         target_wait_free_cmd(cmd, &aborted, &tas);
2656
2657                 if (!aborted || tas)
2658                         ret = transport_put_cmd(cmd);
2659         } else {
2660                 if (wait_for_tasks)
2661                         target_wait_free_cmd(cmd, &aborted, &tas);
2662                 /*
2663                  * Handle WRITE failure case where transport_generic_new_cmd()
2664                  * has already added se_cmd to state_list, but fabric has
2665                  * failed command before I/O submission.
2666                  */
2667                 if (cmd->state_active)
2668                         target_remove_from_state_list(cmd);
2669
2670                 if (cmd->se_lun)
2671                         transport_lun_remove_cmd(cmd);
2672
2673                 if (!aborted || tas)
2674                         ret = transport_put_cmd(cmd);
2675         }
2676         /*
2677          * If the task has been internally aborted due to TMR ABORT_TASK
2678          * or LUN_RESET, target_core_tmr.c is responsible for performing
2679          * the remaining calls to target_put_sess_cmd(), and not the
2680          * callers of this function.
2681          */
2682         if (aborted) {
2683                 pr_debug("Detected CMD_T_ABORTED for ITT: %llu\n", cmd->tag);
2684                 wait_for_completion(&cmd->cmd_wait_comp);
2685                 cmd->se_tfo->release_cmd(cmd);
2686                 ret = 1;
2687         }
2688         return ret;
2689 }
2690 EXPORT_SYMBOL(transport_generic_free_cmd);
2691
2692 /* target_get_sess_cmd - Add command to active ->sess_cmd_list
2693  * @se_cmd:     command descriptor to add
2694  * @ack_kref:   Signal that fabric will perform an ack target_put_sess_cmd()
2695  */
2696 int target_get_sess_cmd(struct se_cmd *se_cmd, bool ack_kref)
2697 {
2698         struct se_session *se_sess = se_cmd->se_sess;
2699         unsigned long flags;
2700         int ret = 0;
2701
2702         /*
2703          * Add a second kref if the fabric caller is expecting to handle
2704          * fabric acknowledgement that requires two target_put_sess_cmd()
2705          * invocations before se_cmd descriptor release.
2706          */
2707         if (ack_kref) {
2708                 if (!kref_get_unless_zero(&se_cmd->cmd_kref))
2709                         return -EINVAL;
2710
2711                 se_cmd->se_cmd_flags |= SCF_ACK_KREF;
2712         }
2713
2714         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2715         if (se_sess->sess_tearing_down) {
2716                 ret = -ESHUTDOWN;
2717                 goto out;
2718         }
2719         se_cmd->transport_state |= CMD_T_PRE_EXECUTE;
2720         list_add_tail(&se_cmd->se_cmd_list, &se_sess->sess_cmd_list);
2721 out:
2722         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2723
2724         if (ret && ack_kref)
2725                 target_put_sess_cmd(se_cmd);
2726
2727         return ret;
2728 }
2729 EXPORT_SYMBOL(target_get_sess_cmd);
2730
2731 static void target_free_cmd_mem(struct se_cmd *cmd)
2732 {
2733         transport_free_pages(cmd);
2734
2735         if (cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)
2736                 core_tmr_release_req(cmd->se_tmr_req);
2737         if (cmd->t_task_cdb != cmd->__t_task_cdb)
2738                 kfree(cmd->t_task_cdb);
2739 }
2740
2741 static void target_release_cmd_kref(struct kref *kref)
2742 {
2743         struct se_cmd *se_cmd = container_of(kref, struct se_cmd, cmd_kref);
2744         struct se_session *se_sess = se_cmd->se_sess;
2745         unsigned long flags;
2746         bool fabric_stop;
2747
2748         if (se_sess) {
2749                 spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2750
2751                 spin_lock(&se_cmd->t_state_lock);
2752                 fabric_stop = (se_cmd->transport_state & CMD_T_FABRIC_STOP) &&
2753                               (se_cmd->transport_state & CMD_T_ABORTED);
2754                 spin_unlock(&se_cmd->t_state_lock);
2755
2756                 if (se_cmd->cmd_wait_set || fabric_stop) {
2757                         list_del_init(&se_cmd->se_cmd_list);
2758                         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2759                         target_free_cmd_mem(se_cmd);
2760                         complete(&se_cmd->cmd_wait_comp);
2761                         return;
2762                 }
2763                 list_del_init(&se_cmd->se_cmd_list);
2764                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2765         }
2766
2767         target_free_cmd_mem(se_cmd);
2768         se_cmd->se_tfo->release_cmd(se_cmd);
2769 }
2770
2771 /**
2772  * target_put_sess_cmd - decrease the command reference count
2773  * @se_cmd:     command to drop a reference from
2774  *
2775  * Returns 1 if and only if this target_put_sess_cmd() call caused the
2776  * refcount to drop to zero. Returns zero otherwise.
2777  */
2778 int target_put_sess_cmd(struct se_cmd *se_cmd)
2779 {
2780         return kref_put(&se_cmd->cmd_kref, target_release_cmd_kref);
2781 }
2782 EXPORT_SYMBOL(target_put_sess_cmd);
2783
2784 static const char *data_dir_name(enum dma_data_direction d)
2785 {
2786         switch (d) {
2787         case DMA_BIDIRECTIONAL: return "BIDI";
2788         case DMA_TO_DEVICE:     return "WRITE";
2789         case DMA_FROM_DEVICE:   return "READ";
2790         case DMA_NONE:          return "NONE";
2791         }
2792
2793         return "(?)";
2794 }
2795
2796 static const char *cmd_state_name(enum transport_state_table t)
2797 {
2798         switch (t) {
2799         case TRANSPORT_NO_STATE:        return "NO_STATE";
2800         case TRANSPORT_NEW_CMD:         return "NEW_CMD";
2801         case TRANSPORT_WRITE_PENDING:   return "WRITE_PENDING";
2802         case TRANSPORT_PROCESSING:      return "PROCESSING";
2803         case TRANSPORT_COMPLETE:        return "COMPLETE";
2804         case TRANSPORT_ISTATE_PROCESSING:
2805                                         return "ISTATE_PROCESSING";
2806         case TRANSPORT_COMPLETE_QF_WP:  return "COMPLETE_QF_WP";
2807         case TRANSPORT_COMPLETE_QF_OK:  return "COMPLETE_QF_OK";
2808         case TRANSPORT_COMPLETE_QF_ERR: return "COMPLETE_QF_ERR";
2809         }
2810
2811         return "(?)";
2812 }
2813
2814 static void target_append_str(char **str, const char *txt)
2815 {
2816         char *prev = *str;
2817
2818         *str = *str ? kasprintf(GFP_ATOMIC, "%s,%s", *str, txt) :
2819                 kstrdup(txt, GFP_ATOMIC);
2820         kfree(prev);
2821 }
2822
2823 /*
2824  * Convert a transport state bitmask into a string. The caller is
2825  * responsible for freeing the returned pointer.
2826  */
2827 static char *target_ts_to_str(u32 ts)
2828 {
2829         char *str = NULL;
2830
2831         if (ts & CMD_T_ABORTED)
2832                 target_append_str(&str, "aborted");
2833         if (ts & CMD_T_ACTIVE)
2834                 target_append_str(&str, "active");
2835         if (ts & CMD_T_COMPLETE)
2836                 target_append_str(&str, "complete");
2837         if (ts & CMD_T_SENT)
2838                 target_append_str(&str, "sent");
2839         if (ts & CMD_T_STOP)
2840                 target_append_str(&str, "stop");
2841         if (ts & CMD_T_FABRIC_STOP)
2842                 target_append_str(&str, "fabric_stop");
2843
2844         return str;
2845 }
2846
2847 static const char *target_tmf_name(enum tcm_tmreq_table tmf)
2848 {
2849         switch (tmf) {
2850         case TMR_ABORT_TASK:            return "ABORT_TASK";
2851         case TMR_ABORT_TASK_SET:        return "ABORT_TASK_SET";
2852         case TMR_CLEAR_ACA:             return "CLEAR_ACA";
2853         case TMR_CLEAR_TASK_SET:        return "CLEAR_TASK_SET";
2854         case TMR_LUN_RESET:             return "LUN_RESET";
2855         case TMR_TARGET_WARM_RESET:     return "TARGET_WARM_RESET";
2856         case TMR_TARGET_COLD_RESET:     return "TARGET_COLD_RESET";
2857         case TMR_UNKNOWN:               break;
2858         }
2859         return "(?)";
2860 }
2861
2862 void target_show_cmd(const char *pfx, struct se_cmd *cmd)
2863 {
2864         char *ts_str = target_ts_to_str(cmd->transport_state);
2865         const u8 *cdb = cmd->t_task_cdb;
2866         struct se_tmr_req *tmf = cmd->se_tmr_req;
2867
2868         if (!(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB)) {
2869                 pr_debug("%scmd %#02x:%#02x with tag %#llx dir %s i_state %d t_state %s len %d refcnt %d transport_state %s\n",
2870                          pfx, cdb[0], cdb[1], cmd->tag,
2871                          data_dir_name(cmd->data_direction),
2872                          cmd->se_tfo->get_cmd_state(cmd),
2873                          cmd_state_name(cmd->t_state), cmd->data_length,
2874                          kref_read(&cmd->cmd_kref), ts_str);
2875         } else {
2876                 pr_debug("%stmf %s with tag %#llx ref_task_tag %#llx i_state %d t_state %s refcnt %d transport_state %s\n",
2877                          pfx, target_tmf_name(tmf->function), cmd->tag,
2878                          tmf->ref_task_tag, cmd->se_tfo->get_cmd_state(cmd),
2879                          cmd_state_name(cmd->t_state),
2880                          kref_read(&cmd->cmd_kref), ts_str);
2881         }
2882         kfree(ts_str);
2883 }
2884 EXPORT_SYMBOL(target_show_cmd);
2885
2886 /* target_sess_cmd_list_set_waiting - Flag all commands in
2887  *         sess_cmd_list to complete cmd_wait_comp.  Set
2888  *         sess_tearing_down so no more commands are queued.
2889  * @se_sess:    session to flag
2890  */
2891 void target_sess_cmd_list_set_waiting(struct se_session *se_sess)
2892 {
2893         struct se_cmd *se_cmd, *tmp_cmd;
2894         unsigned long flags;
2895         int rc;
2896
2897         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2898         if (se_sess->sess_tearing_down) {
2899                 spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2900                 return;
2901         }
2902         se_sess->sess_tearing_down = 1;
2903         list_splice_init(&se_sess->sess_cmd_list, &se_sess->sess_wait_list);
2904
2905         list_for_each_entry_safe(se_cmd, tmp_cmd,
2906                                  &se_sess->sess_wait_list, se_cmd_list) {
2907                 rc = kref_get_unless_zero(&se_cmd->cmd_kref);
2908                 if (rc) {
2909                         se_cmd->cmd_wait_set = 1;
2910                         spin_lock(&se_cmd->t_state_lock);
2911                         se_cmd->transport_state |= CMD_T_FABRIC_STOP;
2912                         spin_unlock(&se_cmd->t_state_lock);
2913                 } else
2914                         list_del_init(&se_cmd->se_cmd_list);
2915         }
2916
2917         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2918 }
2919 EXPORT_SYMBOL(target_sess_cmd_list_set_waiting);
2920
2921 /* target_wait_for_sess_cmds - Wait for outstanding descriptors
2922  * @se_sess:    session to wait for active I/O
2923  */
2924 void target_wait_for_sess_cmds(struct se_session *se_sess)
2925 {
2926         struct se_cmd *se_cmd, *tmp_cmd;
2927         unsigned long flags;
2928         bool tas;
2929
2930         list_for_each_entry_safe(se_cmd, tmp_cmd,
2931                                 &se_sess->sess_wait_list, se_cmd_list) {
2932                 pr_debug("Waiting for se_cmd: %p t_state: %d, fabric state:"
2933                         " %d\n", se_cmd, se_cmd->t_state,
2934                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2935
2936                 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2937                 tas = (se_cmd->transport_state & CMD_T_TAS);
2938                 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2939
2940                 if (!target_put_sess_cmd(se_cmd)) {
2941                         if (tas)
2942                                 target_put_sess_cmd(se_cmd);
2943                 }
2944
2945                 wait_for_completion(&se_cmd->cmd_wait_comp);
2946                 pr_debug("After cmd_wait_comp: se_cmd: %p t_state: %d"
2947                         " fabric state: %d\n", se_cmd, se_cmd->t_state,
2948                         se_cmd->se_tfo->get_cmd_state(se_cmd));
2949
2950                 se_cmd->se_tfo->release_cmd(se_cmd);
2951         }
2952
2953         spin_lock_irqsave(&se_sess->sess_cmd_lock, flags);
2954         WARN_ON(!list_empty(&se_sess->sess_cmd_list));
2955         spin_unlock_irqrestore(&se_sess->sess_cmd_lock, flags);
2956
2957 }
2958 EXPORT_SYMBOL(target_wait_for_sess_cmds);
2959
2960 static void target_lun_confirm(struct percpu_ref *ref)
2961 {
2962         struct se_lun *lun = container_of(ref, struct se_lun, lun_ref);
2963
2964         complete(&lun->lun_ref_comp);
2965 }
2966
2967 void transport_clear_lun_ref(struct se_lun *lun)
2968 {
2969         /*
2970          * Mark the percpu-ref as DEAD, switch to atomic_t mode, drop
2971          * the initial reference and schedule confirm kill to be
2972          * executed after one full RCU grace period has completed.
2973          */
2974         percpu_ref_kill_and_confirm(&lun->lun_ref, target_lun_confirm);
2975         /*
2976          * The first completion waits for percpu_ref_switch_to_atomic_rcu()
2977          * to call target_lun_confirm after lun->lun_ref has been marked
2978          * as __PERCPU_REF_DEAD on all CPUs, and switches to atomic_t
2979          * mode so that percpu_ref_tryget_live() lookup of lun->lun_ref
2980          * fails for all new incoming I/O.
2981          */
2982         wait_for_completion(&lun->lun_ref_comp);
2983         /*
2984          * The second completion waits for percpu_ref_put_many() to
2985          * invoke ->release() after lun->lun_ref has switched to
2986          * atomic_t mode, and lun->lun_ref.count has reached zero.
2987          *
2988          * At this point all target-core lun->lun_ref references have
2989          * been dropped via transport_lun_remove_cmd(), and it's safe
2990          * to proceed with the remaining LUN shutdown.
2991          */
2992         wait_for_completion(&lun->lun_shutdown_comp);
2993 }
2994
2995 static bool
2996 __transport_wait_for_tasks(struct se_cmd *cmd, bool fabric_stop,
2997                            bool *aborted, bool *tas, unsigned long *flags)
2998         __releases(&cmd->t_state_lock)
2999         __acquires(&cmd->t_state_lock)
3000 {
3001         lockdep_assert_held(&cmd->t_state_lock);
3002
3003         if (fabric_stop)
3004                 cmd->transport_state |= CMD_T_FABRIC_STOP;
3005
3006         if (cmd->transport_state & CMD_T_ABORTED)
3007                 *aborted = true;
3008
3009         if (cmd->transport_state & CMD_T_TAS)
3010                 *tas = true;
3011
3012         if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) &&
3013             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3014                 return false;
3015
3016         if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) &&
3017             !(cmd->se_cmd_flags & SCF_SCSI_TMR_CDB))
3018                 return false;
3019
3020         if (!(cmd->transport_state & CMD_T_ACTIVE))
3021                 return false;
3022
3023         if (fabric_stop && *aborted)
3024                 return false;
3025
3026         cmd->transport_state |= CMD_T_STOP;
3027
3028         target_show_cmd("wait_for_tasks: Stopping ", cmd);
3029
3030         spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
3031
3032         while (!wait_for_completion_timeout(&cmd->t_transport_stop_comp,
3033                                             180 * HZ))
3034                 target_show_cmd("wait for tasks: ", cmd);
3035
3036         spin_lock_irqsave(&cmd->t_state_lock, *flags);
3037         cmd->transport_state &= ~(CMD_T_ACTIVE | CMD_T_STOP);
3038
3039         pr_debug("wait_for_tasks: Stopped wait_for_completion(&cmd->"
3040                  "t_transport_stop_comp) for ITT: 0x%08llx\n", cmd->tag);
3041
3042         return true;
3043 }
3044
3045 /**
3046  * transport_wait_for_tasks - set CMD_T_STOP and wait for t_transport_stop_comp
3047  * @cmd: command to wait on
3048  */
3049 bool transport_wait_for_tasks(struct se_cmd *cmd)
3050 {
3051         unsigned long flags;
3052         bool ret, aborted = false, tas = false;
3053
3054         spin_lock_irqsave(&cmd->t_state_lock, flags);
3055         ret = __transport_wait_for_tasks(cmd, false, &aborted, &tas, &flags);
3056         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3057
3058         return ret;
3059 }
3060 EXPORT_SYMBOL(transport_wait_for_tasks);
3061
3062 struct sense_info {
3063         u8 key;
3064         u8 asc;
3065         u8 ascq;
3066         bool add_sector_info;
3067 };
3068
3069 static const struct sense_info sense_info_table[] = {
3070         [TCM_NO_SENSE] = {
3071                 .key = NOT_READY
3072         },
3073         [TCM_NON_EXISTENT_LUN] = {
3074                 .key = ILLEGAL_REQUEST,
3075                 .asc = 0x25 /* LOGICAL UNIT NOT SUPPORTED */
3076         },
3077         [TCM_UNSUPPORTED_SCSI_OPCODE] = {
3078                 .key = ILLEGAL_REQUEST,
3079                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3080         },
3081         [TCM_SECTOR_COUNT_TOO_MANY] = {
3082                 .key = ILLEGAL_REQUEST,
3083                 .asc = 0x20, /* INVALID COMMAND OPERATION CODE */
3084         },
3085         [TCM_UNKNOWN_MODE_PAGE] = {
3086                 .key = ILLEGAL_REQUEST,
3087                 .asc = 0x24, /* INVALID FIELD IN CDB */
3088         },
3089         [TCM_CHECK_CONDITION_ABORT_CMD] = {
3090                 .key = ABORTED_COMMAND,
3091                 .asc = 0x29, /* BUS DEVICE RESET FUNCTION OCCURRED */
3092                 .ascq = 0x03,
3093         },
3094         [TCM_INCORRECT_AMOUNT_OF_DATA] = {
3095                 .key = ABORTED_COMMAND,
3096                 .asc = 0x0c, /* WRITE ERROR */
3097                 .ascq = 0x0d, /* NOT ENOUGH UNSOLICITED DATA */
3098         },
3099         [TCM_INVALID_CDB_FIELD] = {
3100                 .key = ILLEGAL_REQUEST,
3101                 .asc = 0x24, /* INVALID FIELD IN CDB */
3102         },
3103         [TCM_INVALID_PARAMETER_LIST] = {
3104                 .key = ILLEGAL_REQUEST,
3105                 .asc = 0x26, /* INVALID FIELD IN PARAMETER LIST */
3106         },
3107         [TCM_TOO_MANY_TARGET_DESCS] = {
3108                 .key = ILLEGAL_REQUEST,
3109                 .asc = 0x26,
3110                 .ascq = 0x06, /* TOO MANY TARGET DESCRIPTORS */
3111         },
3112         [TCM_UNSUPPORTED_TARGET_DESC_TYPE_CODE] = {
3113                 .key = ILLEGAL_REQUEST,
3114                 .asc = 0x26,
3115                 .ascq = 0x07, /* UNSUPPORTED TARGET DESCRIPTOR TYPE CODE */
3116         },
3117         [TCM_TOO_MANY_SEGMENT_DESCS] = {
3118                 .key = ILLEGAL_REQUEST,
3119                 .asc = 0x26,
3120                 .ascq = 0x08, /* TOO MANY SEGMENT DESCRIPTORS */
3121         },
3122         [TCM_UNSUPPORTED_SEGMENT_DESC_TYPE_CODE] = {
3123                 .key = ILLEGAL_REQUEST,
3124                 .asc = 0x26,
3125                 .ascq = 0x09, /* UNSUPPORTED SEGMENT DESCRIPTOR TYPE CODE */
3126         },
3127         [TCM_PARAMETER_LIST_LENGTH_ERROR] = {
3128                 .key = ILLEGAL_REQUEST,
3129                 .asc = 0x1a, /* PARAMETER LIST LENGTH ERROR */
3130         },
3131         [TCM_UNEXPECTED_UNSOLICITED_DATA] = {
3132                 .key = ILLEGAL_REQUEST,
3133                 .asc = 0x0c, /* WRITE ERROR */
3134                 .ascq = 0x0c, /* UNEXPECTED_UNSOLICITED_DATA */
3135         },
3136         [TCM_SERVICE_CRC_ERROR] = {
3137                 .key = ABORTED_COMMAND,
3138                 .asc = 0x47, /* PROTOCOL SERVICE CRC ERROR */
3139                 .ascq = 0x05, /* N/A */
3140         },
3141         [TCM_SNACK_REJECTED] = {
3142                 .key = ABORTED_COMMAND,
3143                 .asc = 0x11, /* READ ERROR */
3144                 .ascq = 0x13, /* FAILED RETRANSMISSION REQUEST */
3145         },
3146         [TCM_WRITE_PROTECTED] = {
3147                 .key = DATA_PROTECT,
3148                 .asc = 0x27, /* WRITE PROTECTED */
3149         },
3150         [TCM_ADDRESS_OUT_OF_RANGE] = {
3151                 .key = ILLEGAL_REQUEST,
3152                 .asc = 0x21, /* LOGICAL BLOCK ADDRESS OUT OF RANGE */
3153         },
3154         [TCM_CHECK_CONDITION_UNIT_ATTENTION] = {
3155                 .key = UNIT_ATTENTION,
3156         },
3157         [TCM_CHECK_CONDITION_NOT_READY] = {
3158                 .key = NOT_READY,
3159         },
3160         [TCM_MISCOMPARE_VERIFY] = {
3161                 .key = MISCOMPARE,
3162                 .asc = 0x1d, /* MISCOMPARE DURING VERIFY OPERATION */
3163                 .ascq = 0x00,
3164         },
3165         [TCM_LOGICAL_BLOCK_GUARD_CHECK_FAILED] = {
3166                 .key = ABORTED_COMMAND,
3167                 .asc = 0x10,
3168                 .ascq = 0x01, /* LOGICAL BLOCK GUARD CHECK FAILED */
3169                 .add_sector_info = true,
3170         },
3171         [TCM_LOGICAL_BLOCK_APP_TAG_CHECK_FAILED] = {
3172                 .key = ABORTED_COMMAND,
3173                 .asc = 0x10,
3174                 .ascq = 0x02, /* LOGICAL BLOCK APPLICATION TAG CHECK FAILED */
3175                 .add_sector_info = true,
3176         },
3177         [TCM_LOGICAL_BLOCK_REF_TAG_CHECK_FAILED] = {
3178                 .key = ABORTED_COMMAND,
3179                 .asc = 0x10,
3180                 .ascq = 0x03, /* LOGICAL BLOCK REFERENCE TAG CHECK FAILED */
3181                 .add_sector_info = true,
3182         },
3183         [TCM_COPY_TARGET_DEVICE_NOT_REACHABLE] = {
3184                 .key = COPY_ABORTED,
3185                 .asc = 0x0d,
3186                 .ascq = 0x02, /* COPY TARGET DEVICE NOT REACHABLE */
3187
3188         },
3189         [TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE] = {
3190                 /*
3191                  * Returning ILLEGAL REQUEST would cause immediate IO errors on
3192                  * Solaris initiators.  Returning NOT READY instead means the
3193                  * operations will be retried a finite number of times and we
3194                  * can survive intermittent errors.
3195                  */
3196                 .key = NOT_READY,
3197                 .asc = 0x08, /* LOGICAL UNIT COMMUNICATION FAILURE */
3198         },
3199 };
3200
3201 static int translate_sense_reason(struct se_cmd *cmd, sense_reason_t reason)
3202 {
3203         const struct sense_info *si;
3204         u8 *buffer = cmd->sense_buffer;
3205         int r = (__force int)reason;
3206         u8 asc, ascq;
3207         bool desc_format = target_sense_desc_format(cmd->se_dev);
3208
3209         if (r < ARRAY_SIZE(sense_info_table) && sense_info_table[r].key)
3210                 si = &sense_info_table[r];
3211         else
3212                 si = &sense_info_table[(__force int)
3213                                        TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE];
3214
3215         if (reason == TCM_CHECK_CONDITION_UNIT_ATTENTION) {
3216                 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
3217                 WARN_ON_ONCE(asc == 0);
3218         } else if (si->asc == 0) {
3219                 WARN_ON_ONCE(cmd->scsi_asc == 0);
3220                 asc = cmd->scsi_asc;
3221                 ascq = cmd->scsi_ascq;
3222         } else {
3223                 asc = si->asc;
3224                 ascq = si->ascq;
3225         }
3226
3227         scsi_build_sense_buffer(desc_format, buffer, si->key, asc, ascq);
3228         if (si->add_sector_info)
3229                 return scsi_set_sense_information(buffer,
3230                                                   cmd->scsi_sense_length,
3231                                                   cmd->bad_sector);
3232
3233         return 0;
3234 }
3235
3236 int
3237 transport_send_check_condition_and_sense(struct se_cmd *cmd,
3238                 sense_reason_t reason, int from_transport)
3239 {
3240         unsigned long flags;
3241
3242         spin_lock_irqsave(&cmd->t_state_lock, flags);
3243         if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
3244                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3245                 return 0;
3246         }
3247         cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
3248         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3249
3250         if (!from_transport) {
3251                 int rc;
3252
3253                 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
3254                 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
3255                 cmd->scsi_sense_length  = TRANSPORT_SENSE_BUFFER;
3256                 rc = translate_sense_reason(cmd, reason);
3257                 if (rc)
3258                         return rc;
3259         }
3260
3261         trace_target_cmd_complete(cmd);
3262         return cmd->se_tfo->queue_status(cmd);
3263 }
3264 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
3265
3266 static int __transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3267         __releases(&cmd->t_state_lock)
3268         __acquires(&cmd->t_state_lock)
3269 {
3270         int ret;
3271
3272         assert_spin_locked(&cmd->t_state_lock);
3273         WARN_ON_ONCE(!irqs_disabled());
3274
3275         if (!(cmd->transport_state & CMD_T_ABORTED))
3276                 return 0;
3277         /*
3278          * If cmd has been aborted but either no status is to be sent or it has
3279          * already been sent, just return
3280          */
3281         if (!send_status || !(cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS)) {
3282                 if (send_status)
3283                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3284                 return 1;
3285         }
3286
3287         pr_debug("Sending delayed SAM_STAT_TASK_ABORTED status for CDB:"
3288                 " 0x%02x ITT: 0x%08llx\n", cmd->t_task_cdb[0], cmd->tag);
3289
3290         cmd->se_cmd_flags &= ~SCF_SEND_DELAYED_TAS;
3291         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3292         trace_target_cmd_complete(cmd);
3293
3294         spin_unlock_irq(&cmd->t_state_lock);
3295         ret = cmd->se_tfo->queue_status(cmd);
3296         if (ret)
3297                 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3298         spin_lock_irq(&cmd->t_state_lock);
3299
3300         return 1;
3301 }
3302
3303 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
3304 {
3305         int ret;
3306
3307         spin_lock_irq(&cmd->t_state_lock);
3308         ret = __transport_check_aborted_status(cmd, send_status);
3309         spin_unlock_irq(&cmd->t_state_lock);
3310
3311         return ret;
3312 }
3313 EXPORT_SYMBOL(transport_check_aborted_status);
3314
3315 void transport_send_task_abort(struct se_cmd *cmd)
3316 {
3317         unsigned long flags;
3318         int ret;
3319
3320         spin_lock_irqsave(&cmd->t_state_lock, flags);
3321         if (cmd->se_cmd_flags & (SCF_SENT_CHECK_CONDITION)) {
3322                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3323                 return;
3324         }
3325         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3326
3327         /*
3328          * If there are still expected incoming fabric WRITEs, we wait
3329          * until until they have completed before sending a TASK_ABORTED
3330          * response.  This response with TASK_ABORTED status will be
3331          * queued back to fabric module by transport_check_aborted_status().
3332          */
3333         if (cmd->data_direction == DMA_TO_DEVICE) {
3334                 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
3335                         spin_lock_irqsave(&cmd->t_state_lock, flags);
3336                         if (cmd->se_cmd_flags & SCF_SEND_DELAYED_TAS) {
3337                                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3338                                 goto send_abort;
3339                         }
3340                         cmd->se_cmd_flags |= SCF_SEND_DELAYED_TAS;
3341                         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3342                         return;
3343                 }
3344         }
3345 send_abort:
3346         cmd->scsi_status = SAM_STAT_TASK_ABORTED;
3347
3348         transport_lun_remove_cmd(cmd);
3349
3350         pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x, ITT: 0x%08llx\n",
3351                  cmd->t_task_cdb[0], cmd->tag);
3352
3353         trace_target_cmd_complete(cmd);
3354         ret = cmd->se_tfo->queue_status(cmd);
3355         if (ret)
3356                 transport_handle_queue_full(cmd, cmd->se_dev, ret, false);
3357 }
3358
3359 static void target_tmr_work(struct work_struct *work)
3360 {
3361         struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3362         struct se_device *dev = cmd->se_dev;
3363         struct se_tmr_req *tmr = cmd->se_tmr_req;
3364         unsigned long flags;
3365         int ret;
3366
3367         spin_lock_irqsave(&cmd->t_state_lock, flags);
3368         if (cmd->transport_state & CMD_T_ABORTED) {
3369                 tmr->response = TMR_FUNCTION_REJECTED;
3370                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3371                 goto check_stop;
3372         }
3373         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3374
3375         switch (tmr->function) {
3376         case TMR_ABORT_TASK:
3377                 core_tmr_abort_task(dev, tmr, cmd->se_sess);
3378                 break;
3379         case TMR_ABORT_TASK_SET:
3380         case TMR_CLEAR_ACA:
3381         case TMR_CLEAR_TASK_SET:
3382                 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
3383                 break;
3384         case TMR_LUN_RESET:
3385                 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
3386                 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
3387                                          TMR_FUNCTION_REJECTED;
3388                 if (tmr->response == TMR_FUNCTION_COMPLETE) {
3389                         target_ua_allocate_lun(cmd->se_sess->se_node_acl,
3390                                                cmd->orig_fe_lun, 0x29,
3391                                                ASCQ_29H_BUS_DEVICE_RESET_FUNCTION_OCCURRED);
3392                 }
3393                 break;
3394         case TMR_TARGET_WARM_RESET:
3395                 tmr->response = TMR_FUNCTION_REJECTED;
3396                 break;
3397         case TMR_TARGET_COLD_RESET:
3398                 tmr->response = TMR_FUNCTION_REJECTED;
3399                 break;
3400         default:
3401                 pr_err("Uknown TMR function: 0x%02x.\n",
3402                                 tmr->function);
3403                 tmr->response = TMR_FUNCTION_REJECTED;
3404                 break;
3405         }
3406
3407         spin_lock_irqsave(&cmd->t_state_lock, flags);
3408         if (cmd->transport_state & CMD_T_ABORTED) {
3409                 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3410                 goto check_stop;
3411         }
3412         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3413
3414         cmd->se_tfo->queue_tm_rsp(cmd);
3415
3416 check_stop:
3417         transport_lun_remove_cmd(cmd);
3418         transport_cmd_check_stop_to_fabric(cmd);
3419 }
3420
3421 int transport_generic_handle_tmr(
3422         struct se_cmd *cmd)
3423 {
3424         unsigned long flags;
3425         bool aborted = false;
3426
3427         spin_lock_irqsave(&cmd->t_state_lock, flags);
3428         if (cmd->transport_state & CMD_T_ABORTED) {
3429                 aborted = true;
3430         } else {
3431                 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
3432                 cmd->transport_state |= CMD_T_ACTIVE;
3433         }
3434         spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3435
3436         if (aborted) {
3437                 pr_warn_ratelimited("handle_tmr caught CMD_T_ABORTED TMR %d"
3438                         "ref_tag: %llu tag: %llu\n", cmd->se_tmr_req->function,
3439                         cmd->se_tmr_req->ref_task_tag, cmd->tag);
3440                 transport_lun_remove_cmd(cmd);
3441                 transport_cmd_check_stop_to_fabric(cmd);
3442                 return 0;
3443         }
3444
3445         INIT_WORK(&cmd->work, target_tmr_work);
3446         queue_work(cmd->se_dev->tmr_wq, &cmd->work);
3447         return 0;
3448 }
3449 EXPORT_SYMBOL(transport_generic_handle_tmr);
3450
3451 bool
3452 target_check_wce(struct se_device *dev)
3453 {
3454         bool wce = false;
3455
3456         if (dev->transport->get_write_cache)
3457                 wce = dev->transport->get_write_cache(dev);
3458         else if (dev->dev_attrib.emulate_write_cache > 0)
3459                 wce = true;
3460
3461         return wce;
3462 }
3463
3464 bool
3465 target_check_fua(struct se_device *dev)
3466 {
3467         return target_check_wce(dev) && dev->dev_attrib.emulate_fua_write > 0;
3468 }