GNU Linux-libre 4.9.309-gnu1
[releases.git] / drivers / usb / host / xhci.c
1 /*
2  * xHCI host controller driver
3  *
4  * Copyright (C) 2008 Intel Corp.
5  *
6  * Author: Sarah Sharp
7  * Some code borrowed from the Linux EHCI driver.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15  * or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
16  * for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software Foundation,
20  * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21  */
22
23 #include <linux/pci.h>
24 #include <linux/iopoll.h>
25 #include <linux/irq.h>
26 #include <linux/log2.h>
27 #include <linux/module.h>
28 #include <linux/moduleparam.h>
29 #include <linux/slab.h>
30 #include <linux/dmi.h>
31 #include <linux/dma-mapping.h>
32
33 #include "xhci.h"
34 #include "xhci-trace.h"
35 #include "xhci-mtk.h"
36
37 #define DRIVER_AUTHOR "Sarah Sharp"
38 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
39
40 #define PORT_WAKE_BITS  (PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
41
42 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
43 static int link_quirk;
44 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
45 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
46
47 static unsigned int quirks;
48 module_param(quirks, uint, S_IRUGO);
49 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
50
51 /*
52  * xhci_handshake - spin reading hc until handshake completes or fails
53  * @ptr: address of hc register to be read
54  * @mask: bits to look at in result of read
55  * @done: value of those bits when handshake succeeds
56  * @usec: timeout in microseconds
57  *
58  * Returns negative errno, or zero on success
59  *
60  * Success happens when the "mask" bits have the specified value (hardware
61  * handshake done).  There are two failure modes:  "usec" have passed (major
62  * hardware flakeout), or the register reads as all-ones (hardware removed).
63  */
64 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
65 {
66         u32     result;
67         int     ret;
68
69         ret = readl_poll_timeout_atomic(ptr, result,
70                                         (result & mask) == done ||
71                                         result == U32_MAX,
72                                         1, usec);
73         if (result == U32_MAX)          /* card removed */
74                 return -ENODEV;
75
76         return ret;
77 }
78
79 /*
80  * Disable interrupts and begin the xHCI halting process.
81  */
82 void xhci_quiesce(struct xhci_hcd *xhci)
83 {
84         u32 halted;
85         u32 cmd;
86         u32 mask;
87
88         mask = ~(XHCI_IRQS);
89         halted = readl(&xhci->op_regs->status) & STS_HALT;
90         if (!halted)
91                 mask &= ~CMD_RUN;
92
93         cmd = readl(&xhci->op_regs->command);
94         cmd &= mask;
95         writel(cmd, &xhci->op_regs->command);
96 }
97
98 /*
99  * Force HC into halt state.
100  *
101  * Disable any IRQs and clear the run/stop bit.
102  * HC will complete any current and actively pipelined transactions, and
103  * should halt within 16 ms of the run/stop bit being cleared.
104  * Read HC Halted bit in the status register to see when the HC is finished.
105  */
106 int xhci_halt(struct xhci_hcd *xhci)
107 {
108         int ret;
109         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
110         xhci_quiesce(xhci);
111
112         ret = xhci_handshake(&xhci->op_regs->status,
113                         STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
114         if (!ret) {
115                 xhci->xhc_state |= XHCI_STATE_HALTED;
116                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
117         } else
118                 xhci_warn(xhci, "Host not halted after %u microseconds.\n",
119                                 XHCI_MAX_HALT_USEC);
120         return ret;
121 }
122
123 /*
124  * Set the run bit and wait for the host to be running.
125  */
126 static int xhci_start(struct xhci_hcd *xhci)
127 {
128         u32 temp;
129         int ret;
130
131         temp = readl(&xhci->op_regs->command);
132         temp |= (CMD_RUN);
133         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
134                         temp);
135         writel(temp, &xhci->op_regs->command);
136
137         /*
138          * Wait for the HCHalted Status bit to be 0 to indicate the host is
139          * running.
140          */
141         ret = xhci_handshake(&xhci->op_regs->status,
142                         STS_HALT, 0, XHCI_MAX_HALT_USEC);
143         if (ret == -ETIMEDOUT)
144                 xhci_err(xhci, "Host took too long to start, "
145                                 "waited %u microseconds.\n",
146                                 XHCI_MAX_HALT_USEC);
147         if (!ret)
148                 /* clear state flags. Including dying, halted or removing */
149                 xhci->xhc_state = 0;
150
151         return ret;
152 }
153
154 /*
155  * Reset a halted HC.
156  *
157  * This resets pipelines, timers, counters, state machines, etc.
158  * Transactions will be terminated immediately, and operational registers
159  * will be set to their defaults.
160  */
161 int xhci_reset(struct xhci_hcd *xhci)
162 {
163         u32 command;
164         u32 state;
165         int ret, i;
166
167         state = readl(&xhci->op_regs->status);
168         if ((state & STS_HALT) == 0) {
169                 xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
170                 return 0;
171         }
172
173         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
174         command = readl(&xhci->op_regs->command);
175         command |= CMD_RESET;
176         writel(command, &xhci->op_regs->command);
177
178         /* Existing Intel xHCI controllers require a delay of 1 mS,
179          * after setting the CMD_RESET bit, and before accessing any
180          * HC registers. This allows the HC to complete the
181          * reset operation and be ready for HC register access.
182          * Without this delay, the subsequent HC register access,
183          * may result in a system hang very rarely.
184          */
185         if (xhci->quirks & XHCI_INTEL_HOST)
186                 udelay(1000);
187
188         ret = xhci_handshake(&xhci->op_regs->command,
189                         CMD_RESET, 0, 10 * 1000 * 1000);
190         if (ret)
191                 return ret;
192
193         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
194                 usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
195
196         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
197                          "Wait for controller to be ready for doorbell rings");
198         /*
199          * xHCI cannot write to any doorbells or operational registers other
200          * than status until the "Controller Not Ready" flag is cleared.
201          */
202         ret = xhci_handshake(&xhci->op_regs->status,
203                         STS_CNR, 0, 10 * 1000 * 1000);
204
205         for (i = 0; i < 2; ++i) {
206                 xhci->bus_state[i].port_c_suspend = 0;
207                 xhci->bus_state[i].suspended_ports = 0;
208                 xhci->bus_state[i].resuming_ports = 0;
209         }
210
211         return ret;
212 }
213
214 #ifdef CONFIG_PCI
215 static int xhci_free_msi(struct xhci_hcd *xhci)
216 {
217         int i;
218
219         if (!xhci->msix_entries)
220                 return -EINVAL;
221
222         for (i = 0; i < xhci->msix_count; i++)
223                 if (xhci->msix_entries[i].vector)
224                         free_irq(xhci->msix_entries[i].vector,
225                                         xhci_to_hcd(xhci));
226         return 0;
227 }
228
229 /*
230  * Set up MSI
231  */
232 static int xhci_setup_msi(struct xhci_hcd *xhci)
233 {
234         int ret;
235         struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
236
237         ret = pci_enable_msi(pdev);
238         if (ret) {
239                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
240                                 "failed to allocate MSI entry");
241                 return ret;
242         }
243
244         ret = request_irq(pdev->irq, xhci_msi_irq,
245                                 0, "xhci_hcd", xhci_to_hcd(xhci));
246         if (ret) {
247                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
248                                 "disable MSI interrupt");
249                 pci_disable_msi(pdev);
250         }
251
252         return ret;
253 }
254
255 /*
256  * Free IRQs
257  * free all IRQs request
258  */
259 static void xhci_free_irq(struct xhci_hcd *xhci)
260 {
261         struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
262         int ret;
263
264         /* return if using legacy interrupt */
265         if (xhci_to_hcd(xhci)->irq > 0)
266                 return;
267
268         ret = xhci_free_msi(xhci);
269         if (!ret)
270                 return;
271         if (pdev->irq > 0)
272                 free_irq(pdev->irq, xhci_to_hcd(xhci));
273
274         return;
275 }
276
277 /*
278  * Set up MSI-X
279  */
280 static int xhci_setup_msix(struct xhci_hcd *xhci)
281 {
282         int i, ret = 0;
283         struct usb_hcd *hcd = xhci_to_hcd(xhci);
284         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
285
286         /*
287          * calculate number of msi-x vectors supported.
288          * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
289          *   with max number of interrupters based on the xhci HCSPARAMS1.
290          * - num_online_cpus: maximum msi-x vectors per CPUs core.
291          *   Add additional 1 vector to ensure always available interrupt.
292          */
293         xhci->msix_count = min(num_online_cpus() + 1,
294                                 HCS_MAX_INTRS(xhci->hcs_params1));
295
296         xhci->msix_entries =
297                 kmalloc((sizeof(struct msix_entry))*xhci->msix_count,
298                                 GFP_KERNEL);
299         if (!xhci->msix_entries)
300                 return -ENOMEM;
301
302         for (i = 0; i < xhci->msix_count; i++) {
303                 xhci->msix_entries[i].entry = i;
304                 xhci->msix_entries[i].vector = 0;
305         }
306
307         ret = pci_enable_msix_exact(pdev, xhci->msix_entries, xhci->msix_count);
308         if (ret) {
309                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
310                                 "Failed to enable MSI-X");
311                 goto free_entries;
312         }
313
314         for (i = 0; i < xhci->msix_count; i++) {
315                 ret = request_irq(xhci->msix_entries[i].vector,
316                                 xhci_msi_irq,
317                                 0, "xhci_hcd", xhci_to_hcd(xhci));
318                 if (ret)
319                         goto disable_msix;
320         }
321
322         hcd->msix_enabled = 1;
323         return ret;
324
325 disable_msix:
326         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
327         xhci_free_irq(xhci);
328         pci_disable_msix(pdev);
329 free_entries:
330         kfree(xhci->msix_entries);
331         xhci->msix_entries = NULL;
332         return ret;
333 }
334
335 /* Free any IRQs and disable MSI-X */
336 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
337 {
338         struct usb_hcd *hcd = xhci_to_hcd(xhci);
339         struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
340
341         if (xhci->quirks & XHCI_PLAT)
342                 return;
343
344         xhci_free_irq(xhci);
345
346         if (xhci->msix_entries) {
347                 pci_disable_msix(pdev);
348                 kfree(xhci->msix_entries);
349                 xhci->msix_entries = NULL;
350         } else {
351                 pci_disable_msi(pdev);
352         }
353
354         hcd->msix_enabled = 0;
355         return;
356 }
357
358 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
359 {
360         int i;
361
362         if (xhci->msix_entries) {
363                 for (i = 0; i < xhci->msix_count; i++)
364                         synchronize_irq(xhci->msix_entries[i].vector);
365         }
366 }
367
368 static int xhci_try_enable_msi(struct usb_hcd *hcd)
369 {
370         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
371         struct pci_dev  *pdev;
372         int ret;
373
374         /* The xhci platform device has set up IRQs through usb_add_hcd. */
375         if (xhci->quirks & XHCI_PLAT)
376                 return 0;
377
378         pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
379         /*
380          * Some Fresco Logic host controllers advertise MSI, but fail to
381          * generate interrupts.  Don't even try to enable MSI.
382          */
383         if (xhci->quirks & XHCI_BROKEN_MSI)
384                 goto legacy_irq;
385
386         /* unregister the legacy interrupt */
387         if (hcd->irq)
388                 free_irq(hcd->irq, hcd);
389         hcd->irq = 0;
390
391         ret = xhci_setup_msix(xhci);
392         if (ret)
393                 /* fall back to msi*/
394                 ret = xhci_setup_msi(xhci);
395
396         if (!ret)
397                 /* hcd->irq is 0, we have MSI */
398                 return 0;
399
400         if (!pdev->irq) {
401                 xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
402                 return -EINVAL;
403         }
404
405  legacy_irq:
406         if (!strlen(hcd->irq_descr))
407                 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
408                          hcd->driver->description, hcd->self.busnum);
409
410         /* fall back to legacy interrupt*/
411         ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
412                         hcd->irq_descr, hcd);
413         if (ret) {
414                 xhci_err(xhci, "request interrupt %d failed\n",
415                                 pdev->irq);
416                 return ret;
417         }
418         hcd->irq = pdev->irq;
419         return 0;
420 }
421
422 #else
423
424 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
425 {
426         return 0;
427 }
428
429 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
430 {
431 }
432
433 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
434 {
435 }
436
437 #endif
438
439 static void compliance_mode_recovery(unsigned long arg)
440 {
441         struct xhci_hcd *xhci;
442         struct usb_hcd *hcd;
443         u32 temp;
444         int i;
445
446         xhci = (struct xhci_hcd *)arg;
447
448         for (i = 0; i < xhci->num_usb3_ports; i++) {
449                 temp = readl(xhci->usb3_ports[i]);
450                 if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
451                         /*
452                          * Compliance Mode Detected. Letting USB Core
453                          * handle the Warm Reset
454                          */
455                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
456                                         "Compliance mode detected->port %d",
457                                         i + 1);
458                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
459                                         "Attempting compliance mode recovery");
460                         hcd = xhci->shared_hcd;
461
462                         if (hcd->state == HC_STATE_SUSPENDED)
463                                 usb_hcd_resume_root_hub(hcd);
464
465                         usb_hcd_poll_rh_status(hcd);
466                 }
467         }
468
469         if (xhci->port_status_u0 != ((1 << xhci->num_usb3_ports)-1))
470                 mod_timer(&xhci->comp_mode_recovery_timer,
471                         jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
472 }
473
474 /*
475  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
476  * that causes ports behind that hardware to enter compliance mode sometimes.
477  * The quirk creates a timer that polls every 2 seconds the link state of
478  * each host controller's port and recovers it by issuing a Warm reset
479  * if Compliance mode is detected, otherwise the port will become "dead" (no
480  * device connections or disconnections will be detected anymore). Becasue no
481  * status event is generated when entering compliance mode (per xhci spec),
482  * this quirk is needed on systems that have the failing hardware installed.
483  */
484 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
485 {
486         xhci->port_status_u0 = 0;
487         setup_timer(&xhci->comp_mode_recovery_timer,
488                     compliance_mode_recovery, (unsigned long)xhci);
489         xhci->comp_mode_recovery_timer.expires = jiffies +
490                         msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
491
492         add_timer(&xhci->comp_mode_recovery_timer);
493         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494                         "Compliance mode recovery timer initialized");
495 }
496
497 /*
498  * This function identifies the systems that have installed the SN65LVPE502CP
499  * USB3.0 re-driver and that need the Compliance Mode Quirk.
500  * Systems:
501  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
502  */
503 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
504 {
505         const char *dmi_product_name, *dmi_sys_vendor;
506
507         dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
508         dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
509         if (!dmi_product_name || !dmi_sys_vendor)
510                 return false;
511
512         if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
513                 return false;
514
515         if (strstr(dmi_product_name, "Z420") ||
516                         strstr(dmi_product_name, "Z620") ||
517                         strstr(dmi_product_name, "Z820") ||
518                         strstr(dmi_product_name, "Z1 Workstation"))
519                 return true;
520
521         return false;
522 }
523
524 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
525 {
526         return (xhci->port_status_u0 == ((1 << xhci->num_usb3_ports)-1));
527 }
528
529
530 /*
531  * Initialize memory for HCD and xHC (one-time init).
532  *
533  * Program the PAGESIZE register, initialize the device context array, create
534  * device contexts (?), set up a command ring segment (or two?), create event
535  * ring (one for now).
536  */
537 int xhci_init(struct usb_hcd *hcd)
538 {
539         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
540         int retval = 0;
541
542         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
543         spin_lock_init(&xhci->lock);
544         if (xhci->hci_version == 0x95 && link_quirk) {
545                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
546                                 "QUIRK: Not clearing Link TRB chain bits.");
547                 xhci->quirks |= XHCI_LINK_TRB_QUIRK;
548         } else {
549                 xhci_dbg_trace(xhci, trace_xhci_dbg_init,
550                                 "xHCI doesn't need link TRB QUIRK");
551         }
552         retval = xhci_mem_init(xhci, GFP_KERNEL);
553         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
554
555         /* Initializing Compliance Mode Recovery Data If Needed */
556         if (xhci_compliance_mode_recovery_timer_quirk_check()) {
557                 xhci->quirks |= XHCI_COMP_MODE_QUIRK;
558                 compliance_mode_recovery_timer_init(xhci);
559         }
560
561         return retval;
562 }
563
564 /*-------------------------------------------------------------------------*/
565
566
567 static int xhci_run_finished(struct xhci_hcd *xhci)
568 {
569         if (xhci_start(xhci)) {
570                 xhci_halt(xhci);
571                 return -ENODEV;
572         }
573         xhci->shared_hcd->state = HC_STATE_RUNNING;
574         xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
575
576         if (xhci->quirks & XHCI_NEC_HOST)
577                 xhci_ring_cmd_db(xhci);
578
579         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
580                         "Finished xhci_run for USB3 roothub");
581         return 0;
582 }
583
584 /*
585  * Start the HC after it was halted.
586  *
587  * This function is called by the USB core when the HC driver is added.
588  * Its opposite is xhci_stop().
589  *
590  * xhci_init() must be called once before this function can be called.
591  * Reset the HC, enable device slot contexts, program DCBAAP, and
592  * set command ring pointer and event ring pointer.
593  *
594  * Setup MSI-X vectors and enable interrupts.
595  */
596 int xhci_run(struct usb_hcd *hcd)
597 {
598         u32 temp;
599         u64 temp_64;
600         int ret;
601         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
602
603         /* Start the xHCI host controller running only after the USB 2.0 roothub
604          * is setup.
605          */
606
607         hcd->uses_new_polling = 1;
608         if (!usb_hcd_is_primary_hcd(hcd))
609                 return xhci_run_finished(xhci);
610
611         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
612
613         ret = xhci_try_enable_msi(hcd);
614         if (ret)
615                 return ret;
616
617         xhci_dbg(xhci, "Command ring memory map follows:\n");
618         xhci_debug_ring(xhci, xhci->cmd_ring);
619         xhci_dbg_ring_ptrs(xhci, xhci->cmd_ring);
620         xhci_dbg_cmd_ptrs(xhci);
621
622         xhci_dbg(xhci, "ERST memory map follows:\n");
623         xhci_dbg_erst(xhci, &xhci->erst);
624         xhci_dbg(xhci, "Event ring:\n");
625         xhci_debug_ring(xhci, xhci->event_ring);
626         xhci_dbg_ring_ptrs(xhci, xhci->event_ring);
627         temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
628         temp_64 &= ~ERST_PTR_MASK;
629         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
630                         "ERST deq = 64'h%0lx", (long unsigned int) temp_64);
631
632         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
633                         "// Set the interrupt modulation register");
634         temp = readl(&xhci->ir_set->irq_control);
635         temp &= ~ER_IRQ_INTERVAL_MASK;
636         /*
637          * the increment interval is 8 times as much as that defined
638          * in xHCI spec on MTK's controller
639          */
640         temp |= (u32) ((xhci->quirks & XHCI_MTK_HOST) ? 20 : 160);
641         writel(temp, &xhci->ir_set->irq_control);
642
643         /* Set the HCD state before we enable the irqs */
644         temp = readl(&xhci->op_regs->command);
645         temp |= (CMD_EIE);
646         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
647                         "// Enable interrupts, cmd = 0x%x.", temp);
648         writel(temp, &xhci->op_regs->command);
649
650         temp = readl(&xhci->ir_set->irq_pending);
651         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
652                         "// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
653                         xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
654         writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
655         xhci_print_ir_set(xhci, 0);
656
657         if (xhci->quirks & XHCI_NEC_HOST) {
658                 struct xhci_command *command;
659                 command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
660                 if (!command)
661                         return -ENOMEM;
662                 xhci_queue_vendor_command(xhci, command, 0, 0, 0,
663                                 TRB_TYPE(TRB_NEC_GET_FW));
664         }
665         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
666                         "Finished xhci_run for USB2 roothub");
667         return 0;
668 }
669 EXPORT_SYMBOL_GPL(xhci_run);
670
671 /*
672  * Stop xHCI driver.
673  *
674  * This function is called by the USB core when the HC driver is removed.
675  * Its opposite is xhci_run().
676  *
677  * Disable device contexts, disable IRQs, and quiesce the HC.
678  * Reset the HC, finish any completed transactions, and cleanup memory.
679  */
680 void xhci_stop(struct usb_hcd *hcd)
681 {
682         u32 temp;
683         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
684
685         mutex_lock(&xhci->mutex);
686
687         if (!(xhci->xhc_state & XHCI_STATE_HALTED)) {
688                 spin_lock_irq(&xhci->lock);
689
690                 xhci->xhc_state |= XHCI_STATE_HALTED;
691                 xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
692                 xhci_halt(xhci);
693                 xhci_reset(xhci);
694
695                 spin_unlock_irq(&xhci->lock);
696         }
697
698         if (!usb_hcd_is_primary_hcd(hcd)) {
699                 mutex_unlock(&xhci->mutex);
700                 return;
701         }
702
703         xhci_cleanup_msix(xhci);
704
705         /* Deleting Compliance Mode Recovery Timer */
706         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
707                         (!(xhci_all_ports_seen_u0(xhci)))) {
708                 del_timer_sync(&xhci->comp_mode_recovery_timer);
709                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
710                                 "%s: compliance mode recovery timer deleted",
711                                 __func__);
712         }
713
714         if (xhci->quirks & XHCI_AMD_PLL_FIX)
715                 usb_amd_dev_put();
716
717         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
718                         "// Disabling event ring interrupts");
719         temp = readl(&xhci->op_regs->status);
720         writel(temp & ~STS_EINT, &xhci->op_regs->status);
721         temp = readl(&xhci->ir_set->irq_pending);
722         writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
723         xhci_print_ir_set(xhci, 0);
724
725         xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
726         xhci_mem_cleanup(xhci);
727         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
728                         "xhci_stop completed - status = %x",
729                         readl(&xhci->op_regs->status));
730         mutex_unlock(&xhci->mutex);
731 }
732
733 /*
734  * Shutdown HC (not bus-specific)
735  *
736  * This is called when the machine is rebooting or halting.  We assume that the
737  * machine will be powered off, and the HC's internal state will be reset.
738  * Don't bother to free memory.
739  *
740  * This will only ever be called with the main usb_hcd (the USB3 roothub).
741  */
742 void xhci_shutdown(struct usb_hcd *hcd)
743 {
744         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
745
746         if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
747                 usb_disable_xhci_ports(to_pci_dev(hcd->self.controller));
748
749         spin_lock_irq(&xhci->lock);
750         xhci_halt(xhci);
751         /* Workaround for spurious wakeups at shutdown with HSW */
752         if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
753                 xhci_reset(xhci);
754         spin_unlock_irq(&xhci->lock);
755
756         xhci_cleanup_msix(xhci);
757
758         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759                         "xhci_shutdown completed - status = %x",
760                         readl(&xhci->op_regs->status));
761 }
762 EXPORT_SYMBOL_GPL(xhci_shutdown);
763
764 #ifdef CONFIG_PM
765 static void xhci_save_registers(struct xhci_hcd *xhci)
766 {
767         xhci->s3.command = readl(&xhci->op_regs->command);
768         xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
769         xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
770         xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
771         xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
772         xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
773         xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
774         xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
775         xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
776 }
777
778 static void xhci_restore_registers(struct xhci_hcd *xhci)
779 {
780         writel(xhci->s3.command, &xhci->op_regs->command);
781         writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
782         xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
783         writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
784         writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
785         xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
786         xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
787         writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
788         writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
789 }
790
791 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
792 {
793         u64     val_64;
794
795         /* step 2: initialize command ring buffer */
796         val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
797         val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
798                 (xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
799                                       xhci->cmd_ring->dequeue) &
800                  (u64) ~CMD_RING_RSVD_BITS) |
801                 xhci->cmd_ring->cycle_state;
802         xhci_dbg_trace(xhci, trace_xhci_dbg_init,
803                         "// Setting command ring address to 0x%llx",
804                         (long unsigned long) val_64);
805         xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
806 }
807
808 /*
809  * The whole command ring must be cleared to zero when we suspend the host.
810  *
811  * The host doesn't save the command ring pointer in the suspend well, so we
812  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
813  * aligned, because of the reserved bits in the command ring dequeue pointer
814  * register.  Therefore, we can't just set the dequeue pointer back in the
815  * middle of the ring (TRBs are 16-byte aligned).
816  */
817 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
818 {
819         struct xhci_ring *ring;
820         struct xhci_segment *seg;
821
822         ring = xhci->cmd_ring;
823         seg = ring->deq_seg;
824         do {
825                 memset(seg->trbs, 0,
826                         sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
827                 seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
828                         cpu_to_le32(~TRB_CYCLE);
829                 seg = seg->next;
830         } while (seg != ring->deq_seg);
831
832         /* Reset the software enqueue and dequeue pointers */
833         ring->deq_seg = ring->first_seg;
834         ring->dequeue = ring->first_seg->trbs;
835         ring->enq_seg = ring->deq_seg;
836         ring->enqueue = ring->dequeue;
837
838         ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
839         /*
840          * Ring is now zeroed, so the HW should look for change of ownership
841          * when the cycle bit is set to 1.
842          */
843         ring->cycle_state = 1;
844
845         /*
846          * Reset the hardware dequeue pointer.
847          * Yes, this will need to be re-written after resume, but we're paranoid
848          * and want to make sure the hardware doesn't access bogus memory
849          * because, say, the BIOS or an SMI started the host without changing
850          * the command ring pointers.
851          */
852         xhci_set_cmd_ring_deq(xhci);
853 }
854
855 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
856 {
857         int port_index;
858         __le32 __iomem **port_array;
859         unsigned long flags;
860         u32 t1, t2;
861
862         spin_lock_irqsave(&xhci->lock, flags);
863
864         /* disble usb3 ports Wake bits*/
865         port_index = xhci->num_usb3_ports;
866         port_array = xhci->usb3_ports;
867         while (port_index--) {
868                 t1 = readl(port_array[port_index]);
869                 t1 = xhci_port_state_to_neutral(t1);
870                 t2 = t1 & ~PORT_WAKE_BITS;
871                 if (t1 != t2)
872                         writel(t2, port_array[port_index]);
873         }
874
875         /* disble usb2 ports Wake bits*/
876         port_index = xhci->num_usb2_ports;
877         port_array = xhci->usb2_ports;
878         while (port_index--) {
879                 t1 = readl(port_array[port_index]);
880                 t1 = xhci_port_state_to_neutral(t1);
881                 t2 = t1 & ~PORT_WAKE_BITS;
882                 if (t1 != t2)
883                         writel(t2, port_array[port_index]);
884         }
885
886         spin_unlock_irqrestore(&xhci->lock, flags);
887 }
888
889 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
890 {
891         __le32 __iomem          **port_array;
892         int                     port_index;
893         u32                     status;
894         u32                     portsc;
895
896         status = readl(&xhci->op_regs->status);
897         if (status & STS_EINT)
898                 return true;
899         /*
900          * Checking STS_EINT is not enough as there is a lag between a change
901          * bit being set and the Port Status Change Event that it generated
902          * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
903          */
904
905         port_index = xhci->num_usb2_ports;
906         port_array = xhci->usb2_ports;
907         while (port_index--) {
908                 portsc = readl(port_array[port_index]);
909                 if (portsc & PORT_CHANGE_MASK ||
910                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
911                         return true;
912         }
913         port_index = xhci->num_usb3_ports;
914         port_array = xhci->usb3_ports;
915         while (port_index--) {
916                 portsc = readl(port_array[port_index]);
917                 if (portsc & PORT_CHANGE_MASK ||
918                     (portsc & PORT_PLS_MASK) == XDEV_RESUME)
919                         return true;
920         }
921         return false;
922 }
923
924 /*
925  * Stop HC (not bus-specific)
926  *
927  * This is called when the machine transition into S3/S4 mode.
928  *
929  */
930 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
931 {
932         int                     rc = 0;
933         unsigned int            delay = XHCI_MAX_HALT_USEC * 2;
934         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
935         u32                     command;
936
937         if (!hcd->state)
938                 return 0;
939
940         if (hcd->state != HC_STATE_SUSPENDED ||
941                         xhci->shared_hcd->state != HC_STATE_SUSPENDED)
942                 return -EINVAL;
943
944         /* Clear root port wake on bits if wakeup not allowed. */
945         if (!do_wakeup)
946                 xhci_disable_port_wake_on_bits(xhci);
947
948         /* Don't poll the roothubs on bus suspend. */
949         xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
950         clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
951         del_timer_sync(&hcd->rh_timer);
952         clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
953         del_timer_sync(&xhci->shared_hcd->rh_timer);
954
955         spin_lock_irq(&xhci->lock);
956         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
957         clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
958         /* step 1: stop endpoint */
959         /* skipped assuming that port suspend has done */
960
961         /* step 2: clear Run/Stop bit */
962         command = readl(&xhci->op_regs->command);
963         command &= ~CMD_RUN;
964         writel(command, &xhci->op_regs->command);
965
966         /* Some chips from Fresco Logic need an extraordinary delay */
967         delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
968
969         if (xhci_handshake(&xhci->op_regs->status,
970                       STS_HALT, STS_HALT, delay)) {
971                 xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
972                 spin_unlock_irq(&xhci->lock);
973                 return -ETIMEDOUT;
974         }
975         xhci_clear_command_ring(xhci);
976
977         /* step 3: save registers */
978         xhci_save_registers(xhci);
979
980         /* step 4: set CSS flag */
981         command = readl(&xhci->op_regs->command);
982         command |= CMD_CSS;
983         writel(command, &xhci->op_regs->command);
984         if (xhci_handshake(&xhci->op_regs->status,
985                                 STS_SAVE, 0, 20 * 1000)) {
986                 xhci_warn(xhci, "WARN: xHC save state timeout\n");
987                 spin_unlock_irq(&xhci->lock);
988                 return -ETIMEDOUT;
989         }
990         spin_unlock_irq(&xhci->lock);
991
992         /*
993          * Deleting Compliance Mode Recovery Timer because the xHCI Host
994          * is about to be suspended.
995          */
996         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
997                         (!(xhci_all_ports_seen_u0(xhci)))) {
998                 del_timer_sync(&xhci->comp_mode_recovery_timer);
999                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1000                                 "%s: compliance mode recovery timer deleted",
1001                                 __func__);
1002         }
1003
1004         /* step 5: remove core well power */
1005         /* synchronize irq when using MSI-X */
1006         xhci_msix_sync_irqs(xhci);
1007
1008         return rc;
1009 }
1010 EXPORT_SYMBOL_GPL(xhci_suspend);
1011
1012 /*
1013  * start xHC (not bus-specific)
1014  *
1015  * This is called when the machine transition from S3/S4 mode.
1016  *
1017  */
1018 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1019 {
1020         u32                     command, temp = 0;
1021         struct usb_hcd          *hcd = xhci_to_hcd(xhci);
1022         struct usb_hcd          *secondary_hcd;
1023         int                     retval = 0;
1024         bool                    comp_timer_running = false;
1025         bool                    pending_portevent = false;
1026
1027         if (!hcd->state)
1028                 return 0;
1029
1030         /* Wait a bit if either of the roothubs need to settle from the
1031          * transition into bus suspend.
1032          */
1033         if (time_before(jiffies, xhci->bus_state[0].next_statechange) ||
1034                         time_before(jiffies,
1035                                 xhci->bus_state[1].next_statechange))
1036                 msleep(100);
1037
1038         set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1039         set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1040
1041         spin_lock_irq(&xhci->lock);
1042         if (xhci->quirks & XHCI_RESET_ON_RESUME)
1043                 hibernated = true;
1044
1045         if (!hibernated) {
1046                 /*
1047                  * Some controllers might lose power during suspend, so wait
1048                  * for controller not ready bit to clear, just as in xHC init.
1049                  */
1050                 retval = xhci_handshake(&xhci->op_regs->status,
1051                                         STS_CNR, 0, 10 * 1000 * 1000);
1052                 if (retval) {
1053                         xhci_warn(xhci, "Controller not ready at resume %d\n",
1054                                   retval);
1055                         spin_unlock_irq(&xhci->lock);
1056                         return retval;
1057                 }
1058                 /* step 1: restore register */
1059                 xhci_restore_registers(xhci);
1060                 /* step 2: initialize command ring buffer */
1061                 xhci_set_cmd_ring_deq(xhci);
1062                 /* step 3: restore state and start state*/
1063                 /* step 3: set CRS flag */
1064                 command = readl(&xhci->op_regs->command);
1065                 command |= CMD_CRS;
1066                 writel(command, &xhci->op_regs->command);
1067                 /*
1068                  * Some controllers take up to 55+ ms to complete the controller
1069                  * restore so setting the timeout to 100ms. Xhci specification
1070                  * doesn't mention any timeout value.
1071                  */
1072                 if (xhci_handshake(&xhci->op_regs->status,
1073                               STS_RESTORE, 0, 100 * 1000)) {
1074                         xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1075                         spin_unlock_irq(&xhci->lock);
1076                         return -ETIMEDOUT;
1077                 }
1078                 temp = readl(&xhci->op_regs->status);
1079         }
1080
1081         /* If restore operation fails, re-initialize the HC during resume */
1082         if ((temp & STS_SRE) || hibernated) {
1083
1084                 if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1085                                 !(xhci_all_ports_seen_u0(xhci))) {
1086                         del_timer_sync(&xhci->comp_mode_recovery_timer);
1087                         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1088                                 "Compliance Mode Recovery Timer deleted!");
1089                 }
1090
1091                 /* Let the USB core know _both_ roothubs lost power. */
1092                 usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1093                 usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1094
1095                 xhci_dbg(xhci, "Stop HCD\n");
1096                 xhci_halt(xhci);
1097                 xhci_reset(xhci);
1098                 spin_unlock_irq(&xhci->lock);
1099                 xhci_cleanup_msix(xhci);
1100
1101                 xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1102                 temp = readl(&xhci->op_regs->status);
1103                 writel(temp & ~STS_EINT, &xhci->op_regs->status);
1104                 temp = readl(&xhci->ir_set->irq_pending);
1105                 writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1106                 xhci_print_ir_set(xhci, 0);
1107
1108                 xhci_dbg(xhci, "cleaning up memory\n");
1109                 xhci_mem_cleanup(xhci);
1110                 xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1111                             readl(&xhci->op_regs->status));
1112
1113                 /* USB core calls the PCI reinit and start functions twice:
1114                  * first with the primary HCD, and then with the secondary HCD.
1115                  * If we don't do the same, the host will never be started.
1116                  */
1117                 if (!usb_hcd_is_primary_hcd(hcd))
1118                         secondary_hcd = hcd;
1119                 else
1120                         secondary_hcd = xhci->shared_hcd;
1121
1122                 xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1123                 retval = xhci_init(hcd->primary_hcd);
1124                 if (retval)
1125                         return retval;
1126                 comp_timer_running = true;
1127
1128                 xhci_dbg(xhci, "Start the primary HCD\n");
1129                 retval = xhci_run(hcd->primary_hcd);
1130                 if (!retval) {
1131                         xhci_dbg(xhci, "Start the secondary HCD\n");
1132                         retval = xhci_run(secondary_hcd);
1133                 }
1134                 hcd->state = HC_STATE_SUSPENDED;
1135                 xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1136                 goto done;
1137         }
1138
1139         /* step 4: set Run/Stop bit */
1140         command = readl(&xhci->op_regs->command);
1141         command |= CMD_RUN;
1142         writel(command, &xhci->op_regs->command);
1143         xhci_handshake(&xhci->op_regs->status, STS_HALT,
1144                   0, 250 * 1000);
1145
1146         /* step 5: walk topology and initialize portsc,
1147          * portpmsc and portli
1148          */
1149         /* this is done in bus_resume */
1150
1151         /* step 6: restart each of the previously
1152          * Running endpoints by ringing their doorbells
1153          */
1154
1155         spin_unlock_irq(&xhci->lock);
1156
1157  done:
1158         if (retval == 0) {
1159                 /*
1160                  * Resume roothubs only if there are pending events.
1161                  * USB 3 devices resend U3 LFPS wake after a 100ms delay if
1162                  * the first wake signalling failed, give it that chance.
1163                  */
1164                 pending_portevent = xhci_pending_portevent(xhci);
1165                 if (!pending_portevent) {
1166                         msleep(120);
1167                         pending_portevent = xhci_pending_portevent(xhci);
1168                 }
1169
1170                 if (pending_portevent) {
1171                         usb_hcd_resume_root_hub(xhci->shared_hcd);
1172                         usb_hcd_resume_root_hub(hcd);
1173                 }
1174         }
1175         /*
1176          * If system is subject to the Quirk, Compliance Mode Timer needs to
1177          * be re-initialized Always after a system resume. Ports are subject
1178          * to suffer the Compliance Mode issue again. It doesn't matter if
1179          * ports have entered previously to U0 before system's suspension.
1180          */
1181         if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1182                 compliance_mode_recovery_timer_init(xhci);
1183
1184         if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1185                 usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1186
1187         /* Re-enable port polling. */
1188         xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1189         set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1190         usb_hcd_poll_rh_status(xhci->shared_hcd);
1191         set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1192         usb_hcd_poll_rh_status(hcd);
1193
1194         return retval;
1195 }
1196 EXPORT_SYMBOL_GPL(xhci_resume);
1197 #endif  /* CONFIG_PM */
1198
1199 /*-------------------------------------------------------------------------*/
1200
1201 /**
1202  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1203  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1204  * value to right shift 1 for the bitmask.
1205  *
1206  * Index  = (epnum * 2) + direction - 1,
1207  * where direction = 0 for OUT, 1 for IN.
1208  * For control endpoints, the IN index is used (OUT index is unused), so
1209  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1210  */
1211 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1212 {
1213         unsigned int index;
1214         if (usb_endpoint_xfer_control(desc))
1215                 index = (unsigned int) (usb_endpoint_num(desc)*2);
1216         else
1217                 index = (unsigned int) (usb_endpoint_num(desc)*2) +
1218                         (usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1219         return index;
1220 }
1221
1222 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1223  * address from the XHCI endpoint index.
1224  */
1225 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1226 {
1227         unsigned int number = DIV_ROUND_UP(ep_index, 2);
1228         unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1229         return direction | number;
1230 }
1231
1232 /* Find the flag for this endpoint (for use in the control context).  Use the
1233  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1234  * bit 1, etc.
1235  */
1236 unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1237 {
1238         return 1 << (xhci_get_endpoint_index(desc) + 1);
1239 }
1240
1241 /* Find the flag for this endpoint (for use in the control context).  Use the
1242  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1243  * bit 1, etc.
1244  */
1245 unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1246 {
1247         return 1 << (ep_index + 1);
1248 }
1249
1250 /* Compute the last valid endpoint context index.  Basically, this is the
1251  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1252  * we find the most significant bit set in the added contexts flags.
1253  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1254  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1255  */
1256 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1257 {
1258         return fls(added_ctxs) - 1;
1259 }
1260
1261 /* Returns 1 if the arguments are OK;
1262  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1263  */
1264 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1265                 struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1266                 const char *func) {
1267         struct xhci_hcd *xhci;
1268         struct xhci_virt_device *virt_dev;
1269
1270         if (!hcd || (check_ep && !ep) || !udev) {
1271                 pr_debug("xHCI %s called with invalid args\n", func);
1272                 return -EINVAL;
1273         }
1274         if (!udev->parent) {
1275                 pr_debug("xHCI %s called for root hub\n", func);
1276                 return 0;
1277         }
1278
1279         xhci = hcd_to_xhci(hcd);
1280         if (check_virt_dev) {
1281                 if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1282                         xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1283                                         func);
1284                         return -EINVAL;
1285                 }
1286
1287                 virt_dev = xhci->devs[udev->slot_id];
1288                 if (virt_dev->udev != udev) {
1289                         xhci_dbg(xhci, "xHCI %s called with udev and "
1290                                           "virt_dev does not match\n", func);
1291                         return -EINVAL;
1292                 }
1293         }
1294
1295         if (xhci->xhc_state & XHCI_STATE_HALTED)
1296                 return -ENODEV;
1297
1298         return 1;
1299 }
1300
1301 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1302                 struct usb_device *udev, struct xhci_command *command,
1303                 bool ctx_change, bool must_succeed);
1304
1305 /*
1306  * Full speed devices may have a max packet size greater than 8 bytes, but the
1307  * USB core doesn't know that until it reads the first 8 bytes of the
1308  * descriptor.  If the usb_device's max packet size changes after that point,
1309  * we need to issue an evaluate context command and wait on it.
1310  */
1311 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1312                 unsigned int ep_index, struct urb *urb, gfp_t mem_flags)
1313 {
1314         struct xhci_container_ctx *out_ctx;
1315         struct xhci_input_control_ctx *ctrl_ctx;
1316         struct xhci_ep_ctx *ep_ctx;
1317         struct xhci_command *command;
1318         int max_packet_size;
1319         int hw_max_packet_size;
1320         int ret = 0;
1321
1322         out_ctx = xhci->devs[slot_id]->out_ctx;
1323         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1324         hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1325         max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1326         if (hw_max_packet_size != max_packet_size) {
1327                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1328                                 "Max Packet Size for ep 0 changed.");
1329                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1330                                 "Max packet size in usb_device = %d",
1331                                 max_packet_size);
1332                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1333                                 "Max packet size in xHCI HW = %d",
1334                                 hw_max_packet_size);
1335                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1336                                 "Issuing evaluate context command.");
1337
1338                 /* Set up the input context flags for the command */
1339                 /* FIXME: This won't work if a non-default control endpoint
1340                  * changes max packet sizes.
1341                  */
1342
1343                 command = xhci_alloc_command(xhci, false, true, mem_flags);
1344                 if (!command)
1345                         return -ENOMEM;
1346
1347                 command->in_ctx = xhci->devs[slot_id]->in_ctx;
1348                 ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1349                 if (!ctrl_ctx) {
1350                         xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1351                                         __func__);
1352                         ret = -ENOMEM;
1353                         goto command_cleanup;
1354                 }
1355                 /* Set up the modified control endpoint 0 */
1356                 xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1357                                 xhci->devs[slot_id]->out_ctx, ep_index);
1358
1359                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1360                 ep_ctx->ep_info &= cpu_to_le32(~EP_STATE_MASK);/* must clear */
1361                 ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1362                 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1363
1364                 ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1365                 ctrl_ctx->drop_flags = 0;
1366
1367                 xhci_dbg(xhci, "Slot %d input context\n", slot_id);
1368                 xhci_dbg_ctx(xhci, command->in_ctx, ep_index);
1369                 xhci_dbg(xhci, "Slot %d output context\n", slot_id);
1370                 xhci_dbg_ctx(xhci, out_ctx, ep_index);
1371
1372                 ret = xhci_configure_endpoint(xhci, urb->dev, command,
1373                                 true, false);
1374
1375                 /* Clean up the input context for later use by bandwidth
1376                  * functions.
1377                  */
1378                 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1379 command_cleanup:
1380                 kfree(command->completion);
1381                 kfree(command);
1382         }
1383         return ret;
1384 }
1385
1386 /*
1387  * non-error returns are a promise to giveback() the urb later
1388  * we drop ownership so next owner (or urb unlink) can get it
1389  */
1390 int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1391 {
1392         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1393         struct xhci_td *buffer;
1394         unsigned long flags;
1395         int ret = 0;
1396         unsigned int slot_id, ep_index;
1397         struct urb_priv *urb_priv;
1398         int size, i;
1399
1400         if (!urb)
1401                 return -EINVAL;
1402         ret = xhci_check_args(hcd, urb->dev, urb->ep,
1403                                         true, true, __func__);
1404         if (ret <= 0)
1405                 return ret ? ret : -EINVAL;
1406
1407         slot_id = urb->dev->slot_id;
1408         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1409
1410         if (!HCD_HW_ACCESSIBLE(hcd)) {
1411                 if (!in_interrupt())
1412                         xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1413                 ret = -ESHUTDOWN;
1414                 goto exit;
1415         }
1416
1417         if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1418                 size = urb->number_of_packets;
1419         else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1420             urb->transfer_buffer_length > 0 &&
1421             urb->transfer_flags & URB_ZERO_PACKET &&
1422             !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1423                 size = 2;
1424         else
1425                 size = 1;
1426
1427         urb_priv = kzalloc(sizeof(struct urb_priv) +
1428                                   size * sizeof(struct xhci_td *), mem_flags);
1429         if (!urb_priv)
1430                 return -ENOMEM;
1431
1432         buffer = kzalloc(size * sizeof(struct xhci_td), mem_flags);
1433         if (!buffer) {
1434                 kfree(urb_priv);
1435                 return -ENOMEM;
1436         }
1437
1438         for (i = 0; i < size; i++) {
1439                 urb_priv->td[i] = buffer;
1440                 buffer++;
1441         }
1442
1443         urb_priv->length = size;
1444         urb_priv->td_cnt = 0;
1445         urb->hcpriv = urb_priv;
1446
1447         if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1448                 /* Check to see if the max packet size for the default control
1449                  * endpoint changed during FS device enumeration
1450                  */
1451                 if (urb->dev->speed == USB_SPEED_FULL) {
1452                         ret = xhci_check_maxpacket(xhci, slot_id,
1453                                         ep_index, urb, mem_flags);
1454                         if (ret < 0) {
1455                                 xhci_urb_free_priv(urb_priv);
1456                                 urb->hcpriv = NULL;
1457                                 return ret;
1458                         }
1459                 }
1460
1461                 /* We have a spinlock and interrupts disabled, so we must pass
1462                  * atomic context to this function, which may allocate memory.
1463                  */
1464                 spin_lock_irqsave(&xhci->lock, flags);
1465                 if (xhci->xhc_state & XHCI_STATE_DYING)
1466                         goto dying;
1467                 ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1468                                 slot_id, ep_index);
1469                 if (ret)
1470                         goto free_priv;
1471                 spin_unlock_irqrestore(&xhci->lock, flags);
1472         } else if (usb_endpoint_xfer_bulk(&urb->ep->desc)) {
1473                 spin_lock_irqsave(&xhci->lock, flags);
1474                 if (xhci->xhc_state & XHCI_STATE_DYING)
1475                         goto dying;
1476                 if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1477                                 EP_GETTING_STREAMS) {
1478                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1479                                         "is transitioning to using streams.\n");
1480                         ret = -EINVAL;
1481                 } else if (xhci->devs[slot_id]->eps[ep_index].ep_state &
1482                                 EP_GETTING_NO_STREAMS) {
1483                         xhci_warn(xhci, "WARN: Can't enqueue URB while bulk ep "
1484                                         "is transitioning to "
1485                                         "not having streams.\n");
1486                         ret = -EINVAL;
1487                 } else {
1488                         ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1489                                         slot_id, ep_index);
1490                 }
1491                 if (ret)
1492                         goto free_priv;
1493                 spin_unlock_irqrestore(&xhci->lock, flags);
1494         } else if (usb_endpoint_xfer_int(&urb->ep->desc)) {
1495                 spin_lock_irqsave(&xhci->lock, flags);
1496                 if (xhci->xhc_state & XHCI_STATE_DYING)
1497                         goto dying;
1498                 ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1499                                 slot_id, ep_index);
1500                 if (ret)
1501                         goto free_priv;
1502                 spin_unlock_irqrestore(&xhci->lock, flags);
1503         } else {
1504                 spin_lock_irqsave(&xhci->lock, flags);
1505                 if (xhci->xhc_state & XHCI_STATE_DYING)
1506                         goto dying;
1507                 ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1508                                 slot_id, ep_index);
1509                 if (ret)
1510                         goto free_priv;
1511                 spin_unlock_irqrestore(&xhci->lock, flags);
1512         }
1513 exit:
1514         return ret;
1515 dying:
1516         xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for "
1517                         "non-responsive xHCI host.\n",
1518                         urb->ep->desc.bEndpointAddress, urb);
1519         ret = -ESHUTDOWN;
1520 free_priv:
1521         xhci_urb_free_priv(urb_priv);
1522         urb->hcpriv = NULL;
1523         spin_unlock_irqrestore(&xhci->lock, flags);
1524         return ret;
1525 }
1526
1527 /*
1528  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1529  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1530  * should pick up where it left off in the TD, unless a Set Transfer Ring
1531  * Dequeue Pointer is issued.
1532  *
1533  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1534  * the ring.  Since the ring is a contiguous structure, they can't be physically
1535  * removed.  Instead, there are two options:
1536  *
1537  *  1) If the HC is in the middle of processing the URB to be canceled, we
1538  *     simply move the ring's dequeue pointer past those TRBs using the Set
1539  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1540  *     when drivers timeout on the last submitted URB and attempt to cancel.
1541  *
1542  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1543  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1544  *     HC will need to invalidate the any TRBs it has cached after the stop
1545  *     endpoint command, as noted in the xHCI 0.95 errata.
1546  *
1547  *  3) The TD may have completed by the time the Stop Endpoint Command
1548  *     completes, so software needs to handle that case too.
1549  *
1550  * This function should protect against the TD enqueueing code ringing the
1551  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1552  * It also needs to account for multiple cancellations on happening at the same
1553  * time for the same endpoint.
1554  *
1555  * Note that this function can be called in any context, or so says
1556  * usb_hcd_unlink_urb()
1557  */
1558 int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1559 {
1560         unsigned long flags;
1561         int ret, i;
1562         u32 temp;
1563         struct xhci_hcd *xhci;
1564         struct urb_priv *urb_priv;
1565         struct xhci_td *td;
1566         unsigned int ep_index;
1567         struct xhci_ring *ep_ring;
1568         struct xhci_virt_ep *ep;
1569         struct xhci_command *command;
1570
1571         xhci = hcd_to_xhci(hcd);
1572         spin_lock_irqsave(&xhci->lock, flags);
1573         /* Make sure the URB hasn't completed or been unlinked already */
1574         ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1575         if (ret || !urb->hcpriv)
1576                 goto done;
1577         temp = readl(&xhci->op_regs->status);
1578         if (temp == 0xffffffff || (xhci->xhc_state & XHCI_STATE_HALTED)) {
1579                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1580                                 "HW died, freeing TD.");
1581                 urb_priv = urb->hcpriv;
1582                 for (i = urb_priv->td_cnt;
1583                      i < urb_priv->length && xhci->devs[urb->dev->slot_id];
1584                      i++) {
1585                         td = urb_priv->td[i];
1586                         if (!list_empty(&td->td_list))
1587                                 list_del_init(&td->td_list);
1588                         if (!list_empty(&td->cancelled_td_list))
1589                                 list_del_init(&td->cancelled_td_list);
1590                 }
1591
1592                 usb_hcd_unlink_urb_from_ep(hcd, urb);
1593                 spin_unlock_irqrestore(&xhci->lock, flags);
1594                 usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1595                 xhci_urb_free_priv(urb_priv);
1596                 return ret;
1597         }
1598
1599         ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1600         ep = &xhci->devs[urb->dev->slot_id]->eps[ep_index];
1601         ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1602         if (!ep_ring) {
1603                 ret = -EINVAL;
1604                 goto done;
1605         }
1606
1607         urb_priv = urb->hcpriv;
1608         i = urb_priv->td_cnt;
1609         if (i < urb_priv->length)
1610                 xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1611                                 "Cancel URB %p, dev %s, ep 0x%x, "
1612                                 "starting at offset 0x%llx",
1613                                 urb, urb->dev->devpath,
1614                                 urb->ep->desc.bEndpointAddress,
1615                                 (unsigned long long) xhci_trb_virt_to_dma(
1616                                         urb_priv->td[i]->start_seg,
1617                                         urb_priv->td[i]->first_trb));
1618
1619         for (; i < urb_priv->length; i++) {
1620                 td = urb_priv->td[i];
1621                 list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1622         }
1623
1624         /* Queue a stop endpoint command, but only if this is
1625          * the first cancellation to be handled.
1626          */
1627         if (!(ep->ep_state & EP_HALT_PENDING)) {
1628                 command = xhci_alloc_command(xhci, false, false, GFP_ATOMIC);
1629                 if (!command) {
1630                         ret = -ENOMEM;
1631                         goto done;
1632                 }
1633                 ep->ep_state |= EP_HALT_PENDING;
1634                 ep->stop_cmds_pending++;
1635                 ep->stop_cmd_timer.expires = jiffies +
1636                         XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1637                 add_timer(&ep->stop_cmd_timer);
1638                 xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1639                                          ep_index, 0);
1640                 xhci_ring_cmd_db(xhci);
1641         }
1642 done:
1643         spin_unlock_irqrestore(&xhci->lock, flags);
1644         return ret;
1645 }
1646
1647 /* Drop an endpoint from a new bandwidth configuration for this device.
1648  * Only one call to this function is allowed per endpoint before
1649  * check_bandwidth() or reset_bandwidth() must be called.
1650  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1651  * add the endpoint to the schedule with possibly new parameters denoted by a
1652  * different endpoint descriptor in usb_host_endpoint.
1653  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1654  * not allowed.
1655  *
1656  * The USB core will not allow URBs to be queued to an endpoint that is being
1657  * disabled, so there's no need for mutual exclusion to protect
1658  * the xhci->devs[slot_id] structure.
1659  */
1660 int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1661                 struct usb_host_endpoint *ep)
1662 {
1663         struct xhci_hcd *xhci;
1664         struct xhci_container_ctx *in_ctx, *out_ctx;
1665         struct xhci_input_control_ctx *ctrl_ctx;
1666         unsigned int ep_index;
1667         struct xhci_ep_ctx *ep_ctx;
1668         u32 drop_flag;
1669         u32 new_add_flags, new_drop_flags;
1670         int ret;
1671
1672         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1673         if (ret <= 0)
1674                 return ret;
1675         xhci = hcd_to_xhci(hcd);
1676         if (xhci->xhc_state & XHCI_STATE_DYING)
1677                 return -ENODEV;
1678
1679         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1680         drop_flag = xhci_get_endpoint_flag(&ep->desc);
1681         if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1682                 xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1683                                 __func__, drop_flag);
1684                 return 0;
1685         }
1686
1687         in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1688         out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1689         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1690         if (!ctrl_ctx) {
1691                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1692                                 __func__);
1693                 return 0;
1694         }
1695
1696         ep_index = xhci_get_endpoint_index(&ep->desc);
1697         ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1698         /* If the HC already knows the endpoint is disabled,
1699          * or the HCD has noted it is disabled, ignore this request
1700          */
1701         if (((ep_ctx->ep_info & cpu_to_le32(EP_STATE_MASK)) ==
1702              cpu_to_le32(EP_STATE_DISABLED)) ||
1703             le32_to_cpu(ctrl_ctx->drop_flags) &
1704             xhci_get_endpoint_flag(&ep->desc)) {
1705                 /* Do not warn when called after a usb_device_reset */
1706                 if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1707                         xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1708                                   __func__, ep);
1709                 return 0;
1710         }
1711
1712         ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1713         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1714
1715         ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1716         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1717
1718         xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1719
1720         if (xhci->quirks & XHCI_MTK_HOST)
1721                 xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1722
1723         xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1724                         (unsigned int) ep->desc.bEndpointAddress,
1725                         udev->slot_id,
1726                         (unsigned int) new_drop_flags,
1727                         (unsigned int) new_add_flags);
1728         return 0;
1729 }
1730
1731 /* Add an endpoint to a new possible bandwidth configuration for this device.
1732  * Only one call to this function is allowed per endpoint before
1733  * check_bandwidth() or reset_bandwidth() must be called.
1734  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1735  * add the endpoint to the schedule with possibly new parameters denoted by a
1736  * different endpoint descriptor in usb_host_endpoint.
1737  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1738  * not allowed.
1739  *
1740  * The USB core will not allow URBs to be queued to an endpoint until the
1741  * configuration or alt setting is installed in the device, so there's no need
1742  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1743  */
1744 int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1745                 struct usb_host_endpoint *ep)
1746 {
1747         struct xhci_hcd *xhci;
1748         struct xhci_container_ctx *in_ctx;
1749         unsigned int ep_index;
1750         struct xhci_input_control_ctx *ctrl_ctx;
1751         u32 added_ctxs;
1752         u32 new_add_flags, new_drop_flags;
1753         struct xhci_virt_device *virt_dev;
1754         int ret = 0;
1755
1756         ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1757         if (ret <= 0) {
1758                 /* So we won't queue a reset ep command for a root hub */
1759                 ep->hcpriv = NULL;
1760                 return ret;
1761         }
1762         xhci = hcd_to_xhci(hcd);
1763         if (xhci->xhc_state & XHCI_STATE_DYING)
1764                 return -ENODEV;
1765
1766         added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1767         if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1768                 /* FIXME when we have to issue an evaluate endpoint command to
1769                  * deal with ep0 max packet size changing once we get the
1770                  * descriptors
1771                  */
1772                 xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1773                                 __func__, added_ctxs);
1774                 return 0;
1775         }
1776
1777         virt_dev = xhci->devs[udev->slot_id];
1778         in_ctx = virt_dev->in_ctx;
1779         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1780         if (!ctrl_ctx) {
1781                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1782                                 __func__);
1783                 return 0;
1784         }
1785
1786         ep_index = xhci_get_endpoint_index(&ep->desc);
1787         /* If this endpoint is already in use, and the upper layers are trying
1788          * to add it again without dropping it, reject the addition.
1789          */
1790         if (virt_dev->eps[ep_index].ring &&
1791                         !(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1792                 xhci_warn(xhci, "Trying to add endpoint 0x%x "
1793                                 "without dropping it.\n",
1794                                 (unsigned int) ep->desc.bEndpointAddress);
1795                 return -EINVAL;
1796         }
1797
1798         /* If the HCD has already noted the endpoint is enabled,
1799          * ignore this request.
1800          */
1801         if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1802                 xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1803                                 __func__, ep);
1804                 return 0;
1805         }
1806
1807         /*
1808          * Configuration and alternate setting changes must be done in
1809          * process context, not interrupt context (or so documenation
1810          * for usb_set_interface() and usb_set_configuration() claim).
1811          */
1812         if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1813                 dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1814                                 __func__, ep->desc.bEndpointAddress);
1815                 return -ENOMEM;
1816         }
1817
1818         if (xhci->quirks & XHCI_MTK_HOST) {
1819                 ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1820                 if (ret < 0) {
1821                         xhci_free_or_cache_endpoint_ring(xhci,
1822                                 virt_dev, ep_index);
1823                         return ret;
1824                 }
1825         }
1826
1827         ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1828         new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1829
1830         /* If xhci_endpoint_disable() was called for this endpoint, but the
1831          * xHC hasn't been notified yet through the check_bandwidth() call,
1832          * this re-adds a new state for the endpoint from the new endpoint
1833          * descriptors.  We must drop and re-add this endpoint, so we leave the
1834          * drop flags alone.
1835          */
1836         new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1837
1838         /* Store the usb_device pointer for later use */
1839         ep->hcpriv = udev;
1840
1841         xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1842                         (unsigned int) ep->desc.bEndpointAddress,
1843                         udev->slot_id,
1844                         (unsigned int) new_drop_flags,
1845                         (unsigned int) new_add_flags);
1846         return 0;
1847 }
1848
1849 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1850 {
1851         struct xhci_input_control_ctx *ctrl_ctx;
1852         struct xhci_ep_ctx *ep_ctx;
1853         struct xhci_slot_ctx *slot_ctx;
1854         int i;
1855
1856         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1857         if (!ctrl_ctx) {
1858                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1859                                 __func__);
1860                 return;
1861         }
1862
1863         /* When a device's add flag and drop flag are zero, any subsequent
1864          * configure endpoint command will leave that endpoint's state
1865          * untouched.  Make sure we don't leave any old state in the input
1866          * endpoint contexts.
1867          */
1868         ctrl_ctx->drop_flags = 0;
1869         ctrl_ctx->add_flags = 0;
1870         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1871         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1872         /* Endpoint 0 is always valid */
1873         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1874         for (i = 1; i < 31; ++i) {
1875                 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1876                 ep_ctx->ep_info = 0;
1877                 ep_ctx->ep_info2 = 0;
1878                 ep_ctx->deq = 0;
1879                 ep_ctx->tx_info = 0;
1880         }
1881 }
1882
1883 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1884                 struct usb_device *udev, u32 *cmd_status)
1885 {
1886         int ret;
1887
1888         switch (*cmd_status) {
1889         case COMP_CMD_ABORT:
1890         case COMP_CMD_STOP:
1891                 xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1892                 ret = -ETIME;
1893                 break;
1894         case COMP_ENOMEM:
1895                 dev_warn(&udev->dev,
1896                          "Not enough host controller resources for new device state.\n");
1897                 ret = -ENOMEM;
1898                 /* FIXME: can we allocate more resources for the HC? */
1899                 break;
1900         case COMP_BW_ERR:
1901         case COMP_2ND_BW_ERR:
1902                 dev_warn(&udev->dev,
1903                          "Not enough bandwidth for new device state.\n");
1904                 ret = -ENOSPC;
1905                 /* FIXME: can we go back to the old state? */
1906                 break;
1907         case COMP_TRB_ERR:
1908                 /* the HCD set up something wrong */
1909                 dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1910                                 "add flag = 1, "
1911                                 "and endpoint is not disabled.\n");
1912                 ret = -EINVAL;
1913                 break;
1914         case COMP_DEV_ERR:
1915                 dev_warn(&udev->dev,
1916                          "ERROR: Incompatible device for endpoint configure command.\n");
1917                 ret = -ENODEV;
1918                 break;
1919         case COMP_SUCCESS:
1920                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1921                                 "Successful Endpoint Configure command");
1922                 ret = 0;
1923                 break;
1924         default:
1925                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1926                                 *cmd_status);
1927                 ret = -EINVAL;
1928                 break;
1929         }
1930         return ret;
1931 }
1932
1933 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1934                 struct usb_device *udev, u32 *cmd_status)
1935 {
1936         int ret;
1937         struct xhci_virt_device *virt_dev = xhci->devs[udev->slot_id];
1938
1939         switch (*cmd_status) {
1940         case COMP_CMD_ABORT:
1941         case COMP_CMD_STOP:
1942                 xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
1943                 ret = -ETIME;
1944                 break;
1945         case COMP_EINVAL:
1946                 dev_warn(&udev->dev,
1947                          "WARN: xHCI driver setup invalid evaluate context command.\n");
1948                 ret = -EINVAL;
1949                 break;
1950         case COMP_EBADSLT:
1951                 dev_warn(&udev->dev,
1952                         "WARN: slot not enabled for evaluate context command.\n");
1953                 ret = -EINVAL;
1954                 break;
1955         case COMP_CTX_STATE:
1956                 dev_warn(&udev->dev,
1957                         "WARN: invalid context state for evaluate context command.\n");
1958                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 1);
1959                 ret = -EINVAL;
1960                 break;
1961         case COMP_DEV_ERR:
1962                 dev_warn(&udev->dev,
1963                         "ERROR: Incompatible device for evaluate context command.\n");
1964                 ret = -ENODEV;
1965                 break;
1966         case COMP_MEL_ERR:
1967                 /* Max Exit Latency too large error */
1968                 dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
1969                 ret = -EINVAL;
1970                 break;
1971         case COMP_SUCCESS:
1972                 xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1973                                 "Successful evaluate context command");
1974                 ret = 0;
1975                 break;
1976         default:
1977                 xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1978                         *cmd_status);
1979                 ret = -EINVAL;
1980                 break;
1981         }
1982         return ret;
1983 }
1984
1985 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
1986                 struct xhci_input_control_ctx *ctrl_ctx)
1987 {
1988         u32 valid_add_flags;
1989         u32 valid_drop_flags;
1990
1991         /* Ignore the slot flag (bit 0), and the default control endpoint flag
1992          * (bit 1).  The default control endpoint is added during the Address
1993          * Device command and is never removed until the slot is disabled.
1994          */
1995         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
1996         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
1997
1998         /* Use hweight32 to count the number of ones in the add flags, or
1999          * number of endpoints added.  Don't count endpoints that are changed
2000          * (both added and dropped).
2001          */
2002         return hweight32(valid_add_flags) -
2003                 hweight32(valid_add_flags & valid_drop_flags);
2004 }
2005
2006 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2007                 struct xhci_input_control_ctx *ctrl_ctx)
2008 {
2009         u32 valid_add_flags;
2010         u32 valid_drop_flags;
2011
2012         valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2013         valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2014
2015         return hweight32(valid_drop_flags) -
2016                 hweight32(valid_add_flags & valid_drop_flags);
2017 }
2018
2019 /*
2020  * We need to reserve the new number of endpoints before the configure endpoint
2021  * command completes.  We can't subtract the dropped endpoints from the number
2022  * of active endpoints until the command completes because we can oversubscribe
2023  * the host in this case:
2024  *
2025  *  - the first configure endpoint command drops more endpoints than it adds
2026  *  - a second configure endpoint command that adds more endpoints is queued
2027  *  - the first configure endpoint command fails, so the config is unchanged
2028  *  - the second command may succeed, even though there isn't enough resources
2029  *
2030  * Must be called with xhci->lock held.
2031  */
2032 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2033                 struct xhci_input_control_ctx *ctrl_ctx)
2034 {
2035         u32 added_eps;
2036
2037         added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2038         if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2039                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2040                                 "Not enough ep ctxs: "
2041                                 "%u active, need to add %u, limit is %u.",
2042                                 xhci->num_active_eps, added_eps,
2043                                 xhci->limit_active_eps);
2044                 return -ENOMEM;
2045         }
2046         xhci->num_active_eps += added_eps;
2047         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2048                         "Adding %u ep ctxs, %u now active.", added_eps,
2049                         xhci->num_active_eps);
2050         return 0;
2051 }
2052
2053 /*
2054  * The configure endpoint was failed by the xHC for some other reason, so we
2055  * need to revert the resources that failed configuration would have used.
2056  *
2057  * Must be called with xhci->lock held.
2058  */
2059 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2060                 struct xhci_input_control_ctx *ctrl_ctx)
2061 {
2062         u32 num_failed_eps;
2063
2064         num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2065         xhci->num_active_eps -= num_failed_eps;
2066         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2067                         "Removing %u failed ep ctxs, %u now active.",
2068                         num_failed_eps,
2069                         xhci->num_active_eps);
2070 }
2071
2072 /*
2073  * Now that the command has completed, clean up the active endpoint count by
2074  * subtracting out the endpoints that were dropped (but not changed).
2075  *
2076  * Must be called with xhci->lock held.
2077  */
2078 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2079                 struct xhci_input_control_ctx *ctrl_ctx)
2080 {
2081         u32 num_dropped_eps;
2082
2083         num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2084         xhci->num_active_eps -= num_dropped_eps;
2085         if (num_dropped_eps)
2086                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2087                                 "Removing %u dropped ep ctxs, %u now active.",
2088                                 num_dropped_eps,
2089                                 xhci->num_active_eps);
2090 }
2091
2092 static unsigned int xhci_get_block_size(struct usb_device *udev)
2093 {
2094         switch (udev->speed) {
2095         case USB_SPEED_LOW:
2096         case USB_SPEED_FULL:
2097                 return FS_BLOCK;
2098         case USB_SPEED_HIGH:
2099                 return HS_BLOCK;
2100         case USB_SPEED_SUPER:
2101         case USB_SPEED_SUPER_PLUS:
2102                 return SS_BLOCK;
2103         case USB_SPEED_UNKNOWN:
2104         case USB_SPEED_WIRELESS:
2105         default:
2106                 /* Should never happen */
2107                 return 1;
2108         }
2109 }
2110
2111 static unsigned int
2112 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2113 {
2114         if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2115                 return LS_OVERHEAD;
2116         if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2117                 return FS_OVERHEAD;
2118         return HS_OVERHEAD;
2119 }
2120
2121 /* If we are changing a LS/FS device under a HS hub,
2122  * make sure (if we are activating a new TT) that the HS bus has enough
2123  * bandwidth for this new TT.
2124  */
2125 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2126                 struct xhci_virt_device *virt_dev,
2127                 int old_active_eps)
2128 {
2129         struct xhci_interval_bw_table *bw_table;
2130         struct xhci_tt_bw_info *tt_info;
2131
2132         /* Find the bandwidth table for the root port this TT is attached to. */
2133         bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2134         tt_info = virt_dev->tt_info;
2135         /* If this TT already had active endpoints, the bandwidth for this TT
2136          * has already been added.  Removing all periodic endpoints (and thus
2137          * making the TT enactive) will only decrease the bandwidth used.
2138          */
2139         if (old_active_eps)
2140                 return 0;
2141         if (old_active_eps == 0 && tt_info->active_eps != 0) {
2142                 if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2143                         return -ENOMEM;
2144                 return 0;
2145         }
2146         /* Not sure why we would have no new active endpoints...
2147          *
2148          * Maybe because of an Evaluate Context change for a hub update or a
2149          * control endpoint 0 max packet size change?
2150          * FIXME: skip the bandwidth calculation in that case.
2151          */
2152         return 0;
2153 }
2154
2155 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2156                 struct xhci_virt_device *virt_dev)
2157 {
2158         unsigned int bw_reserved;
2159
2160         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2161         if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2162                 return -ENOMEM;
2163
2164         bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2165         if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2166                 return -ENOMEM;
2167
2168         return 0;
2169 }
2170
2171 /*
2172  * This algorithm is a very conservative estimate of the worst-case scheduling
2173  * scenario for any one interval.  The hardware dynamically schedules the
2174  * packets, so we can't tell which microframe could be the limiting factor in
2175  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2176  *
2177  * Obviously, we can't solve an NP complete problem to find the minimum worst
2178  * case scenario.  Instead, we come up with an estimate that is no less than
2179  * the worst case bandwidth used for any one microframe, but may be an
2180  * over-estimate.
2181  *
2182  * We walk the requirements for each endpoint by interval, starting with the
2183  * smallest interval, and place packets in the schedule where there is only one
2184  * possible way to schedule packets for that interval.  In order to simplify
2185  * this algorithm, we record the largest max packet size for each interval, and
2186  * assume all packets will be that size.
2187  *
2188  * For interval 0, we obviously must schedule all packets for each interval.
2189  * The bandwidth for interval 0 is just the amount of data to be transmitted
2190  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2191  * the number of packets).
2192  *
2193  * For interval 1, we have two possible microframes to schedule those packets
2194  * in.  For this algorithm, if we can schedule the same number of packets for
2195  * each possible scheduling opportunity (each microframe), we will do so.  The
2196  * remaining number of packets will be saved to be transmitted in the gaps in
2197  * the next interval's scheduling sequence.
2198  *
2199  * As we move those remaining packets to be scheduled with interval 2 packets,
2200  * we have to double the number of remaining packets to transmit.  This is
2201  * because the intervals are actually powers of 2, and we would be transmitting
2202  * the previous interval's packets twice in this interval.  We also have to be
2203  * sure that when we look at the largest max packet size for this interval, we
2204  * also look at the largest max packet size for the remaining packets and take
2205  * the greater of the two.
2206  *
2207  * The algorithm continues to evenly distribute packets in each scheduling
2208  * opportunity, and push the remaining packets out, until we get to the last
2209  * interval.  Then those packets and their associated overhead are just added
2210  * to the bandwidth used.
2211  */
2212 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2213                 struct xhci_virt_device *virt_dev,
2214                 int old_active_eps)
2215 {
2216         unsigned int bw_reserved;
2217         unsigned int max_bandwidth;
2218         unsigned int bw_used;
2219         unsigned int block_size;
2220         struct xhci_interval_bw_table *bw_table;
2221         unsigned int packet_size = 0;
2222         unsigned int overhead = 0;
2223         unsigned int packets_transmitted = 0;
2224         unsigned int packets_remaining = 0;
2225         unsigned int i;
2226
2227         if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2228                 return xhci_check_ss_bw(xhci, virt_dev);
2229
2230         if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2231                 max_bandwidth = HS_BW_LIMIT;
2232                 /* Convert percent of bus BW reserved to blocks reserved */
2233                 bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2234         } else {
2235                 max_bandwidth = FS_BW_LIMIT;
2236                 bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2237         }
2238
2239         bw_table = virt_dev->bw_table;
2240         /* We need to translate the max packet size and max ESIT payloads into
2241          * the units the hardware uses.
2242          */
2243         block_size = xhci_get_block_size(virt_dev->udev);
2244
2245         /* If we are manipulating a LS/FS device under a HS hub, double check
2246          * that the HS bus has enough bandwidth if we are activing a new TT.
2247          */
2248         if (virt_dev->tt_info) {
2249                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2250                                 "Recalculating BW for rootport %u",
2251                                 virt_dev->real_port);
2252                 if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2253                         xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2254                                         "newly activated TT.\n");
2255                         return -ENOMEM;
2256                 }
2257                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2258                                 "Recalculating BW for TT slot %u port %u",
2259                                 virt_dev->tt_info->slot_id,
2260                                 virt_dev->tt_info->ttport);
2261         } else {
2262                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2263                                 "Recalculating BW for rootport %u",
2264                                 virt_dev->real_port);
2265         }
2266
2267         /* Add in how much bandwidth will be used for interval zero, or the
2268          * rounded max ESIT payload + number of packets * largest overhead.
2269          */
2270         bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2271                 bw_table->interval_bw[0].num_packets *
2272                 xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2273
2274         for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2275                 unsigned int bw_added;
2276                 unsigned int largest_mps;
2277                 unsigned int interval_overhead;
2278
2279                 /*
2280                  * How many packets could we transmit in this interval?
2281                  * If packets didn't fit in the previous interval, we will need
2282                  * to transmit that many packets twice within this interval.
2283                  */
2284                 packets_remaining = 2 * packets_remaining +
2285                         bw_table->interval_bw[i].num_packets;
2286
2287                 /* Find the largest max packet size of this or the previous
2288                  * interval.
2289                  */
2290                 if (list_empty(&bw_table->interval_bw[i].endpoints))
2291                         largest_mps = 0;
2292                 else {
2293                         struct xhci_virt_ep *virt_ep;
2294                         struct list_head *ep_entry;
2295
2296                         ep_entry = bw_table->interval_bw[i].endpoints.next;
2297                         virt_ep = list_entry(ep_entry,
2298                                         struct xhci_virt_ep, bw_endpoint_list);
2299                         /* Convert to blocks, rounding up */
2300                         largest_mps = DIV_ROUND_UP(
2301                                         virt_ep->bw_info.max_packet_size,
2302                                         block_size);
2303                 }
2304                 if (largest_mps > packet_size)
2305                         packet_size = largest_mps;
2306
2307                 /* Use the larger overhead of this or the previous interval. */
2308                 interval_overhead = xhci_get_largest_overhead(
2309                                 &bw_table->interval_bw[i]);
2310                 if (interval_overhead > overhead)
2311                         overhead = interval_overhead;
2312
2313                 /* How many packets can we evenly distribute across
2314                  * (1 << (i + 1)) possible scheduling opportunities?
2315                  */
2316                 packets_transmitted = packets_remaining >> (i + 1);
2317
2318                 /* Add in the bandwidth used for those scheduled packets */
2319                 bw_added = packets_transmitted * (overhead + packet_size);
2320
2321                 /* How many packets do we have remaining to transmit? */
2322                 packets_remaining = packets_remaining % (1 << (i + 1));
2323
2324                 /* What largest max packet size should those packets have? */
2325                 /* If we've transmitted all packets, don't carry over the
2326                  * largest packet size.
2327                  */
2328                 if (packets_remaining == 0) {
2329                         packet_size = 0;
2330                         overhead = 0;
2331                 } else if (packets_transmitted > 0) {
2332                         /* Otherwise if we do have remaining packets, and we've
2333                          * scheduled some packets in this interval, take the
2334                          * largest max packet size from endpoints with this
2335                          * interval.
2336                          */
2337                         packet_size = largest_mps;
2338                         overhead = interval_overhead;
2339                 }
2340                 /* Otherwise carry over packet_size and overhead from the last
2341                  * time we had a remainder.
2342                  */
2343                 bw_used += bw_added;
2344                 if (bw_used > max_bandwidth) {
2345                         xhci_warn(xhci, "Not enough bandwidth. "
2346                                         "Proposed: %u, Max: %u\n",
2347                                 bw_used, max_bandwidth);
2348                         return -ENOMEM;
2349                 }
2350         }
2351         /*
2352          * Ok, we know we have some packets left over after even-handedly
2353          * scheduling interval 15.  We don't know which microframes they will
2354          * fit into, so we over-schedule and say they will be scheduled every
2355          * microframe.
2356          */
2357         if (packets_remaining > 0)
2358                 bw_used += overhead + packet_size;
2359
2360         if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2361                 unsigned int port_index = virt_dev->real_port - 1;
2362
2363                 /* OK, we're manipulating a HS device attached to a
2364                  * root port bandwidth domain.  Include the number of active TTs
2365                  * in the bandwidth used.
2366                  */
2367                 bw_used += TT_HS_OVERHEAD *
2368                         xhci->rh_bw[port_index].num_active_tts;
2369         }
2370
2371         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2372                 "Final bandwidth: %u, Limit: %u, Reserved: %u, "
2373                 "Available: %u " "percent",
2374                 bw_used, max_bandwidth, bw_reserved,
2375                 (max_bandwidth - bw_used - bw_reserved) * 100 /
2376                 max_bandwidth);
2377
2378         bw_used += bw_reserved;
2379         if (bw_used > max_bandwidth) {
2380                 xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2381                                 bw_used, max_bandwidth);
2382                 return -ENOMEM;
2383         }
2384
2385         bw_table->bw_used = bw_used;
2386         return 0;
2387 }
2388
2389 static bool xhci_is_async_ep(unsigned int ep_type)
2390 {
2391         return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2392                                         ep_type != ISOC_IN_EP &&
2393                                         ep_type != INT_IN_EP);
2394 }
2395
2396 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2397 {
2398         return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2399 }
2400
2401 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2402 {
2403         unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2404
2405         if (ep_bw->ep_interval == 0)
2406                 return SS_OVERHEAD_BURST +
2407                         (ep_bw->mult * ep_bw->num_packets *
2408                                         (SS_OVERHEAD + mps));
2409         return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2410                                 (SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2411                                 1 << ep_bw->ep_interval);
2412
2413 }
2414
2415 void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2416                 struct xhci_bw_info *ep_bw,
2417                 struct xhci_interval_bw_table *bw_table,
2418                 struct usb_device *udev,
2419                 struct xhci_virt_ep *virt_ep,
2420                 struct xhci_tt_bw_info *tt_info)
2421 {
2422         struct xhci_interval_bw *interval_bw;
2423         int normalized_interval;
2424
2425         if (xhci_is_async_ep(ep_bw->type))
2426                 return;
2427
2428         if (udev->speed >= USB_SPEED_SUPER) {
2429                 if (xhci_is_sync_in_ep(ep_bw->type))
2430                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2431                                 xhci_get_ss_bw_consumed(ep_bw);
2432                 else
2433                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2434                                 xhci_get_ss_bw_consumed(ep_bw);
2435                 return;
2436         }
2437
2438         /* SuperSpeed endpoints never get added to intervals in the table, so
2439          * this check is only valid for HS/FS/LS devices.
2440          */
2441         if (list_empty(&virt_ep->bw_endpoint_list))
2442                 return;
2443         /* For LS/FS devices, we need to translate the interval expressed in
2444          * microframes to frames.
2445          */
2446         if (udev->speed == USB_SPEED_HIGH)
2447                 normalized_interval = ep_bw->ep_interval;
2448         else
2449                 normalized_interval = ep_bw->ep_interval - 3;
2450
2451         if (normalized_interval == 0)
2452                 bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2453         interval_bw = &bw_table->interval_bw[normalized_interval];
2454         interval_bw->num_packets -= ep_bw->num_packets;
2455         switch (udev->speed) {
2456         case USB_SPEED_LOW:
2457                 interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2458                 break;
2459         case USB_SPEED_FULL:
2460                 interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2461                 break;
2462         case USB_SPEED_HIGH:
2463                 interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2464                 break;
2465         case USB_SPEED_SUPER:
2466         case USB_SPEED_SUPER_PLUS:
2467         case USB_SPEED_UNKNOWN:
2468         case USB_SPEED_WIRELESS:
2469                 /* Should never happen because only LS/FS/HS endpoints will get
2470                  * added to the endpoint list.
2471                  */
2472                 return;
2473         }
2474         if (tt_info)
2475                 tt_info->active_eps -= 1;
2476         list_del_init(&virt_ep->bw_endpoint_list);
2477 }
2478
2479 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2480                 struct xhci_bw_info *ep_bw,
2481                 struct xhci_interval_bw_table *bw_table,
2482                 struct usb_device *udev,
2483                 struct xhci_virt_ep *virt_ep,
2484                 struct xhci_tt_bw_info *tt_info)
2485 {
2486         struct xhci_interval_bw *interval_bw;
2487         struct xhci_virt_ep *smaller_ep;
2488         int normalized_interval;
2489
2490         if (xhci_is_async_ep(ep_bw->type))
2491                 return;
2492
2493         if (udev->speed == USB_SPEED_SUPER) {
2494                 if (xhci_is_sync_in_ep(ep_bw->type))
2495                         xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2496                                 xhci_get_ss_bw_consumed(ep_bw);
2497                 else
2498                         xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2499                                 xhci_get_ss_bw_consumed(ep_bw);
2500                 return;
2501         }
2502
2503         /* For LS/FS devices, we need to translate the interval expressed in
2504          * microframes to frames.
2505          */
2506         if (udev->speed == USB_SPEED_HIGH)
2507                 normalized_interval = ep_bw->ep_interval;
2508         else
2509                 normalized_interval = ep_bw->ep_interval - 3;
2510
2511         if (normalized_interval == 0)
2512                 bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2513         interval_bw = &bw_table->interval_bw[normalized_interval];
2514         interval_bw->num_packets += ep_bw->num_packets;
2515         switch (udev->speed) {
2516         case USB_SPEED_LOW:
2517                 interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2518                 break;
2519         case USB_SPEED_FULL:
2520                 interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2521                 break;
2522         case USB_SPEED_HIGH:
2523                 interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2524                 break;
2525         case USB_SPEED_SUPER:
2526         case USB_SPEED_SUPER_PLUS:
2527         case USB_SPEED_UNKNOWN:
2528         case USB_SPEED_WIRELESS:
2529                 /* Should never happen because only LS/FS/HS endpoints will get
2530                  * added to the endpoint list.
2531                  */
2532                 return;
2533         }
2534
2535         if (tt_info)
2536                 tt_info->active_eps += 1;
2537         /* Insert the endpoint into the list, largest max packet size first. */
2538         list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2539                         bw_endpoint_list) {
2540                 if (ep_bw->max_packet_size >=
2541                                 smaller_ep->bw_info.max_packet_size) {
2542                         /* Add the new ep before the smaller endpoint */
2543                         list_add_tail(&virt_ep->bw_endpoint_list,
2544                                         &smaller_ep->bw_endpoint_list);
2545                         return;
2546                 }
2547         }
2548         /* Add the new endpoint at the end of the list. */
2549         list_add_tail(&virt_ep->bw_endpoint_list,
2550                         &interval_bw->endpoints);
2551 }
2552
2553 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2554                 struct xhci_virt_device *virt_dev,
2555                 int old_active_eps)
2556 {
2557         struct xhci_root_port_bw_info *rh_bw_info;
2558         if (!virt_dev->tt_info)
2559                 return;
2560
2561         rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2562         if (old_active_eps == 0 &&
2563                                 virt_dev->tt_info->active_eps != 0) {
2564                 rh_bw_info->num_active_tts += 1;
2565                 rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2566         } else if (old_active_eps != 0 &&
2567                                 virt_dev->tt_info->active_eps == 0) {
2568                 rh_bw_info->num_active_tts -= 1;
2569                 rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2570         }
2571 }
2572
2573 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2574                 struct xhci_virt_device *virt_dev,
2575                 struct xhci_container_ctx *in_ctx)
2576 {
2577         struct xhci_bw_info ep_bw_info[31];
2578         int i;
2579         struct xhci_input_control_ctx *ctrl_ctx;
2580         int old_active_eps = 0;
2581
2582         if (virt_dev->tt_info)
2583                 old_active_eps = virt_dev->tt_info->active_eps;
2584
2585         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2586         if (!ctrl_ctx) {
2587                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2588                                 __func__);
2589                 return -ENOMEM;
2590         }
2591
2592         for (i = 0; i < 31; i++) {
2593                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2594                         continue;
2595
2596                 /* Make a copy of the BW info in case we need to revert this */
2597                 memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2598                                 sizeof(ep_bw_info[i]));
2599                 /* Drop the endpoint from the interval table if the endpoint is
2600                  * being dropped or changed.
2601                  */
2602                 if (EP_IS_DROPPED(ctrl_ctx, i))
2603                         xhci_drop_ep_from_interval_table(xhci,
2604                                         &virt_dev->eps[i].bw_info,
2605                                         virt_dev->bw_table,
2606                                         virt_dev->udev,
2607                                         &virt_dev->eps[i],
2608                                         virt_dev->tt_info);
2609         }
2610         /* Overwrite the information stored in the endpoints' bw_info */
2611         xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2612         for (i = 0; i < 31; i++) {
2613                 /* Add any changed or added endpoints to the interval table */
2614                 if (EP_IS_ADDED(ctrl_ctx, i))
2615                         xhci_add_ep_to_interval_table(xhci,
2616                                         &virt_dev->eps[i].bw_info,
2617                                         virt_dev->bw_table,
2618                                         virt_dev->udev,
2619                                         &virt_dev->eps[i],
2620                                         virt_dev->tt_info);
2621         }
2622
2623         if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2624                 /* Ok, this fits in the bandwidth we have.
2625                  * Update the number of active TTs.
2626                  */
2627                 xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2628                 return 0;
2629         }
2630
2631         /* We don't have enough bandwidth for this, revert the stored info. */
2632         for (i = 0; i < 31; i++) {
2633                 if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2634                         continue;
2635
2636                 /* Drop the new copies of any added or changed endpoints from
2637                  * the interval table.
2638                  */
2639                 if (EP_IS_ADDED(ctrl_ctx, i)) {
2640                         xhci_drop_ep_from_interval_table(xhci,
2641                                         &virt_dev->eps[i].bw_info,
2642                                         virt_dev->bw_table,
2643                                         virt_dev->udev,
2644                                         &virt_dev->eps[i],
2645                                         virt_dev->tt_info);
2646                 }
2647                 /* Revert the endpoint back to its old information */
2648                 memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2649                                 sizeof(ep_bw_info[i]));
2650                 /* Add any changed or dropped endpoints back into the table */
2651                 if (EP_IS_DROPPED(ctrl_ctx, i))
2652                         xhci_add_ep_to_interval_table(xhci,
2653                                         &virt_dev->eps[i].bw_info,
2654                                         virt_dev->bw_table,
2655                                         virt_dev->udev,
2656                                         &virt_dev->eps[i],
2657                                         virt_dev->tt_info);
2658         }
2659         return -ENOMEM;
2660 }
2661
2662
2663 /* Issue a configure endpoint command or evaluate context command
2664  * and wait for it to finish.
2665  */
2666 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2667                 struct usb_device *udev,
2668                 struct xhci_command *command,
2669                 bool ctx_change, bool must_succeed)
2670 {
2671         int ret;
2672         unsigned long flags;
2673         struct xhci_input_control_ctx *ctrl_ctx;
2674         struct xhci_virt_device *virt_dev;
2675
2676         if (!command)
2677                 return -EINVAL;
2678
2679         spin_lock_irqsave(&xhci->lock, flags);
2680         virt_dev = xhci->devs[udev->slot_id];
2681
2682         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2683         if (!ctrl_ctx) {
2684                 spin_unlock_irqrestore(&xhci->lock, flags);
2685                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2686                                 __func__);
2687                 return -ENOMEM;
2688         }
2689
2690         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2691                         xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2692                 spin_unlock_irqrestore(&xhci->lock, flags);
2693                 xhci_warn(xhci, "Not enough host resources, "
2694                                 "active endpoint contexts = %u\n",
2695                                 xhci->num_active_eps);
2696                 return -ENOMEM;
2697         }
2698         if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2699             xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2700                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2701                         xhci_free_host_resources(xhci, ctrl_ctx);
2702                 spin_unlock_irqrestore(&xhci->lock, flags);
2703                 xhci_warn(xhci, "Not enough bandwidth\n");
2704                 return -ENOMEM;
2705         }
2706
2707         if (!ctx_change)
2708                 ret = xhci_queue_configure_endpoint(xhci, command,
2709                                 command->in_ctx->dma,
2710                                 udev->slot_id, must_succeed);
2711         else
2712                 ret = xhci_queue_evaluate_context(xhci, command,
2713                                 command->in_ctx->dma,
2714                                 udev->slot_id, must_succeed);
2715         if (ret < 0) {
2716                 if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2717                         xhci_free_host_resources(xhci, ctrl_ctx);
2718                 spin_unlock_irqrestore(&xhci->lock, flags);
2719                 xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2720                                 "FIXME allocate a new ring segment");
2721                 return -ENOMEM;
2722         }
2723         xhci_ring_cmd_db(xhci);
2724         spin_unlock_irqrestore(&xhci->lock, flags);
2725
2726         /* Wait for the configure endpoint command to complete */
2727         wait_for_completion(command->completion);
2728
2729         if (!ctx_change)
2730                 ret = xhci_configure_endpoint_result(xhci, udev,
2731                                                      &command->status);
2732         else
2733                 ret = xhci_evaluate_context_result(xhci, udev,
2734                                                    &command->status);
2735
2736         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2737                 spin_lock_irqsave(&xhci->lock, flags);
2738                 /* If the command failed, remove the reserved resources.
2739                  * Otherwise, clean up the estimate to include dropped eps.
2740                  */
2741                 if (ret)
2742                         xhci_free_host_resources(xhci, ctrl_ctx);
2743                 else
2744                         xhci_finish_resource_reservation(xhci, ctrl_ctx);
2745                 spin_unlock_irqrestore(&xhci->lock, flags);
2746         }
2747         return ret;
2748 }
2749
2750 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2751         struct xhci_virt_device *vdev, int i)
2752 {
2753         struct xhci_virt_ep *ep = &vdev->eps[i];
2754
2755         if (ep->ep_state & EP_HAS_STREAMS) {
2756                 xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2757                                 xhci_get_endpoint_address(i));
2758                 xhci_free_stream_info(xhci, ep->stream_info);
2759                 ep->stream_info = NULL;
2760                 ep->ep_state &= ~EP_HAS_STREAMS;
2761         }
2762 }
2763
2764 /* Called after one or more calls to xhci_add_endpoint() or
2765  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2766  * to call xhci_reset_bandwidth().
2767  *
2768  * Since we are in the middle of changing either configuration or
2769  * installing a new alt setting, the USB core won't allow URBs to be
2770  * enqueued for any endpoint on the old config or interface.  Nothing
2771  * else should be touching the xhci->devs[slot_id] structure, so we
2772  * don't need to take the xhci->lock for manipulating that.
2773  */
2774 int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2775 {
2776         int i;
2777         int ret = 0;
2778         struct xhci_hcd *xhci;
2779         struct xhci_virt_device *virt_dev;
2780         struct xhci_input_control_ctx *ctrl_ctx;
2781         struct xhci_slot_ctx *slot_ctx;
2782         struct xhci_command *command;
2783
2784         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2785         if (ret <= 0)
2786                 return ret;
2787         xhci = hcd_to_xhci(hcd);
2788         if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2789                 (xhci->xhc_state & XHCI_STATE_REMOVING))
2790                 return -ENODEV;
2791
2792         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2793         virt_dev = xhci->devs[udev->slot_id];
2794
2795         command = xhci_alloc_command(xhci, false, true, GFP_KERNEL);
2796         if (!command)
2797                 return -ENOMEM;
2798
2799         command->in_ctx = virt_dev->in_ctx;
2800
2801         /* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2802         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2803         if (!ctrl_ctx) {
2804                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2805                                 __func__);
2806                 ret = -ENOMEM;
2807                 goto command_cleanup;
2808         }
2809         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2810         ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2811         ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2812
2813         /* Don't issue the command if there's no endpoints to update. */
2814         if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2815             ctrl_ctx->drop_flags == 0) {
2816                 ret = 0;
2817                 goto command_cleanup;
2818         }
2819         /* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2820         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2821         for (i = 31; i >= 1; i--) {
2822                 __le32 le32 = cpu_to_le32(BIT(i));
2823
2824                 if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2825                     || (ctrl_ctx->add_flags & le32) || i == 1) {
2826                         slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2827                         slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2828                         break;
2829                 }
2830         }
2831         xhci_dbg(xhci, "New Input Control Context:\n");
2832         xhci_dbg_ctx(xhci, virt_dev->in_ctx,
2833                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2834
2835         ret = xhci_configure_endpoint(xhci, udev, command,
2836                         false, false);
2837         if (ret)
2838                 /* Callee should call reset_bandwidth() */
2839                 goto command_cleanup;
2840
2841         xhci_dbg(xhci, "Output context after successful config ep cmd:\n");
2842         xhci_dbg_ctx(xhci, virt_dev->out_ctx,
2843                      LAST_CTX_TO_EP_NUM(le32_to_cpu(slot_ctx->dev_info)));
2844
2845         /* Free any rings that were dropped, but not changed. */
2846         for (i = 1; i < 31; ++i) {
2847                 if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2848                     !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2849                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2850                         xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2851                 }
2852         }
2853         xhci_zero_in_ctx(xhci, virt_dev);
2854         /*
2855          * Install any rings for completely new endpoints or changed endpoints,
2856          * and free or cache any old rings from changed endpoints.
2857          */
2858         for (i = 1; i < 31; ++i) {
2859                 if (!virt_dev->eps[i].new_ring)
2860                         continue;
2861                 /* Only cache or free the old ring if it exists.
2862                  * It may not if this is the first add of an endpoint.
2863                  */
2864                 if (virt_dev->eps[i].ring) {
2865                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
2866                 }
2867                 xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2868                 virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2869                 virt_dev->eps[i].new_ring = NULL;
2870         }
2871 command_cleanup:
2872         kfree(command->completion);
2873         kfree(command);
2874
2875         return ret;
2876 }
2877
2878 void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2879 {
2880         struct xhci_hcd *xhci;
2881         struct xhci_virt_device *virt_dev;
2882         int i, ret;
2883
2884         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2885         if (ret <= 0)
2886                 return;
2887         xhci = hcd_to_xhci(hcd);
2888
2889         xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2890         virt_dev = xhci->devs[udev->slot_id];
2891         /* Free any rings allocated for added endpoints */
2892         for (i = 0; i < 31; ++i) {
2893                 if (virt_dev->eps[i].new_ring) {
2894                         xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2895                         virt_dev->eps[i].new_ring = NULL;
2896                 }
2897         }
2898         xhci_zero_in_ctx(xhci, virt_dev);
2899 }
2900
2901 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2902                 struct xhci_container_ctx *in_ctx,
2903                 struct xhci_container_ctx *out_ctx,
2904                 struct xhci_input_control_ctx *ctrl_ctx,
2905                 u32 add_flags, u32 drop_flags)
2906 {
2907         ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2908         ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2909         xhci_slot_copy(xhci, in_ctx, out_ctx);
2910         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2911
2912         xhci_dbg(xhci, "Input Context:\n");
2913         xhci_dbg_ctx(xhci, in_ctx, xhci_last_valid_endpoint(add_flags));
2914 }
2915
2916 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2917                 unsigned int slot_id, unsigned int ep_index,
2918                 struct xhci_dequeue_state *deq_state)
2919 {
2920         struct xhci_input_control_ctx *ctrl_ctx;
2921         struct xhci_container_ctx *in_ctx;
2922         struct xhci_ep_ctx *ep_ctx;
2923         u32 added_ctxs;
2924         dma_addr_t addr;
2925
2926         in_ctx = xhci->devs[slot_id]->in_ctx;
2927         ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2928         if (!ctrl_ctx) {
2929                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2930                                 __func__);
2931                 return;
2932         }
2933
2934         xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2935                         xhci->devs[slot_id]->out_ctx, ep_index);
2936         ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
2937         addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
2938                         deq_state->new_deq_ptr);
2939         if (addr == 0) {
2940                 xhci_warn(xhci, "WARN Cannot submit config ep after "
2941                                 "reset ep command\n");
2942                 xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
2943                                 deq_state->new_deq_seg,
2944                                 deq_state->new_deq_ptr);
2945                 return;
2946         }
2947         ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
2948
2949         added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
2950         xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
2951                         xhci->devs[slot_id]->out_ctx, ctrl_ctx,
2952                         added_ctxs, added_ctxs);
2953 }
2954
2955 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci,
2956                         unsigned int ep_index, struct xhci_td *td)
2957 {
2958         struct xhci_dequeue_state deq_state;
2959         struct xhci_virt_ep *ep;
2960         struct usb_device *udev = td->urb->dev;
2961
2962         xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2963                         "Cleaning up stalled endpoint ring");
2964         ep = &xhci->devs[udev->slot_id]->eps[ep_index];
2965         /* We need to move the HW's dequeue pointer past this TD,
2966          * or it will attempt to resend it on the next doorbell ring.
2967          */
2968         xhci_find_new_dequeue_state(xhci, udev->slot_id,
2969                         ep_index, ep->stopped_stream, td, &deq_state);
2970
2971         if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
2972                 return;
2973
2974         /* HW with the reset endpoint quirk will use the saved dequeue state to
2975          * issue a configure endpoint command later.
2976          */
2977         if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
2978                 xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
2979                                 "Queueing new dequeue state");
2980                 xhci_queue_new_dequeue_state(xhci, udev->slot_id,
2981                                 ep_index, ep->stopped_stream, &deq_state);
2982         } else {
2983                 /* Better hope no one uses the input context between now and the
2984                  * reset endpoint completion!
2985                  * XXX: No idea how this hardware will react when stream rings
2986                  * are enabled.
2987                  */
2988                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2989                                 "Setting up input context for "
2990                                 "configure endpoint command");
2991                 xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
2992                                 ep_index, &deq_state);
2993         }
2994 }
2995
2996 /* Called when clearing halted device. The core should have sent the control
2997  * message to clear the device halt condition. The host side of the halt should
2998  * already be cleared with a reset endpoint command issued when the STALL tx
2999  * event was received.
3000  *
3001  * Context: in_interrupt
3002  */
3003
3004 void xhci_endpoint_reset(struct usb_hcd *hcd,
3005                 struct usb_host_endpoint *ep)
3006 {
3007         struct xhci_hcd *xhci;
3008
3009         xhci = hcd_to_xhci(hcd);
3010
3011         /*
3012          * We might need to implement the config ep cmd in xhci 4.8.1 note:
3013          * The Reset Endpoint Command may only be issued to endpoints in the
3014          * Halted state. If software wishes reset the Data Toggle or Sequence
3015          * Number of an endpoint that isn't in the Halted state, then software
3016          * may issue a Configure Endpoint Command with the Drop and Add bits set
3017          * for the target endpoint. that is in the Stopped state.
3018          */
3019
3020         /* For now just print debug to follow the situation */
3021         xhci_dbg(xhci, "Endpoint 0x%x ep reset callback called\n",
3022                  ep->desc.bEndpointAddress);
3023 }
3024
3025 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3026                 struct usb_device *udev, struct usb_host_endpoint *ep,
3027                 unsigned int slot_id)
3028 {
3029         int ret;
3030         unsigned int ep_index;
3031         unsigned int ep_state;
3032
3033         if (!ep)
3034                 return -EINVAL;
3035         ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3036         if (ret <= 0)
3037                 return ret ? ret : -EINVAL;
3038         if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3039                 xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3040                                 " descriptor for ep 0x%x does not support streams\n",
3041                                 ep->desc.bEndpointAddress);
3042                 return -EINVAL;
3043         }
3044
3045         ep_index = xhci_get_endpoint_index(&ep->desc);
3046         ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3047         if (ep_state & EP_HAS_STREAMS ||
3048                         ep_state & EP_GETTING_STREAMS) {
3049                 xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3050                                 "already has streams set up.\n",
3051                                 ep->desc.bEndpointAddress);
3052                 xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3053                                 "dynamic stream context array reallocation.\n");
3054                 return -EINVAL;
3055         }
3056         if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3057                 xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3058                                 "endpoint 0x%x; URBs are pending.\n",
3059                                 ep->desc.bEndpointAddress);
3060                 return -EINVAL;
3061         }
3062         return 0;
3063 }
3064
3065 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3066                 unsigned int *num_streams, unsigned int *num_stream_ctxs)
3067 {
3068         unsigned int max_streams;
3069
3070         /* The stream context array size must be a power of two */
3071         *num_stream_ctxs = roundup_pow_of_two(*num_streams);
3072         /*
3073          * Find out how many primary stream array entries the host controller
3074          * supports.  Later we may use secondary stream arrays (similar to 2nd
3075          * level page entries), but that's an optional feature for xHCI host
3076          * controllers. xHCs must support at least 4 stream IDs.
3077          */
3078         max_streams = HCC_MAX_PSA(xhci->hcc_params);
3079         if (*num_stream_ctxs > max_streams) {
3080                 xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3081                                 max_streams);
3082                 *num_stream_ctxs = max_streams;
3083                 *num_streams = max_streams;
3084         }
3085 }
3086
3087 /* Returns an error code if one of the endpoint already has streams.
3088  * This does not change any data structures, it only checks and gathers
3089  * information.
3090  */
3091 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3092                 struct usb_device *udev,
3093                 struct usb_host_endpoint **eps, unsigned int num_eps,
3094                 unsigned int *num_streams, u32 *changed_ep_bitmask)
3095 {
3096         unsigned int max_streams;
3097         unsigned int endpoint_flag;
3098         int i;
3099         int ret;
3100
3101         for (i = 0; i < num_eps; i++) {
3102                 ret = xhci_check_streams_endpoint(xhci, udev,
3103                                 eps[i], udev->slot_id);
3104                 if (ret < 0)
3105                         return ret;
3106
3107                 max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3108                 if (max_streams < (*num_streams - 1)) {
3109                         xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3110                                         eps[i]->desc.bEndpointAddress,
3111                                         max_streams);
3112                         *num_streams = max_streams+1;
3113                 }
3114
3115                 endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3116                 if (*changed_ep_bitmask & endpoint_flag)
3117                         return -EINVAL;
3118                 *changed_ep_bitmask |= endpoint_flag;
3119         }
3120         return 0;
3121 }
3122
3123 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3124                 struct usb_device *udev,
3125                 struct usb_host_endpoint **eps, unsigned int num_eps)
3126 {
3127         u32 changed_ep_bitmask = 0;
3128         unsigned int slot_id;
3129         unsigned int ep_index;
3130         unsigned int ep_state;
3131         int i;
3132
3133         slot_id = udev->slot_id;
3134         if (!xhci->devs[slot_id])
3135                 return 0;
3136
3137         for (i = 0; i < num_eps; i++) {
3138                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3139                 ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3140                 /* Are streams already being freed for the endpoint? */
3141                 if (ep_state & EP_GETTING_NO_STREAMS) {
3142                         xhci_warn(xhci, "WARN Can't disable streams for "
3143                                         "endpoint 0x%x, "
3144                                         "streams are being disabled already\n",
3145                                         eps[i]->desc.bEndpointAddress);
3146                         return 0;
3147                 }
3148                 /* Are there actually any streams to free? */
3149                 if (!(ep_state & EP_HAS_STREAMS) &&
3150                                 !(ep_state & EP_GETTING_STREAMS)) {
3151                         xhci_warn(xhci, "WARN Can't disable streams for "
3152                                         "endpoint 0x%x, "
3153                                         "streams are already disabled!\n",
3154                                         eps[i]->desc.bEndpointAddress);
3155                         xhci_warn(xhci, "WARN xhci_free_streams() called "
3156                                         "with non-streams endpoint\n");
3157                         return 0;
3158                 }
3159                 changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3160         }
3161         return changed_ep_bitmask;
3162 }
3163
3164 /*
3165  * The USB device drivers use this function (through the HCD interface in USB
3166  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3167  * coordinate mass storage command queueing across multiple endpoints (basically
3168  * a stream ID == a task ID).
3169  *
3170  * Setting up streams involves allocating the same size stream context array
3171  * for each endpoint and issuing a configure endpoint command for all endpoints.
3172  *
3173  * Don't allow the call to succeed if one endpoint only supports one stream
3174  * (which means it doesn't support streams at all).
3175  *
3176  * Drivers may get less stream IDs than they asked for, if the host controller
3177  * hardware or endpoints claim they can't support the number of requested
3178  * stream IDs.
3179  */
3180 int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3181                 struct usb_host_endpoint **eps, unsigned int num_eps,
3182                 unsigned int num_streams, gfp_t mem_flags)
3183 {
3184         int i, ret;
3185         struct xhci_hcd *xhci;
3186         struct xhci_virt_device *vdev;
3187         struct xhci_command *config_cmd;
3188         struct xhci_input_control_ctx *ctrl_ctx;
3189         unsigned int ep_index;
3190         unsigned int num_stream_ctxs;
3191         unsigned int max_packet;
3192         unsigned long flags;
3193         u32 changed_ep_bitmask = 0;
3194
3195         if (!eps)
3196                 return -EINVAL;
3197
3198         /* Add one to the number of streams requested to account for
3199          * stream 0 that is reserved for xHCI usage.
3200          */
3201         num_streams += 1;
3202         xhci = hcd_to_xhci(hcd);
3203         xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3204                         num_streams);
3205
3206         /* MaxPSASize value 0 (2 streams) means streams are not supported */
3207         if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3208                         HCC_MAX_PSA(xhci->hcc_params) < 4) {
3209                 xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3210                 return -ENOSYS;
3211         }
3212
3213         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
3214         if (!config_cmd) {
3215                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
3216                 return -ENOMEM;
3217         }
3218         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3219         if (!ctrl_ctx) {
3220                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3221                                 __func__);
3222                 xhci_free_command(xhci, config_cmd);
3223                 return -ENOMEM;
3224         }
3225
3226         /* Check to make sure all endpoints are not already configured for
3227          * streams.  While we're at it, find the maximum number of streams that
3228          * all the endpoints will support and check for duplicate endpoints.
3229          */
3230         spin_lock_irqsave(&xhci->lock, flags);
3231         ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3232                         num_eps, &num_streams, &changed_ep_bitmask);
3233         if (ret < 0) {
3234                 xhci_free_command(xhci, config_cmd);
3235                 spin_unlock_irqrestore(&xhci->lock, flags);
3236                 return ret;
3237         }
3238         if (num_streams <= 1) {
3239                 xhci_warn(xhci, "WARN: endpoints can't handle "
3240                                 "more than one stream.\n");
3241                 xhci_free_command(xhci, config_cmd);
3242                 spin_unlock_irqrestore(&xhci->lock, flags);
3243                 return -EINVAL;
3244         }
3245         vdev = xhci->devs[udev->slot_id];
3246         /* Mark each endpoint as being in transition, so
3247          * xhci_urb_enqueue() will reject all URBs.
3248          */
3249         for (i = 0; i < num_eps; i++) {
3250                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3251                 vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3252         }
3253         spin_unlock_irqrestore(&xhci->lock, flags);
3254
3255         /* Setup internal data structures and allocate HW data structures for
3256          * streams (but don't install the HW structures in the input context
3257          * until we're sure all memory allocation succeeded).
3258          */
3259         xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3260         xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3261                         num_stream_ctxs, num_streams);
3262
3263         for (i = 0; i < num_eps; i++) {
3264                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3265                 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&eps[i]->desc));
3266                 vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3267                                 num_stream_ctxs,
3268                                 num_streams,
3269                                 max_packet, mem_flags);
3270                 if (!vdev->eps[ep_index].stream_info)
3271                         goto cleanup;
3272                 /* Set maxPstreams in endpoint context and update deq ptr to
3273                  * point to stream context array. FIXME
3274                  */
3275         }
3276
3277         /* Set up the input context for a configure endpoint command. */
3278         for (i = 0; i < num_eps; i++) {
3279                 struct xhci_ep_ctx *ep_ctx;
3280
3281                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3282                 ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3283
3284                 xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3285                                 vdev->out_ctx, ep_index);
3286                 xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3287                                 vdev->eps[ep_index].stream_info);
3288         }
3289         /* Tell the HW to drop its old copy of the endpoint context info
3290          * and add the updated copy from the input context.
3291          */
3292         xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3293                         vdev->out_ctx, ctrl_ctx,
3294                         changed_ep_bitmask, changed_ep_bitmask);
3295
3296         /* Issue and wait for the configure endpoint command */
3297         ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3298                         false, false);
3299
3300         /* xHC rejected the configure endpoint command for some reason, so we
3301          * leave the old ring intact and free our internal streams data
3302          * structure.
3303          */
3304         if (ret < 0)
3305                 goto cleanup;
3306
3307         spin_lock_irqsave(&xhci->lock, flags);
3308         for (i = 0; i < num_eps; i++) {
3309                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3310                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3311                 xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3312                          udev->slot_id, ep_index);
3313                 vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3314         }
3315         xhci_free_command(xhci, config_cmd);
3316         spin_unlock_irqrestore(&xhci->lock, flags);
3317
3318         /* Subtract 1 for stream 0, which drivers can't use */
3319         return num_streams - 1;
3320
3321 cleanup:
3322         /* If it didn't work, free the streams! */
3323         for (i = 0; i < num_eps; i++) {
3324                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3325                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3326                 vdev->eps[ep_index].stream_info = NULL;
3327                 /* FIXME Unset maxPstreams in endpoint context and
3328                  * update deq ptr to point to normal string ring.
3329                  */
3330                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3331                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3332                 xhci_endpoint_zero(xhci, vdev, eps[i]);
3333         }
3334         xhci_free_command(xhci, config_cmd);
3335         return -ENOMEM;
3336 }
3337
3338 /* Transition the endpoint from using streams to being a "normal" endpoint
3339  * without streams.
3340  *
3341  * Modify the endpoint context state, submit a configure endpoint command,
3342  * and free all endpoint rings for streams if that completes successfully.
3343  */
3344 int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3345                 struct usb_host_endpoint **eps, unsigned int num_eps,
3346                 gfp_t mem_flags)
3347 {
3348         int i, ret;
3349         struct xhci_hcd *xhci;
3350         struct xhci_virt_device *vdev;
3351         struct xhci_command *command;
3352         struct xhci_input_control_ctx *ctrl_ctx;
3353         unsigned int ep_index;
3354         unsigned long flags;
3355         u32 changed_ep_bitmask;
3356
3357         xhci = hcd_to_xhci(hcd);
3358         vdev = xhci->devs[udev->slot_id];
3359
3360         /* Set up a configure endpoint command to remove the streams rings */
3361         spin_lock_irqsave(&xhci->lock, flags);
3362         changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3363                         udev, eps, num_eps);
3364         if (changed_ep_bitmask == 0) {
3365                 spin_unlock_irqrestore(&xhci->lock, flags);
3366                 return -EINVAL;
3367         }
3368
3369         /* Use the xhci_command structure from the first endpoint.  We may have
3370          * allocated too many, but the driver may call xhci_free_streams() for
3371          * each endpoint it grouped into one call to xhci_alloc_streams().
3372          */
3373         ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3374         command = vdev->eps[ep_index].stream_info->free_streams_command;
3375         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3376         if (!ctrl_ctx) {
3377                 spin_unlock_irqrestore(&xhci->lock, flags);
3378                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3379                                 __func__);
3380                 return -EINVAL;
3381         }
3382
3383         for (i = 0; i < num_eps; i++) {
3384                 struct xhci_ep_ctx *ep_ctx;
3385
3386                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3387                 ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3388                 xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3389                         EP_GETTING_NO_STREAMS;
3390
3391                 xhci_endpoint_copy(xhci, command->in_ctx,
3392                                 vdev->out_ctx, ep_index);
3393                 xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3394                                 &vdev->eps[ep_index]);
3395         }
3396         xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3397                         vdev->out_ctx, ctrl_ctx,
3398                         changed_ep_bitmask, changed_ep_bitmask);
3399         spin_unlock_irqrestore(&xhci->lock, flags);
3400
3401         /* Issue and wait for the configure endpoint command,
3402          * which must succeed.
3403          */
3404         ret = xhci_configure_endpoint(xhci, udev, command,
3405                         false, true);
3406
3407         /* xHC rejected the configure endpoint command for some reason, so we
3408          * leave the streams rings intact.
3409          */
3410         if (ret < 0)
3411                 return ret;
3412
3413         spin_lock_irqsave(&xhci->lock, flags);
3414         for (i = 0; i < num_eps; i++) {
3415                 ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3416                 xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3417                 vdev->eps[ep_index].stream_info = NULL;
3418                 /* FIXME Unset maxPstreams in endpoint context and
3419                  * update deq ptr to point to normal string ring.
3420                  */
3421                 vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3422                 vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3423         }
3424         spin_unlock_irqrestore(&xhci->lock, flags);
3425
3426         return 0;
3427 }
3428
3429 /*
3430  * Deletes endpoint resources for endpoints that were active before a Reset
3431  * Device command, or a Disable Slot command.  The Reset Device command leaves
3432  * the control endpoint intact, whereas the Disable Slot command deletes it.
3433  *
3434  * Must be called with xhci->lock held.
3435  */
3436 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3437         struct xhci_virt_device *virt_dev, bool drop_control_ep)
3438 {
3439         int i;
3440         unsigned int num_dropped_eps = 0;
3441         unsigned int drop_flags = 0;
3442
3443         for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3444                 if (virt_dev->eps[i].ring) {
3445                         drop_flags |= 1 << i;
3446                         num_dropped_eps++;
3447                 }
3448         }
3449         xhci->num_active_eps -= num_dropped_eps;
3450         if (num_dropped_eps)
3451                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3452                                 "Dropped %u ep ctxs, flags = 0x%x, "
3453                                 "%u now active.",
3454                                 num_dropped_eps, drop_flags,
3455                                 xhci->num_active_eps);
3456 }
3457
3458 /*
3459  * This submits a Reset Device Command, which will set the device state to 0,
3460  * set the device address to 0, and disable all the endpoints except the default
3461  * control endpoint.  The USB core should come back and call
3462  * xhci_address_device(), and then re-set up the configuration.  If this is
3463  * called because of a usb_reset_and_verify_device(), then the old alternate
3464  * settings will be re-installed through the normal bandwidth allocation
3465  * functions.
3466  *
3467  * Wait for the Reset Device command to finish.  Remove all structures
3468  * associated with the endpoints that were disabled.  Clear the input device
3469  * structure?  Cache the rings?  Reset the control endpoint 0 max packet size?
3470  *
3471  * If the virt_dev to be reset does not exist or does not match the udev,
3472  * it means the device is lost, possibly due to the xHC restore error and
3473  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3474  * re-allocate the device.
3475  */
3476 int xhci_discover_or_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
3477 {
3478         int ret, i;
3479         unsigned long flags;
3480         struct xhci_hcd *xhci;
3481         unsigned int slot_id;
3482         struct xhci_virt_device *virt_dev;
3483         struct xhci_command *reset_device_cmd;
3484         int last_freed_endpoint;
3485         struct xhci_slot_ctx *slot_ctx;
3486         int old_active_eps = 0;
3487
3488         ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3489         if (ret <= 0)
3490                 return ret;
3491         xhci = hcd_to_xhci(hcd);
3492         slot_id = udev->slot_id;
3493         virt_dev = xhci->devs[slot_id];
3494         if (!virt_dev) {
3495                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3496                                 "not exist. Re-allocate the device\n", slot_id);
3497                 ret = xhci_alloc_dev(hcd, udev);
3498                 if (ret == 1)
3499                         return 0;
3500                 else
3501                         return -EINVAL;
3502         }
3503
3504         if (virt_dev->tt_info)
3505                 old_active_eps = virt_dev->tt_info->active_eps;
3506
3507         if (virt_dev->udev != udev) {
3508                 /* If the virt_dev and the udev does not match, this virt_dev
3509                  * may belong to another udev.
3510                  * Re-allocate the device.
3511                  */
3512                 xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3513                                 "not match the udev. Re-allocate the device\n",
3514                                 slot_id);
3515                 ret = xhci_alloc_dev(hcd, udev);
3516                 if (ret == 1)
3517                         return 0;
3518                 else
3519                         return -EINVAL;
3520         }
3521
3522         /* If device is not setup, there is no point in resetting it */
3523         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3524         if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3525                                                 SLOT_STATE_DISABLED)
3526                 return 0;
3527
3528         xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3529         /* Allocate the command structure that holds the struct completion.
3530          * Assume we're in process context, since the normal device reset
3531          * process has to wait for the device anyway.  Storage devices are
3532          * reset as part of error handling, so use GFP_NOIO instead of
3533          * GFP_KERNEL.
3534          */
3535         reset_device_cmd = xhci_alloc_command(xhci, false, true, GFP_NOIO);
3536         if (!reset_device_cmd) {
3537                 xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3538                 return -ENOMEM;
3539         }
3540
3541         /* Attempt to submit the Reset Device command to the command ring */
3542         spin_lock_irqsave(&xhci->lock, flags);
3543
3544         ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3545         if (ret) {
3546                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3547                 spin_unlock_irqrestore(&xhci->lock, flags);
3548                 goto command_cleanup;
3549         }
3550         xhci_ring_cmd_db(xhci);
3551         spin_unlock_irqrestore(&xhci->lock, flags);
3552
3553         /* Wait for the Reset Device command to finish */
3554         wait_for_completion(reset_device_cmd->completion);
3555
3556         /* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3557          * unless we tried to reset a slot ID that wasn't enabled,
3558          * or the device wasn't in the addressed or configured state.
3559          */
3560         ret = reset_device_cmd->status;
3561         switch (ret) {
3562         case COMP_CMD_ABORT:
3563         case COMP_CMD_STOP:
3564                 xhci_warn(xhci, "Timeout waiting for reset device command\n");
3565                 ret = -ETIME;
3566                 goto command_cleanup;
3567         case COMP_EBADSLT: /* 0.95 completion code for bad slot ID */
3568         case COMP_CTX_STATE: /* 0.96 completion code for same thing */
3569                 xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3570                                 slot_id,
3571                                 xhci_get_slot_state(xhci, virt_dev->out_ctx));
3572                 xhci_dbg(xhci, "Not freeing device rings.\n");
3573                 /* Don't treat this as an error.  May change my mind later. */
3574                 ret = 0;
3575                 goto command_cleanup;
3576         case COMP_SUCCESS:
3577                 xhci_dbg(xhci, "Successful reset device command.\n");
3578                 break;
3579         default:
3580                 if (xhci_is_vendor_info_code(xhci, ret))
3581                         break;
3582                 xhci_warn(xhci, "Unknown completion code %u for "
3583                                 "reset device command.\n", ret);
3584                 ret = -EINVAL;
3585                 goto command_cleanup;
3586         }
3587
3588         /* Free up host controller endpoint resources */
3589         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3590                 spin_lock_irqsave(&xhci->lock, flags);
3591                 /* Don't delete the default control endpoint resources */
3592                 xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3593                 spin_unlock_irqrestore(&xhci->lock, flags);
3594         }
3595
3596         /* Everything but endpoint 0 is disabled, so free or cache the rings. */
3597         last_freed_endpoint = 1;
3598         for (i = 1; i < 31; ++i) {
3599                 struct xhci_virt_ep *ep = &virt_dev->eps[i];
3600
3601                 if (ep->ep_state & EP_HAS_STREAMS) {
3602                         xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3603                                         xhci_get_endpoint_address(i));
3604                         xhci_free_stream_info(xhci, ep->stream_info);
3605                         ep->stream_info = NULL;
3606                         ep->ep_state &= ~EP_HAS_STREAMS;
3607                 }
3608
3609                 if (ep->ring) {
3610                         xhci_free_or_cache_endpoint_ring(xhci, virt_dev, i);
3611                         last_freed_endpoint = i;
3612                 }
3613                 if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3614                         xhci_drop_ep_from_interval_table(xhci,
3615                                         &virt_dev->eps[i].bw_info,
3616                                         virt_dev->bw_table,
3617                                         udev,
3618                                         &virt_dev->eps[i],
3619                                         virt_dev->tt_info);
3620                 xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3621         }
3622         /* If necessary, update the number of active TTs on this root port */
3623         xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3624
3625         xhci_dbg(xhci, "Output context after successful reset device cmd:\n");
3626         xhci_dbg_ctx(xhci, virt_dev->out_ctx, last_freed_endpoint);
3627         ret = 0;
3628
3629 command_cleanup:
3630         xhci_free_command(xhci, reset_device_cmd);
3631         return ret;
3632 }
3633
3634 /*
3635  * At this point, the struct usb_device is about to go away, the device has
3636  * disconnected, and all traffic has been stopped and the endpoints have been
3637  * disabled.  Free any HC data structures associated with that device.
3638  */
3639 void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3640 {
3641         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3642         struct xhci_virt_device *virt_dev;
3643         unsigned long flags;
3644         u32 state;
3645         int i, ret;
3646         struct xhci_command *command;
3647
3648         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3649         if (!command)
3650                 return;
3651
3652 #ifndef CONFIG_USB_DEFAULT_PERSIST
3653         /*
3654          * We called pm_runtime_get_noresume when the device was attached.
3655          * Decrement the counter here to allow controller to runtime suspend
3656          * if no devices remain.
3657          */
3658         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3659                 pm_runtime_put_noidle(hcd->self.controller);
3660 #endif
3661
3662         ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3663         /* If the host is halted due to driver unload, we still need to free the
3664          * device.
3665          */
3666         if (ret <= 0 && ret != -ENODEV) {
3667                 kfree(command);
3668                 return;
3669         }
3670
3671         virt_dev = xhci->devs[udev->slot_id];
3672
3673         /* Stop any wayward timer functions (which may grab the lock) */
3674         for (i = 0; i < 31; ++i) {
3675                 virt_dev->eps[i].ep_state &= ~EP_HALT_PENDING;
3676                 del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3677         }
3678
3679         spin_lock_irqsave(&xhci->lock, flags);
3680
3681         virt_dev->udev = NULL;
3682
3683         /* Don't disable the slot if the host controller is dead. */
3684         state = readl(&xhci->op_regs->status);
3685         if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3686                         (xhci->xhc_state & XHCI_STATE_HALTED)) {
3687                 xhci_free_virt_device(xhci, udev->slot_id);
3688                 spin_unlock_irqrestore(&xhci->lock, flags);
3689                 kfree(command);
3690                 return;
3691         }
3692
3693         if (xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3694                                     udev->slot_id)) {
3695                 spin_unlock_irqrestore(&xhci->lock, flags);
3696                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3697                 return;
3698         }
3699         xhci_ring_cmd_db(xhci);
3700         spin_unlock_irqrestore(&xhci->lock, flags);
3701
3702         /*
3703          * Event command completion handler will free any data structures
3704          * associated with the slot.  XXX Can free sleep?
3705          */
3706 }
3707
3708 /*
3709  * Checks if we have enough host controller resources for the default control
3710  * endpoint.
3711  *
3712  * Must be called with xhci->lock held.
3713  */
3714 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3715 {
3716         if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3717                 xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3718                                 "Not enough ep ctxs: "
3719                                 "%u active, need to add 1, limit is %u.",
3720                                 xhci->num_active_eps, xhci->limit_active_eps);
3721                 return -ENOMEM;
3722         }
3723         xhci->num_active_eps += 1;
3724         xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3725                         "Adding 1 ep ctx, %u now active.",
3726                         xhci->num_active_eps);
3727         return 0;
3728 }
3729
3730
3731 /*
3732  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3733  * timed out, or allocating memory failed.  Returns 1 on success.
3734  */
3735 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3736 {
3737         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3738         unsigned long flags;
3739         int ret, slot_id;
3740         struct xhci_command *command;
3741
3742         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3743         if (!command)
3744                 return 0;
3745
3746         /* xhci->slot_id and xhci->addr_dev are not thread-safe */
3747         mutex_lock(&xhci->mutex);
3748         spin_lock_irqsave(&xhci->lock, flags);
3749         command->completion = &xhci->addr_dev;
3750         ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3751         if (ret) {
3752                 spin_unlock_irqrestore(&xhci->lock, flags);
3753                 mutex_unlock(&xhci->mutex);
3754                 xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3755                 kfree(command);
3756                 return 0;
3757         }
3758         xhci_ring_cmd_db(xhci);
3759         spin_unlock_irqrestore(&xhci->lock, flags);
3760
3761         wait_for_completion(command->completion);
3762         slot_id = xhci->slot_id;
3763         mutex_unlock(&xhci->mutex);
3764
3765         if (!slot_id || command->status != COMP_SUCCESS) {
3766                 xhci_err(xhci, "Error while assigning device slot ID\n");
3767                 xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3768                                 HCS_MAX_SLOTS(
3769                                         readl(&xhci->cap_regs->hcs_params1)));
3770                 kfree(command);
3771                 return 0;
3772         }
3773
3774         if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3775                 spin_lock_irqsave(&xhci->lock, flags);
3776                 ret = xhci_reserve_host_control_ep_resources(xhci);
3777                 if (ret) {
3778                         spin_unlock_irqrestore(&xhci->lock, flags);
3779                         xhci_warn(xhci, "Not enough host resources, "
3780                                         "active endpoint contexts = %u\n",
3781                                         xhci->num_active_eps);
3782                         goto disable_slot;
3783                 }
3784                 spin_unlock_irqrestore(&xhci->lock, flags);
3785         }
3786         /* Use GFP_NOIO, since this function can be called from
3787          * xhci_discover_or_reset_device(), which may be called as part of
3788          * mass storage driver error handling.
3789          */
3790         if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3791                 xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3792                 goto disable_slot;
3793         }
3794         udev->slot_id = slot_id;
3795
3796 #ifndef CONFIG_USB_DEFAULT_PERSIST
3797         /*
3798          * If resetting upon resume, we can't put the controller into runtime
3799          * suspend if there is a device attached.
3800          */
3801         if (xhci->quirks & XHCI_RESET_ON_RESUME)
3802                 pm_runtime_get_noresume(hcd->self.controller);
3803 #endif
3804
3805
3806         kfree(command);
3807         /* Is this a LS or FS device under a HS hub? */
3808         /* Hub or peripherial? */
3809         return 1;
3810
3811 disable_slot:
3812         /* Disable slot, if we can do it without mem alloc */
3813         spin_lock_irqsave(&xhci->lock, flags);
3814         command->completion = NULL;
3815         command->status = 0;
3816         if (!xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3817                                      udev->slot_id))
3818                 xhci_ring_cmd_db(xhci);
3819         spin_unlock_irqrestore(&xhci->lock, flags);
3820         return 0;
3821 }
3822
3823 /*
3824  * Issue an Address Device command and optionally send a corresponding
3825  * SetAddress request to the device.
3826  */
3827 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3828                              enum xhci_setup_dev setup)
3829 {
3830         const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3831         unsigned long flags;
3832         struct xhci_virt_device *virt_dev;
3833         int ret = 0;
3834         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3835         struct xhci_slot_ctx *slot_ctx;
3836         struct xhci_input_control_ctx *ctrl_ctx;
3837         u64 temp_64;
3838         struct xhci_command *command = NULL;
3839
3840         mutex_lock(&xhci->mutex);
3841
3842         if (xhci->xhc_state) {  /* dying, removing or halted */
3843                 ret = -ESHUTDOWN;
3844                 goto out;
3845         }
3846
3847         if (!udev->slot_id) {
3848                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3849                                 "Bad Slot ID %d", udev->slot_id);
3850                 ret = -EINVAL;
3851                 goto out;
3852         }
3853
3854         virt_dev = xhci->devs[udev->slot_id];
3855
3856         if (WARN_ON(!virt_dev)) {
3857                 /*
3858                  * In plug/unplug torture test with an NEC controller,
3859                  * a zero-dereference was observed once due to virt_dev = 0.
3860                  * Print useful debug rather than crash if it is observed again!
3861                  */
3862                 xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3863                         udev->slot_id);
3864                 ret = -EINVAL;
3865                 goto out;
3866         }
3867
3868         if (setup == SETUP_CONTEXT_ONLY) {
3869                 slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3870                 if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3871                     SLOT_STATE_DEFAULT) {
3872                         xhci_dbg(xhci, "Slot already in default state\n");
3873                         goto out;
3874                 }
3875         }
3876
3877         command = xhci_alloc_command(xhci, false, false, GFP_KERNEL);
3878         if (!command) {
3879                 ret = -ENOMEM;
3880                 goto out;
3881         }
3882
3883         command->in_ctx = virt_dev->in_ctx;
3884         command->completion = &xhci->addr_dev;
3885
3886         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
3887         ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
3888         if (!ctrl_ctx) {
3889                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3890                                 __func__);
3891                 ret = -EINVAL;
3892                 goto out;
3893         }
3894         /*
3895          * If this is the first Set Address since device plug-in or
3896          * virt_device realloaction after a resume with an xHCI power loss,
3897          * then set up the slot context.
3898          */
3899         if (!slot_ctx->dev_info)
3900                 xhci_setup_addressable_virt_dev(xhci, udev);
3901         /* Otherwise, update the control endpoint ring enqueue pointer. */
3902         else
3903                 xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
3904         ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
3905         ctrl_ctx->drop_flags = 0;
3906
3907         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3908         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3909         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3910                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3911
3912         spin_lock_irqsave(&xhci->lock, flags);
3913         ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
3914                                         udev->slot_id, setup);
3915         if (ret) {
3916                 spin_unlock_irqrestore(&xhci->lock, flags);
3917                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3918                                 "FIXME: allocate a command ring segment");
3919                 goto out;
3920         }
3921         xhci_ring_cmd_db(xhci);
3922         spin_unlock_irqrestore(&xhci->lock, flags);
3923
3924         /* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
3925         wait_for_completion(command->completion);
3926
3927         /* FIXME: From section 4.3.4: "Software shall be responsible for timing
3928          * the SetAddress() "recovery interval" required by USB and aborting the
3929          * command on a timeout.
3930          */
3931         switch (command->status) {
3932         case COMP_CMD_ABORT:
3933         case COMP_CMD_STOP:
3934                 xhci_warn(xhci, "Timeout while waiting for setup device command\n");
3935                 ret = -ETIME;
3936                 break;
3937         case COMP_CTX_STATE:
3938         case COMP_EBADSLT:
3939                 xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
3940                          act, udev->slot_id);
3941                 ret = -EINVAL;
3942                 break;
3943         case COMP_TX_ERR:
3944                 dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
3945                 ret = -EPROTO;
3946                 break;
3947         case COMP_DEV_ERR:
3948                 dev_warn(&udev->dev,
3949                          "ERROR: Incompatible device for setup %s command\n", act);
3950                 ret = -ENODEV;
3951                 break;
3952         case COMP_SUCCESS:
3953                 xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3954                                "Successful setup %s command", act);
3955                 break;
3956         default:
3957                 xhci_err(xhci,
3958                          "ERROR: unexpected setup %s command completion code 0x%x.\n",
3959                          act, command->status);
3960                 xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3961                 xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3962                 trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
3963                 ret = -EINVAL;
3964                 break;
3965         }
3966         if (ret)
3967                 goto out;
3968         temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
3969         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3970                         "Op regs DCBAA ptr = %#016llx", temp_64);
3971         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3972                 "Slot ID %d dcbaa entry @%p = %#016llx",
3973                 udev->slot_id,
3974                 &xhci->dcbaa->dev_context_ptrs[udev->slot_id],
3975                 (unsigned long long)
3976                 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
3977         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3978                         "Output Context DMA address = %#08llx",
3979                         (unsigned long long)virt_dev->out_ctx->dma);
3980         xhci_dbg(xhci, "Slot ID %d Input Context:\n", udev->slot_id);
3981         xhci_dbg_ctx(xhci, virt_dev->in_ctx, 2);
3982         trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
3983                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3984         xhci_dbg(xhci, "Slot ID %d Output Context:\n", udev->slot_id);
3985         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 2);
3986         /*
3987          * USB core uses address 1 for the roothubs, so we add one to the
3988          * address given back to us by the HC.
3989          */
3990         slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3991         trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
3992                                 le32_to_cpu(slot_ctx->dev_info) >> 27);
3993         /* Zero the input context control for later use */
3994         ctrl_ctx->add_flags = 0;
3995         ctrl_ctx->drop_flags = 0;
3996
3997         xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3998                        "Internal device address = %d",
3999                        le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4000 out:
4001         mutex_unlock(&xhci->mutex);
4002         kfree(command);
4003         return ret;
4004 }
4005
4006 int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4007 {
4008         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4009 }
4010
4011 int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4012 {
4013         return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4014 }
4015
4016 /*
4017  * Transfer the port index into real index in the HW port status
4018  * registers. Caculate offset between the port's PORTSC register
4019  * and port status base. Divide the number of per port register
4020  * to get the real index. The raw port number bases 1.
4021  */
4022 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4023 {
4024         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4025         __le32 __iomem *base_addr = &xhci->op_regs->port_status_base;
4026         __le32 __iomem *addr;
4027         int raw_port;
4028
4029         if (hcd->speed < HCD_USB3)
4030                 addr = xhci->usb2_ports[port1 - 1];
4031         else
4032                 addr = xhci->usb3_ports[port1 - 1];
4033
4034         raw_port = (addr - base_addr)/NUM_PORT_REGS + 1;
4035         return raw_port;
4036 }
4037
4038 /*
4039  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4040  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4041  */
4042 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4043                         struct usb_device *udev, u16 max_exit_latency)
4044 {
4045         struct xhci_virt_device *virt_dev;
4046         struct xhci_command *command;
4047         struct xhci_input_control_ctx *ctrl_ctx;
4048         struct xhci_slot_ctx *slot_ctx;
4049         unsigned long flags;
4050         int ret;
4051
4052         spin_lock_irqsave(&xhci->lock, flags);
4053
4054         virt_dev = xhci->devs[udev->slot_id];
4055
4056         /*
4057          * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4058          * xHC was re-initialized. Exit latency will be set later after
4059          * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4060          */
4061
4062         if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4063                 spin_unlock_irqrestore(&xhci->lock, flags);
4064                 return 0;
4065         }
4066
4067         /* Attempt to issue an Evaluate Context command to change the MEL. */
4068         command = xhci->lpm_command;
4069         ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4070         if (!ctrl_ctx) {
4071                 spin_unlock_irqrestore(&xhci->lock, flags);
4072                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4073                                 __func__);
4074                 return -ENOMEM;
4075         }
4076
4077         xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4078         spin_unlock_irqrestore(&xhci->lock, flags);
4079
4080         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4081         slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4082         slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4083         slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4084         slot_ctx->dev_state = 0;
4085
4086         xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4087                         "Set up evaluate context for LPM MEL change.");
4088         xhci_dbg(xhci, "Slot %u Input Context:\n", udev->slot_id);
4089         xhci_dbg_ctx(xhci, command->in_ctx, 0);
4090
4091         /* Issue and wait for the evaluate context command. */
4092         ret = xhci_configure_endpoint(xhci, udev, command,
4093                         true, true);
4094         xhci_dbg(xhci, "Slot %u Output Context:\n", udev->slot_id);
4095         xhci_dbg_ctx(xhci, virt_dev->out_ctx, 0);
4096
4097         if (!ret) {
4098                 spin_lock_irqsave(&xhci->lock, flags);
4099                 virt_dev->current_mel = max_exit_latency;
4100                 spin_unlock_irqrestore(&xhci->lock, flags);
4101         }
4102         return ret;
4103 }
4104
4105 #ifdef CONFIG_PM
4106
4107 /* BESL to HIRD Encoding array for USB2 LPM */
4108 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4109         3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4110
4111 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4112 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4113                                         struct usb_device *udev)
4114 {
4115         int u2del, besl, besl_host;
4116         int besl_device = 0;
4117         u32 field;
4118
4119         u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4120         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4121
4122         if (field & USB_BESL_SUPPORT) {
4123                 for (besl_host = 0; besl_host < 16; besl_host++) {
4124                         if (xhci_besl_encoding[besl_host] >= u2del)
4125                                 break;
4126                 }
4127                 /* Use baseline BESL value as default */
4128                 if (field & USB_BESL_BASELINE_VALID)
4129                         besl_device = USB_GET_BESL_BASELINE(field);
4130                 else if (field & USB_BESL_DEEP_VALID)
4131                         besl_device = USB_GET_BESL_DEEP(field);
4132         } else {
4133                 if (u2del <= 50)
4134                         besl_host = 0;
4135                 else
4136                         besl_host = (u2del - 51) / 75 + 1;
4137         }
4138
4139         besl = besl_host + besl_device;
4140         if (besl > 15)
4141                 besl = 15;
4142
4143         return besl;
4144 }
4145
4146 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4147 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4148 {
4149         u32 field;
4150         int l1;
4151         int besld = 0;
4152         int hirdm = 0;
4153
4154         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4155
4156         /* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4157         l1 = udev->l1_params.timeout / 256;
4158
4159         /* device has preferred BESLD */
4160         if (field & USB_BESL_DEEP_VALID) {
4161                 besld = USB_GET_BESL_DEEP(field);
4162                 hirdm = 1;
4163         }
4164
4165         return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4166 }
4167
4168 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4169                         struct usb_device *udev, int enable)
4170 {
4171         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4172         __le32 __iomem  **port_array;
4173         __le32 __iomem  *pm_addr, *hlpm_addr;
4174         u32             pm_val, hlpm_val, field;
4175         unsigned int    port_num;
4176         unsigned long   flags;
4177         int             hird, exit_latency;
4178         int             ret;
4179
4180         if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4181                         !udev->lpm_capable)
4182                 return -EPERM;
4183
4184         if (!udev->parent || udev->parent->parent ||
4185                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4186                 return -EPERM;
4187
4188         if (udev->usb2_hw_lpm_capable != 1)
4189                 return -EPERM;
4190
4191         spin_lock_irqsave(&xhci->lock, flags);
4192
4193         port_array = xhci->usb2_ports;
4194         port_num = udev->portnum - 1;
4195         pm_addr = port_array[port_num] + PORTPMSC;
4196         pm_val = readl(pm_addr);
4197         hlpm_addr = port_array[port_num] + PORTHLPMC;
4198
4199         xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4200                         enable ? "enable" : "disable", port_num + 1);
4201
4202         if (enable) {
4203                 /* Host supports BESL timeout instead of HIRD */
4204                 if (udev->usb2_hw_lpm_besl_capable) {
4205                         /* if device doesn't have a preferred BESL value use a
4206                          * default one which works with mixed HIRD and BESL
4207                          * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4208                          */
4209                         field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4210                         if ((field & USB_BESL_SUPPORT) &&
4211                             (field & USB_BESL_BASELINE_VALID))
4212                                 hird = USB_GET_BESL_BASELINE(field);
4213                         else
4214                                 hird = udev->l1_params.besl;
4215
4216                         exit_latency = xhci_besl_encoding[hird];
4217                         spin_unlock_irqrestore(&xhci->lock, flags);
4218
4219                         /* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4220                          * input context for link powermanagement evaluate
4221                          * context commands. It is protected by hcd->bandwidth
4222                          * mutex and is shared by all devices. We need to set
4223                          * the max ext latency in USB 2 BESL LPM as well, so
4224                          * use the same mutex and xhci_change_max_exit_latency()
4225                          */
4226                         mutex_lock(hcd->bandwidth_mutex);
4227                         ret = xhci_change_max_exit_latency(xhci, udev,
4228                                                            exit_latency);
4229                         mutex_unlock(hcd->bandwidth_mutex);
4230
4231                         if (ret < 0)
4232                                 return ret;
4233                         spin_lock_irqsave(&xhci->lock, flags);
4234
4235                         hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4236                         writel(hlpm_val, hlpm_addr);
4237                         /* flush write */
4238                         readl(hlpm_addr);
4239                 } else {
4240                         hird = xhci_calculate_hird_besl(xhci, udev);
4241                 }
4242
4243                 pm_val &= ~PORT_HIRD_MASK;
4244                 pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4245                 writel(pm_val, pm_addr);
4246                 pm_val = readl(pm_addr);
4247                 pm_val |= PORT_HLE;
4248                 writel(pm_val, pm_addr);
4249                 /* flush write */
4250                 readl(pm_addr);
4251         } else {
4252                 pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4253                 writel(pm_val, pm_addr);
4254                 /* flush write */
4255                 readl(pm_addr);
4256                 if (udev->usb2_hw_lpm_besl_capable) {
4257                         spin_unlock_irqrestore(&xhci->lock, flags);
4258                         mutex_lock(hcd->bandwidth_mutex);
4259                         xhci_change_max_exit_latency(xhci, udev, 0);
4260                         mutex_unlock(hcd->bandwidth_mutex);
4261                         readl_poll_timeout(port_array[port_num], pm_val,
4262                                            (pm_val & PORT_PLS_MASK) == XDEV_U0,
4263                                            100, 10000);
4264                         return 0;
4265                 }
4266         }
4267
4268         spin_unlock_irqrestore(&xhci->lock, flags);
4269         return 0;
4270 }
4271
4272 /* check if a usb2 port supports a given extened capability protocol
4273  * only USB2 ports extended protocol capability values are cached.
4274  * Return 1 if capability is supported
4275  */
4276 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4277                                            unsigned capability)
4278 {
4279         u32 port_offset, port_count;
4280         int i;
4281
4282         for (i = 0; i < xhci->num_ext_caps; i++) {
4283                 if (xhci->ext_caps[i] & capability) {
4284                         /* port offsets starts at 1 */
4285                         port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4286                         port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4287                         if (port >= port_offset &&
4288                             port < port_offset + port_count)
4289                                 return 1;
4290                 }
4291         }
4292         return 0;
4293 }
4294
4295 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4296 {
4297         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4298         int             portnum = udev->portnum - 1;
4299
4300         if (hcd->speed >= HCD_USB3 || !xhci->sw_lpm_support ||
4301                         !udev->lpm_capable)
4302                 return 0;
4303
4304         /* we only support lpm for non-hub device connected to root hub yet */
4305         if (!udev->parent || udev->parent->parent ||
4306                         udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4307                 return 0;
4308
4309         if (xhci->hw_lpm_support == 1 &&
4310                         xhci_check_usb2_port_capability(
4311                                 xhci, portnum, XHCI_HLC)) {
4312                 udev->usb2_hw_lpm_capable = 1;
4313                 udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4314                 udev->l1_params.besl = XHCI_DEFAULT_BESL;
4315                 if (xhci_check_usb2_port_capability(xhci, portnum,
4316                                         XHCI_BLC))
4317                         udev->usb2_hw_lpm_besl_capable = 1;
4318         }
4319
4320         return 0;
4321 }
4322
4323 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4324
4325 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4326 static unsigned long long xhci_service_interval_to_ns(
4327                 struct usb_endpoint_descriptor *desc)
4328 {
4329         return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4330 }
4331
4332 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4333                 enum usb3_link_state state)
4334 {
4335         unsigned long long sel;
4336         unsigned long long pel;
4337         unsigned int max_sel_pel;
4338         char *state_name;
4339
4340         switch (state) {
4341         case USB3_LPM_U1:
4342                 /* Convert SEL and PEL stored in nanoseconds to microseconds */
4343                 sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4344                 pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4345                 max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4346                 state_name = "U1";
4347                 break;
4348         case USB3_LPM_U2:
4349                 sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4350                 pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4351                 max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4352                 state_name = "U2";
4353                 break;
4354         default:
4355                 dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4356                                 __func__);
4357                 return USB3_LPM_DISABLED;
4358         }
4359
4360         if (sel <= max_sel_pel && pel <= max_sel_pel)
4361                 return USB3_LPM_DEVICE_INITIATED;
4362
4363         if (sel > max_sel_pel)
4364                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4365                                 "due to long SEL %llu ms\n",
4366                                 state_name, sel);
4367         else
4368                 dev_dbg(&udev->dev, "Device-initiated %s disabled "
4369                                 "due to long PEL %llu ms\n",
4370                                 state_name, pel);
4371         return USB3_LPM_DISABLED;
4372 }
4373
4374 /* The U1 timeout should be the maximum of the following values:
4375  *  - For control endpoints, U1 system exit latency (SEL) * 3
4376  *  - For bulk endpoints, U1 SEL * 5
4377  *  - For interrupt endpoints:
4378  *    - Notification EPs, U1 SEL * 3
4379  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4380  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4381  */
4382 static unsigned long long xhci_calculate_intel_u1_timeout(
4383                 struct usb_device *udev,
4384                 struct usb_endpoint_descriptor *desc)
4385 {
4386         unsigned long long timeout_ns;
4387         int ep_type;
4388         int intr_type;
4389
4390         ep_type = usb_endpoint_type(desc);
4391         switch (ep_type) {
4392         case USB_ENDPOINT_XFER_CONTROL:
4393                 timeout_ns = udev->u1_params.sel * 3;
4394                 break;
4395         case USB_ENDPOINT_XFER_BULK:
4396                 timeout_ns = udev->u1_params.sel * 5;
4397                 break;
4398         case USB_ENDPOINT_XFER_INT:
4399                 intr_type = usb_endpoint_interrupt_type(desc);
4400                 if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4401                         timeout_ns = udev->u1_params.sel * 3;
4402                         break;
4403                 }
4404                 /* Otherwise the calculation is the same as isoc eps */
4405         case USB_ENDPOINT_XFER_ISOC:
4406                 timeout_ns = xhci_service_interval_to_ns(desc);
4407                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4408                 if (timeout_ns < udev->u1_params.sel * 2)
4409                         timeout_ns = udev->u1_params.sel * 2;
4410                 break;
4411         default:
4412                 return 0;
4413         }
4414
4415         return timeout_ns;
4416 }
4417
4418 /* Returns the hub-encoded U1 timeout value. */
4419 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4420                 struct usb_device *udev,
4421                 struct usb_endpoint_descriptor *desc)
4422 {
4423         unsigned long long timeout_ns;
4424
4425         /* Prevent U1 if service interval is shorter than U1 exit latency */
4426         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4427                 if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4428                         dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4429                         return USB3_LPM_DISABLED;
4430                 }
4431         }
4432
4433         if (xhci->quirks & XHCI_INTEL_HOST)
4434                 timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4435         else
4436                 timeout_ns = udev->u1_params.sel;
4437
4438         /* The U1 timeout is encoded in 1us intervals.
4439          * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4440          */
4441         if (timeout_ns == USB3_LPM_DISABLED)
4442                 timeout_ns = 1;
4443         else
4444                 timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4445
4446         /* If the necessary timeout value is bigger than what we can set in the
4447          * USB 3.0 hub, we have to disable hub-initiated U1.
4448          */
4449         if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4450                 return timeout_ns;
4451         dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4452                         "due to long timeout %llu ms\n", timeout_ns);
4453         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4454 }
4455
4456 /* The U2 timeout should be the maximum of:
4457  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4458  *  - largest bInterval of any active periodic endpoint (to avoid going
4459  *    into lower power link states between intervals).
4460  *  - the U2 Exit Latency of the device
4461  */
4462 static unsigned long long xhci_calculate_intel_u2_timeout(
4463                 struct usb_device *udev,
4464                 struct usb_endpoint_descriptor *desc)
4465 {
4466         unsigned long long timeout_ns;
4467         unsigned long long u2_del_ns;
4468
4469         timeout_ns = 10 * 1000 * 1000;
4470
4471         if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4472                         (xhci_service_interval_to_ns(desc) > timeout_ns))
4473                 timeout_ns = xhci_service_interval_to_ns(desc);
4474
4475         u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4476         if (u2_del_ns > timeout_ns)
4477                 timeout_ns = u2_del_ns;
4478
4479         return timeout_ns;
4480 }
4481
4482 /* Returns the hub-encoded U2 timeout value. */
4483 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4484                 struct usb_device *udev,
4485                 struct usb_endpoint_descriptor *desc)
4486 {
4487         unsigned long long timeout_ns;
4488
4489         /* Prevent U2 if service interval is shorter than U2 exit latency */
4490         if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4491                 if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4492                         dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4493                         return USB3_LPM_DISABLED;
4494                 }
4495         }
4496
4497         if (xhci->quirks & XHCI_INTEL_HOST)
4498                 timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4499         else
4500                 timeout_ns = udev->u2_params.sel;
4501
4502         /* The U2 timeout is encoded in 256us intervals */
4503         timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4504         /* If the necessary timeout value is bigger than what we can set in the
4505          * USB 3.0 hub, we have to disable hub-initiated U2.
4506          */
4507         if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4508                 return timeout_ns;
4509         dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4510                         "due to long timeout %llu ms\n", timeout_ns);
4511         return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4512 }
4513
4514 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4515                 struct usb_device *udev,
4516                 struct usb_endpoint_descriptor *desc,
4517                 enum usb3_link_state state,
4518                 u16 *timeout)
4519 {
4520         if (state == USB3_LPM_U1)
4521                 return xhci_calculate_u1_timeout(xhci, udev, desc);
4522         else if (state == USB3_LPM_U2)
4523                 return xhci_calculate_u2_timeout(xhci, udev, desc);
4524
4525         return USB3_LPM_DISABLED;
4526 }
4527
4528 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4529                 struct usb_device *udev,
4530                 struct usb_endpoint_descriptor *desc,
4531                 enum usb3_link_state state,
4532                 u16 *timeout)
4533 {
4534         u16 alt_timeout;
4535
4536         alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4537                 desc, state, timeout);
4538
4539         /* If we found we can't enable hub-initiated LPM, and
4540          * the U1 or U2 exit latency was too high to allow
4541          * device-initiated LPM as well, then we will disable LPM
4542          * for this device, so stop searching any further.
4543          */
4544         if (alt_timeout == USB3_LPM_DISABLED) {
4545                 *timeout = alt_timeout;
4546                 return -E2BIG;
4547         }
4548         if (alt_timeout > *timeout)
4549                 *timeout = alt_timeout;
4550         return 0;
4551 }
4552
4553 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4554                 struct usb_device *udev,
4555                 struct usb_host_interface *alt,
4556                 enum usb3_link_state state,
4557                 u16 *timeout)
4558 {
4559         int j;
4560
4561         for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4562                 if (xhci_update_timeout_for_endpoint(xhci, udev,
4563                                         &alt->endpoint[j].desc, state, timeout))
4564                         return -E2BIG;
4565                 continue;
4566         }
4567         return 0;
4568 }
4569
4570 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4571                 enum usb3_link_state state)
4572 {
4573         struct usb_device *parent;
4574         unsigned int num_hubs;
4575
4576         if (state == USB3_LPM_U2)
4577                 return 0;
4578
4579         /* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4580         for (parent = udev->parent, num_hubs = 0; parent->parent;
4581                         parent = parent->parent)
4582                 num_hubs++;
4583
4584         if (num_hubs < 2)
4585                 return 0;
4586
4587         dev_dbg(&udev->dev, "Disabling U1 link state for device"
4588                         " below second-tier hub.\n");
4589         dev_dbg(&udev->dev, "Plug device into first-tier hub "
4590                         "to decrease power consumption.\n");
4591         return -E2BIG;
4592 }
4593
4594 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4595                 struct usb_device *udev,
4596                 enum usb3_link_state state)
4597 {
4598         if (xhci->quirks & XHCI_INTEL_HOST)
4599                 return xhci_check_intel_tier_policy(udev, state);
4600         else
4601                 return 0;
4602 }
4603
4604 /* Returns the U1 or U2 timeout that should be enabled.
4605  * If the tier check or timeout setting functions return with a non-zero exit
4606  * code, that means the timeout value has been finalized and we shouldn't look
4607  * at any more endpoints.
4608  */
4609 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4610                         struct usb_device *udev, enum usb3_link_state state)
4611 {
4612         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4613         struct usb_host_config *config;
4614         char *state_name;
4615         int i;
4616         u16 timeout = USB3_LPM_DISABLED;
4617
4618         if (state == USB3_LPM_U1)
4619                 state_name = "U1";
4620         else if (state == USB3_LPM_U2)
4621                 state_name = "U2";
4622         else {
4623                 dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4624                                 state);
4625                 return timeout;
4626         }
4627
4628         if (xhci_check_tier_policy(xhci, udev, state) < 0)
4629                 return timeout;
4630
4631         /* Gather some information about the currently installed configuration
4632          * and alternate interface settings.
4633          */
4634         if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4635                         state, &timeout))
4636                 return timeout;
4637
4638         config = udev->actconfig;
4639         if (!config)
4640                 return timeout;
4641
4642         for (i = 0; i < config->desc.bNumInterfaces; i++) {
4643                 struct usb_driver *driver;
4644                 struct usb_interface *intf = config->interface[i];
4645
4646                 if (!intf)
4647                         continue;
4648
4649                 /* Check if any currently bound drivers want hub-initiated LPM
4650                  * disabled.
4651                  */
4652                 if (intf->dev.driver) {
4653                         driver = to_usb_driver(intf->dev.driver);
4654                         if (driver && driver->disable_hub_initiated_lpm) {
4655                                 dev_dbg(&udev->dev, "Hub-initiated %s disabled at request of driver %s\n",
4656                                         state_name, driver->name);
4657                                 timeout = xhci_get_timeout_no_hub_lpm(udev,
4658                                                                       state);
4659                                 if (timeout == USB3_LPM_DISABLED)
4660                                         return timeout;
4661                         }
4662                 }
4663
4664                 /* Not sure how this could happen... */
4665                 if (!intf->cur_altsetting)
4666                         continue;
4667
4668                 if (xhci_update_timeout_for_interface(xhci, udev,
4669                                         intf->cur_altsetting,
4670                                         state, &timeout))
4671                         return timeout;
4672         }
4673         return timeout;
4674 }
4675
4676 static int calculate_max_exit_latency(struct usb_device *udev,
4677                 enum usb3_link_state state_changed,
4678                 u16 hub_encoded_timeout)
4679 {
4680         unsigned long long u1_mel_us = 0;
4681         unsigned long long u2_mel_us = 0;
4682         unsigned long long mel_us = 0;
4683         bool disabling_u1;
4684         bool disabling_u2;
4685         bool enabling_u1;
4686         bool enabling_u2;
4687
4688         disabling_u1 = (state_changed == USB3_LPM_U1 &&
4689                         hub_encoded_timeout == USB3_LPM_DISABLED);
4690         disabling_u2 = (state_changed == USB3_LPM_U2 &&
4691                         hub_encoded_timeout == USB3_LPM_DISABLED);
4692
4693         enabling_u1 = (state_changed == USB3_LPM_U1 &&
4694                         hub_encoded_timeout != USB3_LPM_DISABLED);
4695         enabling_u2 = (state_changed == USB3_LPM_U2 &&
4696                         hub_encoded_timeout != USB3_LPM_DISABLED);
4697
4698         /* If U1 was already enabled and we're not disabling it,
4699          * or we're going to enable U1, account for the U1 max exit latency.
4700          */
4701         if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4702                         enabling_u1)
4703                 u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4704         if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4705                         enabling_u2)
4706                 u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4707
4708         if (u1_mel_us > u2_mel_us)
4709                 mel_us = u1_mel_us;
4710         else
4711                 mel_us = u2_mel_us;
4712         /* xHCI host controller max exit latency field is only 16 bits wide. */
4713         if (mel_us > MAX_EXIT) {
4714                 dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4715                                 "is too big.\n", mel_us);
4716                 return -E2BIG;
4717         }
4718         return mel_us;
4719 }
4720
4721 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4722 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4723                         struct usb_device *udev, enum usb3_link_state state)
4724 {
4725         struct xhci_hcd *xhci;
4726         u16 hub_encoded_timeout;
4727         int mel;
4728         int ret;
4729
4730         xhci = hcd_to_xhci(hcd);
4731         /* The LPM timeout values are pretty host-controller specific, so don't
4732          * enable hub-initiated timeouts unless the vendor has provided
4733          * information about their timeout algorithm.
4734          */
4735         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4736                         !xhci->devs[udev->slot_id])
4737                 return USB3_LPM_DISABLED;
4738
4739         hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4740         mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4741         if (mel < 0) {
4742                 /* Max Exit Latency is too big, disable LPM. */
4743                 hub_encoded_timeout = USB3_LPM_DISABLED;
4744                 mel = 0;
4745         }
4746
4747         ret = xhci_change_max_exit_latency(xhci, udev, mel);
4748         if (ret)
4749                 return ret;
4750         return hub_encoded_timeout;
4751 }
4752
4753 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4754                         struct usb_device *udev, enum usb3_link_state state)
4755 {
4756         struct xhci_hcd *xhci;
4757         u16 mel;
4758
4759         xhci = hcd_to_xhci(hcd);
4760         if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4761                         !xhci->devs[udev->slot_id])
4762                 return 0;
4763
4764         mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4765         return xhci_change_max_exit_latency(xhci, udev, mel);
4766 }
4767 #else /* CONFIG_PM */
4768
4769 int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4770                                 struct usb_device *udev, int enable)
4771 {
4772         return 0;
4773 }
4774
4775 int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4776 {
4777         return 0;
4778 }
4779
4780 int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4781                         struct usb_device *udev, enum usb3_link_state state)
4782 {
4783         return USB3_LPM_DISABLED;
4784 }
4785
4786 int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4787                         struct usb_device *udev, enum usb3_link_state state)
4788 {
4789         return 0;
4790 }
4791 #endif  /* CONFIG_PM */
4792
4793 /*-------------------------------------------------------------------------*/
4794
4795 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4796  * internal data structures for the device.
4797  */
4798 int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4799                         struct usb_tt *tt, gfp_t mem_flags)
4800 {
4801         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4802         struct xhci_virt_device *vdev;
4803         struct xhci_command *config_cmd;
4804         struct xhci_input_control_ctx *ctrl_ctx;
4805         struct xhci_slot_ctx *slot_ctx;
4806         unsigned long flags;
4807         unsigned think_time;
4808         int ret;
4809
4810         /* Ignore root hubs */
4811         if (!hdev->parent)
4812                 return 0;
4813
4814         vdev = xhci->devs[hdev->slot_id];
4815         if (!vdev) {
4816                 xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4817                 return -EINVAL;
4818         }
4819         config_cmd = xhci_alloc_command(xhci, true, true, mem_flags);
4820         if (!config_cmd) {
4821                 xhci_dbg(xhci, "Could not allocate xHCI command structure.\n");
4822                 return -ENOMEM;
4823         }
4824         ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4825         if (!ctrl_ctx) {
4826                 xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4827                                 __func__);
4828                 xhci_free_command(xhci, config_cmd);
4829                 return -ENOMEM;
4830         }
4831
4832         spin_lock_irqsave(&xhci->lock, flags);
4833         if (hdev->speed == USB_SPEED_HIGH &&
4834                         xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4835                 xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4836                 xhci_free_command(xhci, config_cmd);
4837                 spin_unlock_irqrestore(&xhci->lock, flags);
4838                 return -ENOMEM;
4839         }
4840
4841         xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4842         ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4843         slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4844         slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4845         /*
4846          * refer to section 6.2.2: MTT should be 0 for full speed hub,
4847          * but it may be already set to 1 when setup an xHCI virtual
4848          * device, so clear it anyway.
4849          */
4850         if (tt->multi)
4851                 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4852         else if (hdev->speed == USB_SPEED_FULL)
4853                 slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4854
4855         if (xhci->hci_version > 0x95) {
4856                 xhci_dbg(xhci, "xHCI version %x needs hub "
4857                                 "TT think time and number of ports\n",
4858                                 (unsigned int) xhci->hci_version);
4859                 slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4860                 /* Set TT think time - convert from ns to FS bit times.
4861                  * 0 = 8 FS bit times, 1 = 16 FS bit times,
4862                  * 2 = 24 FS bit times, 3 = 32 FS bit times.
4863                  *
4864                  * xHCI 1.0: this field shall be 0 if the device is not a
4865                  * High-spped hub.
4866                  */
4867                 think_time = tt->think_time;
4868                 if (think_time != 0)
4869                         think_time = (think_time / 666) - 1;
4870                 if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4871                         slot_ctx->tt_info |=
4872                                 cpu_to_le32(TT_THINK_TIME(think_time));
4873         } else {
4874                 xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4875                                 "TT think time or number of ports\n",
4876                                 (unsigned int) xhci->hci_version);
4877         }
4878         slot_ctx->dev_state = 0;
4879         spin_unlock_irqrestore(&xhci->lock, flags);
4880
4881         xhci_dbg(xhci, "Set up %s for hub device.\n",
4882                         (xhci->hci_version > 0x95) ?
4883                         "configure endpoint" : "evaluate context");
4884         xhci_dbg(xhci, "Slot %u Input Context:\n", hdev->slot_id);
4885         xhci_dbg_ctx(xhci, config_cmd->in_ctx, 0);
4886
4887         /* Issue and wait for the configure endpoint or
4888          * evaluate context command.
4889          */
4890         if (xhci->hci_version > 0x95)
4891                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4892                                 false, false);
4893         else
4894                 ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
4895                                 true, false);
4896
4897         xhci_dbg(xhci, "Slot %u Output Context:\n", hdev->slot_id);
4898         xhci_dbg_ctx(xhci, vdev->out_ctx, 0);
4899
4900         xhci_free_command(xhci, config_cmd);
4901         return ret;
4902 }
4903
4904 int xhci_get_frame(struct usb_hcd *hcd)
4905 {
4906         struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4907         /* EHCI mods by the periodic size.  Why? */
4908         return readl(&xhci->run_regs->microframe_index) >> 3;
4909 }
4910
4911 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
4912 {
4913         struct xhci_hcd         *xhci;
4914         struct device           *dev = hcd->self.controller;
4915         int                     retval;
4916
4917         /* Accept arbitrarily long scatter-gather lists */
4918         hcd->self.sg_tablesize = ~0;
4919
4920         /* support to build packet from discontinuous buffers */
4921         hcd->self.no_sg_constraint = 1;
4922
4923         /* XHCI controllers don't stop the ep queue on short packets :| */
4924         hcd->self.no_stop_on_short = 1;
4925
4926         xhci = hcd_to_xhci(hcd);
4927
4928         if (usb_hcd_is_primary_hcd(hcd)) {
4929                 xhci->main_hcd = hcd;
4930                 /* Mark the first roothub as being USB 2.0.
4931                  * The xHCI driver will register the USB 3.0 roothub.
4932                  */
4933                 hcd->speed = HCD_USB2;
4934                 hcd->self.root_hub->speed = USB_SPEED_HIGH;
4935                 /*
4936                  * USB 2.0 roothub under xHCI has an integrated TT,
4937                  * (rate matching hub) as opposed to having an OHCI/UHCI
4938                  * companion controller.
4939                  */
4940                 hcd->has_tt = 1;
4941         } else {
4942                 /* Some 3.1 hosts return sbrn 0x30, can't rely on sbrn alone */
4943                 if (xhci->sbrn == 0x31 || xhci->usb3_rhub.min_rev >= 1) {
4944                         xhci_info(xhci, "Host supports USB 3.1 Enhanced SuperSpeed\n");
4945                         hcd->speed = HCD_USB31;
4946                         hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
4947                 }
4948                 /* xHCI private pointer was set in xhci_pci_probe for the second
4949                  * registered roothub.
4950                  */
4951                 return 0;
4952         }
4953
4954         mutex_init(&xhci->mutex);
4955         xhci->cap_regs = hcd->regs;
4956         xhci->op_regs = hcd->regs +
4957                 HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
4958         xhci->run_regs = hcd->regs +
4959                 (readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
4960         /* Cache read-only capability registers */
4961         xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
4962         xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
4963         xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
4964         xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
4965         xhci->hci_version = HC_VERSION(xhci->hcc_params);
4966         xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
4967         if (xhci->hci_version > 0x100)
4968                 xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
4969         xhci_print_registers(xhci);
4970
4971         xhci->quirks |= quirks;
4972
4973         get_quirks(dev, xhci);
4974
4975         /* In xhci controllers which follow xhci 1.0 spec gives a spurious
4976          * success event after a short transfer. This quirk will ignore such
4977          * spurious event.
4978          */
4979         if (xhci->hci_version > 0x96)
4980                 xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
4981
4982         /* Make sure the HC is halted. */
4983         retval = xhci_halt(xhci);
4984         if (retval)
4985                 return retval;
4986
4987         xhci_dbg(xhci, "Resetting HCD\n");
4988         /* Reset the internal HC memory state and registers. */
4989         retval = xhci_reset(xhci);
4990         if (retval)
4991                 return retval;
4992         xhci_dbg(xhci, "Reset complete\n");
4993
4994         /*
4995          * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
4996          * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
4997          * address memory pointers actually. So, this driver clears the AC64
4998          * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
4999          * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5000          */
5001         if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5002                 xhci->hcc_params &= ~BIT(0);
5003
5004         /* Set dma_mask and coherent_dma_mask to 64-bits,
5005          * if xHC supports 64-bit addressing */
5006         if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5007                         !dma_set_mask(dev, DMA_BIT_MASK(64))) {
5008                 xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5009                 dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5010         } else {
5011                 /*
5012                  * This is to avoid error in cases where a 32-bit USB
5013                  * controller is used on a 64-bit capable system.
5014                  */
5015                 retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5016                 if (retval)
5017                         return retval;
5018                 xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5019                 dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5020         }
5021
5022         xhci_dbg(xhci, "Calling HCD init\n");
5023         /* Initialize HCD and host controller data structures. */
5024         retval = xhci_init(hcd);
5025         if (retval)
5026                 return retval;
5027         xhci_dbg(xhci, "Called HCD init\n");
5028
5029         xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%08x\n",
5030                   xhci->hcc_params, xhci->hci_version, xhci->quirks);
5031
5032         return 0;
5033 }
5034 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5035
5036 static const struct hc_driver xhci_hc_driver = {
5037         .description =          "xhci-hcd",
5038         .product_desc =         "xHCI Host Controller",
5039         .hcd_priv_size =        sizeof(struct xhci_hcd),
5040
5041         /*
5042          * generic hardware linkage
5043          */
5044         .irq =                  xhci_irq,
5045         .flags =                HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5046
5047         /*
5048          * basic lifecycle operations
5049          */
5050         .reset =                NULL, /* set in xhci_init_driver() */
5051         .start =                xhci_run,
5052         .stop =                 xhci_stop,
5053         .shutdown =             xhci_shutdown,
5054
5055         /*
5056          * managing i/o requests and associated device resources
5057          */
5058         .urb_enqueue =          xhci_urb_enqueue,
5059         .urb_dequeue =          xhci_urb_dequeue,
5060         .alloc_dev =            xhci_alloc_dev,
5061         .free_dev =             xhci_free_dev,
5062         .alloc_streams =        xhci_alloc_streams,
5063         .free_streams =         xhci_free_streams,
5064         .add_endpoint =         xhci_add_endpoint,
5065         .drop_endpoint =        xhci_drop_endpoint,
5066         .endpoint_reset =       xhci_endpoint_reset,
5067         .check_bandwidth =      xhci_check_bandwidth,
5068         .reset_bandwidth =      xhci_reset_bandwidth,
5069         .address_device =       xhci_address_device,
5070         .enable_device =        xhci_enable_device,
5071         .update_hub_device =    xhci_update_hub_device,
5072         .reset_device =         xhci_discover_or_reset_device,
5073
5074         /*
5075          * scheduling support
5076          */
5077         .get_frame_number =     xhci_get_frame,
5078
5079         /*
5080          * root hub support
5081          */
5082         .hub_control =          xhci_hub_control,
5083         .hub_status_data =      xhci_hub_status_data,
5084         .bus_suspend =          xhci_bus_suspend,
5085         .bus_resume =           xhci_bus_resume,
5086
5087         /*
5088          * call back when device connected and addressed
5089          */
5090         .update_device =        xhci_update_device,
5091         .set_usb2_hw_lpm =      xhci_set_usb2_hardware_lpm,
5092         .enable_usb3_lpm_timeout =      xhci_enable_usb3_lpm_timeout,
5093         .disable_usb3_lpm_timeout =     xhci_disable_usb3_lpm_timeout,
5094         .find_raw_port_number = xhci_find_raw_port_number,
5095 };
5096
5097 void xhci_init_driver(struct hc_driver *drv,
5098                       const struct xhci_driver_overrides *over)
5099 {
5100         BUG_ON(!over);
5101
5102         /* Copy the generic table to drv then apply the overrides */
5103         *drv = xhci_hc_driver;
5104
5105         if (over) {
5106                 drv->hcd_priv_size += over->extra_priv_size;
5107                 if (over->reset)
5108                         drv->reset = over->reset;
5109                 if (over->start)
5110                         drv->start = over->start;
5111         }
5112 }
5113 EXPORT_SYMBOL_GPL(xhci_init_driver);
5114
5115 MODULE_DESCRIPTION(DRIVER_DESC);
5116 MODULE_AUTHOR(DRIVER_AUTHOR);
5117 MODULE_LICENSE("GPL");
5118
5119 static int __init xhci_hcd_init(void)
5120 {
5121         /*
5122          * Check the compiler generated sizes of structures that must be laid
5123          * out in specific ways for hardware access.
5124          */
5125         BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5126         BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5127         BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5128         /* xhci_device_control has eight fields, and also
5129          * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5130          */
5131         BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5132         BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5133         BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5134         BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5135         BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5136         /* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5137         BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5138
5139         if (usb_disabled())
5140                 return -ENODEV;
5141
5142         return 0;
5143 }
5144
5145 /*
5146  * If an init function is provided, an exit function must also be provided
5147  * to allow module unload.
5148  */
5149 static void __exit xhci_hcd_fini(void) { }
5150
5151 module_init(xhci_hcd_init);
5152 module_exit(xhci_hcd_fini);