GNU Linux-libre 4.14.266-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         trace_xhci_ring_free(ring);
292
293         if (ring->first_seg) {
294                 if (ring->type == TYPE_STREAM)
295                         xhci_remove_stream_mapping(ring);
296                 xhci_free_segments_for_ring(xhci, ring->first_seg);
297         }
298
299         kfree(ring);
300 }
301
302 static void xhci_initialize_ring_info(struct xhci_ring *ring,
303                                         unsigned int cycle_state)
304 {
305         /* The ring is empty, so the enqueue pointer == dequeue pointer */
306         ring->enqueue = ring->first_seg->trbs;
307         ring->enq_seg = ring->first_seg;
308         ring->dequeue = ring->enqueue;
309         ring->deq_seg = ring->first_seg;
310         /* The ring is initialized to 0. The producer must write 1 to the cycle
311          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
312          * compare CCS to the cycle bit to check ownership, so CCS = 1.
313          *
314          * New rings are initialized with cycle state equal to 1; if we are
315          * handling ring expansion, set the cycle state equal to the old ring.
316          */
317         ring->cycle_state = cycle_state;
318
319         /*
320          * Each segment has a link TRB, and leave an extra TRB for SW
321          * accounting purpose
322          */
323         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
324 }
325
326 /* Allocate segments and link them for a ring */
327 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
328                 struct xhci_segment **first, struct xhci_segment **last,
329                 unsigned int num_segs, unsigned int cycle_state,
330                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
331 {
332         struct xhci_segment *prev;
333
334         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
335         if (!prev)
336                 return -ENOMEM;
337         num_segs--;
338
339         *first = prev;
340         while (num_segs > 0) {
341                 struct xhci_segment     *next;
342
343                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
344                 if (!next) {
345                         prev = *first;
346                         while (prev) {
347                                 next = prev->next;
348                                 xhci_segment_free(xhci, prev);
349                                 prev = next;
350                         }
351                         return -ENOMEM;
352                 }
353                 xhci_link_segments(xhci, prev, next, type);
354
355                 prev = next;
356                 num_segs--;
357         }
358         xhci_link_segments(xhci, prev, *first, type);
359         *last = prev;
360
361         return 0;
362 }
363
364 /**
365  * Create a new ring with zero or more segments.
366  *
367  * Link each segment together into a ring.
368  * Set the end flag and the cycle toggle bit on the last segment.
369  * See section 4.9.1 and figures 15 and 16.
370  */
371 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
372                 unsigned int num_segs, unsigned int cycle_state,
373                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
374 {
375         struct xhci_ring        *ring;
376         int ret;
377
378         ring = kzalloc(sizeof *(ring), flags);
379         if (!ring)
380                 return NULL;
381
382         ring->num_segs = num_segs;
383         ring->bounce_buf_len = max_packet;
384         INIT_LIST_HEAD(&ring->td_list);
385         ring->type = type;
386         if (num_segs == 0)
387                 return ring;
388
389         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
390                         &ring->last_seg, num_segs, cycle_state, type,
391                         max_packet, flags);
392         if (ret)
393                 goto fail;
394
395         /* Only event ring does not use link TRB */
396         if (type != TYPE_EVENT) {
397                 /* See section 4.9.2.1 and 6.4.4.1 */
398                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
399                         cpu_to_le32(LINK_TOGGLE);
400         }
401         xhci_initialize_ring_info(ring, cycle_state);
402         trace_xhci_ring_alloc(ring);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415         virt_dev->eps[ep_index].ring = NULL;
416 }
417
418 /*
419  * Expand an existing ring.
420  * Allocate a new ring which has same segment numbers and link the two rings.
421  */
422 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
423                                 unsigned int num_trbs, gfp_t flags)
424 {
425         struct xhci_segment     *first;
426         struct xhci_segment     *last;
427         unsigned int            num_segs;
428         unsigned int            num_segs_needed;
429         int                     ret;
430
431         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
432                                 (TRBS_PER_SEGMENT - 1);
433
434         /* Allocate number of segments we needed, or double the ring size */
435         num_segs = ring->num_segs > num_segs_needed ?
436                         ring->num_segs : num_segs_needed;
437
438         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
439                         num_segs, ring->cycle_state, ring->type,
440                         ring->bounce_buf_len, flags);
441         if (ret)
442                 return -ENOMEM;
443
444         if (ring->type == TYPE_STREAM)
445                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
446                                                 ring, first, last, flags);
447         if (ret) {
448                 struct xhci_segment *next;
449                 do {
450                         next = first->next;
451                         xhci_segment_free(xhci, first);
452                         if (first == last)
453                                 break;
454                         first = next;
455                 } while (true);
456                 return ret;
457         }
458
459         xhci_link_rings(xhci, ring, first, last, num_segs);
460         trace_xhci_ring_expansion(ring);
461         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
462                         "ring expansion succeed, now has %d segments",
463                         ring->num_segs);
464
465         return 0;
466 }
467
468 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
469
470 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
471                                                     int type, gfp_t flags)
472 {
473         struct xhci_container_ctx *ctx;
474
475         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
476                 return NULL;
477
478         ctx = kzalloc(sizeof(*ctx), flags);
479         if (!ctx)
480                 return NULL;
481
482         ctx->type = type;
483         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
484         if (type == XHCI_CTX_TYPE_INPUT)
485                 ctx->size += CTX_SIZE(xhci->hcc_params);
486
487         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
488         if (!ctx->bytes) {
489                 kfree(ctx);
490                 return NULL;
491         }
492         return ctx;
493 }
494
495 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
496                              struct xhci_container_ctx *ctx)
497 {
498         if (!ctx)
499                 return;
500         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
501         kfree(ctx);
502 }
503
504 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
505                                               struct xhci_container_ctx *ctx)
506 {
507         if (ctx->type != XHCI_CTX_TYPE_INPUT)
508                 return NULL;
509
510         return (struct xhci_input_control_ctx *)ctx->bytes;
511 }
512
513 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
514                                         struct xhci_container_ctx *ctx)
515 {
516         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
517                 return (struct xhci_slot_ctx *)ctx->bytes;
518
519         return (struct xhci_slot_ctx *)
520                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
521 }
522
523 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
524                                     struct xhci_container_ctx *ctx,
525                                     unsigned int ep_index)
526 {
527         /* increment ep index by offset of start of ep ctx array */
528         ep_index++;
529         if (ctx->type == XHCI_CTX_TYPE_INPUT)
530                 ep_index++;
531
532         return (struct xhci_ep_ctx *)
533                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
534 }
535
536
537 /***************** Streams structures manipulation *************************/
538
539 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
540                 unsigned int num_stream_ctxs,
541                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
542 {
543         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
544         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
545
546         if (size > MEDIUM_STREAM_ARRAY_SIZE)
547                 dma_free_coherent(dev, size,
548                                 stream_ctx, dma);
549         else if (size <= SMALL_STREAM_ARRAY_SIZE)
550                 return dma_pool_free(xhci->small_streams_pool,
551                                 stream_ctx, dma);
552         else
553                 return dma_pool_free(xhci->medium_streams_pool,
554                                 stream_ctx, dma);
555 }
556
557 /*
558  * The stream context array for each endpoint with bulk streams enabled can
559  * vary in size, based on:
560  *  - how many streams the endpoint supports,
561  *  - the maximum primary stream array size the host controller supports,
562  *  - and how many streams the device driver asks for.
563  *
564  * The stream context array must be a power of 2, and can be as small as
565  * 64 bytes or as large as 1MB.
566  */
567 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
568                 unsigned int num_stream_ctxs, dma_addr_t *dma,
569                 gfp_t mem_flags)
570 {
571         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
572         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
573
574         if (size > MEDIUM_STREAM_ARRAY_SIZE)
575                 return dma_alloc_coherent(dev, size,
576                                 dma, mem_flags);
577         else if (size <= SMALL_STREAM_ARRAY_SIZE)
578                 return dma_pool_alloc(xhci->small_streams_pool,
579                                 mem_flags, dma);
580         else
581                 return dma_pool_alloc(xhci->medium_streams_pool,
582                                 mem_flags, dma);
583 }
584
585 struct xhci_ring *xhci_dma_to_transfer_ring(
586                 struct xhci_virt_ep *ep,
587                 u64 address)
588 {
589         if (ep->ep_state & EP_HAS_STREAMS)
590                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
591                                 address >> TRB_SEGMENT_SHIFT);
592         return ep->ring;
593 }
594
595 struct xhci_ring *xhci_stream_id_to_ring(
596                 struct xhci_virt_device *dev,
597                 unsigned int ep_index,
598                 unsigned int stream_id)
599 {
600         struct xhci_virt_ep *ep = &dev->eps[ep_index];
601
602         if (stream_id == 0)
603                 return ep->ring;
604         if (!ep->stream_info)
605                 return NULL;
606
607         if (stream_id >= ep->stream_info->num_streams)
608                 return NULL;
609         return ep->stream_info->stream_rings[stream_id];
610 }
611
612 /*
613  * Change an endpoint's internal structure so it supports stream IDs.  The
614  * number of requested streams includes stream 0, which cannot be used by device
615  * drivers.
616  *
617  * The number of stream contexts in the stream context array may be bigger than
618  * the number of streams the driver wants to use.  This is because the number of
619  * stream context array entries must be a power of two.
620  */
621 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
622                 unsigned int num_stream_ctxs,
623                 unsigned int num_streams,
624                 unsigned int max_packet, gfp_t mem_flags)
625 {
626         struct xhci_stream_info *stream_info;
627         u32 cur_stream;
628         struct xhci_ring *cur_ring;
629         u64 addr;
630         int ret;
631
632         xhci_dbg(xhci, "Allocating %u streams and %u "
633                         "stream context array entries.\n",
634                         num_streams, num_stream_ctxs);
635         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
636                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
637                 return NULL;
638         }
639         xhci->cmd_ring_reserved_trbs++;
640
641         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
642         if (!stream_info)
643                 goto cleanup_trbs;
644
645         stream_info->num_streams = num_streams;
646         stream_info->num_stream_ctxs = num_stream_ctxs;
647
648         /* Initialize the array of virtual pointers to stream rings. */
649         stream_info->stream_rings = kzalloc(
650                         sizeof(struct xhci_ring *)*num_streams,
651                         mem_flags);
652         if (!stream_info->stream_rings)
653                 goto cleanup_info;
654
655         /* Initialize the array of DMA addresses for stream rings for the HW. */
656         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
657                         num_stream_ctxs, &stream_info->ctx_array_dma,
658                         mem_flags);
659         if (!stream_info->stream_ctx_array)
660                 goto cleanup_ctx;
661         memset(stream_info->stream_ctx_array, 0,
662                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
663
664         /* Allocate everything needed to free the stream rings later */
665         stream_info->free_streams_command =
666                 xhci_alloc_command(xhci, true, true, mem_flags);
667         if (!stream_info->free_streams_command)
668                 goto cleanup_ctx;
669
670         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
671
672         /* Allocate rings for all the streams that the driver will use,
673          * and add their segment DMA addresses to the radix tree.
674          * Stream 0 is reserved.
675          */
676
677         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
678                 stream_info->stream_rings[cur_stream] =
679                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
680                                         mem_flags);
681                 cur_ring = stream_info->stream_rings[cur_stream];
682                 if (!cur_ring)
683                         goto cleanup_rings;
684                 cur_ring->stream_id = cur_stream;
685                 cur_ring->trb_address_map = &stream_info->trb_address_map;
686                 /* Set deq ptr, cycle bit, and stream context type */
687                 addr = cur_ring->first_seg->dma |
688                         SCT_FOR_CTX(SCT_PRI_TR) |
689                         cur_ring->cycle_state;
690                 stream_info->stream_ctx_array[cur_stream].stream_ring =
691                         cpu_to_le64(addr);
692                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
693                                 cur_stream, (unsigned long long) addr);
694
695                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
696                 if (ret) {
697                         xhci_ring_free(xhci, cur_ring);
698                         stream_info->stream_rings[cur_stream] = NULL;
699                         goto cleanup_rings;
700                 }
701         }
702         /* Leave the other unused stream ring pointers in the stream context
703          * array initialized to zero.  This will cause the xHC to give us an
704          * error if the device asks for a stream ID we don't have setup (if it
705          * was any other way, the host controller would assume the ring is
706          * "empty" and wait forever for data to be queued to that stream ID).
707          */
708
709         return stream_info;
710
711 cleanup_rings:
712         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
713                 cur_ring = stream_info->stream_rings[cur_stream];
714                 if (cur_ring) {
715                         xhci_ring_free(xhci, cur_ring);
716                         stream_info->stream_rings[cur_stream] = NULL;
717                 }
718         }
719         xhci_free_command(xhci, stream_info->free_streams_command);
720 cleanup_ctx:
721         kfree(stream_info->stream_rings);
722 cleanup_info:
723         kfree(stream_info);
724 cleanup_trbs:
725         xhci->cmd_ring_reserved_trbs--;
726         return NULL;
727 }
728 /*
729  * Sets the MaxPStreams field and the Linear Stream Array field.
730  * Sets the dequeue pointer to the stream context array.
731  */
732 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
733                 struct xhci_ep_ctx *ep_ctx,
734                 struct xhci_stream_info *stream_info)
735 {
736         u32 max_primary_streams;
737         /* MaxPStreams is the number of stream context array entries, not the
738          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
739          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
740          */
741         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
742         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
743                         "Setting number of stream ctx array entries to %u",
744                         1 << (max_primary_streams + 1));
745         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
746         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
747                                        | EP_HAS_LSA);
748         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
749 }
750
751 /*
752  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
753  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
754  * not at the beginning of the ring).
755  */
756 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
757                 struct xhci_virt_ep *ep)
758 {
759         dma_addr_t addr;
760         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
761         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
762         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
763 }
764
765 /* Frees all stream contexts associated with the endpoint,
766  *
767  * Caller should fix the endpoint context streams fields.
768  */
769 void xhci_free_stream_info(struct xhci_hcd *xhci,
770                 struct xhci_stream_info *stream_info)
771 {
772         int cur_stream;
773         struct xhci_ring *cur_ring;
774
775         if (!stream_info)
776                 return;
777
778         for (cur_stream = 1; cur_stream < stream_info->num_streams;
779                         cur_stream++) {
780                 cur_ring = stream_info->stream_rings[cur_stream];
781                 if (cur_ring) {
782                         xhci_ring_free(xhci, cur_ring);
783                         stream_info->stream_rings[cur_stream] = NULL;
784                 }
785         }
786         xhci_free_command(xhci, stream_info->free_streams_command);
787         xhci->cmd_ring_reserved_trbs--;
788         if (stream_info->stream_ctx_array)
789                 xhci_free_stream_ctx(xhci,
790                                 stream_info->num_stream_ctxs,
791                                 stream_info->stream_ctx_array,
792                                 stream_info->ctx_array_dma);
793
794         kfree(stream_info->stream_rings);
795         kfree(stream_info);
796 }
797
798
799 /***************** Device context manipulation *************************/
800
801 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
802                 struct xhci_virt_ep *ep)
803 {
804         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
805                     (unsigned long)ep);
806         ep->xhci = xhci;
807 }
808
809 static void xhci_free_tt_info(struct xhci_hcd *xhci,
810                 struct xhci_virt_device *virt_dev,
811                 int slot_id)
812 {
813         struct list_head *tt_list_head;
814         struct xhci_tt_bw_info *tt_info, *next;
815         bool slot_found = false;
816
817         /* If the device never made it past the Set Address stage,
818          * it may not have the real_port set correctly.
819          */
820         if (virt_dev->real_port == 0 ||
821                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
822                 xhci_dbg(xhci, "Bad real port.\n");
823                 return;
824         }
825
826         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
827         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
828                 /* Multi-TT hubs will have more than one entry */
829                 if (tt_info->slot_id == slot_id) {
830                         slot_found = true;
831                         list_del(&tt_info->tt_list);
832                         kfree(tt_info);
833                 } else if (slot_found) {
834                         break;
835                 }
836         }
837 }
838
839 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
840                 struct xhci_virt_device *virt_dev,
841                 struct usb_device *hdev,
842                 struct usb_tt *tt, gfp_t mem_flags)
843 {
844         struct xhci_tt_bw_info          *tt_info;
845         unsigned int                    num_ports;
846         int                             i, j;
847
848         if (!tt->multi)
849                 num_ports = 1;
850         else
851                 num_ports = hdev->maxchild;
852
853         for (i = 0; i < num_ports; i++, tt_info++) {
854                 struct xhci_interval_bw_table *bw_table;
855
856                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
857                 if (!tt_info)
858                         goto free_tts;
859                 INIT_LIST_HEAD(&tt_info->tt_list);
860                 list_add(&tt_info->tt_list,
861                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
862                 tt_info->slot_id = virt_dev->udev->slot_id;
863                 if (tt->multi)
864                         tt_info->ttport = i+1;
865                 bw_table = &tt_info->bw_table;
866                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
867                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
868         }
869         return 0;
870
871 free_tts:
872         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
873         return -ENOMEM;
874 }
875
876
877 /* All the xhci_tds in the ring's TD list should be freed at this point.
878  * Should be called with xhci->lock held if there is any chance the TT lists
879  * will be manipulated by the configure endpoint, allocate device, or update
880  * hub functions while this function is removing the TT entries from the list.
881  */
882 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
883 {
884         struct xhci_virt_device *dev;
885         int i;
886         int old_active_eps = 0;
887
888         /* Slot ID 0 is reserved */
889         if (slot_id == 0 || !xhci->devs[slot_id])
890                 return;
891
892         dev = xhci->devs[slot_id];
893
894         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
895         if (!dev)
896                 return;
897
898         trace_xhci_free_virt_device(dev);
899
900         if (dev->tt_info)
901                 old_active_eps = dev->tt_info->active_eps;
902
903         for (i = 0; i < 31; i++) {
904                 if (dev->eps[i].ring)
905                         xhci_ring_free(xhci, dev->eps[i].ring);
906                 if (dev->eps[i].stream_info)
907                         xhci_free_stream_info(xhci,
908                                         dev->eps[i].stream_info);
909                 /* Endpoints on the TT/root port lists should have been removed
910                  * when usb_disable_device() was called for the device.
911                  * We can't drop them anyway, because the udev might have gone
912                  * away by this point, and we can't tell what speed it was.
913                  */
914                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
915                         xhci_warn(xhci, "Slot %u endpoint %u "
916                                         "not removed from BW list!\n",
917                                         slot_id, i);
918         }
919         /* If this is a hub, free the TT(s) from the TT list */
920         xhci_free_tt_info(xhci, dev, slot_id);
921         /* If necessary, update the number of active TTs on this root port */
922         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
923
924         if (dev->in_ctx)
925                 xhci_free_container_ctx(xhci, dev->in_ctx);
926         if (dev->out_ctx)
927                 xhci_free_container_ctx(xhci, dev->out_ctx);
928
929         if (dev->udev && dev->udev->slot_id)
930                 dev->udev->slot_id = 0;
931         kfree(xhci->devs[slot_id]);
932         xhci->devs[slot_id] = NULL;
933 }
934
935 /*
936  * Free a virt_device structure.
937  * If the virt_device added a tt_info (a hub) and has children pointing to
938  * that tt_info, then free the child first. Recursive.
939  * We can't rely on udev at this point to find child-parent relationships.
940  */
941 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
942 {
943         struct xhci_virt_device *vdev;
944         struct list_head *tt_list_head;
945         struct xhci_tt_bw_info *tt_info, *next;
946         int i;
947
948         vdev = xhci->devs[slot_id];
949         if (!vdev)
950                 return;
951
952         if (vdev->real_port == 0 ||
953                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
954                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
955                 goto out;
956         }
957
958         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
959         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
960                 /* is this a hub device that added a tt_info to the tts list */
961                 if (tt_info->slot_id == slot_id) {
962                         /* are any devices using this tt_info? */
963                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
964                                 vdev = xhci->devs[i];
965                                 if (vdev && (vdev->tt_info == tt_info))
966                                         xhci_free_virt_devices_depth_first(
967                                                 xhci, i);
968                         }
969                 }
970         }
971 out:
972         /* we are now at a leaf device */
973         xhci_free_virt_device(xhci, slot_id);
974 }
975
976 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
977                 struct usb_device *udev, gfp_t flags)
978 {
979         struct xhci_virt_device *dev;
980         int i;
981
982         /* Slot ID 0 is reserved */
983         if (slot_id == 0 || xhci->devs[slot_id]) {
984                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
985                 return 0;
986         }
987
988         dev = kzalloc(sizeof(*dev), flags);
989         if (!dev)
990                 return 0;
991
992         /* Allocate the (output) device context that will be used in the HC. */
993         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
994         if (!dev->out_ctx)
995                 goto fail;
996
997         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
998                         (unsigned long long)dev->out_ctx->dma);
999
1000         /* Allocate the (input) device context for address device command */
1001         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1002         if (!dev->in_ctx)
1003                 goto fail;
1004
1005         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1006                         (unsigned long long)dev->in_ctx->dma);
1007
1008         /* Initialize the cancellation list and watchdog timers for each ep */
1009         for (i = 0; i < 31; i++) {
1010                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1011                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1012                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1013         }
1014
1015         /* Allocate endpoint 0 ring */
1016         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1017         if (!dev->eps[0].ring)
1018                 goto fail;
1019
1020         dev->udev = udev;
1021
1022         /* Point to output device context in dcbaa. */
1023         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1024         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1025                  slot_id,
1026                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1027                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1028
1029         trace_xhci_alloc_virt_device(dev);
1030
1031         xhci->devs[slot_id] = dev;
1032
1033         return 1;
1034 fail:
1035
1036         if (dev->in_ctx)
1037                 xhci_free_container_ctx(xhci, dev->in_ctx);
1038         if (dev->out_ctx)
1039                 xhci_free_container_ctx(xhci, dev->out_ctx);
1040         kfree(dev);
1041
1042         return 0;
1043 }
1044
1045 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1046                 struct usb_device *udev)
1047 {
1048         struct xhci_virt_device *virt_dev;
1049         struct xhci_ep_ctx      *ep0_ctx;
1050         struct xhci_ring        *ep_ring;
1051
1052         virt_dev = xhci->devs[udev->slot_id];
1053         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1054         ep_ring = virt_dev->eps[0].ring;
1055         /*
1056          * FIXME we don't keep track of the dequeue pointer very well after a
1057          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1058          * host to our enqueue pointer.  This should only be called after a
1059          * configured device has reset, so all control transfers should have
1060          * been completed or cancelled before the reset.
1061          */
1062         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1063                                                         ep_ring->enqueue)
1064                                    | ep_ring->cycle_state);
1065 }
1066
1067 /*
1068  * The xHCI roothub may have ports of differing speeds in any order in the port
1069  * status registers.  xhci->port_array provides an array of the port speed for
1070  * each offset into the port status registers.
1071  *
1072  * The xHCI hardware wants to know the roothub port number that the USB device
1073  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1074  * know is the index of that port under either the USB 2.0 or the USB 3.0
1075  * roothub, but that doesn't give us the real index into the HW port status
1076  * registers. Call xhci_find_raw_port_number() to get real index.
1077  */
1078 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1079                 struct usb_device *udev)
1080 {
1081         struct usb_device *top_dev;
1082         struct usb_hcd *hcd;
1083
1084         if (udev->speed >= USB_SPEED_SUPER)
1085                 hcd = xhci->shared_hcd;
1086         else
1087                 hcd = xhci->main_hcd;
1088
1089         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1090                         top_dev = top_dev->parent)
1091                 /* Found device below root hub */;
1092
1093         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1094 }
1095
1096 /* Setup an xHCI virtual device for a Set Address command */
1097 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1098 {
1099         struct xhci_virt_device *dev;
1100         struct xhci_ep_ctx      *ep0_ctx;
1101         struct xhci_slot_ctx    *slot_ctx;
1102         u32                     port_num;
1103         u32                     max_packets;
1104         struct usb_device *top_dev;
1105
1106         dev = xhci->devs[udev->slot_id];
1107         /* Slot ID 0 is reserved */
1108         if (udev->slot_id == 0 || !dev) {
1109                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1110                                 udev->slot_id);
1111                 return -EINVAL;
1112         }
1113         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1114         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1115
1116         /* 3) Only the control endpoint is valid - one endpoint context */
1117         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1118         switch (udev->speed) {
1119         case USB_SPEED_SUPER_PLUS:
1120                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1121                 max_packets = MAX_PACKET(512);
1122                 break;
1123         case USB_SPEED_SUPER:
1124                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1125                 max_packets = MAX_PACKET(512);
1126                 break;
1127         case USB_SPEED_HIGH:
1128                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1129                 max_packets = MAX_PACKET(64);
1130                 break;
1131         /* USB core guesses at a 64-byte max packet first for FS devices */
1132         case USB_SPEED_FULL:
1133                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1134                 max_packets = MAX_PACKET(64);
1135                 break;
1136         case USB_SPEED_LOW:
1137                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1138                 max_packets = MAX_PACKET(8);
1139                 break;
1140         case USB_SPEED_WIRELESS:
1141                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1142                 return -EINVAL;
1143                 break;
1144         default:
1145                 /* Speed was set earlier, this shouldn't happen. */
1146                 return -EINVAL;
1147         }
1148         /* Find the root hub port this device is under */
1149         port_num = xhci_find_real_port_number(xhci, udev);
1150         if (!port_num)
1151                 return -EINVAL;
1152         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1153         /* Set the port number in the virtual_device to the faked port number */
1154         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1155                         top_dev = top_dev->parent)
1156                 /* Found device below root hub */;
1157         dev->fake_port = top_dev->portnum;
1158         dev->real_port = port_num;
1159         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1160         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1161
1162         /* Find the right bandwidth table that this device will be a part of.
1163          * If this is a full speed device attached directly to a root port (or a
1164          * decendent of one), it counts as a primary bandwidth domain, not a
1165          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1166          * will never be created for the HS root hub.
1167          */
1168         if (!udev->tt || !udev->tt->hub->parent) {
1169                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1170         } else {
1171                 struct xhci_root_port_bw_info *rh_bw;
1172                 struct xhci_tt_bw_info *tt_bw;
1173
1174                 rh_bw = &xhci->rh_bw[port_num - 1];
1175                 /* Find the right TT. */
1176                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1177                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1178                                 continue;
1179
1180                         if (!dev->udev->tt->multi ||
1181                                         (udev->tt->multi &&
1182                                          tt_bw->ttport == dev->udev->ttport)) {
1183                                 dev->bw_table = &tt_bw->bw_table;
1184                                 dev->tt_info = tt_bw;
1185                                 break;
1186                         }
1187                 }
1188                 if (!dev->tt_info)
1189                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1190         }
1191
1192         /* Is this a LS/FS device under an external HS hub? */
1193         if (udev->tt && udev->tt->hub->parent) {
1194                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1195                                                 (udev->ttport << 8));
1196                 if (udev->tt->multi)
1197                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1198         }
1199         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1200         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1201
1202         /* Step 4 - ring already allocated */
1203         /* Step 5 */
1204         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1205
1206         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1207         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1208                                          max_packets);
1209
1210         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1211                                    dev->eps[0].ring->cycle_state);
1212
1213         trace_xhci_setup_addressable_virt_device(dev);
1214
1215         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1216
1217         return 0;
1218 }
1219
1220 /*
1221  * Convert interval expressed as 2^(bInterval - 1) == interval into
1222  * straight exponent value 2^n == interval.
1223  *
1224  */
1225 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1226                 struct usb_host_endpoint *ep)
1227 {
1228         unsigned int interval;
1229
1230         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1231         if (interval != ep->desc.bInterval - 1)
1232                 dev_warn(&udev->dev,
1233                          "ep %#x - rounding interval to %d %sframes\n",
1234                          ep->desc.bEndpointAddress,
1235                          1 << interval,
1236                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1237
1238         if (udev->speed == USB_SPEED_FULL) {
1239                 /*
1240                  * Full speed isoc endpoints specify interval in frames,
1241                  * not microframes. We are using microframes everywhere,
1242                  * so adjust accordingly.
1243                  */
1244                 interval += 3;  /* 1 frame = 2^3 uframes */
1245         }
1246
1247         return interval;
1248 }
1249
1250 /*
1251  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1252  * microframes, rounded down to nearest power of 2.
1253  */
1254 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1255                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1256                 unsigned int min_exponent, unsigned int max_exponent)
1257 {
1258         unsigned int interval;
1259
1260         interval = fls(desc_interval) - 1;
1261         interval = clamp_val(interval, min_exponent, max_exponent);
1262         if ((1 << interval) != desc_interval)
1263                 dev_dbg(&udev->dev,
1264                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1265                          ep->desc.bEndpointAddress,
1266                          1 << interval,
1267                          desc_interval);
1268
1269         return interval;
1270 }
1271
1272 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1273                 struct usb_host_endpoint *ep)
1274 {
1275         if (ep->desc.bInterval == 0)
1276                 return 0;
1277         return xhci_microframes_to_exponent(udev, ep,
1278                         ep->desc.bInterval, 0, 15);
1279 }
1280
1281
1282 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1283                 struct usb_host_endpoint *ep)
1284 {
1285         return xhci_microframes_to_exponent(udev, ep,
1286                         ep->desc.bInterval * 8, 3, 10);
1287 }
1288
1289 /* Return the polling or NAK interval.
1290  *
1291  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1292  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1293  *
1294  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1295  * is set to 0.
1296  */
1297 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1298                 struct usb_host_endpoint *ep)
1299 {
1300         unsigned int interval = 0;
1301
1302         switch (udev->speed) {
1303         case USB_SPEED_HIGH:
1304                 /* Max NAK rate */
1305                 if (usb_endpoint_xfer_control(&ep->desc) ||
1306                     usb_endpoint_xfer_bulk(&ep->desc)) {
1307                         interval = xhci_parse_microframe_interval(udev, ep);
1308                         break;
1309                 }
1310                 /* Fall through - SS and HS isoc/int have same decoding */
1311
1312         case USB_SPEED_SUPER_PLUS:
1313         case USB_SPEED_SUPER:
1314                 if (usb_endpoint_xfer_int(&ep->desc) ||
1315                     usb_endpoint_xfer_isoc(&ep->desc)) {
1316                         interval = xhci_parse_exponent_interval(udev, ep);
1317                 }
1318                 break;
1319
1320         case USB_SPEED_FULL:
1321                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1322                         interval = xhci_parse_exponent_interval(udev, ep);
1323                         break;
1324                 }
1325                 /*
1326                  * Fall through for interrupt endpoint interval decoding
1327                  * since it uses the same rules as low speed interrupt
1328                  * endpoints.
1329                  */
1330
1331         case USB_SPEED_LOW:
1332                 if (usb_endpoint_xfer_int(&ep->desc) ||
1333                     usb_endpoint_xfer_isoc(&ep->desc)) {
1334
1335                         interval = xhci_parse_frame_interval(udev, ep);
1336                 }
1337                 break;
1338
1339         default:
1340                 BUG();
1341         }
1342         return interval;
1343 }
1344
1345 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1346  * High speed endpoint descriptors can define "the number of additional
1347  * transaction opportunities per microframe", but that goes in the Max Burst
1348  * endpoint context field.
1349  */
1350 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1351                 struct usb_host_endpoint *ep)
1352 {
1353         if (udev->speed < USB_SPEED_SUPER ||
1354                         !usb_endpoint_xfer_isoc(&ep->desc))
1355                 return 0;
1356         return ep->ss_ep_comp.bmAttributes;
1357 }
1358
1359 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1360                                        struct usb_host_endpoint *ep)
1361 {
1362         /* Super speed and Plus have max burst in ep companion desc */
1363         if (udev->speed >= USB_SPEED_SUPER)
1364                 return ep->ss_ep_comp.bMaxBurst;
1365
1366         if (udev->speed == USB_SPEED_HIGH &&
1367             (usb_endpoint_xfer_isoc(&ep->desc) ||
1368              usb_endpoint_xfer_int(&ep->desc)))
1369                 return usb_endpoint_maxp_mult(&ep->desc) - 1;
1370
1371         return 0;
1372 }
1373
1374 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1375 {
1376         int in;
1377
1378         in = usb_endpoint_dir_in(&ep->desc);
1379
1380         switch (usb_endpoint_type(&ep->desc)) {
1381         case USB_ENDPOINT_XFER_CONTROL:
1382                 return CTRL_EP;
1383         case USB_ENDPOINT_XFER_BULK:
1384                 return in ? BULK_IN_EP : BULK_OUT_EP;
1385         case USB_ENDPOINT_XFER_ISOC:
1386                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1387         case USB_ENDPOINT_XFER_INT:
1388                 return in ? INT_IN_EP : INT_OUT_EP;
1389         }
1390         return 0;
1391 }
1392
1393 /* Return the maximum endpoint service interval time (ESIT) payload.
1394  * Basically, this is the maxpacket size, multiplied by the burst size
1395  * and mult size.
1396  */
1397 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1398                 struct usb_host_endpoint *ep)
1399 {
1400         int max_burst;
1401         int max_packet;
1402
1403         /* Only applies for interrupt or isochronous endpoints */
1404         if (usb_endpoint_xfer_control(&ep->desc) ||
1405                         usb_endpoint_xfer_bulk(&ep->desc))
1406                 return 0;
1407
1408         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1409         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1410             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1411                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1412         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1413         else if (udev->speed >= USB_SPEED_SUPER)
1414                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1415
1416         max_packet = usb_endpoint_maxp(&ep->desc);
1417         max_burst = usb_endpoint_maxp_mult(&ep->desc);
1418         /* A 0 in max burst means 1 transfer per ESIT */
1419         return max_packet * max_burst;
1420 }
1421
1422 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1423  * Drivers will have to call usb_alloc_streams() to do that.
1424  */
1425 int xhci_endpoint_init(struct xhci_hcd *xhci,
1426                 struct xhci_virt_device *virt_dev,
1427                 struct usb_device *udev,
1428                 struct usb_host_endpoint *ep,
1429                 gfp_t mem_flags)
1430 {
1431         unsigned int ep_index;
1432         struct xhci_ep_ctx *ep_ctx;
1433         struct xhci_ring *ep_ring;
1434         unsigned int max_packet;
1435         enum xhci_ring_type ring_type;
1436         u32 max_esit_payload;
1437         u32 endpoint_type;
1438         unsigned int max_burst;
1439         unsigned int interval;
1440         unsigned int mult;
1441         unsigned int avg_trb_len;
1442         unsigned int err_count = 0;
1443
1444         ep_index = xhci_get_endpoint_index(&ep->desc);
1445         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1446
1447         endpoint_type = xhci_get_endpoint_type(ep);
1448         if (!endpoint_type)
1449                 return -EINVAL;
1450
1451         ring_type = usb_endpoint_type(&ep->desc);
1452
1453         /*
1454          * Get values to fill the endpoint context, mostly from ep descriptor.
1455          * The average TRB buffer lengt for bulk endpoints is unclear as we
1456          * have no clue on scatter gather list entry size. For Isoc and Int,
1457          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1458          */
1459         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1460         interval = xhci_get_endpoint_interval(udev, ep);
1461
1462         /* Periodic endpoint bInterval limit quirk */
1463         if (usb_endpoint_xfer_int(&ep->desc) ||
1464             usb_endpoint_xfer_isoc(&ep->desc)) {
1465                 if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1466                     udev->speed >= USB_SPEED_HIGH &&
1467                     interval >= 7) {
1468                         interval = 6;
1469                 }
1470         }
1471
1472         mult = xhci_get_endpoint_mult(udev, ep);
1473         max_packet = usb_endpoint_maxp(&ep->desc);
1474         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1475         avg_trb_len = max_esit_payload;
1476
1477         /* FIXME dig Mult and streams info out of ep companion desc */
1478
1479         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1480         if (!usb_endpoint_xfer_isoc(&ep->desc))
1481                 err_count = 3;
1482         /* HS bulk max packet should be 512, FS bulk supports 8, 16, 32 or 64 */
1483         if (usb_endpoint_xfer_bulk(&ep->desc)) {
1484                 if (udev->speed == USB_SPEED_HIGH)
1485                         max_packet = 512;
1486                 if (udev->speed == USB_SPEED_FULL) {
1487                         max_packet = rounddown_pow_of_two(max_packet);
1488                         max_packet = clamp_val(max_packet, 8, 64);
1489                 }
1490         }
1491         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1492         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1493                 avg_trb_len = 8;
1494         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1495         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1496                 mult = 0;
1497
1498         /* Set up the endpoint ring */
1499         virt_dev->eps[ep_index].new_ring =
1500                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1501         if (!virt_dev->eps[ep_index].new_ring)
1502                 return -ENOMEM;
1503
1504         virt_dev->eps[ep_index].skip = false;
1505         ep_ring = virt_dev->eps[ep_index].new_ring;
1506
1507         /* Fill the endpoint context */
1508         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1509                                       EP_INTERVAL(interval) |
1510                                       EP_MULT(mult));
1511         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1512                                        MAX_PACKET(max_packet) |
1513                                        MAX_BURST(max_burst) |
1514                                        ERROR_COUNT(err_count));
1515         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1516                                   ep_ring->cycle_state);
1517
1518         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1519                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1520
1521         /* FIXME Debug endpoint context */
1522         return 0;
1523 }
1524
1525 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1526                 struct xhci_virt_device *virt_dev,
1527                 struct usb_host_endpoint *ep)
1528 {
1529         unsigned int ep_index;
1530         struct xhci_ep_ctx *ep_ctx;
1531
1532         ep_index = xhci_get_endpoint_index(&ep->desc);
1533         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1534
1535         ep_ctx->ep_info = 0;
1536         ep_ctx->ep_info2 = 0;
1537         ep_ctx->deq = 0;
1538         ep_ctx->tx_info = 0;
1539         /* Don't free the endpoint ring until the set interface or configuration
1540          * request succeeds.
1541          */
1542 }
1543
1544 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1545 {
1546         bw_info->ep_interval = 0;
1547         bw_info->mult = 0;
1548         bw_info->num_packets = 0;
1549         bw_info->max_packet_size = 0;
1550         bw_info->type = 0;
1551         bw_info->max_esit_payload = 0;
1552 }
1553
1554 void xhci_update_bw_info(struct xhci_hcd *xhci,
1555                 struct xhci_container_ctx *in_ctx,
1556                 struct xhci_input_control_ctx *ctrl_ctx,
1557                 struct xhci_virt_device *virt_dev)
1558 {
1559         struct xhci_bw_info *bw_info;
1560         struct xhci_ep_ctx *ep_ctx;
1561         unsigned int ep_type;
1562         int i;
1563
1564         for (i = 1; i < 31; i++) {
1565                 bw_info = &virt_dev->eps[i].bw_info;
1566
1567                 /* We can't tell what endpoint type is being dropped, but
1568                  * unconditionally clearing the bandwidth info for non-periodic
1569                  * endpoints should be harmless because the info will never be
1570                  * set in the first place.
1571                  */
1572                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1573                         /* Dropped endpoint */
1574                         xhci_clear_endpoint_bw_info(bw_info);
1575                         continue;
1576                 }
1577
1578                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1579                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1580                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1581
1582                         /* Ignore non-periodic endpoints */
1583                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1584                                         ep_type != ISOC_IN_EP &&
1585                                         ep_type != INT_IN_EP)
1586                                 continue;
1587
1588                         /* Added or changed endpoint */
1589                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1590                                         le32_to_cpu(ep_ctx->ep_info));
1591                         /* Number of packets and mult are zero-based in the
1592                          * input context, but we want one-based for the
1593                          * interval table.
1594                          */
1595                         bw_info->mult = CTX_TO_EP_MULT(
1596                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1597                         bw_info->num_packets = CTX_TO_MAX_BURST(
1598                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1599                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1600                                         le32_to_cpu(ep_ctx->ep_info2));
1601                         bw_info->type = ep_type;
1602                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1603                                         le32_to_cpu(ep_ctx->tx_info));
1604                 }
1605         }
1606 }
1607
1608 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1609  * Useful when you want to change one particular aspect of the endpoint and then
1610  * issue a configure endpoint command.
1611  */
1612 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1613                 struct xhci_container_ctx *in_ctx,
1614                 struct xhci_container_ctx *out_ctx,
1615                 unsigned int ep_index)
1616 {
1617         struct xhci_ep_ctx *out_ep_ctx;
1618         struct xhci_ep_ctx *in_ep_ctx;
1619
1620         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1621         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1622
1623         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1624         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1625         in_ep_ctx->deq = out_ep_ctx->deq;
1626         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1627 }
1628
1629 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1630  * Useful when you want to change one particular aspect of the endpoint and then
1631  * issue a configure endpoint command.  Only the context entries field matters,
1632  * but we'll copy the whole thing anyway.
1633  */
1634 void xhci_slot_copy(struct xhci_hcd *xhci,
1635                 struct xhci_container_ctx *in_ctx,
1636                 struct xhci_container_ctx *out_ctx)
1637 {
1638         struct xhci_slot_ctx *in_slot_ctx;
1639         struct xhci_slot_ctx *out_slot_ctx;
1640
1641         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1642         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1643
1644         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1645         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1646         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1647         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1648 }
1649
1650 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1651 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1652 {
1653         int i;
1654         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1655         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1656
1657         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1658                         "Allocating %d scratchpad buffers", num_sp);
1659
1660         if (!num_sp)
1661                 return 0;
1662
1663         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1664         if (!xhci->scratchpad)
1665                 goto fail_sp;
1666
1667         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1668                                      num_sp * sizeof(u64),
1669                                      &xhci->scratchpad->sp_dma, flags);
1670         if (!xhci->scratchpad->sp_array)
1671                 goto fail_sp2;
1672
1673         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1674         if (!xhci->scratchpad->sp_buffers)
1675                 goto fail_sp3;
1676
1677         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1678         for (i = 0; i < num_sp; i++) {
1679                 dma_addr_t dma;
1680                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1681                                 flags);
1682                 if (!buf)
1683                         goto fail_sp4;
1684
1685                 xhci->scratchpad->sp_array[i] = dma;
1686                 xhci->scratchpad->sp_buffers[i] = buf;
1687         }
1688
1689         return 0;
1690
1691  fail_sp4:
1692         for (i = i - 1; i >= 0; i--) {
1693                 dma_free_coherent(dev, xhci->page_size,
1694                                     xhci->scratchpad->sp_buffers[i],
1695                                     xhci->scratchpad->sp_array[i]);
1696         }
1697
1698         kfree(xhci->scratchpad->sp_buffers);
1699
1700  fail_sp3:
1701         dma_free_coherent(dev, num_sp * sizeof(u64),
1702                             xhci->scratchpad->sp_array,
1703                             xhci->scratchpad->sp_dma);
1704
1705  fail_sp2:
1706         kfree(xhci->scratchpad);
1707         xhci->scratchpad = NULL;
1708
1709  fail_sp:
1710         return -ENOMEM;
1711 }
1712
1713 static void scratchpad_free(struct xhci_hcd *xhci)
1714 {
1715         int num_sp;
1716         int i;
1717         struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1718
1719         if (!xhci->scratchpad)
1720                 return;
1721
1722         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1723
1724         for (i = 0; i < num_sp; i++) {
1725                 dma_free_coherent(dev, xhci->page_size,
1726                                     xhci->scratchpad->sp_buffers[i],
1727                                     xhci->scratchpad->sp_array[i]);
1728         }
1729         kfree(xhci->scratchpad->sp_buffers);
1730         dma_free_coherent(dev, num_sp * sizeof(u64),
1731                             xhci->scratchpad->sp_array,
1732                             xhci->scratchpad->sp_dma);
1733         kfree(xhci->scratchpad);
1734         xhci->scratchpad = NULL;
1735 }
1736
1737 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1738                 bool allocate_in_ctx, bool allocate_completion,
1739                 gfp_t mem_flags)
1740 {
1741         struct xhci_command *command;
1742
1743         command = kzalloc(sizeof(*command), mem_flags);
1744         if (!command)
1745                 return NULL;
1746
1747         if (allocate_in_ctx) {
1748                 command->in_ctx =
1749                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1750                                         mem_flags);
1751                 if (!command->in_ctx) {
1752                         kfree(command);
1753                         return NULL;
1754                 }
1755         }
1756
1757         if (allocate_completion) {
1758                 command->completion =
1759                         kzalloc(sizeof(struct completion), mem_flags);
1760                 if (!command->completion) {
1761                         xhci_free_container_ctx(xhci, command->in_ctx);
1762                         kfree(command);
1763                         return NULL;
1764                 }
1765                 init_completion(command->completion);
1766         }
1767
1768         command->status = 0;
1769         INIT_LIST_HEAD(&command->cmd_list);
1770         return command;
1771 }
1772
1773 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1774 {
1775         kfree(urb_priv);
1776 }
1777
1778 void xhci_free_command(struct xhci_hcd *xhci,
1779                 struct xhci_command *command)
1780 {
1781         xhci_free_container_ctx(xhci,
1782                         command->in_ctx);
1783         kfree(command->completion);
1784         kfree(command);
1785 }
1786
1787 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1788 {
1789         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
1790         int size;
1791         int i, j, num_ports;
1792
1793         cancel_delayed_work_sync(&xhci->cmd_timer);
1794
1795         /* Free the Event Ring Segment Table and the actual Event Ring */
1796         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1797         if (xhci->erst.entries)
1798                 dma_free_coherent(dev, size,
1799                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1800         xhci->erst.entries = NULL;
1801         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1802         if (xhci->event_ring)
1803                 xhci_ring_free(xhci, xhci->event_ring);
1804         xhci->event_ring = NULL;
1805         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1806
1807         if (xhci->lpm_command)
1808                 xhci_free_command(xhci, xhci->lpm_command);
1809         xhci->lpm_command = NULL;
1810         if (xhci->cmd_ring)
1811                 xhci_ring_free(xhci, xhci->cmd_ring);
1812         xhci->cmd_ring = NULL;
1813         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1814         xhci_cleanup_command_queue(xhci);
1815
1816         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1817         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1818                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1819                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1820                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1821                         while (!list_empty(ep))
1822                                 list_del_init(ep->next);
1823                 }
1824         }
1825
1826         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1827                 xhci_free_virt_devices_depth_first(xhci, i);
1828
1829         dma_pool_destroy(xhci->segment_pool);
1830         xhci->segment_pool = NULL;
1831         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1832
1833         dma_pool_destroy(xhci->device_pool);
1834         xhci->device_pool = NULL;
1835         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1836
1837         dma_pool_destroy(xhci->small_streams_pool);
1838         xhci->small_streams_pool = NULL;
1839         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1840                         "Freed small stream array pool");
1841
1842         dma_pool_destroy(xhci->medium_streams_pool);
1843         xhci->medium_streams_pool = NULL;
1844         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1845                         "Freed medium stream array pool");
1846
1847         if (xhci->dcbaa)
1848                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1849                                 xhci->dcbaa, xhci->dcbaa->dma);
1850         xhci->dcbaa = NULL;
1851
1852         scratchpad_free(xhci);
1853
1854         if (!xhci->rh_bw)
1855                 goto no_bw;
1856
1857         for (i = 0; i < num_ports; i++) {
1858                 struct xhci_tt_bw_info *tt, *n;
1859                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1860                         list_del(&tt->tt_list);
1861                         kfree(tt);
1862                 }
1863         }
1864
1865 no_bw:
1866         xhci->cmd_ring_reserved_trbs = 0;
1867         xhci->num_usb2_ports = 0;
1868         xhci->num_usb3_ports = 0;
1869         xhci->num_active_eps = 0;
1870         kfree(xhci->usb2_ports);
1871         kfree(xhci->usb3_ports);
1872         kfree(xhci->port_array);
1873         kfree(xhci->rh_bw);
1874         kfree(xhci->ext_caps);
1875         kfree(xhci->usb2_rhub.psi);
1876         kfree(xhci->usb3_rhub.psi);
1877
1878         xhci->usb2_ports = NULL;
1879         xhci->usb3_ports = NULL;
1880         xhci->port_array = NULL;
1881         xhci->usb2_rhub.psi = NULL;
1882         xhci->usb3_rhub.psi = NULL;
1883         xhci->rh_bw = NULL;
1884         xhci->ext_caps = NULL;
1885
1886         xhci->page_size = 0;
1887         xhci->page_shift = 0;
1888         xhci->bus_state[0].bus_suspended = 0;
1889         xhci->bus_state[1].bus_suspended = 0;
1890 }
1891
1892 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1893                 struct xhci_segment *input_seg,
1894                 union xhci_trb *start_trb,
1895                 union xhci_trb *end_trb,
1896                 dma_addr_t input_dma,
1897                 struct xhci_segment *result_seg,
1898                 char *test_name, int test_number)
1899 {
1900         unsigned long long start_dma;
1901         unsigned long long end_dma;
1902         struct xhci_segment *seg;
1903
1904         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1905         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1906
1907         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1908         if (seg != result_seg) {
1909                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1910                                 test_name, test_number);
1911                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1912                                 "input DMA 0x%llx\n",
1913                                 input_seg,
1914                                 (unsigned long long) input_dma);
1915                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1916                                 "ending TRB %p (0x%llx DMA)\n",
1917                                 start_trb, start_dma,
1918                                 end_trb, end_dma);
1919                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1920                                 result_seg, seg);
1921                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1922                           true);
1923                 return -1;
1924         }
1925         return 0;
1926 }
1927
1928 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1929 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1930 {
1931         struct {
1932                 dma_addr_t              input_dma;
1933                 struct xhci_segment     *result_seg;
1934         } simple_test_vector [] = {
1935                 /* A zeroed DMA field should fail */
1936                 { 0, NULL },
1937                 /* One TRB before the ring start should fail */
1938                 { xhci->event_ring->first_seg->dma - 16, NULL },
1939                 /* One byte before the ring start should fail */
1940                 { xhci->event_ring->first_seg->dma - 1, NULL },
1941                 /* Starting TRB should succeed */
1942                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1943                 /* Ending TRB should succeed */
1944                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1945                         xhci->event_ring->first_seg },
1946                 /* One byte after the ring end should fail */
1947                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1948                 /* One TRB after the ring end should fail */
1949                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1950                 /* An address of all ones should fail */
1951                 { (dma_addr_t) (~0), NULL },
1952         };
1953         struct {
1954                 struct xhci_segment     *input_seg;
1955                 union xhci_trb          *start_trb;
1956                 union xhci_trb          *end_trb;
1957                 dma_addr_t              input_dma;
1958                 struct xhci_segment     *result_seg;
1959         } complex_test_vector [] = {
1960                 /* Test feeding a valid DMA address from a different ring */
1961                 {       .input_seg = xhci->event_ring->first_seg,
1962                         .start_trb = xhci->event_ring->first_seg->trbs,
1963                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1964                         .input_dma = xhci->cmd_ring->first_seg->dma,
1965                         .result_seg = NULL,
1966                 },
1967                 /* Test feeding a valid end TRB from a different ring */
1968                 {       .input_seg = xhci->event_ring->first_seg,
1969                         .start_trb = xhci->event_ring->first_seg->trbs,
1970                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1971                         .input_dma = xhci->cmd_ring->first_seg->dma,
1972                         .result_seg = NULL,
1973                 },
1974                 /* Test feeding a valid start and end TRB from a different ring */
1975                 {       .input_seg = xhci->event_ring->first_seg,
1976                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1977                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1978                         .input_dma = xhci->cmd_ring->first_seg->dma,
1979                         .result_seg = NULL,
1980                 },
1981                 /* TRB in this ring, but after this TD */
1982                 {       .input_seg = xhci->event_ring->first_seg,
1983                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1984                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1985                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1986                         .result_seg = NULL,
1987                 },
1988                 /* TRB in this ring, but before this TD */
1989                 {       .input_seg = xhci->event_ring->first_seg,
1990                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1991                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1992                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1993                         .result_seg = NULL,
1994                 },
1995                 /* TRB in this ring, but after this wrapped TD */
1996                 {       .input_seg = xhci->event_ring->first_seg,
1997                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1998                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
1999                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2000                         .result_seg = NULL,
2001                 },
2002                 /* TRB in this ring, but before this wrapped TD */
2003                 {       .input_seg = xhci->event_ring->first_seg,
2004                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2005                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2006                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2007                         .result_seg = NULL,
2008                 },
2009                 /* TRB not in this ring, and we have a wrapped TD */
2010                 {       .input_seg = xhci->event_ring->first_seg,
2011                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2012                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2013                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2014                         .result_seg = NULL,
2015                 },
2016         };
2017
2018         unsigned int num_tests;
2019         int i, ret;
2020
2021         num_tests = ARRAY_SIZE(simple_test_vector);
2022         for (i = 0; i < num_tests; i++) {
2023                 ret = xhci_test_trb_in_td(xhci,
2024                                 xhci->event_ring->first_seg,
2025                                 xhci->event_ring->first_seg->trbs,
2026                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027                                 simple_test_vector[i].input_dma,
2028                                 simple_test_vector[i].result_seg,
2029                                 "Simple", i);
2030                 if (ret < 0)
2031                         return ret;
2032         }
2033
2034         num_tests = ARRAY_SIZE(complex_test_vector);
2035         for (i = 0; i < num_tests; i++) {
2036                 ret = xhci_test_trb_in_td(xhci,
2037                                 complex_test_vector[i].input_seg,
2038                                 complex_test_vector[i].start_trb,
2039                                 complex_test_vector[i].end_trb,
2040                                 complex_test_vector[i].input_dma,
2041                                 complex_test_vector[i].result_seg,
2042                                 "Complex", i);
2043                 if (ret < 0)
2044                         return ret;
2045         }
2046         xhci_dbg(xhci, "TRB math tests passed.\n");
2047         return 0;
2048 }
2049
2050 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2051 {
2052         u64 temp;
2053         dma_addr_t deq;
2054
2055         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2056                         xhci->event_ring->dequeue);
2057         if (deq == 0 && !in_interrupt())
2058                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2059                                 "dequeue ptr.\n");
2060         /* Update HC event ring dequeue pointer */
2061         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2062         temp &= ERST_PTR_MASK;
2063         /* Don't clear the EHB bit (which is RW1C) because
2064          * there might be more events to service.
2065          */
2066         temp &= ~ERST_EHB;
2067         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2068                         "// Write event ring dequeue pointer, "
2069                         "preserving EHB bit");
2070         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2071                         &xhci->ir_set->erst_dequeue);
2072 }
2073
2074 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2075                 __le32 __iomem *addr, int max_caps)
2076 {
2077         u32 temp, port_offset, port_count;
2078         int i;
2079         u8 major_revision, minor_revision;
2080         struct xhci_hub *rhub;
2081
2082         temp = readl(addr);
2083         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2084         minor_revision = XHCI_EXT_PORT_MINOR(temp);
2085
2086         if (major_revision == 0x03) {
2087                 rhub = &xhci->usb3_rhub;
2088                 /*
2089                  * Some hosts incorrectly use sub-minor version for minor
2090                  * version (i.e. 0x02 instead of 0x20 for bcdUSB 0x320 and 0x01
2091                  * for bcdUSB 0x310). Since there is no USB release with sub
2092                  * minor version 0x301 to 0x309, we can assume that they are
2093                  * incorrect and fix it here.
2094                  */
2095                 if (minor_revision > 0x00 && minor_revision < 0x10)
2096                         minor_revision <<= 4;
2097         } else if (major_revision <= 0x02) {
2098                 rhub = &xhci->usb2_rhub;
2099         } else {
2100                 xhci_warn(xhci, "Ignoring unknown port speed, "
2101                                 "Ext Cap %p, revision = 0x%x\n",
2102                                 addr, major_revision);
2103                 /* Ignoring port protocol we can't understand. FIXME */
2104                 return;
2105         }
2106         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2107
2108         if (rhub->min_rev < minor_revision)
2109                 rhub->min_rev = minor_revision;
2110
2111         /* Port offset and count in the third dword, see section 7.2 */
2112         temp = readl(addr + 2);
2113         port_offset = XHCI_EXT_PORT_OFF(temp);
2114         port_count = XHCI_EXT_PORT_COUNT(temp);
2115         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2116                         "Ext Cap %p, port offset = %u, "
2117                         "count = %u, revision = 0x%x",
2118                         addr, port_offset, port_count, major_revision);
2119         /* Port count includes the current port offset */
2120         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2121                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2122                 return;
2123
2124         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2125         if (rhub->psi_count) {
2126                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2127                                     GFP_KERNEL);
2128                 if (!rhub->psi)
2129                         rhub->psi_count = 0;
2130
2131                 rhub->psi_uid_count++;
2132                 for (i = 0; i < rhub->psi_count; i++) {
2133                         rhub->psi[i] = readl(addr + 4 + i);
2134
2135                         /* count unique ID values, two consecutive entries can
2136                          * have the same ID if link is assymetric
2137                          */
2138                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2139                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2140                                 rhub->psi_uid_count++;
2141
2142                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2143                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2144                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2145                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2146                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2147                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2148                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2149                 }
2150         }
2151         /* cache usb2 port capabilities */
2152         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2153                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2154
2155         /* Check the host's USB2 LPM capability */
2156         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2157                         (temp & XHCI_L1C)) {
2158                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2159                                 "xHCI 0.96: support USB2 software lpm");
2160                 xhci->sw_lpm_support = 1;
2161         }
2162
2163         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2164                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2165                                 "xHCI 1.0: support USB2 software lpm");
2166                 xhci->sw_lpm_support = 1;
2167                 if (temp & XHCI_HLC) {
2168                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2169                                         "xHCI 1.0: support USB2 hardware lpm");
2170                         xhci->hw_lpm_support = 1;
2171                 }
2172         }
2173
2174         port_offset--;
2175         for (i = port_offset; i < (port_offset + port_count); i++) {
2176                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2177                 if (xhci->port_array[i] != 0) {
2178                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2179                                         " port %u\n", addr, i);
2180                         xhci_warn(xhci, "Port was marked as USB %u, "
2181                                         "duplicated as USB %u\n",
2182                                         xhci->port_array[i], major_revision);
2183                         /* Only adjust the roothub port counts if we haven't
2184                          * found a similar duplicate.
2185                          */
2186                         if (xhci->port_array[i] != major_revision &&
2187                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2188                                 if (xhci->port_array[i] == 0x03)
2189                                         xhci->num_usb3_ports--;
2190                                 else
2191                                         xhci->num_usb2_ports--;
2192                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2193                         }
2194                         /* FIXME: Should we disable the port? */
2195                         continue;
2196                 }
2197                 xhci->port_array[i] = major_revision;
2198                 if (major_revision == 0x03)
2199                         xhci->num_usb3_ports++;
2200                 else
2201                         xhci->num_usb2_ports++;
2202         }
2203         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2204 }
2205
2206 /*
2207  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2208  * specify what speeds each port is supposed to be.  We can't count on the port
2209  * speed bits in the PORTSC register being correct until a device is connected,
2210  * but we need to set up the two fake roothubs with the correct number of USB
2211  * 3.0 and USB 2.0 ports at host controller initialization time.
2212  */
2213 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2214 {
2215         void __iomem *base;
2216         u32 offset;
2217         unsigned int num_ports;
2218         int i, j, port_index;
2219         int cap_count = 0;
2220         u32 cap_start;
2221
2222         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2223         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2224         if (!xhci->port_array)
2225                 return -ENOMEM;
2226
2227         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2228         if (!xhci->rh_bw)
2229                 return -ENOMEM;
2230         for (i = 0; i < num_ports; i++) {
2231                 struct xhci_interval_bw_table *bw_table;
2232
2233                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2234                 bw_table = &xhci->rh_bw[i].bw_table;
2235                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2236                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2237         }
2238         base = &xhci->cap_regs->hc_capbase;
2239
2240         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2241         if (!cap_start) {
2242                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2243                 return -ENODEV;
2244         }
2245
2246         offset = cap_start;
2247         /* count extended protocol capability entries for later caching */
2248         while (offset) {
2249                 cap_count++;
2250                 offset = xhci_find_next_ext_cap(base, offset,
2251                                                       XHCI_EXT_CAPS_PROTOCOL);
2252         }
2253
2254         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2255         if (!xhci->ext_caps)
2256                 return -ENOMEM;
2257
2258         offset = cap_start;
2259
2260         while (offset) {
2261                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2262                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2263                         break;
2264                 offset = xhci_find_next_ext_cap(base, offset,
2265                                                 XHCI_EXT_CAPS_PROTOCOL);
2266         }
2267
2268         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2269                 xhci_warn(xhci, "No ports on the roothubs?\n");
2270                 return -ENODEV;
2271         }
2272         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2273                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2274                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2275
2276         /* Place limits on the number of roothub ports so that the hub
2277          * descriptors aren't longer than the USB core will allocate.
2278          */
2279         if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2280                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2281                                 "Limiting USB 3.0 roothub ports to %u.",
2282                                 USB_SS_MAXPORTS);
2283                 xhci->num_usb3_ports = USB_SS_MAXPORTS;
2284         }
2285         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2286                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2287                                 "Limiting USB 2.0 roothub ports to %u.",
2288                                 USB_MAXCHILDREN);
2289                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2290         }
2291
2292         /*
2293          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2294          * Not sure how the USB core will handle a hub with no ports...
2295          */
2296         if (xhci->num_usb2_ports) {
2297                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2298                                 xhci->num_usb2_ports, flags);
2299                 if (!xhci->usb2_ports)
2300                         return -ENOMEM;
2301
2302                 port_index = 0;
2303                 for (i = 0; i < num_ports; i++) {
2304                         if (xhci->port_array[i] == 0x03 ||
2305                                         xhci->port_array[i] == 0 ||
2306                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2307                                 continue;
2308
2309                         xhci->usb2_ports[port_index] =
2310                                 &xhci->op_regs->port_status_base +
2311                                 NUM_PORT_REGS*i;
2312                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2313                                         "USB 2.0 port at index %u, "
2314                                         "addr = %p", i,
2315                                         xhci->usb2_ports[port_index]);
2316                         port_index++;
2317                         if (port_index == xhci->num_usb2_ports)
2318                                 break;
2319                 }
2320         }
2321         if (xhci->num_usb3_ports) {
2322                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2323                                 xhci->num_usb3_ports, flags);
2324                 if (!xhci->usb3_ports)
2325                         return -ENOMEM;
2326
2327                 port_index = 0;
2328                 for (i = 0; i < num_ports; i++)
2329                         if (xhci->port_array[i] == 0x03) {
2330                                 xhci->usb3_ports[port_index] =
2331                                         &xhci->op_regs->port_status_base +
2332                                         NUM_PORT_REGS*i;
2333                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2334                                                 "USB 3.0 port at index %u, "
2335                                                 "addr = %p", i,
2336                                                 xhci->usb3_ports[port_index]);
2337                                 port_index++;
2338                                 if (port_index == xhci->num_usb3_ports)
2339                                         break;
2340                         }
2341         }
2342         return 0;
2343 }
2344
2345 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2346 {
2347         dma_addr_t      dma;
2348         struct device   *dev = xhci_to_hcd(xhci)->self.sysdev;
2349         unsigned int    val, val2;
2350         u64             val_64;
2351         struct xhci_segment     *seg;
2352         u32 page_size, temp;
2353         int i;
2354
2355         INIT_LIST_HEAD(&xhci->cmd_list);
2356
2357         /* init command timeout work */
2358         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2359         init_completion(&xhci->cmd_ring_stop_completion);
2360
2361         page_size = readl(&xhci->op_regs->page_size);
2362         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2363                         "Supported page size register = 0x%x", page_size);
2364         for (i = 0; i < 16; i++) {
2365                 if ((0x1 & page_size) != 0)
2366                         break;
2367                 page_size = page_size >> 1;
2368         }
2369         if (i < 16)
2370                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2371                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2372         else
2373                 xhci_warn(xhci, "WARN: no supported page size\n");
2374         /* Use 4K pages, since that's common and the minimum the HC supports */
2375         xhci->page_shift = 12;
2376         xhci->page_size = 1 << xhci->page_shift;
2377         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2378                         "HCD page size set to %iK", xhci->page_size / 1024);
2379
2380         /*
2381          * Program the Number of Device Slots Enabled field in the CONFIG
2382          * register with the max value of slots the HC can handle.
2383          */
2384         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2385         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2386                         "// xHC can handle at most %d device slots.", val);
2387         val2 = readl(&xhci->op_regs->config_reg);
2388         val |= (val2 & ~HCS_SLOTS_MASK);
2389         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390                         "// Setting Max device slots reg = 0x%x.", val);
2391         writel(val, &xhci->op_regs->config_reg);
2392
2393         /*
2394          * xHCI section 5.4.6 - doorbell array must be
2395          * "physically contiguous and 64-byte (cache line) aligned".
2396          */
2397         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2398                         flags);
2399         if (!xhci->dcbaa)
2400                 goto fail;
2401         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2402         xhci->dcbaa->dma = dma;
2403         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2404                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2405                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2406         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2407
2408         /*
2409          * Initialize the ring segment pool.  The ring must be a contiguous
2410          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2411          * however, the command ring segment needs 64-byte aligned segments
2412          * and our use of dma addresses in the trb_address_map radix tree needs
2413          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2414          */
2415         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2416                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2417
2418         /* See Table 46 and Note on Figure 55 */
2419         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2420                         2112, 64, xhci->page_size);
2421         if (!xhci->segment_pool || !xhci->device_pool)
2422                 goto fail;
2423
2424         /* Linear stream context arrays don't have any boundary restrictions,
2425          * and only need to be 16-byte aligned.
2426          */
2427         xhci->small_streams_pool =
2428                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2429                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2430         xhci->medium_streams_pool =
2431                 dma_pool_create("xHCI 1KB stream ctx arrays",
2432                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2433         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2434          * will be allocated with dma_alloc_coherent()
2435          */
2436
2437         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2438                 goto fail;
2439
2440         /* Set up the command ring to have one segments for now. */
2441         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2442         if (!xhci->cmd_ring)
2443                 goto fail;
2444         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2445                         "Allocated command ring at %p", xhci->cmd_ring);
2446         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2447                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2448
2449         /* Set the address in the Command Ring Control register */
2450         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2451         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2452                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2453                 xhci->cmd_ring->cycle_state;
2454         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2455                         "// Setting command ring address to 0x%016llx", val_64);
2456         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2457         xhci_dbg_cmd_ptrs(xhci);
2458
2459         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2460         if (!xhci->lpm_command)
2461                 goto fail;
2462
2463         /* Reserve one command ring TRB for disabling LPM.
2464          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2465          * disabling LPM, we only need to reserve one TRB for all devices.
2466          */
2467         xhci->cmd_ring_reserved_trbs++;
2468
2469         val = readl(&xhci->cap_regs->db_off);
2470         val &= DBOFF_MASK;
2471         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2472                         "// Doorbell array is located at offset 0x%x"
2473                         " from cap regs base addr", val);
2474         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2475         xhci_dbg_regs(xhci);
2476         xhci_print_run_regs(xhci);
2477         /* Set ir_set to interrupt register set 0 */
2478         xhci->ir_set = &xhci->run_regs->ir_set[0];
2479
2480         /*
2481          * Event ring setup: Allocate a normal ring, but also setup
2482          * the event ring segment table (ERST).  Section 4.9.3.
2483          */
2484         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2485         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2486                                         0, flags);
2487         if (!xhci->event_ring)
2488                 goto fail;
2489         if (xhci_check_trb_in_td_math(xhci) < 0)
2490                 goto fail;
2491
2492         xhci->erst.entries = dma_alloc_coherent(dev,
2493                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2494                         flags);
2495         if (!xhci->erst.entries)
2496                 goto fail;
2497         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2498                         "// Allocated event ring segment table at 0x%llx",
2499                         (unsigned long long)dma);
2500
2501         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2502         xhci->erst.num_entries = ERST_NUM_SEGS;
2503         xhci->erst.erst_dma_addr = dma;
2504         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2505                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2506                         xhci->erst.num_entries,
2507                         xhci->erst.entries,
2508                         (unsigned long long)xhci->erst.erst_dma_addr);
2509
2510         /* set ring base address and size for each segment table entry */
2511         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2512                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2513                 entry->seg_addr = cpu_to_le64(seg->dma);
2514                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2515                 entry->rsvd = 0;
2516                 seg = seg->next;
2517         }
2518
2519         /* set ERST count with the number of entries in the segment table */
2520         val = readl(&xhci->ir_set->erst_size);
2521         val &= ERST_SIZE_MASK;
2522         val |= ERST_NUM_SEGS;
2523         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2524                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2525                         val);
2526         writel(val, &xhci->ir_set->erst_size);
2527
2528         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2529                         "// Set ERST entries to point to event ring.");
2530         /* set the segment table base address */
2531         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2532                         "// Set ERST base address for ir_set 0 = 0x%llx",
2533                         (unsigned long long)xhci->erst.erst_dma_addr);
2534         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2535         val_64 &= ERST_PTR_MASK;
2536         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2537         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2538
2539         /* Set the event ring dequeue address */
2540         xhci_set_hc_event_deq(xhci);
2541         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2542                         "Wrote ERST address to ir_set 0.");
2543         xhci_print_ir_set(xhci, 0);
2544
2545         /*
2546          * XXX: Might need to set the Interrupter Moderation Register to
2547          * something other than the default (~1ms minimum between interrupts).
2548          * See section 5.5.1.2.
2549          */
2550         for (i = 0; i < MAX_HC_SLOTS; i++)
2551                 xhci->devs[i] = NULL;
2552         for (i = 0; i < USB_MAXCHILDREN; i++) {
2553                 xhci->bus_state[0].resume_done[i] = 0;
2554                 xhci->bus_state[1].resume_done[i] = 0;
2555                 /* Only the USB 2.0 completions will ever be used. */
2556                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2557         }
2558
2559         if (scratchpad_alloc(xhci, flags))
2560                 goto fail;
2561         if (xhci_setup_port_arrays(xhci, flags))
2562                 goto fail;
2563
2564         /* Enable USB 3.0 device notifications for function remote wake, which
2565          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2566          * U3 (device suspend).
2567          */
2568         temp = readl(&xhci->op_regs->dev_notification);
2569         temp &= ~DEV_NOTE_MASK;
2570         temp |= DEV_NOTE_FWAKE;
2571         writel(temp, &xhci->op_regs->dev_notification);
2572
2573         return 0;
2574
2575 fail:
2576         xhci_halt(xhci);
2577         xhci_reset(xhci);
2578         xhci_mem_cleanup(xhci);
2579         return -ENOMEM;
2580 }