GNU Linux-libre 4.19.286-gnu1
[releases.git] / drivers / video / fbdev / sa1100fb.c
1 /*
2  *  linux/drivers/video/sa1100fb.c
3  *
4  *  Copyright (C) 1999 Eric A. Thomas
5  *   Based on acornfb.c Copyright (C) Russell King.
6  *
7  * This file is subject to the terms and conditions of the GNU General Public
8  * License.  See the file COPYING in the main directory of this archive for
9  * more details.
10  *
11  *              StrongARM 1100 LCD Controller Frame Buffer Driver
12  *
13  * Please direct your questions and comments on this driver to the following
14  * email address:
15  *
16  *      linux-arm-kernel@lists.arm.linux.org.uk
17  *
18  * Clean patches should be sent to the ARM Linux Patch System.  Please see the
19  * following web page for more information:
20  *
21  *      http://www.arm.linux.org.uk/developer/patches/info.shtml
22  *
23  * Thank you.
24  *
25  * Known problems:
26  *      - With the Neponset plugged into an Assabet, LCD powerdown
27  *        doesn't work (LCD stays powered up).  Therefore we shouldn't
28  *        blank the screen.
29  *      - We don't limit the CPU clock rate nor the mode selection
30  *        according to the available SDRAM bandwidth.
31  *
32  * Other notes:
33  *      - Linear grayscale palettes and the kernel.
34  *        Such code does not belong in the kernel.  The kernel frame buffer
35  *        drivers do not expect a linear colourmap, but a colourmap based on
36  *        the VT100 standard mapping.
37  *
38  *        If your _userspace_ requires a linear colourmap, then the setup of
39  *        such a colourmap belongs _in userspace_, not in the kernel.  Code
40  *        to set the colourmap correctly from user space has been sent to
41  *        David Neuer.  It's around 8 lines of C code, plus another 4 to
42  *        detect if we are using grayscale.
43  *
44  *      - The following must never be specified in a panel definition:
45  *           LCCR0_LtlEnd, LCCR3_PixClkDiv, LCCR3_VrtSnchL, LCCR3_HorSnchL
46  *
47  *      - The following should be specified:
48  *           either LCCR0_Color or LCCR0_Mono
49  *           either LCCR0_Sngl or LCCR0_Dual
50  *           either LCCR0_Act or LCCR0_Pas
51  *           either LCCR3_OutEnH or LCCD3_OutEnL
52  *           either LCCR3_PixRsEdg or LCCR3_PixFlEdg
53  *           either LCCR3_ACBsDiv or LCCR3_ACBsCntOff
54  *
55  * Code Status:
56  * 1999/04/01:
57  *      - Driver appears to be working for Brutus 320x200x8bpp mode.  Other
58  *        resolutions are working, but only the 8bpp mode is supported.
59  *        Changes need to be made to the palette encode and decode routines
60  *        to support 4 and 16 bpp modes.  
61  *        Driver is not designed to be a module.  The FrameBuffer is statically
62  *        allocated since dynamic allocation of a 300k buffer cannot be 
63  *        guaranteed. 
64  *
65  * 1999/06/17:
66  *      - FrameBuffer memory is now allocated at run-time when the
67  *        driver is initialized.    
68  *
69  * 2000/04/10: Nicolas Pitre <nico@fluxnic.net>
70  *      - Big cleanup for dynamic selection of machine type at run time.
71  *
72  * 2000/07/19: Jamey Hicks <jamey@crl.dec.com>
73  *      - Support for Bitsy aka Compaq iPAQ H3600 added.
74  *
75  * 2000/08/07: Tak-Shing Chan <tchan.rd@idthk.com>
76  *             Jeff Sutherland <jsutherland@accelent.com>
77  *      - Resolved an issue caused by a change made to the Assabet's PLD 
78  *        earlier this year which broke the framebuffer driver for newer 
79  *        Phase 4 Assabets.  Some other parameters were changed to optimize
80  *        for the Sharp display.
81  *
82  * 2000/08/09: Kunihiko IMAI <imai@vasara.co.jp>
83  *      - XP860 support added
84  *
85  * 2000/08/19: Mark Huang <mhuang@livetoy.com>
86  *      - Allows standard options to be passed on the kernel command line
87  *        for most common passive displays.
88  *
89  * 2000/08/29:
90  *      - s/save_flags_cli/local_irq_save/
91  *      - remove unneeded extra save_flags_cli in sa1100fb_enable_lcd_controller
92  *
93  * 2000/10/10: Erik Mouw <J.A.K.Mouw@its.tudelft.nl>
94  *      - Updated LART stuff. Fixed some minor bugs.
95  *
96  * 2000/10/30: Murphy Chen <murphy@mail.dialogue.com.tw>
97  *      - Pangolin support added
98  *
99  * 2000/10/31: Roman Jordan <jor@hoeft-wessel.de>
100  *      - Huw Webpanel support added
101  *
102  * 2000/11/23: Eric Peng <ericpeng@coventive.com>
103  *      - Freebird add
104  *
105  * 2001/02/07: Jamey Hicks <jamey.hicks@compaq.com> 
106  *             Cliff Brake <cbrake@accelent.com>
107  *      - Added PM callback
108  *
109  * 2001/05/26: <rmk@arm.linux.org.uk>
110  *      - Fix 16bpp so that (a) we use the right colours rather than some
111  *        totally random colour depending on what was in page 0, and (b)
112  *        we don't de-reference a NULL pointer.
113  *      - remove duplicated implementation of consistent_alloc()
114  *      - convert dma address types to dma_addr_t
115  *      - remove unused 'montype' stuff
116  *      - remove redundant zero inits of init_var after the initial
117  *        memset.
118  *      - remove allow_modeset (acornfb idea does not belong here)
119  *
120  * 2001/05/28: <rmk@arm.linux.org.uk>
121  *      - massive cleanup - move machine dependent data into structures
122  *      - I've left various #warnings in - if you see one, and know
123  *        the hardware concerned, please get in contact with me.
124  *
125  * 2001/05/31: <rmk@arm.linux.org.uk>
126  *      - Fix LCCR1 HSW value, fix all machine type specifications to
127  *        keep values in line.  (Please check your machine type specs)
128  *
129  * 2001/06/10: <rmk@arm.linux.org.uk>
130  *      - Fiddle with the LCD controller from task context only; mainly
131  *        so that we can run with interrupts on, and sleep.
132  *      - Convert #warnings into #errors.  No pain, no gain. ;)
133  *
134  * 2001/06/14: <rmk@arm.linux.org.uk>
135  *      - Make the palette BPS value for 12bpp come out correctly.
136  *      - Take notice of "greyscale" on any colour depth.
137  *      - Make truecolor visuals use the RGB channel encoding information.
138  *
139  * 2001/07/02: <rmk@arm.linux.org.uk>
140  *      - Fix colourmap problems.
141  *
142  * 2001/07/13: <abraham@2d3d.co.za>
143  *      - Added support for the ICP LCD-Kit01 on LART. This LCD is
144  *        manufactured by Prime View, model no V16C6448AB
145  *
146  * 2001/07/23: <rmk@arm.linux.org.uk>
147  *      - Hand merge version from handhelds.org CVS tree.  See patch
148  *        notes for 595/1 for more information.
149  *      - Drop 12bpp (it's 16bpp with different colour register mappings).
150  *      - This hardware can not do direct colour.  Therefore we don't
151  *        support it.
152  *
153  * 2001/07/27: <rmk@arm.linux.org.uk>
154  *      - Halve YRES on dual scan LCDs.
155  *
156  * 2001/08/22: <rmk@arm.linux.org.uk>
157  *      - Add b/w iPAQ pixclock value.
158  *
159  * 2001/10/12: <rmk@arm.linux.org.uk>
160  *      - Add patch 681/1 and clean up stork definitions.
161  */
162
163 #include <linux/module.h>
164 #include <linux/kernel.h>
165 #include <linux/sched.h>
166 #include <linux/errno.h>
167 #include <linux/string.h>
168 #include <linux/interrupt.h>
169 #include <linux/slab.h>
170 #include <linux/mm.h>
171 #include <linux/fb.h>
172 #include <linux/delay.h>
173 #include <linux/init.h>
174 #include <linux/ioport.h>
175 #include <linux/cpufreq.h>
176 #include <linux/gpio.h>
177 #include <linux/platform_device.h>
178 #include <linux/dma-mapping.h>
179 #include <linux/mutex.h>
180 #include <linux/io.h>
181 #include <linux/clk.h>
182
183 #include <video/sa1100fb.h>
184
185 #include <mach/hardware.h>
186 #include <asm/mach-types.h>
187 #include <mach/shannon.h>
188
189 /*
190  * Complain if VAR is out of range.
191  */
192 #define DEBUG_VAR 1
193
194 #include "sa1100fb.h"
195
196 static const struct sa1100fb_rgb rgb_4 = {
197         .red    = { .offset = 0,  .length = 4, },
198         .green  = { .offset = 0,  .length = 4, },
199         .blue   = { .offset = 0,  .length = 4, },
200         .transp = { .offset = 0,  .length = 0, },
201 };
202
203 static const struct sa1100fb_rgb rgb_8 = {
204         .red    = { .offset = 0,  .length = 8, },
205         .green  = { .offset = 0,  .length = 8, },
206         .blue   = { .offset = 0,  .length = 8, },
207         .transp = { .offset = 0,  .length = 0, },
208 };
209
210 static const struct sa1100fb_rgb def_rgb_16 = {
211         .red    = { .offset = 11, .length = 5, },
212         .green  = { .offset = 5,  .length = 6, },
213         .blue   = { .offset = 0,  .length = 5, },
214         .transp = { .offset = 0,  .length = 0, },
215 };
216
217
218
219 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *);
220 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state);
221
222 static inline void sa1100fb_schedule_work(struct sa1100fb_info *fbi, u_int state)
223 {
224         unsigned long flags;
225
226         local_irq_save(flags);
227         /*
228          * We need to handle two requests being made at the same time.
229          * There are two important cases:
230          *  1. When we are changing VT (C_REENABLE) while unblanking (C_ENABLE)
231          *     We must perform the unblanking, which will do our REENABLE for us.
232          *  2. When we are blanking, but immediately unblank before we have
233          *     blanked.  We do the "REENABLE" thing here as well, just to be sure.
234          */
235         if (fbi->task_state == C_ENABLE && state == C_REENABLE)
236                 state = (u_int) -1;
237         if (fbi->task_state == C_DISABLE && state == C_ENABLE)
238                 state = C_REENABLE;
239
240         if (state != (u_int)-1) {
241                 fbi->task_state = state;
242                 schedule_work(&fbi->task);
243         }
244         local_irq_restore(flags);
245 }
246
247 static inline u_int chan_to_field(u_int chan, struct fb_bitfield *bf)
248 {
249         chan &= 0xffff;
250         chan >>= 16 - bf->length;
251         return chan << bf->offset;
252 }
253
254 /*
255  * Convert bits-per-pixel to a hardware palette PBS value.
256  */
257 static inline u_int palette_pbs(struct fb_var_screeninfo *var)
258 {
259         int ret = 0;
260         switch (var->bits_per_pixel) {
261         case 4:  ret = 0 << 12; break;
262         case 8:  ret = 1 << 12; break;
263         case 16: ret = 2 << 12; break;
264         }
265         return ret;
266 }
267
268 static int
269 sa1100fb_setpalettereg(u_int regno, u_int red, u_int green, u_int blue,
270                        u_int trans, struct fb_info *info)
271 {
272         struct sa1100fb_info *fbi =
273                 container_of(info, struct sa1100fb_info, fb);
274         u_int val, ret = 1;
275
276         if (regno < fbi->palette_size) {
277                 val = ((red >> 4) & 0xf00);
278                 val |= ((green >> 8) & 0x0f0);
279                 val |= ((blue >> 12) & 0x00f);
280
281                 if (regno == 0)
282                         val |= palette_pbs(&fbi->fb.var);
283
284                 fbi->palette_cpu[regno] = val;
285                 ret = 0;
286         }
287         return ret;
288 }
289
290 static int
291 sa1100fb_setcolreg(u_int regno, u_int red, u_int green, u_int blue,
292                    u_int trans, struct fb_info *info)
293 {
294         struct sa1100fb_info *fbi =
295                 container_of(info, struct sa1100fb_info, fb);
296         unsigned int val;
297         int ret = 1;
298
299         /*
300          * If inverse mode was selected, invert all the colours
301          * rather than the register number.  The register number
302          * is what you poke into the framebuffer to produce the
303          * colour you requested.
304          */
305         if (fbi->inf->cmap_inverse) {
306                 red   = 0xffff - red;
307                 green = 0xffff - green;
308                 blue  = 0xffff - blue;
309         }
310
311         /*
312          * If greyscale is true, then we convert the RGB value
313          * to greyscale no mater what visual we are using.
314          */
315         if (fbi->fb.var.grayscale)
316                 red = green = blue = (19595 * red + 38470 * green +
317                                         7471 * blue) >> 16;
318
319         switch (fbi->fb.fix.visual) {
320         case FB_VISUAL_TRUECOLOR:
321                 /*
322                  * 12 or 16-bit True Colour.  We encode the RGB value
323                  * according to the RGB bitfield information.
324                  */
325                 if (regno < 16) {
326                         val  = chan_to_field(red, &fbi->fb.var.red);
327                         val |= chan_to_field(green, &fbi->fb.var.green);
328                         val |= chan_to_field(blue, &fbi->fb.var.blue);
329
330                         fbi->pseudo_palette[regno] = val;
331                         ret = 0;
332                 }
333                 break;
334
335         case FB_VISUAL_STATIC_PSEUDOCOLOR:
336         case FB_VISUAL_PSEUDOCOLOR:
337                 ret = sa1100fb_setpalettereg(regno, red, green, blue, trans, info);
338                 break;
339         }
340
341         return ret;
342 }
343
344 #ifdef CONFIG_CPU_FREQ
345 /*
346  *  sa1100fb_display_dma_period()
347  *    Calculate the minimum period (in picoseconds) between two DMA
348  *    requests for the LCD controller.  If we hit this, it means we're
349  *    doing nothing but LCD DMA.
350  */
351 static inline unsigned int sa1100fb_display_dma_period(struct fb_var_screeninfo *var)
352 {
353         /*
354          * Period = pixclock * bits_per_byte * bytes_per_transfer
355          *              / memory_bits_per_pixel;
356          */
357         return var->pixclock * 8 * 16 / var->bits_per_pixel;
358 }
359 #endif
360
361 /*
362  *  sa1100fb_check_var():
363  *    Round up in the following order: bits_per_pixel, xres,
364  *    yres, xres_virtual, yres_virtual, xoffset, yoffset, grayscale,
365  *    bitfields, horizontal timing, vertical timing.
366  */
367 static int
368 sa1100fb_check_var(struct fb_var_screeninfo *var, struct fb_info *info)
369 {
370         struct sa1100fb_info *fbi =
371                 container_of(info, struct sa1100fb_info, fb);
372         int rgbidx;
373
374         if (var->xres < MIN_XRES)
375                 var->xres = MIN_XRES;
376         if (var->yres < MIN_YRES)
377                 var->yres = MIN_YRES;
378         if (var->xres > fbi->inf->xres)
379                 var->xres = fbi->inf->xres;
380         if (var->yres > fbi->inf->yres)
381                 var->yres = fbi->inf->yres;
382         var->xres_virtual = max(var->xres_virtual, var->xres);
383         var->yres_virtual = max(var->yres_virtual, var->yres);
384
385         dev_dbg(fbi->dev, "var->bits_per_pixel=%d\n", var->bits_per_pixel);
386         switch (var->bits_per_pixel) {
387         case 4:
388                 rgbidx = RGB_4;
389                 break;
390         case 8:
391                 rgbidx = RGB_8;
392                 break;
393         case 16:
394                 rgbidx = RGB_16;
395                 break;
396         default:
397                 return -EINVAL;
398         }
399
400         /*
401          * Copy the RGB parameters for this display
402          * from the machine specific parameters.
403          */
404         var->red    = fbi->rgb[rgbidx]->red;
405         var->green  = fbi->rgb[rgbidx]->green;
406         var->blue   = fbi->rgb[rgbidx]->blue;
407         var->transp = fbi->rgb[rgbidx]->transp;
408
409         dev_dbg(fbi->dev, "RGBT length = %d:%d:%d:%d\n",
410                 var->red.length, var->green.length, var->blue.length,
411                 var->transp.length);
412
413         dev_dbg(fbi->dev, "RGBT offset = %d:%d:%d:%d\n",
414                 var->red.offset, var->green.offset, var->blue.offset,
415                 var->transp.offset);
416
417 #ifdef CONFIG_CPU_FREQ
418         dev_dbg(fbi->dev, "dma period = %d ps, clock = %ld kHz\n",
419                 sa1100fb_display_dma_period(var),
420                 clk_get_rate(fbi->clk) / 1000);
421 #endif
422
423         return 0;
424 }
425
426 static void sa1100fb_set_visual(struct sa1100fb_info *fbi, u32 visual)
427 {
428         if (fbi->inf->set_visual)
429                 fbi->inf->set_visual(visual);
430 }
431
432 /*
433  * sa1100fb_set_par():
434  *      Set the user defined part of the display for the specified console
435  */
436 static int sa1100fb_set_par(struct fb_info *info)
437 {
438         struct sa1100fb_info *fbi =
439                 container_of(info, struct sa1100fb_info, fb);
440         struct fb_var_screeninfo *var = &info->var;
441         unsigned long palette_mem_size;
442
443         dev_dbg(fbi->dev, "set_par\n");
444
445         if (var->bits_per_pixel == 16)
446                 fbi->fb.fix.visual = FB_VISUAL_TRUECOLOR;
447         else if (!fbi->inf->cmap_static)
448                 fbi->fb.fix.visual = FB_VISUAL_PSEUDOCOLOR;
449         else {
450                 /*
451                  * Some people have weird ideas about wanting static
452                  * pseudocolor maps.  I suspect their user space
453                  * applications are broken.
454                  */
455                 fbi->fb.fix.visual = FB_VISUAL_STATIC_PSEUDOCOLOR;
456         }
457
458         fbi->fb.fix.line_length = var->xres_virtual *
459                                   var->bits_per_pixel / 8;
460         fbi->palette_size = var->bits_per_pixel == 8 ? 256 : 16;
461
462         palette_mem_size = fbi->palette_size * sizeof(u16);
463
464         dev_dbg(fbi->dev, "palette_mem_size = 0x%08lx\n", palette_mem_size);
465
466         fbi->palette_cpu = (u16 *)(fbi->map_cpu + PAGE_SIZE - palette_mem_size);
467         fbi->palette_dma = fbi->map_dma + PAGE_SIZE - palette_mem_size;
468
469         /*
470          * Set (any) board control register to handle new color depth
471          */
472         sa1100fb_set_visual(fbi, fbi->fb.fix.visual);
473         sa1100fb_activate_var(var, fbi);
474
475         return 0;
476 }
477
478 #if 0
479 static int
480 sa1100fb_set_cmap(struct fb_cmap *cmap, int kspc, int con,
481                   struct fb_info *info)
482 {
483         struct sa1100fb_info *fbi = (struct sa1100fb_info *)info;
484
485         /*
486          * Make sure the user isn't doing something stupid.
487          */
488         if (!kspc && (fbi->fb.var.bits_per_pixel == 16 || fbi->inf->cmap_static))
489                 return -EINVAL;
490
491         return gen_set_cmap(cmap, kspc, con, info);
492 }
493 #endif
494
495 /*
496  * Formal definition of the VESA spec:
497  *  On
498  *      This refers to the state of the display when it is in full operation
499  *  Stand-By
500  *      This defines an optional operating state of minimal power reduction with
501  *      the shortest recovery time
502  *  Suspend
503  *      This refers to a level of power management in which substantial power
504  *      reduction is achieved by the display.  The display can have a longer 
505  *      recovery time from this state than from the Stand-by state
506  *  Off
507  *      This indicates that the display is consuming the lowest level of power
508  *      and is non-operational. Recovery from this state may optionally require
509  *      the user to manually power on the monitor
510  *
511  *  Now, the fbdev driver adds an additional state, (blank), where they
512  *  turn off the video (maybe by colormap tricks), but don't mess with the
513  *  video itself: think of it semantically between on and Stand-By.
514  *
515  *  So here's what we should do in our fbdev blank routine:
516  *
517  *      VESA_NO_BLANKING (mode 0)       Video on,  front/back light on
518  *      VESA_VSYNC_SUSPEND (mode 1)     Video on,  front/back light off
519  *      VESA_HSYNC_SUSPEND (mode 2)     Video on,  front/back light off
520  *      VESA_POWERDOWN (mode 3)         Video off, front/back light off
521  *
522  *  This will match the matrox implementation.
523  */
524 /*
525  * sa1100fb_blank():
526  *      Blank the display by setting all palette values to zero.  Note, the 
527  *      12 and 16 bpp modes don't really use the palette, so this will not
528  *      blank the display in all modes.  
529  */
530 static int sa1100fb_blank(int blank, struct fb_info *info)
531 {
532         struct sa1100fb_info *fbi =
533                 container_of(info, struct sa1100fb_info, fb);
534         int i;
535
536         dev_dbg(fbi->dev, "sa1100fb_blank: blank=%d\n", blank);
537
538         switch (blank) {
539         case FB_BLANK_POWERDOWN:
540         case FB_BLANK_VSYNC_SUSPEND:
541         case FB_BLANK_HSYNC_SUSPEND:
542         case FB_BLANK_NORMAL:
543                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
544                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
545                         for (i = 0; i < fbi->palette_size; i++)
546                                 sa1100fb_setpalettereg(i, 0, 0, 0, 0, info);
547                 sa1100fb_schedule_work(fbi, C_DISABLE);
548                 break;
549
550         case FB_BLANK_UNBLANK:
551                 if (fbi->fb.fix.visual == FB_VISUAL_PSEUDOCOLOR ||
552                     fbi->fb.fix.visual == FB_VISUAL_STATIC_PSEUDOCOLOR)
553                         fb_set_cmap(&fbi->fb.cmap, info);
554                 sa1100fb_schedule_work(fbi, C_ENABLE);
555         }
556         return 0;
557 }
558
559 static int sa1100fb_mmap(struct fb_info *info,
560                          struct vm_area_struct *vma)
561 {
562         struct sa1100fb_info *fbi =
563                 container_of(info, struct sa1100fb_info, fb);
564         unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
565
566         if (off < info->fix.smem_len) {
567                 vma->vm_pgoff += 1; /* skip over the palette */
568                 return dma_mmap_wc(fbi->dev, vma, fbi->map_cpu, fbi->map_dma,
569                                    fbi->map_size);
570         }
571
572         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
573
574         return vm_iomap_memory(vma, info->fix.mmio_start, info->fix.mmio_len);
575 }
576
577 static struct fb_ops sa1100fb_ops = {
578         .owner          = THIS_MODULE,
579         .fb_check_var   = sa1100fb_check_var,
580         .fb_set_par     = sa1100fb_set_par,
581 //      .fb_set_cmap    = sa1100fb_set_cmap,
582         .fb_setcolreg   = sa1100fb_setcolreg,
583         .fb_fillrect    = cfb_fillrect,
584         .fb_copyarea    = cfb_copyarea,
585         .fb_imageblit   = cfb_imageblit,
586         .fb_blank       = sa1100fb_blank,
587         .fb_mmap        = sa1100fb_mmap,
588 };
589
590 /*
591  * Calculate the PCD value from the clock rate (in picoseconds).
592  * We take account of the PPCR clock setting.
593  */
594 static inline unsigned int get_pcd(struct sa1100fb_info *fbi,
595                 unsigned int pixclock)
596 {
597         unsigned int pcd = clk_get_rate(fbi->clk) / 100 / 1000;
598
599         pcd *= pixclock;
600         pcd /= 10000000;
601
602         return pcd + 1; /* make up for integer math truncations */
603 }
604
605 /*
606  * sa1100fb_activate_var():
607  *      Configures LCD Controller based on entries in var parameter.  Settings are      
608  *      only written to the controller if changes were made.  
609  */
610 static int sa1100fb_activate_var(struct fb_var_screeninfo *var, struct sa1100fb_info *fbi)
611 {
612         struct sa1100fb_lcd_reg new_regs;
613         u_int half_screen_size, yres, pcd;
614         u_long flags;
615
616         dev_dbg(fbi->dev, "Configuring SA1100 LCD\n");
617
618         dev_dbg(fbi->dev, "var: xres=%d hslen=%d lm=%d rm=%d\n",
619                 var->xres, var->hsync_len,
620                 var->left_margin, var->right_margin);
621         dev_dbg(fbi->dev, "var: yres=%d vslen=%d um=%d bm=%d\n",
622                 var->yres, var->vsync_len,
623                 var->upper_margin, var->lower_margin);
624
625 #if DEBUG_VAR
626         if (var->xres < 16        || var->xres > 1024)
627                 dev_err(fbi->dev, "%s: invalid xres %d\n",
628                         fbi->fb.fix.id, var->xres);
629         if (var->hsync_len < 1    || var->hsync_len > 64)
630                 dev_err(fbi->dev, "%s: invalid hsync_len %d\n",
631                         fbi->fb.fix.id, var->hsync_len);
632         if (var->left_margin < 1  || var->left_margin > 255)
633                 dev_err(fbi->dev, "%s: invalid left_margin %d\n",
634                         fbi->fb.fix.id, var->left_margin);
635         if (var->right_margin < 1 || var->right_margin > 255)
636                 dev_err(fbi->dev, "%s: invalid right_margin %d\n",
637                         fbi->fb.fix.id, var->right_margin);
638         if (var->yres < 1         || var->yres > 1024)
639                 dev_err(fbi->dev, "%s: invalid yres %d\n",
640                         fbi->fb.fix.id, var->yres);
641         if (var->vsync_len < 1    || var->vsync_len > 64)
642                 dev_err(fbi->dev, "%s: invalid vsync_len %d\n",
643                         fbi->fb.fix.id, var->vsync_len);
644         if (var->upper_margin < 0 || var->upper_margin > 255)
645                 dev_err(fbi->dev, "%s: invalid upper_margin %d\n",
646                         fbi->fb.fix.id, var->upper_margin);
647         if (var->lower_margin < 0 || var->lower_margin > 255)
648                 dev_err(fbi->dev, "%s: invalid lower_margin %d\n",
649                         fbi->fb.fix.id, var->lower_margin);
650 #endif
651
652         new_regs.lccr0 = fbi->inf->lccr0 |
653                 LCCR0_LEN | LCCR0_LDM | LCCR0_BAM |
654                 LCCR0_ERM | LCCR0_LtlEnd | LCCR0_DMADel(0);
655
656         new_regs.lccr1 =
657                 LCCR1_DisWdth(var->xres) +
658                 LCCR1_HorSnchWdth(var->hsync_len) +
659                 LCCR1_BegLnDel(var->left_margin) +
660                 LCCR1_EndLnDel(var->right_margin);
661
662         /*
663          * If we have a dual scan LCD, then we need to halve
664          * the YRES parameter.
665          */
666         yres = var->yres;
667         if (fbi->inf->lccr0 & LCCR0_Dual)
668                 yres /= 2;
669
670         new_regs.lccr2 =
671                 LCCR2_DisHght(yres) +
672                 LCCR2_VrtSnchWdth(var->vsync_len) +
673                 LCCR2_BegFrmDel(var->upper_margin) +
674                 LCCR2_EndFrmDel(var->lower_margin);
675
676         pcd = get_pcd(fbi, var->pixclock);
677         new_regs.lccr3 = LCCR3_PixClkDiv(pcd) | fbi->inf->lccr3 |
678                 (var->sync & FB_SYNC_HOR_HIGH_ACT ? LCCR3_HorSnchH : LCCR3_HorSnchL) |
679                 (var->sync & FB_SYNC_VERT_HIGH_ACT ? LCCR3_VrtSnchH : LCCR3_VrtSnchL);
680
681         dev_dbg(fbi->dev, "nlccr0 = 0x%08lx\n", new_regs.lccr0);
682         dev_dbg(fbi->dev, "nlccr1 = 0x%08lx\n", new_regs.lccr1);
683         dev_dbg(fbi->dev, "nlccr2 = 0x%08lx\n", new_regs.lccr2);
684         dev_dbg(fbi->dev, "nlccr3 = 0x%08lx\n", new_regs.lccr3);
685
686         half_screen_size = var->bits_per_pixel;
687         half_screen_size = half_screen_size * var->xres * var->yres / 16;
688
689         /* Update shadow copy atomically */
690         local_irq_save(flags);
691         fbi->dbar1 = fbi->palette_dma;
692         fbi->dbar2 = fbi->screen_dma + half_screen_size;
693
694         fbi->reg_lccr0 = new_regs.lccr0;
695         fbi->reg_lccr1 = new_regs.lccr1;
696         fbi->reg_lccr2 = new_regs.lccr2;
697         fbi->reg_lccr3 = new_regs.lccr3;
698         local_irq_restore(flags);
699
700         /*
701          * Only update the registers if the controller is enabled
702          * and something has changed.
703          */
704         if (readl_relaxed(fbi->base + LCCR0) != fbi->reg_lccr0 ||
705             readl_relaxed(fbi->base + LCCR1) != fbi->reg_lccr1 ||
706             readl_relaxed(fbi->base + LCCR2) != fbi->reg_lccr2 ||
707             readl_relaxed(fbi->base + LCCR3) != fbi->reg_lccr3 ||
708             readl_relaxed(fbi->base + DBAR1) != fbi->dbar1 ||
709             readl_relaxed(fbi->base + DBAR2) != fbi->dbar2)
710                 sa1100fb_schedule_work(fbi, C_REENABLE);
711
712         return 0;
713 }
714
715 /*
716  * NOTE!  The following functions are purely helpers for set_ctrlr_state.
717  * Do not call them directly; set_ctrlr_state does the correct serialisation
718  * to ensure that things happen in the right way 100% of time time.
719  *      -- rmk
720  */
721 static inline void __sa1100fb_backlight_power(struct sa1100fb_info *fbi, int on)
722 {
723         dev_dbg(fbi->dev, "backlight o%s\n", on ? "n" : "ff");
724
725         if (fbi->inf->backlight_power)
726                 fbi->inf->backlight_power(on);
727 }
728
729 static inline void __sa1100fb_lcd_power(struct sa1100fb_info *fbi, int on)
730 {
731         dev_dbg(fbi->dev, "LCD power o%s\n", on ? "n" : "ff");
732
733         if (fbi->inf->lcd_power)
734                 fbi->inf->lcd_power(on);
735 }
736
737 static void sa1100fb_setup_gpio(struct sa1100fb_info *fbi)
738 {
739         u_int mask = 0;
740
741         /*
742          * Enable GPIO<9:2> for LCD use if:
743          *  1. Active display, or
744          *  2. Color Dual Passive display
745          *
746          * see table 11.8 on page 11-27 in the SA1100 manual
747          *   -- Erik.
748          *
749          * SA1110 spec update nr. 25 says we can and should
750          * clear LDD15 to 12 for 4 or 8bpp modes with active
751          * panels.  
752          */
753         if ((fbi->reg_lccr0 & LCCR0_CMS) == LCCR0_Color &&
754             (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) != 0) {
755                 mask = GPIO_LDD11 | GPIO_LDD10 | GPIO_LDD9  | GPIO_LDD8;
756
757                 if (fbi->fb.var.bits_per_pixel > 8 ||
758                     (fbi->reg_lccr0 & (LCCR0_Dual|LCCR0_Act)) == LCCR0_Dual)
759                         mask |= GPIO_LDD15 | GPIO_LDD14 | GPIO_LDD13 | GPIO_LDD12;
760
761         }
762
763         if (mask) {
764                 unsigned long flags;
765
766                 /*
767                  * SA-1100 requires the GPIO direction register set
768                  * appropriately for the alternate function.  Hence
769                  * we set it here via bitmask rather than excessive
770                  * fiddling via the GPIO subsystem - and even then
771                  * we'll still have to deal with GAFR.
772                  */
773                 local_irq_save(flags);
774                 GPDR |= mask;
775                 GAFR |= mask;
776                 local_irq_restore(flags);
777         }
778 }
779
780 static void sa1100fb_enable_controller(struct sa1100fb_info *fbi)
781 {
782         dev_dbg(fbi->dev, "Enabling LCD controller\n");
783
784         /*
785          * Make sure the mode bits are present in the first palette entry
786          */
787         fbi->palette_cpu[0] &= 0xcfff;
788         fbi->palette_cpu[0] |= palette_pbs(&fbi->fb.var);
789
790         /* enable LCD controller clock */
791         clk_prepare_enable(fbi->clk);
792
793         /* Sequence from 11.7.10 */
794         writel_relaxed(fbi->reg_lccr3, fbi->base + LCCR3);
795         writel_relaxed(fbi->reg_lccr2, fbi->base + LCCR2);
796         writel_relaxed(fbi->reg_lccr1, fbi->base + LCCR1);
797         writel_relaxed(fbi->reg_lccr0 & ~LCCR0_LEN, fbi->base + LCCR0);
798         writel_relaxed(fbi->dbar1, fbi->base + DBAR1);
799         writel_relaxed(fbi->dbar2, fbi->base + DBAR2);
800         writel_relaxed(fbi->reg_lccr0 | LCCR0_LEN, fbi->base + LCCR0);
801
802         if (machine_is_shannon())
803                 gpio_set_value(SHANNON_GPIO_DISP_EN, 1);
804
805         dev_dbg(fbi->dev, "DBAR1: 0x%08x\n", readl_relaxed(fbi->base + DBAR1));
806         dev_dbg(fbi->dev, "DBAR2: 0x%08x\n", readl_relaxed(fbi->base + DBAR2));
807         dev_dbg(fbi->dev, "LCCR0: 0x%08x\n", readl_relaxed(fbi->base + LCCR0));
808         dev_dbg(fbi->dev, "LCCR1: 0x%08x\n", readl_relaxed(fbi->base + LCCR1));
809         dev_dbg(fbi->dev, "LCCR2: 0x%08x\n", readl_relaxed(fbi->base + LCCR2));
810         dev_dbg(fbi->dev, "LCCR3: 0x%08x\n", readl_relaxed(fbi->base + LCCR3));
811 }
812
813 static void sa1100fb_disable_controller(struct sa1100fb_info *fbi)
814 {
815         DECLARE_WAITQUEUE(wait, current);
816         u32 lccr0;
817
818         dev_dbg(fbi->dev, "Disabling LCD controller\n");
819
820         if (machine_is_shannon())
821                 gpio_set_value(SHANNON_GPIO_DISP_EN, 0);
822
823         set_current_state(TASK_UNINTERRUPTIBLE);
824         add_wait_queue(&fbi->ctrlr_wait, &wait);
825
826         /* Clear LCD Status Register */
827         writel_relaxed(~0, fbi->base + LCSR);
828
829         lccr0 = readl_relaxed(fbi->base + LCCR0);
830         lccr0 &= ~LCCR0_LDM;    /* Enable LCD Disable Done Interrupt */
831         writel_relaxed(lccr0, fbi->base + LCCR0);
832         lccr0 &= ~LCCR0_LEN;    /* Disable LCD Controller */
833         writel_relaxed(lccr0, fbi->base + LCCR0);
834
835         schedule_timeout(20 * HZ / 1000);
836         remove_wait_queue(&fbi->ctrlr_wait, &wait);
837
838         /* disable LCD controller clock */
839         clk_disable_unprepare(fbi->clk);
840 }
841
842 /*
843  *  sa1100fb_handle_irq: Handle 'LCD DONE' interrupts.
844  */
845 static irqreturn_t sa1100fb_handle_irq(int irq, void *dev_id)
846 {
847         struct sa1100fb_info *fbi = dev_id;
848         unsigned int lcsr = readl_relaxed(fbi->base + LCSR);
849
850         if (lcsr & LCSR_LDD) {
851                 u32 lccr0 = readl_relaxed(fbi->base + LCCR0) | LCCR0_LDM;
852                 writel_relaxed(lccr0, fbi->base + LCCR0);
853                 wake_up(&fbi->ctrlr_wait);
854         }
855
856         writel_relaxed(lcsr, fbi->base + LCSR);
857         return IRQ_HANDLED;
858 }
859
860 /*
861  * This function must be called from task context only, since it will
862  * sleep when disabling the LCD controller, or if we get two contending
863  * processes trying to alter state.
864  */
865 static void set_ctrlr_state(struct sa1100fb_info *fbi, u_int state)
866 {
867         u_int old_state;
868
869         mutex_lock(&fbi->ctrlr_lock);
870
871         old_state = fbi->state;
872
873         /*
874          * Hack around fbcon initialisation.
875          */
876         if (old_state == C_STARTUP && state == C_REENABLE)
877                 state = C_ENABLE;
878
879         switch (state) {
880         case C_DISABLE_CLKCHANGE:
881                 /*
882                  * Disable controller for clock change.  If the
883                  * controller is already disabled, then do nothing.
884                  */
885                 if (old_state != C_DISABLE && old_state != C_DISABLE_PM) {
886                         fbi->state = state;
887                         sa1100fb_disable_controller(fbi);
888                 }
889                 break;
890
891         case C_DISABLE_PM:
892         case C_DISABLE:
893                 /*
894                  * Disable controller
895                  */
896                 if (old_state != C_DISABLE) {
897                         fbi->state = state;
898
899                         __sa1100fb_backlight_power(fbi, 0);
900                         if (old_state != C_DISABLE_CLKCHANGE)
901                                 sa1100fb_disable_controller(fbi);
902                         __sa1100fb_lcd_power(fbi, 0);
903                 }
904                 break;
905
906         case C_ENABLE_CLKCHANGE:
907                 /*
908                  * Enable the controller after clock change.  Only
909                  * do this if we were disabled for the clock change.
910                  */
911                 if (old_state == C_DISABLE_CLKCHANGE) {
912                         fbi->state = C_ENABLE;
913                         sa1100fb_enable_controller(fbi);
914                 }
915                 break;
916
917         case C_REENABLE:
918                 /*
919                  * Re-enable the controller only if it was already
920                  * enabled.  This is so we reprogram the control
921                  * registers.
922                  */
923                 if (old_state == C_ENABLE) {
924                         sa1100fb_disable_controller(fbi);
925                         sa1100fb_setup_gpio(fbi);
926                         sa1100fb_enable_controller(fbi);
927                 }
928                 break;
929
930         case C_ENABLE_PM:
931                 /*
932                  * Re-enable the controller after PM.  This is not
933                  * perfect - think about the case where we were doing
934                  * a clock change, and we suspended half-way through.
935                  */
936                 if (old_state != C_DISABLE_PM)
937                         break;
938                 /* fall through */
939
940         case C_ENABLE:
941                 /*
942                  * Power up the LCD screen, enable controller, and
943                  * turn on the backlight.
944                  */
945                 if (old_state != C_ENABLE) {
946                         fbi->state = C_ENABLE;
947                         sa1100fb_setup_gpio(fbi);
948                         __sa1100fb_lcd_power(fbi, 1);
949                         sa1100fb_enable_controller(fbi);
950                         __sa1100fb_backlight_power(fbi, 1);
951                 }
952                 break;
953         }
954         mutex_unlock(&fbi->ctrlr_lock);
955 }
956
957 /*
958  * Our LCD controller task (which is called when we blank or unblank)
959  * via keventd.
960  */
961 static void sa1100fb_task(struct work_struct *w)
962 {
963         struct sa1100fb_info *fbi = container_of(w, struct sa1100fb_info, task);
964         u_int state = xchg(&fbi->task_state, -1);
965
966         set_ctrlr_state(fbi, state);
967 }
968
969 #ifdef CONFIG_CPU_FREQ
970 /*
971  * Calculate the minimum DMA period over all displays that we own.
972  * This, together with the SDRAM bandwidth defines the slowest CPU
973  * frequency that can be selected.
974  */
975 static unsigned int sa1100fb_min_dma_period(struct sa1100fb_info *fbi)
976 {
977 #if 0
978         unsigned int min_period = (unsigned int)-1;
979         int i;
980
981         for (i = 0; i < MAX_NR_CONSOLES; i++) {
982                 struct display *disp = &fb_display[i];
983                 unsigned int period;
984
985                 /*
986                  * Do we own this display?
987                  */
988                 if (disp->fb_info != &fbi->fb)
989                         continue;
990
991                 /*
992                  * Ok, calculate its DMA period
993                  */
994                 period = sa1100fb_display_dma_period(&disp->var);
995                 if (period < min_period)
996                         min_period = period;
997         }
998
999         return min_period;
1000 #else
1001         /*
1002          * FIXME: we need to verify _all_ consoles.
1003          */
1004         return sa1100fb_display_dma_period(&fbi->fb.var);
1005 #endif
1006 }
1007
1008 /*
1009  * CPU clock speed change handler.  We need to adjust the LCD timing
1010  * parameters when the CPU clock is adjusted by the power management
1011  * subsystem.
1012  */
1013 static int
1014 sa1100fb_freq_transition(struct notifier_block *nb, unsigned long val,
1015                          void *data)
1016 {
1017         struct sa1100fb_info *fbi = TO_INF(nb, freq_transition);
1018         u_int pcd;
1019
1020         switch (val) {
1021         case CPUFREQ_PRECHANGE:
1022                 set_ctrlr_state(fbi, C_DISABLE_CLKCHANGE);
1023                 break;
1024
1025         case CPUFREQ_POSTCHANGE:
1026                 pcd = get_pcd(fbi, fbi->fb.var.pixclock);
1027                 fbi->reg_lccr3 = (fbi->reg_lccr3 & ~0xff) | LCCR3_PixClkDiv(pcd);
1028                 set_ctrlr_state(fbi, C_ENABLE_CLKCHANGE);
1029                 break;
1030         }
1031         return 0;
1032 }
1033
1034 static int
1035 sa1100fb_freq_policy(struct notifier_block *nb, unsigned long val,
1036                      void *data)
1037 {
1038         struct sa1100fb_info *fbi = TO_INF(nb, freq_policy);
1039         struct cpufreq_policy *policy = data;
1040
1041         switch (val) {
1042         case CPUFREQ_ADJUST:
1043                 dev_dbg(fbi->dev, "min dma period: %d ps, "
1044                         "new clock %d kHz\n", sa1100fb_min_dma_period(fbi),
1045                         policy->max);
1046                 /* todo: fill in min/max values */
1047                 break;
1048         case CPUFREQ_NOTIFY:
1049                 do {} while(0);
1050                 /* todo: panic if min/max values aren't fulfilled 
1051                  * [can't really happen unless there's a bug in the
1052                  * CPU policy verififcation process *
1053                  */
1054                 break;
1055         }
1056         return 0;
1057 }
1058 #endif
1059
1060 #ifdef CONFIG_PM
1061 /*
1062  * Power management hooks.  Note that we won't be called from IRQ context,
1063  * unlike the blank functions above, so we may sleep.
1064  */
1065 static int sa1100fb_suspend(struct platform_device *dev, pm_message_t state)
1066 {
1067         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1068
1069         set_ctrlr_state(fbi, C_DISABLE_PM);
1070         return 0;
1071 }
1072
1073 static int sa1100fb_resume(struct platform_device *dev)
1074 {
1075         struct sa1100fb_info *fbi = platform_get_drvdata(dev);
1076
1077         set_ctrlr_state(fbi, C_ENABLE_PM);
1078         return 0;
1079 }
1080 #else
1081 #define sa1100fb_suspend        NULL
1082 #define sa1100fb_resume         NULL
1083 #endif
1084
1085 /*
1086  * sa1100fb_map_video_memory():
1087  *      Allocates the DRAM memory for the frame buffer.  This buffer is  
1088  *      remapped into a non-cached, non-buffered, memory region to  
1089  *      allow palette and pixel writes to occur without flushing the 
1090  *      cache.  Once this area is remapped, all virtual memory
1091  *      access to the video memory should occur at the new region.
1092  */
1093 static int sa1100fb_map_video_memory(struct sa1100fb_info *fbi)
1094 {
1095         /*
1096          * We reserve one page for the palette, plus the size
1097          * of the framebuffer.
1098          */
1099         fbi->map_size = PAGE_ALIGN(fbi->fb.fix.smem_len + PAGE_SIZE);
1100         fbi->map_cpu = dma_alloc_wc(fbi->dev, fbi->map_size, &fbi->map_dma,
1101                                     GFP_KERNEL);
1102
1103         if (fbi->map_cpu) {
1104                 fbi->fb.screen_base = fbi->map_cpu + PAGE_SIZE;
1105                 fbi->screen_dma = fbi->map_dma + PAGE_SIZE;
1106                 /*
1107                  * FIXME: this is actually the wrong thing to place in
1108                  * smem_start.  But fbdev suffers from the problem that
1109                  * it needs an API which doesn't exist (in this case,
1110                  * dma_writecombine_mmap)
1111                  */
1112                 fbi->fb.fix.smem_start = fbi->screen_dma;
1113         }
1114
1115         return fbi->map_cpu ? 0 : -ENOMEM;
1116 }
1117
1118 /* Fake monspecs to fill in fbinfo structure */
1119 static struct fb_monspecs monspecs = {
1120         .hfmin  = 30000,
1121         .hfmax  = 70000,
1122         .vfmin  = 50,
1123         .vfmax  = 65,
1124 };
1125
1126
1127 static struct sa1100fb_info *sa1100fb_init_fbinfo(struct device *dev)
1128 {
1129         struct sa1100fb_mach_info *inf = dev_get_platdata(dev);
1130         struct sa1100fb_info *fbi;
1131         unsigned i;
1132
1133         fbi = devm_kzalloc(dev, sizeof(struct sa1100fb_info), GFP_KERNEL);
1134         if (!fbi)
1135                 return NULL;
1136
1137         fbi->dev = dev;
1138
1139         strcpy(fbi->fb.fix.id, SA1100_NAME);
1140
1141         fbi->fb.fix.type        = FB_TYPE_PACKED_PIXELS;
1142         fbi->fb.fix.type_aux    = 0;
1143         fbi->fb.fix.xpanstep    = 0;
1144         fbi->fb.fix.ypanstep    = 0;
1145         fbi->fb.fix.ywrapstep   = 0;
1146         fbi->fb.fix.accel       = FB_ACCEL_NONE;
1147
1148         fbi->fb.var.nonstd      = 0;
1149         fbi->fb.var.activate    = FB_ACTIVATE_NOW;
1150         fbi->fb.var.height      = -1;
1151         fbi->fb.var.width       = -1;
1152         fbi->fb.var.accel_flags = 0;
1153         fbi->fb.var.vmode       = FB_VMODE_NONINTERLACED;
1154
1155         fbi->fb.fbops           = &sa1100fb_ops;
1156         fbi->fb.flags           = FBINFO_DEFAULT;
1157         fbi->fb.monspecs        = monspecs;
1158         fbi->fb.pseudo_palette  = fbi->pseudo_palette;
1159
1160         fbi->rgb[RGB_4]         = &rgb_4;
1161         fbi->rgb[RGB_8]         = &rgb_8;
1162         fbi->rgb[RGB_16]        = &def_rgb_16;
1163
1164         /*
1165          * People just don't seem to get this.  We don't support
1166          * anything but correct entries now, so panic if someone
1167          * does something stupid.
1168          */
1169         if (inf->lccr3 & (LCCR3_VrtSnchL|LCCR3_HorSnchL|0xff) ||
1170             inf->pixclock == 0)
1171                 panic("sa1100fb error: invalid LCCR3 fields set or zero "
1172                         "pixclock.");
1173
1174         fbi->fb.var.xres                = inf->xres;
1175         fbi->fb.var.xres_virtual        = inf->xres;
1176         fbi->fb.var.yres                = inf->yres;
1177         fbi->fb.var.yres_virtual        = inf->yres;
1178         fbi->fb.var.bits_per_pixel      = inf->bpp;
1179         fbi->fb.var.pixclock            = inf->pixclock;
1180         fbi->fb.var.hsync_len           = inf->hsync_len;
1181         fbi->fb.var.left_margin         = inf->left_margin;
1182         fbi->fb.var.right_margin        = inf->right_margin;
1183         fbi->fb.var.vsync_len           = inf->vsync_len;
1184         fbi->fb.var.upper_margin        = inf->upper_margin;
1185         fbi->fb.var.lower_margin        = inf->lower_margin;
1186         fbi->fb.var.sync                = inf->sync;
1187         fbi->fb.var.grayscale           = inf->cmap_greyscale;
1188         fbi->state                      = C_STARTUP;
1189         fbi->task_state                 = (u_char)-1;
1190         fbi->fb.fix.smem_len            = inf->xres * inf->yres *
1191                                           inf->bpp / 8;
1192         fbi->inf                        = inf;
1193
1194         /* Copy the RGB bitfield overrides */
1195         for (i = 0; i < NR_RGB; i++)
1196                 if (inf->rgb[i])
1197                         fbi->rgb[i] = inf->rgb[i];
1198
1199         init_waitqueue_head(&fbi->ctrlr_wait);
1200         INIT_WORK(&fbi->task, sa1100fb_task);
1201         mutex_init(&fbi->ctrlr_lock);
1202
1203         return fbi;
1204 }
1205
1206 static int sa1100fb_probe(struct platform_device *pdev)
1207 {
1208         struct sa1100fb_info *fbi;
1209         struct resource *res;
1210         int ret, irq;
1211
1212         if (!dev_get_platdata(&pdev->dev)) {
1213                 dev_err(&pdev->dev, "no platform LCD data\n");
1214                 return -EINVAL;
1215         }
1216
1217         irq = platform_get_irq(pdev, 0);
1218         if (irq < 0)
1219                 return -EINVAL;
1220
1221         fbi = sa1100fb_init_fbinfo(&pdev->dev);
1222         if (!fbi)
1223                 return -ENOMEM;
1224
1225         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1226         fbi->base = devm_ioremap_resource(&pdev->dev, res);
1227         if (IS_ERR(fbi->base))
1228                 return PTR_ERR(fbi->base);
1229
1230         fbi->clk = devm_clk_get(&pdev->dev, NULL);
1231         if (IS_ERR(fbi->clk))
1232                 return PTR_ERR(fbi->clk);
1233
1234         ret = devm_request_irq(&pdev->dev, irq, sa1100fb_handle_irq, 0,
1235                                "LCD", fbi);
1236         if (ret) {
1237                 dev_err(&pdev->dev, "request_irq failed: %d\n", ret);
1238                 return ret;
1239         }
1240
1241         if (machine_is_shannon()) {
1242                 ret = devm_gpio_request_one(&pdev->dev, SHANNON_GPIO_DISP_EN,
1243                         GPIOF_OUT_INIT_LOW, "display enable");
1244                 if (ret)
1245                         return ret;
1246         }
1247
1248         /* Initialize video memory */
1249         ret = sa1100fb_map_video_memory(fbi);
1250         if (ret)
1251                 return ret;
1252
1253         /*
1254          * This makes sure that our colour bitfield
1255          * descriptors are correctly initialised.
1256          */
1257         sa1100fb_check_var(&fbi->fb.var, &fbi->fb);
1258
1259         platform_set_drvdata(pdev, fbi);
1260
1261         ret = register_framebuffer(&fbi->fb);
1262         if (ret < 0) {
1263                 dma_free_wc(fbi->dev, fbi->map_size, fbi->map_cpu,
1264                             fbi->map_dma);
1265                 return ret;
1266         }
1267
1268 #ifdef CONFIG_CPU_FREQ
1269         fbi->freq_transition.notifier_call = sa1100fb_freq_transition;
1270         fbi->freq_policy.notifier_call = sa1100fb_freq_policy;
1271         cpufreq_register_notifier(&fbi->freq_transition, CPUFREQ_TRANSITION_NOTIFIER);
1272         cpufreq_register_notifier(&fbi->freq_policy, CPUFREQ_POLICY_NOTIFIER);
1273 #endif
1274
1275         /* This driver cannot be unloaded at the moment */
1276         return 0;
1277 }
1278
1279 static struct platform_driver sa1100fb_driver = {
1280         .probe          = sa1100fb_probe,
1281         .suspend        = sa1100fb_suspend,
1282         .resume         = sa1100fb_resume,
1283         .driver         = {
1284                 .name   = "sa11x0-fb",
1285         },
1286 };
1287
1288 int __init sa1100fb_init(void)
1289 {
1290         if (fb_get_options("sa1100fb", NULL))
1291                 return -ENODEV;
1292
1293         return platform_driver_register(&sa1100fb_driver);
1294 }
1295
1296 int __init sa1100fb_setup(char *options)
1297 {
1298 #if 0
1299         char *this_opt;
1300
1301         if (!options || !*options)
1302                 return 0;
1303
1304         while ((this_opt = strsep(&options, ",")) != NULL) {
1305
1306                 if (!strncmp(this_opt, "bpp:", 4))
1307                         current_par.max_bpp =
1308                             simple_strtoul(this_opt + 4, NULL, 0);
1309
1310                 if (!strncmp(this_opt, "lccr0:", 6))
1311                         lcd_shadow.lccr0 =
1312                             simple_strtoul(this_opt + 6, NULL, 0);
1313                 if (!strncmp(this_opt, "lccr1:", 6)) {
1314                         lcd_shadow.lccr1 =
1315                             simple_strtoul(this_opt + 6, NULL, 0);
1316                         current_par.max_xres =
1317                             (lcd_shadow.lccr1 & 0x3ff) + 16;
1318                 }
1319                 if (!strncmp(this_opt, "lccr2:", 6)) {
1320                         lcd_shadow.lccr2 =
1321                             simple_strtoul(this_opt + 6, NULL, 0);
1322                         current_par.max_yres =
1323                             (lcd_shadow.
1324                              lccr0 & LCCR0_SDS) ? ((lcd_shadow.
1325                                                     lccr2 & 0x3ff) +
1326                                                    1) *
1327                             2 : ((lcd_shadow.lccr2 & 0x3ff) + 1);
1328                 }
1329                 if (!strncmp(this_opt, "lccr3:", 6))
1330                         lcd_shadow.lccr3 =
1331                             simple_strtoul(this_opt + 6, NULL, 0);
1332         }
1333 #endif
1334         return 0;
1335 }
1336
1337 module_init(sa1100fb_init);
1338 MODULE_DESCRIPTION("StrongARM-1100/1110 framebuffer driver");
1339 MODULE_LICENSE("GPL");