GNU Linux-libre 4.4.288-gnu1
[releases.git] / drivers / usb / host / xhci-mem.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
27 #include <linux/dma-mapping.h>
28
29 #include "xhci.h"
30 #include "xhci-trace.h"
31
32 /*
33  * Allocates a generic ring segment from the ring pool, sets the dma address,
34  * initializes the segment to zero, and sets the private next pointer to NULL.
35  *
36  * Section 4.11.1.1:
37  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
38  */
39 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
40                                         unsigned int cycle_state, gfp_t flags)
41 {
42         struct xhci_segment *seg;
43         dma_addr_t      dma;
44         int             i;
45
46         seg = kzalloc(sizeof *seg, flags);
47         if (!seg)
48                 return NULL;
49
50         seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
51         if (!seg->trbs) {
52                 kfree(seg);
53                 return NULL;
54         }
55
56         memset(seg->trbs, 0, TRB_SEGMENT_SIZE);
57         /* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
58         if (cycle_state == 0) {
59                 for (i = 0; i < TRBS_PER_SEGMENT; i++)
60                         seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
61         }
62         seg->dma = dma;
63         seg->next = NULL;
64
65         return seg;
66 }
67
68 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
69 {
70         if (seg->trbs) {
71                 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
72                 seg->trbs = NULL;
73         }
74         kfree(seg);
75 }
76
77 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
78                                 struct xhci_segment *first)
79 {
80         struct xhci_segment *seg;
81
82         seg = first->next;
83         while (seg != first) {
84                 struct xhci_segment *next = seg->next;
85                 xhci_segment_free(xhci, seg);
86                 seg = next;
87         }
88         xhci_segment_free(xhci, first);
89 }
90
91 /*
92  * Make the prev segment point to the next segment.
93  *
94  * Change the last TRB in the prev segment to be a Link TRB which points to the
95  * DMA address of the next segment.  The caller needs to set any Link TRB
96  * related flags, such as End TRB, Toggle Cycle, and no snoop.
97  */
98 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
99                 struct xhci_segment *next, enum xhci_ring_type type)
100 {
101         u32 val;
102
103         if (!prev || !next)
104                 return;
105         prev->next = next;
106         if (type != TYPE_EVENT) {
107                 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
108                         cpu_to_le64(next->dma);
109
110                 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
111                 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
112                 val &= ~TRB_TYPE_BITMASK;
113                 val |= TRB_TYPE(TRB_LINK);
114                 /* Always set the chain bit with 0.95 hardware */
115                 /* Set chain bit for isoc rings on AMD 0.96 host */
116                 if (xhci_link_trb_quirk(xhci) ||
117                                 (type == TYPE_ISOC &&
118                                  (xhci->quirks & XHCI_AMD_0x96_HOST)))
119                         val |= TRB_CHAIN;
120                 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
121         }
122 }
123
124 /*
125  * Link the ring to the new segments.
126  * Set Toggle Cycle for the new ring if needed.
127  */
128 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
129                 struct xhci_segment *first, struct xhci_segment *last,
130                 unsigned int num_segs)
131 {
132         struct xhci_segment *next;
133
134         if (!ring || !first || !last)
135                 return;
136
137         next = ring->enq_seg->next;
138         xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
139         xhci_link_segments(xhci, last, next, ring->type);
140         ring->num_segs += num_segs;
141         ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
142
143         if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
144                 ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
145                         &= ~cpu_to_le32(LINK_TOGGLE);
146                 last->trbs[TRBS_PER_SEGMENT-1].link.control
147                         |= cpu_to_le32(LINK_TOGGLE);
148                 ring->last_seg = last;
149         }
150 }
151
152 /*
153  * We need a radix tree for mapping physical addresses of TRBs to which stream
154  * ID they belong to.  We need to do this because the host controller won't tell
155  * us which stream ring the TRB came from.  We could store the stream ID in an
156  * event data TRB, but that doesn't help us for the cancellation case, since the
157  * endpoint may stop before it reaches that event data TRB.
158  *
159  * The radix tree maps the upper portion of the TRB DMA address to a ring
160  * segment that has the same upper portion of DMA addresses.  For example, say I
161  * have segments of size 1KB, that are always 1KB aligned.  A segment may
162  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
163  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
164  * pass the radix tree a key to get the right stream ID:
165  *
166  *      0x10c90fff >> 10 = 0x43243
167  *      0x10c912c0 >> 10 = 0x43244
168  *      0x10c91400 >> 10 = 0x43245
169  *
170  * Obviously, only those TRBs with DMA addresses that are within the segment
171  * will make the radix tree return the stream ID for that ring.
172  *
173  * Caveats for the radix tree:
174  *
175  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
176  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
177  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
178  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
179  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
180  * extended systems (where the DMA address can be bigger than 32-bits),
181  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
182  */
183 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
184                 struct xhci_ring *ring,
185                 struct xhci_segment *seg,
186                 gfp_t mem_flags)
187 {
188         unsigned long key;
189         int ret;
190
191         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
192         /* Skip any segments that were already added. */
193         if (radix_tree_lookup(trb_address_map, key))
194                 return 0;
195
196         ret = radix_tree_maybe_preload(mem_flags);
197         if (ret)
198                 return ret;
199         ret = radix_tree_insert(trb_address_map,
200                         key, ring);
201         radix_tree_preload_end();
202         return ret;
203 }
204
205 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
206                 struct xhci_segment *seg)
207 {
208         unsigned long key;
209
210         key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
211         if (radix_tree_lookup(trb_address_map, key))
212                 radix_tree_delete(trb_address_map, key);
213 }
214
215 static int xhci_update_stream_segment_mapping(
216                 struct radix_tree_root *trb_address_map,
217                 struct xhci_ring *ring,
218                 struct xhci_segment *first_seg,
219                 struct xhci_segment *last_seg,
220                 gfp_t mem_flags)
221 {
222         struct xhci_segment *seg;
223         struct xhci_segment *failed_seg;
224         int ret;
225
226         if (WARN_ON_ONCE(trb_address_map == NULL))
227                 return 0;
228
229         seg = first_seg;
230         do {
231                 ret = xhci_insert_segment_mapping(trb_address_map,
232                                 ring, seg, mem_flags);
233                 if (ret)
234                         goto remove_streams;
235                 if (seg == last_seg)
236                         return 0;
237                 seg = seg->next;
238         } while (seg != first_seg);
239
240         return 0;
241
242 remove_streams:
243         failed_seg = seg;
244         seg = first_seg;
245         do {
246                 xhci_remove_segment_mapping(trb_address_map, seg);
247                 if (seg == failed_seg)
248                         return ret;
249                 seg = seg->next;
250         } while (seg != first_seg);
251
252         return ret;
253 }
254
255 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
256 {
257         struct xhci_segment *seg;
258
259         if (WARN_ON_ONCE(ring->trb_address_map == NULL))
260                 return;
261
262         seg = ring->first_seg;
263         do {
264                 xhci_remove_segment_mapping(ring->trb_address_map, seg);
265                 seg = seg->next;
266         } while (seg != ring->first_seg);
267 }
268
269 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
270 {
271         return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
272                         ring->first_seg, ring->last_seg, mem_flags);
273 }
274
275 /* XXX: Do we need the hcd structure in all these functions? */
276 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
277 {
278         if (!ring)
279                 return;
280
281         if (ring->first_seg) {
282                 if (ring->type == TYPE_STREAM)
283                         xhci_remove_stream_mapping(ring);
284                 xhci_free_segments_for_ring(xhci, ring->first_seg);
285         }
286
287         kfree(ring);
288 }
289
290 static void xhci_initialize_ring_info(struct xhci_ring *ring,
291                                         unsigned int cycle_state)
292 {
293         /* The ring is empty, so the enqueue pointer == dequeue pointer */
294         ring->enqueue = ring->first_seg->trbs;
295         ring->enq_seg = ring->first_seg;
296         ring->dequeue = ring->enqueue;
297         ring->deq_seg = ring->first_seg;
298         /* The ring is initialized to 0. The producer must write 1 to the cycle
299          * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
300          * compare CCS to the cycle bit to check ownership, so CCS = 1.
301          *
302          * New rings are initialized with cycle state equal to 1; if we are
303          * handling ring expansion, set the cycle state equal to the old ring.
304          */
305         ring->cycle_state = cycle_state;
306         /* Not necessary for new rings, but needed for re-initialized rings */
307         ring->enq_updates = 0;
308         ring->deq_updates = 0;
309
310         /*
311          * Each segment has a link TRB, and leave an extra TRB for SW
312          * accounting purpose
313          */
314         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
315 }
316
317 /* Allocate segments and link them for a ring */
318 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
319                 struct xhci_segment **first, struct xhci_segment **last,
320                 unsigned int num_segs, unsigned int cycle_state,
321                 enum xhci_ring_type type, gfp_t flags)
322 {
323         struct xhci_segment *prev;
324
325         prev = xhci_segment_alloc(xhci, cycle_state, flags);
326         if (!prev)
327                 return -ENOMEM;
328         num_segs--;
329
330         *first = prev;
331         while (num_segs > 0) {
332                 struct xhci_segment     *next;
333
334                 next = xhci_segment_alloc(xhci, cycle_state, flags);
335                 if (!next) {
336                         prev = *first;
337                         while (prev) {
338                                 next = prev->next;
339                                 xhci_segment_free(xhci, prev);
340                                 prev = next;
341                         }
342                         return -ENOMEM;
343                 }
344                 xhci_link_segments(xhci, prev, next, type);
345
346                 prev = next;
347                 num_segs--;
348         }
349         xhci_link_segments(xhci, prev, *first, type);
350         *last = prev;
351
352         return 0;
353 }
354
355 /**
356  * Create a new ring with zero or more segments.
357  *
358  * Link each segment together into a ring.
359  * Set the end flag and the cycle toggle bit on the last segment.
360  * See section 4.9.1 and figures 15 and 16.
361  */
362 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
363                 unsigned int num_segs, unsigned int cycle_state,
364                 enum xhci_ring_type type, gfp_t flags)
365 {
366         struct xhci_ring        *ring;
367         int ret;
368
369         ring = kzalloc(sizeof *(ring), flags);
370         if (!ring)
371                 return NULL;
372
373         ring->num_segs = num_segs;
374         INIT_LIST_HEAD(&ring->td_list);
375         ring->type = type;
376         if (num_segs == 0)
377                 return ring;
378
379         ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
380                         &ring->last_seg, num_segs, cycle_state, type, flags);
381         if (ret)
382                 goto fail;
383
384         /* Only event ring does not use link TRB */
385         if (type != TYPE_EVENT) {
386                 /* See section 4.9.2.1 and 6.4.4.1 */
387                 ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388                         cpu_to_le32(LINK_TOGGLE);
389         }
390         xhci_initialize_ring_info(ring, cycle_state);
391         return ring;
392
393 fail:
394         kfree(ring);
395         return NULL;
396 }
397
398 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
399                 struct xhci_virt_device *virt_dev,
400                 unsigned int ep_index)
401 {
402         int rings_cached;
403
404         rings_cached = virt_dev->num_rings_cached;
405         if (rings_cached < XHCI_MAX_RINGS_CACHED) {
406                 virt_dev->ring_cache[rings_cached] =
407                         virt_dev->eps[ep_index].ring;
408                 virt_dev->num_rings_cached++;
409                 xhci_dbg(xhci, "Cached old ring, "
410                                 "%d ring%s cached\n",
411                                 virt_dev->num_rings_cached,
412                                 (virt_dev->num_rings_cached > 1) ? "s" : "");
413         } else {
414                 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
415                 xhci_dbg(xhci, "Ring cache full (%d rings), "
416                                 "freeing ring\n",
417                                 virt_dev->num_rings_cached);
418         }
419         virt_dev->eps[ep_index].ring = NULL;
420 }
421
422 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
423  * pointers to the beginning of the ring.
424  */
425 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
426                         struct xhci_ring *ring, unsigned int cycle_state,
427                         enum xhci_ring_type type)
428 {
429         struct xhci_segment     *seg = ring->first_seg;
430         int i;
431
432         do {
433                 memset(seg->trbs, 0,
434                                 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
435                 if (cycle_state == 0) {
436                         for (i = 0; i < TRBS_PER_SEGMENT; i++)
437                                 seg->trbs[i].link.control |=
438                                         cpu_to_le32(TRB_CYCLE);
439                 }
440                 /* All endpoint rings have link TRBs */
441                 xhci_link_segments(xhci, seg, seg->next, type);
442                 seg = seg->next;
443         } while (seg != ring->first_seg);
444         ring->type = type;
445         xhci_initialize_ring_info(ring, cycle_state);
446         /* td list should be empty since all URBs have been cancelled,
447          * but just in case...
448          */
449         INIT_LIST_HEAD(&ring->td_list);
450 }
451
452 /*
453  * Expand an existing ring.
454  * Look for a cached ring or allocate a new ring which has same segment numbers
455  * and link the two rings.
456  */
457 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
458                                 unsigned int num_trbs, gfp_t flags)
459 {
460         struct xhci_segment     *first;
461         struct xhci_segment     *last;
462         unsigned int            num_segs;
463         unsigned int            num_segs_needed;
464         int                     ret;
465
466         num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
467                                 (TRBS_PER_SEGMENT - 1);
468
469         /* Allocate number of segments we needed, or double the ring size */
470         num_segs = ring->num_segs > num_segs_needed ?
471                         ring->num_segs : num_segs_needed;
472
473         ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
474                         num_segs, ring->cycle_state, ring->type, flags);
475         if (ret)
476                 return -ENOMEM;
477
478         if (ring->type == TYPE_STREAM)
479                 ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
480                                                 ring, first, last, flags);
481         if (ret) {
482                 struct xhci_segment *next;
483                 do {
484                         next = first->next;
485                         xhci_segment_free(xhci, first);
486                         if (first == last)
487                                 break;
488                         first = next;
489                 } while (true);
490                 return ret;
491         }
492
493         xhci_link_rings(xhci, ring, first, last, num_segs);
494         xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
495                         "ring expansion succeed, now has %d segments",
496                         ring->num_segs);
497
498         return 0;
499 }
500
501 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
502
503 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
504                                                     int type, gfp_t flags)
505 {
506         struct xhci_container_ctx *ctx;
507
508         if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
509                 return NULL;
510
511         ctx = kzalloc(sizeof(*ctx), flags);
512         if (!ctx)
513                 return NULL;
514
515         ctx->type = type;
516         ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
517         if (type == XHCI_CTX_TYPE_INPUT)
518                 ctx->size += CTX_SIZE(xhci->hcc_params);
519
520         ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
521         if (!ctx->bytes) {
522                 kfree(ctx);
523                 return NULL;
524         }
525         memset(ctx->bytes, 0, ctx->size);
526         return ctx;
527 }
528
529 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
530                              struct xhci_container_ctx *ctx)
531 {
532         if (!ctx)
533                 return;
534         dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
535         kfree(ctx);
536 }
537
538 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
539                                               struct xhci_container_ctx *ctx)
540 {
541         if (ctx->type != XHCI_CTX_TYPE_INPUT)
542                 return NULL;
543
544         return (struct xhci_input_control_ctx *)ctx->bytes;
545 }
546
547 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
548                                         struct xhci_container_ctx *ctx)
549 {
550         if (ctx->type == XHCI_CTX_TYPE_DEVICE)
551                 return (struct xhci_slot_ctx *)ctx->bytes;
552
553         return (struct xhci_slot_ctx *)
554                 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
555 }
556
557 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
558                                     struct xhci_container_ctx *ctx,
559                                     unsigned int ep_index)
560 {
561         /* increment ep index by offset of start of ep ctx array */
562         ep_index++;
563         if (ctx->type == XHCI_CTX_TYPE_INPUT)
564                 ep_index++;
565
566         return (struct xhci_ep_ctx *)
567                 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
568 }
569
570
571 /***************** Streams structures manipulation *************************/
572
573 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
574                 unsigned int num_stream_ctxs,
575                 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
576 {
577         struct device *dev = xhci_to_hcd(xhci)->self.controller;
578         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
579
580         if (size > MEDIUM_STREAM_ARRAY_SIZE)
581                 dma_free_coherent(dev, size,
582                                 stream_ctx, dma);
583         else if (size <= SMALL_STREAM_ARRAY_SIZE)
584                 return dma_pool_free(xhci->small_streams_pool,
585                                 stream_ctx, dma);
586         else
587                 return dma_pool_free(xhci->medium_streams_pool,
588                                 stream_ctx, dma);
589 }
590
591 /*
592  * The stream context array for each endpoint with bulk streams enabled can
593  * vary in size, based on:
594  *  - how many streams the endpoint supports,
595  *  - the maximum primary stream array size the host controller supports,
596  *  - and how many streams the device driver asks for.
597  *
598  * The stream context array must be a power of 2, and can be as small as
599  * 64 bytes or as large as 1MB.
600  */
601 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
602                 unsigned int num_stream_ctxs, dma_addr_t *dma,
603                 gfp_t mem_flags)
604 {
605         struct device *dev = xhci_to_hcd(xhci)->self.controller;
606         size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
607
608         if (size > MEDIUM_STREAM_ARRAY_SIZE)
609                 return dma_alloc_coherent(dev, size,
610                                 dma, mem_flags);
611         else if (size <= SMALL_STREAM_ARRAY_SIZE)
612                 return dma_pool_alloc(xhci->small_streams_pool,
613                                 mem_flags, dma);
614         else
615                 return dma_pool_alloc(xhci->medium_streams_pool,
616                                 mem_flags, dma);
617 }
618
619 struct xhci_ring *xhci_dma_to_transfer_ring(
620                 struct xhci_virt_ep *ep,
621                 u64 address)
622 {
623         if (ep->ep_state & EP_HAS_STREAMS)
624                 return radix_tree_lookup(&ep->stream_info->trb_address_map,
625                                 address >> TRB_SEGMENT_SHIFT);
626         return ep->ring;
627 }
628
629 struct xhci_ring *xhci_stream_id_to_ring(
630                 struct xhci_virt_device *dev,
631                 unsigned int ep_index,
632                 unsigned int stream_id)
633 {
634         struct xhci_virt_ep *ep = &dev->eps[ep_index];
635
636         if (stream_id == 0)
637                 return ep->ring;
638         if (!ep->stream_info)
639                 return NULL;
640
641         if (stream_id >= ep->stream_info->num_streams)
642                 return NULL;
643         return ep->stream_info->stream_rings[stream_id];
644 }
645
646 /*
647  * Change an endpoint's internal structure so it supports stream IDs.  The
648  * number of requested streams includes stream 0, which cannot be used by device
649  * drivers.
650  *
651  * The number of stream contexts in the stream context array may be bigger than
652  * the number of streams the driver wants to use.  This is because the number of
653  * stream context array entries must be a power of two.
654  */
655 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
656                 unsigned int num_stream_ctxs,
657                 unsigned int num_streams, gfp_t mem_flags)
658 {
659         struct xhci_stream_info *stream_info;
660         u32 cur_stream;
661         struct xhci_ring *cur_ring;
662         u64 addr;
663         int ret;
664
665         xhci_dbg(xhci, "Allocating %u streams and %u "
666                         "stream context array entries.\n",
667                         num_streams, num_stream_ctxs);
668         if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
669                 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
670                 return NULL;
671         }
672         xhci->cmd_ring_reserved_trbs++;
673
674         stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
675         if (!stream_info)
676                 goto cleanup_trbs;
677
678         stream_info->num_streams = num_streams;
679         stream_info->num_stream_ctxs = num_stream_ctxs;
680
681         /* Initialize the array of virtual pointers to stream rings. */
682         stream_info->stream_rings = kzalloc(
683                         sizeof(struct xhci_ring *)*num_streams,
684                         mem_flags);
685         if (!stream_info->stream_rings)
686                 goto cleanup_info;
687
688         /* Initialize the array of DMA addresses for stream rings for the HW. */
689         stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
690                         num_stream_ctxs, &stream_info->ctx_array_dma,
691                         mem_flags);
692         if (!stream_info->stream_ctx_array)
693                 goto cleanup_ctx;
694         memset(stream_info->stream_ctx_array, 0,
695                         sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
696
697         /* Allocate everything needed to free the stream rings later */
698         stream_info->free_streams_command =
699                 xhci_alloc_command(xhci, true, true, mem_flags);
700         if (!stream_info->free_streams_command)
701                 goto cleanup_ctx;
702
703         INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
704
705         /* Allocate rings for all the streams that the driver will use,
706          * and add their segment DMA addresses to the radix tree.
707          * Stream 0 is reserved.
708          */
709         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
710                 stream_info->stream_rings[cur_stream] =
711                         xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, mem_flags);
712                 cur_ring = stream_info->stream_rings[cur_stream];
713                 if (!cur_ring)
714                         goto cleanup_rings;
715                 cur_ring->stream_id = cur_stream;
716                 cur_ring->trb_address_map = &stream_info->trb_address_map;
717                 /* Set deq ptr, cycle bit, and stream context type */
718                 addr = cur_ring->first_seg->dma |
719                         SCT_FOR_CTX(SCT_PRI_TR) |
720                         cur_ring->cycle_state;
721                 stream_info->stream_ctx_array[cur_stream].stream_ring =
722                         cpu_to_le64(addr);
723                 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
724                                 cur_stream, (unsigned long long) addr);
725
726                 ret = xhci_update_stream_mapping(cur_ring, mem_flags);
727                 if (ret) {
728                         xhci_ring_free(xhci, cur_ring);
729                         stream_info->stream_rings[cur_stream] = NULL;
730                         goto cleanup_rings;
731                 }
732         }
733         /* Leave the other unused stream ring pointers in the stream context
734          * array initialized to zero.  This will cause the xHC to give us an
735          * error if the device asks for a stream ID we don't have setup (if it
736          * was any other way, the host controller would assume the ring is
737          * "empty" and wait forever for data to be queued to that stream ID).
738          */
739
740         return stream_info;
741
742 cleanup_rings:
743         for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
744                 cur_ring = stream_info->stream_rings[cur_stream];
745                 if (cur_ring) {
746                         xhci_ring_free(xhci, cur_ring);
747                         stream_info->stream_rings[cur_stream] = NULL;
748                 }
749         }
750         xhci_free_command(xhci, stream_info->free_streams_command);
751 cleanup_ctx:
752         kfree(stream_info->stream_rings);
753 cleanup_info:
754         kfree(stream_info);
755 cleanup_trbs:
756         xhci->cmd_ring_reserved_trbs--;
757         return NULL;
758 }
759 /*
760  * Sets the MaxPStreams field and the Linear Stream Array field.
761  * Sets the dequeue pointer to the stream context array.
762  */
763 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
764                 struct xhci_ep_ctx *ep_ctx,
765                 struct xhci_stream_info *stream_info)
766 {
767         u32 max_primary_streams;
768         /* MaxPStreams is the number of stream context array entries, not the
769          * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
770          * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
771          */
772         max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
773         xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
774                         "Setting number of stream ctx array entries to %u",
775                         1 << (max_primary_streams + 1));
776         ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
777         ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
778                                        | EP_HAS_LSA);
779         ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
780 }
781
782 /*
783  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
784  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
785  * not at the beginning of the ring).
786  */
787 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
788                 struct xhci_virt_ep *ep)
789 {
790         dma_addr_t addr;
791         ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
792         addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
793         ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
794 }
795
796 /* Frees all stream contexts associated with the endpoint,
797  *
798  * Caller should fix the endpoint context streams fields.
799  */
800 void xhci_free_stream_info(struct xhci_hcd *xhci,
801                 struct xhci_stream_info *stream_info)
802 {
803         int cur_stream;
804         struct xhci_ring *cur_ring;
805
806         if (!stream_info)
807                 return;
808
809         for (cur_stream = 1; cur_stream < stream_info->num_streams;
810                         cur_stream++) {
811                 cur_ring = stream_info->stream_rings[cur_stream];
812                 if (cur_ring) {
813                         xhci_ring_free(xhci, cur_ring);
814                         stream_info->stream_rings[cur_stream] = NULL;
815                 }
816         }
817         xhci_free_command(xhci, stream_info->free_streams_command);
818         xhci->cmd_ring_reserved_trbs--;
819         if (stream_info->stream_ctx_array)
820                 xhci_free_stream_ctx(xhci,
821                                 stream_info->num_stream_ctxs,
822                                 stream_info->stream_ctx_array,
823                                 stream_info->ctx_array_dma);
824
825         kfree(stream_info->stream_rings);
826         kfree(stream_info);
827 }
828
829
830 /***************** Device context manipulation *************************/
831
832 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
833                 struct xhci_virt_ep *ep)
834 {
835         setup_timer(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
836                     (unsigned long)ep);
837         ep->xhci = xhci;
838 }
839
840 static void xhci_free_tt_info(struct xhci_hcd *xhci,
841                 struct xhci_virt_device *virt_dev,
842                 int slot_id)
843 {
844         struct list_head *tt_list_head;
845         struct xhci_tt_bw_info *tt_info, *next;
846         bool slot_found = false;
847
848         /* If the device never made it past the Set Address stage,
849          * it may not have the real_port set correctly.
850          */
851         if (virt_dev->real_port == 0 ||
852                         virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
853                 xhci_dbg(xhci, "Bad real port.\n");
854                 return;
855         }
856
857         tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
858         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
859                 /* Multi-TT hubs will have more than one entry */
860                 if (tt_info->slot_id == slot_id) {
861                         slot_found = true;
862                         list_del(&tt_info->tt_list);
863                         kfree(tt_info);
864                 } else if (slot_found) {
865                         break;
866                 }
867         }
868 }
869
870 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
871                 struct xhci_virt_device *virt_dev,
872                 struct usb_device *hdev,
873                 struct usb_tt *tt, gfp_t mem_flags)
874 {
875         struct xhci_tt_bw_info          *tt_info;
876         unsigned int                    num_ports;
877         int                             i, j;
878
879         if (!tt->multi)
880                 num_ports = 1;
881         else
882                 num_ports = hdev->maxchild;
883
884         for (i = 0; i < num_ports; i++, tt_info++) {
885                 struct xhci_interval_bw_table *bw_table;
886
887                 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
888                 if (!tt_info)
889                         goto free_tts;
890                 INIT_LIST_HEAD(&tt_info->tt_list);
891                 list_add(&tt_info->tt_list,
892                                 &xhci->rh_bw[virt_dev->real_port - 1].tts);
893                 tt_info->slot_id = virt_dev->udev->slot_id;
894                 if (tt->multi)
895                         tt_info->ttport = i+1;
896                 bw_table = &tt_info->bw_table;
897                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
898                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
899         }
900         return 0;
901
902 free_tts:
903         xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
904         return -ENOMEM;
905 }
906
907
908 /* All the xhci_tds in the ring's TD list should be freed at this point.
909  * Should be called with xhci->lock held if there is any chance the TT lists
910  * will be manipulated by the configure endpoint, allocate device, or update
911  * hub functions while this function is removing the TT entries from the list.
912  */
913 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
914 {
915         struct xhci_virt_device *dev;
916         int i;
917         int old_active_eps = 0;
918
919         /* Slot ID 0 is reserved */
920         if (slot_id == 0 || !xhci->devs[slot_id])
921                 return;
922
923         dev = xhci->devs[slot_id];
924         xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
925         if (!dev)
926                 return;
927
928         if (dev->tt_info)
929                 old_active_eps = dev->tt_info->active_eps;
930
931         for (i = 0; i < 31; ++i) {
932                 if (dev->eps[i].ring)
933                         xhci_ring_free(xhci, dev->eps[i].ring);
934                 if (dev->eps[i].stream_info)
935                         xhci_free_stream_info(xhci,
936                                         dev->eps[i].stream_info);
937                 /* Endpoints on the TT/root port lists should have been removed
938                  * when usb_disable_device() was called for the device.
939                  * We can't drop them anyway, because the udev might have gone
940                  * away by this point, and we can't tell what speed it was.
941                  */
942                 if (!list_empty(&dev->eps[i].bw_endpoint_list))
943                         xhci_warn(xhci, "Slot %u endpoint %u "
944                                         "not removed from BW list!\n",
945                                         slot_id, i);
946         }
947         /* If this is a hub, free the TT(s) from the TT list */
948         xhci_free_tt_info(xhci, dev, slot_id);
949         /* If necessary, update the number of active TTs on this root port */
950         xhci_update_tt_active_eps(xhci, dev, old_active_eps);
951
952         if (dev->ring_cache) {
953                 for (i = 0; i < dev->num_rings_cached; i++)
954                         xhci_ring_free(xhci, dev->ring_cache[i]);
955                 kfree(dev->ring_cache);
956         }
957
958         if (dev->in_ctx)
959                 xhci_free_container_ctx(xhci, dev->in_ctx);
960         if (dev->out_ctx)
961                 xhci_free_container_ctx(xhci, dev->out_ctx);
962
963         if (dev->udev && dev->udev->slot_id)
964                 dev->udev->slot_id = 0;
965         kfree(xhci->devs[slot_id]);
966         xhci->devs[slot_id] = NULL;
967 }
968
969 /*
970  * Free a virt_device structure.
971  * If the virt_device added a tt_info (a hub) and has children pointing to
972  * that tt_info, then free the child first. Recursive.
973  * We can't rely on udev at this point to find child-parent relationships.
974  */
975 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
976 {
977         struct xhci_virt_device *vdev;
978         struct list_head *tt_list_head;
979         struct xhci_tt_bw_info *tt_info, *next;
980         int i;
981
982         vdev = xhci->devs[slot_id];
983         if (!vdev)
984                 return;
985
986         if (vdev->real_port == 0 ||
987                         vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
988                 xhci_dbg(xhci, "Bad vdev->real_port.\n");
989                 goto out;
990         }
991
992         tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
993         list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
994                 /* is this a hub device that added a tt_info to the tts list */
995                 if (tt_info->slot_id == slot_id) {
996                         /* are any devices using this tt_info? */
997                         for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
998                                 vdev = xhci->devs[i];
999                                 if (vdev && (vdev->tt_info == tt_info))
1000                                         xhci_free_virt_devices_depth_first(
1001                                                 xhci, i);
1002                         }
1003                 }
1004         }
1005 out:
1006         /* we are now at a leaf device */
1007         xhci_free_virt_device(xhci, slot_id);
1008 }
1009
1010 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
1011                 struct usb_device *udev, gfp_t flags)
1012 {
1013         struct xhci_virt_device *dev;
1014         int i;
1015
1016         /* Slot ID 0 is reserved */
1017         if (slot_id == 0 || xhci->devs[slot_id]) {
1018                 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
1019                 return 0;
1020         }
1021
1022         dev = kzalloc(sizeof(*dev), flags);
1023         if (!dev)
1024                 return 0;
1025
1026         /* Allocate the (output) device context that will be used in the HC. */
1027         dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
1028         if (!dev->out_ctx)
1029                 goto fail;
1030
1031         xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
1032                         (unsigned long long)dev->out_ctx->dma);
1033
1034         /* Allocate the (input) device context for address device command */
1035         dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
1036         if (!dev->in_ctx)
1037                 goto fail;
1038
1039         xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
1040                         (unsigned long long)dev->in_ctx->dma);
1041
1042         /* Initialize the cancellation list and watchdog timers for each ep */
1043         for (i = 0; i < 31; i++) {
1044                 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
1045                 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1046                 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1047         }
1048
1049         /* Allocate endpoint 0 ring */
1050         dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, flags);
1051         if (!dev->eps[0].ring)
1052                 goto fail;
1053
1054         /* Allocate pointers to the ring cache */
1055         dev->ring_cache = kzalloc(
1056                         sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
1057                         flags);
1058         if (!dev->ring_cache)
1059                 goto fail;
1060         dev->num_rings_cached = 0;
1061
1062         init_completion(&dev->cmd_completion);
1063         dev->udev = udev;
1064
1065         /* Point to output device context in dcbaa. */
1066         xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1067         xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1068                  slot_id,
1069                  &xhci->dcbaa->dev_context_ptrs[slot_id],
1070                  le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1071
1072         xhci->devs[slot_id] = dev;
1073
1074         return 1;
1075 fail:
1076         if (dev->eps[0].ring)
1077                 xhci_ring_free(xhci, dev->eps[0].ring);
1078         if (dev->in_ctx)
1079                 xhci_free_container_ctx(xhci, dev->in_ctx);
1080         if (dev->out_ctx)
1081                 xhci_free_container_ctx(xhci, dev->out_ctx);
1082         kfree(dev);
1083
1084         return 0;
1085 }
1086
1087 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1088                 struct usb_device *udev)
1089 {
1090         struct xhci_virt_device *virt_dev;
1091         struct xhci_ep_ctx      *ep0_ctx;
1092         struct xhci_ring        *ep_ring;
1093
1094         virt_dev = xhci->devs[udev->slot_id];
1095         ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1096         ep_ring = virt_dev->eps[0].ring;
1097         /*
1098          * FIXME we don't keep track of the dequeue pointer very well after a
1099          * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1100          * host to our enqueue pointer.  This should only be called after a
1101          * configured device has reset, so all control transfers should have
1102          * been completed or cancelled before the reset.
1103          */
1104         ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1105                                                         ep_ring->enqueue)
1106                                    | ep_ring->cycle_state);
1107 }
1108
1109 /*
1110  * The xHCI roothub may have ports of differing speeds in any order in the port
1111  * status registers.  xhci->port_array provides an array of the port speed for
1112  * each offset into the port status registers.
1113  *
1114  * The xHCI hardware wants to know the roothub port number that the USB device
1115  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1116  * know is the index of that port under either the USB 2.0 or the USB 3.0
1117  * roothub, but that doesn't give us the real index into the HW port status
1118  * registers. Call xhci_find_raw_port_number() to get real index.
1119  */
1120 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1121                 struct usb_device *udev)
1122 {
1123         struct usb_device *top_dev;
1124         struct usb_hcd *hcd;
1125
1126         if (udev->speed >= USB_SPEED_SUPER)
1127                 hcd = xhci->shared_hcd;
1128         else
1129                 hcd = xhci->main_hcd;
1130
1131         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1132                         top_dev = top_dev->parent)
1133                 /* Found device below root hub */;
1134
1135         return  xhci_find_raw_port_number(hcd, top_dev->portnum);
1136 }
1137
1138 /* Setup an xHCI virtual device for a Set Address command */
1139 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1140 {
1141         struct xhci_virt_device *dev;
1142         struct xhci_ep_ctx      *ep0_ctx;
1143         struct xhci_slot_ctx    *slot_ctx;
1144         u32                     port_num;
1145         u32                     max_packets;
1146         struct usb_device *top_dev;
1147
1148         dev = xhci->devs[udev->slot_id];
1149         /* Slot ID 0 is reserved */
1150         if (udev->slot_id == 0 || !dev) {
1151                 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1152                                 udev->slot_id);
1153                 return -EINVAL;
1154         }
1155         ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1156         slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1157
1158         /* 3) Only the control endpoint is valid - one endpoint context */
1159         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1160         switch (udev->speed) {
1161         case USB_SPEED_SUPER_PLUS:
1162         case USB_SPEED_SUPER:
1163                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1164                 max_packets = MAX_PACKET(512);
1165                 break;
1166         case USB_SPEED_HIGH:
1167                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1168                 max_packets = MAX_PACKET(64);
1169                 break;
1170         /* USB core guesses at a 64-byte max packet first for FS devices */
1171         case USB_SPEED_FULL:
1172                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1173                 max_packets = MAX_PACKET(64);
1174                 break;
1175         case USB_SPEED_LOW:
1176                 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1177                 max_packets = MAX_PACKET(8);
1178                 break;
1179         case USB_SPEED_WIRELESS:
1180                 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1181                 return -EINVAL;
1182                 break;
1183         default:
1184                 /* Speed was set earlier, this shouldn't happen. */
1185                 return -EINVAL;
1186         }
1187         /* Find the root hub port this device is under */
1188         port_num = xhci_find_real_port_number(xhci, udev);
1189         if (!port_num)
1190                 return -EINVAL;
1191         slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1192         /* Set the port number in the virtual_device to the faked port number */
1193         for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1194                         top_dev = top_dev->parent)
1195                 /* Found device below root hub */;
1196         dev->fake_port = top_dev->portnum;
1197         dev->real_port = port_num;
1198         xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1199         xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1200
1201         /* Find the right bandwidth table that this device will be a part of.
1202          * If this is a full speed device attached directly to a root port (or a
1203          * decendent of one), it counts as a primary bandwidth domain, not a
1204          * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1205          * will never be created for the HS root hub.
1206          */
1207         if (!udev->tt || !udev->tt->hub->parent) {
1208                 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1209         } else {
1210                 struct xhci_root_port_bw_info *rh_bw;
1211                 struct xhci_tt_bw_info *tt_bw;
1212
1213                 rh_bw = &xhci->rh_bw[port_num - 1];
1214                 /* Find the right TT. */
1215                 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1216                         if (tt_bw->slot_id != udev->tt->hub->slot_id)
1217                                 continue;
1218
1219                         if (!dev->udev->tt->multi ||
1220                                         (udev->tt->multi &&
1221                                          tt_bw->ttport == dev->udev->ttport)) {
1222                                 dev->bw_table = &tt_bw->bw_table;
1223                                 dev->tt_info = tt_bw;
1224                                 break;
1225                         }
1226                 }
1227                 if (!dev->tt_info)
1228                         xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1229         }
1230
1231         /* Is this a LS/FS device under an external HS hub? */
1232         if (udev->tt && udev->tt->hub->parent) {
1233                 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1234                                                 (udev->ttport << 8));
1235                 if (udev->tt->multi)
1236                         slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1237         }
1238         xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1239         xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1240
1241         /* Step 4 - ring already allocated */
1242         /* Step 5 */
1243         ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1244
1245         /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1246         ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1247                                          max_packets);
1248
1249         ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1250                                    dev->eps[0].ring->cycle_state);
1251
1252         /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1253
1254         return 0;
1255 }
1256
1257 /*
1258  * Convert interval expressed as 2^(bInterval - 1) == interval into
1259  * straight exponent value 2^n == interval.
1260  *
1261  */
1262 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1263                 struct usb_host_endpoint *ep)
1264 {
1265         unsigned int interval;
1266
1267         interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1268         if (interval != ep->desc.bInterval - 1)
1269                 dev_warn(&udev->dev,
1270                          "ep %#x - rounding interval to %d %sframes\n",
1271                          ep->desc.bEndpointAddress,
1272                          1 << interval,
1273                          udev->speed == USB_SPEED_FULL ? "" : "micro");
1274
1275         if (udev->speed == USB_SPEED_FULL) {
1276                 /*
1277                  * Full speed isoc endpoints specify interval in frames,
1278                  * not microframes. We are using microframes everywhere,
1279                  * so adjust accordingly.
1280                  */
1281                 interval += 3;  /* 1 frame = 2^3 uframes */
1282         }
1283
1284         return interval;
1285 }
1286
1287 /*
1288  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1289  * microframes, rounded down to nearest power of 2.
1290  */
1291 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1292                 struct usb_host_endpoint *ep, unsigned int desc_interval,
1293                 unsigned int min_exponent, unsigned int max_exponent)
1294 {
1295         unsigned int interval;
1296
1297         interval = fls(desc_interval) - 1;
1298         interval = clamp_val(interval, min_exponent, max_exponent);
1299         if ((1 << interval) != desc_interval)
1300                 dev_warn(&udev->dev,
1301                          "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1302                          ep->desc.bEndpointAddress,
1303                          1 << interval,
1304                          desc_interval);
1305
1306         return interval;
1307 }
1308
1309 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1310                 struct usb_host_endpoint *ep)
1311 {
1312         if (ep->desc.bInterval == 0)
1313                 return 0;
1314         return xhci_microframes_to_exponent(udev, ep,
1315                         ep->desc.bInterval, 0, 15);
1316 }
1317
1318
1319 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1320                 struct usb_host_endpoint *ep)
1321 {
1322         return xhci_microframes_to_exponent(udev, ep,
1323                         ep->desc.bInterval * 8, 3, 10);
1324 }
1325
1326 /* Return the polling or NAK interval.
1327  *
1328  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1329  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1330  *
1331  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1332  * is set to 0.
1333  */
1334 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1335                 struct usb_host_endpoint *ep)
1336 {
1337         unsigned int interval = 0;
1338
1339         switch (udev->speed) {
1340         case USB_SPEED_HIGH:
1341                 /* Max NAK rate */
1342                 if (usb_endpoint_xfer_control(&ep->desc) ||
1343                     usb_endpoint_xfer_bulk(&ep->desc)) {
1344                         interval = xhci_parse_microframe_interval(udev, ep);
1345                         break;
1346                 }
1347                 /* Fall through - SS and HS isoc/int have same decoding */
1348
1349         case USB_SPEED_SUPER_PLUS:
1350         case USB_SPEED_SUPER:
1351                 if (usb_endpoint_xfer_int(&ep->desc) ||
1352                     usb_endpoint_xfer_isoc(&ep->desc)) {
1353                         interval = xhci_parse_exponent_interval(udev, ep);
1354                 }
1355                 break;
1356
1357         case USB_SPEED_FULL:
1358                 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1359                         interval = xhci_parse_exponent_interval(udev, ep);
1360                         break;
1361                 }
1362                 /*
1363                  * Fall through for interrupt endpoint interval decoding
1364                  * since it uses the same rules as low speed interrupt
1365                  * endpoints.
1366                  */
1367
1368         case USB_SPEED_LOW:
1369                 if (usb_endpoint_xfer_int(&ep->desc) ||
1370                     usb_endpoint_xfer_isoc(&ep->desc)) {
1371
1372                         interval = xhci_parse_frame_interval(udev, ep);
1373                 }
1374                 break;
1375
1376         default:
1377                 BUG();
1378         }
1379         return EP_INTERVAL(interval);
1380 }
1381
1382 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1383  * High speed endpoint descriptors can define "the number of additional
1384  * transaction opportunities per microframe", but that goes in the Max Burst
1385  * endpoint context field.
1386  */
1387 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1388                 struct usb_host_endpoint *ep)
1389 {
1390         if (udev->speed < USB_SPEED_SUPER ||
1391                         !usb_endpoint_xfer_isoc(&ep->desc))
1392                 return 0;
1393         return ep->ss_ep_comp.bmAttributes;
1394 }
1395
1396 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1397 {
1398         int in;
1399         u32 type;
1400
1401         in = usb_endpoint_dir_in(&ep->desc);
1402         if (usb_endpoint_xfer_control(&ep->desc)) {
1403                 type = EP_TYPE(CTRL_EP);
1404         } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1405                 if (in)
1406                         type = EP_TYPE(BULK_IN_EP);
1407                 else
1408                         type = EP_TYPE(BULK_OUT_EP);
1409         } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1410                 if (in)
1411                         type = EP_TYPE(ISOC_IN_EP);
1412                 else
1413                         type = EP_TYPE(ISOC_OUT_EP);
1414         } else if (usb_endpoint_xfer_int(&ep->desc)) {
1415                 if (in)
1416                         type = EP_TYPE(INT_IN_EP);
1417                 else
1418                         type = EP_TYPE(INT_OUT_EP);
1419         } else {
1420                 type = 0;
1421         }
1422         return type;
1423 }
1424
1425 /* Return the maximum endpoint service interval time (ESIT) payload.
1426  * Basically, this is the maxpacket size, multiplied by the burst size
1427  * and mult size.
1428  */
1429 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1430                 struct usb_host_endpoint *ep)
1431 {
1432         int max_burst;
1433         int max_packet;
1434
1435         /* Only applies for interrupt or isochronous endpoints */
1436         if (usb_endpoint_xfer_control(&ep->desc) ||
1437                         usb_endpoint_xfer_bulk(&ep->desc))
1438                 return 0;
1439
1440         if (udev->speed >= USB_SPEED_SUPER)
1441                 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1442
1443         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1444         max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1445         /* A 0 in max burst means 1 transfer per ESIT */
1446         return max_packet * (max_burst + 1);
1447 }
1448
1449 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1450  * Drivers will have to call usb_alloc_streams() to do that.
1451  */
1452 int xhci_endpoint_init(struct xhci_hcd *xhci,
1453                 struct xhci_virt_device *virt_dev,
1454                 struct usb_device *udev,
1455                 struct usb_host_endpoint *ep,
1456                 gfp_t mem_flags)
1457 {
1458         unsigned int ep_index;
1459         struct xhci_ep_ctx *ep_ctx;
1460         struct xhci_ring *ep_ring;
1461         unsigned int max_packet;
1462         unsigned int max_burst;
1463         enum xhci_ring_type type;
1464         u32 max_esit_payload;
1465         u32 endpoint_type;
1466
1467         ep_index = xhci_get_endpoint_index(&ep->desc);
1468         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1469
1470         endpoint_type = xhci_get_endpoint_type(ep);
1471         if (!endpoint_type)
1472                 return -EINVAL;
1473         ep_ctx->ep_info2 = cpu_to_le32(endpoint_type);
1474
1475         type = usb_endpoint_type(&ep->desc);
1476         /* Set up the endpoint ring */
1477         virt_dev->eps[ep_index].new_ring =
1478                 xhci_ring_alloc(xhci, 2, 1, type, mem_flags);
1479         if (!virt_dev->eps[ep_index].new_ring) {
1480                 /* Attempt to use the ring cache */
1481                 if (virt_dev->num_rings_cached == 0)
1482                         return -ENOMEM;
1483                 virt_dev->num_rings_cached--;
1484                 virt_dev->eps[ep_index].new_ring =
1485                         virt_dev->ring_cache[virt_dev->num_rings_cached];
1486                 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1487                 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1488                                         1, type);
1489         }
1490         virt_dev->eps[ep_index].skip = false;
1491         ep_ring = virt_dev->eps[ep_index].new_ring;
1492         ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1493
1494         ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1495                                       | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1496
1497         /* FIXME dig Mult and streams info out of ep companion desc */
1498
1499         /* Allow 3 retries for everything but isoc;
1500          * CErr shall be set to 0 for Isoch endpoints.
1501          */
1502         if (!usb_endpoint_xfer_isoc(&ep->desc))
1503                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(3));
1504         else
1505                 ep_ctx->ep_info2 |= cpu_to_le32(ERROR_COUNT(0));
1506
1507         /* Set the max packet size and max burst */
1508         max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1509         max_burst = 0;
1510         switch (udev->speed) {
1511         case USB_SPEED_SUPER_PLUS:
1512         case USB_SPEED_SUPER:
1513                 /* dig out max burst from ep companion desc */
1514                 max_burst = ep->ss_ep_comp.bMaxBurst;
1515                 break;
1516         case USB_SPEED_HIGH:
1517                 /* Some devices get this wrong */
1518                 if (usb_endpoint_xfer_bulk(&ep->desc))
1519                         max_packet = 512;
1520                 /* bits 11:12 specify the number of additional transaction
1521                  * opportunities per microframe (USB 2.0, section 9.6.6)
1522                  */
1523                 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1524                                 usb_endpoint_xfer_int(&ep->desc)) {
1525                         max_burst = (usb_endpoint_maxp(&ep->desc)
1526                                      & 0x1800) >> 11;
1527                 }
1528                 break;
1529         case USB_SPEED_FULL:
1530         case USB_SPEED_LOW:
1531                 break;
1532         default:
1533                 BUG();
1534         }
1535         ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet) |
1536                         MAX_BURST(max_burst));
1537         max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1538         ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1539
1540         /*
1541          * XXX no idea how to calculate the average TRB buffer length for bulk
1542          * endpoints, as the driver gives us no clue how big each scatter gather
1543          * list entry (or buffer) is going to be.
1544          *
1545          * For isochronous and interrupt endpoints, we set it to the max
1546          * available, until we have new API in the USB core to allow drivers to
1547          * declare how much bandwidth they actually need.
1548          *
1549          * Normally, it would be calculated by taking the total of the buffer
1550          * lengths in the TD and then dividing by the number of TRBs in a TD,
1551          * including link TRBs, No-op TRBs, and Event data TRBs.  Since we don't
1552          * use Event Data TRBs, and we don't chain in a link TRB on short
1553          * transfers, we're basically dividing by 1.
1554          *
1555          * xHCI 1.0 and 1.1 specification indicates that the Average TRB Length
1556          * should be set to 8 for control endpoints.
1557          */
1558         if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1559                 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1560         else
1561                 ep_ctx->tx_info |=
1562                          cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1563
1564         /* FIXME Debug endpoint context */
1565         return 0;
1566 }
1567
1568 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1569                 struct xhci_virt_device *virt_dev,
1570                 struct usb_host_endpoint *ep)
1571 {
1572         unsigned int ep_index;
1573         struct xhci_ep_ctx *ep_ctx;
1574
1575         ep_index = xhci_get_endpoint_index(&ep->desc);
1576         ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1577
1578         ep_ctx->ep_info = 0;
1579         ep_ctx->ep_info2 = 0;
1580         ep_ctx->deq = 0;
1581         ep_ctx->tx_info = 0;
1582         /* Don't free the endpoint ring until the set interface or configuration
1583          * request succeeds.
1584          */
1585 }
1586
1587 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1588 {
1589         bw_info->ep_interval = 0;
1590         bw_info->mult = 0;
1591         bw_info->num_packets = 0;
1592         bw_info->max_packet_size = 0;
1593         bw_info->type = 0;
1594         bw_info->max_esit_payload = 0;
1595 }
1596
1597 void xhci_update_bw_info(struct xhci_hcd *xhci,
1598                 struct xhci_container_ctx *in_ctx,
1599                 struct xhci_input_control_ctx *ctrl_ctx,
1600                 struct xhci_virt_device *virt_dev)
1601 {
1602         struct xhci_bw_info *bw_info;
1603         struct xhci_ep_ctx *ep_ctx;
1604         unsigned int ep_type;
1605         int i;
1606
1607         for (i = 1; i < 31; ++i) {
1608                 bw_info = &virt_dev->eps[i].bw_info;
1609
1610                 /* We can't tell what endpoint type is being dropped, but
1611                  * unconditionally clearing the bandwidth info for non-periodic
1612                  * endpoints should be harmless because the info will never be
1613                  * set in the first place.
1614                  */
1615                 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1616                         /* Dropped endpoint */
1617                         xhci_clear_endpoint_bw_info(bw_info);
1618                         continue;
1619                 }
1620
1621                 if (EP_IS_ADDED(ctrl_ctx, i)) {
1622                         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1623                         ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1624
1625                         /* Ignore non-periodic endpoints */
1626                         if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1627                                         ep_type != ISOC_IN_EP &&
1628                                         ep_type != INT_IN_EP)
1629                                 continue;
1630
1631                         /* Added or changed endpoint */
1632                         bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1633                                         le32_to_cpu(ep_ctx->ep_info));
1634                         /* Number of packets and mult are zero-based in the
1635                          * input context, but we want one-based for the
1636                          * interval table.
1637                          */
1638                         bw_info->mult = CTX_TO_EP_MULT(
1639                                         le32_to_cpu(ep_ctx->ep_info)) + 1;
1640                         bw_info->num_packets = CTX_TO_MAX_BURST(
1641                                         le32_to_cpu(ep_ctx->ep_info2)) + 1;
1642                         bw_info->max_packet_size = MAX_PACKET_DECODED(
1643                                         le32_to_cpu(ep_ctx->ep_info2));
1644                         bw_info->type = ep_type;
1645                         bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1646                                         le32_to_cpu(ep_ctx->tx_info));
1647                 }
1648         }
1649 }
1650
1651 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1652  * Useful when you want to change one particular aspect of the endpoint and then
1653  * issue a configure endpoint command.
1654  */
1655 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1656                 struct xhci_container_ctx *in_ctx,
1657                 struct xhci_container_ctx *out_ctx,
1658                 unsigned int ep_index)
1659 {
1660         struct xhci_ep_ctx *out_ep_ctx;
1661         struct xhci_ep_ctx *in_ep_ctx;
1662
1663         out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1664         in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1665
1666         in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1667         in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1668         in_ep_ctx->deq = out_ep_ctx->deq;
1669         in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1670 }
1671
1672 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1673  * Useful when you want to change one particular aspect of the endpoint and then
1674  * issue a configure endpoint command.  Only the context entries field matters,
1675  * but we'll copy the whole thing anyway.
1676  */
1677 void xhci_slot_copy(struct xhci_hcd *xhci,
1678                 struct xhci_container_ctx *in_ctx,
1679                 struct xhci_container_ctx *out_ctx)
1680 {
1681         struct xhci_slot_ctx *in_slot_ctx;
1682         struct xhci_slot_ctx *out_slot_ctx;
1683
1684         in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1685         out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1686
1687         in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1688         in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1689         in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1690         in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1691 }
1692
1693 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1694 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1695 {
1696         int i;
1697         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1698         int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1699
1700         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1701                         "Allocating %d scratchpad buffers", num_sp);
1702
1703         if (!num_sp)
1704                 return 0;
1705
1706         xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1707         if (!xhci->scratchpad)
1708                 goto fail_sp;
1709
1710         xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1711                                      num_sp * sizeof(u64),
1712                                      &xhci->scratchpad->sp_dma, flags);
1713         if (!xhci->scratchpad->sp_array)
1714                 goto fail_sp2;
1715
1716         xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1717         if (!xhci->scratchpad->sp_buffers)
1718                 goto fail_sp3;
1719
1720         xhci->scratchpad->sp_dma_buffers =
1721                 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1722
1723         if (!xhci->scratchpad->sp_dma_buffers)
1724                 goto fail_sp4;
1725
1726         xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1727         for (i = 0; i < num_sp; i++) {
1728                 dma_addr_t dma;
1729                 void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1730                                 flags);
1731                 if (!buf)
1732                         goto fail_sp5;
1733
1734                 xhci->scratchpad->sp_array[i] = dma;
1735                 xhci->scratchpad->sp_buffers[i] = buf;
1736                 xhci->scratchpad->sp_dma_buffers[i] = dma;
1737         }
1738
1739         return 0;
1740
1741  fail_sp5:
1742         for (i = i - 1; i >= 0; i--) {
1743                 dma_free_coherent(dev, xhci->page_size,
1744                                     xhci->scratchpad->sp_buffers[i],
1745                                     xhci->scratchpad->sp_dma_buffers[i]);
1746         }
1747         kfree(xhci->scratchpad->sp_dma_buffers);
1748
1749  fail_sp4:
1750         kfree(xhci->scratchpad->sp_buffers);
1751
1752  fail_sp3:
1753         dma_free_coherent(dev, num_sp * sizeof(u64),
1754                             xhci->scratchpad->sp_array,
1755                             xhci->scratchpad->sp_dma);
1756
1757  fail_sp2:
1758         kfree(xhci->scratchpad);
1759         xhci->scratchpad = NULL;
1760
1761  fail_sp:
1762         return -ENOMEM;
1763 }
1764
1765 static void scratchpad_free(struct xhci_hcd *xhci)
1766 {
1767         int num_sp;
1768         int i;
1769         struct device *dev = xhci_to_hcd(xhci)->self.controller;
1770
1771         if (!xhci->scratchpad)
1772                 return;
1773
1774         num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1775
1776         for (i = 0; i < num_sp; i++) {
1777                 dma_free_coherent(dev, xhci->page_size,
1778                                     xhci->scratchpad->sp_buffers[i],
1779                                     xhci->scratchpad->sp_dma_buffers[i]);
1780         }
1781         kfree(xhci->scratchpad->sp_dma_buffers);
1782         kfree(xhci->scratchpad->sp_buffers);
1783         dma_free_coherent(dev, num_sp * sizeof(u64),
1784                             xhci->scratchpad->sp_array,
1785                             xhci->scratchpad->sp_dma);
1786         kfree(xhci->scratchpad);
1787         xhci->scratchpad = NULL;
1788 }
1789
1790 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1791                 bool allocate_in_ctx, bool allocate_completion,
1792                 gfp_t mem_flags)
1793 {
1794         struct xhci_command *command;
1795
1796         command = kzalloc(sizeof(*command), mem_flags);
1797         if (!command)
1798                 return NULL;
1799
1800         if (allocate_in_ctx) {
1801                 command->in_ctx =
1802                         xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1803                                         mem_flags);
1804                 if (!command->in_ctx) {
1805                         kfree(command);
1806                         return NULL;
1807                 }
1808         }
1809
1810         if (allocate_completion) {
1811                 command->completion =
1812                         kzalloc(sizeof(struct completion), mem_flags);
1813                 if (!command->completion) {
1814                         xhci_free_container_ctx(xhci, command->in_ctx);
1815                         kfree(command);
1816                         return NULL;
1817                 }
1818                 init_completion(command->completion);
1819         }
1820
1821         command->status = 0;
1822         INIT_LIST_HEAD(&command->cmd_list);
1823         return command;
1824 }
1825
1826 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1827 {
1828         if (urb_priv) {
1829                 kfree(urb_priv->td[0]);
1830                 kfree(urb_priv);
1831         }
1832 }
1833
1834 void xhci_free_command(struct xhci_hcd *xhci,
1835                 struct xhci_command *command)
1836 {
1837         xhci_free_container_ctx(xhci,
1838                         command->in_ctx);
1839         kfree(command->completion);
1840         kfree(command);
1841 }
1842
1843 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1844 {
1845         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
1846         int size;
1847         int i, j, num_ports;
1848
1849         cancel_delayed_work_sync(&xhci->cmd_timer);
1850
1851         /* Free the Event Ring Segment Table and the actual Event Ring */
1852         size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1853         if (xhci->erst.entries)
1854                 dma_free_coherent(dev, size,
1855                                 xhci->erst.entries, xhci->erst.erst_dma_addr);
1856         xhci->erst.entries = NULL;
1857         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed ERST");
1858         if (xhci->event_ring)
1859                 xhci_ring_free(xhci, xhci->event_ring);
1860         xhci->event_ring = NULL;
1861         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1862
1863         if (xhci->lpm_command)
1864                 xhci_free_command(xhci, xhci->lpm_command);
1865         xhci->lpm_command = NULL;
1866         if (xhci->cmd_ring)
1867                 xhci_ring_free(xhci, xhci->cmd_ring);
1868         xhci->cmd_ring = NULL;
1869         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1870         xhci_cleanup_command_queue(xhci);
1871
1872         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1873         for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1874                 struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1875                 for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1876                         struct list_head *ep = &bwt->interval_bw[j].endpoints;
1877                         while (!list_empty(ep))
1878                                 list_del_init(ep->next);
1879                 }
1880         }
1881
1882         for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1883                 xhci_free_virt_devices_depth_first(xhci, i);
1884
1885         dma_pool_destroy(xhci->segment_pool);
1886         xhci->segment_pool = NULL;
1887         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1888
1889         dma_pool_destroy(xhci->device_pool);
1890         xhci->device_pool = NULL;
1891         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1892
1893         dma_pool_destroy(xhci->small_streams_pool);
1894         xhci->small_streams_pool = NULL;
1895         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1896                         "Freed small stream array pool");
1897
1898         dma_pool_destroy(xhci->medium_streams_pool);
1899         xhci->medium_streams_pool = NULL;
1900         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1901                         "Freed medium stream array pool");
1902
1903         if (xhci->dcbaa)
1904                 dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1905                                 xhci->dcbaa, xhci->dcbaa->dma);
1906         xhci->dcbaa = NULL;
1907
1908         scratchpad_free(xhci);
1909
1910         if (!xhci->rh_bw)
1911                 goto no_bw;
1912
1913         for (i = 0; i < num_ports; i++) {
1914                 struct xhci_tt_bw_info *tt, *n;
1915                 list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1916                         list_del(&tt->tt_list);
1917                         kfree(tt);
1918                 }
1919         }
1920
1921 no_bw:
1922         xhci->cmd_ring_reserved_trbs = 0;
1923         xhci->num_usb2_ports = 0;
1924         xhci->num_usb3_ports = 0;
1925         xhci->num_active_eps = 0;
1926         kfree(xhci->usb2_ports);
1927         kfree(xhci->usb3_ports);
1928         kfree(xhci->port_array);
1929         kfree(xhci->rh_bw);
1930         kfree(xhci->ext_caps);
1931         kfree(xhci->usb2_rhub.psi);
1932         kfree(xhci->usb3_rhub.psi);
1933
1934         xhci->usb2_ports = NULL;
1935         xhci->usb3_ports = NULL;
1936         xhci->port_array = NULL;
1937         xhci->usb2_rhub.psi = NULL;
1938         xhci->usb3_rhub.psi = NULL;
1939         xhci->rh_bw = NULL;
1940         xhci->ext_caps = NULL;
1941
1942         xhci->page_size = 0;
1943         xhci->page_shift = 0;
1944         xhci->bus_state[0].bus_suspended = 0;
1945         xhci->bus_state[1].bus_suspended = 0;
1946 }
1947
1948 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1949                 struct xhci_segment *input_seg,
1950                 union xhci_trb *start_trb,
1951                 union xhci_trb *end_trb,
1952                 dma_addr_t input_dma,
1953                 struct xhci_segment *result_seg,
1954                 char *test_name, int test_number)
1955 {
1956         unsigned long long start_dma;
1957         unsigned long long end_dma;
1958         struct xhci_segment *seg;
1959
1960         start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1961         end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1962
1963         seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1964         if (seg != result_seg) {
1965                 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1966                                 test_name, test_number);
1967                 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1968                                 "input DMA 0x%llx\n",
1969                                 input_seg,
1970                                 (unsigned long long) input_dma);
1971                 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1972                                 "ending TRB %p (0x%llx DMA)\n",
1973                                 start_trb, start_dma,
1974                                 end_trb, end_dma);
1975                 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1976                                 result_seg, seg);
1977                 trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1978                           true);
1979                 return -1;
1980         }
1981         return 0;
1982 }
1983
1984 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1985 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1986 {
1987         struct {
1988                 dma_addr_t              input_dma;
1989                 struct xhci_segment     *result_seg;
1990         } simple_test_vector [] = {
1991                 /* A zeroed DMA field should fail */
1992                 { 0, NULL },
1993                 /* One TRB before the ring start should fail */
1994                 { xhci->event_ring->first_seg->dma - 16, NULL },
1995                 /* One byte before the ring start should fail */
1996                 { xhci->event_ring->first_seg->dma - 1, NULL },
1997                 /* Starting TRB should succeed */
1998                 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1999                 /* Ending TRB should succeed */
2000                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
2001                         xhci->event_ring->first_seg },
2002                 /* One byte after the ring end should fail */
2003                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
2004                 /* One TRB after the ring end should fail */
2005                 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
2006                 /* An address of all ones should fail */
2007                 { (dma_addr_t) (~0), NULL },
2008         };
2009         struct {
2010                 struct xhci_segment     *input_seg;
2011                 union xhci_trb          *start_trb;
2012                 union xhci_trb          *end_trb;
2013                 dma_addr_t              input_dma;
2014                 struct xhci_segment     *result_seg;
2015         } complex_test_vector [] = {
2016                 /* Test feeding a valid DMA address from a different ring */
2017                 {       .input_seg = xhci->event_ring->first_seg,
2018                         .start_trb = xhci->event_ring->first_seg->trbs,
2019                         .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2020                         .input_dma = xhci->cmd_ring->first_seg->dma,
2021                         .result_seg = NULL,
2022                 },
2023                 /* Test feeding a valid end TRB from a different ring */
2024                 {       .input_seg = xhci->event_ring->first_seg,
2025                         .start_trb = xhci->event_ring->first_seg->trbs,
2026                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2027                         .input_dma = xhci->cmd_ring->first_seg->dma,
2028                         .result_seg = NULL,
2029                 },
2030                 /* Test feeding a valid start and end TRB from a different ring */
2031                 {       .input_seg = xhci->event_ring->first_seg,
2032                         .start_trb = xhci->cmd_ring->first_seg->trbs,
2033                         .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2034                         .input_dma = xhci->cmd_ring->first_seg->dma,
2035                         .result_seg = NULL,
2036                 },
2037                 /* TRB in this ring, but after this TD */
2038                 {       .input_seg = xhci->event_ring->first_seg,
2039                         .start_trb = &xhci->event_ring->first_seg->trbs[0],
2040                         .end_trb = &xhci->event_ring->first_seg->trbs[3],
2041                         .input_dma = xhci->event_ring->first_seg->dma + 4*16,
2042                         .result_seg = NULL,
2043                 },
2044                 /* TRB in this ring, but before this TD */
2045                 {       .input_seg = xhci->event_ring->first_seg,
2046                         .start_trb = &xhci->event_ring->first_seg->trbs[3],
2047                         .end_trb = &xhci->event_ring->first_seg->trbs[6],
2048                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2049                         .result_seg = NULL,
2050                 },
2051                 /* TRB in this ring, but after this wrapped TD */
2052                 {       .input_seg = xhci->event_ring->first_seg,
2053                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2054                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2055                         .input_dma = xhci->event_ring->first_seg->dma + 2*16,
2056                         .result_seg = NULL,
2057                 },
2058                 /* TRB in this ring, but before this wrapped TD */
2059                 {       .input_seg = xhci->event_ring->first_seg,
2060                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2061                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2062                         .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2063                         .result_seg = NULL,
2064                 },
2065                 /* TRB not in this ring, and we have a wrapped TD */
2066                 {       .input_seg = xhci->event_ring->first_seg,
2067                         .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2068                         .end_trb = &xhci->event_ring->first_seg->trbs[1],
2069                         .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2070                         .result_seg = NULL,
2071                 },
2072         };
2073
2074         unsigned int num_tests;
2075         int i, ret;
2076
2077         num_tests = ARRAY_SIZE(simple_test_vector);
2078         for (i = 0; i < num_tests; i++) {
2079                 ret = xhci_test_trb_in_td(xhci,
2080                                 xhci->event_ring->first_seg,
2081                                 xhci->event_ring->first_seg->trbs,
2082                                 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2083                                 simple_test_vector[i].input_dma,
2084                                 simple_test_vector[i].result_seg,
2085                                 "Simple", i);
2086                 if (ret < 0)
2087                         return ret;
2088         }
2089
2090         num_tests = ARRAY_SIZE(complex_test_vector);
2091         for (i = 0; i < num_tests; i++) {
2092                 ret = xhci_test_trb_in_td(xhci,
2093                                 complex_test_vector[i].input_seg,
2094                                 complex_test_vector[i].start_trb,
2095                                 complex_test_vector[i].end_trb,
2096                                 complex_test_vector[i].input_dma,
2097                                 complex_test_vector[i].result_seg,
2098                                 "Complex", i);
2099                 if (ret < 0)
2100                         return ret;
2101         }
2102         xhci_dbg(xhci, "TRB math tests passed.\n");
2103         return 0;
2104 }
2105
2106 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2107 {
2108         u64 temp;
2109         dma_addr_t deq;
2110
2111         deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2112                         xhci->event_ring->dequeue);
2113         if (deq == 0 && !in_interrupt())
2114                 xhci_warn(xhci, "WARN something wrong with SW event ring "
2115                                 "dequeue ptr.\n");
2116         /* Update HC event ring dequeue pointer */
2117         temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2118         temp &= ERST_PTR_MASK;
2119         /* Don't clear the EHB bit (which is RW1C) because
2120          * there might be more events to service.
2121          */
2122         temp &= ~ERST_EHB;
2123         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2124                         "// Write event ring dequeue pointer, "
2125                         "preserving EHB bit");
2126         xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2127                         &xhci->ir_set->erst_dequeue);
2128 }
2129
2130 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2131                 __le32 __iomem *addr, u8 major_revision, int max_caps)
2132 {
2133         u32 temp, port_offset, port_count;
2134         int i;
2135         struct xhci_hub *rhub;
2136
2137         temp = readl(addr);
2138
2139         if (XHCI_EXT_PORT_MAJOR(temp) == 0x03) {
2140                 rhub = &xhci->usb3_rhub;
2141         } else if (XHCI_EXT_PORT_MAJOR(temp) <= 0x02) {
2142                 rhub = &xhci->usb2_rhub;
2143         } else {
2144                 xhci_warn(xhci, "Ignoring unknown port speed, "
2145                                 "Ext Cap %p, revision = 0x%x\n",
2146                                 addr, major_revision);
2147                 /* Ignoring port protocol we can't understand. FIXME */
2148                 return;
2149         }
2150         rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2151         rhub->min_rev = XHCI_EXT_PORT_MINOR(temp);
2152
2153         /* Port offset and count in the third dword, see section 7.2 */
2154         temp = readl(addr + 2);
2155         port_offset = XHCI_EXT_PORT_OFF(temp);
2156         port_count = XHCI_EXT_PORT_COUNT(temp);
2157         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2158                         "Ext Cap %p, port offset = %u, "
2159                         "count = %u, revision = 0x%x",
2160                         addr, port_offset, port_count, major_revision);
2161         /* Port count includes the current port offset */
2162         if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2163                 /* WTF? "Valid values are â€˜1’ to MaxPorts" */
2164                 return;
2165
2166         rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2167         if (rhub->psi_count) {
2168                 rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2169                                     GFP_KERNEL);
2170                 if (!rhub->psi)
2171                         rhub->psi_count = 0;
2172
2173                 rhub->psi_uid_count++;
2174                 for (i = 0; i < rhub->psi_count; i++) {
2175                         rhub->psi[i] = readl(addr + 4 + i);
2176
2177                         /* count unique ID values, two consecutive entries can
2178                          * have the same ID if link is assymetric
2179                          */
2180                         if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2181                                   XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2182                                 rhub->psi_uid_count++;
2183
2184                         xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2185                                   XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2186                                   XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2187                                   XHCI_EXT_PORT_PLT(rhub->psi[i]),
2188                                   XHCI_EXT_PORT_PFD(rhub->psi[i]),
2189                                   XHCI_EXT_PORT_LP(rhub->psi[i]),
2190                                   XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2191                 }
2192         }
2193         /* cache usb2 port capabilities */
2194         if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2195                 xhci->ext_caps[xhci->num_ext_caps++] = temp;
2196
2197         /* Check the host's USB2 LPM capability */
2198         if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2199                         (temp & XHCI_L1C)) {
2200                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2201                                 "xHCI 0.96: support USB2 software lpm");
2202                 xhci->sw_lpm_support = 1;
2203         }
2204
2205         if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2206                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2207                                 "xHCI 1.0: support USB2 software lpm");
2208                 xhci->sw_lpm_support = 1;
2209                 if (temp & XHCI_HLC) {
2210                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2211                                         "xHCI 1.0: support USB2 hardware lpm");
2212                         xhci->hw_lpm_support = 1;
2213                 }
2214         }
2215
2216         port_offset--;
2217         for (i = port_offset; i < (port_offset + port_count); i++) {
2218                 /* Duplicate entry.  Ignore the port if the revisions differ. */
2219                 if (xhci->port_array[i] != 0) {
2220                         xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2221                                         " port %u\n", addr, i);
2222                         xhci_warn(xhci, "Port was marked as USB %u, "
2223                                         "duplicated as USB %u\n",
2224                                         xhci->port_array[i], major_revision);
2225                         /* Only adjust the roothub port counts if we haven't
2226                          * found a similar duplicate.
2227                          */
2228                         if (xhci->port_array[i] != major_revision &&
2229                                 xhci->port_array[i] != DUPLICATE_ENTRY) {
2230                                 if (xhci->port_array[i] == 0x03)
2231                                         xhci->num_usb3_ports--;
2232                                 else
2233                                         xhci->num_usb2_ports--;
2234                                 xhci->port_array[i] = DUPLICATE_ENTRY;
2235                         }
2236                         /* FIXME: Should we disable the port? */
2237                         continue;
2238                 }
2239                 xhci->port_array[i] = major_revision;
2240                 if (major_revision == 0x03)
2241                         xhci->num_usb3_ports++;
2242                 else
2243                         xhci->num_usb2_ports++;
2244         }
2245         /* FIXME: Should we disable ports not in the Extended Capabilities? */
2246 }
2247
2248 /*
2249  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2250  * specify what speeds each port is supposed to be.  We can't count on the port
2251  * speed bits in the PORTSC register being correct until a device is connected,
2252  * but we need to set up the two fake roothubs with the correct number of USB
2253  * 3.0 and USB 2.0 ports at host controller initialization time.
2254  */
2255 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2256 {
2257         __le32 __iomem *addr, *tmp_addr;
2258         u32 offset, tmp_offset;
2259         unsigned int num_ports;
2260         int i, j, port_index;
2261         int cap_count = 0;
2262
2263         addr = &xhci->cap_regs->hcc_params;
2264         offset = XHCI_HCC_EXT_CAPS(readl(addr));
2265         if (offset == 0) {
2266                 xhci_err(xhci, "No Extended Capability registers, "
2267                                 "unable to set up roothub.\n");
2268                 return -ENODEV;
2269         }
2270
2271         num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2272         xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2273         if (!xhci->port_array)
2274                 return -ENOMEM;
2275
2276         xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2277         if (!xhci->rh_bw)
2278                 return -ENOMEM;
2279         for (i = 0; i < num_ports; i++) {
2280                 struct xhci_interval_bw_table *bw_table;
2281
2282                 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2283                 bw_table = &xhci->rh_bw[i].bw_table;
2284                 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2285                         INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2286         }
2287
2288         /*
2289          * For whatever reason, the first capability offset is from the
2290          * capability register base, not from the HCCPARAMS register.
2291          * See section 5.3.6 for offset calculation.
2292          */
2293         addr = &xhci->cap_regs->hc_capbase + offset;
2294
2295         tmp_addr = addr;
2296         tmp_offset = offset;
2297
2298         /* count extended protocol capability entries for later caching */
2299         do {
2300                 u32 cap_id;
2301                 cap_id = readl(tmp_addr);
2302                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2303                         cap_count++;
2304                 tmp_offset = XHCI_EXT_CAPS_NEXT(cap_id);
2305                 tmp_addr += tmp_offset;
2306         } while (tmp_offset);
2307
2308         xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2309         if (!xhci->ext_caps)
2310                 return -ENOMEM;
2311
2312         while (1) {
2313                 u32 cap_id;
2314
2315                 cap_id = readl(addr);
2316                 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2317                         xhci_add_in_port(xhci, num_ports, addr,
2318                                         (u8) XHCI_EXT_PORT_MAJOR(cap_id),
2319                                         cap_count);
2320                 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2321                 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2322                                 == num_ports)
2323                         break;
2324                 /*
2325                  * Once you're into the Extended Capabilities, the offset is
2326                  * always relative to the register holding the offset.
2327                  */
2328                 addr += offset;
2329         }
2330
2331         if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2332                 xhci_warn(xhci, "No ports on the roothubs?\n");
2333                 return -ENODEV;
2334         }
2335         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2336                         "Found %u USB 2.0 ports and %u USB 3.0 ports.",
2337                         xhci->num_usb2_ports, xhci->num_usb3_ports);
2338
2339         /* Place limits on the number of roothub ports so that the hub
2340          * descriptors aren't longer than the USB core will allocate.
2341          */
2342         if (xhci->num_usb3_ports > 15) {
2343                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2344                                 "Limiting USB 3.0 roothub ports to 15.");
2345                 xhci->num_usb3_ports = 15;
2346         }
2347         if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2348                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2349                                 "Limiting USB 2.0 roothub ports to %u.",
2350                                 USB_MAXCHILDREN);
2351                 xhci->num_usb2_ports = USB_MAXCHILDREN;
2352         }
2353
2354         /*
2355          * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2356          * Not sure how the USB core will handle a hub with no ports...
2357          */
2358         if (xhci->num_usb2_ports) {
2359                 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2360                                 xhci->num_usb2_ports, flags);
2361                 if (!xhci->usb2_ports)
2362                         return -ENOMEM;
2363
2364                 port_index = 0;
2365                 for (i = 0; i < num_ports; i++) {
2366                         if (xhci->port_array[i] == 0x03 ||
2367                                         xhci->port_array[i] == 0 ||
2368                                         xhci->port_array[i] == DUPLICATE_ENTRY)
2369                                 continue;
2370
2371                         xhci->usb2_ports[port_index] =
2372                                 &xhci->op_regs->port_status_base +
2373                                 NUM_PORT_REGS*i;
2374                         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375                                         "USB 2.0 port at index %u, "
2376                                         "addr = %p", i,
2377                                         xhci->usb2_ports[port_index]);
2378                         port_index++;
2379                         if (port_index == xhci->num_usb2_ports)
2380                                 break;
2381                 }
2382         }
2383         if (xhci->num_usb3_ports) {
2384                 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2385                                 xhci->num_usb3_ports, flags);
2386                 if (!xhci->usb3_ports)
2387                         return -ENOMEM;
2388
2389                 port_index = 0;
2390                 for (i = 0; i < num_ports; i++)
2391                         if (xhci->port_array[i] == 0x03) {
2392                                 xhci->usb3_ports[port_index] =
2393                                         &xhci->op_regs->port_status_base +
2394                                         NUM_PORT_REGS*i;
2395                                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2396                                                 "USB 3.0 port at index %u, "
2397                                                 "addr = %p", i,
2398                                                 xhci->usb3_ports[port_index]);
2399                                 port_index++;
2400                                 if (port_index == xhci->num_usb3_ports)
2401                                         break;
2402                         }
2403         }
2404         return 0;
2405 }
2406
2407 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2408 {
2409         dma_addr_t      dma;
2410         struct device   *dev = xhci_to_hcd(xhci)->self.controller;
2411         unsigned int    val, val2;
2412         u64             val_64;
2413         struct xhci_segment     *seg;
2414         u32 page_size, temp;
2415         int i;
2416
2417         INIT_LIST_HEAD(&xhci->cmd_list);
2418
2419         /* init command timeout work */
2420         INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2421         init_completion(&xhci->cmd_ring_stop_completion);
2422
2423         page_size = readl(&xhci->op_regs->page_size);
2424         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2425                         "Supported page size register = 0x%x", page_size);
2426         for (i = 0; i < 16; i++) {
2427                 if ((0x1 & page_size) != 0)
2428                         break;
2429                 page_size = page_size >> 1;
2430         }
2431         if (i < 16)
2432                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2433                         "Supported page size of %iK", (1 << (i+12)) / 1024);
2434         else
2435                 xhci_warn(xhci, "WARN: no supported page size\n");
2436         /* Use 4K pages, since that's common and the minimum the HC supports */
2437         xhci->page_shift = 12;
2438         xhci->page_size = 1 << xhci->page_shift;
2439         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2440                         "HCD page size set to %iK", xhci->page_size / 1024);
2441
2442         /*
2443          * Program the Number of Device Slots Enabled field in the CONFIG
2444          * register with the max value of slots the HC can handle.
2445          */
2446         val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2447         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2448                         "// xHC can handle at most %d device slots.", val);
2449         val2 = readl(&xhci->op_regs->config_reg);
2450         val |= (val2 & ~HCS_SLOTS_MASK);
2451         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2452                         "// Setting Max device slots reg = 0x%x.", val);
2453         writel(val, &xhci->op_regs->config_reg);
2454
2455         /*
2456          * Section 5.4.8 - doorbell array must be
2457          * "physically contiguous and 64-byte (cache line) aligned".
2458          */
2459         xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2460                         flags);
2461         if (!xhci->dcbaa)
2462                 goto fail;
2463         memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2464         xhci->dcbaa->dma = dma;
2465         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2466                         "// Device context base array address = 0x%llx (DMA), %p (virt)",
2467                         (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2468         xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2469
2470         /*
2471          * Initialize the ring segment pool.  The ring must be a contiguous
2472          * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2473          * however, the command ring segment needs 64-byte aligned segments
2474          * and our use of dma addresses in the trb_address_map radix tree needs
2475          * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2476          */
2477         xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2478                         TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2479
2480         /* See Table 46 and Note on Figure 55 */
2481         xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2482                         2112, 64, xhci->page_size);
2483         if (!xhci->segment_pool || !xhci->device_pool)
2484                 goto fail;
2485
2486         /* Linear stream context arrays don't have any boundary restrictions,
2487          * and only need to be 16-byte aligned.
2488          */
2489         xhci->small_streams_pool =
2490                 dma_pool_create("xHCI 256 byte stream ctx arrays",
2491                         dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2492         xhci->medium_streams_pool =
2493                 dma_pool_create("xHCI 1KB stream ctx arrays",
2494                         dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2495         /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2496          * will be allocated with dma_alloc_coherent()
2497          */
2498
2499         if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2500                 goto fail;
2501
2502         /* Set up the command ring to have one segments for now. */
2503         xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, flags);
2504         if (!xhci->cmd_ring)
2505                 goto fail;
2506         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2507                         "Allocated command ring at %p", xhci->cmd_ring);
2508         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2509                         (unsigned long long)xhci->cmd_ring->first_seg->dma);
2510
2511         /* Set the address in the Command Ring Control register */
2512         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2513         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2514                 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2515                 xhci->cmd_ring->cycle_state;
2516         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2517                         "// Setting command ring address to 0x%016llx", val_64);
2518         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2519         xhci_dbg_cmd_ptrs(xhci);
2520
2521         xhci->lpm_command = xhci_alloc_command(xhci, true, true, flags);
2522         if (!xhci->lpm_command)
2523                 goto fail;
2524
2525         /* Reserve one command ring TRB for disabling LPM.
2526          * Since the USB core grabs the shared usb_bus bandwidth mutex before
2527          * disabling LPM, we only need to reserve one TRB for all devices.
2528          */
2529         xhci->cmd_ring_reserved_trbs++;
2530
2531         val = readl(&xhci->cap_regs->db_off);
2532         val &= DBOFF_MASK;
2533         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2534                         "// Doorbell array is located at offset 0x%x"
2535                         " from cap regs base addr", val);
2536         xhci->dba = (void __iomem *) xhci->cap_regs + val;
2537         xhci_dbg_regs(xhci);
2538         xhci_print_run_regs(xhci);
2539         /* Set ir_set to interrupt register set 0 */
2540         xhci->ir_set = &xhci->run_regs->ir_set[0];
2541
2542         /*
2543          * Event ring setup: Allocate a normal ring, but also setup
2544          * the event ring segment table (ERST).  Section 4.9.3.
2545          */
2546         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2547         xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2548                                                 flags);
2549         if (!xhci->event_ring)
2550                 goto fail;
2551         if (xhci_check_trb_in_td_math(xhci) < 0)
2552                 goto fail;
2553
2554         xhci->erst.entries = dma_alloc_coherent(dev,
2555                         sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2556                         flags);
2557         if (!xhci->erst.entries)
2558                 goto fail;
2559         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2560                         "// Allocated event ring segment table at 0x%llx",
2561                         (unsigned long long)dma);
2562
2563         memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2564         xhci->erst.num_entries = ERST_NUM_SEGS;
2565         xhci->erst.erst_dma_addr = dma;
2566         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2567                         "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx",
2568                         xhci->erst.num_entries,
2569                         xhci->erst.entries,
2570                         (unsigned long long)xhci->erst.erst_dma_addr);
2571
2572         /* set ring base address and size for each segment table entry */
2573         for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2574                 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2575                 entry->seg_addr = cpu_to_le64(seg->dma);
2576                 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2577                 entry->rsvd = 0;
2578                 seg = seg->next;
2579         }
2580
2581         /* set ERST count with the number of entries in the segment table */
2582         val = readl(&xhci->ir_set->erst_size);
2583         val &= ERST_SIZE_MASK;
2584         val |= ERST_NUM_SEGS;
2585         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2586                         "// Write ERST size = %i to ir_set 0 (some bits preserved)",
2587                         val);
2588         writel(val, &xhci->ir_set->erst_size);
2589
2590         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2591                         "// Set ERST entries to point to event ring.");
2592         /* set the segment table base address */
2593         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2594                         "// Set ERST base address for ir_set 0 = 0x%llx",
2595                         (unsigned long long)xhci->erst.erst_dma_addr);
2596         val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2597         val_64 &= ERST_PTR_MASK;
2598         val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2599         xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2600
2601         /* Set the event ring dequeue address */
2602         xhci_set_hc_event_deq(xhci);
2603         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2604                         "Wrote ERST address to ir_set 0.");
2605         xhci_print_ir_set(xhci, 0);
2606
2607         /*
2608          * XXX: Might need to set the Interrupter Moderation Register to
2609          * something other than the default (~1ms minimum between interrupts).
2610          * See section 5.5.1.2.
2611          */
2612         init_completion(&xhci->addr_dev);
2613         for (i = 0; i < MAX_HC_SLOTS; ++i)
2614                 xhci->devs[i] = NULL;
2615         for (i = 0; i < USB_MAXCHILDREN; ++i) {
2616                 xhci->bus_state[0].resume_done[i] = 0;
2617                 xhci->bus_state[1].resume_done[i] = 0;
2618                 /* Only the USB 2.0 completions will ever be used. */
2619                 init_completion(&xhci->bus_state[1].rexit_done[i]);
2620         }
2621
2622         if (scratchpad_alloc(xhci, flags))
2623                 goto fail;
2624         if (xhci_setup_port_arrays(xhci, flags))
2625                 goto fail;
2626
2627         /* Enable USB 3.0 device notifications for function remote wake, which
2628          * is necessary for allowing USB 3.0 devices to do remote wakeup from
2629          * U3 (device suspend).
2630          */
2631         temp = readl(&xhci->op_regs->dev_notification);
2632         temp &= ~DEV_NOTE_MASK;
2633         temp |= DEV_NOTE_FWAKE;
2634         writel(temp, &xhci->op_regs->dev_notification);
2635
2636         return 0;
2637
2638 fail:
2639         xhci_warn(xhci, "Couldn't initialize memory\n");
2640         xhci_halt(xhci);
2641         xhci_reset(xhci);
2642         xhci_mem_cleanup(xhci);
2643         return -ENOMEM;
2644 }