GNU Linux-libre 4.9-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                                unsigned int cycle_state,
41                                                unsigned int max_packet,
42                                                gfp_t flags)
43 {
44         struct xhci_segment *seg;
45         dma_addr_t      dma;
46         int             i;
47
48         seg = kzalloc(sizeof *seg, flags);
49         if (!seg)
50                 return NULL;
51
52         seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
53         if (!seg->trbs) {
54                 kfree(seg);
55                 return NULL;
56         }
57
58         if (max_packet) {
59                 seg->bounce_buf = kzalloc(max_packet, flags | GFP_DMA);
60                 if (!seg->bounce_buf) {
61                         dma_pool_free(xhci->segment_pool, seg->trbs, dma);
62                         kfree(seg);
63                         return NULL;
64                 }
65         }
66         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
67         if (cycle_state == 0) {
68                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
69                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
70         }
71         seg->dma = dma;
72         seg->next = NULL;
73
74         return seg;
75 }
76
77 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
78 {
79         if (seg->trbs) {
80                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
81                 seg->trbs = NULL;
82         }
83         kfree(seg->bounce_buf);
84         kfree(seg);
85 }
86
87 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
88                                 struct xhci_segment *first)
89 {
90         struct xhci_segment *seg;
91
92         seg = first->next;
93         while (seg != first) {
94                 struct xhci_segment *next = seg->next;
95                 xhci_segment_free(xhci, seg);
96                 seg = next;
97         }
98         xhci_segment_free(xhci, first);
99 }
100
101 /*
102  * Make the prev segment point to the next segment.
103  *
104  * Change the last TRB in the prev segment to be a Link TRB which points to the
105  * DMA address of the next segment.  The caller needs to set any Link TRB
106  * related flags, such as End TRB, Toggle Cycle, and no snoop.
107  */
108 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
109                 struct xhci_segment *next, enum xhci_ring_type type)
110 {
111         u32 val;
112
113         if (!prev || !next)
114                 return;
115         prev->next = next;
116         if (type != TYPE_EVENT) {
117                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
118                         cpu_to_le64(next->dma);
119
120                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
121                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
122                 val &= ~TRB_TYPE_BITMASK;
123                 val |= TRB_TYPE(TRB_LINK);
124                 /* Always set the chain bit with 0.95 hardware */
125                 /* Set chain bit for isoc rings on AMD 0.96 host */
126                 if (xhci_link_trb_quirk(xhci) ||
127                                 (type == TYPE_ISOC &&
128                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
129                         val |= TRB_CHAIN;
130                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
131         }
132 }
133
134 /*
135  * Link the ring to the new segments.
136  * Set Toggle Cycle for the new ring if needed.
137  */
138 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
139                 struct xhci_segment *first, struct xhci_segment *last,
140                 unsigned int num_segs)
141 {
142         struct xhci_segment *next;
143
144         if (!ring || !first || !last)
145                 return;
146
147         next = ring->enq_seg->next;
148         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
149         xhci_link_segments(xhci, last, next, ring->type);
150         ring->num_segs += num_segs;
151         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
152
153         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
154                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
155                         &= ~cpu_to_le32(LINK_TOGGLE);
156                 last->trbs[TRBS_PER_SEGMENT-1].link.control
157                         |= cpu_to_le32(LINK_TOGGLE);
158                 ring->last_seg = last;
159         }
160 }
161
162 /*
163  * We need a radix tree for mapping physical addresses of TRBs to which stream
164  * ID they belong to.  We need to do this because the host controller won't tell
165  * us which stream ring the TRB came from.  We could store the stream ID in an
166  * event data TRB, but that doesn't help us for the cancellation case, since the
167  * endpoint may stop before it reaches that event data TRB.
168  *
169  * The radix tree maps the upper portion of the TRB DMA address to a ring
170  * segment that has the same upper portion of DMA addresses.  For example, say I
171  * have segments of size 1KB, that are always 1KB aligned.  A segment may
172  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
173  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
174  * pass the radix tree a key to get the right stream ID:
175  *
176  *      0x10c90fff >> 10 = 0x43243
177  *      0x10c912c0 >> 10 = 0x43244
178  *      0x10c91400 >> 10 = 0x43245
179  *
180  * Obviously, only those TRBs with DMA addresses that are within the segment
181  * will make the radix tree return the stream ID for that ring.
182  *
183  * Caveats for the radix tree:
184  *
185  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
186  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
187  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
188  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
189  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
190  * extended systems (where the DMA address can be bigger than 32-bits),
191  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
192  */
193 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
194                 struct xhci_ring *ring,
195                 struct xhci_segment *seg,
196                 gfp_t mem_flags)
197 {
198         unsigned long key;
199         int ret;
200
201         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
202         /* Skip any segments that were already added. */
203         if (radix_tree_lookup(trb_address_map, key))
204                 return 0;
205
206         ret = radix_tree_maybe_preload(mem_flags);
207         if (ret)
208                 return ret;
209         ret = radix_tree_insert(trb_address_map,
210                         key, ring);
211         radix_tree_preload_end();
212         return ret;
213 }
214
215 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
216                 struct xhci_segment *seg)
217 {
218         unsigned long key;
219
220         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
221         if (radix_tree_lookup(trb_address_map, key))
222                 radix_tree_delete(trb_address_map, key);
223 }
224
225 static int xhci_update_stream_segment_mapping(
226                 struct radix_tree_root *trb_address_map,
227                 struct xhci_ring *ring,
228                 struct xhci_segment *first_seg,
229                 struct xhci_segment *last_seg,
230                 gfp_t mem_flags)
231 {
232         struct xhci_segment *seg;
233         struct xhci_segment *failed_seg;
234         int ret;
235
236         if (WARN_ON_ONCE(trb_address_map == NULL))
237                 return 0;
238
239         seg = first_seg;
240         do {
241                 ret = xhci_insert_segment_mapping(trb_address_map,
242                                 ring, seg, mem_flags);
243                 if (ret)
244                         goto remove_streams;
245                 if (seg == last_seg)
246                         return 0;
247                 seg = seg->next;
248         } while (seg != first_seg);
249
250         return 0;
251
252 remove_streams:
253         failed_seg = seg;
254         seg = first_seg;
255         do {
256                 xhci_remove_segment_mapping(trb_address_map, seg);
257                 if (seg == failed_seg)
258                         return ret;
259                 seg = seg->next;
260         } while (seg != first_seg);
261
262         return ret;
263 }
264
265 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
266 {
267         struct xhci_segment *seg;
268
269         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
270                 return;
271
272         seg = ring->first_seg;
273         do {
274                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
275                 seg = seg->next;
276         } while (seg != ring->first_seg);
277 }
278
279 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
280 {
281         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
282                         ring->first_seg, ring->last_seg, mem_flags);
283 }
284
285 /* XXX: Do we need the hcd structure in all these functions? */
286 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
287 {
288         if (!ring)
289                 return;
290
291         if (ring->first_seg) {
292                 if (ring->type == TYPE_STREAM)
293                         xhci_remove_stream_mapping(ring);
294                 xhci_free_segments_for_ring(xhci, ring->first_seg);
295         }
296
297         kfree(ring);
298 }
299
300 static void xhci_initialize_ring_info(struct xhci_ring *ring,
301                                         unsigned int cycle_state)
302 {
303         /* The ring is empty, so the enqueue pointer == dequeue pointer */
304         ring->enqueue = ring->first_seg->trbs;
305         ring->enq_seg = ring->first_seg;
306         ring->dequeue = ring->enqueue;
307         ring->deq_seg = ring->first_seg;
308         /* The ring is initialized to 0. The producer must write 1 to the cycle
309          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
310          * compare CCS to the cycle bit to check ownership, so CCS = 1.
311          *
312          * New rings are initialized with cycle state equal to 1; if we are
313          * handling ring expansion, set the cycle state equal to the old ring.
314          */
315         ring->cycle_state = cycle_state;
316         /* Not necessary for new rings, but needed for re-initialized rings */
317         ring->enq_updates = 0;
318         ring->deq_updates = 0;
319
320         /*
321          * Each segment has a link TRB, and leave an extra TRB for SW
322          * accounting purpose
323          */
324         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
325 }
326
327 /* Allocate segments and link them for a ring */
328 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
329                 struct xhci_segment **first, struct xhci_segment **last,
330                 unsigned int num_segs, unsigned int cycle_state,
331                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
332 {
333         struct xhci_segment *prev;
334
335         prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
336         if (!prev)
337                 return -ENOMEM;
338         num_segs--;
339
340         *first = prev;
341         while (num_segs > 0) {
342                 struct xhci_segment     *next;
343
344                 next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
345                 if (!next) {
346                         prev = *first;
347                         while (prev) {
348                                 next = prev->next;
349                                 xhci_segment_free(xhci, prev);
350                                 prev = next;
351                         }
352                         return -ENOMEM;
353                 }
354                 xhci_link_segments(xhci, prev, next, type);
355
356                 prev = next;
357                 num_segs--;
358         }
359         xhci_link_segments(xhci, prev, *first, type);
360         *last = prev;
361
362         return 0;
363 }
364
365 /**
366  * Create a new ring with zero or more segments.
367  *
368  * Link each segment together into a ring.
369  * Set the end flag and the cycle toggle bit on the last segment.
370  * See section 4.9.1 and figures 15 and 16.
371  */
372 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
373                 unsigned int num_segs, unsigned int cycle_state,
374                 enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
375 {
376         struct xhci_ring        *ring;
377         int ret;
378
379         ring = kzalloc(sizeof *(ring), flags);
380         if (!ring)
381                 return NULL;
382
383         ring->num_segs = num_segs;
384         ring->bounce_buf_len = max_packet;
385         INIT_LIST_HEAD(&ring->td_list);
386         ring->type = type;
387         if (num_segs == 0)
388                 return ring;
389
390         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
391                         &ring->last_seg, num_segs, cycle_state, type,
392                         max_packet, flags);
393         if (ret)
394                 goto fail;
395
396         /* Only event ring does not use link TRB */
397         if (type != TYPE_EVENT) {
398                 /* See section 4.9.2.1 and 6.4.4.1 */
399                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
400                         cpu_to_le32(LINK_TOGGLE);
401         }
402         xhci_initialize_ring_info(ring, cycle_state);
403         return ring;
404
405 fail:
406         kfree(ring);
407         return NULL;
408 }
409
410 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
411                 struct xhci_virt_device *virt_dev,
412                 unsigned int ep_index)
413 {
414         int rings_cached;
415
416         rings_cached = virt_dev->num_rings_cached;
417         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
418                 virt_dev->ring_cache[rings_cached] =
419                         virt_dev->eps[ep_index].ring;
420                 virt_dev->num_rings_cached++;
421                 xhci_dbg(xhci, "Cached old ring, "
422                                 "%d ring%s cached\n",
423                                 virt_dev->num_rings_cached,
424                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
425         } else {
426                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
427                 xhci_dbg(xhci, "Ring cache full (%d rings), "
428                                 "freeing ring\n",
429                                 virt_dev->num_rings_cached);
430         }
431         virt_dev->eps[ep_index].ring = NULL;
432 }
433
434 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
435  * pointers to the beginning of the ring.
436  */
437 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
438                         struct xhci_ring *ring, unsigned int cycle_state,
439                         enum xhci_ring_type type)
440 {
441         struct xhci_segment     *seg = ring->first_seg;
442         int i;
443
444         do {
445                 memset(seg->trbs, 0,
446                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
447                 if (cycle_state == 0) {
448                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
449                                 seg->trbs[i].link.control |=
450                                         cpu_to_le32(TRB_CYCLE);
451                 }
452                 /* All endpoint rings have link TRBs */
453                 xhci_link_segments(xhci, seg, seg->next, type);
454                 seg = seg->next;
455         } while (seg != ring->first_seg);
456         ring->type = type;
457         xhci_initialize_ring_info(ring, cycle_state);
458         /* td list should be empty since all URBs have been cancelled,
459          * but just in case...
460          */
461         INIT_LIST_HEAD(&ring->td_list);
462 }
463
464 /*
465  * Expand an existing ring.
466  * Look for a cached ring or allocate a new ring which has same segment numbers
467  * and link the two rings.
468  */
469 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
470                                 unsigned int num_trbs, gfp_t flags)
471 {
472         struct xhci_segment     *first;
473         struct xhci_segment     *last;
474         unsigned int            num_segs;
475         unsigned int            num_segs_needed;
476         int                     ret;
477
478         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
479                                 (TRBS_PER_SEGMENT - 1);
480
481         /* Allocate number of segments we needed, or double the ring size */
482         num_segs = ring->num_segs > num_segs_needed ?
483                         ring->num_segs : num_segs_needed;
484
485         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
486                         num_segs, ring->cycle_state, ring->type,
487                         ring->bounce_buf_len, flags);
488         if (ret)
489                 return -ENOMEM;
490
491         if (ring->type == TYPE_STREAM)
492                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
493                                                 ring, first, last, flags);
494         if (ret) {
495                 struct xhci_segment *next;
496                 do {
497                         next = first->next;
498                         xhci_segment_free(xhci, first);
499                         if (first == last)
500                                 break;
501                         first = next;
502                 } while (true);
503                 return ret;
504         }
505
506         xhci_link_rings(xhci, ring, first, last, num_segs);
507         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
508                         "ring expansion succeed, now has %d segments",
509                         ring->num_segs);
510
511         return 0;
512 }
513
514 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
515
516 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
517                                                     int type, gfp_t flags)
518 {
519         struct xhci_container_ctx *ctx;
520
521         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
522                 return NULL;
523
524         ctx = kzalloc(sizeof(*ctx), flags);
525         if (!ctx)
526                 return NULL;
527
528         ctx->type = type;
529         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
530         if (type == XHCI_CTX_TYPE_INPUT)
531                 ctx->size += CTX_SIZE(xhci->hcc_params);
532
533         ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
534         if (!ctx->bytes) {
535                 kfree(ctx);
536                 return NULL;
537         }
538         return ctx;
539 }
540
541 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
542                              struct xhci_container_ctx *ctx)
543 {
544         if (!ctx)
545                 return;
546         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
547         kfree(ctx);
548 }
549
550 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
551                                               struct xhci_container_ctx *ctx)
552 {
553         if (ctx->type != XHCI_CTX_TYPE_INPUT)
554                 return NULL;
555
556         return (struct xhci_input_control_ctx *)ctx->bytes;
557 }
558
559 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
560                                         struct xhci_container_ctx *ctx)
561 {
562         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
563                 return (struct xhci_slot_ctx *)ctx->bytes;
564
565         return (struct xhci_slot_ctx *)
566                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
567 }
568
569 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
570                                     struct xhci_container_ctx *ctx,
571                                     unsigned int ep_index)
572 {
573         /* increment ep index by offset of start of ep ctx array */
574         ep_index++;
575         if (ctx->type == XHCI_CTX_TYPE_INPUT)
576                 ep_index++;
577
578         return (struct xhci_ep_ctx *)
579                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
580 }
581
582
583 /***************** Streams structures manipulation *************************/
584
585 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
586                 unsigned int num_stream_ctxs,
587                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
588 {
589         struct device *dev = xhci_to_hcd(xhci)->self.controller;
590         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
591
592         if (size > MEDIUM_STREAM_ARRAY_SIZE)
593                 dma_free_coherent(dev, size,
594                                 stream_ctx, dma);
595         else if (size <= SMALL_STREAM_ARRAY_SIZE)
596                 return dma_pool_free(xhci->small_streams_pool,
597                                 stream_ctx, dma);
598         else
599                 return dma_pool_free(xhci->medium_streams_pool,
600                                 stream_ctx, dma);
601 }
602
603 /*
604  * The stream context array for each endpoint with bulk streams enabled can
605  * vary in size, based on:
606  *  - how many streams the endpoint supports,
607  *  - the maximum primary stream array size the host controller supports,
608  *  - and how many streams the device driver asks for.
609  *
610  * The stream context array must be a power of 2, and can be as small as
611  * 64 bytes or as large as 1MB.
612  */
613 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
614                 unsigned int num_stream_ctxs, dma_addr_t *dma,
615                 gfp_t mem_flags)
616 {
617         struct device *dev = xhci_to_hcd(xhci)->self.controller;
618         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
619
620         if (size > MEDIUM_STREAM_ARRAY_SIZE)
621                 return dma_alloc_coherent(dev, size,
622                                 dma, mem_flags);
623         else if (size <= SMALL_STREAM_ARRAY_SIZE)
624                 return dma_pool_alloc(xhci->small_streams_pool,
625                                 mem_flags, dma);
626         else
627                 return dma_pool_alloc(xhci->medium_streams_pool,
628                                 mem_flags, dma);
629 }
630
631 struct xhci_ring *xhci_dma_to_transfer_ring(
632                 struct xhci_virt_ep *ep,
633                 u64 address)
634 {
635         if (ep->ep_state & EP_HAS_STREAMS)
636                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
637                                 address >> TRB_SEGMENT_SHIFT);
638         return ep->ring;
639 }
640
641 struct xhci_ring *xhci_stream_id_to_ring(
642                 struct xhci_virt_device *dev,
643                 unsigned int ep_index,
644                 unsigned int stream_id)
645 {
646         struct xhci_virt_ep *ep = &dev->eps[ep_index];
647
648         if (stream_id == 0)
649                 return ep->ring;
650         if (!ep->stream_info)
651                 return NULL;
652
653         if (stream_id > ep->stream_info->num_streams)
654                 return NULL;
655         return ep->stream_info->stream_rings[stream_id];
656 }
657
658 /*
659  * Change an endpoint's internal structure so it supports stream IDs.  The
660  * number of requested streams includes stream 0, which cannot be used by device
661  * drivers.
662  *
663  * The number of stream contexts in the stream context array may be bigger than
664  * the number of streams the driver wants to use.  This is because the number of
665  * stream context array entries must be a power of two.
666  */
667 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
668                 unsigned int num_stream_ctxs,
669                 unsigned int num_streams,
670                 unsigned int max_packet, gfp_t mem_flags)
671 {
672         struct xhci_stream_info *stream_info;
673         u32 cur_stream;
674         struct xhci_ring *cur_ring;
675         u64 addr;
676         int ret;
677
678         xhci_dbg(xhci, "Allocating %u streams and %u "
679                         "stream context array entries.\n",
680                         num_streams, num_stream_ctxs);
681         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
682                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
683                 return NULL;
684         }
685         xhci->cmd_ring_reserved_trbs++;
686
687         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
688         if (!stream_info)
689                 goto cleanup_trbs;
690
691         stream_info->num_streams = num_streams;
692         stream_info->num_stream_ctxs = num_stream_ctxs;
693
694         /* Initialize the array of virtual pointers to stream rings. */
695         stream_info->stream_rings = kzalloc(
696                         sizeof(struct xhci_ring *)*num_streams,
697                         mem_flags);
698         if (!stream_info->stream_rings)
699                 goto cleanup_info;
700
701         /* Initialize the array of DMA addresses for stream rings for the HW. */
702         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
703                         num_stream_ctxs, &stream_info->ctx_array_dma,
704                         mem_flags);
705         if (!stream_info->stream_ctx_array)
706                 goto cleanup_ctx;
707         memset(stream_info->stream_ctx_array, 0,
708                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
709
710         /* Allocate everything needed to free the stream rings later */
711         stream_info->free_streams_command =
712                 xhci_alloc_command(xhci, true, true, mem_flags);
713         if (!stream_info->free_streams_command)
714                 goto cleanup_ctx;
715
716         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
717
718         /* Allocate rings for all the streams that the driver will use,
719          * and add their segment DMA addresses to the radix tree.
720          * Stream 0 is reserved.
721          */
722
723         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
724                 stream_info->stream_rings[cur_stream] =
725                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
726                                         mem_flags);
727                 cur_ring = stream_info->stream_rings[cur_stream];
728                 if (!cur_ring)
729                         goto cleanup_rings;
730                 cur_ring->stream_id = cur_stream;
731                 cur_ring->trb_address_map = &stream_info->trb_address_map;
732                 /* Set deq ptr, cycle bit, and stream context type */
733                 addr = cur_ring->first_seg->dma |
734                         SCT_FOR_CTX(SCT_PRI_TR) |
735                         cur_ring->cycle_state;
736                 stream_info->stream_ctx_array[cur_stream].stream_ring =
737                         cpu_to_le64(addr);
738                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
739                                 cur_stream, (unsigned long long) addr);
740
741                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
742                 if (ret) {
743                         xhci_ring_free(xhci, cur_ring);
744                         stream_info->stream_rings[cur_stream] = NULL;
745                         goto cleanup_rings;
746                 }
747         }
748         /* Leave the other unused stream ring pointers in the stream context
749          * array initialized to zero.  This will cause the xHC to give us an
750          * error if the device asks for a stream ID we don't have setup (if it
751          * was any other way, the host controller would assume the ring is
752          * "empty" and wait forever for data to be queued to that stream ID).
753          */
754
755         return stream_info;
756
757 cleanup_rings:
758         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
759                 cur_ring = stream_info->stream_rings[cur_stream];
760                 if (cur_ring) {
761                         xhci_ring_free(xhci, cur_ring);
762                         stream_info->stream_rings[cur_stream] = NULL;
763                 }
764         }
765         xhci_free_command(xhci, stream_info->free_streams_command);
766 cleanup_ctx:
767         kfree(stream_info->stream_rings);
768 cleanup_info:
769         kfree(stream_info);
770 cleanup_trbs:
771         xhci->cmd_ring_reserved_trbs--;
772         return NULL;
773 }
774 /*
775  * Sets the MaxPStreams field and the Linear Stream Array field.
776  * Sets the dequeue pointer to the stream context array.
777  */
778 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
779                 struct xhci_ep_ctx *ep_ctx,
780                 struct xhci_stream_info *stream_info)
781 {
782         u32 max_primary_streams;
783         /* MaxPStreams is the number of stream context array entries, not the
784          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
785          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
786          */
787         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
788         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
789                         "Setting number of stream ctx array entries to %u",
790                         1 << (max_primary_streams + 1));
791         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
792         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
793                                        | EP_HAS_LSA);
794         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
795 }
796
797 /*
798  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
799  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
800  * not at the beginning of the ring).
801  */
802 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
803                 struct xhci_virt_ep *ep)
804 {
805         dma_addr_t addr;
806         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
807         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
808         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
809 }
810
811 /* Frees all stream contexts associated with the endpoint,
812  *
813  * Caller should fix the endpoint context streams fields.
814  */
815 void xhci_free_stream_info(struct xhci_hcd *xhci,
816                 struct xhci_stream_info *stream_info)
817 {
818         int cur_stream;
819         struct xhci_ring *cur_ring;
820
821         if (!stream_info)
822                 return;
823
824         for (cur_stream = 1; cur_stream < stream_info->num_streams;
825                         cur_stream++) {
826                 cur_ring = stream_info->stream_rings[cur_stream];
827                 if (cur_ring) {
828                         xhci_ring_free(xhci, cur_ring);
829                         stream_info->stream_rings[cur_stream] = NULL;
830                 }
831         }
832         xhci_free_command(xhci, stream_info->free_streams_command);
833         xhci->cmd_ring_reserved_trbs--;
834         if (stream_info->stream_ctx_array)
835                 xhci_free_stream_ctx(xhci,
836                                 stream_info->num_stream_ctxs,
837                                 stream_info->stream_ctx_array,
838                                 stream_info->ctx_array_dma);
839
840         kfree(stream_info->stream_rings);
841         kfree(stream_info);
842 }
843
844
845 /***************** Device context manipulation *************************/
846
847 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
848                 struct xhci_virt_ep *ep)
849 {
850         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
851                     (unsigned long)ep);
852         ep->xhci = xhci;
853 }
854
855 static void xhci_free_tt_info(struct xhci_hcd *xhci,
856                 struct xhci_virt_device *virt_dev,
857                 int slot_id)
858 {
859         struct list_head *tt_list_head;
860         struct xhci_tt_bw_info *tt_info, *next;
861         bool slot_found = false;
862
863         /* If the device never made it past the Set Address stage,
864          * it may not have the real_port set correctly.
865          */
866         if (virt_dev->real_port == 0 ||
867                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
868                 xhci_dbg(xhci, "Bad real port.\n");
869                 return;
870         }
871
872         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
873         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
874                 /* Multi-TT hubs will have more than one entry */
875                 if (tt_info->slot_id == slot_id) {
876                         slot_found = true;
877                         list_del(&tt_info->tt_list);
878                         kfree(tt_info);
879                 } else if (slot_found) {
880                         break;
881                 }
882         }
883 }
884
885 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
886                 struct xhci_virt_device *virt_dev,
887                 struct usb_device *hdev,
888                 struct usb_tt *tt, gfp_t mem_flags)
889 {
890         struct xhci_tt_bw_info          *tt_info;
891         unsigned int                    num_ports;
892         int                             i, j;
893
894         if (!tt->multi)
895                 num_ports = 1;
896         else
897                 num_ports = hdev->maxchild;
898
899         for (i = 0; i < num_ports; i++, tt_info++) {
900                 struct xhci_interval_bw_table *bw_table;
901
902                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
903                 if (!tt_info)
904                         goto free_tts;
905                 INIT_LIST_HEAD(&tt_info->tt_list);
906                 list_add(&tt_info->tt_list,
907                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
908                 tt_info->slot_id = virt_dev->udev->slot_id;
909                 if (tt->multi)
910                         tt_info->ttport = i+1;
911                 bw_table = &tt_info->bw_table;
912                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
913                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
914         }
915         return 0;
916
917 free_tts:
918         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
919         return -ENOMEM;
920 }
921
922
923 /* All the xhci_tds in the ring's TD list should be freed at this point.
924  * Should be called with xhci->lock held if there is any chance the TT lists
925  * will be manipulated by the configure endpoint, allocate device, or update
926  * hub functions while this function is removing the TT entries from the list.
927  */
928 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
929 {
930         struct xhci_virt_device *dev;
931         int i;
932         int old_active_eps = 0;
933
934         /* Slot ID 0 is reserved */
935         if (slot_id == 0 || !xhci->devs[slot_id])
936                 return;
937
938         dev = xhci->devs[slot_id];
939         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
940         if (!dev)
941                 return;
942
943         if (dev->tt_info)
944                 old_active_eps = dev->tt_info->active_eps;
945
946         for (i = 0; i < 31; ++i) {
947                 if (dev->eps[i].ring)
948                         xhci_ring_free(xhci, dev->eps[i].ring);
949                 if (dev->eps[i].stream_info)
950                         xhci_free_stream_info(xhci,
951                                         dev->eps[i].stream_info);
952                 /* Endpoints on the TT/root port lists should have been removed
953                  * when usb_disable_device() was called for the device.
954                  * We can't drop them anyway, because the udev might have gone
955                  * away by this point, and we can't tell what speed it was.
956                  */
957                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
958                         xhci_warn(xhci, "Slot %u endpoint %u "
959                                         "not removed from BW list!\n",
960                                         slot_id, i);
961         }
962         /* If this is a hub, free the TT(s) from the TT list */
963         xhci_free_tt_info(xhci, dev, slot_id);
964         /* If necessary, update the number of active TTs on this root port */
965         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
966
967         if (dev->ring_cache) {
968                 for (i = 0; i < dev->num_rings_cached; i++)
969                         xhci_ring_free(xhci, dev->ring_cache[i]);
970                 kfree(dev->ring_cache);
971         }
972
973         if (dev->in_ctx)
974                 xhci_free_container_ctx(xhci, dev->in_ctx);
975         if (dev->out_ctx)
976                 xhci_free_container_ctx(xhci, dev->out_ctx);
977
978         kfree(xhci->devs[slot_id]);
979         xhci->devs[slot_id] = NULL;
980 }
981
982 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
983                 struct usb_device *udev, gfp_t flags)
984 {
985         struct xhci_virt_device *dev;
986         int i;
987
988         /* Slot ID 0 is reserved */
989         if (slot_id == 0 || xhci->devs[slot_id]) {
990                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
991                 return 0;
992         }
993
994         xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
995         if (!xhci->devs[slot_id])
996                 return 0;
997         dev = xhci->devs[slot_id];
998
999         /* Allocate the (output) device context that will be used in the HC. */
1000         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1001         if (!dev->out_ctx)
1002                 goto fail;
1003
1004         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1005                         (unsigned long long)dev->out_ctx->dma);
1006
1007         /* Allocate the (input) device context for address device command */
1008         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1009         if (!dev->in_ctx)
1010                 goto fail;
1011
1012         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1013                         (unsigned long long)dev->in_ctx->dma);
1014
1015         /* Initialize the cancellation list and watchdog timers for each ep */
1016         for (i = 0; i < 31; i++) {
1017                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1018                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1019                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1020         }
1021
1022         /* Allocate endpoint 0 ring */
1023         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1024         if (!dev->eps[0].ring)
1025                 goto fail;
1026
1027         /* Allocate pointers to the ring cache */
1028         dev->ring_cache = kzalloc(
1029                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1030                         flags);
1031         if (!dev->ring_cache)
1032                 goto fail;
1033         dev->num_rings_cached = 0;
1034
1035         init_completion(&dev->cmd_completion);
1036         dev->udev = udev;
1037
1038         /* Point to output device context in dcbaa. */
1039         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1040         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1041                  slot_id,
1042                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1043                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1044
1045         return 1;
1046 fail:
1047         xhci_free_virt_device(xhci, slot_id);
1048         return 0;
1049 }
1050
1051 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1052                 struct usb_device *udev)
1053 {
1054         struct xhci_virt_device *virt_dev;
1055         struct xhci_ep_ctx      *ep0_ctx;
1056         struct xhci_ring        *ep_ring;
1057
1058         virt_dev = xhci->devs[udev->slot_id];
1059         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1060         ep_ring = virt_dev->eps[0].ring;
1061         /*
1062          * FIXME we don't keep track of the dequeue pointer very well after a
1063          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1064          * host to our enqueue pointer.  This should only be called after a
1065          * configured device has reset, so all control transfers should have
1066          * been completed or cancelled before the reset.
1067          */
1068         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1069                                                         ep_ring->enqueue)
1070                                    | ep_ring->cycle_state);
1071 }
1072
1073 /*
1074  * The xHCI roothub may have ports of differing speeds in any order in the port
1075  * status registers.  xhci->port_array provides an array of the port speed for
1076  * each offset into the port status registers.
1077  *
1078  * The xHCI hardware wants to know the roothub port number that the USB device
1079  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1080  * know is the index of that port under either the USB 2.0 or the USB 3.0
1081  * roothub, but that doesn't give us the real index into the HW port status
1082  * registers. Call xhci_find_raw_port_number() to get real index.
1083  */
1084 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1085                 struct usb_device *udev)
1086 {
1087         struct usb_device *top_dev;
1088         struct usb_hcd *hcd;
1089
1090         if (udev->speed >= USB_SPEED_SUPER)
1091                 hcd = xhci->shared_hcd;
1092         else
1093                 hcd = xhci->main_hcd;
1094
1095         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1096                         top_dev = top_dev->parent)
1097                 /* Found device below root hub */;
1098
1099         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1100 }
1101
1102 /* Setup an xHCI virtual device for a Set Address command */
1103 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1104 {
1105         struct xhci_virt_device *dev;
1106         struct xhci_ep_ctx      *ep0_ctx;
1107         struct xhci_slot_ctx    *slot_ctx;
1108         u32                     port_num;
1109         u32                     max_packets;
1110         struct usb_device *top_dev;
1111
1112         dev = xhci->devs[udev->slot_id];
1113         /* Slot ID 0 is reserved */
1114         if (udev->slot_id == 0 || !dev) {
1115                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1116                                 udev->slot_id);
1117                 return -EINVAL;
1118         }
1119         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1120         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1121
1122         /* 3) Only the control endpoint is valid - one endpoint context */
1123         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1124         switch (udev->speed) {
1125         case USB_SPEED_SUPER_PLUS:
1126                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1127                 max_packets = MAX_PACKET(512);
1128                 break;
1129         case USB_SPEED_SUPER:
1130                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1131                 max_packets = MAX_PACKET(512);
1132                 break;
1133         case USB_SPEED_HIGH:
1134                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1135                 max_packets = MAX_PACKET(64);
1136                 break;
1137         /* USB core guesses at a 64-byte max packet first for FS devices */
1138         case USB_SPEED_FULL:
1139                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1140                 max_packets = MAX_PACKET(64);
1141                 break;
1142         case USB_SPEED_LOW:
1143                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1144                 max_packets = MAX_PACKET(8);
1145                 break;
1146         case USB_SPEED_WIRELESS:
1147                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1148                 return -EINVAL;
1149                 break;
1150         default:
1151                 /* Speed was set earlier, this shouldn't happen. */
1152                 return -EINVAL;
1153         }
1154         /* Find the root hub port this device is under */
1155         port_num = xhci_find_real_port_number(xhci, udev);
1156         if (!port_num)
1157                 return -EINVAL;
1158         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1159         /* Set the port number in the virtual_device to the faked port number */
1160         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1161                         top_dev = top_dev->parent)
1162                 /* Found device below root hub */;
1163         dev->fake_port = top_dev->portnum;
1164         dev->real_port = port_num;
1165         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1166         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1167
1168         /* Find the right bandwidth table that this device will be a part of.
1169          * If this is a full speed device attached directly to a root port (or a
1170          * decendent of one), it counts as a primary bandwidth domain, not a
1171          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1172          * will never be created for the HS root hub.
1173          */
1174         if (!udev->tt || !udev->tt->hub->parent) {
1175                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1176         } else {
1177                 struct xhci_root_port_bw_info *rh_bw;
1178                 struct xhci_tt_bw_info *tt_bw;
1179
1180                 rh_bw = &xhci->rh_bw[port_num - 1];
1181                 /* Find the right TT. */
1182                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1183                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1184                                 continue;
1185
1186                         if (!dev->udev->tt->multi ||
1187                                         (udev->tt->multi &&
1188                                          tt_bw->ttport == dev->udev->ttport)) {
1189                                 dev->bw_table = &tt_bw->bw_table;
1190                                 dev->tt_info = tt_bw;
1191                                 break;
1192                         }
1193                 }
1194                 if (!dev->tt_info)
1195                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1196         }
1197
1198         /* Is this a LS/FS device under an external HS hub? */
1199         if (udev->tt && udev->tt->hub->parent) {
1200                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1201                                                 (udev->ttport << 8));
1202                 if (udev->tt->multi)
1203                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1204         }
1205         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1206         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1207
1208         /* Step 4 - ring already allocated */
1209         /* Step 5 */
1210         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1211
1212         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1213         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1214                                          max_packets);
1215
1216         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1217                                    dev->eps[0].ring->cycle_state);
1218
1219         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1220
1221         return 0;
1222 }
1223
1224 /*
1225  * Convert interval expressed as 2^(bInterval - 1) == interval into
1226  * straight exponent value 2^n == interval.
1227  *
1228  */
1229 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1230                 struct usb_host_endpoint *ep)
1231 {
1232         unsigned int interval;
1233
1234         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1235         if (interval != ep->desc.bInterval - 1)
1236                 dev_warn(&udev->dev,
1237                          "ep %#x - rounding interval to %d %sframes\n",
1238                          ep->desc.bEndpointAddress,
1239                          1 << interval,
1240                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1241
1242         if (udev->speed == USB_SPEED_FULL) {
1243                 /*
1244                  * Full speed isoc endpoints specify interval in frames,
1245                  * not microframes. We are using microframes everywhere,
1246                  * so adjust accordingly.
1247                  */
1248                 interval += 3;  /* 1 frame = 2^3 uframes */
1249         }
1250
1251         return interval;
1252 }
1253
1254 /*
1255  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1256  * microframes, rounded down to nearest power of 2.
1257  */
1258 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1259                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1260                 unsigned int min_exponent, unsigned int max_exponent)
1261 {
1262         unsigned int interval;
1263
1264         interval = fls(desc_interval) - 1;
1265         interval = clamp_val(interval, min_exponent, max_exponent);
1266         if ((1 << interval) != desc_interval)
1267                 dev_dbg(&udev->dev,
1268                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1269                          ep->desc.bEndpointAddress,
1270                          1 << interval,
1271                          desc_interval);
1272
1273         return interval;
1274 }
1275
1276 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1277                 struct usb_host_endpoint *ep)
1278 {
1279         if (ep->desc.bInterval == 0)
1280                 return 0;
1281         return xhci_microframes_to_exponent(udev, ep,
1282                         ep->desc.bInterval, 0, 15);
1283 }
1284
1285
1286 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1287                 struct usb_host_endpoint *ep)
1288 {
1289         return xhci_microframes_to_exponent(udev, ep,
1290                         ep->desc.bInterval * 8, 3, 10);
1291 }
1292
1293 /* Return the polling or NAK interval.
1294  *
1295  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1296  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1297  *
1298  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1299  * is set to 0.
1300  */
1301 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1302                 struct usb_host_endpoint *ep)
1303 {
1304         unsigned int interval = 0;
1305
1306         switch (udev->speed) {
1307         case USB_SPEED_HIGH:
1308                 /* Max NAK rate */
1309                 if (usb_endpoint_xfer_control(&ep->desc) ||
1310                     usb_endpoint_xfer_bulk(&ep->desc)) {
1311                         interval = xhci_parse_microframe_interval(udev, ep);
1312                         break;
1313                 }
1314                 /* Fall through - SS and HS isoc/int have same decoding */
1315
1316         case USB_SPEED_SUPER_PLUS:
1317         case USB_SPEED_SUPER:
1318                 if (usb_endpoint_xfer_int(&ep->desc) ||
1319                     usb_endpoint_xfer_isoc(&ep->desc)) {
1320                         interval = xhci_parse_exponent_interval(udev, ep);
1321                 }
1322                 break;
1323
1324         case USB_SPEED_FULL:
1325                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1326                         interval = xhci_parse_exponent_interval(udev, ep);
1327                         break;
1328                 }
1329                 /*
1330                  * Fall through for interrupt endpoint interval decoding
1331                  * since it uses the same rules as low speed interrupt
1332                  * endpoints.
1333                  */
1334
1335         case USB_SPEED_LOW:
1336                 if (usb_endpoint_xfer_int(&ep->desc) ||
1337                     usb_endpoint_xfer_isoc(&ep->desc)) {
1338
1339                         interval = xhci_parse_frame_interval(udev, ep);
1340                 }
1341                 break;
1342
1343         default:
1344                 BUG();
1345         }
1346         return interval;
1347 }
1348
1349 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1350  * High speed endpoint descriptors can define "the number of additional
1351  * transaction opportunities per microframe", but that goes in the Max Burst
1352  * endpoint context field.
1353  */
1354 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1355                 struct usb_host_endpoint *ep)
1356 {
1357         if (udev->speed < USB_SPEED_SUPER ||
1358                         !usb_endpoint_xfer_isoc(&ep->desc))
1359                 return 0;
1360         return ep->ss_ep_comp.bmAttributes;
1361 }
1362
1363 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1364                                        struct usb_host_endpoint *ep)
1365 {
1366         /* Super speed and Plus have max burst in ep companion desc */
1367         if (udev->speed >= USB_SPEED_SUPER)
1368                 return ep->ss_ep_comp.bMaxBurst;
1369
1370         if (udev->speed == USB_SPEED_HIGH &&
1371             (usb_endpoint_xfer_isoc(&ep->desc) ||
1372              usb_endpoint_xfer_int(&ep->desc)))
1373                 return (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1374
1375         return 0;
1376 }
1377
1378 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1379 {
1380         int in;
1381
1382         in = usb_endpoint_dir_in(&ep->desc);
1383
1384         if (usb_endpoint_xfer_control(&ep->desc))
1385                 return CTRL_EP;
1386         if (usb_endpoint_xfer_bulk(&ep->desc))
1387                 return in ? BULK_IN_EP : BULK_OUT_EP;
1388         if (usb_endpoint_xfer_isoc(&ep->desc))
1389                 return in ? ISOC_IN_EP : ISOC_OUT_EP;
1390         if (usb_endpoint_xfer_int(&ep->desc))
1391                 return in ? INT_IN_EP : INT_OUT_EP;
1392         return 0;
1393 }
1394
1395 /* Return the maximum endpoint service interval time (ESIT) payload.
1396  * Basically, this is the maxpacket size, multiplied by the burst size
1397  * and mult size.
1398  */
1399 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1400                 struct usb_host_endpoint *ep)
1401 {
1402         int max_burst;
1403         int max_packet;
1404
1405         /* Only applies for interrupt or isochronous endpoints */
1406         if (usb_endpoint_xfer_control(&ep->desc) ||
1407                         usb_endpoint_xfer_bulk(&ep->desc))
1408                 return 0;
1409
1410         /* SuperSpeedPlus Isoc ep sending over 48k per esit */
1411         if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1412             USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1413                 return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1414         /* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1415         else if (udev->speed >= USB_SPEED_SUPER)
1416                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1417
1418         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1419         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1420         /* A 0 in max burst means 1 transfer per ESIT */
1421         return max_packet * (max_burst + 1);
1422 }
1423
1424 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1425  * Drivers will have to call usb_alloc_streams() to do that.
1426  */
1427 int xhci_endpoint_init(struct xhci_hcd *xhci,
1428                 struct xhci_virt_device *virt_dev,
1429                 struct usb_device *udev,
1430                 struct usb_host_endpoint *ep,
1431                 gfp_t mem_flags)
1432 {
1433         unsigned int ep_index;
1434         struct xhci_ep_ctx *ep_ctx;
1435         struct xhci_ring *ep_ring;
1436         unsigned int max_packet;
1437         enum xhci_ring_type ring_type;
1438         u32 max_esit_payload;
1439         u32 endpoint_type;
1440         unsigned int max_burst;
1441         unsigned int interval;
1442         unsigned int mult;
1443         unsigned int avg_trb_len;
1444         unsigned int err_count = 0;
1445
1446         ep_index = xhci_get_endpoint_index(&ep->desc);
1447         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1448
1449         endpoint_type = xhci_get_endpoint_type(ep);
1450         if (!endpoint_type)
1451                 return -EINVAL;
1452
1453         ring_type = usb_endpoint_type(&ep->desc);
1454
1455         /*
1456          * Get values to fill the endpoint context, mostly from ep descriptor.
1457          * The average TRB buffer lengt for bulk endpoints is unclear as we
1458          * have no clue on scatter gather list entry size. For Isoc and Int,
1459          * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1460          */
1461         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1462         interval = xhci_get_endpoint_interval(udev, ep);
1463         mult = xhci_get_endpoint_mult(udev, ep);
1464         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1465         max_burst = xhci_get_endpoint_max_burst(udev, ep);
1466         avg_trb_len = max_esit_payload;
1467
1468         /* FIXME dig Mult and streams info out of ep companion desc */
1469
1470         /* Allow 3 retries for everything but isoc, set CErr = 3 */
1471         if (!usb_endpoint_xfer_isoc(&ep->desc))
1472                 err_count = 3;
1473         /* Some devices get this wrong */
1474         if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1475                 max_packet = 512;
1476         /* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1477         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1478                 avg_trb_len = 8;
1479         /* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1480         if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1481                 mult = 0;
1482
1483         /* Set up the endpoint ring */
1484         virt_dev->eps[ep_index].new_ring =
1485                 xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1486         if (!virt_dev->eps[ep_index].new_ring) {
1487                 /* Attempt to use the ring cache */
1488                 if (virt_dev->num_rings_cached == 0)
1489                         return -ENOMEM;
1490                 virt_dev->num_rings_cached--;
1491                 virt_dev->eps[ep_index].new_ring =
1492                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1493                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1494                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1495                                         1, ring_type);
1496         }
1497         virt_dev->eps[ep_index].skip = false;
1498         ep_ring = virt_dev->eps[ep_index].new_ring;
1499
1500         /* Fill the endpoint context */
1501         ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1502                                       EP_INTERVAL(interval) |
1503                                       EP_MULT(mult));
1504         ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1505                                        MAX_PACKET(max_packet) |
1506                                        MAX_BURST(max_burst) |
1507                                        ERROR_COUNT(err_count));
1508         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1509                                   ep_ring->cycle_state);
1510
1511         ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1512                                       EP_AVG_TRB_LENGTH(avg_trb_len));
1513
1514         /* FIXME Debug endpoint context */
1515         return 0;
1516 }
1517
1518 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1519                 struct xhci_virt_device *virt_dev,
1520                 struct usb_host_endpoint *ep)
1521 {
1522         unsigned int ep_index;
1523         struct xhci_ep_ctx *ep_ctx;
1524
1525         ep_index = xhci_get_endpoint_index(&ep->desc);
1526         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1527
1528         ep_ctx->ep_info = 0;
1529         ep_ctx->ep_info2 = 0;
1530         ep_ctx->deq = 0;
1531         ep_ctx->tx_info = 0;
1532         /* Don't free the endpoint ring until the set interface or configuration
1533          * request succeeds.
1534          */
1535 }
1536
1537 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1538 {
1539         bw_info->ep_interval = 0;
1540         bw_info->mult = 0;
1541         bw_info->num_packets = 0;
1542         bw_info->max_packet_size = 0;
1543         bw_info->type = 0;
1544         bw_info->max_esit_payload = 0;
1545 }
1546
1547 void xhci_update_bw_info(struct xhci_hcd *xhci,
1548                 struct xhci_container_ctx *in_ctx,
1549                 struct xhci_input_control_ctx *ctrl_ctx,
1550                 struct xhci_virt_device *virt_dev)
1551 {
1552         struct xhci_bw_info *bw_info;
1553         struct xhci_ep_ctx *ep_ctx;
1554         unsigned int ep_type;
1555         int i;
1556
1557         for (i = 1; i < 31; ++i) {
1558                 bw_info = &virt_dev->eps[i].bw_info;
1559
1560                 /* We can't tell what endpoint type is being dropped, but
1561                  * unconditionally clearing the bandwidth info for non-periodic
1562                  * endpoints should be harmless because the info will never be
1563                  * set in the first place.
1564                  */
1565                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1566                         /* Dropped endpoint */
1567                         xhci_clear_endpoint_bw_info(bw_info);
1568                         continue;
1569                 }
1570
1571                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1572                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1573                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1574
1575                         /* Ignore non-periodic endpoints */
1576                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1577                                         ep_type != ISOC_IN_EP &&
1578                                         ep_type != INT_IN_EP)
1579                                 continue;
1580
1581                         /* Added or changed endpoint */
1582                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1583                                         le32_to_cpu(ep_ctx->ep_info));
1584                         /* Number of packets and mult are zero-based in the
1585                          * input context, but we want one-based for the
1586                          * interval table.
1587                          */
1588                         bw_info->mult = CTX_TO_EP_MULT(
1589                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1590                         bw_info->num_packets = CTX_TO_MAX_BURST(
1591                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1592                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1593                                         le32_to_cpu(ep_ctx->ep_info2));
1594                         bw_info->type = ep_type;
1595                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1596                                         le32_to_cpu(ep_ctx->tx_info));
1597                 }
1598         }
1599 }
1600
1601 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1602  * Useful when you want to change one particular aspect of the endpoint and then
1603  * issue a configure endpoint command.
1604  */
1605 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1606                 struct xhci_container_ctx *in_ctx,
1607                 struct xhci_container_ctx *out_ctx,
1608                 unsigned int ep_index)
1609 {
1610         struct xhci_ep_ctx *out_ep_ctx;
1611         struct xhci_ep_ctx *in_ep_ctx;
1612
1613         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1614         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1615
1616         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1617         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1618         in_ep_ctx->deq = out_ep_ctx->deq;
1619         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1620 }
1621
1622 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1623  * Useful when you want to change one particular aspect of the endpoint and then
1624  * issue a configure endpoint command.  Only the context entries field matters,
1625  * but we'll copy the whole thing anyway.
1626  */
1627 void xhci_slot_copy(struct xhci_hcd *xhci,
1628                 struct xhci_container_ctx *in_ctx,
1629                 struct xhci_container_ctx *out_ctx)
1630 {
1631         struct xhci_slot_ctx *in_slot_ctx;
1632         struct xhci_slot_ctx *out_slot_ctx;
1633
1634         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1635         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1636
1637         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1638         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1639         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1640         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1641 }
1642
1643 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1644 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1645 {
1646         int i;
1647         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1648         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1649
1650         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1651                         "Allocating %d scratchpad buffers", num_sp);
1652
1653         if (!num_sp)
1654                 return 0;
1655
1656         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1657         if (!xhci->scratchpad)
1658                 goto fail_sp;
1659
1660         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1661                                      num_sp * sizeof(u64),
1662                                      &xhci->scratchpad->sp_dma, flags);
1663         if (!xhci->scratchpad->sp_array)
1664                 goto fail_sp2;
1665
1666         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1667         if (!xhci->scratchpad->sp_buffers)
1668                 goto fail_sp3;
1669
1670         xhci->scratchpad->sp_dma_buffers =
1671                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1672
1673         if (!xhci->scratchpad->sp_dma_buffers)
1674                 goto fail_sp4;
1675
1676         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1677         for (i = 0; i < num_sp; i++) {
1678                 dma_addr_t dma;
1679                 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1680                                 flags);
1681                 if (!buf)
1682                         goto fail_sp5;
1683
1684                 xhci->scratchpad->sp_array[i] = dma;
1685                 xhci->scratchpad->sp_buffers[i] = buf;
1686                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1687         }
1688
1689         return 0;
1690
1691  fail_sp5:
1692         for (i = i - 1; i >= 0; i--) {
1693                 dma_free_coherent(dev, xhci->page_size,
1694                                     xhci->scratchpad->sp_buffers[i],
1695                                     xhci->scratchpad->sp_dma_buffers[i]);
1696         }
1697         kfree(xhci->scratchpad->sp_dma_buffers);
1698
1699  fail_sp4:
1700         kfree(xhci->scratchpad->sp_buffers);
1701
1702  fail_sp3:
1703         dma_free_coherent(dev, num_sp * sizeof(u64),
1704                             xhci->scratchpad->sp_array,
1705                             xhci->scratchpad->sp_dma);
1706
1707  fail_sp2:
1708         kfree(xhci->scratchpad);
1709         xhci->scratchpad = NULL;
1710
1711  fail_sp:
1712         return -ENOMEM;
1713 }
1714
1715 static void scratchpad_free(struct xhci_hcd *xhci)
1716 {
1717         int num_sp;
1718         int i;
1719         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1720
1721         if (!xhci->scratchpad)
1722                 return;
1723
1724         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1725
1726         for (i = 0; i < num_sp; i++) {
1727                 dma_free_coherent(dev, xhci->page_size,
1728                                     xhci->scratchpad->sp_buffers[i],
1729                                     xhci->scratchpad->sp_dma_buffers[i]);
1730         }
1731         kfree(xhci->scratchpad->sp_dma_buffers);
1732         kfree(xhci->scratchpad->sp_buffers);
1733         dma_free_coherent(dev, num_sp * sizeof(u64),
1734                             xhci->scratchpad->sp_array,
1735                             xhci->scratchpad->sp_dma);
1736         kfree(xhci->scratchpad);
1737         xhci->scratchpad = NULL;
1738 }
1739
1740 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1741                 bool allocate_in_ctx, bool allocate_completion,
1742                 gfp_t mem_flags)
1743 {
1744         struct xhci_command *command;
1745
1746         command = kzalloc(sizeof(*command), mem_flags);
1747         if (!command)
1748                 return NULL;
1749
1750         if (allocate_in_ctx) {
1751                 command->in_ctx =
1752                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753                                         mem_flags);
1754                 if (!command->in_ctx) {
1755                         kfree(command);
1756                         return NULL;
1757                 }
1758         }
1759
1760         if (allocate_completion) {
1761                 command->completion =
1762                         kzalloc(sizeof(struct completion), mem_flags);
1763                 if (!command->completion) {
1764                         xhci_free_container_ctx(xhci, command->in_ctx);
1765                         kfree(command);
1766                         return NULL;
1767                 }
1768                 init_completion(command->completion);
1769         }
1770
1771         command->status = 0;
1772         INIT_LIST_HEAD(&command->cmd_list);
1773         return command;
1774 }
1775
1776 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1777 {
1778         if (urb_priv) {
1779                 kfree(urb_priv->td[0]);
1780                 kfree(urb_priv);
1781         }
1782 }
1783
1784 void xhci_free_command(struct xhci_hcd *xhci,
1785                 struct xhci_command *command)
1786 {
1787         xhci_free_container_ctx(xhci,
1788                         command->in_ctx);
1789         kfree(command->completion);
1790         kfree(command);
1791 }
1792
1793 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1794 {
1795         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1796         int size;
1797         int i, j, num_ports;
1798
1799         del_timer_sync(&xhci->cmd_timer);
1800
1801         /* Free the Event Ring Segment Table and the actual Event Ring */
1802         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1803         if (xhci->erst.entries)
1804                 dma_free_coherent(dev, size,
1805                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1806         xhci->erst.entries = NULL;
1807         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1808         if (xhci->event_ring)
1809                 xhci_ring_free(xhci, xhci->event_ring);
1810         xhci->event_ring = NULL;
1811         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1812
1813         if (xhci->lpm_command)
1814                 xhci_free_command(xhci, xhci->lpm_command);
1815         xhci->lpm_command = NULL;
1816         if (xhci->cmd_ring)
1817                 xhci_ring_free(xhci, xhci->cmd_ring);
1818         xhci->cmd_ring = NULL;
1819         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1820         xhci_cleanup_command_queue(xhci);
1821
1822         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1823         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1824                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1825                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1826                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1827                         while (!list_empty(ep))
1828                                 list_del_init(ep->next);
1829                 }
1830         }
1831
1832         for (i = 1; i < MAX_HC_SLOTS; ++i)
1833                 xhci_free_virt_device(xhci, i);
1834
1835         dma_pool_destroy(xhci->segment_pool);
1836         xhci->segment_pool = NULL;
1837         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1838
1839         dma_pool_destroy(xhci->device_pool);
1840         xhci->device_pool = NULL;
1841         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1842
1843         dma_pool_destroy(xhci->small_streams_pool);
1844         xhci->small_streams_pool = NULL;
1845         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1846                         "Freed small stream array pool");
1847
1848         dma_pool_destroy(xhci->medium_streams_pool);
1849         xhci->medium_streams_pool = NULL;
1850         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1851                         "Freed medium stream array pool");
1852
1853         if (xhci->dcbaa)
1854                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1855                                 xhci->dcbaa, xhci->dcbaa->dma);
1856         xhci->dcbaa = NULL;
1857
1858         scratchpad_free(xhci);
1859
1860         if (!xhci->rh_bw)
1861                 goto no_bw;
1862
1863         for (i = 0; i < num_ports; i++) {
1864                 struct xhci_tt_bw_info *tt, *n;
1865                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1866                         list_del(&tt->tt_list);
1867                         kfree(tt);
1868                 }
1869         }
1870
1871 no_bw:
1872         xhci->cmd_ring_reserved_trbs = 0;
1873         xhci->num_usb2_ports = 0;
1874         xhci->num_usb3_ports = 0;
1875         xhci->num_active_eps = 0;
1876         kfree(xhci->usb2_ports);
1877         kfree(xhci->usb3_ports);
1878         kfree(xhci->port_array);
1879         kfree(xhci->rh_bw);
1880         kfree(xhci->ext_caps);
1881
1882         xhci->usb2_ports = NULL;
1883         xhci->usb3_ports = NULL;
1884         xhci->port_array = NULL;
1885         xhci->rh_bw = NULL;
1886         xhci->ext_caps = NULL;
1887
1888         xhci->page_size = 0;
1889         xhci->page_shift = 0;
1890         xhci->bus_state[0].bus_suspended = 0;
1891         xhci->bus_state[1].bus_suspended = 0;
1892 }
1893
1894 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1895                 struct xhci_segment *input_seg,
1896                 union xhci_trb *start_trb,
1897                 union xhci_trb *end_trb,
1898                 dma_addr_t input_dma,
1899                 struct xhci_segment *result_seg,
1900                 char *test_name, int test_number)
1901 {
1902         unsigned long long start_dma;
1903         unsigned long long end_dma;
1904         struct xhci_segment *seg;
1905
1906         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1907         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1908
1909         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1910         if (seg != result_seg) {
1911                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1912                                 test_name, test_number);
1913                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1914                                 "input DMA 0x%llx\n",
1915                                 input_seg,
1916                                 (unsigned long long) input_dma);
1917                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1918                                 "ending TRB %p (0x%llx DMA)\n",
1919                                 start_trb, start_dma,
1920                                 end_trb, end_dma);
1921                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1922                                 result_seg, seg);
1923                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1924                           true);
1925                 return -1;
1926         }
1927         return 0;
1928 }
1929
1930 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1931 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1932 {
1933         struct {
1934                 dma_addr_t              input_dma;
1935                 struct xhci_segment     *result_seg;
1936         } simple_test_vector [] = {
1937                 /* A zeroed DMA field should fail */
1938                 { 0, NULL },
1939                 /* One TRB before the ring start should fail */
1940                 { xhci->event_ring->first_seg->dma - 16, NULL },
1941                 /* One byte before the ring start should fail */
1942                 { xhci->event_ring->first_seg->dma - 1, NULL },
1943                 /* Starting TRB should succeed */
1944                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1945                 /* Ending TRB should succeed */
1946                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1947                         xhci->event_ring->first_seg },
1948                 /* One byte after the ring end should fail */
1949                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1950                 /* One TRB after the ring end should fail */
1951                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1952                 /* An address of all ones should fail */
1953                 { (dma_addr_t) (~0), NULL },
1954         };
1955         struct {
1956                 struct xhci_segment     *input_seg;
1957                 union xhci_trb          *start_trb;
1958                 union xhci_trb          *end_trb;
1959                 dma_addr_t              input_dma;
1960                 struct xhci_segment     *result_seg;
1961         } complex_test_vector [] = {
1962                 /* Test feeding a valid DMA address from a different ring */
1963                 {       .input_seg = xhci->event_ring->first_seg,
1964                         .start_trb = xhci->event_ring->first_seg->trbs,
1965                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1966                         .input_dma = xhci->cmd_ring->first_seg->dma,
1967                         .result_seg = NULL,
1968                 },
1969                 /* Test feeding a valid end TRB from a different ring */
1970                 {       .input_seg = xhci->event_ring->first_seg,
1971                         .start_trb = xhci->event_ring->first_seg->trbs,
1972                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1973                         .input_dma = xhci->cmd_ring->first_seg->dma,
1974                         .result_seg = NULL,
1975                 },
1976                 /* Test feeding a valid start and end TRB from a different ring */
1977                 {       .input_seg = xhci->event_ring->first_seg,
1978                         .start_trb = xhci->cmd_ring->first_seg->trbs,
1979                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1980                         .input_dma = xhci->cmd_ring->first_seg->dma,
1981                         .result_seg = NULL,
1982                 },
1983                 /* TRB in this ring, but after this TD */
1984                 {       .input_seg = xhci->event_ring->first_seg,
1985                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
1986                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
1987                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1988                         .result_seg = NULL,
1989                 },
1990                 /* TRB in this ring, but before this TD */
1991                 {       .input_seg = xhci->event_ring->first_seg,
1992                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
1993                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
1994                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1995                         .result_seg = NULL,
1996                 },
1997                 /* TRB in this ring, but after this wrapped TD */
1998                 {       .input_seg = xhci->event_ring->first_seg,
1999                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2000                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2001                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2002                         .result_seg = NULL,
2003                 },
2004                 /* TRB in this ring, but before this wrapped TD */
2005                 {       .input_seg = xhci->event_ring->first_seg,
2006                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2007                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2008                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2009                         .result_seg = NULL,
2010                 },
2011                 /* TRB not in this ring, and we have a wrapped TD */
2012                 {       .input_seg = xhci->event_ring->first_seg,
2013                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2014                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2015                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2016                         .result_seg = NULL,
2017                 },
2018         };
2019
2020         unsigned int num_tests;
2021         int i, ret;
2022
2023         num_tests = ARRAY_SIZE(simple_test_vector);
2024         for (i = 0; i < num_tests; i++) {
2025                 ret = xhci_test_trb_in_td(xhci,
2026                                 xhci->event_ring->first_seg,
2027                                 xhci->event_ring->first_seg->trbs,
2028                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2029                                 simple_test_vector[i].input_dma,
2030                                 simple_test_vector[i].result_seg,
2031                                 "Simple", i);
2032                 if (ret < 0)
2033                         return ret;
2034         }
2035
2036         num_tests = ARRAY_SIZE(complex_test_vector);
2037         for (i = 0; i < num_tests; i++) {
2038                 ret = xhci_test_trb_in_td(xhci,
2039                                 complex_test_vector[i].input_seg,
2040                                 complex_test_vector[i].start_trb,
2041                                 complex_test_vector[i].end_trb,
2042                                 complex_test_vector[i].input_dma,
2043                                 complex_test_vector[i].result_seg,
2044                                 "Complex", i);
2045                 if (ret < 0)
2046                         return ret;
2047         }
2048         xhci_dbg(xhci, "TRB math tests passed.\n");
2049         return 0;
2050 }
2051
2052 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2053 {
2054         u64 temp;
2055         dma_addr_t deq;
2056
2057         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2058                         xhci->event_ring->dequeue);
2059         if (deq == 0 && !in_interrupt())
2060                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2061                                 "dequeue ptr.\n");
2062         /* Update HC event ring dequeue pointer */
2063         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2064         temp &= ERST_PTR_MASK;
2065         /* Don't clear the EHB bit (which is RW1C) because
2066          * there might be more events to service.
2067          */
2068         temp &= ~ERST_EHB;
2069         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2070                         "// Write event ring dequeue pointer, "
2071                         "preserving EHB bit");
2072         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2073                         &xhci->ir_set->erst_dequeue);
2074 }
2075
2076 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2077                 __le32 __iomem *addr, int max_caps)
2078 {
2079         u32 temp, port_offset, port_count;
2080         int i;
2081         u8 major_revision;
2082         struct xhci_hub *rhub;
2083
2084         temp = readl(addr);
2085         major_revision = XHCI_EXT_PORT_MAJOR(temp);
2086
2087         if (major_revision == 0x03) {
2088                 rhub = &xhci->usb3_rhub;
2089         } else if (major_revision <= 0x02) {
2090                 rhub = &xhci->usb2_rhub;
2091         } else {
2092                 xhci_warn(xhci, "Ignoring unknown port speed, "
2093                                 "Ext Cap %p, revision = 0x%x\n",
2094                                 addr, major_revision);
2095                 /* Ignoring port protocol we can't understand. FIXME */
2096                 return;
2097         }
2098         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2099         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2100
2101         /* Port offset and count in the third dword, see section 7.2 */
2102         temp = readl(addr + 2);
2103         port_offset = XHCI_EXT_PORT_OFF(temp);
2104         port_count = XHCI_EXT_PORT_COUNT(temp);
2105         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2106                         "Ext Cap %p, port offset = %u, "
2107                         "count = %u, revision = 0x%x",
2108                         addr, port_offset, port_count, major_revision);
2109         /* Port count includes the current port offset */
2110         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2111                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2112                 return;
2113
2114         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2115         if (rhub->psi_count) {
2116                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2117                                     GFP_KERNEL);
2118                 if (!rhub->psi)
2119                         rhub->psi_count = 0;
2120
2121                 rhub->psi_uid_count++;
2122                 for (i = 0; i < rhub->psi_count; i++) {
2123                         rhub->psi[i] = readl(addr + 4 + i);
2124
2125                         /* count unique ID values, two consecutive entries can
2126                          * have the same ID if link is assymetric
2127                          */
2128                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2129                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2130                                 rhub->psi_uid_count++;
2131
2132                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2133                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2134                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2135                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2136                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2137                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2138                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2139                 }
2140         }
2141         /* cache usb2 port capabilities */
2142         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2143                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2144
2145         /* Check the host's USB2 LPM capability */
2146         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2147                         (temp & XHCI_L1C)) {
2148                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2149                                 "xHCI 0.96: support USB2 software lpm");
2150                 xhci->sw_lpm_support = 1;
2151         }
2152
2153         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2154                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2155                                 "xHCI 1.0: support USB2 software lpm");
2156                 xhci->sw_lpm_support = 1;
2157                 if (temp & XHCI_HLC) {
2158                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2159                                         "xHCI 1.0: support USB2 hardware lpm");
2160                         xhci->hw_lpm_support = 1;
2161                 }
2162         }
2163
2164         port_offset--;
2165         for (i = port_offset; i < (port_offset + port_count); i++) {
2166                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2167                 if (xhci->port_array[i] != 0) {
2168                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2169                                         " port %u\n", addr, i);
2170                         xhci_warn(xhci, "Port was marked as USB %u, "
2171                                         "duplicated as USB %u\n",
2172                                         xhci->port_array[i], major_revision);
2173                         /* Only adjust the roothub port counts if we haven't
2174                          * found a similar duplicate.
2175                          */
2176                         if (xhci->port_array[i] != major_revision &&
2177                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2178                                 if (xhci->port_array[i] == 0x03)
2179                                         xhci->num_usb3_ports--;
2180                                 else
2181                                         xhci->num_usb2_ports--;
2182                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2183                         }
2184                         /* FIXME: Should we disable the port? */
2185                         continue;
2186                 }
2187                 xhci->port_array[i] = major_revision;
2188                 if (major_revision == 0x03)
2189                         xhci->num_usb3_ports++;
2190                 else
2191                         xhci->num_usb2_ports++;
2192         }
2193         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2194 }
2195
2196 /*
2197  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2198  * specify what speeds each port is supposed to be.  We can't count on the port
2199  * speed bits in the PORTSC register being correct until a device is connected,
2200  * but we need to set up the two fake roothubs with the correct number of USB
2201  * 3.0 and USB 2.0 ports at host controller initialization time.
2202  */
2203 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2204 {
2205         void __iomem *base;
2206         u32 offset;
2207         unsigned int num_ports;
2208         int i, j, port_index;
2209         int cap_count = 0;
2210         u32 cap_start;
2211
2212         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2213         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2214         if (!xhci->port_array)
2215                 return -ENOMEM;
2216
2217         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2218         if (!xhci->rh_bw)
2219                 return -ENOMEM;
2220         for (i = 0; i < num_ports; i++) {
2221                 struct xhci_interval_bw_table *bw_table;
2222
2223                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2224                 bw_table = &xhci->rh_bw[i].bw_table;
2225                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2226                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2227         }
2228         base = &xhci->cap_regs->hc_capbase;
2229
2230         cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2231         if (!cap_start) {
2232                 xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2233                 return -ENODEV;
2234         }
2235
2236         offset = cap_start;
2237         /* count extended protocol capability entries for later caching */
2238         while (offset) {
2239                 cap_count++;
2240                 offset = xhci_find_next_ext_cap(base, offset,
2241                                                       XHCI_EXT_CAPS_PROTOCOL);
2242         }
2243
2244         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2245         if (!xhci->ext_caps)
2246                 return -ENOMEM;
2247
2248         offset = cap_start;
2249
2250         while (offset) {
2251                 xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2252                 if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2253                         break;
2254                 offset = xhci_find_next_ext_cap(base, offset,
2255                                                 XHCI_EXT_CAPS_PROTOCOL);
2256         }
2257
2258         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2259                 xhci_warn(xhci, "No ports on the roothubs?\n");
2260                 return -ENODEV;
2261         }
2262         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2263                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2264                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2265
2266         /* Place limits on the number of roothub ports so that the hub
2267          * descriptors aren't longer than the USB core will allocate.
2268          */
2269         if (xhci->num_usb3_ports > 15) {
2270                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2271                                 "Limiting USB 3.0 roothub ports to 15.");
2272                 xhci->num_usb3_ports = 15;
2273         }
2274         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2275                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2276                                 "Limiting USB 2.0 roothub ports to %u.",
2277                                 USB_MAXCHILDREN);
2278                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2279         }
2280
2281         /*
2282          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2283          * Not sure how the USB core will handle a hub with no ports...
2284          */
2285         if (xhci->num_usb2_ports) {
2286                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2287                                 xhci->num_usb2_ports, flags);
2288                 if (!xhci->usb2_ports)
2289                         return -ENOMEM;
2290
2291                 port_index = 0;
2292                 for (i = 0; i < num_ports; i++) {
2293                         if (xhci->port_array[i] == 0x03 ||
2294                                         xhci->port_array[i] == 0 ||
2295                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2296                                 continue;
2297
2298                         xhci->usb2_ports[port_index] =
2299                                 &xhci->op_regs->port_status_base +
2300                                 NUM_PORT_REGS*i;
2301                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2302                                         "USB 2.0 port at index %u, "
2303                                         "addr = %p", i,
2304                                         xhci->usb2_ports[port_index]);
2305                         port_index++;
2306                         if (port_index == xhci->num_usb2_ports)
2307                                 break;
2308                 }
2309         }
2310         if (xhci->num_usb3_ports) {
2311                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2312                                 xhci->num_usb3_ports, flags);
2313                 if (!xhci->usb3_ports)
2314                         return -ENOMEM;
2315
2316                 port_index = 0;
2317                 for (i = 0; i < num_ports; i++)
2318                         if (xhci->port_array[i] == 0x03) {
2319                                 xhci->usb3_ports[port_index] =
2320                                         &xhci->op_regs->port_status_base +
2321                                         NUM_PORT_REGS*i;
2322                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2323                                                 "USB 3.0 port at index %u, "
2324                                                 "addr = %p", i,
2325                                                 xhci->usb3_ports[port_index]);
2326                                 port_index++;
2327                                 if (port_index == xhci->num_usb3_ports)
2328                                         break;
2329                         }
2330         }
2331         return 0;
2332 }
2333
2334 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2335 {
2336         dma_addr_t      dma;
2337         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2338         unsigned int    val, val2;
2339         u64             val_64;
2340         struct xhci_segment     *seg;
2341         u32 page_size, temp;
2342         int i;
2343
2344         INIT_LIST_HEAD(&xhci->cmd_list);
2345
2346         /* init command timeout timer */
2347         setup_timer(&xhci->cmd_timer, xhci_handle_command_timeout,
2348                     (unsigned long)xhci);
2349
2350         page_size = readl(&xhci->op_regs->page_size);
2351         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2352                         "Supported page size register = 0x%x", page_size);
2353         for (i = 0; i < 16; i++) {
2354                 if ((0x1 & page_size) != 0)
2355                         break;
2356                 page_size = page_size >> 1;
2357         }
2358         if (i < 16)
2359                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2360                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2361         else
2362                 xhci_warn(xhci, "WARN: no supported page size\n");
2363         /* Use 4K pages, since that's common and the minimum the HC supports */
2364         xhci->page_shift = 12;
2365         xhci->page_size = 1 << xhci->page_shift;
2366         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2367                         "HCD page size set to %iK", xhci->page_size / 1024);
2368
2369         /*
2370          * Program the Number of Device Slots Enabled field in the CONFIG
2371          * register with the max value of slots the HC can handle.
2372          */
2373         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2374         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375                         "// xHC can handle at most %d device slots.", val);
2376         val2 = readl(&xhci->op_regs->config_reg);
2377         val |= (val2 & ~HCS_SLOTS_MASK);
2378         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2379                         "// Setting Max device slots reg = 0x%x.", val);
2380         writel(val, &xhci->op_regs->config_reg);
2381
2382         /*
2383          * Section 5.4.8 - doorbell array must be
2384          * "physically contiguous and 64-byte (cache line) aligned".
2385          */
2386         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2387                         GFP_KERNEL);
2388         if (!xhci->dcbaa)
2389                 goto fail;
2390         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2391         xhci->dcbaa->dma = dma;
2392         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2393                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2394                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2395         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2396
2397         /*
2398          * Initialize the ring segment pool.  The ring must be a contiguous
2399          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2400          * however, the command ring segment needs 64-byte aligned segments
2401          * and our use of dma addresses in the trb_address_map radix tree needs
2402          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2403          */
2404         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2405                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2406
2407         /* See Table 46 and Note on Figure 55 */
2408         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2409                         2112, 64, xhci->page_size);
2410         if (!xhci->segment_pool || !xhci->device_pool)
2411                 goto fail;
2412
2413         /* Linear stream context arrays don't have any boundary restrictions,
2414          * and only need to be 16-byte aligned.
2415          */
2416         xhci->small_streams_pool =
2417                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2418                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2419         xhci->medium_streams_pool =
2420                 dma_pool_create("xHCI 1KB stream ctx arrays",
2421                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2422         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2423          * will be allocated with dma_alloc_coherent()
2424          */
2425
2426         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2427                 goto fail;
2428
2429         /* Set up the command ring to have one segments for now. */
2430         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2431         if (!xhci->cmd_ring)
2432                 goto fail;
2433         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2434                         "Allocated command ring at %p", xhci->cmd_ring);
2435         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2436                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2437
2438         /* Set the address in the Command Ring Control register */
2439         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2440         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2441                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2442                 xhci->cmd_ring->cycle_state;
2443         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2444                         "// Setting command ring address to 0x%x", val);
2445         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2446         xhci_dbg_cmd_ptrs(xhci);
2447
2448         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2449         if (!xhci->lpm_command)
2450                 goto fail;
2451
2452         /* Reserve one command ring TRB for disabling LPM.
2453          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2454          * disabling LPM, we only need to reserve one TRB for all devices.
2455          */
2456         xhci->cmd_ring_reserved_trbs++;
2457
2458         val = readl(&xhci->cap_regs->db_off);
2459         val &= DBOFF_MASK;
2460         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2461                         "// Doorbell array is located at offset 0x%x"
2462                         " from cap regs base addr", val);
2463         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2464         xhci_dbg_regs(xhci);
2465         xhci_print_run_regs(xhci);
2466         /* Set ir_set to interrupt register set 0 */
2467         xhci->ir_set = &xhci->run_regs->ir_set[0];
2468
2469         /*
2470          * Event ring setup: Allocate a normal ring, but also setup
2471          * the event ring segment table (ERST).  Section 4.9.3.
2472          */
2473         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2474         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2475                                         0, flags);
2476         if (!xhci->event_ring)
2477                 goto fail;
2478         if (xhci_check_trb_in_td_math(xhci) < 0)
2479                 goto fail;
2480
2481         xhci->erst.entries = dma_alloc_coherent(dev,
2482                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2483                         GFP_KERNEL);
2484         if (!xhci->erst.entries)
2485                 goto fail;
2486         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2487                         "// Allocated event ring segment table at 0x%llx",
2488                         (unsigned long long)dma);
2489
2490         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2491         xhci->erst.num_entries = ERST_NUM_SEGS;
2492         xhci->erst.erst_dma_addr = dma;
2493         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2494                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2495                         xhci->erst.num_entries,
2496                         xhci->erst.entries,
2497                         (unsigned long long)xhci->erst.erst_dma_addr);
2498
2499         /* set ring base address and size for each segment table entry */
2500         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2501                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2502                 entry->seg_addr = cpu_to_le64(seg->dma);
2503                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2504                 entry->rsvd = 0;
2505                 seg = seg->next;
2506         }
2507
2508         /* set ERST count with the number of entries in the segment table */
2509         val = readl(&xhci->ir_set->erst_size);
2510         val &= ERST_SIZE_MASK;
2511         val |= ERST_NUM_SEGS;
2512         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2513                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2514                         val);
2515         writel(val, &xhci->ir_set->erst_size);
2516
2517         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518                         "// Set ERST entries to point to event ring.");
2519         /* set the segment table base address */
2520         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2521                         "// Set ERST base address for ir_set 0 = 0x%llx",
2522                         (unsigned long long)xhci->erst.erst_dma_addr);
2523         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2524         val_64 &= ERST_PTR_MASK;
2525         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2526         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2527
2528         /* Set the event ring dequeue address */
2529         xhci_set_hc_event_deq(xhci);
2530         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2531                         "Wrote ERST address to ir_set 0.");
2532         xhci_print_ir_set(xhci, 0);
2533
2534         /*
2535          * XXX: Might need to set the Interrupter Moderation Register to
2536          * something other than the default (~1ms minimum between interrupts).
2537          * See section 5.5.1.2.
2538          */
2539         init_completion(&xhci->addr_dev);
2540         for (i = 0; i < MAX_HC_SLOTS; ++i)
2541                 xhci->devs[i] = NULL;
2542         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2543                 xhci->bus_state[0].resume_done[i] = 0;
2544                 xhci->bus_state[1].resume_done[i] = 0;
2545                 /* Only the USB 2.0 completions will ever be used. */
2546                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2547         }
2548
2549         if (scratchpad_alloc(xhci, flags))
2550                 goto fail;
2551         if (xhci_setup_port_arrays(xhci, flags))
2552                 goto fail;
2553
2554         /* Enable USB 3.0 device notifications for function remote wake, which
2555          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2556          * U3 (device suspend).
2557          */
2558         temp = readl(&xhci->op_regs->dev_notification);
2559         temp &= ~DEV_NOTE_MASK;
2560         temp |= DEV_NOTE_FWAKE;
2561         writel(temp, &xhci->op_regs->dev_notification);
2562
2563         return 0;
2564
2565 fail:
2566         xhci_warn(xhci, "Couldn't initialize memory\n");
2567         xhci_halt(xhci);
2568         xhci_reset(xhci);
2569         xhci_mem_cleanup(xhci);
2570         return -ENOMEM;
2571 }