GNU Linux-libre 4.14.266-gnu1
[releases.git] / fs / btrfs / extent-tree.c
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/sched/signal.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/sort.h>
24 #include <linux/rcupdate.h>
25 #include <linux/kthread.h>
26 #include <linux/slab.h>
27 #include <linux/ratelimit.h>
28 #include <linux/percpu_counter.h>
29 #include "hash.h"
30 #include "tree-log.h"
31 #include "disk-io.h"
32 #include "print-tree.h"
33 #include "volumes.h"
34 #include "raid56.h"
35 #include "locking.h"
36 #include "free-space-cache.h"
37 #include "free-space-tree.h"
38 #include "math.h"
39 #include "sysfs.h"
40 #include "qgroup.h"
41
42 #undef SCRAMBLE_DELAYED_REFS
43
44 /*
45  * control flags for do_chunk_alloc's force field
46  * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
47  * if we really need one.
48  *
49  * CHUNK_ALLOC_LIMITED means to only try and allocate one
50  * if we have very few chunks already allocated.  This is
51  * used as part of the clustering code to help make sure
52  * we have a good pool of storage to cluster in, without
53  * filling the FS with empty chunks
54  *
55  * CHUNK_ALLOC_FORCE means it must try to allocate one
56  *
57  */
58 enum {
59         CHUNK_ALLOC_NO_FORCE = 0,
60         CHUNK_ALLOC_LIMITED = 1,
61         CHUNK_ALLOC_FORCE = 2,
62 };
63
64 static int update_block_group(struct btrfs_trans_handle *trans,
65                               struct btrfs_fs_info *fs_info, u64 bytenr,
66                               u64 num_bytes, int alloc);
67 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
68                                struct btrfs_fs_info *fs_info,
69                                 struct btrfs_delayed_ref_node *node, u64 parent,
70                                 u64 root_objectid, u64 owner_objectid,
71                                 u64 owner_offset, int refs_to_drop,
72                                 struct btrfs_delayed_extent_op *extra_op);
73 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
74                                     struct extent_buffer *leaf,
75                                     struct btrfs_extent_item *ei);
76 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
77                                       struct btrfs_fs_info *fs_info,
78                                       u64 parent, u64 root_objectid,
79                                       u64 flags, u64 owner, u64 offset,
80                                       struct btrfs_key *ins, int ref_mod);
81 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
82                                      struct btrfs_fs_info *fs_info,
83                                      u64 parent, u64 root_objectid,
84                                      u64 flags, struct btrfs_disk_key *key,
85                                      int level, struct btrfs_key *ins);
86 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
87                           struct btrfs_fs_info *fs_info, u64 flags,
88                           int force);
89 static int find_next_key(struct btrfs_path *path, int level,
90                          struct btrfs_key *key);
91 static void dump_space_info(struct btrfs_fs_info *fs_info,
92                             struct btrfs_space_info *info, u64 bytes,
93                             int dump_block_groups);
94 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
95                                     u64 ram_bytes, u64 num_bytes, int delalloc);
96 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
97                                      u64 num_bytes, int delalloc);
98 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
99                                u64 num_bytes);
100 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
101                                     struct btrfs_space_info *space_info,
102                                     u64 orig_bytes,
103                                     enum btrfs_reserve_flush_enum flush,
104                                     bool system_chunk);
105 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
106                                      struct btrfs_space_info *space_info,
107                                      u64 num_bytes);
108 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
109                                      struct btrfs_space_info *space_info,
110                                      u64 num_bytes);
111
112 static noinline int
113 block_group_cache_done(struct btrfs_block_group_cache *cache)
114 {
115         smp_mb();
116         return cache->cached == BTRFS_CACHE_FINISHED ||
117                 cache->cached == BTRFS_CACHE_ERROR;
118 }
119
120 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
121 {
122         return (cache->flags & bits) == bits;
123 }
124
125 void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
126 {
127         atomic_inc(&cache->count);
128 }
129
130 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
131 {
132         if (atomic_dec_and_test(&cache->count)) {
133                 WARN_ON(cache->pinned > 0);
134                 WARN_ON(cache->reserved > 0);
135
136                 /*
137                  * If not empty, someone is still holding mutex of
138                  * full_stripe_lock, which can only be released by caller.
139                  * And it will definitely cause use-after-free when caller
140                  * tries to release full stripe lock.
141                  *
142                  * No better way to resolve, but only to warn.
143                  */
144                 WARN_ON(!RB_EMPTY_ROOT(&cache->full_stripe_locks_root.root));
145                 kfree(cache->free_space_ctl);
146                 kfree(cache);
147         }
148 }
149
150 /*
151  * this adds the block group to the fs_info rb tree for the block group
152  * cache
153  */
154 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
155                                 struct btrfs_block_group_cache *block_group)
156 {
157         struct rb_node **p;
158         struct rb_node *parent = NULL;
159         struct btrfs_block_group_cache *cache;
160
161         spin_lock(&info->block_group_cache_lock);
162         p = &info->block_group_cache_tree.rb_node;
163
164         while (*p) {
165                 parent = *p;
166                 cache = rb_entry(parent, struct btrfs_block_group_cache,
167                                  cache_node);
168                 if (block_group->key.objectid < cache->key.objectid) {
169                         p = &(*p)->rb_left;
170                 } else if (block_group->key.objectid > cache->key.objectid) {
171                         p = &(*p)->rb_right;
172                 } else {
173                         spin_unlock(&info->block_group_cache_lock);
174                         return -EEXIST;
175                 }
176         }
177
178         rb_link_node(&block_group->cache_node, parent, p);
179         rb_insert_color(&block_group->cache_node,
180                         &info->block_group_cache_tree);
181
182         if (info->first_logical_byte > block_group->key.objectid)
183                 info->first_logical_byte = block_group->key.objectid;
184
185         spin_unlock(&info->block_group_cache_lock);
186
187         return 0;
188 }
189
190 /*
191  * This will return the block group at or after bytenr if contains is 0, else
192  * it will return the block group that contains the bytenr
193  */
194 static struct btrfs_block_group_cache *
195 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
196                               int contains)
197 {
198         struct btrfs_block_group_cache *cache, *ret = NULL;
199         struct rb_node *n;
200         u64 end, start;
201
202         spin_lock(&info->block_group_cache_lock);
203         n = info->block_group_cache_tree.rb_node;
204
205         while (n) {
206                 cache = rb_entry(n, struct btrfs_block_group_cache,
207                                  cache_node);
208                 end = cache->key.objectid + cache->key.offset - 1;
209                 start = cache->key.objectid;
210
211                 if (bytenr < start) {
212                         if (!contains && (!ret || start < ret->key.objectid))
213                                 ret = cache;
214                         n = n->rb_left;
215                 } else if (bytenr > start) {
216                         if (contains && bytenr <= end) {
217                                 ret = cache;
218                                 break;
219                         }
220                         n = n->rb_right;
221                 } else {
222                         ret = cache;
223                         break;
224                 }
225         }
226         if (ret) {
227                 btrfs_get_block_group(ret);
228                 if (bytenr == 0 && info->first_logical_byte > ret->key.objectid)
229                         info->first_logical_byte = ret->key.objectid;
230         }
231         spin_unlock(&info->block_group_cache_lock);
232
233         return ret;
234 }
235
236 static int add_excluded_extent(struct btrfs_fs_info *fs_info,
237                                u64 start, u64 num_bytes)
238 {
239         u64 end = start + num_bytes - 1;
240         set_extent_bits(&fs_info->freed_extents[0],
241                         start, end, EXTENT_UPTODATE);
242         set_extent_bits(&fs_info->freed_extents[1],
243                         start, end, EXTENT_UPTODATE);
244         return 0;
245 }
246
247 static void free_excluded_extents(struct btrfs_fs_info *fs_info,
248                                   struct btrfs_block_group_cache *cache)
249 {
250         u64 start, end;
251
252         start = cache->key.objectid;
253         end = start + cache->key.offset - 1;
254
255         clear_extent_bits(&fs_info->freed_extents[0],
256                           start, end, EXTENT_UPTODATE);
257         clear_extent_bits(&fs_info->freed_extents[1],
258                           start, end, EXTENT_UPTODATE);
259 }
260
261 static int exclude_super_stripes(struct btrfs_fs_info *fs_info,
262                                  struct btrfs_block_group_cache *cache)
263 {
264         u64 bytenr;
265         u64 *logical;
266         int stripe_len;
267         int i, nr, ret;
268
269         if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
270                 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
271                 cache->bytes_super += stripe_len;
272                 ret = add_excluded_extent(fs_info, cache->key.objectid,
273                                           stripe_len);
274                 if (ret)
275                         return ret;
276         }
277
278         for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
279                 bytenr = btrfs_sb_offset(i);
280                 ret = btrfs_rmap_block(fs_info, cache->key.objectid,
281                                        bytenr, 0, &logical, &nr, &stripe_len);
282                 if (ret)
283                         return ret;
284
285                 while (nr--) {
286                         u64 start, len;
287
288                         if (logical[nr] > cache->key.objectid +
289                             cache->key.offset)
290                                 continue;
291
292                         if (logical[nr] + stripe_len <= cache->key.objectid)
293                                 continue;
294
295                         start = logical[nr];
296                         if (start < cache->key.objectid) {
297                                 start = cache->key.objectid;
298                                 len = (logical[nr] + stripe_len) - start;
299                         } else {
300                                 len = min_t(u64, stripe_len,
301                                             cache->key.objectid +
302                                             cache->key.offset - start);
303                         }
304
305                         cache->bytes_super += len;
306                         ret = add_excluded_extent(fs_info, start, len);
307                         if (ret) {
308                                 kfree(logical);
309                                 return ret;
310                         }
311                 }
312
313                 kfree(logical);
314         }
315         return 0;
316 }
317
318 static struct btrfs_caching_control *
319 get_caching_control(struct btrfs_block_group_cache *cache)
320 {
321         struct btrfs_caching_control *ctl;
322
323         spin_lock(&cache->lock);
324         if (!cache->caching_ctl) {
325                 spin_unlock(&cache->lock);
326                 return NULL;
327         }
328
329         ctl = cache->caching_ctl;
330         refcount_inc(&ctl->count);
331         spin_unlock(&cache->lock);
332         return ctl;
333 }
334
335 static void put_caching_control(struct btrfs_caching_control *ctl)
336 {
337         if (refcount_dec_and_test(&ctl->count))
338                 kfree(ctl);
339 }
340
341 #ifdef CONFIG_BTRFS_DEBUG
342 static void fragment_free_space(struct btrfs_block_group_cache *block_group)
343 {
344         struct btrfs_fs_info *fs_info = block_group->fs_info;
345         u64 start = block_group->key.objectid;
346         u64 len = block_group->key.offset;
347         u64 chunk = block_group->flags & BTRFS_BLOCK_GROUP_METADATA ?
348                 fs_info->nodesize : fs_info->sectorsize;
349         u64 step = chunk << 1;
350
351         while (len > chunk) {
352                 btrfs_remove_free_space(block_group, start, chunk);
353                 start += step;
354                 if (len < step)
355                         len = 0;
356                 else
357                         len -= step;
358         }
359 }
360 #endif
361
362 /*
363  * this is only called by cache_block_group, since we could have freed extents
364  * we need to check the pinned_extents for any extents that can't be used yet
365  * since their free space will be released as soon as the transaction commits.
366  */
367 u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
368                        struct btrfs_fs_info *info, u64 start, u64 end)
369 {
370         u64 extent_start, extent_end, size, total_added = 0;
371         int ret;
372
373         while (start < end) {
374                 ret = find_first_extent_bit(info->pinned_extents, start,
375                                             &extent_start, &extent_end,
376                                             EXTENT_DIRTY | EXTENT_UPTODATE,
377                                             NULL);
378                 if (ret)
379                         break;
380
381                 if (extent_start <= start) {
382                         start = extent_end + 1;
383                 } else if (extent_start > start && extent_start < end) {
384                         size = extent_start - start;
385                         total_added += size;
386                         ret = btrfs_add_free_space(block_group, start,
387                                                    size);
388                         BUG_ON(ret); /* -ENOMEM or logic error */
389                         start = extent_end + 1;
390                 } else {
391                         break;
392                 }
393         }
394
395         if (start < end) {
396                 size = end - start;
397                 total_added += size;
398                 ret = btrfs_add_free_space(block_group, start, size);
399                 BUG_ON(ret); /* -ENOMEM or logic error */
400         }
401
402         return total_added;
403 }
404
405 static int load_extent_tree_free(struct btrfs_caching_control *caching_ctl)
406 {
407         struct btrfs_block_group_cache *block_group = caching_ctl->block_group;
408         struct btrfs_fs_info *fs_info = block_group->fs_info;
409         struct btrfs_root *extent_root = fs_info->extent_root;
410         struct btrfs_path *path;
411         struct extent_buffer *leaf;
412         struct btrfs_key key;
413         u64 total_found = 0;
414         u64 last = 0;
415         u32 nritems;
416         int ret;
417         bool wakeup = true;
418
419         path = btrfs_alloc_path();
420         if (!path)
421                 return -ENOMEM;
422
423         last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
424
425 #ifdef CONFIG_BTRFS_DEBUG
426         /*
427          * If we're fragmenting we don't want to make anybody think we can
428          * allocate from this block group until we've had a chance to fragment
429          * the free space.
430          */
431         if (btrfs_should_fragment_free_space(block_group))
432                 wakeup = false;
433 #endif
434         /*
435          * We don't want to deadlock with somebody trying to allocate a new
436          * extent for the extent root while also trying to search the extent
437          * root to add free space.  So we skip locking and search the commit
438          * root, since its read-only
439          */
440         path->skip_locking = 1;
441         path->search_commit_root = 1;
442         path->reada = READA_FORWARD;
443
444         key.objectid = last;
445         key.offset = 0;
446         key.type = BTRFS_EXTENT_ITEM_KEY;
447
448 next:
449         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
450         if (ret < 0)
451                 goto out;
452
453         leaf = path->nodes[0];
454         nritems = btrfs_header_nritems(leaf);
455
456         while (1) {
457                 if (btrfs_fs_closing(fs_info) > 1) {
458                         last = (u64)-1;
459                         break;
460                 }
461
462                 if (path->slots[0] < nritems) {
463                         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
464                 } else {
465                         ret = find_next_key(path, 0, &key);
466                         if (ret)
467                                 break;
468
469                         if (need_resched() ||
470                             rwsem_is_contended(&fs_info->commit_root_sem)) {
471                                 if (wakeup)
472                                         caching_ctl->progress = last;
473                                 btrfs_release_path(path);
474                                 up_read(&fs_info->commit_root_sem);
475                                 mutex_unlock(&caching_ctl->mutex);
476                                 cond_resched();
477                                 mutex_lock(&caching_ctl->mutex);
478                                 down_read(&fs_info->commit_root_sem);
479                                 goto next;
480                         }
481
482                         ret = btrfs_next_leaf(extent_root, path);
483                         if (ret < 0)
484                                 goto out;
485                         if (ret)
486                                 break;
487                         leaf = path->nodes[0];
488                         nritems = btrfs_header_nritems(leaf);
489                         continue;
490                 }
491
492                 if (key.objectid < last) {
493                         key.objectid = last;
494                         key.offset = 0;
495                         key.type = BTRFS_EXTENT_ITEM_KEY;
496
497                         if (wakeup)
498                                 caching_ctl->progress = last;
499                         btrfs_release_path(path);
500                         goto next;
501                 }
502
503                 if (key.objectid < block_group->key.objectid) {
504                         path->slots[0]++;
505                         continue;
506                 }
507
508                 if (key.objectid >= block_group->key.objectid +
509                     block_group->key.offset)
510                         break;
511
512                 if (key.type == BTRFS_EXTENT_ITEM_KEY ||
513                     key.type == BTRFS_METADATA_ITEM_KEY) {
514                         total_found += add_new_free_space(block_group,
515                                                           fs_info, last,
516                                                           key.objectid);
517                         if (key.type == BTRFS_METADATA_ITEM_KEY)
518                                 last = key.objectid +
519                                         fs_info->nodesize;
520                         else
521                                 last = key.objectid + key.offset;
522
523                         if (total_found > CACHING_CTL_WAKE_UP) {
524                                 total_found = 0;
525                                 if (wakeup)
526                                         wake_up(&caching_ctl->wait);
527                         }
528                 }
529                 path->slots[0]++;
530         }
531         ret = 0;
532
533         total_found += add_new_free_space(block_group, fs_info, last,
534                                           block_group->key.objectid +
535                                           block_group->key.offset);
536         caching_ctl->progress = (u64)-1;
537
538 out:
539         btrfs_free_path(path);
540         return ret;
541 }
542
543 static noinline void caching_thread(struct btrfs_work *work)
544 {
545         struct btrfs_block_group_cache *block_group;
546         struct btrfs_fs_info *fs_info;
547         struct btrfs_caching_control *caching_ctl;
548         struct btrfs_root *extent_root;
549         int ret;
550
551         caching_ctl = container_of(work, struct btrfs_caching_control, work);
552         block_group = caching_ctl->block_group;
553         fs_info = block_group->fs_info;
554         extent_root = fs_info->extent_root;
555
556         mutex_lock(&caching_ctl->mutex);
557         down_read(&fs_info->commit_root_sem);
558
559         if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE))
560                 ret = load_free_space_tree(caching_ctl);
561         else
562                 ret = load_extent_tree_free(caching_ctl);
563
564         spin_lock(&block_group->lock);
565         block_group->caching_ctl = NULL;
566         block_group->cached = ret ? BTRFS_CACHE_ERROR : BTRFS_CACHE_FINISHED;
567         spin_unlock(&block_group->lock);
568
569 #ifdef CONFIG_BTRFS_DEBUG
570         if (btrfs_should_fragment_free_space(block_group)) {
571                 u64 bytes_used;
572
573                 spin_lock(&block_group->space_info->lock);
574                 spin_lock(&block_group->lock);
575                 bytes_used = block_group->key.offset -
576                         btrfs_block_group_used(&block_group->item);
577                 block_group->space_info->bytes_used += bytes_used >> 1;
578                 spin_unlock(&block_group->lock);
579                 spin_unlock(&block_group->space_info->lock);
580                 fragment_free_space(block_group);
581         }
582 #endif
583
584         caching_ctl->progress = (u64)-1;
585
586         up_read(&fs_info->commit_root_sem);
587         free_excluded_extents(fs_info, block_group);
588         mutex_unlock(&caching_ctl->mutex);
589
590         wake_up(&caching_ctl->wait);
591
592         put_caching_control(caching_ctl);
593         btrfs_put_block_group(block_group);
594 }
595
596 static int cache_block_group(struct btrfs_block_group_cache *cache,
597                              int load_cache_only)
598 {
599         DEFINE_WAIT(wait);
600         struct btrfs_fs_info *fs_info = cache->fs_info;
601         struct btrfs_caching_control *caching_ctl;
602         int ret = 0;
603
604         caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
605         if (!caching_ctl)
606                 return -ENOMEM;
607
608         INIT_LIST_HEAD(&caching_ctl->list);
609         mutex_init(&caching_ctl->mutex);
610         init_waitqueue_head(&caching_ctl->wait);
611         caching_ctl->block_group = cache;
612         caching_ctl->progress = cache->key.objectid;
613         refcount_set(&caching_ctl->count, 1);
614         btrfs_init_work(&caching_ctl->work, btrfs_cache_helper,
615                         caching_thread, NULL, NULL);
616
617         spin_lock(&cache->lock);
618         /*
619          * This should be a rare occasion, but this could happen I think in the
620          * case where one thread starts to load the space cache info, and then
621          * some other thread starts a transaction commit which tries to do an
622          * allocation while the other thread is still loading the space cache
623          * info.  The previous loop should have kept us from choosing this block
624          * group, but if we've moved to the state where we will wait on caching
625          * block groups we need to first check if we're doing a fast load here,
626          * so we can wait for it to finish, otherwise we could end up allocating
627          * from a block group who's cache gets evicted for one reason or
628          * another.
629          */
630         while (cache->cached == BTRFS_CACHE_FAST) {
631                 struct btrfs_caching_control *ctl;
632
633                 ctl = cache->caching_ctl;
634                 refcount_inc(&ctl->count);
635                 prepare_to_wait(&ctl->wait, &wait, TASK_UNINTERRUPTIBLE);
636                 spin_unlock(&cache->lock);
637
638                 schedule();
639
640                 finish_wait(&ctl->wait, &wait);
641                 put_caching_control(ctl);
642                 spin_lock(&cache->lock);
643         }
644
645         if (cache->cached != BTRFS_CACHE_NO) {
646                 spin_unlock(&cache->lock);
647                 kfree(caching_ctl);
648                 return 0;
649         }
650         WARN_ON(cache->caching_ctl);
651         cache->caching_ctl = caching_ctl;
652         cache->cached = BTRFS_CACHE_FAST;
653         spin_unlock(&cache->lock);
654
655         if (fs_info->mount_opt & BTRFS_MOUNT_SPACE_CACHE) {
656                 mutex_lock(&caching_ctl->mutex);
657                 ret = load_free_space_cache(fs_info, cache);
658
659                 spin_lock(&cache->lock);
660                 if (ret == 1) {
661                         cache->caching_ctl = NULL;
662                         cache->cached = BTRFS_CACHE_FINISHED;
663                         cache->last_byte_to_unpin = (u64)-1;
664                         caching_ctl->progress = (u64)-1;
665                 } else {
666                         if (load_cache_only) {
667                                 cache->caching_ctl = NULL;
668                                 cache->cached = BTRFS_CACHE_NO;
669                         } else {
670                                 cache->cached = BTRFS_CACHE_STARTED;
671                                 cache->has_caching_ctl = 1;
672                         }
673                 }
674                 spin_unlock(&cache->lock);
675 #ifdef CONFIG_BTRFS_DEBUG
676                 if (ret == 1 &&
677                     btrfs_should_fragment_free_space(cache)) {
678                         u64 bytes_used;
679
680                         spin_lock(&cache->space_info->lock);
681                         spin_lock(&cache->lock);
682                         bytes_used = cache->key.offset -
683                                 btrfs_block_group_used(&cache->item);
684                         cache->space_info->bytes_used += bytes_used >> 1;
685                         spin_unlock(&cache->lock);
686                         spin_unlock(&cache->space_info->lock);
687                         fragment_free_space(cache);
688                 }
689 #endif
690                 mutex_unlock(&caching_ctl->mutex);
691
692                 wake_up(&caching_ctl->wait);
693                 if (ret == 1) {
694                         put_caching_control(caching_ctl);
695                         free_excluded_extents(fs_info, cache);
696                         return 0;
697                 }
698         } else {
699                 /*
700                  * We're either using the free space tree or no caching at all.
701                  * Set cached to the appropriate value and wakeup any waiters.
702                  */
703                 spin_lock(&cache->lock);
704                 if (load_cache_only) {
705                         cache->caching_ctl = NULL;
706                         cache->cached = BTRFS_CACHE_NO;
707                 } else {
708                         cache->cached = BTRFS_CACHE_STARTED;
709                         cache->has_caching_ctl = 1;
710                 }
711                 spin_unlock(&cache->lock);
712                 wake_up(&caching_ctl->wait);
713         }
714
715         if (load_cache_only) {
716                 put_caching_control(caching_ctl);
717                 return 0;
718         }
719
720         down_write(&fs_info->commit_root_sem);
721         refcount_inc(&caching_ctl->count);
722         list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
723         up_write(&fs_info->commit_root_sem);
724
725         btrfs_get_block_group(cache);
726
727         btrfs_queue_work(fs_info->caching_workers, &caching_ctl->work);
728
729         return ret;
730 }
731
732 /*
733  * return the block group that starts at or after bytenr
734  */
735 static struct btrfs_block_group_cache *
736 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
737 {
738         return block_group_cache_tree_search(info, bytenr, 0);
739 }
740
741 /*
742  * return the block group that contains the given bytenr
743  */
744 struct btrfs_block_group_cache *btrfs_lookup_block_group(
745                                                  struct btrfs_fs_info *info,
746                                                  u64 bytenr)
747 {
748         return block_group_cache_tree_search(info, bytenr, 1);
749 }
750
751 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
752                                                   u64 flags)
753 {
754         struct list_head *head = &info->space_info;
755         struct btrfs_space_info *found;
756
757         flags &= BTRFS_BLOCK_GROUP_TYPE_MASK;
758
759         rcu_read_lock();
760         list_for_each_entry_rcu(found, head, list) {
761                 if (found->flags & flags) {
762                         rcu_read_unlock();
763                         return found;
764                 }
765         }
766         rcu_read_unlock();
767         return NULL;
768 }
769
770 static void add_pinned_bytes(struct btrfs_fs_info *fs_info, s64 num_bytes,
771                              u64 owner, u64 root_objectid)
772 {
773         struct btrfs_space_info *space_info;
774         u64 flags;
775
776         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
777                 if (root_objectid == BTRFS_CHUNK_TREE_OBJECTID)
778                         flags = BTRFS_BLOCK_GROUP_SYSTEM;
779                 else
780                         flags = BTRFS_BLOCK_GROUP_METADATA;
781         } else {
782                 flags = BTRFS_BLOCK_GROUP_DATA;
783         }
784
785         space_info = __find_space_info(fs_info, flags);
786         ASSERT(space_info);
787         percpu_counter_add(&space_info->total_bytes_pinned, num_bytes);
788 }
789
790 /*
791  * after adding space to the filesystem, we need to clear the full flags
792  * on all the space infos.
793  */
794 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
795 {
796         struct list_head *head = &info->space_info;
797         struct btrfs_space_info *found;
798
799         rcu_read_lock();
800         list_for_each_entry_rcu(found, head, list)
801                 found->full = 0;
802         rcu_read_unlock();
803 }
804
805 /* simple helper to search for an existing data extent at a given offset */
806 int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len)
807 {
808         int ret;
809         struct btrfs_key key;
810         struct btrfs_path *path;
811
812         path = btrfs_alloc_path();
813         if (!path)
814                 return -ENOMEM;
815
816         key.objectid = start;
817         key.offset = len;
818         key.type = BTRFS_EXTENT_ITEM_KEY;
819         ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
820         btrfs_free_path(path);
821         return ret;
822 }
823
824 /*
825  * helper function to lookup reference count and flags of a tree block.
826  *
827  * the head node for delayed ref is used to store the sum of all the
828  * reference count modifications queued up in the rbtree. the head
829  * node may also store the extent flags to set. This way you can check
830  * to see what the reference count and extent flags would be if all of
831  * the delayed refs are not processed.
832  */
833 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
834                              struct btrfs_fs_info *fs_info, u64 bytenr,
835                              u64 offset, int metadata, u64 *refs, u64 *flags)
836 {
837         struct btrfs_delayed_ref_head *head;
838         struct btrfs_delayed_ref_root *delayed_refs;
839         struct btrfs_path *path;
840         struct btrfs_extent_item *ei;
841         struct extent_buffer *leaf;
842         struct btrfs_key key;
843         u32 item_size;
844         u64 num_refs;
845         u64 extent_flags;
846         int ret;
847
848         /*
849          * If we don't have skinny metadata, don't bother doing anything
850          * different
851          */
852         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA)) {
853                 offset = fs_info->nodesize;
854                 metadata = 0;
855         }
856
857         path = btrfs_alloc_path();
858         if (!path)
859                 return -ENOMEM;
860
861         if (!trans) {
862                 path->skip_locking = 1;
863                 path->search_commit_root = 1;
864         }
865
866 search_again:
867         key.objectid = bytenr;
868         key.offset = offset;
869         if (metadata)
870                 key.type = BTRFS_METADATA_ITEM_KEY;
871         else
872                 key.type = BTRFS_EXTENT_ITEM_KEY;
873
874         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
875         if (ret < 0)
876                 goto out_free;
877
878         if (ret > 0 && metadata && key.type == BTRFS_METADATA_ITEM_KEY) {
879                 if (path->slots[0]) {
880                         path->slots[0]--;
881                         btrfs_item_key_to_cpu(path->nodes[0], &key,
882                                               path->slots[0]);
883                         if (key.objectid == bytenr &&
884                             key.type == BTRFS_EXTENT_ITEM_KEY &&
885                             key.offset == fs_info->nodesize)
886                                 ret = 0;
887                 }
888         }
889
890         if (ret == 0) {
891                 leaf = path->nodes[0];
892                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
893                 if (item_size >= sizeof(*ei)) {
894                         ei = btrfs_item_ptr(leaf, path->slots[0],
895                                             struct btrfs_extent_item);
896                         num_refs = btrfs_extent_refs(leaf, ei);
897                         extent_flags = btrfs_extent_flags(leaf, ei);
898                 } else {
899 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
900                         struct btrfs_extent_item_v0 *ei0;
901                         BUG_ON(item_size != sizeof(*ei0));
902                         ei0 = btrfs_item_ptr(leaf, path->slots[0],
903                                              struct btrfs_extent_item_v0);
904                         num_refs = btrfs_extent_refs_v0(leaf, ei0);
905                         /* FIXME: this isn't correct for data */
906                         extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
907 #else
908                         BUG();
909 #endif
910                 }
911                 BUG_ON(num_refs == 0);
912         } else {
913                 num_refs = 0;
914                 extent_flags = 0;
915                 ret = 0;
916         }
917
918         if (!trans)
919                 goto out;
920
921         delayed_refs = &trans->transaction->delayed_refs;
922         spin_lock(&delayed_refs->lock);
923         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
924         if (head) {
925                 if (!mutex_trylock(&head->mutex)) {
926                         refcount_inc(&head->node.refs);
927                         spin_unlock(&delayed_refs->lock);
928
929                         btrfs_release_path(path);
930
931                         /*
932                          * Mutex was contended, block until it's released and try
933                          * again
934                          */
935                         mutex_lock(&head->mutex);
936                         mutex_unlock(&head->mutex);
937                         btrfs_put_delayed_ref(&head->node);
938                         goto search_again;
939                 }
940                 spin_lock(&head->lock);
941                 if (head->extent_op && head->extent_op->update_flags)
942                         extent_flags |= head->extent_op->flags_to_set;
943                 else
944                         BUG_ON(num_refs == 0);
945
946                 num_refs += head->node.ref_mod;
947                 spin_unlock(&head->lock);
948                 mutex_unlock(&head->mutex);
949         }
950         spin_unlock(&delayed_refs->lock);
951 out:
952         WARN_ON(num_refs == 0);
953         if (refs)
954                 *refs = num_refs;
955         if (flags)
956                 *flags = extent_flags;
957 out_free:
958         btrfs_free_path(path);
959         return ret;
960 }
961
962 /*
963  * Back reference rules.  Back refs have three main goals:
964  *
965  * 1) differentiate between all holders of references to an extent so that
966  *    when a reference is dropped we can make sure it was a valid reference
967  *    before freeing the extent.
968  *
969  * 2) Provide enough information to quickly find the holders of an extent
970  *    if we notice a given block is corrupted or bad.
971  *
972  * 3) Make it easy to migrate blocks for FS shrinking or storage pool
973  *    maintenance.  This is actually the same as #2, but with a slightly
974  *    different use case.
975  *
976  * There are two kinds of back refs. The implicit back refs is optimized
977  * for pointers in non-shared tree blocks. For a given pointer in a block,
978  * back refs of this kind provide information about the block's owner tree
979  * and the pointer's key. These information allow us to find the block by
980  * b-tree searching. The full back refs is for pointers in tree blocks not
981  * referenced by their owner trees. The location of tree block is recorded
982  * in the back refs. Actually the full back refs is generic, and can be
983  * used in all cases the implicit back refs is used. The major shortcoming
984  * of the full back refs is its overhead. Every time a tree block gets
985  * COWed, we have to update back refs entry for all pointers in it.
986  *
987  * For a newly allocated tree block, we use implicit back refs for
988  * pointers in it. This means most tree related operations only involve
989  * implicit back refs. For a tree block created in old transaction, the
990  * only way to drop a reference to it is COW it. So we can detect the
991  * event that tree block loses its owner tree's reference and do the
992  * back refs conversion.
993  *
994  * When a tree block is COWed through a tree, there are four cases:
995  *
996  * The reference count of the block is one and the tree is the block's
997  * owner tree. Nothing to do in this case.
998  *
999  * The reference count of the block is one and the tree is not the
1000  * block's owner tree. In this case, full back refs is used for pointers
1001  * in the block. Remove these full back refs, add implicit back refs for
1002  * every pointers in the new block.
1003  *
1004  * The reference count of the block is greater than one and the tree is
1005  * the block's owner tree. In this case, implicit back refs is used for
1006  * pointers in the block. Add full back refs for every pointers in the
1007  * block, increase lower level extents' reference counts. The original
1008  * implicit back refs are entailed to the new block.
1009  *
1010  * The reference count of the block is greater than one and the tree is
1011  * not the block's owner tree. Add implicit back refs for every pointer in
1012  * the new block, increase lower level extents' reference count.
1013  *
1014  * Back Reference Key composing:
1015  *
1016  * The key objectid corresponds to the first byte in the extent,
1017  * The key type is used to differentiate between types of back refs.
1018  * There are different meanings of the key offset for different types
1019  * of back refs.
1020  *
1021  * File extents can be referenced by:
1022  *
1023  * - multiple snapshots, subvolumes, or different generations in one subvol
1024  * - different files inside a single subvolume
1025  * - different offsets inside a file (bookend extents in file.c)
1026  *
1027  * The extent ref structure for the implicit back refs has fields for:
1028  *
1029  * - Objectid of the subvolume root
1030  * - objectid of the file holding the reference
1031  * - original offset in the file
1032  * - how many bookend extents
1033  *
1034  * The key offset for the implicit back refs is hash of the first
1035  * three fields.
1036  *
1037  * The extent ref structure for the full back refs has field for:
1038  *
1039  * - number of pointers in the tree leaf
1040  *
1041  * The key offset for the implicit back refs is the first byte of
1042  * the tree leaf
1043  *
1044  * When a file extent is allocated, The implicit back refs is used.
1045  * the fields are filled in:
1046  *
1047  *     (root_key.objectid, inode objectid, offset in file, 1)
1048  *
1049  * When a file extent is removed file truncation, we find the
1050  * corresponding implicit back refs and check the following fields:
1051  *
1052  *     (btrfs_header_owner(leaf), inode objectid, offset in file)
1053  *
1054  * Btree extents can be referenced by:
1055  *
1056  * - Different subvolumes
1057  *
1058  * Both the implicit back refs and the full back refs for tree blocks
1059  * only consist of key. The key offset for the implicit back refs is
1060  * objectid of block's owner tree. The key offset for the full back refs
1061  * is the first byte of parent block.
1062  *
1063  * When implicit back refs is used, information about the lowest key and
1064  * level of the tree block are required. These information are stored in
1065  * tree block info structure.
1066  */
1067
1068 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1069 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
1070                                   struct btrfs_fs_info *fs_info,
1071                                   struct btrfs_path *path,
1072                                   u64 owner, u32 extra_size)
1073 {
1074         struct btrfs_root *root = fs_info->extent_root;
1075         struct btrfs_extent_item *item;
1076         struct btrfs_extent_item_v0 *ei0;
1077         struct btrfs_extent_ref_v0 *ref0;
1078         struct btrfs_tree_block_info *bi;
1079         struct extent_buffer *leaf;
1080         struct btrfs_key key;
1081         struct btrfs_key found_key;
1082         u32 new_size = sizeof(*item);
1083         u64 refs;
1084         int ret;
1085
1086         leaf = path->nodes[0];
1087         BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
1088
1089         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1090         ei0 = btrfs_item_ptr(leaf, path->slots[0],
1091                              struct btrfs_extent_item_v0);
1092         refs = btrfs_extent_refs_v0(leaf, ei0);
1093
1094         if (owner == (u64)-1) {
1095                 while (1) {
1096                         if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1097                                 ret = btrfs_next_leaf(root, path);
1098                                 if (ret < 0)
1099                                         return ret;
1100                                 BUG_ON(ret > 0); /* Corruption */
1101                                 leaf = path->nodes[0];
1102                         }
1103                         btrfs_item_key_to_cpu(leaf, &found_key,
1104                                               path->slots[0]);
1105                         BUG_ON(key.objectid != found_key.objectid);
1106                         if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
1107                                 path->slots[0]++;
1108                                 continue;
1109                         }
1110                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1111                                               struct btrfs_extent_ref_v0);
1112                         owner = btrfs_ref_objectid_v0(leaf, ref0);
1113                         break;
1114                 }
1115         }
1116         btrfs_release_path(path);
1117
1118         if (owner < BTRFS_FIRST_FREE_OBJECTID)
1119                 new_size += sizeof(*bi);
1120
1121         new_size -= sizeof(*ei0);
1122         ret = btrfs_search_slot(trans, root, &key, path,
1123                                 new_size + extra_size, 1);
1124         if (ret < 0)
1125                 return ret;
1126         BUG_ON(ret); /* Corruption */
1127
1128         btrfs_extend_item(fs_info, path, new_size);
1129
1130         leaf = path->nodes[0];
1131         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1132         btrfs_set_extent_refs(leaf, item, refs);
1133         /* FIXME: get real generation */
1134         btrfs_set_extent_generation(leaf, item, 0);
1135         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1136                 btrfs_set_extent_flags(leaf, item,
1137                                        BTRFS_EXTENT_FLAG_TREE_BLOCK |
1138                                        BTRFS_BLOCK_FLAG_FULL_BACKREF);
1139                 bi = (struct btrfs_tree_block_info *)(item + 1);
1140                 /* FIXME: get first key of the block */
1141                 memzero_extent_buffer(leaf, (unsigned long)bi, sizeof(*bi));
1142                 btrfs_set_tree_block_level(leaf, bi, (int)owner);
1143         } else {
1144                 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
1145         }
1146         btrfs_mark_buffer_dirty(leaf);
1147         return 0;
1148 }
1149 #endif
1150
1151 /*
1152  * is_data == BTRFS_REF_TYPE_BLOCK, tree block type is required,
1153  * is_data == BTRFS_REF_TYPE_DATA, data type is requried,
1154  * is_data == BTRFS_REF_TYPE_ANY, either type is OK.
1155  */
1156 int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
1157                                      struct btrfs_extent_inline_ref *iref,
1158                                      enum btrfs_inline_ref_type is_data)
1159 {
1160         int type = btrfs_extent_inline_ref_type(eb, iref);
1161         u64 offset = btrfs_extent_inline_ref_offset(eb, iref);
1162
1163         if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1164             type == BTRFS_SHARED_BLOCK_REF_KEY ||
1165             type == BTRFS_SHARED_DATA_REF_KEY ||
1166             type == BTRFS_EXTENT_DATA_REF_KEY) {
1167                 if (is_data == BTRFS_REF_TYPE_BLOCK) {
1168                         if (type == BTRFS_TREE_BLOCK_REF_KEY)
1169                                 return type;
1170                         if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1171                                 ASSERT(eb->fs_info);
1172                                 /*
1173                                  * Every shared one has parent tree block,
1174                                  * which must be aligned to sector size.
1175                                  */
1176                                 if (offset &&
1177                                     IS_ALIGNED(offset, eb->fs_info->sectorsize))
1178                                         return type;
1179                         }
1180                 } else if (is_data == BTRFS_REF_TYPE_DATA) {
1181                         if (type == BTRFS_EXTENT_DATA_REF_KEY)
1182                                 return type;
1183                         if (type == BTRFS_SHARED_DATA_REF_KEY) {
1184                                 ASSERT(eb->fs_info);
1185                                 /*
1186                                  * Every shared one has parent tree block,
1187                                  * which must be aligned to sector size.
1188                                  */
1189                                 if (offset &&
1190                                     IS_ALIGNED(offset, eb->fs_info->sectorsize))
1191                                         return type;
1192                         }
1193                 } else {
1194                         ASSERT(is_data == BTRFS_REF_TYPE_ANY);
1195                         return type;
1196                 }
1197         }
1198
1199         btrfs_print_leaf((struct extent_buffer *)eb);
1200         btrfs_err(eb->fs_info,
1201                   "eb %llu iref 0x%lx invalid extent inline ref type %d",
1202                   eb->start, (unsigned long)iref, type);
1203         WARN_ON(1);
1204
1205         return BTRFS_REF_TYPE_INVALID;
1206 }
1207
1208 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
1209 {
1210         u32 high_crc = ~(u32)0;
1211         u32 low_crc = ~(u32)0;
1212         __le64 lenum;
1213
1214         lenum = cpu_to_le64(root_objectid);
1215         high_crc = btrfs_crc32c(high_crc, &lenum, sizeof(lenum));
1216         lenum = cpu_to_le64(owner);
1217         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1218         lenum = cpu_to_le64(offset);
1219         low_crc = btrfs_crc32c(low_crc, &lenum, sizeof(lenum));
1220
1221         return ((u64)high_crc << 31) ^ (u64)low_crc;
1222 }
1223
1224 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
1225                                      struct btrfs_extent_data_ref *ref)
1226 {
1227         return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
1228                                     btrfs_extent_data_ref_objectid(leaf, ref),
1229                                     btrfs_extent_data_ref_offset(leaf, ref));
1230 }
1231
1232 static int match_extent_data_ref(struct extent_buffer *leaf,
1233                                  struct btrfs_extent_data_ref *ref,
1234                                  u64 root_objectid, u64 owner, u64 offset)
1235 {
1236         if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1237             btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1238             btrfs_extent_data_ref_offset(leaf, ref) != offset)
1239                 return 0;
1240         return 1;
1241 }
1242
1243 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1244                                            struct btrfs_fs_info *fs_info,
1245                                            struct btrfs_path *path,
1246                                            u64 bytenr, u64 parent,
1247                                            u64 root_objectid,
1248                                            u64 owner, u64 offset)
1249 {
1250         struct btrfs_root *root = fs_info->extent_root;
1251         struct btrfs_key key;
1252         struct btrfs_extent_data_ref *ref;
1253         struct extent_buffer *leaf;
1254         u32 nritems;
1255         int ret;
1256         int recow;
1257         int err = -ENOENT;
1258
1259         key.objectid = bytenr;
1260         if (parent) {
1261                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1262                 key.offset = parent;
1263         } else {
1264                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1265                 key.offset = hash_extent_data_ref(root_objectid,
1266                                                   owner, offset);
1267         }
1268 again:
1269         recow = 0;
1270         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1271         if (ret < 0) {
1272                 err = ret;
1273                 goto fail;
1274         }
1275
1276         if (parent) {
1277                 if (!ret)
1278                         return 0;
1279 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1280                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1281                 btrfs_release_path(path);
1282                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1283                 if (ret < 0) {
1284                         err = ret;
1285                         goto fail;
1286                 }
1287                 if (!ret)
1288                         return 0;
1289 #endif
1290                 goto fail;
1291         }
1292
1293         leaf = path->nodes[0];
1294         nritems = btrfs_header_nritems(leaf);
1295         while (1) {
1296                 if (path->slots[0] >= nritems) {
1297                         ret = btrfs_next_leaf(root, path);
1298                         if (ret < 0)
1299                                 err = ret;
1300                         if (ret)
1301                                 goto fail;
1302
1303                         leaf = path->nodes[0];
1304                         nritems = btrfs_header_nritems(leaf);
1305                         recow = 1;
1306                 }
1307
1308                 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1309                 if (key.objectid != bytenr ||
1310                     key.type != BTRFS_EXTENT_DATA_REF_KEY)
1311                         goto fail;
1312
1313                 ref = btrfs_item_ptr(leaf, path->slots[0],
1314                                      struct btrfs_extent_data_ref);
1315
1316                 if (match_extent_data_ref(leaf, ref, root_objectid,
1317                                           owner, offset)) {
1318                         if (recow) {
1319                                 btrfs_release_path(path);
1320                                 goto again;
1321                         }
1322                         err = 0;
1323                         break;
1324                 }
1325                 path->slots[0]++;
1326         }
1327 fail:
1328         return err;
1329 }
1330
1331 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1332                                            struct btrfs_fs_info *fs_info,
1333                                            struct btrfs_path *path,
1334                                            u64 bytenr, u64 parent,
1335                                            u64 root_objectid, u64 owner,
1336                                            u64 offset, int refs_to_add)
1337 {
1338         struct btrfs_root *root = fs_info->extent_root;
1339         struct btrfs_key key;
1340         struct extent_buffer *leaf;
1341         u32 size;
1342         u32 num_refs;
1343         int ret;
1344
1345         key.objectid = bytenr;
1346         if (parent) {
1347                 key.type = BTRFS_SHARED_DATA_REF_KEY;
1348                 key.offset = parent;
1349                 size = sizeof(struct btrfs_shared_data_ref);
1350         } else {
1351                 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1352                 key.offset = hash_extent_data_ref(root_objectid,
1353                                                   owner, offset);
1354                 size = sizeof(struct btrfs_extent_data_ref);
1355         }
1356
1357         ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1358         if (ret && ret != -EEXIST)
1359                 goto fail;
1360
1361         leaf = path->nodes[0];
1362         if (parent) {
1363                 struct btrfs_shared_data_ref *ref;
1364                 ref = btrfs_item_ptr(leaf, path->slots[0],
1365                                      struct btrfs_shared_data_ref);
1366                 if (ret == 0) {
1367                         btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1368                 } else {
1369                         num_refs = btrfs_shared_data_ref_count(leaf, ref);
1370                         num_refs += refs_to_add;
1371                         btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1372                 }
1373         } else {
1374                 struct btrfs_extent_data_ref *ref;
1375                 while (ret == -EEXIST) {
1376                         ref = btrfs_item_ptr(leaf, path->slots[0],
1377                                              struct btrfs_extent_data_ref);
1378                         if (match_extent_data_ref(leaf, ref, root_objectid,
1379                                                   owner, offset))
1380                                 break;
1381                         btrfs_release_path(path);
1382                         key.offset++;
1383                         ret = btrfs_insert_empty_item(trans, root, path, &key,
1384                                                       size);
1385                         if (ret && ret != -EEXIST)
1386                                 goto fail;
1387
1388                         leaf = path->nodes[0];
1389                 }
1390                 ref = btrfs_item_ptr(leaf, path->slots[0],
1391                                      struct btrfs_extent_data_ref);
1392                 if (ret == 0) {
1393                         btrfs_set_extent_data_ref_root(leaf, ref,
1394                                                        root_objectid);
1395                         btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1396                         btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1397                         btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1398                 } else {
1399                         num_refs = btrfs_extent_data_ref_count(leaf, ref);
1400                         num_refs += refs_to_add;
1401                         btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1402                 }
1403         }
1404         btrfs_mark_buffer_dirty(leaf);
1405         ret = 0;
1406 fail:
1407         btrfs_release_path(path);
1408         return ret;
1409 }
1410
1411 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1412                                            struct btrfs_fs_info *fs_info,
1413                                            struct btrfs_path *path,
1414                                            int refs_to_drop, int *last_ref)
1415 {
1416         struct btrfs_key key;
1417         struct btrfs_extent_data_ref *ref1 = NULL;
1418         struct btrfs_shared_data_ref *ref2 = NULL;
1419         struct extent_buffer *leaf;
1420         u32 num_refs = 0;
1421         int ret = 0;
1422
1423         leaf = path->nodes[0];
1424         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1425
1426         if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1427                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1428                                       struct btrfs_extent_data_ref);
1429                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1430         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1431                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1432                                       struct btrfs_shared_data_ref);
1433                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1434 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1435         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1436                 struct btrfs_extent_ref_v0 *ref0;
1437                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1438                                       struct btrfs_extent_ref_v0);
1439                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1440 #endif
1441         } else {
1442                 BUG();
1443         }
1444
1445         BUG_ON(num_refs < refs_to_drop);
1446         num_refs -= refs_to_drop;
1447
1448         if (num_refs == 0) {
1449                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
1450                 *last_ref = 1;
1451         } else {
1452                 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1453                         btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1454                 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1455                         btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1456 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1457                 else {
1458                         struct btrfs_extent_ref_v0 *ref0;
1459                         ref0 = btrfs_item_ptr(leaf, path->slots[0],
1460                                         struct btrfs_extent_ref_v0);
1461                         btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1462                 }
1463 #endif
1464                 btrfs_mark_buffer_dirty(leaf);
1465         }
1466         return ret;
1467 }
1468
1469 static noinline u32 extent_data_ref_count(struct btrfs_path *path,
1470                                           struct btrfs_extent_inline_ref *iref)
1471 {
1472         struct btrfs_key key;
1473         struct extent_buffer *leaf;
1474         struct btrfs_extent_data_ref *ref1;
1475         struct btrfs_shared_data_ref *ref2;
1476         u32 num_refs = 0;
1477         int type;
1478
1479         leaf = path->nodes[0];
1480         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1481         if (iref) {
1482                 /*
1483                  * If type is invalid, we should have bailed out earlier than
1484                  * this call.
1485                  */
1486                 type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
1487                 ASSERT(type != BTRFS_REF_TYPE_INVALID);
1488                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1489                         ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1490                         num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1491                 } else {
1492                         ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1493                         num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1494                 }
1495         } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1496                 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1497                                       struct btrfs_extent_data_ref);
1498                 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1499         } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1500                 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1501                                       struct btrfs_shared_data_ref);
1502                 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1503 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1504         } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1505                 struct btrfs_extent_ref_v0 *ref0;
1506                 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1507                                       struct btrfs_extent_ref_v0);
1508                 num_refs = btrfs_ref_count_v0(leaf, ref0);
1509 #endif
1510         } else {
1511                 WARN_ON(1);
1512         }
1513         return num_refs;
1514 }
1515
1516 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1517                                           struct btrfs_fs_info *fs_info,
1518                                           struct btrfs_path *path,
1519                                           u64 bytenr, u64 parent,
1520                                           u64 root_objectid)
1521 {
1522         struct btrfs_root *root = fs_info->extent_root;
1523         struct btrfs_key key;
1524         int ret;
1525
1526         key.objectid = bytenr;
1527         if (parent) {
1528                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1529                 key.offset = parent;
1530         } else {
1531                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1532                 key.offset = root_objectid;
1533         }
1534
1535         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1536         if (ret > 0)
1537                 ret = -ENOENT;
1538 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1539         if (ret == -ENOENT && parent) {
1540                 btrfs_release_path(path);
1541                 key.type = BTRFS_EXTENT_REF_V0_KEY;
1542                 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1543                 if (ret > 0)
1544                         ret = -ENOENT;
1545         }
1546 #endif
1547         return ret;
1548 }
1549
1550 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1551                                           struct btrfs_fs_info *fs_info,
1552                                           struct btrfs_path *path,
1553                                           u64 bytenr, u64 parent,
1554                                           u64 root_objectid)
1555 {
1556         struct btrfs_key key;
1557         int ret;
1558
1559         key.objectid = bytenr;
1560         if (parent) {
1561                 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1562                 key.offset = parent;
1563         } else {
1564                 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1565                 key.offset = root_objectid;
1566         }
1567
1568         ret = btrfs_insert_empty_item(trans, fs_info->extent_root,
1569                                       path, &key, 0);
1570         btrfs_release_path(path);
1571         return ret;
1572 }
1573
1574 static inline int extent_ref_type(u64 parent, u64 owner)
1575 {
1576         int type;
1577         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1578                 if (parent > 0)
1579                         type = BTRFS_SHARED_BLOCK_REF_KEY;
1580                 else
1581                         type = BTRFS_TREE_BLOCK_REF_KEY;
1582         } else {
1583                 if (parent > 0)
1584                         type = BTRFS_SHARED_DATA_REF_KEY;
1585                 else
1586                         type = BTRFS_EXTENT_DATA_REF_KEY;
1587         }
1588         return type;
1589 }
1590
1591 static int find_next_key(struct btrfs_path *path, int level,
1592                          struct btrfs_key *key)
1593
1594 {
1595         for (; level < BTRFS_MAX_LEVEL; level++) {
1596                 if (!path->nodes[level])
1597                         break;
1598                 if (path->slots[level] + 1 >=
1599                     btrfs_header_nritems(path->nodes[level]))
1600                         continue;
1601                 if (level == 0)
1602                         btrfs_item_key_to_cpu(path->nodes[level], key,
1603                                               path->slots[level] + 1);
1604                 else
1605                         btrfs_node_key_to_cpu(path->nodes[level], key,
1606                                               path->slots[level] + 1);
1607                 return 0;
1608         }
1609         return 1;
1610 }
1611
1612 /*
1613  * look for inline back ref. if back ref is found, *ref_ret is set
1614  * to the address of inline back ref, and 0 is returned.
1615  *
1616  * if back ref isn't found, *ref_ret is set to the address where it
1617  * should be inserted, and -ENOENT is returned.
1618  *
1619  * if insert is true and there are too many inline back refs, the path
1620  * points to the extent item, and -EAGAIN is returned.
1621  *
1622  * NOTE: inline back refs are ordered in the same way that back ref
1623  *       items in the tree are ordered.
1624  */
1625 static noinline_for_stack
1626 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1627                                  struct btrfs_fs_info *fs_info,
1628                                  struct btrfs_path *path,
1629                                  struct btrfs_extent_inline_ref **ref_ret,
1630                                  u64 bytenr, u64 num_bytes,
1631                                  u64 parent, u64 root_objectid,
1632                                  u64 owner, u64 offset, int insert)
1633 {
1634         struct btrfs_root *root = fs_info->extent_root;
1635         struct btrfs_key key;
1636         struct extent_buffer *leaf;
1637         struct btrfs_extent_item *ei;
1638         struct btrfs_extent_inline_ref *iref;
1639         u64 flags;
1640         u64 item_size;
1641         unsigned long ptr;
1642         unsigned long end;
1643         int extra_size;
1644         int type;
1645         int want;
1646         int ret;
1647         int err = 0;
1648         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
1649         int needed;
1650
1651         key.objectid = bytenr;
1652         key.type = BTRFS_EXTENT_ITEM_KEY;
1653         key.offset = num_bytes;
1654
1655         want = extent_ref_type(parent, owner);
1656         if (insert) {
1657                 extra_size = btrfs_extent_inline_ref_size(want);
1658                 path->keep_locks = 1;
1659         } else
1660                 extra_size = -1;
1661
1662         /*
1663          * Owner is our parent level, so we can just add one to get the level
1664          * for the block we are interested in.
1665          */
1666         if (skinny_metadata && owner < BTRFS_FIRST_FREE_OBJECTID) {
1667                 key.type = BTRFS_METADATA_ITEM_KEY;
1668                 key.offset = owner;
1669         }
1670
1671 again:
1672         ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1673         if (ret < 0) {
1674                 err = ret;
1675                 goto out;
1676         }
1677
1678         /*
1679          * We may be a newly converted file system which still has the old fat
1680          * extent entries for metadata, so try and see if we have one of those.
1681          */
1682         if (ret > 0 && skinny_metadata) {
1683                 skinny_metadata = false;
1684                 if (path->slots[0]) {
1685                         path->slots[0]--;
1686                         btrfs_item_key_to_cpu(path->nodes[0], &key,
1687                                               path->slots[0]);
1688                         if (key.objectid == bytenr &&
1689                             key.type == BTRFS_EXTENT_ITEM_KEY &&
1690                             key.offset == num_bytes)
1691                                 ret = 0;
1692                 }
1693                 if (ret) {
1694                         key.objectid = bytenr;
1695                         key.type = BTRFS_EXTENT_ITEM_KEY;
1696                         key.offset = num_bytes;
1697                         btrfs_release_path(path);
1698                         goto again;
1699                 }
1700         }
1701
1702         if (ret && !insert) {
1703                 err = -ENOENT;
1704                 goto out;
1705         } else if (WARN_ON(ret)) {
1706                 err = -EIO;
1707                 goto out;
1708         }
1709
1710         leaf = path->nodes[0];
1711         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1712 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1713         if (item_size < sizeof(*ei)) {
1714                 if (!insert) {
1715                         err = -ENOENT;
1716                         goto out;
1717                 }
1718                 ret = convert_extent_item_v0(trans, fs_info, path, owner,
1719                                              extra_size);
1720                 if (ret < 0) {
1721                         err = ret;
1722                         goto out;
1723                 }
1724                 leaf = path->nodes[0];
1725                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1726         }
1727 #endif
1728         BUG_ON(item_size < sizeof(*ei));
1729
1730         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1731         flags = btrfs_extent_flags(leaf, ei);
1732
1733         ptr = (unsigned long)(ei + 1);
1734         end = (unsigned long)ei + item_size;
1735
1736         if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK && !skinny_metadata) {
1737                 ptr += sizeof(struct btrfs_tree_block_info);
1738                 BUG_ON(ptr > end);
1739         }
1740
1741         if (owner >= BTRFS_FIRST_FREE_OBJECTID)
1742                 needed = BTRFS_REF_TYPE_DATA;
1743         else
1744                 needed = BTRFS_REF_TYPE_BLOCK;
1745
1746         err = -ENOENT;
1747         while (1) {
1748                 if (ptr >= end) {
1749                         WARN_ON(ptr > end);
1750                         break;
1751                 }
1752                 iref = (struct btrfs_extent_inline_ref *)ptr;
1753                 type = btrfs_get_extent_inline_ref_type(leaf, iref, needed);
1754                 if (type == BTRFS_REF_TYPE_INVALID) {
1755                         err = -EINVAL;
1756                         goto out;
1757                 }
1758
1759                 if (want < type)
1760                         break;
1761                 if (want > type) {
1762                         ptr += btrfs_extent_inline_ref_size(type);
1763                         continue;
1764                 }
1765
1766                 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1767                         struct btrfs_extent_data_ref *dref;
1768                         dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1769                         if (match_extent_data_ref(leaf, dref, root_objectid,
1770                                                   owner, offset)) {
1771                                 err = 0;
1772                                 break;
1773                         }
1774                         if (hash_extent_data_ref_item(leaf, dref) <
1775                             hash_extent_data_ref(root_objectid, owner, offset))
1776                                 break;
1777                 } else {
1778                         u64 ref_offset;
1779                         ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1780                         if (parent > 0) {
1781                                 if (parent == ref_offset) {
1782                                         err = 0;
1783                                         break;
1784                                 }
1785                                 if (ref_offset < parent)
1786                                         break;
1787                         } else {
1788                                 if (root_objectid == ref_offset) {
1789                                         err = 0;
1790                                         break;
1791                                 }
1792                                 if (ref_offset < root_objectid)
1793                                         break;
1794                         }
1795                 }
1796                 ptr += btrfs_extent_inline_ref_size(type);
1797         }
1798         if (err == -ENOENT && insert) {
1799                 if (item_size + extra_size >=
1800                     BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1801                         err = -EAGAIN;
1802                         goto out;
1803                 }
1804                 /*
1805                  * To add new inline back ref, we have to make sure
1806                  * there is no corresponding back ref item.
1807                  * For simplicity, we just do not add new inline back
1808                  * ref if there is any kind of item for this block
1809                  */
1810                 if (find_next_key(path, 0, &key) == 0 &&
1811                     key.objectid == bytenr &&
1812                     key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1813                         err = -EAGAIN;
1814                         goto out;
1815                 }
1816         }
1817         *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1818 out:
1819         if (insert) {
1820                 path->keep_locks = 0;
1821                 btrfs_unlock_up_safe(path, 1);
1822         }
1823         return err;
1824 }
1825
1826 /*
1827  * helper to add new inline back ref
1828  */
1829 static noinline_for_stack
1830 void setup_inline_extent_backref(struct btrfs_fs_info *fs_info,
1831                                  struct btrfs_path *path,
1832                                  struct btrfs_extent_inline_ref *iref,
1833                                  u64 parent, u64 root_objectid,
1834                                  u64 owner, u64 offset, int refs_to_add,
1835                                  struct btrfs_delayed_extent_op *extent_op)
1836 {
1837         struct extent_buffer *leaf;
1838         struct btrfs_extent_item *ei;
1839         unsigned long ptr;
1840         unsigned long end;
1841         unsigned long item_offset;
1842         u64 refs;
1843         int size;
1844         int type;
1845
1846         leaf = path->nodes[0];
1847         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1848         item_offset = (unsigned long)iref - (unsigned long)ei;
1849
1850         type = extent_ref_type(parent, owner);
1851         size = btrfs_extent_inline_ref_size(type);
1852
1853         btrfs_extend_item(fs_info, path, size);
1854
1855         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1856         refs = btrfs_extent_refs(leaf, ei);
1857         refs += refs_to_add;
1858         btrfs_set_extent_refs(leaf, ei, refs);
1859         if (extent_op)
1860                 __run_delayed_extent_op(extent_op, leaf, ei);
1861
1862         ptr = (unsigned long)ei + item_offset;
1863         end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1864         if (ptr < end - size)
1865                 memmove_extent_buffer(leaf, ptr + size, ptr,
1866                                       end - size - ptr);
1867
1868         iref = (struct btrfs_extent_inline_ref *)ptr;
1869         btrfs_set_extent_inline_ref_type(leaf, iref, type);
1870         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1871                 struct btrfs_extent_data_ref *dref;
1872                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1873                 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1874                 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1875                 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1876                 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1877         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1878                 struct btrfs_shared_data_ref *sref;
1879                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1880                 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1881                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1882         } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1883                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1884         } else {
1885                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1886         }
1887         btrfs_mark_buffer_dirty(leaf);
1888 }
1889
1890 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1891                                  struct btrfs_fs_info *fs_info,
1892                                  struct btrfs_path *path,
1893                                  struct btrfs_extent_inline_ref **ref_ret,
1894                                  u64 bytenr, u64 num_bytes, u64 parent,
1895                                  u64 root_objectid, u64 owner, u64 offset)
1896 {
1897         int ret;
1898
1899         ret = lookup_inline_extent_backref(trans, fs_info, path, ref_ret,
1900                                            bytenr, num_bytes, parent,
1901                                            root_objectid, owner, offset, 0);
1902         if (ret != -ENOENT)
1903                 return ret;
1904
1905         btrfs_release_path(path);
1906         *ref_ret = NULL;
1907
1908         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1909                 ret = lookup_tree_block_ref(trans, fs_info, path, bytenr,
1910                                             parent, root_objectid);
1911         } else {
1912                 ret = lookup_extent_data_ref(trans, fs_info, path, bytenr,
1913                                              parent, root_objectid, owner,
1914                                              offset);
1915         }
1916         return ret;
1917 }
1918
1919 /*
1920  * helper to update/remove inline back ref
1921  */
1922 static noinline_for_stack
1923 void update_inline_extent_backref(struct btrfs_fs_info *fs_info,
1924                                   struct btrfs_path *path,
1925                                   struct btrfs_extent_inline_ref *iref,
1926                                   int refs_to_mod,
1927                                   struct btrfs_delayed_extent_op *extent_op,
1928                                   int *last_ref)
1929 {
1930         struct extent_buffer *leaf;
1931         struct btrfs_extent_item *ei;
1932         struct btrfs_extent_data_ref *dref = NULL;
1933         struct btrfs_shared_data_ref *sref = NULL;
1934         unsigned long ptr;
1935         unsigned long end;
1936         u32 item_size;
1937         int size;
1938         int type;
1939         u64 refs;
1940
1941         leaf = path->nodes[0];
1942         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1943         refs = btrfs_extent_refs(leaf, ei);
1944         WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1945         refs += refs_to_mod;
1946         btrfs_set_extent_refs(leaf, ei, refs);
1947         if (extent_op)
1948                 __run_delayed_extent_op(extent_op, leaf, ei);
1949
1950         /*
1951          * If type is invalid, we should have bailed out after
1952          * lookup_inline_extent_backref().
1953          */
1954         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_ANY);
1955         ASSERT(type != BTRFS_REF_TYPE_INVALID);
1956
1957         if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1958                 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1959                 refs = btrfs_extent_data_ref_count(leaf, dref);
1960         } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1961                 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1962                 refs = btrfs_shared_data_ref_count(leaf, sref);
1963         } else {
1964                 refs = 1;
1965                 BUG_ON(refs_to_mod != -1);
1966         }
1967
1968         BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1969         refs += refs_to_mod;
1970
1971         if (refs > 0) {
1972                 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1973                         btrfs_set_extent_data_ref_count(leaf, dref, refs);
1974                 else
1975                         btrfs_set_shared_data_ref_count(leaf, sref, refs);
1976         } else {
1977                 *last_ref = 1;
1978                 size =  btrfs_extent_inline_ref_size(type);
1979                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1980                 ptr = (unsigned long)iref;
1981                 end = (unsigned long)ei + item_size;
1982                 if (ptr + size < end)
1983                         memmove_extent_buffer(leaf, ptr, ptr + size,
1984                                               end - ptr - size);
1985                 item_size -= size;
1986                 btrfs_truncate_item(fs_info, path, item_size, 1);
1987         }
1988         btrfs_mark_buffer_dirty(leaf);
1989 }
1990
1991 static noinline_for_stack
1992 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1993                                  struct btrfs_fs_info *fs_info,
1994                                  struct btrfs_path *path,
1995                                  u64 bytenr, u64 num_bytes, u64 parent,
1996                                  u64 root_objectid, u64 owner,
1997                                  u64 offset, int refs_to_add,
1998                                  struct btrfs_delayed_extent_op *extent_op)
1999 {
2000         struct btrfs_extent_inline_ref *iref;
2001         int ret;
2002
2003         ret = lookup_inline_extent_backref(trans, fs_info, path, &iref,
2004                                            bytenr, num_bytes, parent,
2005                                            root_objectid, owner, offset, 1);
2006         if (ret == 0) {
2007                 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
2008                 update_inline_extent_backref(fs_info, path, iref,
2009                                              refs_to_add, extent_op, NULL);
2010         } else if (ret == -ENOENT) {
2011                 setup_inline_extent_backref(fs_info, path, iref, parent,
2012                                             root_objectid, owner, offset,
2013                                             refs_to_add, extent_op);
2014                 ret = 0;
2015         }
2016         return ret;
2017 }
2018
2019 static int insert_extent_backref(struct btrfs_trans_handle *trans,
2020                                  struct btrfs_fs_info *fs_info,
2021                                  struct btrfs_path *path,
2022                                  u64 bytenr, u64 parent, u64 root_objectid,
2023                                  u64 owner, u64 offset, int refs_to_add)
2024 {
2025         int ret;
2026         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2027                 BUG_ON(refs_to_add != 1);
2028                 ret = insert_tree_block_ref(trans, fs_info, path, bytenr,
2029                                             parent, root_objectid);
2030         } else {
2031                 ret = insert_extent_data_ref(trans, fs_info, path, bytenr,
2032                                              parent, root_objectid,
2033                                              owner, offset, refs_to_add);
2034         }
2035         return ret;
2036 }
2037
2038 static int remove_extent_backref(struct btrfs_trans_handle *trans,
2039                                  struct btrfs_fs_info *fs_info,
2040                                  struct btrfs_path *path,
2041                                  struct btrfs_extent_inline_ref *iref,
2042                                  int refs_to_drop, int is_data, int *last_ref)
2043 {
2044         int ret = 0;
2045
2046         BUG_ON(!is_data && refs_to_drop != 1);
2047         if (iref) {
2048                 update_inline_extent_backref(fs_info, path, iref,
2049                                              -refs_to_drop, NULL, last_ref);
2050         } else if (is_data) {
2051                 ret = remove_extent_data_ref(trans, fs_info, path, refs_to_drop,
2052                                              last_ref);
2053         } else {
2054                 *last_ref = 1;
2055                 ret = btrfs_del_item(trans, fs_info->extent_root, path);
2056         }
2057         return ret;
2058 }
2059
2060 #define in_range(b, first, len)        ((b) >= (first) && (b) < (first) + (len))
2061 static int btrfs_issue_discard(struct block_device *bdev, u64 start, u64 len,
2062                                u64 *discarded_bytes)
2063 {
2064         int j, ret = 0;
2065         u64 bytes_left, end;
2066         u64 aligned_start = ALIGN(start, 1 << 9);
2067
2068         if (WARN_ON(start != aligned_start)) {
2069                 len -= aligned_start - start;
2070                 len = round_down(len, 1 << 9);
2071                 start = aligned_start;
2072         }
2073
2074         *discarded_bytes = 0;
2075
2076         if (!len)
2077                 return 0;
2078
2079         end = start + len;
2080         bytes_left = len;
2081
2082         /* Skip any superblocks on this device. */
2083         for (j = 0; j < BTRFS_SUPER_MIRROR_MAX; j++) {
2084                 u64 sb_start = btrfs_sb_offset(j);
2085                 u64 sb_end = sb_start + BTRFS_SUPER_INFO_SIZE;
2086                 u64 size = sb_start - start;
2087
2088                 if (!in_range(sb_start, start, bytes_left) &&
2089                     !in_range(sb_end, start, bytes_left) &&
2090                     !in_range(start, sb_start, BTRFS_SUPER_INFO_SIZE))
2091                         continue;
2092
2093                 /*
2094                  * Superblock spans beginning of range.  Adjust start and
2095                  * try again.
2096                  */
2097                 if (sb_start <= start) {
2098                         start += sb_end - start;
2099                         if (start > end) {
2100                                 bytes_left = 0;
2101                                 break;
2102                         }
2103                         bytes_left = end - start;
2104                         continue;
2105                 }
2106
2107                 if (size) {
2108                         ret = blkdev_issue_discard(bdev, start >> 9, size >> 9,
2109                                                    GFP_NOFS, 0);
2110                         if (!ret)
2111                                 *discarded_bytes += size;
2112                         else if (ret != -EOPNOTSUPP)
2113                                 return ret;
2114                 }
2115
2116                 start = sb_end;
2117                 if (start > end) {
2118                         bytes_left = 0;
2119                         break;
2120                 }
2121                 bytes_left = end - start;
2122         }
2123
2124         if (bytes_left) {
2125                 ret = blkdev_issue_discard(bdev, start >> 9, bytes_left >> 9,
2126                                            GFP_NOFS, 0);
2127                 if (!ret)
2128                         *discarded_bytes += bytes_left;
2129         }
2130         return ret;
2131 }
2132
2133 int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2134                          u64 num_bytes, u64 *actual_bytes)
2135 {
2136         int ret;
2137         u64 discarded_bytes = 0;
2138         struct btrfs_bio *bbio = NULL;
2139
2140
2141         /*
2142          * Avoid races with device replace and make sure our bbio has devices
2143          * associated to its stripes that don't go away while we are discarding.
2144          */
2145         btrfs_bio_counter_inc_blocked(fs_info);
2146         /* Tell the block device(s) that the sectors can be discarded */
2147         ret = btrfs_map_block(fs_info, BTRFS_MAP_DISCARD, bytenr, &num_bytes,
2148                               &bbio, 0);
2149         /* Error condition is -ENOMEM */
2150         if (!ret) {
2151                 struct btrfs_bio_stripe *stripe = bbio->stripes;
2152                 int i;
2153
2154
2155                 for (i = 0; i < bbio->num_stripes; i++, stripe++) {
2156                         u64 bytes;
2157                         if (!stripe->dev->can_discard)
2158                                 continue;
2159
2160                         ret = btrfs_issue_discard(stripe->dev->bdev,
2161                                                   stripe->physical,
2162                                                   stripe->length,
2163                                                   &bytes);
2164                         if (!ret)
2165                                 discarded_bytes += bytes;
2166                         else if (ret != -EOPNOTSUPP)
2167                                 break; /* Logic errors or -ENOMEM, or -EIO but I don't know how that could happen JDM */
2168
2169                         /*
2170                          * Just in case we get back EOPNOTSUPP for some reason,
2171                          * just ignore the return value so we don't screw up
2172                          * people calling discard_extent.
2173                          */
2174                         ret = 0;
2175                 }
2176                 btrfs_put_bbio(bbio);
2177         }
2178         btrfs_bio_counter_dec(fs_info);
2179
2180         if (actual_bytes)
2181                 *actual_bytes = discarded_bytes;
2182
2183
2184         if (ret == -EOPNOTSUPP)
2185                 ret = 0;
2186         return ret;
2187 }
2188
2189 /* Can return -ENOMEM */
2190 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2191                          struct btrfs_fs_info *fs_info,
2192                          u64 bytenr, u64 num_bytes, u64 parent,
2193                          u64 root_objectid, u64 owner, u64 offset)
2194 {
2195         int old_ref_mod, new_ref_mod;
2196         int ret;
2197
2198         BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
2199                root_objectid == BTRFS_TREE_LOG_OBJECTID);
2200
2201         if (owner < BTRFS_FIRST_FREE_OBJECTID) {
2202                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
2203                                                  num_bytes, parent,
2204                                                  root_objectid, (int)owner,
2205                                                  BTRFS_ADD_DELAYED_REF, NULL,
2206                                                  &old_ref_mod, &new_ref_mod);
2207         } else {
2208                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
2209                                                  num_bytes, parent,
2210                                                  root_objectid, owner, offset,
2211                                                  0, BTRFS_ADD_DELAYED_REF,
2212                                                  &old_ref_mod, &new_ref_mod);
2213         }
2214
2215         if (ret == 0 && old_ref_mod < 0 && new_ref_mod >= 0)
2216                 add_pinned_bytes(fs_info, -num_bytes, owner, root_objectid);
2217
2218         return ret;
2219 }
2220
2221 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2222                                   struct btrfs_fs_info *fs_info,
2223                                   struct btrfs_delayed_ref_node *node,
2224                                   u64 parent, u64 root_objectid,
2225                                   u64 owner, u64 offset, int refs_to_add,
2226                                   struct btrfs_delayed_extent_op *extent_op)
2227 {
2228         struct btrfs_path *path;
2229         struct extent_buffer *leaf;
2230         struct btrfs_extent_item *item;
2231         struct btrfs_key key;
2232         u64 bytenr = node->bytenr;
2233         u64 num_bytes = node->num_bytes;
2234         u64 refs;
2235         int ret;
2236
2237         path = btrfs_alloc_path();
2238         if (!path)
2239                 return -ENOMEM;
2240
2241         path->reada = READA_FORWARD;
2242         path->leave_spinning = 1;
2243         /* this will setup the path even if it fails to insert the back ref */
2244         ret = insert_inline_extent_backref(trans, fs_info, path, bytenr,
2245                                            num_bytes, parent, root_objectid,
2246                                            owner, offset,
2247                                            refs_to_add, extent_op);
2248         if ((ret < 0 && ret != -EAGAIN) || !ret)
2249                 goto out;
2250
2251         /*
2252          * Ok we had -EAGAIN which means we didn't have space to insert and
2253          * inline extent ref, so just update the reference count and add a
2254          * normal backref.
2255          */
2256         leaf = path->nodes[0];
2257         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2258         item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2259         refs = btrfs_extent_refs(leaf, item);
2260         btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
2261         if (extent_op)
2262                 __run_delayed_extent_op(extent_op, leaf, item);
2263
2264         btrfs_mark_buffer_dirty(leaf);
2265         btrfs_release_path(path);
2266
2267         path->reada = READA_FORWARD;
2268         path->leave_spinning = 1;
2269         /* now insert the actual backref */
2270         ret = insert_extent_backref(trans, fs_info, path, bytenr, parent,
2271                                     root_objectid, owner, offset, refs_to_add);
2272         if (ret)
2273                 btrfs_abort_transaction(trans, ret);
2274 out:
2275         btrfs_free_path(path);
2276         return ret;
2277 }
2278
2279 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
2280                                 struct btrfs_fs_info *fs_info,
2281                                 struct btrfs_delayed_ref_node *node,
2282                                 struct btrfs_delayed_extent_op *extent_op,
2283                                 int insert_reserved)
2284 {
2285         int ret = 0;
2286         struct btrfs_delayed_data_ref *ref;
2287         struct btrfs_key ins;
2288         u64 parent = 0;
2289         u64 ref_root = 0;
2290         u64 flags = 0;
2291
2292         ins.objectid = node->bytenr;
2293         ins.offset = node->num_bytes;
2294         ins.type = BTRFS_EXTENT_ITEM_KEY;
2295
2296         ref = btrfs_delayed_node_to_data_ref(node);
2297         trace_run_delayed_data_ref(fs_info, node, ref, node->action);
2298
2299         if (node->type == BTRFS_SHARED_DATA_REF_KEY)
2300                 parent = ref->parent;
2301         ref_root = ref->root;
2302
2303         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2304                 if (extent_op)
2305                         flags |= extent_op->flags_to_set;
2306                 ret = alloc_reserved_file_extent(trans, fs_info,
2307                                                  parent, ref_root, flags,
2308                                                  ref->objectid, ref->offset,
2309                                                  &ins, node->ref_mod);
2310         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2311                 ret = __btrfs_inc_extent_ref(trans, fs_info, node, parent,
2312                                              ref_root, ref->objectid,
2313                                              ref->offset, node->ref_mod,
2314                                              extent_op);
2315         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2316                 ret = __btrfs_free_extent(trans, fs_info, node, parent,
2317                                           ref_root, ref->objectid,
2318                                           ref->offset, node->ref_mod,
2319                                           extent_op);
2320         } else {
2321                 BUG();
2322         }
2323         return ret;
2324 }
2325
2326 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
2327                                     struct extent_buffer *leaf,
2328                                     struct btrfs_extent_item *ei)
2329 {
2330         u64 flags = btrfs_extent_flags(leaf, ei);
2331         if (extent_op->update_flags) {
2332                 flags |= extent_op->flags_to_set;
2333                 btrfs_set_extent_flags(leaf, ei, flags);
2334         }
2335
2336         if (extent_op->update_key) {
2337                 struct btrfs_tree_block_info *bi;
2338                 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
2339                 bi = (struct btrfs_tree_block_info *)(ei + 1);
2340                 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
2341         }
2342 }
2343
2344 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
2345                                  struct btrfs_fs_info *fs_info,
2346                                  struct btrfs_delayed_ref_node *node,
2347                                  struct btrfs_delayed_extent_op *extent_op)
2348 {
2349         struct btrfs_key key;
2350         struct btrfs_path *path;
2351         struct btrfs_extent_item *ei;
2352         struct extent_buffer *leaf;
2353         u32 item_size;
2354         int ret;
2355         int err = 0;
2356         int metadata = !extent_op->is_data;
2357
2358         if (trans->aborted)
2359                 return 0;
2360
2361         if (metadata && !btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2362                 metadata = 0;
2363
2364         path = btrfs_alloc_path();
2365         if (!path)
2366                 return -ENOMEM;
2367
2368         key.objectid = node->bytenr;
2369
2370         if (metadata) {
2371                 key.type = BTRFS_METADATA_ITEM_KEY;
2372                 key.offset = extent_op->level;
2373         } else {
2374                 key.type = BTRFS_EXTENT_ITEM_KEY;
2375                 key.offset = node->num_bytes;
2376         }
2377
2378 again:
2379         path->reada = READA_FORWARD;
2380         path->leave_spinning = 1;
2381         ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 1);
2382         if (ret < 0) {
2383                 err = ret;
2384                 goto out;
2385         }
2386         if (ret > 0) {
2387                 if (metadata) {
2388                         if (path->slots[0] > 0) {
2389                                 path->slots[0]--;
2390                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
2391                                                       path->slots[0]);
2392                                 if (key.objectid == node->bytenr &&
2393                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
2394                                     key.offset == node->num_bytes)
2395                                         ret = 0;
2396                         }
2397                         if (ret > 0) {
2398                                 btrfs_release_path(path);
2399                                 metadata = 0;
2400
2401                                 key.objectid = node->bytenr;
2402                                 key.offset = node->num_bytes;
2403                                 key.type = BTRFS_EXTENT_ITEM_KEY;
2404                                 goto again;
2405                         }
2406                 } else {
2407                         err = -EIO;
2408                         goto out;
2409                 }
2410         }
2411
2412         leaf = path->nodes[0];
2413         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2414 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2415         if (item_size < sizeof(*ei)) {
2416                 ret = convert_extent_item_v0(trans, fs_info, path, (u64)-1, 0);
2417                 if (ret < 0) {
2418                         err = ret;
2419                         goto out;
2420                 }
2421                 leaf = path->nodes[0];
2422                 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2423         }
2424 #endif
2425         BUG_ON(item_size < sizeof(*ei));
2426         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2427         __run_delayed_extent_op(extent_op, leaf, ei);
2428
2429         btrfs_mark_buffer_dirty(leaf);
2430 out:
2431         btrfs_free_path(path);
2432         return err;
2433 }
2434
2435 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2436                                 struct btrfs_fs_info *fs_info,
2437                                 struct btrfs_delayed_ref_node *node,
2438                                 struct btrfs_delayed_extent_op *extent_op,
2439                                 int insert_reserved)
2440 {
2441         int ret = 0;
2442         struct btrfs_delayed_tree_ref *ref;
2443         struct btrfs_key ins;
2444         u64 parent = 0;
2445         u64 ref_root = 0;
2446         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
2447
2448         ref = btrfs_delayed_node_to_tree_ref(node);
2449         trace_run_delayed_tree_ref(fs_info, node, ref, node->action);
2450
2451         if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2452                 parent = ref->parent;
2453         ref_root = ref->root;
2454
2455         ins.objectid = node->bytenr;
2456         if (skinny_metadata) {
2457                 ins.offset = ref->level;
2458                 ins.type = BTRFS_METADATA_ITEM_KEY;
2459         } else {
2460                 ins.offset = node->num_bytes;
2461                 ins.type = BTRFS_EXTENT_ITEM_KEY;
2462         }
2463
2464         if (node->ref_mod != 1) {
2465                 btrfs_err(fs_info,
2466         "btree block(%llu) has %d references rather than 1: action %d ref_root %llu parent %llu",
2467                           node->bytenr, node->ref_mod, node->action, ref_root,
2468                           parent);
2469                 return -EIO;
2470         }
2471         if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2472                 BUG_ON(!extent_op || !extent_op->update_flags);
2473                 ret = alloc_reserved_tree_block(trans, fs_info,
2474                                                 parent, ref_root,
2475                                                 extent_op->flags_to_set,
2476                                                 &extent_op->key,
2477                                                 ref->level, &ins);
2478         } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2479                 ret = __btrfs_inc_extent_ref(trans, fs_info, node,
2480                                              parent, ref_root,
2481                                              ref->level, 0, 1,
2482                                              extent_op);
2483         } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2484                 ret = __btrfs_free_extent(trans, fs_info, node,
2485                                           parent, ref_root,
2486                                           ref->level, 0, 1, extent_op);
2487         } else {
2488                 BUG();
2489         }
2490         return ret;
2491 }
2492
2493 /* helper function to actually process a single delayed ref entry */
2494 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2495                                struct btrfs_fs_info *fs_info,
2496                                struct btrfs_delayed_ref_node *node,
2497                                struct btrfs_delayed_extent_op *extent_op,
2498                                int insert_reserved)
2499 {
2500         int ret = 0;
2501
2502         if (trans->aborted) {
2503                 if (insert_reserved)
2504                         btrfs_pin_extent(fs_info, node->bytenr,
2505                                          node->num_bytes, 1);
2506                 return 0;
2507         }
2508
2509         if (btrfs_delayed_ref_is_head(node)) {
2510                 struct btrfs_delayed_ref_head *head;
2511                 /*
2512                  * we've hit the end of the chain and we were supposed
2513                  * to insert this extent into the tree.  But, it got
2514                  * deleted before we ever needed to insert it, so all
2515                  * we have to do is clean up the accounting
2516                  */
2517                 BUG_ON(extent_op);
2518                 head = btrfs_delayed_node_to_head(node);
2519                 trace_run_delayed_ref_head(fs_info, node, head, node->action);
2520
2521                 if (head->total_ref_mod < 0) {
2522                         struct btrfs_block_group_cache *cache;
2523
2524                         cache = btrfs_lookup_block_group(fs_info, node->bytenr);
2525                         ASSERT(cache);
2526                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
2527                                            -node->num_bytes);
2528                         btrfs_put_block_group(cache);
2529                 }
2530
2531                 if (insert_reserved) {
2532                         btrfs_pin_extent(fs_info, node->bytenr,
2533                                          node->num_bytes, 1);
2534                         if (head->is_data) {
2535                                 ret = btrfs_del_csums(trans, fs_info,
2536                                                       node->bytenr,
2537                                                       node->num_bytes);
2538                         }
2539                 }
2540
2541                 /* Also free its reserved qgroup space */
2542                 btrfs_qgroup_free_delayed_ref(fs_info, head->qgroup_ref_root,
2543                                               head->qgroup_reserved);
2544                 return ret;
2545         }
2546
2547         if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2548             node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2549                 ret = run_delayed_tree_ref(trans, fs_info, node, extent_op,
2550                                            insert_reserved);
2551         else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2552                  node->type == BTRFS_SHARED_DATA_REF_KEY)
2553                 ret = run_delayed_data_ref(trans, fs_info, node, extent_op,
2554                                            insert_reserved);
2555         else
2556                 BUG();
2557         return ret;
2558 }
2559
2560 static inline struct btrfs_delayed_ref_node *
2561 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2562 {
2563         struct btrfs_delayed_ref_node *ref;
2564
2565         if (list_empty(&head->ref_list))
2566                 return NULL;
2567
2568         /*
2569          * Select a delayed ref of type BTRFS_ADD_DELAYED_REF first.
2570          * This is to prevent a ref count from going down to zero, which deletes
2571          * the extent item from the extent tree, when there still are references
2572          * to add, which would fail because they would not find the extent item.
2573          */
2574         if (!list_empty(&head->ref_add_list))
2575                 return list_first_entry(&head->ref_add_list,
2576                                 struct btrfs_delayed_ref_node, add_list);
2577
2578         ref = list_first_entry(&head->ref_list, struct btrfs_delayed_ref_node,
2579                                list);
2580         ASSERT(list_empty(&ref->add_list));
2581         return ref;
2582 }
2583
2584 /*
2585  * Returns 0 on success or if called with an already aborted transaction.
2586  * Returns -ENOMEM or -EIO on failure and will abort the transaction.
2587  */
2588 static noinline int __btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2589                                              struct btrfs_fs_info *fs_info,
2590                                              unsigned long nr)
2591 {
2592         struct btrfs_delayed_ref_root *delayed_refs;
2593         struct btrfs_delayed_ref_node *ref;
2594         struct btrfs_delayed_ref_head *locked_ref = NULL;
2595         struct btrfs_delayed_extent_op *extent_op;
2596         ktime_t start = ktime_get();
2597         int ret;
2598         unsigned long count = 0;
2599         unsigned long actual_count = 0;
2600         int must_insert_reserved = 0;
2601
2602         delayed_refs = &trans->transaction->delayed_refs;
2603         while (1) {
2604                 if (!locked_ref) {
2605                         if (count >= nr)
2606                                 break;
2607
2608                         spin_lock(&delayed_refs->lock);
2609                         locked_ref = btrfs_select_ref_head(trans);
2610                         if (!locked_ref) {
2611                                 spin_unlock(&delayed_refs->lock);
2612                                 break;
2613                         }
2614
2615                         /* grab the lock that says we are going to process
2616                          * all the refs for this head */
2617                         ret = btrfs_delayed_ref_lock(trans, locked_ref);
2618                         spin_unlock(&delayed_refs->lock);
2619                         /*
2620                          * we may have dropped the spin lock to get the head
2621                          * mutex lock, and that might have given someone else
2622                          * time to free the head.  If that's true, it has been
2623                          * removed from our list and we can move on.
2624                          */
2625                         if (ret == -EAGAIN) {
2626                                 locked_ref = NULL;
2627                                 count++;
2628                                 continue;
2629                         }
2630                 }
2631
2632                 /*
2633                  * We need to try and merge add/drops of the same ref since we
2634                  * can run into issues with relocate dropping the implicit ref
2635                  * and then it being added back again before the drop can
2636                  * finish.  If we merged anything we need to re-loop so we can
2637                  * get a good ref.
2638                  * Or we can get node references of the same type that weren't
2639                  * merged when created due to bumps in the tree mod seq, and
2640                  * we need to merge them to prevent adding an inline extent
2641                  * backref before dropping it (triggering a BUG_ON at
2642                  * insert_inline_extent_backref()).
2643                  */
2644                 spin_lock(&locked_ref->lock);
2645                 btrfs_merge_delayed_refs(trans, fs_info, delayed_refs,
2646                                          locked_ref);
2647
2648                 /*
2649                  * locked_ref is the head node, so we have to go one
2650                  * node back for any delayed ref updates
2651                  */
2652                 ref = select_delayed_ref(locked_ref);
2653
2654                 if (ref && ref->seq &&
2655                     btrfs_check_delayed_seq(fs_info, delayed_refs, ref->seq)) {
2656                         spin_unlock(&locked_ref->lock);
2657                         spin_lock(&delayed_refs->lock);
2658                         locked_ref->processing = 0;
2659                         delayed_refs->num_heads_ready++;
2660                         spin_unlock(&delayed_refs->lock);
2661                         btrfs_delayed_ref_unlock(locked_ref);
2662                         locked_ref = NULL;
2663                         cond_resched();
2664                         count++;
2665                         continue;
2666                 }
2667
2668                 /*
2669                  * record the must insert reserved flag before we
2670                  * drop the spin lock.
2671                  */
2672                 must_insert_reserved = locked_ref->must_insert_reserved;
2673                 locked_ref->must_insert_reserved = 0;
2674
2675                 extent_op = locked_ref->extent_op;
2676                 locked_ref->extent_op = NULL;
2677
2678                 if (!ref) {
2679
2680
2681                         /* All delayed refs have been processed, Go ahead
2682                          * and send the head node to run_one_delayed_ref,
2683                          * so that any accounting fixes can happen
2684                          */
2685                         ref = &locked_ref->node;
2686
2687                         if (extent_op && must_insert_reserved) {
2688                                 btrfs_free_delayed_extent_op(extent_op);
2689                                 extent_op = NULL;
2690                         }
2691
2692                         if (extent_op) {
2693                                 spin_unlock(&locked_ref->lock);
2694                                 ret = run_delayed_extent_op(trans, fs_info,
2695                                                             ref, extent_op);
2696                                 btrfs_free_delayed_extent_op(extent_op);
2697
2698                                 if (ret) {
2699                                         /*
2700                                          * Need to reset must_insert_reserved if
2701                                          * there was an error so the abort stuff
2702                                          * can cleanup the reserved space
2703                                          * properly.
2704                                          */
2705                                         if (must_insert_reserved)
2706                                                 locked_ref->must_insert_reserved = 1;
2707                                         spin_lock(&delayed_refs->lock);
2708                                         locked_ref->processing = 0;
2709                                         delayed_refs->num_heads_ready++;
2710                                         spin_unlock(&delayed_refs->lock);
2711                                         btrfs_debug(fs_info,
2712                                                     "run_delayed_extent_op returned %d",
2713                                                     ret);
2714                                         btrfs_delayed_ref_unlock(locked_ref);
2715                                         return ret;
2716                                 }
2717                                 continue;
2718                         }
2719
2720                         /*
2721                          * Need to drop our head ref lock and re-acquire the
2722                          * delayed ref lock and then re-check to make sure
2723                          * nobody got added.
2724                          */
2725                         spin_unlock(&locked_ref->lock);
2726                         spin_lock(&delayed_refs->lock);
2727                         spin_lock(&locked_ref->lock);
2728                         if (!list_empty(&locked_ref->ref_list) ||
2729                             locked_ref->extent_op) {
2730                                 spin_unlock(&locked_ref->lock);
2731                                 spin_unlock(&delayed_refs->lock);
2732                                 continue;
2733                         }
2734                         ref->in_tree = 0;
2735                         delayed_refs->num_heads--;
2736                         rb_erase(&locked_ref->href_node,
2737                                  &delayed_refs->href_root);
2738                         spin_unlock(&delayed_refs->lock);
2739                 } else {
2740                         actual_count++;
2741                         ref->in_tree = 0;
2742                         list_del(&ref->list);
2743                         if (!list_empty(&ref->add_list))
2744                                 list_del(&ref->add_list);
2745                 }
2746                 atomic_dec(&delayed_refs->num_entries);
2747
2748                 if (!btrfs_delayed_ref_is_head(ref)) {
2749                         /*
2750                          * when we play the delayed ref, also correct the
2751                          * ref_mod on head
2752                          */
2753                         switch (ref->action) {
2754                         case BTRFS_ADD_DELAYED_REF:
2755                         case BTRFS_ADD_DELAYED_EXTENT:
2756                                 locked_ref->node.ref_mod -= ref->ref_mod;
2757                                 break;
2758                         case BTRFS_DROP_DELAYED_REF:
2759                                 locked_ref->node.ref_mod += ref->ref_mod;
2760                                 break;
2761                         default:
2762                                 WARN_ON(1);
2763                         }
2764                 }
2765                 spin_unlock(&locked_ref->lock);
2766
2767                 ret = run_one_delayed_ref(trans, fs_info, ref, extent_op,
2768                                           must_insert_reserved);
2769
2770                 btrfs_free_delayed_extent_op(extent_op);
2771                 if (ret) {
2772                         spin_lock(&delayed_refs->lock);
2773                         locked_ref->processing = 0;
2774                         delayed_refs->num_heads_ready++;
2775                         spin_unlock(&delayed_refs->lock);
2776                         btrfs_delayed_ref_unlock(locked_ref);
2777                         btrfs_put_delayed_ref(ref);
2778                         btrfs_debug(fs_info, "run_one_delayed_ref returned %d",
2779                                     ret);
2780                         return ret;
2781                 }
2782
2783                 /*
2784                  * If this node is a head, that means all the refs in this head
2785                  * have been dealt with, and we will pick the next head to deal
2786                  * with, so we must unlock the head and drop it from the cluster
2787                  * list before we release it.
2788                  */
2789                 if (btrfs_delayed_ref_is_head(ref)) {
2790                         if (locked_ref->is_data &&
2791                             locked_ref->total_ref_mod < 0) {
2792                                 spin_lock(&delayed_refs->lock);
2793                                 delayed_refs->pending_csums -= ref->num_bytes;
2794                                 spin_unlock(&delayed_refs->lock);
2795                         }
2796                         btrfs_delayed_ref_unlock(locked_ref);
2797                         locked_ref = NULL;
2798                 }
2799                 btrfs_put_delayed_ref(ref);
2800                 count++;
2801                 cond_resched();
2802         }
2803
2804         /*
2805          * We don't want to include ref heads since we can have empty ref heads
2806          * and those will drastically skew our runtime down since we just do
2807          * accounting, no actual extent tree updates.
2808          */
2809         if (actual_count > 0) {
2810                 u64 runtime = ktime_to_ns(ktime_sub(ktime_get(), start));
2811                 u64 avg;
2812
2813                 /*
2814                  * We weigh the current average higher than our current runtime
2815                  * to avoid large swings in the average.
2816                  */
2817                 spin_lock(&delayed_refs->lock);
2818                 avg = fs_info->avg_delayed_ref_runtime * 3 + runtime;
2819                 fs_info->avg_delayed_ref_runtime = avg >> 2;    /* div by 4 */
2820                 spin_unlock(&delayed_refs->lock);
2821         }
2822         return 0;
2823 }
2824
2825 #ifdef SCRAMBLE_DELAYED_REFS
2826 /*
2827  * Normally delayed refs get processed in ascending bytenr order. This
2828  * correlates in most cases to the order added. To expose dependencies on this
2829  * order, we start to process the tree in the middle instead of the beginning
2830  */
2831 static u64 find_middle(struct rb_root *root)
2832 {
2833         struct rb_node *n = root->rb_node;
2834         struct btrfs_delayed_ref_node *entry;
2835         int alt = 1;
2836         u64 middle;
2837         u64 first = 0, last = 0;
2838
2839         n = rb_first(root);
2840         if (n) {
2841                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2842                 first = entry->bytenr;
2843         }
2844         n = rb_last(root);
2845         if (n) {
2846                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2847                 last = entry->bytenr;
2848         }
2849         n = root->rb_node;
2850
2851         while (n) {
2852                 entry = rb_entry(n, struct btrfs_delayed_ref_node, rb_node);
2853                 WARN_ON(!entry->in_tree);
2854
2855                 middle = entry->bytenr;
2856
2857                 if (alt)
2858                         n = n->rb_left;
2859                 else
2860                         n = n->rb_right;
2861
2862                 alt = 1 - alt;
2863         }
2864         return middle;
2865 }
2866 #endif
2867
2868 static inline u64 heads_to_leaves(struct btrfs_fs_info *fs_info, u64 heads)
2869 {
2870         u64 num_bytes;
2871
2872         num_bytes = heads * (sizeof(struct btrfs_extent_item) +
2873                              sizeof(struct btrfs_extent_inline_ref));
2874         if (!btrfs_fs_incompat(fs_info, SKINNY_METADATA))
2875                 num_bytes += heads * sizeof(struct btrfs_tree_block_info);
2876
2877         /*
2878          * We don't ever fill up leaves all the way so multiply by 2 just to be
2879          * closer to what we're really going to want to use.
2880          */
2881         return div_u64(num_bytes, BTRFS_LEAF_DATA_SIZE(fs_info));
2882 }
2883
2884 /*
2885  * Takes the number of bytes to be csumm'ed and figures out how many leaves it
2886  * would require to store the csums for that many bytes.
2887  */
2888 u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes)
2889 {
2890         u64 csum_size;
2891         u64 num_csums_per_leaf;
2892         u64 num_csums;
2893
2894         csum_size = BTRFS_MAX_ITEM_SIZE(fs_info);
2895         num_csums_per_leaf = div64_u64(csum_size,
2896                         (u64)btrfs_super_csum_size(fs_info->super_copy));
2897         num_csums = div64_u64(csum_bytes, fs_info->sectorsize);
2898         num_csums += num_csums_per_leaf - 1;
2899         num_csums = div64_u64(num_csums, num_csums_per_leaf);
2900         return num_csums;
2901 }
2902
2903 int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2904                                        struct btrfs_fs_info *fs_info)
2905 {
2906         struct btrfs_block_rsv *global_rsv;
2907         u64 num_heads = trans->transaction->delayed_refs.num_heads_ready;
2908         u64 csum_bytes = trans->transaction->delayed_refs.pending_csums;
2909         u64 num_dirty_bgs = trans->transaction->num_dirty_bgs;
2910         u64 num_bytes, num_dirty_bgs_bytes;
2911         int ret = 0;
2912
2913         num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
2914         num_heads = heads_to_leaves(fs_info, num_heads);
2915         if (num_heads > 1)
2916                 num_bytes += (num_heads - 1) * fs_info->nodesize;
2917         num_bytes <<= 1;
2918         num_bytes += btrfs_csum_bytes_to_leaves(fs_info, csum_bytes) *
2919                                                         fs_info->nodesize;
2920         num_dirty_bgs_bytes = btrfs_calc_trans_metadata_size(fs_info,
2921                                                              num_dirty_bgs);
2922         global_rsv = &fs_info->global_block_rsv;
2923
2924         /*
2925          * If we can't allocate any more chunks lets make sure we have _lots_ of
2926          * wiggle room since running delayed refs can create more delayed refs.
2927          */
2928         if (global_rsv->space_info->full) {
2929                 num_dirty_bgs_bytes <<= 1;
2930                 num_bytes <<= 1;
2931         }
2932
2933         spin_lock(&global_rsv->lock);
2934         if (global_rsv->reserved <= num_bytes + num_dirty_bgs_bytes)
2935                 ret = 1;
2936         spin_unlock(&global_rsv->lock);
2937         return ret;
2938 }
2939
2940 int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2941                                        struct btrfs_fs_info *fs_info)
2942 {
2943         u64 num_entries =
2944                 atomic_read(&trans->transaction->delayed_refs.num_entries);
2945         u64 avg_runtime;
2946         u64 val;
2947
2948         smp_mb();
2949         avg_runtime = fs_info->avg_delayed_ref_runtime;
2950         val = num_entries * avg_runtime;
2951         if (val >= NSEC_PER_SEC)
2952                 return 1;
2953         if (val >= NSEC_PER_SEC / 2)
2954                 return 2;
2955
2956         return btrfs_check_space_for_delayed_refs(trans, fs_info);
2957 }
2958
2959 struct async_delayed_refs {
2960         struct btrfs_root *root;
2961         u64 transid;
2962         int count;
2963         int error;
2964         int sync;
2965         struct completion wait;
2966         struct btrfs_work work;
2967 };
2968
2969 static inline struct async_delayed_refs *
2970 to_async_delayed_refs(struct btrfs_work *work)
2971 {
2972         return container_of(work, struct async_delayed_refs, work);
2973 }
2974
2975 static void delayed_ref_async_start(struct btrfs_work *work)
2976 {
2977         struct async_delayed_refs *async = to_async_delayed_refs(work);
2978         struct btrfs_trans_handle *trans;
2979         struct btrfs_fs_info *fs_info = async->root->fs_info;
2980         int ret;
2981
2982         /* if the commit is already started, we don't need to wait here */
2983         if (btrfs_transaction_blocked(fs_info))
2984                 goto done;
2985
2986         trans = btrfs_join_transaction(async->root);
2987         if (IS_ERR(trans)) {
2988                 async->error = PTR_ERR(trans);
2989                 goto done;
2990         }
2991
2992         /*
2993          * trans->sync means that when we call end_transaction, we won't
2994          * wait on delayed refs
2995          */
2996         trans->sync = true;
2997
2998         /* Don't bother flushing if we got into a different transaction */
2999         if (trans->transid > async->transid)
3000                 goto end;
3001
3002         ret = btrfs_run_delayed_refs(trans, fs_info, async->count);
3003         if (ret)
3004                 async->error = ret;
3005 end:
3006         ret = btrfs_end_transaction(trans);
3007         if (ret && !async->error)
3008                 async->error = ret;
3009 done:
3010         if (async->sync)
3011                 complete(&async->wait);
3012         else
3013                 kfree(async);
3014 }
3015
3016 int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
3017                                  unsigned long count, u64 transid, int wait)
3018 {
3019         struct async_delayed_refs *async;
3020         int ret;
3021
3022         async = kmalloc(sizeof(*async), GFP_NOFS);
3023         if (!async)
3024                 return -ENOMEM;
3025
3026         async->root = fs_info->tree_root;
3027         async->count = count;
3028         async->error = 0;
3029         async->transid = transid;
3030         if (wait)
3031                 async->sync = 1;
3032         else
3033                 async->sync = 0;
3034         init_completion(&async->wait);
3035
3036         btrfs_init_work(&async->work, btrfs_extent_refs_helper,
3037                         delayed_ref_async_start, NULL, NULL);
3038
3039         btrfs_queue_work(fs_info->extent_workers, &async->work);
3040
3041         if (wait) {
3042                 wait_for_completion(&async->wait);
3043                 ret = async->error;
3044                 kfree(async);
3045                 return ret;
3046         }
3047         return 0;
3048 }
3049
3050 /*
3051  * this starts processing the delayed reference count updates and
3052  * extent insertions we have queued up so far.  count can be
3053  * 0, which means to process everything in the tree at the start
3054  * of the run (but not newly added entries), or it can be some target
3055  * number you'd like to process.
3056  *
3057  * Returns 0 on success or if called with an aborted transaction
3058  * Returns <0 on error and aborts the transaction
3059  */
3060 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
3061                            struct btrfs_fs_info *fs_info, unsigned long count)
3062 {
3063         struct rb_node *node;
3064         struct btrfs_delayed_ref_root *delayed_refs;
3065         struct btrfs_delayed_ref_head *head;
3066         int ret;
3067         int run_all = count == (unsigned long)-1;
3068         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
3069
3070         /* We'll clean this up in btrfs_cleanup_transaction */
3071         if (trans->aborted)
3072                 return 0;
3073
3074         if (test_bit(BTRFS_FS_CREATING_FREE_SPACE_TREE, &fs_info->flags))
3075                 return 0;
3076
3077         delayed_refs = &trans->transaction->delayed_refs;
3078         if (count == 0)
3079                 count = atomic_read(&delayed_refs->num_entries) * 2;
3080
3081 again:
3082 #ifdef SCRAMBLE_DELAYED_REFS
3083         delayed_refs->run_delayed_start = find_middle(&delayed_refs->root);
3084 #endif
3085         trans->can_flush_pending_bgs = false;
3086         ret = __btrfs_run_delayed_refs(trans, fs_info, count);
3087         if (ret < 0) {
3088                 btrfs_abort_transaction(trans, ret);
3089                 return ret;
3090         }
3091
3092         if (run_all) {
3093                 if (!list_empty(&trans->new_bgs))
3094                         btrfs_create_pending_block_groups(trans, fs_info);
3095
3096                 spin_lock(&delayed_refs->lock);
3097                 node = rb_first(&delayed_refs->href_root);
3098                 if (!node) {
3099                         spin_unlock(&delayed_refs->lock);
3100                         goto out;
3101                 }
3102
3103                 while (node) {
3104                         head = rb_entry(node, struct btrfs_delayed_ref_head,
3105                                         href_node);
3106                         if (btrfs_delayed_ref_is_head(&head->node)) {
3107                                 struct btrfs_delayed_ref_node *ref;
3108
3109                                 ref = &head->node;
3110                                 refcount_inc(&ref->refs);
3111
3112                                 spin_unlock(&delayed_refs->lock);
3113                                 /*
3114                                  * Mutex was contended, block until it's
3115                                  * released and try again
3116                                  */
3117                                 mutex_lock(&head->mutex);
3118                                 mutex_unlock(&head->mutex);
3119
3120                                 btrfs_put_delayed_ref(ref);
3121                                 cond_resched();
3122                                 goto again;
3123                         } else {
3124                                 WARN_ON(1);
3125                         }
3126                         node = rb_next(node);
3127                 }
3128                 spin_unlock(&delayed_refs->lock);
3129                 cond_resched();
3130                 goto again;
3131         }
3132 out:
3133         trans->can_flush_pending_bgs = can_flush_pending_bgs;
3134         return 0;
3135 }
3136
3137 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
3138                                 struct btrfs_fs_info *fs_info,
3139                                 u64 bytenr, u64 num_bytes, u64 flags,
3140                                 int level, int is_data)
3141 {
3142         struct btrfs_delayed_extent_op *extent_op;
3143         int ret;
3144
3145         extent_op = btrfs_alloc_delayed_extent_op();
3146         if (!extent_op)
3147                 return -ENOMEM;
3148
3149         extent_op->flags_to_set = flags;
3150         extent_op->update_flags = true;
3151         extent_op->update_key = false;
3152         extent_op->is_data = is_data ? true : false;
3153         extent_op->level = level;
3154
3155         ret = btrfs_add_delayed_extent_op(fs_info, trans, bytenr,
3156                                           num_bytes, extent_op);
3157         if (ret)
3158                 btrfs_free_delayed_extent_op(extent_op);
3159         return ret;
3160 }
3161
3162 static noinline int check_delayed_ref(struct btrfs_root *root,
3163                                       struct btrfs_path *path,
3164                                       u64 objectid, u64 offset, u64 bytenr)
3165 {
3166         struct btrfs_delayed_ref_head *head;
3167         struct btrfs_delayed_ref_node *ref;
3168         struct btrfs_delayed_data_ref *data_ref;
3169         struct btrfs_delayed_ref_root *delayed_refs;
3170         struct btrfs_transaction *cur_trans;
3171         int ret = 0;
3172
3173         spin_lock(&root->fs_info->trans_lock);
3174         cur_trans = root->fs_info->running_transaction;
3175         if (cur_trans)
3176                 refcount_inc(&cur_trans->use_count);
3177         spin_unlock(&root->fs_info->trans_lock);
3178         if (!cur_trans)
3179                 return 0;
3180
3181         delayed_refs = &cur_trans->delayed_refs;
3182         spin_lock(&delayed_refs->lock);
3183         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
3184         if (!head) {
3185                 spin_unlock(&delayed_refs->lock);
3186                 btrfs_put_transaction(cur_trans);
3187                 return 0;
3188         }
3189
3190         if (!mutex_trylock(&head->mutex)) {
3191                 refcount_inc(&head->node.refs);
3192                 spin_unlock(&delayed_refs->lock);
3193
3194                 btrfs_release_path(path);
3195
3196                 /*
3197                  * Mutex was contended, block until it's released and let
3198                  * caller try again
3199                  */
3200                 mutex_lock(&head->mutex);
3201                 mutex_unlock(&head->mutex);
3202                 btrfs_put_delayed_ref(&head->node);
3203                 btrfs_put_transaction(cur_trans);
3204                 return -EAGAIN;
3205         }
3206         spin_unlock(&delayed_refs->lock);
3207
3208         spin_lock(&head->lock);
3209         list_for_each_entry(ref, &head->ref_list, list) {
3210                 /* If it's a shared ref we know a cross reference exists */
3211                 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY) {
3212                         ret = 1;
3213                         break;
3214                 }
3215
3216                 data_ref = btrfs_delayed_node_to_data_ref(ref);
3217
3218                 /*
3219                  * If our ref doesn't match the one we're currently looking at
3220                  * then we have a cross reference.
3221                  */
3222                 if (data_ref->root != root->root_key.objectid ||
3223                     data_ref->objectid != objectid ||
3224                     data_ref->offset != offset) {
3225                         ret = 1;
3226                         break;
3227                 }
3228         }
3229         spin_unlock(&head->lock);
3230         mutex_unlock(&head->mutex);
3231         btrfs_put_transaction(cur_trans);
3232         return ret;
3233 }
3234
3235 static noinline int check_committed_ref(struct btrfs_root *root,
3236                                         struct btrfs_path *path,
3237                                         u64 objectid, u64 offset, u64 bytenr)
3238 {
3239         struct btrfs_fs_info *fs_info = root->fs_info;
3240         struct btrfs_root *extent_root = fs_info->extent_root;
3241         struct extent_buffer *leaf;
3242         struct btrfs_extent_data_ref *ref;
3243         struct btrfs_extent_inline_ref *iref;
3244         struct btrfs_extent_item *ei;
3245         struct btrfs_key key;
3246         u32 item_size;
3247         int type;
3248         int ret;
3249
3250         key.objectid = bytenr;
3251         key.offset = (u64)-1;
3252         key.type = BTRFS_EXTENT_ITEM_KEY;
3253
3254         ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3255         if (ret < 0)
3256                 goto out;
3257         BUG_ON(ret == 0); /* Corruption */
3258
3259         ret = -ENOENT;
3260         if (path->slots[0] == 0)
3261                 goto out;
3262
3263         path->slots[0]--;
3264         leaf = path->nodes[0];
3265         btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3266
3267         if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
3268                 goto out;
3269
3270         ret = 1;
3271         item_size = btrfs_item_size_nr(leaf, path->slots[0]);
3272 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3273         if (item_size < sizeof(*ei)) {
3274                 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3275                 goto out;
3276         }
3277 #endif
3278         ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
3279
3280         if (item_size != sizeof(*ei) +
3281             btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
3282                 goto out;
3283
3284         if (btrfs_extent_generation(leaf, ei) <=
3285             btrfs_root_last_snapshot(&root->root_item))
3286                 goto out;
3287
3288         iref = (struct btrfs_extent_inline_ref *)(ei + 1);
3289
3290         type = btrfs_get_extent_inline_ref_type(leaf, iref, BTRFS_REF_TYPE_DATA);
3291         if (type != BTRFS_EXTENT_DATA_REF_KEY)
3292                 goto out;
3293
3294         ref = (struct btrfs_extent_data_ref *)(&iref->offset);
3295         if (btrfs_extent_refs(leaf, ei) !=
3296             btrfs_extent_data_ref_count(leaf, ref) ||
3297             btrfs_extent_data_ref_root(leaf, ref) !=
3298             root->root_key.objectid ||
3299             btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
3300             btrfs_extent_data_ref_offset(leaf, ref) != offset)
3301                 goto out;
3302
3303         ret = 0;
3304 out:
3305         return ret;
3306 }
3307
3308 int btrfs_cross_ref_exist(struct btrfs_root *root, u64 objectid, u64 offset,
3309                           u64 bytenr)
3310 {
3311         struct btrfs_path *path;
3312         int ret;
3313         int ret2;
3314
3315         path = btrfs_alloc_path();
3316         if (!path)
3317                 return -ENOENT;
3318
3319         do {
3320                 ret = check_committed_ref(root, path, objectid,
3321                                           offset, bytenr);
3322                 if (ret && ret != -ENOENT)
3323                         goto out;
3324
3325                 ret2 = check_delayed_ref(root, path, objectid,
3326                                          offset, bytenr);
3327         } while (ret2 == -EAGAIN);
3328
3329         if (ret2 && ret2 != -ENOENT) {
3330                 ret = ret2;
3331                 goto out;
3332         }
3333
3334         if (ret != -ENOENT || ret2 != -ENOENT)
3335                 ret = 0;
3336 out:
3337         btrfs_free_path(path);
3338         if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
3339                 WARN_ON(ret > 0);
3340         return ret;
3341 }
3342
3343 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
3344                            struct btrfs_root *root,
3345                            struct extent_buffer *buf,
3346                            int full_backref, int inc)
3347 {
3348         struct btrfs_fs_info *fs_info = root->fs_info;
3349         u64 bytenr;
3350         u64 num_bytes;
3351         u64 parent;
3352         u64 ref_root;
3353         u32 nritems;
3354         struct btrfs_key key;
3355         struct btrfs_file_extent_item *fi;
3356         int i;
3357         int level;
3358         int ret = 0;
3359         int (*process_func)(struct btrfs_trans_handle *,
3360                             struct btrfs_fs_info *,
3361                             u64, u64, u64, u64, u64, u64);
3362
3363
3364         if (btrfs_is_testing(fs_info))
3365                 return 0;
3366
3367         ref_root = btrfs_header_owner(buf);
3368         nritems = btrfs_header_nritems(buf);
3369         level = btrfs_header_level(buf);
3370
3371         if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state) && level == 0)
3372                 return 0;
3373
3374         if (inc)
3375                 process_func = btrfs_inc_extent_ref;
3376         else
3377                 process_func = btrfs_free_extent;
3378
3379         if (full_backref)
3380                 parent = buf->start;
3381         else
3382                 parent = 0;
3383
3384         for (i = 0; i < nritems; i++) {
3385                 if (level == 0) {
3386                         btrfs_item_key_to_cpu(buf, &key, i);
3387                         if (key.type != BTRFS_EXTENT_DATA_KEY)
3388                                 continue;
3389                         fi = btrfs_item_ptr(buf, i,
3390                                             struct btrfs_file_extent_item);
3391                         if (btrfs_file_extent_type(buf, fi) ==
3392                             BTRFS_FILE_EXTENT_INLINE)
3393                                 continue;
3394                         bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
3395                         if (bytenr == 0)
3396                                 continue;
3397
3398                         num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
3399                         key.offset -= btrfs_file_extent_offset(buf, fi);
3400                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3401                                            parent, ref_root, key.objectid,
3402                                            key.offset);
3403                         if (ret)
3404                                 goto fail;
3405                 } else {
3406                         bytenr = btrfs_node_blockptr(buf, i);
3407                         num_bytes = fs_info->nodesize;
3408                         ret = process_func(trans, fs_info, bytenr, num_bytes,
3409                                            parent, ref_root, level - 1, 0);
3410                         if (ret)
3411                                 goto fail;
3412                 }
3413         }
3414         return 0;
3415 fail:
3416         return ret;
3417 }
3418
3419 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3420                   struct extent_buffer *buf, int full_backref)
3421 {
3422         return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
3423 }
3424
3425 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3426                   struct extent_buffer *buf, int full_backref)
3427 {
3428         return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
3429 }
3430
3431 static int write_one_cache_group(struct btrfs_trans_handle *trans,
3432                                  struct btrfs_fs_info *fs_info,
3433                                  struct btrfs_path *path,
3434                                  struct btrfs_block_group_cache *cache)
3435 {
3436         int ret;
3437         struct btrfs_root *extent_root = fs_info->extent_root;
3438         unsigned long bi;
3439         struct extent_buffer *leaf;
3440
3441         ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
3442         if (ret) {
3443                 if (ret > 0)
3444                         ret = -ENOENT;
3445                 goto fail;
3446         }
3447
3448         leaf = path->nodes[0];
3449         bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
3450         write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
3451         btrfs_mark_buffer_dirty(leaf);
3452 fail:
3453         btrfs_release_path(path);
3454         return ret;
3455
3456 }
3457
3458 static struct btrfs_block_group_cache *
3459 next_block_group(struct btrfs_fs_info *fs_info,
3460                  struct btrfs_block_group_cache *cache)
3461 {
3462         struct rb_node *node;
3463
3464         spin_lock(&fs_info->block_group_cache_lock);
3465
3466         /* If our block group was removed, we need a full search. */
3467         if (RB_EMPTY_NODE(&cache->cache_node)) {
3468                 const u64 next_bytenr = cache->key.objectid + cache->key.offset;
3469
3470                 spin_unlock(&fs_info->block_group_cache_lock);
3471                 btrfs_put_block_group(cache);
3472                 cache = btrfs_lookup_first_block_group(fs_info, next_bytenr); return cache;
3473         }
3474         node = rb_next(&cache->cache_node);
3475         btrfs_put_block_group(cache);
3476         if (node) {
3477                 cache = rb_entry(node, struct btrfs_block_group_cache,
3478                                  cache_node);
3479                 btrfs_get_block_group(cache);
3480         } else
3481                 cache = NULL;
3482         spin_unlock(&fs_info->block_group_cache_lock);
3483         return cache;
3484 }
3485
3486 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
3487                             struct btrfs_trans_handle *trans,
3488                             struct btrfs_path *path)
3489 {
3490         struct btrfs_fs_info *fs_info = block_group->fs_info;
3491         struct btrfs_root *root = fs_info->tree_root;
3492         struct inode *inode = NULL;
3493         struct extent_changeset *data_reserved = NULL;
3494         u64 alloc_hint = 0;
3495         int dcs = BTRFS_DC_ERROR;
3496         u64 num_pages = 0;
3497         int retries = 0;
3498         int ret = 0;
3499
3500         /*
3501          * If this block group is smaller than 100 megs don't bother caching the
3502          * block group.
3503          */
3504         if (block_group->key.offset < (100 * SZ_1M)) {
3505                 spin_lock(&block_group->lock);
3506                 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
3507                 spin_unlock(&block_group->lock);
3508                 return 0;
3509         }
3510
3511         if (trans->aborted)
3512                 return 0;
3513 again:
3514         inode = lookup_free_space_inode(fs_info, block_group, path);
3515         if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
3516                 ret = PTR_ERR(inode);
3517                 btrfs_release_path(path);
3518                 goto out;
3519         }
3520
3521         if (IS_ERR(inode)) {
3522                 BUG_ON(retries);
3523                 retries++;
3524
3525                 if (block_group->ro)
3526                         goto out_free;
3527
3528                 ret = create_free_space_inode(fs_info, trans, block_group,
3529                                               path);
3530                 if (ret)
3531                         goto out_free;
3532                 goto again;
3533         }
3534
3535         /*
3536          * We want to set the generation to 0, that way if anything goes wrong
3537          * from here on out we know not to trust this cache when we load up next
3538          * time.
3539          */
3540         BTRFS_I(inode)->generation = 0;
3541         ret = btrfs_update_inode(trans, root, inode);
3542         if (ret) {
3543                 /*
3544                  * So theoretically we could recover from this, simply set the
3545                  * super cache generation to 0 so we know to invalidate the
3546                  * cache, but then we'd have to keep track of the block groups
3547                  * that fail this way so we know we _have_ to reset this cache
3548                  * before the next commit or risk reading stale cache.  So to
3549                  * limit our exposure to horrible edge cases lets just abort the
3550                  * transaction, this only happens in really bad situations
3551                  * anyway.
3552                  */
3553                 btrfs_abort_transaction(trans, ret);
3554                 goto out_put;
3555         }
3556         WARN_ON(ret);
3557
3558         /* We've already setup this transaction, go ahead and exit */
3559         if (block_group->cache_generation == trans->transid &&
3560             i_size_read(inode)) {
3561                 dcs = BTRFS_DC_SETUP;
3562                 goto out_put;
3563         }
3564
3565         if (i_size_read(inode) > 0) {
3566                 ret = btrfs_check_trunc_cache_free_space(fs_info,
3567                                         &fs_info->global_block_rsv);
3568                 if (ret)
3569                         goto out_put;
3570
3571                 ret = btrfs_truncate_free_space_cache(trans, NULL, inode);
3572                 if (ret)
3573                         goto out_put;
3574         }
3575
3576         spin_lock(&block_group->lock);
3577         if (block_group->cached != BTRFS_CACHE_FINISHED ||
3578             !btrfs_test_opt(fs_info, SPACE_CACHE)) {
3579                 /*
3580                  * don't bother trying to write stuff out _if_
3581                  * a) we're not cached,
3582                  * b) we're with nospace_cache mount option,
3583                  * c) we're with v2 space_cache (FREE_SPACE_TREE).
3584                  */
3585                 dcs = BTRFS_DC_WRITTEN;
3586                 spin_unlock(&block_group->lock);
3587                 goto out_put;
3588         }
3589         spin_unlock(&block_group->lock);
3590
3591         /*
3592          * We hit an ENOSPC when setting up the cache in this transaction, just
3593          * skip doing the setup, we've already cleared the cache so we're safe.
3594          */
3595         if (test_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags)) {
3596                 ret = -ENOSPC;
3597                 goto out_put;
3598         }
3599
3600         /*
3601          * Try to preallocate enough space based on how big the block group is.
3602          * Keep in mind this has to include any pinned space which could end up
3603          * taking up quite a bit since it's not folded into the other space
3604          * cache.
3605          */
3606         num_pages = div_u64(block_group->key.offset, SZ_256M);
3607         if (!num_pages)
3608                 num_pages = 1;
3609
3610         num_pages *= 16;
3611         num_pages *= PAGE_SIZE;
3612
3613         ret = btrfs_check_data_free_space(inode, &data_reserved, 0, num_pages);
3614         if (ret)
3615                 goto out_put;
3616
3617         ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
3618                                               num_pages, num_pages,
3619                                               &alloc_hint);
3620         /*
3621          * Our cache requires contiguous chunks so that we don't modify a bunch
3622          * of metadata or split extents when writing the cache out, which means
3623          * we can enospc if we are heavily fragmented in addition to just normal
3624          * out of space conditions.  So if we hit this just skip setting up any
3625          * other block groups for this transaction, maybe we'll unpin enough
3626          * space the next time around.
3627          */
3628         if (!ret)
3629                 dcs = BTRFS_DC_SETUP;
3630         else if (ret == -ENOSPC)
3631                 set_bit(BTRFS_TRANS_CACHE_ENOSPC, &trans->transaction->flags);
3632
3633 out_put:
3634         iput(inode);
3635 out_free:
3636         btrfs_release_path(path);
3637 out:
3638         spin_lock(&block_group->lock);
3639         if (!ret && dcs == BTRFS_DC_SETUP)
3640                 block_group->cache_generation = trans->transid;
3641         block_group->disk_cache_state = dcs;
3642         spin_unlock(&block_group->lock);
3643
3644         extent_changeset_free(data_reserved);
3645         return ret;
3646 }
3647
3648 int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
3649                             struct btrfs_fs_info *fs_info)
3650 {
3651         struct btrfs_block_group_cache *cache, *tmp;
3652         struct btrfs_transaction *cur_trans = trans->transaction;
3653         struct btrfs_path *path;
3654
3655         if (list_empty(&cur_trans->dirty_bgs) ||
3656             !btrfs_test_opt(fs_info, SPACE_CACHE))
3657                 return 0;
3658
3659         path = btrfs_alloc_path();
3660         if (!path)
3661                 return -ENOMEM;
3662
3663         /* Could add new block groups, use _safe just in case */
3664         list_for_each_entry_safe(cache, tmp, &cur_trans->dirty_bgs,
3665                                  dirty_list) {
3666                 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
3667                         cache_save_setup(cache, trans, path);
3668         }
3669
3670         btrfs_free_path(path);
3671         return 0;
3672 }
3673
3674 /*
3675  * transaction commit does final block group cache writeback during a
3676  * critical section where nothing is allowed to change the FS.  This is
3677  * required in order for the cache to actually match the block group,
3678  * but can introduce a lot of latency into the commit.
3679  *
3680  * So, btrfs_start_dirty_block_groups is here to kick off block group
3681  * cache IO.  There's a chance we'll have to redo some of it if the
3682  * block group changes again during the commit, but it greatly reduces
3683  * the commit latency by getting rid of the easy block groups while
3684  * we're still allowing others to join the commit.
3685  */
3686 int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
3687                                    struct btrfs_fs_info *fs_info)
3688 {
3689         struct btrfs_block_group_cache *cache;
3690         struct btrfs_transaction *cur_trans = trans->transaction;
3691         int ret = 0;
3692         int should_put;
3693         struct btrfs_path *path = NULL;
3694         LIST_HEAD(dirty);
3695         struct list_head *io = &cur_trans->io_bgs;
3696         int num_started = 0;
3697         int loops = 0;
3698
3699         spin_lock(&cur_trans->dirty_bgs_lock);
3700         if (list_empty(&cur_trans->dirty_bgs)) {
3701                 spin_unlock(&cur_trans->dirty_bgs_lock);
3702                 return 0;
3703         }
3704         list_splice_init(&cur_trans->dirty_bgs, &dirty);
3705         spin_unlock(&cur_trans->dirty_bgs_lock);
3706
3707 again:
3708         /*
3709          * make sure all the block groups on our dirty list actually
3710          * exist
3711          */
3712         btrfs_create_pending_block_groups(trans, fs_info);
3713
3714         if (!path) {
3715                 path = btrfs_alloc_path();
3716                 if (!path)
3717                         return -ENOMEM;
3718         }
3719
3720         /*
3721          * cache_write_mutex is here only to save us from balance or automatic
3722          * removal of empty block groups deleting this block group while we are
3723          * writing out the cache
3724          */
3725         mutex_lock(&trans->transaction->cache_write_mutex);
3726         while (!list_empty(&dirty)) {
3727                 cache = list_first_entry(&dirty,
3728                                          struct btrfs_block_group_cache,
3729                                          dirty_list);
3730                 /*
3731                  * this can happen if something re-dirties a block
3732                  * group that is already under IO.  Just wait for it to
3733                  * finish and then do it all again
3734                  */
3735                 if (!list_empty(&cache->io_list)) {
3736                         list_del_init(&cache->io_list);
3737                         btrfs_wait_cache_io(trans, cache, path);
3738                         btrfs_put_block_group(cache);
3739                 }
3740
3741
3742                 /*
3743                  * btrfs_wait_cache_io uses the cache->dirty_list to decide
3744                  * if it should update the cache_state.  Don't delete
3745                  * until after we wait.
3746                  *
3747                  * Since we're not running in the commit critical section
3748                  * we need the dirty_bgs_lock to protect from update_block_group
3749                  */
3750                 spin_lock(&cur_trans->dirty_bgs_lock);
3751                 list_del_init(&cache->dirty_list);
3752                 spin_unlock(&cur_trans->dirty_bgs_lock);
3753
3754                 should_put = 1;
3755
3756                 cache_save_setup(cache, trans, path);
3757
3758                 if (cache->disk_cache_state == BTRFS_DC_SETUP) {
3759                         cache->io_ctl.inode = NULL;
3760                         ret = btrfs_write_out_cache(fs_info, trans,
3761                                                     cache, path);
3762                         if (ret == 0 && cache->io_ctl.inode) {
3763                                 num_started++;
3764                                 should_put = 0;
3765
3766                                 /*
3767                                  * the cache_write_mutex is protecting
3768                                  * the io_list
3769                                  */
3770                                 list_add_tail(&cache->io_list, io);
3771                         } else {
3772                                 /*
3773                                  * if we failed to write the cache, the
3774                                  * generation will be bad and life goes on
3775                                  */
3776                                 ret = 0;
3777                         }
3778                 }
3779                 if (!ret) {
3780                         ret = write_one_cache_group(trans, fs_info,
3781                                                     path, cache);
3782                         /*
3783                          * Our block group might still be attached to the list
3784                          * of new block groups in the transaction handle of some
3785                          * other task (struct btrfs_trans_handle->new_bgs). This
3786                          * means its block group item isn't yet in the extent
3787                          * tree. If this happens ignore the error, as we will
3788                          * try again later in the critical section of the
3789                          * transaction commit.
3790                          */
3791                         if (ret == -ENOENT) {
3792                                 ret = 0;
3793                                 spin_lock(&cur_trans->dirty_bgs_lock);
3794                                 if (list_empty(&cache->dirty_list)) {
3795                                         list_add_tail(&cache->dirty_list,
3796                                                       &cur_trans->dirty_bgs);
3797                                         btrfs_get_block_group(cache);
3798                                 }
3799                                 spin_unlock(&cur_trans->dirty_bgs_lock);
3800                         } else if (ret) {
3801                                 btrfs_abort_transaction(trans, ret);
3802                         }
3803                 }
3804
3805                 /* if its not on the io list, we need to put the block group */
3806                 if (should_put)
3807                         btrfs_put_block_group(cache);
3808
3809                 if (ret)
3810                         break;
3811
3812                 /*
3813                  * Avoid blocking other tasks for too long. It might even save
3814                  * us from writing caches for block groups that are going to be
3815                  * removed.
3816                  */
3817                 mutex_unlock(&trans->transaction->cache_write_mutex);
3818                 mutex_lock(&trans->transaction->cache_write_mutex);
3819         }
3820         mutex_unlock(&trans->transaction->cache_write_mutex);
3821
3822         /*
3823          * go through delayed refs for all the stuff we've just kicked off
3824          * and then loop back (just once)
3825          */
3826         ret = btrfs_run_delayed_refs(trans, fs_info, 0);
3827         if (!ret && loops == 0) {
3828                 loops++;
3829                 spin_lock(&cur_trans->dirty_bgs_lock);
3830                 list_splice_init(&cur_trans->dirty_bgs, &dirty);
3831                 /*
3832                  * dirty_bgs_lock protects us from concurrent block group
3833                  * deletes too (not just cache_write_mutex).
3834                  */
3835                 if (!list_empty(&dirty)) {
3836                         spin_unlock(&cur_trans->dirty_bgs_lock);
3837                         goto again;
3838                 }
3839                 spin_unlock(&cur_trans->dirty_bgs_lock);
3840         } else if (ret < 0) {
3841                 btrfs_cleanup_dirty_bgs(cur_trans, fs_info);
3842         }
3843
3844         btrfs_free_path(path);
3845         return ret;
3846 }
3847
3848 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
3849                                    struct btrfs_fs_info *fs_info)
3850 {
3851         struct btrfs_block_group_cache *cache;
3852         struct btrfs_transaction *cur_trans = trans->transaction;
3853         int ret = 0;
3854         int should_put;
3855         struct btrfs_path *path;
3856         struct list_head *io = &cur_trans->io_bgs;
3857         int num_started = 0;
3858
3859         path = btrfs_alloc_path();
3860         if (!path)
3861                 return -ENOMEM;
3862
3863         /*
3864          * Even though we are in the critical section of the transaction commit,
3865          * we can still have concurrent tasks adding elements to this
3866          * transaction's list of dirty block groups. These tasks correspond to
3867          * endio free space workers started when writeback finishes for a
3868          * space cache, which run inode.c:btrfs_finish_ordered_io(), and can
3869          * allocate new block groups as a result of COWing nodes of the root
3870          * tree when updating the free space inode. The writeback for the space
3871          * caches is triggered by an earlier call to
3872          * btrfs_start_dirty_block_groups() and iterations of the following
3873          * loop.
3874          * Also we want to do the cache_save_setup first and then run the
3875          * delayed refs to make sure we have the best chance at doing this all
3876          * in one shot.
3877          */
3878         spin_lock(&cur_trans->dirty_bgs_lock);
3879         while (!list_empty(&cur_trans->dirty_bgs)) {
3880                 cache = list_first_entry(&cur_trans->dirty_bgs,
3881                                          struct btrfs_block_group_cache,
3882                                          dirty_list);
3883
3884                 /*
3885                  * this can happen if cache_save_setup re-dirties a block
3886                  * group that is already under IO.  Just wait for it to
3887                  * finish and then do it all again
3888                  */
3889                 if (!list_empty(&cache->io_list)) {
3890                         spin_unlock(&cur_trans->dirty_bgs_lock);
3891                         list_del_init(&cache->io_list);
3892                         btrfs_wait_cache_io(trans, cache, path);
3893                         btrfs_put_block_group(cache);
3894                         spin_lock(&cur_trans->dirty_bgs_lock);
3895                 }
3896
3897                 /*
3898                  * don't remove from the dirty list until after we've waited
3899                  * on any pending IO
3900                  */
3901                 list_del_init(&cache->dirty_list);
3902                 spin_unlock(&cur_trans->dirty_bgs_lock);
3903                 should_put = 1;
3904
3905                 cache_save_setup(cache, trans, path);
3906
3907                 if (!ret)
3908                         ret = btrfs_run_delayed_refs(trans, fs_info,
3909                                                      (unsigned long) -1);
3910
3911                 if (!ret && cache->disk_cache_state == BTRFS_DC_SETUP) {
3912                         cache->io_ctl.inode = NULL;
3913                         ret = btrfs_write_out_cache(fs_info, trans,
3914                                                     cache, path);
3915                         if (ret == 0 && cache->io_ctl.inode) {
3916                                 num_started++;
3917                                 should_put = 0;
3918                                 list_add_tail(&cache->io_list, io);
3919                         } else {
3920                                 /*
3921                                  * if we failed to write the cache, the
3922                                  * generation will be bad and life goes on
3923                                  */
3924                                 ret = 0;
3925                         }
3926                 }
3927                 if (!ret) {
3928                         ret = write_one_cache_group(trans, fs_info,
3929                                                     path, cache);
3930                         /*
3931                          * One of the free space endio workers might have
3932                          * created a new block group while updating a free space
3933                          * cache's inode (at inode.c:btrfs_finish_ordered_io())
3934                          * and hasn't released its transaction handle yet, in
3935                          * which case the new block group is still attached to
3936                          * its transaction handle and its creation has not
3937                          * finished yet (no block group item in the extent tree
3938                          * yet, etc). If this is the case, wait for all free
3939                          * space endio workers to finish and retry. This is a
3940                          * a very rare case so no need for a more efficient and
3941                          * complex approach.
3942                          */
3943                         if (ret == -ENOENT) {
3944                                 wait_event(cur_trans->writer_wait,
3945                                    atomic_read(&cur_trans->num_writers) == 1);
3946                                 ret = write_one_cache_group(trans, fs_info,
3947                                                             path, cache);
3948                         }
3949                         if (ret)
3950                                 btrfs_abort_transaction(trans, ret);
3951                 }
3952
3953                 /* if its not on the io list, we need to put the block group */
3954                 if (should_put)
3955                         btrfs_put_block_group(cache);
3956                 spin_lock(&cur_trans->dirty_bgs_lock);
3957         }
3958         spin_unlock(&cur_trans->dirty_bgs_lock);
3959
3960         while (!list_empty(io)) {
3961                 cache = list_first_entry(io, struct btrfs_block_group_cache,
3962                                          io_list);
3963                 list_del_init(&cache->io_list);
3964                 btrfs_wait_cache_io(trans, cache, path);
3965                 btrfs_put_block_group(cache);
3966         }
3967
3968         btrfs_free_path(path);
3969         return ret;
3970 }
3971
3972 int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr)
3973 {
3974         struct btrfs_block_group_cache *block_group;
3975         int readonly = 0;
3976
3977         block_group = btrfs_lookup_block_group(fs_info, bytenr);
3978         if (!block_group || block_group->ro)
3979                 readonly = 1;
3980         if (block_group)
3981                 btrfs_put_block_group(block_group);
3982         return readonly;
3983 }
3984
3985 bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
3986 {
3987         struct btrfs_block_group_cache *bg;
3988         bool ret = true;
3989
3990         bg = btrfs_lookup_block_group(fs_info, bytenr);
3991         if (!bg)
3992                 return false;
3993
3994         spin_lock(&bg->lock);
3995         if (bg->ro)
3996                 ret = false;
3997         else
3998                 atomic_inc(&bg->nocow_writers);
3999         spin_unlock(&bg->lock);
4000
4001         /* no put on block group, done by btrfs_dec_nocow_writers */
4002         if (!ret)
4003                 btrfs_put_block_group(bg);
4004
4005         return ret;
4006
4007 }
4008
4009 void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr)
4010 {
4011         struct btrfs_block_group_cache *bg;
4012
4013         bg = btrfs_lookup_block_group(fs_info, bytenr);
4014         ASSERT(bg);
4015         if (atomic_dec_and_test(&bg->nocow_writers))
4016                 wake_up_atomic_t(&bg->nocow_writers);
4017         /*
4018          * Once for our lookup and once for the lookup done by a previous call
4019          * to btrfs_inc_nocow_writers()
4020          */
4021         btrfs_put_block_group(bg);
4022         btrfs_put_block_group(bg);
4023 }
4024
4025 static int btrfs_wait_nocow_writers_atomic_t(atomic_t *a)
4026 {
4027         schedule();
4028         return 0;
4029 }
4030
4031 void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg)
4032 {
4033         wait_on_atomic_t(&bg->nocow_writers,
4034                          btrfs_wait_nocow_writers_atomic_t,
4035                          TASK_UNINTERRUPTIBLE);
4036 }
4037
4038 static const char *alloc_name(u64 flags)
4039 {
4040         switch (flags) {
4041         case BTRFS_BLOCK_GROUP_METADATA|BTRFS_BLOCK_GROUP_DATA:
4042                 return "mixed";
4043         case BTRFS_BLOCK_GROUP_METADATA:
4044                 return "metadata";
4045         case BTRFS_BLOCK_GROUP_DATA:
4046                 return "data";
4047         case BTRFS_BLOCK_GROUP_SYSTEM:
4048                 return "system";
4049         default:
4050                 WARN_ON(1);
4051                 return "invalid-combination";
4052         };
4053 }
4054
4055 static int create_space_info(struct btrfs_fs_info *info, u64 flags,
4056                              struct btrfs_space_info **new)
4057 {
4058
4059         struct btrfs_space_info *space_info;
4060         int i;
4061         int ret;
4062
4063         space_info = kzalloc(sizeof(*space_info), GFP_NOFS);
4064         if (!space_info)
4065                 return -ENOMEM;
4066
4067         ret = percpu_counter_init(&space_info->total_bytes_pinned, 0,
4068                                  GFP_KERNEL);
4069         if (ret) {
4070                 kfree(space_info);
4071                 return ret;
4072         }
4073
4074         for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
4075                 INIT_LIST_HEAD(&space_info->block_groups[i]);
4076         init_rwsem(&space_info->groups_sem);
4077         spin_lock_init(&space_info->lock);
4078         space_info->flags = flags & BTRFS_BLOCK_GROUP_TYPE_MASK;
4079         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4080         init_waitqueue_head(&space_info->wait);
4081         INIT_LIST_HEAD(&space_info->ro_bgs);
4082         INIT_LIST_HEAD(&space_info->tickets);
4083         INIT_LIST_HEAD(&space_info->priority_tickets);
4084
4085         ret = kobject_init_and_add(&space_info->kobj, &space_info_ktype,
4086                                     info->space_info_kobj, "%s",
4087                                     alloc_name(space_info->flags));
4088         if (ret) {
4089                 kobject_put(&space_info->kobj);
4090                 return ret;
4091         }
4092
4093         *new = space_info;
4094         list_add_rcu(&space_info->list, &info->space_info);
4095         if (flags & BTRFS_BLOCK_GROUP_DATA)
4096                 info->data_sinfo = space_info;
4097
4098         return ret;
4099 }
4100
4101 static void update_space_info(struct btrfs_fs_info *info, u64 flags,
4102                              u64 total_bytes, u64 bytes_used,
4103                              u64 bytes_readonly,
4104                              struct btrfs_space_info **space_info)
4105 {
4106         struct btrfs_space_info *found;
4107         int factor;
4108
4109         if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
4110                      BTRFS_BLOCK_GROUP_RAID10))
4111                 factor = 2;
4112         else
4113                 factor = 1;
4114
4115         found = __find_space_info(info, flags);
4116         ASSERT(found);
4117         spin_lock(&found->lock);
4118         found->total_bytes += total_bytes;
4119         found->disk_total += total_bytes * factor;
4120         found->bytes_used += bytes_used;
4121         found->disk_used += bytes_used * factor;
4122         found->bytes_readonly += bytes_readonly;
4123         if (total_bytes > 0)
4124                 found->full = 0;
4125         space_info_add_new_bytes(info, found, total_bytes -
4126                                  bytes_used - bytes_readonly);
4127         spin_unlock(&found->lock);
4128         *space_info = found;
4129 }
4130
4131 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
4132 {
4133         u64 extra_flags = chunk_to_extended(flags) &
4134                                 BTRFS_EXTENDED_PROFILE_MASK;
4135
4136         write_seqlock(&fs_info->profiles_lock);
4137         if (flags & BTRFS_BLOCK_GROUP_DATA)
4138                 fs_info->avail_data_alloc_bits |= extra_flags;
4139         if (flags & BTRFS_BLOCK_GROUP_METADATA)
4140                 fs_info->avail_metadata_alloc_bits |= extra_flags;
4141         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4142                 fs_info->avail_system_alloc_bits |= extra_flags;
4143         write_sequnlock(&fs_info->profiles_lock);
4144 }
4145
4146 /*
4147  * returns target flags in extended format or 0 if restripe for this
4148  * chunk_type is not in progress
4149  *
4150  * should be called with either volume_mutex or balance_lock held
4151  */
4152 static u64 get_restripe_target(struct btrfs_fs_info *fs_info, u64 flags)
4153 {
4154         struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4155         u64 target = 0;
4156
4157         if (!bctl)
4158                 return 0;
4159
4160         if (flags & BTRFS_BLOCK_GROUP_DATA &&
4161             bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4162                 target = BTRFS_BLOCK_GROUP_DATA | bctl->data.target;
4163         } else if (flags & BTRFS_BLOCK_GROUP_SYSTEM &&
4164                    bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4165                 target = BTRFS_BLOCK_GROUP_SYSTEM | bctl->sys.target;
4166         } else if (flags & BTRFS_BLOCK_GROUP_METADATA &&
4167                    bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) {
4168                 target = BTRFS_BLOCK_GROUP_METADATA | bctl->meta.target;
4169         }
4170
4171         return target;
4172 }
4173
4174 /*
4175  * @flags: available profiles in extended format (see ctree.h)
4176  *
4177  * Returns reduced profile in chunk format.  If profile changing is in
4178  * progress (either running or paused) picks the target profile (if it's
4179  * already available), otherwise falls back to plain reducing.
4180  */
4181 static u64 btrfs_reduce_alloc_profile(struct btrfs_fs_info *fs_info, u64 flags)
4182 {
4183         u64 num_devices = fs_info->fs_devices->rw_devices;
4184         u64 target;
4185         u64 raid_type;
4186         u64 allowed = 0;
4187
4188         /*
4189          * see if restripe for this chunk_type is in progress, if so
4190          * try to reduce to the target profile
4191          */
4192         spin_lock(&fs_info->balance_lock);
4193         target = get_restripe_target(fs_info, flags);
4194         if (target) {
4195                 /* pick target profile only if it's already available */
4196                 if ((flags & target) & BTRFS_EXTENDED_PROFILE_MASK) {
4197                         spin_unlock(&fs_info->balance_lock);
4198                         return extended_to_chunk(target);
4199                 }
4200         }
4201         spin_unlock(&fs_info->balance_lock);
4202
4203         /* First, mask out the RAID levels which aren't possible */
4204         for (raid_type = 0; raid_type < BTRFS_NR_RAID_TYPES; raid_type++) {
4205                 if (num_devices >= btrfs_raid_array[raid_type].devs_min)
4206                         allowed |= btrfs_raid_group[raid_type];
4207         }
4208         allowed &= flags;
4209
4210         if (allowed & BTRFS_BLOCK_GROUP_RAID6)
4211                 allowed = BTRFS_BLOCK_GROUP_RAID6;
4212         else if (allowed & BTRFS_BLOCK_GROUP_RAID5)
4213                 allowed = BTRFS_BLOCK_GROUP_RAID5;
4214         else if (allowed & BTRFS_BLOCK_GROUP_RAID10)
4215                 allowed = BTRFS_BLOCK_GROUP_RAID10;
4216         else if (allowed & BTRFS_BLOCK_GROUP_RAID1)
4217                 allowed = BTRFS_BLOCK_GROUP_RAID1;
4218         else if (allowed & BTRFS_BLOCK_GROUP_RAID0)
4219                 allowed = BTRFS_BLOCK_GROUP_RAID0;
4220
4221         flags &= ~BTRFS_BLOCK_GROUP_PROFILE_MASK;
4222
4223         return extended_to_chunk(flags | allowed);
4224 }
4225
4226 static u64 get_alloc_profile(struct btrfs_fs_info *fs_info, u64 orig_flags)
4227 {
4228         unsigned seq;
4229         u64 flags;
4230
4231         do {
4232                 flags = orig_flags;
4233                 seq = read_seqbegin(&fs_info->profiles_lock);
4234
4235                 if (flags & BTRFS_BLOCK_GROUP_DATA)
4236                         flags |= fs_info->avail_data_alloc_bits;
4237                 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
4238                         flags |= fs_info->avail_system_alloc_bits;
4239                 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
4240                         flags |= fs_info->avail_metadata_alloc_bits;
4241         } while (read_seqretry(&fs_info->profiles_lock, seq));
4242
4243         return btrfs_reduce_alloc_profile(fs_info, flags);
4244 }
4245
4246 static u64 get_alloc_profile_by_root(struct btrfs_root *root, int data)
4247 {
4248         struct btrfs_fs_info *fs_info = root->fs_info;
4249         u64 flags;
4250         u64 ret;
4251
4252         if (data)
4253                 flags = BTRFS_BLOCK_GROUP_DATA;
4254         else if (root == fs_info->chunk_root)
4255                 flags = BTRFS_BLOCK_GROUP_SYSTEM;
4256         else
4257                 flags = BTRFS_BLOCK_GROUP_METADATA;
4258
4259         ret = get_alloc_profile(fs_info, flags);
4260         return ret;
4261 }
4262
4263 u64 btrfs_data_alloc_profile(struct btrfs_fs_info *fs_info)
4264 {
4265         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_DATA);
4266 }
4267
4268 u64 btrfs_metadata_alloc_profile(struct btrfs_fs_info *fs_info)
4269 {
4270         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_METADATA);
4271 }
4272
4273 u64 btrfs_system_alloc_profile(struct btrfs_fs_info *fs_info)
4274 {
4275         return get_alloc_profile(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4276 }
4277
4278 static u64 btrfs_space_info_used(struct btrfs_space_info *s_info,
4279                                  bool may_use_included)
4280 {
4281         ASSERT(s_info);
4282         return s_info->bytes_used + s_info->bytes_reserved +
4283                 s_info->bytes_pinned + s_info->bytes_readonly +
4284                 (may_use_included ? s_info->bytes_may_use : 0);
4285 }
4286
4287 int btrfs_alloc_data_chunk_ondemand(struct btrfs_inode *inode, u64 bytes)
4288 {
4289         struct btrfs_root *root = inode->root;
4290         struct btrfs_fs_info *fs_info = root->fs_info;
4291         struct btrfs_space_info *data_sinfo = fs_info->data_sinfo;
4292         u64 used;
4293         int ret = 0;
4294         int need_commit = 2;
4295         int have_pinned_space;
4296
4297         /* make sure bytes are sectorsize aligned */
4298         bytes = ALIGN(bytes, fs_info->sectorsize);
4299
4300         if (btrfs_is_free_space_inode(inode)) {
4301                 need_commit = 0;
4302                 ASSERT(current->journal_info);
4303         }
4304
4305 again:
4306         /* make sure we have enough space to handle the data first */
4307         spin_lock(&data_sinfo->lock);
4308         used = btrfs_space_info_used(data_sinfo, true);
4309
4310         if (used + bytes > data_sinfo->total_bytes) {
4311                 struct btrfs_trans_handle *trans;
4312
4313                 /*
4314                  * if we don't have enough free bytes in this space then we need
4315                  * to alloc a new chunk.
4316                  */
4317                 if (!data_sinfo->full) {
4318                         u64 alloc_target;
4319
4320                         data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
4321                         spin_unlock(&data_sinfo->lock);
4322
4323                         alloc_target = btrfs_data_alloc_profile(fs_info);
4324                         /*
4325                          * It is ugly that we don't call nolock join
4326                          * transaction for the free space inode case here.
4327                          * But it is safe because we only do the data space
4328                          * reservation for the free space cache in the
4329                          * transaction context, the common join transaction
4330                          * just increase the counter of the current transaction
4331                          * handler, doesn't try to acquire the trans_lock of
4332                          * the fs.
4333                          */
4334                         trans = btrfs_join_transaction(root);
4335                         if (IS_ERR(trans))
4336                                 return PTR_ERR(trans);
4337
4338                         ret = do_chunk_alloc(trans, fs_info, alloc_target,
4339                                              CHUNK_ALLOC_NO_FORCE);
4340                         btrfs_end_transaction(trans);
4341                         if (ret < 0) {
4342                                 if (ret != -ENOSPC)
4343                                         return ret;
4344                                 else {
4345                                         have_pinned_space = 1;
4346                                         goto commit_trans;
4347                                 }
4348                         }
4349
4350                         goto again;
4351                 }
4352
4353                 /*
4354                  * If we don't have enough pinned space to deal with this
4355                  * allocation, and no removed chunk in current transaction,
4356                  * don't bother committing the transaction.
4357                  */
4358                 have_pinned_space = percpu_counter_compare(
4359                         &data_sinfo->total_bytes_pinned,
4360                         used + bytes - data_sinfo->total_bytes);
4361                 spin_unlock(&data_sinfo->lock);
4362
4363                 /* commit the current transaction and try again */
4364 commit_trans:
4365                 if (need_commit &&
4366                     !atomic_read(&fs_info->open_ioctl_trans)) {
4367                         need_commit--;
4368
4369                         if (need_commit > 0) {
4370                                 btrfs_start_delalloc_roots(fs_info, 0, -1);
4371                                 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0,
4372                                                          (u64)-1);
4373                         }
4374
4375                         trans = btrfs_join_transaction(root);
4376                         if (IS_ERR(trans))
4377                                 return PTR_ERR(trans);
4378                         if (have_pinned_space >= 0 ||
4379                             test_bit(BTRFS_TRANS_HAVE_FREE_BGS,
4380                                      &trans->transaction->flags) ||
4381                             need_commit > 0) {
4382                                 ret = btrfs_commit_transaction(trans);
4383                                 if (ret)
4384                                         return ret;
4385                                 /*
4386                                  * The cleaner kthread might still be doing iput
4387                                  * operations. Wait for it to finish so that
4388                                  * more space is released.
4389                                  */
4390                                 mutex_lock(&fs_info->cleaner_delayed_iput_mutex);
4391                                 mutex_unlock(&fs_info->cleaner_delayed_iput_mutex);
4392                                 goto again;
4393                         } else {
4394                                 btrfs_end_transaction(trans);
4395                         }
4396                 }
4397
4398                 trace_btrfs_space_reservation(fs_info,
4399                                               "space_info:enospc",
4400                                               data_sinfo->flags, bytes, 1);
4401                 return -ENOSPC;
4402         }
4403         data_sinfo->bytes_may_use += bytes;
4404         trace_btrfs_space_reservation(fs_info, "space_info",
4405                                       data_sinfo->flags, bytes, 1);
4406         spin_unlock(&data_sinfo->lock);
4407
4408         return 0;
4409 }
4410
4411 int btrfs_check_data_free_space(struct inode *inode,
4412                         struct extent_changeset **reserved, u64 start, u64 len)
4413 {
4414         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4415         int ret;
4416
4417         /* align the range */
4418         len = round_up(start + len, fs_info->sectorsize) -
4419               round_down(start, fs_info->sectorsize);
4420         start = round_down(start, fs_info->sectorsize);
4421
4422         ret = btrfs_alloc_data_chunk_ondemand(BTRFS_I(inode), len);
4423         if (ret < 0)
4424                 return ret;
4425
4426         /* Use new btrfs_qgroup_reserve_data to reserve precious data space. */
4427         ret = btrfs_qgroup_reserve_data(inode, reserved, start, len);
4428         if (ret < 0)
4429                 btrfs_free_reserved_data_space_noquota(inode, start, len);
4430         else
4431                 ret = 0;
4432         return ret;
4433 }
4434
4435 /*
4436  * Called if we need to clear a data reservation for this inode
4437  * Normally in a error case.
4438  *
4439  * This one will *NOT* use accurate qgroup reserved space API, just for case
4440  * which we can't sleep and is sure it won't affect qgroup reserved space.
4441  * Like clear_bit_hook().
4442  */
4443 void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
4444                                             u64 len)
4445 {
4446         struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4447         struct btrfs_space_info *data_sinfo;
4448
4449         /* Make sure the range is aligned to sectorsize */
4450         len = round_up(start + len, fs_info->sectorsize) -
4451               round_down(start, fs_info->sectorsize);
4452         start = round_down(start, fs_info->sectorsize);
4453
4454         data_sinfo = fs_info->data_sinfo;
4455         spin_lock(&data_sinfo->lock);
4456         if (WARN_ON(data_sinfo->bytes_may_use < len))
4457                 data_sinfo->bytes_may_use = 0;
4458         else
4459                 data_sinfo->bytes_may_use -= len;
4460         trace_btrfs_space_reservation(fs_info, "space_info",
4461                                       data_sinfo->flags, len, 0);
4462         spin_unlock(&data_sinfo->lock);
4463 }
4464
4465 /*
4466  * Called if we need to clear a data reservation for this inode
4467  * Normally in a error case.
4468  *
4469  * This one will handle the per-inode data rsv map for accurate reserved
4470  * space framework.
4471  */
4472 void btrfs_free_reserved_data_space(struct inode *inode,
4473                         struct extent_changeset *reserved, u64 start, u64 len)
4474 {
4475         struct btrfs_root *root = BTRFS_I(inode)->root;
4476
4477         /* Make sure the range is aligned to sectorsize */
4478         len = round_up(start + len, root->fs_info->sectorsize) -
4479               round_down(start, root->fs_info->sectorsize);
4480         start = round_down(start, root->fs_info->sectorsize);
4481
4482         btrfs_free_reserved_data_space_noquota(inode, start, len);
4483         btrfs_qgroup_free_data(inode, reserved, start, len);
4484 }
4485
4486 static void force_metadata_allocation(struct btrfs_fs_info *info)
4487 {
4488         struct list_head *head = &info->space_info;
4489         struct btrfs_space_info *found;
4490
4491         rcu_read_lock();
4492         list_for_each_entry_rcu(found, head, list) {
4493                 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
4494                         found->force_alloc = CHUNK_ALLOC_FORCE;
4495         }
4496         rcu_read_unlock();
4497 }
4498
4499 static inline u64 calc_global_rsv_need_space(struct btrfs_block_rsv *global)
4500 {
4501         return (global->size << 1);
4502 }
4503
4504 static int should_alloc_chunk(struct btrfs_fs_info *fs_info,
4505                               struct btrfs_space_info *sinfo, int force)
4506 {
4507         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4508         u64 bytes_used = btrfs_space_info_used(sinfo, false);
4509         u64 thresh;
4510
4511         if (force == CHUNK_ALLOC_FORCE)
4512                 return 1;
4513
4514         /*
4515          * We need to take into account the global rsv because for all intents
4516          * and purposes it's used space.  Don't worry about locking the
4517          * global_rsv, it doesn't change except when the transaction commits.
4518          */
4519         if (sinfo->flags & BTRFS_BLOCK_GROUP_METADATA)
4520                 bytes_used += calc_global_rsv_need_space(global_rsv);
4521
4522         /*
4523          * in limited mode, we want to have some free space up to
4524          * about 1% of the FS size.
4525          */
4526         if (force == CHUNK_ALLOC_LIMITED) {
4527                 thresh = btrfs_super_total_bytes(fs_info->super_copy);
4528                 thresh = max_t(u64, SZ_64M, div_factor_fine(thresh, 1));
4529
4530                 if (sinfo->total_bytes - bytes_used < thresh)
4531                         return 1;
4532         }
4533
4534         if (bytes_used + SZ_2M < div_factor(sinfo->total_bytes, 8))
4535                 return 0;
4536         return 1;
4537 }
4538
4539 static u64 get_profile_num_devs(struct btrfs_fs_info *fs_info, u64 type)
4540 {
4541         u64 num_dev;
4542
4543         if (type & (BTRFS_BLOCK_GROUP_RAID10 |
4544                     BTRFS_BLOCK_GROUP_RAID0 |
4545                     BTRFS_BLOCK_GROUP_RAID5 |
4546                     BTRFS_BLOCK_GROUP_RAID6))
4547                 num_dev = fs_info->fs_devices->rw_devices;
4548         else if (type & BTRFS_BLOCK_GROUP_RAID1)
4549                 num_dev = 2;
4550         else
4551                 num_dev = 1;    /* DUP or single */
4552
4553         return num_dev;
4554 }
4555
4556 /*
4557  * If @is_allocation is true, reserve space in the system space info necessary
4558  * for allocating a chunk, otherwise if it's false, reserve space necessary for
4559  * removing a chunk.
4560  */
4561 void check_system_chunk(struct btrfs_trans_handle *trans,
4562                         struct btrfs_fs_info *fs_info, u64 type)
4563 {
4564         struct btrfs_space_info *info;
4565         u64 left;
4566         u64 thresh;
4567         int ret = 0;
4568         u64 num_devs;
4569
4570         /*
4571          * Needed because we can end up allocating a system chunk and for an
4572          * atomic and race free space reservation in the chunk block reserve.
4573          */
4574         ASSERT(mutex_is_locked(&fs_info->chunk_mutex));
4575
4576         info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
4577         spin_lock(&info->lock);
4578         left = info->total_bytes - btrfs_space_info_used(info, true);
4579         spin_unlock(&info->lock);
4580
4581         num_devs = get_profile_num_devs(fs_info, type);
4582
4583         /* num_devs device items to update and 1 chunk item to add or remove */
4584         thresh = btrfs_calc_trunc_metadata_size(fs_info, num_devs) +
4585                 btrfs_calc_trans_metadata_size(fs_info, 1);
4586
4587         if (left < thresh && btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
4588                 btrfs_info(fs_info, "left=%llu, need=%llu, flags=%llu",
4589                            left, thresh, type);
4590                 dump_space_info(fs_info, info, 0, 0);
4591         }
4592
4593         if (left < thresh) {
4594                 u64 flags = btrfs_system_alloc_profile(fs_info);
4595
4596                 /*
4597                  * Ignore failure to create system chunk. We might end up not
4598                  * needing it, as we might not need to COW all nodes/leafs from
4599                  * the paths we visit in the chunk tree (they were already COWed
4600                  * or created in the current transaction for example).
4601                  */
4602                 ret = btrfs_alloc_chunk(trans, fs_info, flags);
4603         }
4604
4605         if (!ret) {
4606                 ret = btrfs_block_rsv_add(fs_info->chunk_root,
4607                                           &fs_info->chunk_block_rsv,
4608                                           thresh, BTRFS_RESERVE_NO_FLUSH);
4609                 if (!ret)
4610                         trans->chunk_bytes_reserved += thresh;
4611         }
4612 }
4613
4614 /*
4615  * If force is CHUNK_ALLOC_FORCE:
4616  *    - return 1 if it successfully allocates a chunk,
4617  *    - return errors including -ENOSPC otherwise.
4618  * If force is NOT CHUNK_ALLOC_FORCE:
4619  *    - return 0 if it doesn't need to allocate a new chunk,
4620  *    - return 1 if it successfully allocates a chunk,
4621  *    - return errors including -ENOSPC otherwise.
4622  */
4623 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
4624                           struct btrfs_fs_info *fs_info, u64 flags, int force)
4625 {
4626         struct btrfs_space_info *space_info;
4627         int wait_for_alloc = 0;
4628         int ret = 0;
4629
4630         /* Don't re-enter if we're already allocating a chunk */
4631         if (trans->allocating_chunk)
4632                 return -ENOSPC;
4633
4634         space_info = __find_space_info(fs_info, flags);
4635         if (!space_info) {
4636                 ret = create_space_info(fs_info, flags, &space_info);
4637                 if (ret)
4638                         return ret;
4639         }
4640
4641 again:
4642         spin_lock(&space_info->lock);
4643         if (force < space_info->force_alloc)
4644                 force = space_info->force_alloc;
4645         if (space_info->full) {
4646                 if (should_alloc_chunk(fs_info, space_info, force))
4647                         ret = -ENOSPC;
4648                 else
4649                         ret = 0;
4650                 spin_unlock(&space_info->lock);
4651                 return ret;
4652         }
4653
4654         if (!should_alloc_chunk(fs_info, space_info, force)) {
4655                 spin_unlock(&space_info->lock);
4656                 return 0;
4657         } else if (space_info->chunk_alloc) {
4658                 wait_for_alloc = 1;
4659         } else {
4660                 space_info->chunk_alloc = 1;
4661         }
4662
4663         spin_unlock(&space_info->lock);
4664
4665         mutex_lock(&fs_info->chunk_mutex);
4666
4667         /*
4668          * The chunk_mutex is held throughout the entirety of a chunk
4669          * allocation, so once we've acquired the chunk_mutex we know that the
4670          * other guy is done and we need to recheck and see if we should
4671          * allocate.
4672          */
4673         if (wait_for_alloc) {
4674                 mutex_unlock(&fs_info->chunk_mutex);
4675                 wait_for_alloc = 0;
4676                 cond_resched();
4677                 goto again;
4678         }
4679
4680         trans->allocating_chunk = true;
4681
4682         /*
4683          * If we have mixed data/metadata chunks we want to make sure we keep
4684          * allocating mixed chunks instead of individual chunks.
4685          */
4686         if (btrfs_mixed_space_info(space_info))
4687                 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
4688
4689         /*
4690          * if we're doing a data chunk, go ahead and make sure that
4691          * we keep a reasonable number of metadata chunks allocated in the
4692          * FS as well.
4693          */
4694         if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
4695                 fs_info->data_chunk_allocations++;
4696                 if (!(fs_info->data_chunk_allocations %
4697                       fs_info->metadata_ratio))
4698                         force_metadata_allocation(fs_info);
4699         }
4700
4701         /*
4702          * Check if we have enough space in SYSTEM chunk because we may need
4703          * to update devices.
4704          */
4705         check_system_chunk(trans, fs_info, flags);
4706
4707         ret = btrfs_alloc_chunk(trans, fs_info, flags);
4708         trans->allocating_chunk = false;
4709
4710         spin_lock(&space_info->lock);
4711         if (ret < 0 && ret != -ENOSPC)
4712                 goto out;
4713         if (ret)
4714                 space_info->full = 1;
4715         else
4716                 ret = 1;
4717
4718         space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
4719 out:
4720         space_info->chunk_alloc = 0;
4721         spin_unlock(&space_info->lock);
4722         mutex_unlock(&fs_info->chunk_mutex);
4723         /*
4724          * When we allocate a new chunk we reserve space in the chunk block
4725          * reserve to make sure we can COW nodes/leafs in the chunk tree or
4726          * add new nodes/leafs to it if we end up needing to do it when
4727          * inserting the chunk item and updating device items as part of the
4728          * second phase of chunk allocation, performed by
4729          * btrfs_finish_chunk_alloc(). So make sure we don't accumulate a
4730          * large number of new block groups to create in our transaction
4731          * handle's new_bgs list to avoid exhausting the chunk block reserve
4732          * in extreme cases - like having a single transaction create many new
4733          * block groups when starting to write out the free space caches of all
4734          * the block groups that were made dirty during the lifetime of the
4735          * transaction.
4736          */
4737         if (trans->can_flush_pending_bgs &&
4738             trans->chunk_bytes_reserved >= (u64)SZ_2M) {
4739                 btrfs_create_pending_block_groups(trans, fs_info);
4740                 btrfs_trans_release_chunk_metadata(trans);
4741         }
4742         return ret;
4743 }
4744
4745 static int can_overcommit(struct btrfs_fs_info *fs_info,
4746                           struct btrfs_space_info *space_info, u64 bytes,
4747                           enum btrfs_reserve_flush_enum flush,
4748                           bool system_chunk)
4749 {
4750         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
4751         u64 profile;
4752         u64 space_size;
4753         u64 avail;
4754         u64 used;
4755
4756         /* Don't overcommit when in mixed mode. */
4757         if (space_info->flags & BTRFS_BLOCK_GROUP_DATA)
4758                 return 0;
4759
4760         if (system_chunk)
4761                 profile = btrfs_system_alloc_profile(fs_info);
4762         else
4763                 profile = btrfs_metadata_alloc_profile(fs_info);
4764
4765         used = btrfs_space_info_used(space_info, false);
4766
4767         /*
4768          * We only want to allow over committing if we have lots of actual space
4769          * free, but if we don't have enough space to handle the global reserve
4770          * space then we could end up having a real enospc problem when trying
4771          * to allocate a chunk or some other such important allocation.
4772          */
4773         spin_lock(&global_rsv->lock);
4774         space_size = calc_global_rsv_need_space(global_rsv);
4775         spin_unlock(&global_rsv->lock);
4776         if (used + space_size >= space_info->total_bytes)
4777                 return 0;
4778
4779         used += space_info->bytes_may_use;
4780
4781         avail = atomic64_read(&fs_info->free_chunk_space);
4782
4783         /*
4784          * If we have dup, raid1 or raid10 then only half of the free
4785          * space is actually useable.  For raid56, the space info used
4786          * doesn't include the parity drive, so we don't have to
4787          * change the math
4788          */
4789         if (profile & (BTRFS_BLOCK_GROUP_DUP |
4790                        BTRFS_BLOCK_GROUP_RAID1 |
4791                        BTRFS_BLOCK_GROUP_RAID10))
4792                 avail >>= 1;
4793
4794         /*
4795          * If we aren't flushing all things, let us overcommit up to
4796          * 1/2th of the space. If we can flush, don't let us overcommit
4797          * too much, let it overcommit up to 1/8 of the space.
4798          */
4799         if (flush == BTRFS_RESERVE_FLUSH_ALL)
4800                 avail >>= 3;
4801         else
4802                 avail >>= 1;
4803
4804         if (used + bytes < space_info->total_bytes + avail)
4805                 return 1;
4806         return 0;
4807 }
4808
4809 static void btrfs_writeback_inodes_sb_nr(struct btrfs_fs_info *fs_info,
4810                                          unsigned long nr_pages, int nr_items)
4811 {
4812         struct super_block *sb = fs_info->sb;
4813
4814         if (down_read_trylock(&sb->s_umount)) {
4815                 writeback_inodes_sb_nr(sb, nr_pages, WB_REASON_FS_FREE_SPACE);
4816                 up_read(&sb->s_umount);
4817         } else {
4818                 /*
4819                  * We needn't worry the filesystem going from r/w to r/o though
4820                  * we don't acquire ->s_umount mutex, because the filesystem
4821                  * should guarantee the delalloc inodes list be empty after
4822                  * the filesystem is readonly(all dirty pages are written to
4823                  * the disk).
4824                  */
4825                 btrfs_start_delalloc_roots(fs_info, 0, nr_items);
4826                 if (!current->journal_info)
4827                         btrfs_wait_ordered_roots(fs_info, nr_items, 0, (u64)-1);
4828         }
4829 }
4830
4831 static inline u64 calc_reclaim_items_nr(struct btrfs_fs_info *fs_info,
4832                                         u64 to_reclaim)
4833 {
4834         u64 bytes;
4835         u64 nr;
4836
4837         bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
4838         nr = div64_u64(to_reclaim, bytes);
4839         if (!nr)
4840                 nr = 1;
4841         return nr;
4842 }
4843
4844 #define EXTENT_SIZE_PER_ITEM    SZ_256K
4845
4846 /*
4847  * shrink metadata reservation for delalloc
4848  */
4849 static void shrink_delalloc(struct btrfs_fs_info *fs_info, u64 to_reclaim,
4850                             u64 orig, bool wait_ordered)
4851 {
4852         struct btrfs_block_rsv *block_rsv;
4853         struct btrfs_space_info *space_info;
4854         struct btrfs_trans_handle *trans;
4855         u64 delalloc_bytes;
4856         u64 max_reclaim;
4857         u64 items;
4858         long time_left;
4859         unsigned long nr_pages;
4860         int loops;
4861         enum btrfs_reserve_flush_enum flush;
4862
4863         /* Calc the number of the pages we need flush for space reservation */
4864         items = calc_reclaim_items_nr(fs_info, to_reclaim);
4865         to_reclaim = items * EXTENT_SIZE_PER_ITEM;
4866
4867         trans = (struct btrfs_trans_handle *)current->journal_info;
4868         block_rsv = &fs_info->delalloc_block_rsv;
4869         space_info = block_rsv->space_info;
4870
4871         delalloc_bytes = percpu_counter_sum_positive(
4872                                                 &fs_info->delalloc_bytes);
4873         if (delalloc_bytes == 0) {
4874                 if (trans)
4875                         return;
4876                 if (wait_ordered)
4877                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4878                 return;
4879         }
4880
4881         loops = 0;
4882         while (delalloc_bytes && loops < 3) {
4883                 max_reclaim = min(delalloc_bytes, to_reclaim);
4884                 nr_pages = max_reclaim >> PAGE_SHIFT;
4885                 btrfs_writeback_inodes_sb_nr(fs_info, nr_pages, items);
4886                 /*
4887                  * We need to wait for the async pages to actually start before
4888                  * we do anything.
4889                  */
4890                 max_reclaim = atomic_read(&fs_info->async_delalloc_pages);
4891                 if (!max_reclaim)
4892                         goto skip_async;
4893
4894                 if (max_reclaim <= nr_pages)
4895                         max_reclaim = 0;
4896                 else
4897                         max_reclaim -= nr_pages;
4898
4899                 wait_event(fs_info->async_submit_wait,
4900                            atomic_read(&fs_info->async_delalloc_pages) <=
4901                            (int)max_reclaim);
4902 skip_async:
4903                 if (!trans)
4904                         flush = BTRFS_RESERVE_FLUSH_ALL;
4905                 else
4906                         flush = BTRFS_RESERVE_NO_FLUSH;
4907                 spin_lock(&space_info->lock);
4908                 if (list_empty(&space_info->tickets) &&
4909                     list_empty(&space_info->priority_tickets)) {
4910                         spin_unlock(&space_info->lock);
4911                         break;
4912                 }
4913                 spin_unlock(&space_info->lock);
4914
4915                 loops++;
4916                 if (wait_ordered && !trans) {
4917                         btrfs_wait_ordered_roots(fs_info, items, 0, (u64)-1);
4918                 } else {
4919                         time_left = schedule_timeout_killable(1);
4920                         if (time_left)
4921                                 break;
4922                 }
4923                 delalloc_bytes = percpu_counter_sum_positive(
4924                                                 &fs_info->delalloc_bytes);
4925         }
4926 }
4927
4928 struct reserve_ticket {
4929         u64 bytes;
4930         int error;
4931         struct list_head list;
4932         wait_queue_head_t wait;
4933 };
4934
4935 /**
4936  * maybe_commit_transaction - possibly commit the transaction if its ok to
4937  * @root - the root we're allocating for
4938  * @bytes - the number of bytes we want to reserve
4939  * @force - force the commit
4940  *
4941  * This will check to make sure that committing the transaction will actually
4942  * get us somewhere and then commit the transaction if it does.  Otherwise it
4943  * will return -ENOSPC.
4944  */
4945 static int may_commit_transaction(struct btrfs_fs_info *fs_info,
4946                                   struct btrfs_space_info *space_info)
4947 {
4948         struct reserve_ticket *ticket = NULL;
4949         struct btrfs_block_rsv *delayed_rsv = &fs_info->delayed_block_rsv;
4950         struct btrfs_trans_handle *trans;
4951         u64 bytes;
4952
4953         trans = (struct btrfs_trans_handle *)current->journal_info;
4954         if (trans)
4955                 return -EAGAIN;
4956
4957         spin_lock(&space_info->lock);
4958         if (!list_empty(&space_info->priority_tickets))
4959                 ticket = list_first_entry(&space_info->priority_tickets,
4960                                           struct reserve_ticket, list);
4961         else if (!list_empty(&space_info->tickets))
4962                 ticket = list_first_entry(&space_info->tickets,
4963                                           struct reserve_ticket, list);
4964         bytes = (ticket) ? ticket->bytes : 0;
4965         spin_unlock(&space_info->lock);
4966
4967         if (!bytes)
4968                 return 0;
4969
4970         /* See if there is enough pinned space to make this reservation */
4971         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4972                                    bytes) >= 0)
4973                 goto commit;
4974
4975         /*
4976          * See if there is some space in the delayed insertion reservation for
4977          * this reservation.
4978          */
4979         if (space_info != delayed_rsv->space_info)
4980                 return -ENOSPC;
4981
4982         spin_lock(&delayed_rsv->lock);
4983         if (delayed_rsv->size > bytes)
4984                 bytes = 0;
4985         else
4986                 bytes -= delayed_rsv->size;
4987         if (percpu_counter_compare(&space_info->total_bytes_pinned,
4988                                    bytes) < 0) {
4989                 spin_unlock(&delayed_rsv->lock);
4990                 return -ENOSPC;
4991         }
4992         spin_unlock(&delayed_rsv->lock);
4993
4994 commit:
4995         trans = btrfs_join_transaction(fs_info->extent_root);
4996         if (IS_ERR(trans))
4997                 return -ENOSPC;
4998
4999         return btrfs_commit_transaction(trans);
5000 }
5001
5002 /*
5003  * Try to flush some data based on policy set by @state. This is only advisory
5004  * and may fail for various reasons. The caller is supposed to examine the
5005  * state of @space_info to detect the outcome.
5006  */
5007 static void flush_space(struct btrfs_fs_info *fs_info,
5008                        struct btrfs_space_info *space_info, u64 num_bytes,
5009                        int state)
5010 {
5011         struct btrfs_root *root = fs_info->extent_root;
5012         struct btrfs_trans_handle *trans;
5013         int nr;
5014         int ret = 0;
5015
5016         switch (state) {
5017         case FLUSH_DELAYED_ITEMS_NR:
5018         case FLUSH_DELAYED_ITEMS:
5019                 if (state == FLUSH_DELAYED_ITEMS_NR)
5020                         nr = calc_reclaim_items_nr(fs_info, num_bytes) * 2;
5021                 else
5022                         nr = -1;
5023
5024                 trans = btrfs_join_transaction(root);
5025                 if (IS_ERR(trans)) {
5026                         ret = PTR_ERR(trans);
5027                         break;
5028                 }
5029                 ret = btrfs_run_delayed_items_nr(trans, fs_info, nr);
5030                 btrfs_end_transaction(trans);
5031                 break;
5032         case FLUSH_DELALLOC:
5033         case FLUSH_DELALLOC_WAIT:
5034                 shrink_delalloc(fs_info, num_bytes * 2, num_bytes,
5035                                 state == FLUSH_DELALLOC_WAIT);
5036                 break;
5037         case ALLOC_CHUNK:
5038                 trans = btrfs_join_transaction(root);
5039                 if (IS_ERR(trans)) {
5040                         ret = PTR_ERR(trans);
5041                         break;
5042                 }
5043                 ret = do_chunk_alloc(trans, fs_info,
5044                                      btrfs_metadata_alloc_profile(fs_info),
5045                                      CHUNK_ALLOC_NO_FORCE);
5046                 btrfs_end_transaction(trans);
5047                 if (ret > 0 || ret == -ENOSPC)
5048                         ret = 0;
5049                 break;
5050         case COMMIT_TRANS:
5051                 ret = may_commit_transaction(fs_info, space_info);
5052                 break;
5053         default:
5054                 ret = -ENOSPC;
5055                 break;
5056         }
5057
5058         trace_btrfs_flush_space(fs_info, space_info->flags, num_bytes, state,
5059                                 ret);
5060         return;
5061 }
5062
5063 static inline u64
5064 btrfs_calc_reclaim_metadata_size(struct btrfs_fs_info *fs_info,
5065                                  struct btrfs_space_info *space_info,
5066                                  bool system_chunk)
5067 {
5068         struct reserve_ticket *ticket;
5069         u64 used;
5070         u64 expected;
5071         u64 to_reclaim = 0;
5072
5073         list_for_each_entry(ticket, &space_info->tickets, list)
5074                 to_reclaim += ticket->bytes;
5075         list_for_each_entry(ticket, &space_info->priority_tickets, list)
5076                 to_reclaim += ticket->bytes;
5077         if (to_reclaim)
5078                 return to_reclaim;
5079
5080         to_reclaim = min_t(u64, num_online_cpus() * SZ_1M, SZ_16M);
5081         if (can_overcommit(fs_info, space_info, to_reclaim,
5082                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5083                 return 0;
5084
5085         used = btrfs_space_info_used(space_info, true);
5086
5087         if (can_overcommit(fs_info, space_info, SZ_1M,
5088                            BTRFS_RESERVE_FLUSH_ALL, system_chunk))
5089                 expected = div_factor_fine(space_info->total_bytes, 95);
5090         else
5091                 expected = div_factor_fine(space_info->total_bytes, 90);
5092
5093         if (used > expected)
5094                 to_reclaim = used - expected;
5095         else
5096                 to_reclaim = 0;
5097         to_reclaim = min(to_reclaim, space_info->bytes_may_use +
5098                                      space_info->bytes_reserved);
5099         return to_reclaim;
5100 }
5101
5102 static inline int need_do_async_reclaim(struct btrfs_fs_info *fs_info,
5103                                         struct btrfs_space_info *space_info,
5104                                         u64 used, bool system_chunk)
5105 {
5106         u64 thresh = div_factor_fine(space_info->total_bytes, 98);
5107
5108         /* If we're just plain full then async reclaim just slows us down. */
5109         if ((space_info->bytes_used + space_info->bytes_reserved) >= thresh)
5110                 return 0;
5111
5112         if (!btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5113                                               system_chunk))
5114                 return 0;
5115
5116         return (used >= thresh && !btrfs_fs_closing(fs_info) &&
5117                 !test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state));
5118 }
5119
5120 static void wake_all_tickets(struct list_head *head)
5121 {
5122         struct reserve_ticket *ticket;
5123
5124         while (!list_empty(head)) {
5125                 ticket = list_first_entry(head, struct reserve_ticket, list);
5126                 list_del_init(&ticket->list);
5127                 ticket->error = -ENOSPC;
5128                 wake_up(&ticket->wait);
5129         }
5130 }
5131
5132 /*
5133  * This is for normal flushers, we can wait all goddamned day if we want to.  We
5134  * will loop and continuously try to flush as long as we are making progress.
5135  * We count progress as clearing off tickets each time we have to loop.
5136  */
5137 static void btrfs_async_reclaim_metadata_space(struct work_struct *work)
5138 {
5139         struct btrfs_fs_info *fs_info;
5140         struct btrfs_space_info *space_info;
5141         u64 to_reclaim;
5142         int flush_state;
5143         int commit_cycles = 0;
5144         u64 last_tickets_id;
5145
5146         fs_info = container_of(work, struct btrfs_fs_info, async_reclaim_work);
5147         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5148
5149         spin_lock(&space_info->lock);
5150         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5151                                                       false);
5152         if (!to_reclaim) {
5153                 space_info->flush = 0;
5154                 spin_unlock(&space_info->lock);
5155                 return;
5156         }
5157         last_tickets_id = space_info->tickets_id;
5158         spin_unlock(&space_info->lock);
5159
5160         flush_state = FLUSH_DELAYED_ITEMS_NR;
5161         do {
5162                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5163                 spin_lock(&space_info->lock);
5164                 if (list_empty(&space_info->tickets)) {
5165                         space_info->flush = 0;
5166                         spin_unlock(&space_info->lock);
5167                         return;
5168                 }
5169                 to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info,
5170                                                               space_info,
5171                                                               false);
5172                 if (last_tickets_id == space_info->tickets_id) {
5173                         flush_state++;
5174                 } else {
5175                         last_tickets_id = space_info->tickets_id;
5176                         flush_state = FLUSH_DELAYED_ITEMS_NR;
5177                         if (commit_cycles)
5178                                 commit_cycles--;
5179                 }
5180
5181                 if (flush_state > COMMIT_TRANS) {
5182                         commit_cycles++;
5183                         if (commit_cycles > 2) {
5184                                 wake_all_tickets(&space_info->tickets);
5185                                 space_info->flush = 0;
5186                         } else {
5187                                 flush_state = FLUSH_DELAYED_ITEMS_NR;
5188                         }
5189                 }
5190                 spin_unlock(&space_info->lock);
5191         } while (flush_state <= COMMIT_TRANS);
5192 }
5193
5194 void btrfs_init_async_reclaim_work(struct work_struct *work)
5195 {
5196         INIT_WORK(work, btrfs_async_reclaim_metadata_space);
5197 }
5198
5199 static void priority_reclaim_metadata_space(struct btrfs_fs_info *fs_info,
5200                                             struct btrfs_space_info *space_info,
5201                                             struct reserve_ticket *ticket)
5202 {
5203         u64 to_reclaim;
5204         int flush_state = FLUSH_DELAYED_ITEMS_NR;
5205
5206         spin_lock(&space_info->lock);
5207         to_reclaim = btrfs_calc_reclaim_metadata_size(fs_info, space_info,
5208                                                       false);
5209         if (!to_reclaim) {
5210                 spin_unlock(&space_info->lock);
5211                 return;
5212         }
5213         spin_unlock(&space_info->lock);
5214
5215         do {
5216                 flush_space(fs_info, space_info, to_reclaim, flush_state);
5217                 flush_state++;
5218                 spin_lock(&space_info->lock);
5219                 if (ticket->bytes == 0) {
5220                         spin_unlock(&space_info->lock);
5221                         return;
5222                 }
5223                 spin_unlock(&space_info->lock);
5224
5225                 /*
5226                  * Priority flushers can't wait on delalloc without
5227                  * deadlocking.
5228                  */
5229                 if (flush_state == FLUSH_DELALLOC ||
5230                     flush_state == FLUSH_DELALLOC_WAIT)
5231                         flush_state = ALLOC_CHUNK;
5232         } while (flush_state < COMMIT_TRANS);
5233 }
5234
5235 static int wait_reserve_ticket(struct btrfs_fs_info *fs_info,
5236                                struct btrfs_space_info *space_info,
5237                                struct reserve_ticket *ticket, u64 orig_bytes)
5238
5239 {
5240         DEFINE_WAIT(wait);
5241         int ret = 0;
5242
5243         spin_lock(&space_info->lock);
5244         while (ticket->bytes > 0 && ticket->error == 0) {
5245                 ret = prepare_to_wait_event(&ticket->wait, &wait, TASK_KILLABLE);
5246                 if (ret) {
5247                         ret = -EINTR;
5248                         break;
5249                 }
5250                 spin_unlock(&space_info->lock);
5251
5252                 schedule();
5253
5254                 finish_wait(&ticket->wait, &wait);
5255                 spin_lock(&space_info->lock);
5256         }
5257         if (!ret)
5258                 ret = ticket->error;
5259         if (!list_empty(&ticket->list))
5260                 list_del_init(&ticket->list);
5261         if (ticket->bytes && ticket->bytes < orig_bytes) {
5262                 u64 num_bytes = orig_bytes - ticket->bytes;
5263                 space_info->bytes_may_use -= num_bytes;
5264                 trace_btrfs_space_reservation(fs_info, "space_info",
5265                                               space_info->flags, num_bytes, 0);
5266         }
5267         spin_unlock(&space_info->lock);
5268
5269         return ret;
5270 }
5271
5272 /**
5273  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5274  * @root - the root we're allocating for
5275  * @space_info - the space info we want to allocate from
5276  * @orig_bytes - the number of bytes we want
5277  * @flush - whether or not we can flush to make our reservation
5278  *
5279  * This will reserve orig_bytes number of bytes from the space info associated
5280  * with the block_rsv.  If there is not enough space it will make an attempt to
5281  * flush out space to make room.  It will do this by flushing delalloc if
5282  * possible or committing the transaction.  If flush is 0 then no attempts to
5283  * regain reservations will be made and this will fail if there is not enough
5284  * space already.
5285  */
5286 static int __reserve_metadata_bytes(struct btrfs_fs_info *fs_info,
5287                                     struct btrfs_space_info *space_info,
5288                                     u64 orig_bytes,
5289                                     enum btrfs_reserve_flush_enum flush,
5290                                     bool system_chunk)
5291 {
5292         struct reserve_ticket ticket;
5293         u64 used;
5294         int ret = 0;
5295
5296         ASSERT(orig_bytes);
5297         ASSERT(!current->journal_info || flush != BTRFS_RESERVE_FLUSH_ALL);
5298
5299         spin_lock(&space_info->lock);
5300         ret = -ENOSPC;
5301         used = btrfs_space_info_used(space_info, true);
5302
5303         /*
5304          * If we have enough space then hooray, make our reservation and carry
5305          * on.  If not see if we can overcommit, and if we can, hooray carry on.
5306          * If not things get more complicated.
5307          */
5308         if (used + orig_bytes <= space_info->total_bytes) {
5309                 space_info->bytes_may_use += orig_bytes;
5310                 trace_btrfs_space_reservation(fs_info, "space_info",
5311                                               space_info->flags, orig_bytes, 1);
5312                 ret = 0;
5313         } else if (can_overcommit(fs_info, space_info, orig_bytes, flush,
5314                                   system_chunk)) {
5315                 space_info->bytes_may_use += orig_bytes;
5316                 trace_btrfs_space_reservation(fs_info, "space_info",
5317                                               space_info->flags, orig_bytes, 1);
5318                 ret = 0;
5319         }
5320
5321         /*
5322          * If we couldn't make a reservation then setup our reservation ticket
5323          * and kick the async worker if it's not already running.
5324          *
5325          * If we are a priority flusher then we just need to add our ticket to
5326          * the list and we will do our own flushing further down.
5327          */
5328         if (ret && flush != BTRFS_RESERVE_NO_FLUSH) {
5329                 ticket.bytes = orig_bytes;
5330                 ticket.error = 0;
5331                 init_waitqueue_head(&ticket.wait);
5332                 if (flush == BTRFS_RESERVE_FLUSH_ALL) {
5333                         list_add_tail(&ticket.list, &space_info->tickets);
5334                         if (!space_info->flush) {
5335                                 space_info->flush = 1;
5336                                 trace_btrfs_trigger_flush(fs_info,
5337                                                           space_info->flags,
5338                                                           orig_bytes, flush,
5339                                                           "enospc");
5340                                 queue_work(system_unbound_wq,
5341                                            &fs_info->async_reclaim_work);
5342                         }
5343                 } else {
5344                         list_add_tail(&ticket.list,
5345                                       &space_info->priority_tickets);
5346                 }
5347         } else if (!ret && space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
5348                 used += orig_bytes;
5349                 /*
5350                  * We will do the space reservation dance during log replay,
5351                  * which means we won't have fs_info->fs_root set, so don't do
5352                  * the async reclaim as we will panic.
5353                  */
5354                 if (!test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags) &&
5355                     need_do_async_reclaim(fs_info, space_info,
5356                                           used, system_chunk) &&
5357                     !work_busy(&fs_info->async_reclaim_work)) {
5358                         trace_btrfs_trigger_flush(fs_info, space_info->flags,
5359                                                   orig_bytes, flush, "preempt");
5360                         queue_work(system_unbound_wq,
5361                                    &fs_info->async_reclaim_work);
5362                 }
5363         }
5364         spin_unlock(&space_info->lock);
5365         if (!ret || flush == BTRFS_RESERVE_NO_FLUSH)
5366                 return ret;
5367
5368         if (flush == BTRFS_RESERVE_FLUSH_ALL)
5369                 return wait_reserve_ticket(fs_info, space_info, &ticket,
5370                                            orig_bytes);
5371
5372         ret = 0;
5373         priority_reclaim_metadata_space(fs_info, space_info, &ticket);
5374         spin_lock(&space_info->lock);
5375         if (ticket.bytes) {
5376                 if (ticket.bytes < orig_bytes) {
5377                         u64 num_bytes = orig_bytes - ticket.bytes;
5378                         space_info->bytes_may_use -= num_bytes;
5379                         trace_btrfs_space_reservation(fs_info, "space_info",
5380                                                       space_info->flags,
5381                                                       num_bytes, 0);
5382
5383                 }
5384                 list_del_init(&ticket.list);
5385                 ret = -ENOSPC;
5386         }
5387         spin_unlock(&space_info->lock);
5388         ASSERT(list_empty(&ticket.list));
5389         return ret;
5390 }
5391
5392 /**
5393  * reserve_metadata_bytes - try to reserve bytes from the block_rsv's space
5394  * @root - the root we're allocating for
5395  * @block_rsv - the block_rsv we're allocating for
5396  * @orig_bytes - the number of bytes we want
5397  * @flush - whether or not we can flush to make our reservation
5398  *
5399  * This will reserve orgi_bytes number of bytes from the space info associated
5400  * with the block_rsv.  If there is not enough space it will make an attempt to
5401  * flush out space to make room.  It will do this by flushing delalloc if
5402  * possible or committing the transaction.  If flush is 0 then no attempts to
5403  * regain reservations will be made and this will fail if there is not enough
5404  * space already.
5405  */
5406 static int reserve_metadata_bytes(struct btrfs_root *root,
5407                                   struct btrfs_block_rsv *block_rsv,
5408                                   u64 orig_bytes,
5409                                   enum btrfs_reserve_flush_enum flush)
5410 {
5411         struct btrfs_fs_info *fs_info = root->fs_info;
5412         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5413         int ret;
5414         bool system_chunk = (root == fs_info->chunk_root);
5415
5416         ret = __reserve_metadata_bytes(fs_info, block_rsv->space_info,
5417                                        orig_bytes, flush, system_chunk);
5418         if (ret == -ENOSPC &&
5419             unlikely(root->orphan_cleanup_state == ORPHAN_CLEANUP_STARTED)) {
5420                 if (block_rsv != global_rsv &&
5421                     !block_rsv_use_bytes(global_rsv, orig_bytes))
5422                         ret = 0;
5423         }
5424         if (ret == -ENOSPC)
5425                 trace_btrfs_space_reservation(fs_info, "space_info:enospc",
5426                                               block_rsv->space_info->flags,
5427                                               orig_bytes, 1);
5428         return ret;
5429 }
5430
5431 static struct btrfs_block_rsv *get_block_rsv(
5432                                         const struct btrfs_trans_handle *trans,
5433                                         const struct btrfs_root *root)
5434 {
5435         struct btrfs_fs_info *fs_info = root->fs_info;
5436         struct btrfs_block_rsv *block_rsv = NULL;
5437
5438         if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
5439             (root == fs_info->csum_root && trans->adding_csums) ||
5440             (root == fs_info->uuid_root))
5441                 block_rsv = trans->block_rsv;
5442
5443         if (!block_rsv)
5444                 block_rsv = root->block_rsv;
5445
5446         if (!block_rsv)
5447                 block_rsv = &fs_info->empty_block_rsv;
5448
5449         return block_rsv;
5450 }
5451
5452 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
5453                                u64 num_bytes)
5454 {
5455         int ret = -ENOSPC;
5456         spin_lock(&block_rsv->lock);
5457         if (block_rsv->reserved >= num_bytes) {
5458                 block_rsv->reserved -= num_bytes;
5459                 if (block_rsv->reserved < block_rsv->size)
5460                         block_rsv->full = 0;
5461                 ret = 0;
5462         }
5463         spin_unlock(&block_rsv->lock);
5464         return ret;
5465 }
5466
5467 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
5468                                 u64 num_bytes, int update_size)
5469 {
5470         spin_lock(&block_rsv->lock);
5471         block_rsv->reserved += num_bytes;
5472         if (update_size)
5473                 block_rsv->size += num_bytes;
5474         else if (block_rsv->reserved >= block_rsv->size)
5475                 block_rsv->full = 1;
5476         spin_unlock(&block_rsv->lock);
5477 }
5478
5479 int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
5480                              struct btrfs_block_rsv *dest, u64 num_bytes,
5481                              int min_factor)
5482 {
5483         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5484         u64 min_bytes;
5485
5486         if (global_rsv->space_info != dest->space_info)
5487                 return -ENOSPC;
5488
5489         spin_lock(&global_rsv->lock);
5490         min_bytes = div_factor(global_rsv->size, min_factor);
5491         if (global_rsv->reserved < min_bytes + num_bytes) {
5492                 spin_unlock(&global_rsv->lock);
5493                 return -ENOSPC;
5494         }
5495         global_rsv->reserved -= num_bytes;
5496         if (global_rsv->reserved < global_rsv->size)
5497                 global_rsv->full = 0;
5498         spin_unlock(&global_rsv->lock);
5499
5500         block_rsv_add_bytes(dest, num_bytes, 1);
5501         return 0;
5502 }
5503
5504 /*
5505  * This is for space we already have accounted in space_info->bytes_may_use, so
5506  * basically when we're returning space from block_rsv's.
5507  */
5508 static void space_info_add_old_bytes(struct btrfs_fs_info *fs_info,
5509                                      struct btrfs_space_info *space_info,
5510                                      u64 num_bytes)
5511 {
5512         struct reserve_ticket *ticket;
5513         struct list_head *head;
5514         u64 used;
5515         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_NO_FLUSH;
5516         bool check_overcommit = false;
5517
5518         spin_lock(&space_info->lock);
5519         head = &space_info->priority_tickets;
5520
5521         /*
5522          * If we are over our limit then we need to check and see if we can
5523          * overcommit, and if we can't then we just need to free up our space
5524          * and not satisfy any requests.
5525          */
5526         used = btrfs_space_info_used(space_info, true);
5527         if (used - num_bytes >= space_info->total_bytes)
5528                 check_overcommit = true;
5529 again:
5530         while (!list_empty(head) && num_bytes) {
5531                 ticket = list_first_entry(head, struct reserve_ticket,
5532                                           list);
5533                 /*
5534                  * We use 0 bytes because this space is already reserved, so
5535                  * adding the ticket space would be a double count.
5536                  */
5537                 if (check_overcommit &&
5538                     !can_overcommit(fs_info, space_info, 0, flush, false))
5539                         break;
5540                 if (num_bytes >= ticket->bytes) {
5541                         list_del_init(&ticket->list);
5542                         num_bytes -= ticket->bytes;
5543                         ticket->bytes = 0;
5544                         space_info->tickets_id++;
5545                         wake_up(&ticket->wait);
5546                 } else {
5547                         ticket->bytes -= num_bytes;
5548                         num_bytes = 0;
5549                 }
5550         }
5551
5552         if (num_bytes && head == &space_info->priority_tickets) {
5553                 head = &space_info->tickets;
5554                 flush = BTRFS_RESERVE_FLUSH_ALL;
5555                 goto again;
5556         }
5557         space_info->bytes_may_use -= num_bytes;
5558         trace_btrfs_space_reservation(fs_info, "space_info",
5559                                       space_info->flags, num_bytes, 0);
5560         spin_unlock(&space_info->lock);
5561 }
5562
5563 /*
5564  * This is for newly allocated space that isn't accounted in
5565  * space_info->bytes_may_use yet.  So if we allocate a chunk or unpin an extent
5566  * we use this helper.
5567  */
5568 static void space_info_add_new_bytes(struct btrfs_fs_info *fs_info,
5569                                      struct btrfs_space_info *space_info,
5570                                      u64 num_bytes)
5571 {
5572         struct reserve_ticket *ticket;
5573         struct list_head *head = &space_info->priority_tickets;
5574
5575 again:
5576         while (!list_empty(head) && num_bytes) {
5577                 ticket = list_first_entry(head, struct reserve_ticket,
5578                                           list);
5579                 if (num_bytes >= ticket->bytes) {
5580                         trace_btrfs_space_reservation(fs_info, "space_info",
5581                                                       space_info->flags,
5582                                                       ticket->bytes, 1);
5583                         list_del_init(&ticket->list);
5584                         num_bytes -= ticket->bytes;
5585                         space_info->bytes_may_use += ticket->bytes;
5586                         ticket->bytes = 0;
5587                         space_info->tickets_id++;
5588                         wake_up(&ticket->wait);
5589                 } else {
5590                         trace_btrfs_space_reservation(fs_info, "space_info",
5591                                                       space_info->flags,
5592                                                       num_bytes, 1);
5593                         space_info->bytes_may_use += num_bytes;
5594                         ticket->bytes -= num_bytes;
5595                         num_bytes = 0;
5596                 }
5597         }
5598
5599         if (num_bytes && head == &space_info->priority_tickets) {
5600                 head = &space_info->tickets;
5601                 goto again;
5602         }
5603 }
5604
5605 static void block_rsv_release_bytes(struct btrfs_fs_info *fs_info,
5606                                     struct btrfs_block_rsv *block_rsv,
5607                                     struct btrfs_block_rsv *dest, u64 num_bytes)
5608 {
5609         struct btrfs_space_info *space_info = block_rsv->space_info;
5610
5611         spin_lock(&block_rsv->lock);
5612         if (num_bytes == (u64)-1)
5613                 num_bytes = block_rsv->size;
5614         block_rsv->size -= num_bytes;
5615         if (block_rsv->reserved >= block_rsv->size) {
5616                 num_bytes = block_rsv->reserved - block_rsv->size;
5617                 block_rsv->reserved = block_rsv->size;
5618                 block_rsv->full = 1;
5619         } else {
5620                 num_bytes = 0;
5621         }
5622         spin_unlock(&block_rsv->lock);
5623
5624         if (num_bytes > 0) {
5625                 if (dest) {
5626                         spin_lock(&dest->lock);
5627                         if (!dest->full) {
5628                                 u64 bytes_to_add;
5629
5630                                 bytes_to_add = dest->size - dest->reserved;
5631                                 bytes_to_add = min(num_bytes, bytes_to_add);
5632                                 dest->reserved += bytes_to_add;
5633                                 if (dest->reserved >= dest->size)
5634                                         dest->full = 1;
5635                                 num_bytes -= bytes_to_add;
5636                         }
5637                         spin_unlock(&dest->lock);
5638                 }
5639                 if (num_bytes)
5640                         space_info_add_old_bytes(fs_info, space_info,
5641                                                  num_bytes);
5642         }
5643 }
5644
5645 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src,
5646                             struct btrfs_block_rsv *dst, u64 num_bytes,
5647                             int update_size)
5648 {
5649         int ret;
5650
5651         ret = block_rsv_use_bytes(src, num_bytes);
5652         if (ret)
5653                 return ret;
5654
5655         block_rsv_add_bytes(dst, num_bytes, update_size);
5656         return 0;
5657 }
5658
5659 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type)
5660 {
5661         memset(rsv, 0, sizeof(*rsv));
5662         spin_lock_init(&rsv->lock);
5663         rsv->type = type;
5664 }
5665
5666 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
5667                                               unsigned short type)
5668 {
5669         struct btrfs_block_rsv *block_rsv;
5670
5671         block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
5672         if (!block_rsv)
5673                 return NULL;
5674
5675         btrfs_init_block_rsv(block_rsv, type);
5676         block_rsv->space_info = __find_space_info(fs_info,
5677                                                   BTRFS_BLOCK_GROUP_METADATA);
5678         return block_rsv;
5679 }
5680
5681 void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
5682                           struct btrfs_block_rsv *rsv)
5683 {
5684         if (!rsv)
5685                 return;
5686         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5687         kfree(rsv);
5688 }
5689
5690 void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv)
5691 {
5692         kfree(rsv);
5693 }
5694
5695 int btrfs_block_rsv_add(struct btrfs_root *root,
5696                         struct btrfs_block_rsv *block_rsv, u64 num_bytes,
5697                         enum btrfs_reserve_flush_enum flush)
5698 {
5699         int ret;
5700
5701         if (num_bytes == 0)
5702                 return 0;
5703
5704         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5705         if (!ret) {
5706                 block_rsv_add_bytes(block_rsv, num_bytes, 1);
5707                 return 0;
5708         }
5709
5710         return ret;
5711 }
5712
5713 int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor)
5714 {
5715         u64 num_bytes = 0;
5716         int ret = -ENOSPC;
5717
5718         if (!block_rsv)
5719                 return 0;
5720
5721         spin_lock(&block_rsv->lock);
5722         num_bytes = div_factor(block_rsv->size, min_factor);
5723         if (block_rsv->reserved >= num_bytes)
5724                 ret = 0;
5725         spin_unlock(&block_rsv->lock);
5726
5727         return ret;
5728 }
5729
5730 int btrfs_block_rsv_refill(struct btrfs_root *root,
5731                            struct btrfs_block_rsv *block_rsv, u64 min_reserved,
5732                            enum btrfs_reserve_flush_enum flush)
5733 {
5734         u64 num_bytes = 0;
5735         int ret = -ENOSPC;
5736
5737         if (!block_rsv)
5738                 return 0;
5739
5740         spin_lock(&block_rsv->lock);
5741         num_bytes = min_reserved;
5742         if (block_rsv->reserved >= num_bytes)
5743                 ret = 0;
5744         else
5745                 num_bytes -= block_rsv->reserved;
5746         spin_unlock(&block_rsv->lock);
5747
5748         if (!ret)
5749                 return 0;
5750
5751         ret = reserve_metadata_bytes(root, block_rsv, num_bytes, flush);
5752         if (!ret) {
5753                 block_rsv_add_bytes(block_rsv, num_bytes, 0);
5754                 return 0;
5755         }
5756
5757         return ret;
5758 }
5759
5760 void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
5761                              struct btrfs_block_rsv *block_rsv,
5762                              u64 num_bytes)
5763 {
5764         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5765
5766         if (global_rsv == block_rsv ||
5767             block_rsv->space_info != global_rsv->space_info)
5768                 global_rsv = NULL;
5769         block_rsv_release_bytes(fs_info, block_rsv, global_rsv, num_bytes);
5770 }
5771
5772 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
5773 {
5774         struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
5775         struct btrfs_space_info *sinfo = block_rsv->space_info;
5776         u64 num_bytes;
5777
5778         /*
5779          * The global block rsv is based on the size of the extent tree, the
5780          * checksum tree and the root tree.  If the fs is empty we want to set
5781          * it to a minimal amount for safety.
5782          */
5783         num_bytes = btrfs_root_used(&fs_info->extent_root->root_item) +
5784                 btrfs_root_used(&fs_info->csum_root->root_item) +
5785                 btrfs_root_used(&fs_info->tree_root->root_item);
5786         num_bytes = max_t(u64, num_bytes, SZ_16M);
5787
5788         spin_lock(&sinfo->lock);
5789         spin_lock(&block_rsv->lock);
5790
5791         block_rsv->size = min_t(u64, num_bytes, SZ_512M);
5792
5793         if (block_rsv->reserved < block_rsv->size) {
5794                 num_bytes = btrfs_space_info_used(sinfo, true);
5795                 if (sinfo->total_bytes > num_bytes) {
5796                         num_bytes = sinfo->total_bytes - num_bytes;
5797                         num_bytes = min(num_bytes,
5798                                         block_rsv->size - block_rsv->reserved);
5799                         block_rsv->reserved += num_bytes;
5800                         sinfo->bytes_may_use += num_bytes;
5801                         trace_btrfs_space_reservation(fs_info, "space_info",
5802                                                       sinfo->flags, num_bytes,
5803                                                       1);
5804                 }
5805         } else if (block_rsv->reserved > block_rsv->size) {
5806                 num_bytes = block_rsv->reserved - block_rsv->size;
5807                 sinfo->bytes_may_use -= num_bytes;
5808                 trace_btrfs_space_reservation(fs_info, "space_info",
5809                                       sinfo->flags, num_bytes, 0);
5810                 block_rsv->reserved = block_rsv->size;
5811         }
5812
5813         if (block_rsv->reserved == block_rsv->size)
5814                 block_rsv->full = 1;
5815         else
5816                 block_rsv->full = 0;
5817
5818         spin_unlock(&block_rsv->lock);
5819         spin_unlock(&sinfo->lock);
5820 }
5821
5822 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
5823 {
5824         struct btrfs_space_info *space_info;
5825
5826         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
5827         fs_info->chunk_block_rsv.space_info = space_info;
5828
5829         space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
5830         fs_info->global_block_rsv.space_info = space_info;
5831         fs_info->delalloc_block_rsv.space_info = space_info;
5832         fs_info->trans_block_rsv.space_info = space_info;
5833         fs_info->empty_block_rsv.space_info = space_info;
5834         fs_info->delayed_block_rsv.space_info = space_info;
5835
5836         fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
5837         fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
5838         fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
5839         fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
5840         if (fs_info->quota_root)
5841                 fs_info->quota_root->block_rsv = &fs_info->global_block_rsv;
5842         fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
5843
5844         update_global_block_rsv(fs_info);
5845 }
5846
5847 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
5848 {
5849         block_rsv_release_bytes(fs_info, &fs_info->global_block_rsv, NULL,
5850                                 (u64)-1);
5851         WARN_ON(fs_info->delalloc_block_rsv.size > 0);
5852         WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
5853         WARN_ON(fs_info->trans_block_rsv.size > 0);
5854         WARN_ON(fs_info->trans_block_rsv.reserved > 0);
5855         WARN_ON(fs_info->chunk_block_rsv.size > 0);
5856         WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
5857         WARN_ON(fs_info->delayed_block_rsv.size > 0);
5858         WARN_ON(fs_info->delayed_block_rsv.reserved > 0);
5859 }
5860
5861 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
5862                                   struct btrfs_fs_info *fs_info)
5863 {
5864         if (!trans->block_rsv)
5865                 return;
5866
5867         if (!trans->bytes_reserved)
5868                 return;
5869
5870         trace_btrfs_space_reservation(fs_info, "transaction",
5871                                       trans->transid, trans->bytes_reserved, 0);
5872         btrfs_block_rsv_release(fs_info, trans->block_rsv,
5873                                 trans->bytes_reserved);
5874         trans->bytes_reserved = 0;
5875 }
5876
5877 /*
5878  * To be called after all the new block groups attached to the transaction
5879  * handle have been created (btrfs_create_pending_block_groups()).
5880  */
5881 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
5882 {
5883         struct btrfs_fs_info *fs_info = trans->fs_info;
5884
5885         if (!trans->chunk_bytes_reserved)
5886                 return;
5887
5888         WARN_ON_ONCE(!list_empty(&trans->new_bgs));
5889
5890         block_rsv_release_bytes(fs_info, &fs_info->chunk_block_rsv, NULL,
5891                                 trans->chunk_bytes_reserved);
5892         trans->chunk_bytes_reserved = 0;
5893 }
5894
5895 /* Can only return 0 or -ENOSPC */
5896 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
5897                                   struct btrfs_inode *inode)
5898 {
5899         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5900         struct btrfs_root *root = inode->root;
5901         /*
5902          * We always use trans->block_rsv here as we will have reserved space
5903          * for our orphan when starting the transaction, using get_block_rsv()
5904          * here will sometimes make us choose the wrong block rsv as we could be
5905          * doing a reloc inode for a non refcounted root.
5906          */
5907         struct btrfs_block_rsv *src_rsv = trans->block_rsv;
5908         struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
5909
5910         /*
5911          * We need to hold space in order to delete our orphan item once we've
5912          * added it, so this takes the reservation so we can release it later
5913          * when we are truly done with the orphan item.
5914          */
5915         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5916
5917         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode), 
5918                         num_bytes, 1);
5919         return btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes, 1);
5920 }
5921
5922 void btrfs_orphan_release_metadata(struct btrfs_inode *inode)
5923 {
5924         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
5925         struct btrfs_root *root = inode->root;
5926         u64 num_bytes = btrfs_calc_trans_metadata_size(fs_info, 1);
5927
5928         trace_btrfs_space_reservation(fs_info, "orphan", btrfs_ino(inode),
5929                         num_bytes, 0);
5930         btrfs_block_rsv_release(fs_info, root->orphan_block_rsv, num_bytes);
5931 }
5932
5933 /*
5934  * btrfs_subvolume_reserve_metadata() - reserve space for subvolume operation
5935  * root: the root of the parent directory
5936  * rsv: block reservation
5937  * items: the number of items that we need do reservation
5938  * qgroup_reserved: used to return the reserved size in qgroup
5939  *
5940  * This function is used to reserve the space for snapshot/subvolume
5941  * creation and deletion. Those operations are different with the
5942  * common file/directory operations, they change two fs/file trees
5943  * and root tree, the number of items that the qgroup reserves is
5944  * different with the free space reservation. So we can not use
5945  * the space reservation mechanism in start_transaction().
5946  */
5947 int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
5948                                      struct btrfs_block_rsv *rsv,
5949                                      int items,
5950                                      u64 *qgroup_reserved,
5951                                      bool use_global_rsv)
5952 {
5953         u64 num_bytes;
5954         int ret;
5955         struct btrfs_fs_info *fs_info = root->fs_info;
5956         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
5957
5958         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
5959                 /* One for parent inode, two for dir entries */
5960                 num_bytes = 3 * fs_info->nodesize;
5961                 ret = btrfs_qgroup_reserve_meta(root, num_bytes, true);
5962                 if (ret)
5963                         return ret;
5964         } else {
5965                 num_bytes = 0;
5966         }
5967
5968         *qgroup_reserved = num_bytes;
5969
5970         num_bytes = btrfs_calc_trans_metadata_size(fs_info, items);
5971         rsv->space_info = __find_space_info(fs_info,
5972                                             BTRFS_BLOCK_GROUP_METADATA);
5973         ret = btrfs_block_rsv_add(root, rsv, num_bytes,
5974                                   BTRFS_RESERVE_FLUSH_ALL);
5975
5976         if (ret == -ENOSPC && use_global_rsv)
5977                 ret = btrfs_block_rsv_migrate(global_rsv, rsv, num_bytes, 1);
5978
5979         if (ret && *qgroup_reserved)
5980                 btrfs_qgroup_free_meta(root, *qgroup_reserved);
5981
5982         return ret;
5983 }
5984
5985 void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
5986                                       struct btrfs_block_rsv *rsv)
5987 {
5988         btrfs_block_rsv_release(fs_info, rsv, (u64)-1);
5989 }
5990
5991 /**
5992  * drop_outstanding_extent - drop an outstanding extent
5993  * @inode: the inode we're dropping the extent for
5994  * @num_bytes: the number of bytes we're releasing.
5995  *
5996  * This is called when we are freeing up an outstanding extent, either called
5997  * after an error or after an extent is written.  This will return the number of
5998  * reserved extents that need to be freed.  This must be called with
5999  * BTRFS_I(inode)->lock held.
6000  */
6001 static unsigned drop_outstanding_extent(struct btrfs_inode *inode,
6002                 u64 num_bytes)
6003 {
6004         unsigned drop_inode_space = 0;
6005         unsigned dropped_extents = 0;
6006         unsigned num_extents;
6007
6008         num_extents = count_max_extents(num_bytes);
6009         ASSERT(num_extents);
6010         ASSERT(inode->outstanding_extents >= num_extents);
6011         inode->outstanding_extents -= num_extents;
6012
6013         if (inode->outstanding_extents == 0 &&
6014             test_and_clear_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6015                                &inode->runtime_flags))
6016                 drop_inode_space = 1;
6017
6018         /*
6019          * If we have more or the same amount of outstanding extents than we have
6020          * reserved then we need to leave the reserved extents count alone.
6021          */
6022         if (inode->outstanding_extents >= inode->reserved_extents)
6023                 return drop_inode_space;
6024
6025         dropped_extents = inode->reserved_extents - inode->outstanding_extents;
6026         inode->reserved_extents -= dropped_extents;
6027         return dropped_extents + drop_inode_space;
6028 }
6029
6030 /**
6031  * calc_csum_metadata_size - return the amount of metadata space that must be
6032  *      reserved/freed for the given bytes.
6033  * @inode: the inode we're manipulating
6034  * @num_bytes: the number of bytes in question
6035  * @reserve: 1 if we are reserving space, 0 if we are freeing space
6036  *
6037  * This adjusts the number of csum_bytes in the inode and then returns the
6038  * correct amount of metadata that must either be reserved or freed.  We
6039  * calculate how many checksums we can fit into one leaf and then divide the
6040  * number of bytes that will need to be checksumed by this value to figure out
6041  * how many checksums will be required.  If we are adding bytes then the number
6042  * may go up and we will return the number of additional bytes that must be
6043  * reserved.  If it is going down we will return the number of bytes that must
6044  * be freed.
6045  *
6046  * This must be called with BTRFS_I(inode)->lock held.
6047  */
6048 static u64 calc_csum_metadata_size(struct btrfs_inode *inode, u64 num_bytes,
6049                                    int reserve)
6050 {
6051         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6052         u64 old_csums, num_csums;
6053
6054         if (inode->flags & BTRFS_INODE_NODATASUM && inode->csum_bytes == 0)
6055                 return 0;
6056
6057         old_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
6058         if (reserve)
6059                 inode->csum_bytes += num_bytes;
6060         else
6061                 inode->csum_bytes -= num_bytes;
6062         num_csums = btrfs_csum_bytes_to_leaves(fs_info, inode->csum_bytes);
6063
6064         /* No change, no need to reserve more */
6065         if (old_csums == num_csums)
6066                 return 0;
6067
6068         if (reserve)
6069                 return btrfs_calc_trans_metadata_size(fs_info,
6070                                                       num_csums - old_csums);
6071
6072         return btrfs_calc_trans_metadata_size(fs_info, old_csums - num_csums);
6073 }
6074
6075 int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes)
6076 {
6077         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6078         struct btrfs_root *root = inode->root;
6079         struct btrfs_block_rsv *block_rsv = &fs_info->delalloc_block_rsv;
6080         u64 to_reserve = 0;
6081         u64 csum_bytes;
6082         unsigned nr_extents;
6083         enum btrfs_reserve_flush_enum flush = BTRFS_RESERVE_FLUSH_ALL;
6084         int ret = 0;
6085         bool delalloc_lock = true;
6086         u64 to_free = 0;
6087         unsigned dropped;
6088         bool release_extra = false;
6089
6090         /* If we are a free space inode we need to not flush since we will be in
6091          * the middle of a transaction commit.  We also don't need the delalloc
6092          * mutex since we won't race with anybody.  We need this mostly to make
6093          * lockdep shut its filthy mouth.
6094          *
6095          * If we have a transaction open (can happen if we call truncate_block
6096          * from truncate), then we need FLUSH_LIMIT so we don't deadlock.
6097          */
6098         if (btrfs_is_free_space_inode(inode)) {
6099                 flush = BTRFS_RESERVE_NO_FLUSH;
6100                 delalloc_lock = false;
6101         } else if (current->journal_info) {
6102                 flush = BTRFS_RESERVE_FLUSH_LIMIT;
6103         }
6104
6105         if (flush != BTRFS_RESERVE_NO_FLUSH &&
6106             btrfs_transaction_in_commit(fs_info))
6107                 schedule_timeout(1);
6108
6109         if (delalloc_lock)
6110                 mutex_lock(&inode->delalloc_mutex);
6111
6112         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6113
6114         spin_lock(&inode->lock);
6115         nr_extents = count_max_extents(num_bytes);
6116         inode->outstanding_extents += nr_extents;
6117
6118         nr_extents = 0;
6119         if (inode->outstanding_extents > inode->reserved_extents)
6120                 nr_extents += inode->outstanding_extents -
6121                         inode->reserved_extents;
6122
6123         /* We always want to reserve a slot for updating the inode. */
6124         to_reserve = btrfs_calc_trans_metadata_size(fs_info, nr_extents + 1);
6125         to_reserve += calc_csum_metadata_size(inode, num_bytes, 1);
6126         csum_bytes = inode->csum_bytes;
6127         spin_unlock(&inode->lock);
6128
6129         if (test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
6130                 ret = btrfs_qgroup_reserve_meta(root,
6131                                 nr_extents * fs_info->nodesize, true);
6132                 if (ret)
6133                         goto out_fail;
6134         }
6135
6136         ret = btrfs_block_rsv_add(root, block_rsv, to_reserve, flush);
6137         if (unlikely(ret)) {
6138                 btrfs_qgroup_free_meta(root,
6139                                        nr_extents * fs_info->nodesize);
6140                 goto out_fail;
6141         }
6142
6143         spin_lock(&inode->lock);
6144         if (test_and_set_bit(BTRFS_INODE_DELALLOC_META_RESERVED,
6145                              &inode->runtime_flags)) {
6146                 to_reserve -= btrfs_calc_trans_metadata_size(fs_info, 1);
6147                 release_extra = true;
6148         }
6149         inode->reserved_extents += nr_extents;
6150         spin_unlock(&inode->lock);
6151
6152         if (delalloc_lock)
6153                 mutex_unlock(&inode->delalloc_mutex);
6154
6155         if (to_reserve)
6156                 trace_btrfs_space_reservation(fs_info, "delalloc",
6157                                               btrfs_ino(inode), to_reserve, 1);
6158         if (release_extra)
6159                 btrfs_block_rsv_release(fs_info, block_rsv,
6160                                 btrfs_calc_trans_metadata_size(fs_info, 1));
6161         return 0;
6162
6163 out_fail:
6164         spin_lock(&inode->lock);
6165         dropped = drop_outstanding_extent(inode, num_bytes);
6166         /*
6167          * If the inodes csum_bytes is the same as the original
6168          * csum_bytes then we know we haven't raced with any free()ers
6169          * so we can just reduce our inodes csum bytes and carry on.
6170          */
6171         if (inode->csum_bytes == csum_bytes) {
6172                 calc_csum_metadata_size(inode, num_bytes, 0);
6173         } else {
6174                 u64 orig_csum_bytes = inode->csum_bytes;
6175                 u64 bytes;
6176
6177                 /*
6178                  * This is tricky, but first we need to figure out how much we
6179                  * freed from any free-ers that occurred during this
6180                  * reservation, so we reset ->csum_bytes to the csum_bytes
6181                  * before we dropped our lock, and then call the free for the
6182                  * number of bytes that were freed while we were trying our
6183                  * reservation.
6184                  */
6185                 bytes = csum_bytes - inode->csum_bytes;
6186                 inode->csum_bytes = csum_bytes;
6187                 to_free = calc_csum_metadata_size(inode, bytes, 0);
6188
6189
6190                 /*
6191                  * Now we need to see how much we would have freed had we not
6192                  * been making this reservation and our ->csum_bytes were not
6193                  * artificially inflated.
6194                  */
6195                 inode->csum_bytes = csum_bytes - num_bytes;
6196                 bytes = csum_bytes - orig_csum_bytes;
6197                 bytes = calc_csum_metadata_size(inode, bytes, 0);
6198
6199                 /*
6200                  * Now reset ->csum_bytes to what it should be.  If bytes is
6201                  * more than to_free then we would have freed more space had we
6202                  * not had an artificially high ->csum_bytes, so we need to free
6203                  * the remainder.  If bytes is the same or less then we don't
6204                  * need to do anything, the other free-ers did the correct
6205                  * thing.
6206                  */
6207                 inode->csum_bytes = orig_csum_bytes - num_bytes;
6208                 if (bytes > to_free)
6209                         to_free = bytes - to_free;
6210                 else
6211                         to_free = 0;
6212         }
6213         spin_unlock(&inode->lock);
6214         if (dropped)
6215                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6216
6217         if (to_free) {
6218                 btrfs_block_rsv_release(fs_info, block_rsv, to_free);
6219                 trace_btrfs_space_reservation(fs_info, "delalloc",
6220                                               btrfs_ino(inode), to_free, 0);
6221         }
6222         if (delalloc_lock)
6223                 mutex_unlock(&inode->delalloc_mutex);
6224         return ret;
6225 }
6226
6227 /**
6228  * btrfs_delalloc_release_metadata - release a metadata reservation for an inode
6229  * @inode: the inode to release the reservation for
6230  * @num_bytes: the number of bytes we're releasing
6231  *
6232  * This will release the metadata reservation for an inode.  This can be called
6233  * once we complete IO for a given set of bytes to release their metadata
6234  * reservations.
6235  */
6236 void btrfs_delalloc_release_metadata(struct btrfs_inode *inode, u64 num_bytes)
6237 {
6238         struct btrfs_fs_info *fs_info = btrfs_sb(inode->vfs_inode.i_sb);
6239         u64 to_free = 0;
6240         unsigned dropped;
6241
6242         num_bytes = ALIGN(num_bytes, fs_info->sectorsize);
6243         spin_lock(&inode->lock);
6244         dropped = drop_outstanding_extent(inode, num_bytes);
6245
6246         if (num_bytes)
6247                 to_free = calc_csum_metadata_size(inode, num_bytes, 0);
6248         spin_unlock(&inode->lock);
6249         if (dropped > 0)
6250                 to_free += btrfs_calc_trans_metadata_size(fs_info, dropped);
6251
6252         if (btrfs_is_testing(fs_info))
6253                 return;
6254
6255         trace_btrfs_space_reservation(fs_info, "delalloc", btrfs_ino(inode),
6256                                       to_free, 0);
6257
6258         btrfs_block_rsv_release(fs_info, &fs_info->delalloc_block_rsv, to_free);
6259 }
6260
6261 /**
6262  * btrfs_delalloc_reserve_space - reserve data and metadata space for
6263  * delalloc
6264  * @inode: inode we're writing to
6265  * @start: start range we are writing to
6266  * @len: how long the range we are writing to
6267  * @reserved: mandatory parameter, record actually reserved qgroup ranges of
6268  *            current reservation.
6269  *
6270  * This will do the following things
6271  *
6272  * o reserve space in data space info for num bytes
6273  *   and reserve precious corresponding qgroup space
6274  *   (Done in check_data_free_space)
6275  *
6276  * o reserve space for metadata space, based on the number of outstanding
6277  *   extents and how much csums will be needed
6278  *   also reserve metadata space in a per root over-reserve method.
6279  * o add to the inodes->delalloc_bytes
6280  * o add it to the fs_info's delalloc inodes list.
6281  *   (Above 3 all done in delalloc_reserve_metadata)
6282  *
6283  * Return 0 for success
6284  * Return <0 for error(-ENOSPC or -EQUOT)
6285  */
6286 int btrfs_delalloc_reserve_space(struct inode *inode,
6287                         struct extent_changeset **reserved, u64 start, u64 len)
6288 {
6289         int ret;
6290
6291         ret = btrfs_check_data_free_space(inode, reserved, start, len);
6292         if (ret < 0)
6293                 return ret;
6294         ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode), len);
6295         if (ret < 0)
6296                 btrfs_free_reserved_data_space(inode, *reserved, start, len);
6297         return ret;
6298 }
6299
6300 /**
6301  * btrfs_delalloc_release_space - release data and metadata space for delalloc
6302  * @inode: inode we're releasing space for
6303  * @start: start position of the space already reserved
6304  * @len: the len of the space already reserved
6305  *
6306  * This must be matched with a call to btrfs_delalloc_reserve_space.  This is
6307  * called in the case that we don't need the metadata AND data reservations
6308  * anymore.  So if there is an error or we insert an inline extent.
6309  *
6310  * This function will release the metadata space that was not used and will
6311  * decrement ->delalloc_bytes and remove it from the fs_info delalloc_inodes
6312  * list if there are no delalloc bytes left.
6313  * Also it will handle the qgroup reserved space.
6314  */
6315 void btrfs_delalloc_release_space(struct inode *inode,
6316                         struct extent_changeset *reserved, u64 start, u64 len)
6317 {
6318         btrfs_delalloc_release_metadata(BTRFS_I(inode), len);
6319         btrfs_free_reserved_data_space(inode, reserved, start, len);
6320 }
6321
6322 static int update_block_group(struct btrfs_trans_handle *trans,
6323                               struct btrfs_fs_info *info, u64 bytenr,
6324                               u64 num_bytes, int alloc)
6325 {
6326         struct btrfs_block_group_cache *cache = NULL;
6327         u64 total = num_bytes;
6328         u64 old_val;
6329         u64 byte_in_group;
6330         int factor;
6331
6332         /* block accounting for super block */
6333         spin_lock(&info->delalloc_root_lock);
6334         old_val = btrfs_super_bytes_used(info->super_copy);
6335         if (alloc)
6336                 old_val += num_bytes;
6337         else
6338                 old_val -= num_bytes;
6339         btrfs_set_super_bytes_used(info->super_copy, old_val);
6340         spin_unlock(&info->delalloc_root_lock);
6341
6342         while (total) {
6343                 cache = btrfs_lookup_block_group(info, bytenr);
6344                 if (!cache)
6345                         return -ENOENT;
6346                 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
6347                                     BTRFS_BLOCK_GROUP_RAID1 |
6348                                     BTRFS_BLOCK_GROUP_RAID10))
6349                         factor = 2;
6350                 else
6351                         factor = 1;
6352                 /*
6353                  * If this block group has free space cache written out, we
6354                  * need to make sure to load it if we are removing space.  This
6355                  * is because we need the unpinning stage to actually add the
6356                  * space back to the block group, otherwise we will leak space.
6357                  */
6358                 if (!alloc && cache->cached == BTRFS_CACHE_NO)
6359                         cache_block_group(cache, 1);
6360
6361                 byte_in_group = bytenr - cache->key.objectid;
6362                 WARN_ON(byte_in_group > cache->key.offset);
6363
6364                 spin_lock(&cache->space_info->lock);
6365                 spin_lock(&cache->lock);
6366
6367                 if (btrfs_test_opt(info, SPACE_CACHE) &&
6368                     cache->disk_cache_state < BTRFS_DC_CLEAR)
6369                         cache->disk_cache_state = BTRFS_DC_CLEAR;
6370
6371                 old_val = btrfs_block_group_used(&cache->item);
6372                 num_bytes = min(total, cache->key.offset - byte_in_group);
6373                 if (alloc) {
6374                         old_val += num_bytes;
6375                         btrfs_set_block_group_used(&cache->item, old_val);
6376                         cache->reserved -= num_bytes;
6377                         cache->space_info->bytes_reserved -= num_bytes;
6378                         cache->space_info->bytes_used += num_bytes;
6379                         cache->space_info->disk_used += num_bytes * factor;
6380                         spin_unlock(&cache->lock);
6381                         spin_unlock(&cache->space_info->lock);
6382                 } else {
6383                         old_val -= num_bytes;
6384                         btrfs_set_block_group_used(&cache->item, old_val);
6385                         cache->pinned += num_bytes;
6386                         cache->space_info->bytes_pinned += num_bytes;
6387                         cache->space_info->bytes_used -= num_bytes;
6388                         cache->space_info->disk_used -= num_bytes * factor;
6389                         spin_unlock(&cache->lock);
6390                         spin_unlock(&cache->space_info->lock);
6391
6392                         trace_btrfs_space_reservation(info, "pinned",
6393                                                       cache->space_info->flags,
6394                                                       num_bytes, 1);
6395                         percpu_counter_add(&cache->space_info->total_bytes_pinned,
6396                                            num_bytes);
6397                         set_extent_dirty(info->pinned_extents,
6398                                          bytenr, bytenr + num_bytes - 1,
6399                                          GFP_NOFS | __GFP_NOFAIL);
6400                 }
6401
6402                 spin_lock(&trans->transaction->dirty_bgs_lock);
6403                 if (list_empty(&cache->dirty_list)) {
6404                         list_add_tail(&cache->dirty_list,
6405                                       &trans->transaction->dirty_bgs);
6406                                 trans->transaction->num_dirty_bgs++;
6407                         btrfs_get_block_group(cache);
6408                 }
6409                 spin_unlock(&trans->transaction->dirty_bgs_lock);
6410
6411                 /*
6412                  * No longer have used bytes in this block group, queue it for
6413                  * deletion. We do this after adding the block group to the
6414                  * dirty list to avoid races between cleaner kthread and space
6415                  * cache writeout.
6416                  */
6417                 if (!alloc && old_val == 0) {
6418                         spin_lock(&info->unused_bgs_lock);
6419                         if (list_empty(&cache->bg_list)) {
6420                                 btrfs_get_block_group(cache);
6421                                 list_add_tail(&cache->bg_list,
6422                                               &info->unused_bgs);
6423                         }
6424                         spin_unlock(&info->unused_bgs_lock);
6425                 }
6426
6427                 btrfs_put_block_group(cache);
6428                 total -= num_bytes;
6429                 bytenr += num_bytes;
6430         }
6431         return 0;
6432 }
6433
6434 static u64 first_logical_byte(struct btrfs_fs_info *fs_info, u64 search_start)
6435 {
6436         struct btrfs_block_group_cache *cache;
6437         u64 bytenr;
6438
6439         spin_lock(&fs_info->block_group_cache_lock);
6440         bytenr = fs_info->first_logical_byte;
6441         spin_unlock(&fs_info->block_group_cache_lock);
6442
6443         if (bytenr < (u64)-1)
6444                 return bytenr;
6445
6446         cache = btrfs_lookup_first_block_group(fs_info, search_start);
6447         if (!cache)
6448                 return 0;
6449
6450         bytenr = cache->key.objectid;
6451         btrfs_put_block_group(cache);
6452
6453         return bytenr;
6454 }
6455
6456 static int pin_down_extent(struct btrfs_fs_info *fs_info,
6457                            struct btrfs_block_group_cache *cache,
6458                            u64 bytenr, u64 num_bytes, int reserved)
6459 {
6460         spin_lock(&cache->space_info->lock);
6461         spin_lock(&cache->lock);
6462         cache->pinned += num_bytes;
6463         cache->space_info->bytes_pinned += num_bytes;
6464         if (reserved) {
6465                 cache->reserved -= num_bytes;
6466                 cache->space_info->bytes_reserved -= num_bytes;
6467         }
6468         spin_unlock(&cache->lock);
6469         spin_unlock(&cache->space_info->lock);
6470
6471         trace_btrfs_space_reservation(fs_info, "pinned",
6472                                       cache->space_info->flags, num_bytes, 1);
6473         percpu_counter_add(&cache->space_info->total_bytes_pinned, num_bytes);
6474         set_extent_dirty(fs_info->pinned_extents, bytenr,
6475                          bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
6476         return 0;
6477 }
6478
6479 /*
6480  * this function must be called within transaction
6481  */
6482 int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
6483                      u64 bytenr, u64 num_bytes, int reserved)
6484 {
6485         struct btrfs_block_group_cache *cache;
6486
6487         cache = btrfs_lookup_block_group(fs_info, bytenr);
6488         BUG_ON(!cache); /* Logic error */
6489
6490         pin_down_extent(fs_info, cache, bytenr, num_bytes, reserved);
6491
6492         btrfs_put_block_group(cache);
6493         return 0;
6494 }
6495
6496 /*
6497  * this function must be called within transaction
6498  */
6499 int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
6500                                     u64 bytenr, u64 num_bytes)
6501 {
6502         struct btrfs_block_group_cache *cache;
6503         int ret;
6504
6505         cache = btrfs_lookup_block_group(fs_info, bytenr);
6506         if (!cache)
6507                 return -EINVAL;
6508
6509         /*
6510          * pull in the free space cache (if any) so that our pin
6511          * removes the free space from the cache.  We have load_only set
6512          * to one because the slow code to read in the free extents does check
6513          * the pinned extents.
6514          */
6515         cache_block_group(cache, 1);
6516
6517         pin_down_extent(fs_info, cache, bytenr, num_bytes, 0);
6518
6519         /* remove us from the free space cache (if we're there at all) */
6520         ret = btrfs_remove_free_space(cache, bytenr, num_bytes);
6521         btrfs_put_block_group(cache);
6522         return ret;
6523 }
6524
6525 static int __exclude_logged_extent(struct btrfs_fs_info *fs_info,
6526                                    u64 start, u64 num_bytes)
6527 {
6528         int ret;
6529         struct btrfs_block_group_cache *block_group;
6530         struct btrfs_caching_control *caching_ctl;
6531
6532         block_group = btrfs_lookup_block_group(fs_info, start);
6533         if (!block_group)
6534                 return -EINVAL;
6535
6536         cache_block_group(block_group, 0);
6537         caching_ctl = get_caching_control(block_group);
6538
6539         if (!caching_ctl) {
6540                 /* Logic error */
6541                 BUG_ON(!block_group_cache_done(block_group));
6542                 ret = btrfs_remove_free_space(block_group, start, num_bytes);
6543         } else {
6544                 mutex_lock(&caching_ctl->mutex);
6545
6546                 if (start >= caching_ctl->progress) {
6547                         ret = add_excluded_extent(fs_info, start, num_bytes);
6548                 } else if (start + num_bytes <= caching_ctl->progress) {
6549                         ret = btrfs_remove_free_space(block_group,
6550                                                       start, num_bytes);
6551                 } else {
6552                         num_bytes = caching_ctl->progress - start;
6553                         ret = btrfs_remove_free_space(block_group,
6554                                                       start, num_bytes);
6555                         if (ret)
6556                                 goto out_lock;
6557
6558                         num_bytes = (start + num_bytes) -
6559                                 caching_ctl->progress;
6560                         start = caching_ctl->progress;
6561                         ret = add_excluded_extent(fs_info, start, num_bytes);
6562                 }
6563 out_lock:
6564                 mutex_unlock(&caching_ctl->mutex);
6565                 put_caching_control(caching_ctl);
6566         }
6567         btrfs_put_block_group(block_group);
6568         return ret;
6569 }
6570
6571 int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
6572                                  struct extent_buffer *eb)
6573 {
6574         struct btrfs_file_extent_item *item;
6575         struct btrfs_key key;
6576         int found_type;
6577         int i;
6578
6579         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS))
6580                 return 0;
6581
6582         for (i = 0; i < btrfs_header_nritems(eb); i++) {
6583                 btrfs_item_key_to_cpu(eb, &key, i);
6584                 if (key.type != BTRFS_EXTENT_DATA_KEY)
6585                         continue;
6586                 item = btrfs_item_ptr(eb, i, struct btrfs_file_extent_item);
6587                 found_type = btrfs_file_extent_type(eb, item);
6588                 if (found_type == BTRFS_FILE_EXTENT_INLINE)
6589                         continue;
6590                 if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
6591                         continue;
6592                 key.objectid = btrfs_file_extent_disk_bytenr(eb, item);
6593                 key.offset = btrfs_file_extent_disk_num_bytes(eb, item);
6594                 __exclude_logged_extent(fs_info, key.objectid, key.offset);
6595         }
6596
6597         return 0;
6598 }
6599
6600 static void
6601 btrfs_inc_block_group_reservations(struct btrfs_block_group_cache *bg)
6602 {
6603         atomic_inc(&bg->reservations);
6604 }
6605
6606 void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
6607                                         const u64 start)
6608 {
6609         struct btrfs_block_group_cache *bg;
6610
6611         bg = btrfs_lookup_block_group(fs_info, start);
6612         ASSERT(bg);
6613         if (atomic_dec_and_test(&bg->reservations))
6614                 wake_up_atomic_t(&bg->reservations);
6615         btrfs_put_block_group(bg);
6616 }
6617
6618 static int btrfs_wait_bg_reservations_atomic_t(atomic_t *a)
6619 {
6620         schedule();
6621         return 0;
6622 }
6623
6624 void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg)
6625 {
6626         struct btrfs_space_info *space_info = bg->space_info;
6627
6628         ASSERT(bg->ro);
6629
6630         if (!(bg->flags & BTRFS_BLOCK_GROUP_DATA))
6631                 return;
6632
6633         /*
6634          * Our block group is read only but before we set it to read only,
6635          * some task might have had allocated an extent from it already, but it
6636          * has not yet created a respective ordered extent (and added it to a
6637          * root's list of ordered extents).
6638          * Therefore wait for any task currently allocating extents, since the
6639          * block group's reservations counter is incremented while a read lock
6640          * on the groups' semaphore is held and decremented after releasing
6641          * the read access on that semaphore and creating the ordered extent.
6642          */
6643         down_write(&space_info->groups_sem);
6644         up_write(&space_info->groups_sem);
6645
6646         wait_on_atomic_t(&bg->reservations,
6647                          btrfs_wait_bg_reservations_atomic_t,
6648                          TASK_UNINTERRUPTIBLE);
6649 }
6650
6651 /**
6652  * btrfs_add_reserved_bytes - update the block_group and space info counters
6653  * @cache:      The cache we are manipulating
6654  * @ram_bytes:  The number of bytes of file content, and will be same to
6655  *              @num_bytes except for the compress path.
6656  * @num_bytes:  The number of bytes in question
6657  * @delalloc:   The blocks are allocated for the delalloc write
6658  *
6659  * This is called by the allocator when it reserves space. If this is a
6660  * reservation and the block group has become read only we cannot make the
6661  * reservation and return -EAGAIN, otherwise this function always succeeds.
6662  */
6663 static int btrfs_add_reserved_bytes(struct btrfs_block_group_cache *cache,
6664                                     u64 ram_bytes, u64 num_bytes, int delalloc)
6665 {
6666         struct btrfs_space_info *space_info = cache->space_info;
6667         int ret = 0;
6668
6669         spin_lock(&space_info->lock);
6670         spin_lock(&cache->lock);
6671         if (cache->ro) {
6672                 ret = -EAGAIN;
6673         } else {
6674                 cache->reserved += num_bytes;
6675                 space_info->bytes_reserved += num_bytes;
6676
6677                 trace_btrfs_space_reservation(cache->fs_info,
6678                                 "space_info", space_info->flags,
6679                                 ram_bytes, 0);
6680                 space_info->bytes_may_use -= ram_bytes;
6681                 if (delalloc)
6682                         cache->delalloc_bytes += num_bytes;
6683         }
6684         spin_unlock(&cache->lock);
6685         spin_unlock(&space_info->lock);
6686         return ret;
6687 }
6688
6689 /**
6690  * btrfs_free_reserved_bytes - update the block_group and space info counters
6691  * @cache:      The cache we are manipulating
6692  * @num_bytes:  The number of bytes in question
6693  * @delalloc:   The blocks are allocated for the delalloc write
6694  *
6695  * This is called by somebody who is freeing space that was never actually used
6696  * on disk.  For example if you reserve some space for a new leaf in transaction
6697  * A and before transaction A commits you free that leaf, you call this with
6698  * reserve set to 0 in order to clear the reservation.
6699  */
6700
6701 static int btrfs_free_reserved_bytes(struct btrfs_block_group_cache *cache,
6702                                      u64 num_bytes, int delalloc)
6703 {
6704         struct btrfs_space_info *space_info = cache->space_info;
6705         int ret = 0;
6706
6707         spin_lock(&space_info->lock);
6708         spin_lock(&cache->lock);
6709         if (cache->ro)
6710                 space_info->bytes_readonly += num_bytes;
6711         cache->reserved -= num_bytes;
6712         space_info->bytes_reserved -= num_bytes;
6713
6714         if (delalloc)
6715                 cache->delalloc_bytes -= num_bytes;
6716         spin_unlock(&cache->lock);
6717         spin_unlock(&space_info->lock);
6718         return ret;
6719 }
6720 void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info)
6721 {
6722         struct btrfs_caching_control *next;
6723         struct btrfs_caching_control *caching_ctl;
6724         struct btrfs_block_group_cache *cache;
6725
6726         down_write(&fs_info->commit_root_sem);
6727
6728         list_for_each_entry_safe(caching_ctl, next,
6729                                  &fs_info->caching_block_groups, list) {
6730                 cache = caching_ctl->block_group;
6731                 if (block_group_cache_done(cache)) {
6732                         cache->last_byte_to_unpin = (u64)-1;
6733                         list_del_init(&caching_ctl->list);
6734                         put_caching_control(caching_ctl);
6735                 } else {
6736                         cache->last_byte_to_unpin = caching_ctl->progress;
6737                 }
6738         }
6739
6740         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6741                 fs_info->pinned_extents = &fs_info->freed_extents[1];
6742         else
6743                 fs_info->pinned_extents = &fs_info->freed_extents[0];
6744
6745         up_write(&fs_info->commit_root_sem);
6746
6747         update_global_block_rsv(fs_info);
6748 }
6749
6750 /*
6751  * Returns the free cluster for the given space info and sets empty_cluster to
6752  * what it should be based on the mount options.
6753  */
6754 static struct btrfs_free_cluster *
6755 fetch_cluster_info(struct btrfs_fs_info *fs_info,
6756                    struct btrfs_space_info *space_info, u64 *empty_cluster)
6757 {
6758         struct btrfs_free_cluster *ret = NULL;
6759
6760         *empty_cluster = 0;
6761         if (btrfs_mixed_space_info(space_info))
6762                 return ret;
6763
6764         if (space_info->flags & BTRFS_BLOCK_GROUP_METADATA) {
6765                 ret = &fs_info->meta_alloc_cluster;
6766                 if (btrfs_test_opt(fs_info, SSD))
6767                         *empty_cluster = SZ_2M;
6768                 else
6769                         *empty_cluster = SZ_64K;
6770         } else if ((space_info->flags & BTRFS_BLOCK_GROUP_DATA) &&
6771                    btrfs_test_opt(fs_info, SSD_SPREAD)) {
6772                 *empty_cluster = SZ_2M;
6773                 ret = &fs_info->data_alloc_cluster;
6774         }
6775
6776         return ret;
6777 }
6778
6779 static int unpin_extent_range(struct btrfs_fs_info *fs_info,
6780                               u64 start, u64 end,
6781                               const bool return_free_space)
6782 {
6783         struct btrfs_block_group_cache *cache = NULL;
6784         struct btrfs_space_info *space_info;
6785         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
6786         struct btrfs_free_cluster *cluster = NULL;
6787         u64 len;
6788         u64 total_unpinned = 0;
6789         u64 empty_cluster = 0;
6790         bool readonly;
6791
6792         while (start <= end) {
6793                 readonly = false;
6794                 if (!cache ||
6795                     start >= cache->key.objectid + cache->key.offset) {
6796                         if (cache)
6797                                 btrfs_put_block_group(cache);
6798                         total_unpinned = 0;
6799                         cache = btrfs_lookup_block_group(fs_info, start);
6800                         BUG_ON(!cache); /* Logic error */
6801
6802                         cluster = fetch_cluster_info(fs_info,
6803                                                      cache->space_info,
6804                                                      &empty_cluster);
6805                         empty_cluster <<= 1;
6806                 }
6807
6808                 len = cache->key.objectid + cache->key.offset - start;
6809                 len = min(len, end + 1 - start);
6810
6811                 if (start < cache->last_byte_to_unpin) {
6812                         len = min(len, cache->last_byte_to_unpin - start);
6813                         if (return_free_space)
6814                                 btrfs_add_free_space(cache, start, len);
6815                 }
6816
6817                 start += len;
6818                 total_unpinned += len;
6819                 space_info = cache->space_info;
6820
6821                 /*
6822                  * If this space cluster has been marked as fragmented and we've
6823                  * unpinned enough in this block group to potentially allow a
6824                  * cluster to be created inside of it go ahead and clear the
6825                  * fragmented check.
6826                  */
6827                 if (cluster && cluster->fragmented &&
6828                     total_unpinned > empty_cluster) {
6829                         spin_lock(&cluster->lock);
6830                         cluster->fragmented = 0;
6831                         spin_unlock(&cluster->lock);
6832                 }
6833
6834                 spin_lock(&space_info->lock);
6835                 spin_lock(&cache->lock);
6836                 cache->pinned -= len;
6837                 space_info->bytes_pinned -= len;
6838
6839                 trace_btrfs_space_reservation(fs_info, "pinned",
6840                                               space_info->flags, len, 0);
6841                 space_info->max_extent_size = 0;
6842                 percpu_counter_add(&space_info->total_bytes_pinned, -len);
6843                 if (cache->ro) {
6844                         space_info->bytes_readonly += len;
6845                         readonly = true;
6846                 }
6847                 spin_unlock(&cache->lock);
6848                 if (!readonly && return_free_space &&
6849                     global_rsv->space_info == space_info) {
6850                         u64 to_add = len;
6851
6852                         spin_lock(&global_rsv->lock);
6853                         if (!global_rsv->full) {
6854                                 to_add = min(len, global_rsv->size -
6855                                              global_rsv->reserved);
6856                                 global_rsv->reserved += to_add;
6857                                 space_info->bytes_may_use += to_add;
6858                                 if (global_rsv->reserved >= global_rsv->size)
6859                                         global_rsv->full = 1;
6860                                 trace_btrfs_space_reservation(fs_info,
6861                                                               "space_info",
6862                                                               space_info->flags,
6863                                                               to_add, 1);
6864                                 len -= to_add;
6865                         }
6866                         spin_unlock(&global_rsv->lock);
6867                         /* Add to any tickets we may have */
6868                         if (len)
6869                                 space_info_add_new_bytes(fs_info, space_info,
6870                                                          len);
6871                 }
6872                 spin_unlock(&space_info->lock);
6873         }
6874
6875         if (cache)
6876                 btrfs_put_block_group(cache);
6877         return 0;
6878 }
6879
6880 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
6881                                struct btrfs_fs_info *fs_info)
6882 {
6883         struct btrfs_block_group_cache *block_group, *tmp;
6884         struct list_head *deleted_bgs;
6885         struct extent_io_tree *unpin;
6886         u64 start;
6887         u64 end;
6888         int ret;
6889
6890         if (fs_info->pinned_extents == &fs_info->freed_extents[0])
6891                 unpin = &fs_info->freed_extents[1];
6892         else
6893                 unpin = &fs_info->freed_extents[0];
6894
6895         while (!trans->aborted) {
6896                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
6897                 ret = find_first_extent_bit(unpin, 0, &start, &end,
6898                                             EXTENT_DIRTY, NULL);
6899                 if (ret) {
6900                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6901                         break;
6902                 }
6903
6904                 if (btrfs_test_opt(fs_info, DISCARD))
6905                         ret = btrfs_discard_extent(fs_info, start,
6906                                                    end + 1 - start, NULL);
6907
6908                 clear_extent_dirty(unpin, start, end);
6909                 unpin_extent_range(fs_info, start, end, true);
6910                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
6911                 cond_resched();
6912         }
6913
6914         /*
6915          * Transaction is finished.  We don't need the lock anymore.  We
6916          * do need to clean up the block groups in case of a transaction
6917          * abort.
6918          */
6919         deleted_bgs = &trans->transaction->deleted_bgs;
6920         list_for_each_entry_safe(block_group, tmp, deleted_bgs, bg_list) {
6921                 u64 trimmed = 0;
6922
6923                 ret = -EROFS;
6924                 if (!trans->aborted)
6925                         ret = btrfs_discard_extent(fs_info,
6926                                                    block_group->key.objectid,
6927                                                    block_group->key.offset,
6928                                                    &trimmed);
6929
6930                 list_del_init(&block_group->bg_list);
6931                 btrfs_put_block_group_trimming(block_group);
6932                 btrfs_put_block_group(block_group);
6933
6934                 if (ret) {
6935                         const char *errstr = btrfs_decode_error(ret);
6936                         btrfs_warn(fs_info,
6937                            "discard failed while removing blockgroup: errno=%d %s",
6938                                    ret, errstr);
6939                 }
6940         }
6941
6942         return 0;
6943 }
6944
6945 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
6946                                 struct btrfs_fs_info *info,
6947                                 struct btrfs_delayed_ref_node *node, u64 parent,
6948                                 u64 root_objectid, u64 owner_objectid,
6949                                 u64 owner_offset, int refs_to_drop,
6950                                 struct btrfs_delayed_extent_op *extent_op)
6951 {
6952         struct btrfs_key key;
6953         struct btrfs_path *path;
6954         struct btrfs_root *extent_root = info->extent_root;
6955         struct extent_buffer *leaf;
6956         struct btrfs_extent_item *ei;
6957         struct btrfs_extent_inline_ref *iref;
6958         int ret;
6959         int is_data;
6960         int extent_slot = 0;
6961         int found_extent = 0;
6962         int num_to_del = 1;
6963         u32 item_size;
6964         u64 refs;
6965         u64 bytenr = node->bytenr;
6966         u64 num_bytes = node->num_bytes;
6967         int last_ref = 0;
6968         bool skinny_metadata = btrfs_fs_incompat(info, SKINNY_METADATA);
6969
6970         path = btrfs_alloc_path();
6971         if (!path)
6972                 return -ENOMEM;
6973
6974         path->reada = READA_FORWARD;
6975         path->leave_spinning = 1;
6976
6977         is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
6978         BUG_ON(!is_data && refs_to_drop != 1);
6979
6980         if (is_data)
6981                 skinny_metadata = 0;
6982
6983         ret = lookup_extent_backref(trans, info, path, &iref,
6984                                     bytenr, num_bytes, parent,
6985                                     root_objectid, owner_objectid,
6986                                     owner_offset);
6987         if (ret == 0) {
6988                 extent_slot = path->slots[0];
6989                 while (extent_slot >= 0) {
6990                         btrfs_item_key_to_cpu(path->nodes[0], &key,
6991                                               extent_slot);
6992                         if (key.objectid != bytenr)
6993                                 break;
6994                         if (key.type == BTRFS_EXTENT_ITEM_KEY &&
6995                             key.offset == num_bytes) {
6996                                 found_extent = 1;
6997                                 break;
6998                         }
6999                         if (key.type == BTRFS_METADATA_ITEM_KEY &&
7000                             key.offset == owner_objectid) {
7001                                 found_extent = 1;
7002                                 break;
7003                         }
7004                         if (path->slots[0] - extent_slot > 5)
7005                                 break;
7006                         extent_slot--;
7007                 }
7008 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7009                 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
7010                 if (found_extent && item_size < sizeof(*ei))
7011                         found_extent = 0;
7012 #endif
7013                 if (!found_extent) {
7014                         BUG_ON(iref);
7015                         ret = remove_extent_backref(trans, info, path, NULL,
7016                                                     refs_to_drop,
7017                                                     is_data, &last_ref);
7018                         if (ret) {
7019                                 btrfs_abort_transaction(trans, ret);
7020                                 goto out;
7021                         }
7022                         btrfs_release_path(path);
7023                         path->leave_spinning = 1;
7024
7025                         key.objectid = bytenr;
7026                         key.type = BTRFS_EXTENT_ITEM_KEY;
7027                         key.offset = num_bytes;
7028
7029                         if (!is_data && skinny_metadata) {
7030                                 key.type = BTRFS_METADATA_ITEM_KEY;
7031                                 key.offset = owner_objectid;
7032                         }
7033
7034                         ret = btrfs_search_slot(trans, extent_root,
7035                                                 &key, path, -1, 1);
7036                         if (ret > 0 && skinny_metadata && path->slots[0]) {
7037                                 /*
7038                                  * Couldn't find our skinny metadata item,
7039                                  * see if we have ye olde extent item.
7040                                  */
7041                                 path->slots[0]--;
7042                                 btrfs_item_key_to_cpu(path->nodes[0], &key,
7043                                                       path->slots[0]);
7044                                 if (key.objectid == bytenr &&
7045                                     key.type == BTRFS_EXTENT_ITEM_KEY &&
7046                                     key.offset == num_bytes)
7047                                         ret = 0;
7048                         }
7049
7050                         if (ret > 0 && skinny_metadata) {
7051                                 skinny_metadata = false;
7052                                 key.objectid = bytenr;
7053                                 key.type = BTRFS_EXTENT_ITEM_KEY;
7054                                 key.offset = num_bytes;
7055                                 btrfs_release_path(path);
7056                                 ret = btrfs_search_slot(trans, extent_root,
7057                                                         &key, path, -1, 1);
7058                         }
7059
7060                         if (ret) {
7061                                 btrfs_err(info,
7062                                           "umm, got %d back from search, was looking for %llu",
7063                                           ret, bytenr);
7064                                 if (ret > 0)
7065                                         btrfs_print_leaf(path->nodes[0]);
7066                         }
7067                         if (ret < 0) {
7068                                 btrfs_abort_transaction(trans, ret);
7069                                 goto out;
7070                         }
7071                         extent_slot = path->slots[0];
7072                 }
7073         } else if (WARN_ON(ret == -ENOENT)) {
7074                 btrfs_print_leaf(path->nodes[0]);
7075                 btrfs_err(info,
7076                         "unable to find ref byte nr %llu parent %llu root %llu  owner %llu offset %llu",
7077                         bytenr, parent, root_objectid, owner_objectid,
7078                         owner_offset);
7079                 btrfs_abort_transaction(trans, ret);
7080                 goto out;
7081         } else {
7082                 btrfs_abort_transaction(trans, ret);
7083                 goto out;
7084         }
7085
7086         leaf = path->nodes[0];
7087         item_size = btrfs_item_size_nr(leaf, extent_slot);
7088 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
7089         if (item_size < sizeof(*ei)) {
7090                 BUG_ON(found_extent || extent_slot != path->slots[0]);
7091                 ret = convert_extent_item_v0(trans, info, path, owner_objectid,
7092                                              0);
7093                 if (ret < 0) {
7094                         btrfs_abort_transaction(trans, ret);
7095                         goto out;
7096                 }
7097
7098                 btrfs_release_path(path);
7099                 path->leave_spinning = 1;
7100
7101                 key.objectid = bytenr;
7102                 key.type = BTRFS_EXTENT_ITEM_KEY;
7103                 key.offset = num_bytes;
7104
7105                 ret = btrfs_search_slot(trans, extent_root, &key, path,
7106                                         -1, 1);
7107                 if (ret) {
7108                         btrfs_err(info,
7109                                   "umm, got %d back from search, was looking for %llu",
7110                                 ret, bytenr);
7111                         btrfs_print_leaf(path->nodes[0]);
7112                 }
7113                 if (ret < 0) {
7114                         btrfs_abort_transaction(trans, ret);
7115                         goto out;
7116                 }
7117
7118                 extent_slot = path->slots[0];
7119                 leaf = path->nodes[0];
7120                 item_size = btrfs_item_size_nr(leaf, extent_slot);
7121         }
7122 #endif
7123         BUG_ON(item_size < sizeof(*ei));
7124         ei = btrfs_item_ptr(leaf, extent_slot,
7125                             struct btrfs_extent_item);
7126         if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID &&
7127             key.type == BTRFS_EXTENT_ITEM_KEY) {
7128                 struct btrfs_tree_block_info *bi;
7129                 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
7130                 bi = (struct btrfs_tree_block_info *)(ei + 1);
7131                 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
7132         }
7133
7134         refs = btrfs_extent_refs(leaf, ei);
7135         if (refs < refs_to_drop) {
7136                 btrfs_err(info,
7137                           "trying to drop %d refs but we only have %Lu for bytenr %Lu",
7138                           refs_to_drop, refs, bytenr);
7139                 ret = -EINVAL;
7140                 btrfs_abort_transaction(trans, ret);
7141                 goto out;
7142         }
7143         refs -= refs_to_drop;
7144
7145         if (refs > 0) {
7146                 if (extent_op)
7147                         __run_delayed_extent_op(extent_op, leaf, ei);
7148                 /*
7149                  * In the case of inline back ref, reference count will
7150                  * be updated by remove_extent_backref
7151                  */
7152                 if (iref) {
7153                         BUG_ON(!found_extent);
7154                 } else {
7155                         btrfs_set_extent_refs(leaf, ei, refs);
7156                         btrfs_mark_buffer_dirty(leaf);
7157                 }
7158                 if (found_extent) {
7159                         ret = remove_extent_backref(trans, info, path,
7160                                                     iref, refs_to_drop,
7161                                                     is_data, &last_ref);
7162                         if (ret) {
7163                                 btrfs_abort_transaction(trans, ret);
7164                                 goto out;
7165                         }
7166                 }
7167         } else {
7168                 if (found_extent) {
7169                         BUG_ON(is_data && refs_to_drop !=
7170                                extent_data_ref_count(path, iref));
7171                         if (iref) {
7172                                 BUG_ON(path->slots[0] != extent_slot);
7173                         } else {
7174                                 BUG_ON(path->slots[0] != extent_slot + 1);
7175                                 path->slots[0] = extent_slot;
7176                                 num_to_del = 2;
7177                         }
7178                 }
7179
7180                 last_ref = 1;
7181                 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
7182                                       num_to_del);
7183                 if (ret) {
7184                         btrfs_abort_transaction(trans, ret);
7185                         goto out;
7186                 }
7187                 btrfs_release_path(path);
7188
7189                 if (is_data) {
7190                         ret = btrfs_del_csums(trans, info, bytenr, num_bytes);
7191                         if (ret) {
7192                                 btrfs_abort_transaction(trans, ret);
7193                                 goto out;
7194                         }
7195                 }
7196
7197                 ret = add_to_free_space_tree(trans, info, bytenr, num_bytes);
7198                 if (ret) {
7199                         btrfs_abort_transaction(trans, ret);
7200                         goto out;
7201                 }
7202
7203                 ret = update_block_group(trans, info, bytenr, num_bytes, 0);
7204                 if (ret) {
7205                         btrfs_abort_transaction(trans, ret);
7206                         goto out;
7207                 }
7208         }
7209         btrfs_release_path(path);
7210
7211 out:
7212         btrfs_free_path(path);
7213         return ret;
7214 }
7215
7216 /*
7217  * when we free an block, it is possible (and likely) that we free the last
7218  * delayed ref for that extent as well.  This searches the delayed ref tree for
7219  * a given extent, and if there are no other delayed refs to be processed, it
7220  * removes it from the tree.
7221  */
7222 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
7223                                       u64 bytenr)
7224 {
7225         struct btrfs_delayed_ref_head *head;
7226         struct btrfs_delayed_ref_root *delayed_refs;
7227         int ret = 0;
7228
7229         delayed_refs = &trans->transaction->delayed_refs;
7230         spin_lock(&delayed_refs->lock);
7231         head = btrfs_find_delayed_ref_head(delayed_refs, bytenr);
7232         if (!head)
7233                 goto out_delayed_unlock;
7234
7235         spin_lock(&head->lock);
7236         if (!list_empty(&head->ref_list))
7237                 goto out;
7238
7239         if (head->extent_op) {
7240                 if (!head->must_insert_reserved)
7241                         goto out;
7242                 btrfs_free_delayed_extent_op(head->extent_op);
7243                 head->extent_op = NULL;
7244         }
7245
7246         /*
7247          * waiting for the lock here would deadlock.  If someone else has it
7248          * locked they are already in the process of dropping it anyway
7249          */
7250         if (!mutex_trylock(&head->mutex))
7251                 goto out;
7252
7253         /*
7254          * at this point we have a head with no other entries.  Go
7255          * ahead and process it.
7256          */
7257         head->node.in_tree = 0;
7258         rb_erase(&head->href_node, &delayed_refs->href_root);
7259
7260         atomic_dec(&delayed_refs->num_entries);
7261
7262         /*
7263          * we don't take a ref on the node because we're removing it from the
7264          * tree, so we just steal the ref the tree was holding.
7265          */
7266         delayed_refs->num_heads--;
7267         if (head->processing == 0)
7268                 delayed_refs->num_heads_ready--;
7269         head->processing = 0;
7270         spin_unlock(&head->lock);
7271         spin_unlock(&delayed_refs->lock);
7272
7273         BUG_ON(head->extent_op);
7274         if (head->must_insert_reserved)
7275                 ret = 1;
7276
7277         mutex_unlock(&head->mutex);
7278         btrfs_put_delayed_ref(&head->node);
7279         return ret;
7280 out:
7281         spin_unlock(&head->lock);
7282
7283 out_delayed_unlock:
7284         spin_unlock(&delayed_refs->lock);
7285         return 0;
7286 }
7287
7288 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
7289                            struct btrfs_root *root,
7290                            struct extent_buffer *buf,
7291                            u64 parent, int last_ref)
7292 {
7293         struct btrfs_fs_info *fs_info = root->fs_info;
7294         int pin = 1;
7295         int ret;
7296
7297         if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7298                 int old_ref_mod, new_ref_mod;
7299
7300                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, buf->start,
7301                                                  buf->len, parent,
7302                                                  root->root_key.objectid,
7303                                                  btrfs_header_level(buf),
7304                                                  BTRFS_DROP_DELAYED_REF, NULL,
7305                                                  &old_ref_mod, &new_ref_mod);
7306                 BUG_ON(ret); /* -ENOMEM */
7307                 pin = old_ref_mod >= 0 && new_ref_mod < 0;
7308         }
7309
7310         if (last_ref && btrfs_header_generation(buf) == trans->transid) {
7311                 struct btrfs_block_group_cache *cache;
7312
7313                 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
7314                         ret = check_ref_cleanup(trans, buf->start);
7315                         if (!ret)
7316                                 goto out;
7317                 }
7318
7319                 pin = 0;
7320                 cache = btrfs_lookup_block_group(fs_info, buf->start);
7321
7322                 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
7323                         pin_down_extent(fs_info, cache, buf->start,
7324                                         buf->len, 1);
7325                         btrfs_put_block_group(cache);
7326                         goto out;
7327                 }
7328
7329                 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
7330
7331                 btrfs_add_free_space(cache, buf->start, buf->len);
7332                 btrfs_free_reserved_bytes(cache, buf->len, 0);
7333                 btrfs_put_block_group(cache);
7334                 trace_btrfs_reserved_extent_free(fs_info, buf->start, buf->len);
7335         }
7336 out:
7337         if (pin)
7338                 add_pinned_bytes(fs_info, buf->len, btrfs_header_level(buf),
7339                                  root->root_key.objectid);
7340
7341         if (last_ref) {
7342                 /*
7343                  * Deleting the buffer, clear the corrupt flag since it doesn't
7344                  * matter anymore.
7345                  */
7346                 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
7347         }
7348 }
7349
7350 /* Can return -ENOMEM */
7351 int btrfs_free_extent(struct btrfs_trans_handle *trans,
7352                       struct btrfs_fs_info *fs_info,
7353                       u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
7354                       u64 owner, u64 offset)
7355 {
7356         int old_ref_mod, new_ref_mod;
7357         int ret;
7358
7359         if (btrfs_is_testing(fs_info))
7360                 return 0;
7361
7362
7363         /*
7364          * tree log blocks never actually go into the extent allocation
7365          * tree, just update pinning info and exit early.
7366          */
7367         if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
7368                 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
7369                 /* unlocks the pinned mutex */
7370                 btrfs_pin_extent(fs_info, bytenr, num_bytes, 1);
7371                 old_ref_mod = new_ref_mod = 0;
7372                 ret = 0;
7373         } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
7374                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, bytenr,
7375                                                  num_bytes, parent,
7376                                                  root_objectid, (int)owner,
7377                                                  BTRFS_DROP_DELAYED_REF, NULL,
7378                                                  &old_ref_mod, &new_ref_mod);
7379         } else {
7380                 ret = btrfs_add_delayed_data_ref(fs_info, trans, bytenr,
7381                                                  num_bytes, parent,
7382                                                  root_objectid, owner, offset,
7383                                                  0, BTRFS_DROP_DELAYED_REF,
7384                                                  &old_ref_mod, &new_ref_mod);
7385         }
7386
7387         if (ret == 0 && old_ref_mod >= 0 && new_ref_mod < 0)
7388                 add_pinned_bytes(fs_info, num_bytes, owner, root_objectid);
7389
7390         return ret;
7391 }
7392
7393 /*
7394  * when we wait for progress in the block group caching, its because
7395  * our allocation attempt failed at least once.  So, we must sleep
7396  * and let some progress happen before we try again.
7397  *
7398  * This function will sleep at least once waiting for new free space to
7399  * show up, and then it will check the block group free space numbers
7400  * for our min num_bytes.  Another option is to have it go ahead
7401  * and look in the rbtree for a free extent of a given size, but this
7402  * is a good start.
7403  *
7404  * Callers of this must check if cache->cached == BTRFS_CACHE_ERROR before using
7405  * any of the information in this block group.
7406  */
7407 static noinline void
7408 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
7409                                 u64 num_bytes)
7410 {
7411         struct btrfs_caching_control *caching_ctl;
7412
7413         caching_ctl = get_caching_control(cache);
7414         if (!caching_ctl)
7415                 return;
7416
7417         wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
7418                    (cache->free_space_ctl->free_space >= num_bytes));
7419
7420         put_caching_control(caching_ctl);
7421 }
7422
7423 static noinline int
7424 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
7425 {
7426         struct btrfs_caching_control *caching_ctl;
7427         int ret = 0;
7428
7429         caching_ctl = get_caching_control(cache);
7430         if (!caching_ctl)
7431                 return (cache->cached == BTRFS_CACHE_ERROR) ? -EIO : 0;
7432
7433         wait_event(caching_ctl->wait, block_group_cache_done(cache));
7434         if (cache->cached == BTRFS_CACHE_ERROR)
7435                 ret = -EIO;
7436         put_caching_control(caching_ctl);
7437         return ret;
7438 }
7439
7440 int __get_raid_index(u64 flags)
7441 {
7442         if (flags & BTRFS_BLOCK_GROUP_RAID10)
7443                 return BTRFS_RAID_RAID10;
7444         else if (flags & BTRFS_BLOCK_GROUP_RAID1)
7445                 return BTRFS_RAID_RAID1;
7446         else if (flags & BTRFS_BLOCK_GROUP_DUP)
7447                 return BTRFS_RAID_DUP;
7448         else if (flags & BTRFS_BLOCK_GROUP_RAID0)
7449                 return BTRFS_RAID_RAID0;
7450         else if (flags & BTRFS_BLOCK_GROUP_RAID5)
7451                 return BTRFS_RAID_RAID5;
7452         else if (flags & BTRFS_BLOCK_GROUP_RAID6)
7453                 return BTRFS_RAID_RAID6;
7454
7455         return BTRFS_RAID_SINGLE; /* BTRFS_BLOCK_GROUP_SINGLE */
7456 }
7457
7458 int get_block_group_index(struct btrfs_block_group_cache *cache)
7459 {
7460         return __get_raid_index(cache->flags);
7461 }
7462
7463 static const char *btrfs_raid_type_names[BTRFS_NR_RAID_TYPES] = {
7464         [BTRFS_RAID_RAID10]     = "raid10",
7465         [BTRFS_RAID_RAID1]      = "raid1",
7466         [BTRFS_RAID_DUP]        = "dup",
7467         [BTRFS_RAID_RAID0]      = "raid0",
7468         [BTRFS_RAID_SINGLE]     = "single",
7469         [BTRFS_RAID_RAID5]      = "raid5",
7470         [BTRFS_RAID_RAID6]      = "raid6",
7471 };
7472
7473 static const char *get_raid_name(enum btrfs_raid_types type)
7474 {
7475         if (type >= BTRFS_NR_RAID_TYPES)
7476                 return NULL;
7477
7478         return btrfs_raid_type_names[type];
7479 }
7480
7481 enum btrfs_loop_type {
7482         LOOP_CACHING_NOWAIT = 0,
7483         LOOP_CACHING_WAIT = 1,
7484         LOOP_ALLOC_CHUNK = 2,
7485         LOOP_NO_EMPTY_SIZE = 3,
7486 };
7487
7488 static inline void
7489 btrfs_lock_block_group(struct btrfs_block_group_cache *cache,
7490                        int delalloc)
7491 {
7492         if (delalloc)
7493                 down_read(&cache->data_rwsem);
7494 }
7495
7496 static inline void
7497 btrfs_grab_block_group(struct btrfs_block_group_cache *cache,
7498                        int delalloc)
7499 {
7500         btrfs_get_block_group(cache);
7501         if (delalloc)
7502                 down_read(&cache->data_rwsem);
7503 }
7504
7505 static struct btrfs_block_group_cache *
7506 btrfs_lock_cluster(struct btrfs_block_group_cache *block_group,
7507                    struct btrfs_free_cluster *cluster,
7508                    int delalloc)
7509 {
7510         struct btrfs_block_group_cache *used_bg = NULL;
7511
7512         spin_lock(&cluster->refill_lock);
7513         while (1) {
7514                 used_bg = cluster->block_group;
7515                 if (!used_bg)
7516                         return NULL;
7517
7518                 if (used_bg == block_group)
7519                         return used_bg;
7520
7521                 btrfs_get_block_group(used_bg);
7522
7523                 if (!delalloc)
7524                         return used_bg;
7525
7526                 if (down_read_trylock(&used_bg->data_rwsem))
7527                         return used_bg;
7528
7529                 spin_unlock(&cluster->refill_lock);
7530
7531                 /* We should only have one-level nested. */
7532                 down_read_nested(&used_bg->data_rwsem, SINGLE_DEPTH_NESTING);
7533
7534                 spin_lock(&cluster->refill_lock);
7535                 if (used_bg == cluster->block_group)
7536                         return used_bg;
7537
7538                 up_read(&used_bg->data_rwsem);
7539                 btrfs_put_block_group(used_bg);
7540         }
7541 }
7542
7543 static inline void
7544 btrfs_release_block_group(struct btrfs_block_group_cache *cache,
7545                          int delalloc)
7546 {
7547         if (delalloc)
7548                 up_read(&cache->data_rwsem);
7549         btrfs_put_block_group(cache);
7550 }
7551
7552 /*
7553  * walks the btree of allocated extents and find a hole of a given size.
7554  * The key ins is changed to record the hole:
7555  * ins->objectid == start position
7556  * ins->flags = BTRFS_EXTENT_ITEM_KEY
7557  * ins->offset == the size of the hole.
7558  * Any available blocks before search_start are skipped.
7559  *
7560  * If there is no suitable free space, we will record the max size of
7561  * the free space extent currently.
7562  */
7563 static noinline int find_free_extent(struct btrfs_fs_info *fs_info,
7564                                 u64 ram_bytes, u64 num_bytes, u64 empty_size,
7565                                 u64 hint_byte, struct btrfs_key *ins,
7566                                 u64 flags, int delalloc)
7567 {
7568         int ret = 0;
7569         struct btrfs_root *root = fs_info->extent_root;
7570         struct btrfs_free_cluster *last_ptr = NULL;
7571         struct btrfs_block_group_cache *block_group = NULL;
7572         u64 search_start = 0;
7573         u64 max_extent_size = 0;
7574         u64 max_free_space = 0;
7575         u64 empty_cluster = 0;
7576         struct btrfs_space_info *space_info;
7577         int loop = 0;
7578         int index = __get_raid_index(flags);
7579         bool failed_cluster_refill = false;
7580         bool failed_alloc = false;
7581         bool use_cluster = true;
7582         bool have_caching_bg = false;
7583         bool orig_have_caching_bg = false;
7584         bool full_search = false;
7585
7586         WARN_ON(num_bytes < fs_info->sectorsize);
7587         ins->type = BTRFS_EXTENT_ITEM_KEY;
7588         ins->objectid = 0;
7589         ins->offset = 0;
7590
7591         trace_find_free_extent(fs_info, num_bytes, empty_size, flags);
7592
7593         space_info = __find_space_info(fs_info, flags);
7594         if (!space_info) {
7595                 btrfs_err(fs_info, "No space info for %llu", flags);
7596                 return -ENOSPC;
7597         }
7598
7599         /*
7600          * If our free space is heavily fragmented we may not be able to make
7601          * big contiguous allocations, so instead of doing the expensive search
7602          * for free space, simply return ENOSPC with our max_extent_size so we
7603          * can go ahead and search for a more manageable chunk.
7604          *
7605          * If our max_extent_size is large enough for our allocation simply
7606          * disable clustering since we will likely not be able to find enough
7607          * space to create a cluster and induce latency trying.
7608          */
7609         if (unlikely(space_info->max_extent_size)) {
7610                 spin_lock(&space_info->lock);
7611                 if (space_info->max_extent_size &&
7612                     num_bytes > space_info->max_extent_size) {
7613                         ins->offset = space_info->max_extent_size;
7614                         spin_unlock(&space_info->lock);
7615                         return -ENOSPC;
7616                 } else if (space_info->max_extent_size) {
7617                         use_cluster = false;
7618                 }
7619                 spin_unlock(&space_info->lock);
7620         }
7621
7622         last_ptr = fetch_cluster_info(fs_info, space_info, &empty_cluster);
7623         if (last_ptr) {
7624                 spin_lock(&last_ptr->lock);
7625                 if (last_ptr->block_group)
7626                         hint_byte = last_ptr->window_start;
7627                 if (last_ptr->fragmented) {
7628                         /*
7629                          * We still set window_start so we can keep track of the
7630                          * last place we found an allocation to try and save
7631                          * some time.
7632                          */
7633                         hint_byte = last_ptr->window_start;
7634                         use_cluster = false;
7635                 }
7636                 spin_unlock(&last_ptr->lock);
7637         }
7638
7639         search_start = max(search_start, first_logical_byte(fs_info, 0));
7640         search_start = max(search_start, hint_byte);
7641         if (search_start == hint_byte) {
7642                 block_group = btrfs_lookup_block_group(fs_info, search_start);
7643                 /*
7644                  * we don't want to use the block group if it doesn't match our
7645                  * allocation bits, or if its not cached.
7646                  *
7647                  * However if we are re-searching with an ideal block group
7648                  * picked out then we don't care that the block group is cached.
7649                  */
7650                 if (block_group && block_group_bits(block_group, flags) &&
7651                     block_group->cached != BTRFS_CACHE_NO) {
7652                         down_read(&space_info->groups_sem);
7653                         if (list_empty(&block_group->list) ||
7654                             block_group->ro) {
7655                                 /*
7656                                  * someone is removing this block group,
7657                                  * we can't jump into the have_block_group
7658                                  * target because our list pointers are not
7659                                  * valid
7660                                  */
7661                                 btrfs_put_block_group(block_group);
7662                                 up_read(&space_info->groups_sem);
7663                         } else {
7664                                 index = get_block_group_index(block_group);
7665                                 btrfs_lock_block_group(block_group, delalloc);
7666                                 goto have_block_group;
7667                         }
7668                 } else if (block_group) {
7669                         btrfs_put_block_group(block_group);
7670                 }
7671         }
7672 search:
7673         have_caching_bg = false;
7674         if (index == 0 || index == __get_raid_index(flags))
7675                 full_search = true;
7676         down_read(&space_info->groups_sem);
7677         list_for_each_entry(block_group, &space_info->block_groups[index],
7678                             list) {
7679                 u64 offset;
7680                 int cached;
7681
7682                 /* If the block group is read-only, we can skip it entirely. */
7683                 if (unlikely(block_group->ro))
7684                         continue;
7685
7686                 btrfs_grab_block_group(block_group, delalloc);
7687                 search_start = block_group->key.objectid;
7688
7689                 /*
7690                  * this can happen if we end up cycling through all the
7691                  * raid types, but we want to make sure we only allocate
7692                  * for the proper type.
7693                  */
7694                 if (!block_group_bits(block_group, flags)) {
7695                     u64 extra = BTRFS_BLOCK_GROUP_DUP |
7696                                 BTRFS_BLOCK_GROUP_RAID1 |
7697                                 BTRFS_BLOCK_GROUP_RAID5 |
7698                                 BTRFS_BLOCK_GROUP_RAID6 |
7699                                 BTRFS_BLOCK_GROUP_RAID10;
7700
7701                         /*
7702                          * if they asked for extra copies and this block group
7703                          * doesn't provide them, bail.  This does allow us to
7704                          * fill raid0 from raid1.
7705                          */
7706                         if ((flags & extra) && !(block_group->flags & extra))
7707                                 goto loop;
7708
7709                         /*
7710                          * This block group has different flags than we want.
7711                          * It's possible that we have MIXED_GROUP flag but no
7712                          * block group is mixed.  Just skip such block group.
7713                          */
7714                         btrfs_release_block_group(block_group, delalloc);
7715                         continue;
7716                 }
7717
7718 have_block_group:
7719                 cached = block_group_cache_done(block_group);
7720                 if (unlikely(!cached)) {
7721                         have_caching_bg = true;
7722                         ret = cache_block_group(block_group, 0);
7723                         BUG_ON(ret < 0);
7724                         ret = 0;
7725                 }
7726
7727                 if (unlikely(block_group->cached == BTRFS_CACHE_ERROR))
7728                         goto loop;
7729
7730                 /*
7731                  * Ok we want to try and use the cluster allocator, so
7732                  * lets look there
7733                  */
7734                 if (last_ptr && use_cluster) {
7735                         struct btrfs_block_group_cache *used_block_group;
7736                         unsigned long aligned_cluster;
7737                         /*
7738                          * the refill lock keeps out other
7739                          * people trying to start a new cluster
7740                          */
7741                         used_block_group = btrfs_lock_cluster(block_group,
7742                                                               last_ptr,
7743                                                               delalloc);
7744                         if (!used_block_group)
7745                                 goto refill_cluster;
7746
7747                         if (used_block_group != block_group &&
7748                             (used_block_group->ro ||
7749                              !block_group_bits(used_block_group, flags)))
7750                                 goto release_cluster;
7751
7752                         offset = btrfs_alloc_from_cluster(used_block_group,
7753                                                 last_ptr,
7754                                                 num_bytes,
7755                                                 used_block_group->key.objectid,
7756                                                 &max_extent_size);
7757                         if (offset) {
7758                                 /* we have a block, we're done */
7759                                 spin_unlock(&last_ptr->refill_lock);
7760                                 trace_btrfs_reserve_extent_cluster(fs_info,
7761                                                 used_block_group,
7762                                                 search_start, num_bytes);
7763                                 if (used_block_group != block_group) {
7764                                         btrfs_release_block_group(block_group,
7765                                                                   delalloc);
7766                                         block_group = used_block_group;
7767                                 }
7768                                 goto checks;
7769                         }
7770
7771                         WARN_ON(last_ptr->block_group != used_block_group);
7772 release_cluster:
7773                         /* If we are on LOOP_NO_EMPTY_SIZE, we can't
7774                          * set up a new clusters, so lets just skip it
7775                          * and let the allocator find whatever block
7776                          * it can find.  If we reach this point, we
7777                          * will have tried the cluster allocator
7778                          * plenty of times and not have found
7779                          * anything, so we are likely way too
7780                          * fragmented for the clustering stuff to find
7781                          * anything.
7782                          *
7783                          * However, if the cluster is taken from the
7784                          * current block group, release the cluster
7785                          * first, so that we stand a better chance of
7786                          * succeeding in the unclustered
7787                          * allocation.  */
7788                         if (loop >= LOOP_NO_EMPTY_SIZE &&
7789                             used_block_group != block_group) {
7790                                 spin_unlock(&last_ptr->refill_lock);
7791                                 btrfs_release_block_group(used_block_group,
7792                                                           delalloc);
7793                                 goto unclustered_alloc;
7794                         }
7795
7796                         /*
7797                          * this cluster didn't work out, free it and
7798                          * start over
7799                          */
7800                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7801
7802                         if (used_block_group != block_group)
7803                                 btrfs_release_block_group(used_block_group,
7804                                                           delalloc);
7805 refill_cluster:
7806                         if (loop >= LOOP_NO_EMPTY_SIZE) {
7807                                 spin_unlock(&last_ptr->refill_lock);
7808                                 goto unclustered_alloc;
7809                         }
7810
7811                         aligned_cluster = max_t(unsigned long,
7812                                                 empty_cluster + empty_size,
7813                                               block_group->full_stripe_len);
7814
7815                         /* allocate a cluster in this block group */
7816                         ret = btrfs_find_space_cluster(fs_info, block_group,
7817                                                        last_ptr, search_start,
7818                                                        num_bytes,
7819                                                        aligned_cluster);
7820                         if (ret == 0) {
7821                                 /*
7822                                  * now pull our allocation out of this
7823                                  * cluster
7824                                  */
7825                                 offset = btrfs_alloc_from_cluster(block_group,
7826                                                         last_ptr,
7827                                                         num_bytes,
7828                                                         search_start,
7829                                                         &max_extent_size);
7830                                 if (offset) {
7831                                         /* we found one, proceed */
7832                                         spin_unlock(&last_ptr->refill_lock);
7833                                         trace_btrfs_reserve_extent_cluster(fs_info,
7834                                                 block_group, search_start,
7835                                                 num_bytes);
7836                                         goto checks;
7837                                 }
7838                         } else if (!cached && loop > LOOP_CACHING_NOWAIT
7839                                    && !failed_cluster_refill) {
7840                                 spin_unlock(&last_ptr->refill_lock);
7841
7842                                 failed_cluster_refill = true;
7843                                 wait_block_group_cache_progress(block_group,
7844                                        num_bytes + empty_cluster + empty_size);
7845                                 goto have_block_group;
7846                         }
7847
7848                         /*
7849                          * at this point we either didn't find a cluster
7850                          * or we weren't able to allocate a block from our
7851                          * cluster.  Free the cluster we've been trying
7852                          * to use, and go to the next block group
7853                          */
7854                         btrfs_return_cluster_to_free_space(NULL, last_ptr);
7855                         spin_unlock(&last_ptr->refill_lock);
7856                         goto loop;
7857                 }
7858
7859 unclustered_alloc:
7860                 /*
7861                  * We are doing an unclustered alloc, set the fragmented flag so
7862                  * we don't bother trying to setup a cluster again until we get
7863                  * more space.
7864                  */
7865                 if (unlikely(last_ptr)) {
7866                         spin_lock(&last_ptr->lock);
7867                         last_ptr->fragmented = 1;
7868                         spin_unlock(&last_ptr->lock);
7869                 }
7870                 if (cached) {
7871                         struct btrfs_free_space_ctl *ctl =
7872                                 block_group->free_space_ctl;
7873
7874                         spin_lock(&ctl->tree_lock);
7875                         if (ctl->free_space <
7876                             num_bytes + empty_cluster + empty_size) {
7877                                 max_free_space = max(max_free_space,
7878                                                      ctl->free_space);
7879                                 spin_unlock(&ctl->tree_lock);
7880                                 goto loop;
7881                         }
7882                         spin_unlock(&ctl->tree_lock);
7883                 }
7884
7885                 offset = btrfs_find_space_for_alloc(block_group, search_start,
7886                                                     num_bytes, empty_size,
7887                                                     &max_extent_size);
7888                 /*
7889                  * If we didn't find a chunk, and we haven't failed on this
7890                  * block group before, and this block group is in the middle of
7891                  * caching and we are ok with waiting, then go ahead and wait
7892                  * for progress to be made, and set failed_alloc to true.
7893                  *
7894                  * If failed_alloc is true then we've already waited on this
7895                  * block group once and should move on to the next block group.
7896                  */
7897                 if (!offset && !failed_alloc && !cached &&
7898                     loop > LOOP_CACHING_NOWAIT) {
7899                         wait_block_group_cache_progress(block_group,
7900                                                 num_bytes + empty_size);
7901                         failed_alloc = true;
7902                         goto have_block_group;
7903                 } else if (!offset) {
7904                         goto loop;
7905                 }
7906 checks:
7907                 search_start = ALIGN(offset, fs_info->stripesize);
7908
7909                 /* move on to the next group */
7910                 if (search_start + num_bytes >
7911                     block_group->key.objectid + block_group->key.offset) {
7912                         btrfs_add_free_space(block_group, offset, num_bytes);
7913                         goto loop;
7914                 }
7915
7916                 if (offset < search_start)
7917                         btrfs_add_free_space(block_group, offset,
7918                                              search_start - offset);
7919                 BUG_ON(offset > search_start);
7920
7921                 ret = btrfs_add_reserved_bytes(block_group, ram_bytes,
7922                                 num_bytes, delalloc);
7923                 if (ret == -EAGAIN) {
7924                         btrfs_add_free_space(block_group, offset, num_bytes);
7925                         goto loop;
7926                 }
7927                 btrfs_inc_block_group_reservations(block_group);
7928
7929                 /* we are all good, lets return */
7930                 ins->objectid = search_start;
7931                 ins->offset = num_bytes;
7932
7933                 trace_btrfs_reserve_extent(fs_info, block_group,
7934                                            search_start, num_bytes);
7935                 btrfs_release_block_group(block_group, delalloc);
7936                 break;
7937 loop:
7938                 failed_cluster_refill = false;
7939                 failed_alloc = false;
7940                 BUG_ON(index != get_block_group_index(block_group));
7941                 btrfs_release_block_group(block_group, delalloc);
7942                 cond_resched();
7943         }
7944         up_read(&space_info->groups_sem);
7945
7946         if ((loop == LOOP_CACHING_NOWAIT) && have_caching_bg
7947                 && !orig_have_caching_bg)
7948                 orig_have_caching_bg = true;
7949
7950         if (!ins->objectid && loop >= LOOP_CACHING_WAIT && have_caching_bg)
7951                 goto search;
7952
7953         if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
7954                 goto search;
7955
7956         /*
7957          * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
7958          *                      caching kthreads as we move along
7959          * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
7960          * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
7961          * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
7962          *                      again
7963          */
7964         if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
7965                 index = 0;
7966                 if (loop == LOOP_CACHING_NOWAIT) {
7967                         /*
7968                          * We want to skip the LOOP_CACHING_WAIT step if we
7969                          * don't have any uncached bgs and we've already done a
7970                          * full search through.
7971                          */
7972                         if (orig_have_caching_bg || !full_search)
7973                                 loop = LOOP_CACHING_WAIT;
7974                         else
7975                                 loop = LOOP_ALLOC_CHUNK;
7976                 } else {
7977                         loop++;
7978                 }
7979
7980                 if (loop == LOOP_ALLOC_CHUNK) {
7981                         struct btrfs_trans_handle *trans;
7982                         int exist = 0;
7983
7984                         trans = current->journal_info;
7985                         if (trans)
7986                                 exist = 1;
7987                         else
7988                                 trans = btrfs_join_transaction(root);
7989
7990                         if (IS_ERR(trans)) {
7991                                 ret = PTR_ERR(trans);
7992                                 goto out;
7993                         }
7994
7995                         ret = do_chunk_alloc(trans, fs_info, flags,
7996                                              CHUNK_ALLOC_FORCE);
7997
7998                         /*
7999                          * If we can't allocate a new chunk we've already looped
8000                          * through at least once, move on to the NO_EMPTY_SIZE
8001                          * case.
8002                          */
8003                         if (ret == -ENOSPC)
8004                                 loop = LOOP_NO_EMPTY_SIZE;
8005
8006                         /*
8007                          * Do not bail out on ENOSPC since we
8008                          * can do more things.
8009                          */
8010                         if (ret < 0 && ret != -ENOSPC)
8011                                 btrfs_abort_transaction(trans, ret);
8012                         else
8013                                 ret = 0;
8014                         if (!exist)
8015                                 btrfs_end_transaction(trans);
8016                         if (ret)
8017                                 goto out;
8018                 }
8019
8020                 if (loop == LOOP_NO_EMPTY_SIZE) {
8021                         /*
8022                          * Don't loop again if we already have no empty_size and
8023                          * no empty_cluster.
8024                          */
8025                         if (empty_size == 0 &&
8026                             empty_cluster == 0) {
8027                                 ret = -ENOSPC;
8028                                 goto out;
8029                         }
8030                         empty_size = 0;
8031                         empty_cluster = 0;
8032                 }
8033
8034                 goto search;
8035         } else if (!ins->objectid) {
8036                 ret = -ENOSPC;
8037         } else if (ins->objectid) {
8038                 if (!use_cluster && last_ptr) {
8039                         spin_lock(&last_ptr->lock);
8040                         last_ptr->window_start = ins->objectid;
8041                         spin_unlock(&last_ptr->lock);
8042                 }
8043                 ret = 0;
8044         }
8045 out:
8046         if (ret == -ENOSPC) {
8047                 if (!max_extent_size)
8048                         max_extent_size = max_free_space;
8049                 spin_lock(&space_info->lock);
8050                 space_info->max_extent_size = max_extent_size;
8051                 spin_unlock(&space_info->lock);
8052                 ins->offset = max_extent_size;
8053         }
8054         return ret;
8055 }
8056
8057 static void dump_space_info(struct btrfs_fs_info *fs_info,
8058                             struct btrfs_space_info *info, u64 bytes,
8059                             int dump_block_groups)
8060 {
8061         struct btrfs_block_group_cache *cache;
8062         int index = 0;
8063
8064         spin_lock(&info->lock);
8065         btrfs_info(fs_info, "space_info %llu has %llu free, is %sfull",
8066                    info->flags,
8067                    info->total_bytes - btrfs_space_info_used(info, true),
8068                    info->full ? "" : "not ");
8069         btrfs_info(fs_info,
8070                 "space_info total=%llu, used=%llu, pinned=%llu, reserved=%llu, may_use=%llu, readonly=%llu",
8071                 info->total_bytes, info->bytes_used, info->bytes_pinned,
8072                 info->bytes_reserved, info->bytes_may_use,
8073                 info->bytes_readonly);
8074         spin_unlock(&info->lock);
8075
8076         if (!dump_block_groups)
8077                 return;
8078
8079         down_read(&info->groups_sem);
8080 again:
8081         list_for_each_entry(cache, &info->block_groups[index], list) {
8082                 spin_lock(&cache->lock);
8083                 btrfs_info(fs_info,
8084                         "block group %llu has %llu bytes, %llu used %llu pinned %llu reserved %s",
8085                         cache->key.objectid, cache->key.offset,
8086                         btrfs_block_group_used(&cache->item), cache->pinned,
8087                         cache->reserved, cache->ro ? "[readonly]" : "");
8088                 btrfs_dump_free_space(cache, bytes);
8089                 spin_unlock(&cache->lock);
8090         }
8091         if (++index < BTRFS_NR_RAID_TYPES)
8092                 goto again;
8093         up_read(&info->groups_sem);
8094 }
8095
8096 int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes,
8097                          u64 num_bytes, u64 min_alloc_size,
8098                          u64 empty_size, u64 hint_byte,
8099                          struct btrfs_key *ins, int is_data, int delalloc)
8100 {
8101         struct btrfs_fs_info *fs_info = root->fs_info;
8102         bool final_tried = num_bytes == min_alloc_size;
8103         u64 flags;
8104         int ret;
8105
8106         flags = get_alloc_profile_by_root(root, is_data);
8107 again:
8108         WARN_ON(num_bytes < fs_info->sectorsize);
8109         ret = find_free_extent(fs_info, ram_bytes, num_bytes, empty_size,
8110                                hint_byte, ins, flags, delalloc);
8111         if (!ret && !is_data) {
8112                 btrfs_dec_block_group_reservations(fs_info, ins->objectid);
8113         } else if (ret == -ENOSPC) {
8114                 if (!final_tried && ins->offset) {
8115                         num_bytes = min(num_bytes >> 1, ins->offset);
8116                         num_bytes = round_down(num_bytes,
8117                                                fs_info->sectorsize);
8118                         num_bytes = max(num_bytes, min_alloc_size);
8119                         ram_bytes = num_bytes;
8120                         if (num_bytes == min_alloc_size)
8121                                 final_tried = true;
8122                         goto again;
8123                 } else if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8124                         struct btrfs_space_info *sinfo;
8125
8126                         sinfo = __find_space_info(fs_info, flags);
8127                         btrfs_err(fs_info,
8128                                   "allocation failed flags %llu, wanted %llu",
8129                                   flags, num_bytes);
8130                         if (sinfo)
8131                                 dump_space_info(fs_info, sinfo, num_bytes, 1);
8132                 }
8133         }
8134
8135         return ret;
8136 }
8137
8138 static int __btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8139                                         u64 start, u64 len,
8140                                         int pin, int delalloc)
8141 {
8142         struct btrfs_block_group_cache *cache;
8143         int ret = 0;
8144
8145         cache = btrfs_lookup_block_group(fs_info, start);
8146         if (!cache) {
8147                 btrfs_err(fs_info, "Unable to find block group for %llu",
8148                           start);
8149                 return -ENOSPC;
8150         }
8151
8152         if (pin)
8153                 pin_down_extent(fs_info, cache, start, len, 1);
8154         else {
8155                 if (btrfs_test_opt(fs_info, DISCARD))
8156                         ret = btrfs_discard_extent(fs_info, start, len, NULL);
8157                 btrfs_add_free_space(cache, start, len);
8158                 btrfs_free_reserved_bytes(cache, len, delalloc);
8159                 trace_btrfs_reserved_extent_free(fs_info, start, len);
8160         }
8161
8162         btrfs_put_block_group(cache);
8163         return ret;
8164 }
8165
8166 int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
8167                                u64 start, u64 len, int delalloc)
8168 {
8169         return __btrfs_free_reserved_extent(fs_info, start, len, 0, delalloc);
8170 }
8171
8172 int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
8173                                        u64 start, u64 len)
8174 {
8175         return __btrfs_free_reserved_extent(fs_info, start, len, 1, 0);
8176 }
8177
8178 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8179                                       struct btrfs_fs_info *fs_info,
8180                                       u64 parent, u64 root_objectid,
8181                                       u64 flags, u64 owner, u64 offset,
8182                                       struct btrfs_key *ins, int ref_mod)
8183 {
8184         int ret;
8185         struct btrfs_extent_item *extent_item;
8186         struct btrfs_extent_inline_ref *iref;
8187         struct btrfs_path *path;
8188         struct extent_buffer *leaf;
8189         int type;
8190         u32 size;
8191
8192         if (parent > 0)
8193                 type = BTRFS_SHARED_DATA_REF_KEY;
8194         else
8195                 type = BTRFS_EXTENT_DATA_REF_KEY;
8196
8197         size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
8198
8199         path = btrfs_alloc_path();
8200         if (!path)
8201                 return -ENOMEM;
8202
8203         path->leave_spinning = 1;
8204         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8205                                       ins, size);
8206         if (ret) {
8207                 btrfs_free_path(path);
8208                 return ret;
8209         }
8210
8211         leaf = path->nodes[0];
8212         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8213                                      struct btrfs_extent_item);
8214         btrfs_set_extent_refs(leaf, extent_item, ref_mod);
8215         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8216         btrfs_set_extent_flags(leaf, extent_item,
8217                                flags | BTRFS_EXTENT_FLAG_DATA);
8218
8219         iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8220         btrfs_set_extent_inline_ref_type(leaf, iref, type);
8221         if (parent > 0) {
8222                 struct btrfs_shared_data_ref *ref;
8223                 ref = (struct btrfs_shared_data_ref *)(iref + 1);
8224                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8225                 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
8226         } else {
8227                 struct btrfs_extent_data_ref *ref;
8228                 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
8229                 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
8230                 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
8231                 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
8232                 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
8233         }
8234
8235         btrfs_mark_buffer_dirty(path->nodes[0]);
8236         btrfs_free_path(path);
8237
8238         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8239                                           ins->offset);
8240         if (ret)
8241                 return ret;
8242
8243         ret = update_block_group(trans, fs_info, ins->objectid, ins->offset, 1);
8244         if (ret) { /* -ENOENT, logic error */
8245                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8246                         ins->objectid, ins->offset);
8247                 BUG();
8248         }
8249         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid, ins->offset);
8250         return ret;
8251 }
8252
8253 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
8254                                      struct btrfs_fs_info *fs_info,
8255                                      u64 parent, u64 root_objectid,
8256                                      u64 flags, struct btrfs_disk_key *key,
8257                                      int level, struct btrfs_key *ins)
8258 {
8259         int ret;
8260         struct btrfs_extent_item *extent_item;
8261         struct btrfs_tree_block_info *block_info;
8262         struct btrfs_extent_inline_ref *iref;
8263         struct btrfs_path *path;
8264         struct extent_buffer *leaf;
8265         u32 size = sizeof(*extent_item) + sizeof(*iref);
8266         u64 num_bytes = ins->offset;
8267         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8268
8269         if (!skinny_metadata)
8270                 size += sizeof(*block_info);
8271
8272         path = btrfs_alloc_path();
8273         if (!path) {
8274                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8275                                                    fs_info->nodesize);
8276                 return -ENOMEM;
8277         }
8278
8279         path->leave_spinning = 1;
8280         ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
8281                                       ins, size);
8282         if (ret) {
8283                 btrfs_free_path(path);
8284                 btrfs_free_and_pin_reserved_extent(fs_info, ins->objectid,
8285                                                    fs_info->nodesize);
8286                 return ret;
8287         }
8288
8289         leaf = path->nodes[0];
8290         extent_item = btrfs_item_ptr(leaf, path->slots[0],
8291                                      struct btrfs_extent_item);
8292         btrfs_set_extent_refs(leaf, extent_item, 1);
8293         btrfs_set_extent_generation(leaf, extent_item, trans->transid);
8294         btrfs_set_extent_flags(leaf, extent_item,
8295                                flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
8296
8297         if (skinny_metadata) {
8298                 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
8299                 num_bytes = fs_info->nodesize;
8300         } else {
8301                 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
8302                 btrfs_set_tree_block_key(leaf, block_info, key);
8303                 btrfs_set_tree_block_level(leaf, block_info, level);
8304                 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
8305         }
8306
8307         if (parent > 0) {
8308                 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
8309                 btrfs_set_extent_inline_ref_type(leaf, iref,
8310                                                  BTRFS_SHARED_BLOCK_REF_KEY);
8311                 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
8312         } else {
8313                 btrfs_set_extent_inline_ref_type(leaf, iref,
8314                                                  BTRFS_TREE_BLOCK_REF_KEY);
8315                 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
8316         }
8317
8318         btrfs_mark_buffer_dirty(leaf);
8319         btrfs_free_path(path);
8320
8321         ret = remove_from_free_space_tree(trans, fs_info, ins->objectid,
8322                                           num_bytes);
8323         if (ret)
8324                 return ret;
8325
8326         ret = update_block_group(trans, fs_info, ins->objectid,
8327                                  fs_info->nodesize, 1);
8328         if (ret) { /* -ENOENT, logic error */
8329                 btrfs_err(fs_info, "update block group failed for %llu %llu",
8330                         ins->objectid, ins->offset);
8331                 BUG();
8332         }
8333
8334         trace_btrfs_reserved_extent_alloc(fs_info, ins->objectid,
8335                                           fs_info->nodesize);
8336         return ret;
8337 }
8338
8339 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
8340                                      u64 root_objectid, u64 owner,
8341                                      u64 offset, u64 ram_bytes,
8342                                      struct btrfs_key *ins)
8343 {
8344         struct btrfs_fs_info *fs_info = trans->fs_info;
8345         int ret;
8346
8347         BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
8348
8349         ret = btrfs_add_delayed_data_ref(fs_info, trans, ins->objectid,
8350                                          ins->offset, 0, root_objectid, owner,
8351                                          offset, ram_bytes,
8352                                          BTRFS_ADD_DELAYED_EXTENT, NULL, NULL);
8353         return ret;
8354 }
8355
8356 /*
8357  * this is used by the tree logging recovery code.  It records that
8358  * an extent has been allocated and makes sure to clear the free
8359  * space cache bits as well
8360  */
8361 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
8362                                    struct btrfs_fs_info *fs_info,
8363                                    u64 root_objectid, u64 owner, u64 offset,
8364                                    struct btrfs_key *ins)
8365 {
8366         int ret;
8367         struct btrfs_block_group_cache *block_group;
8368         struct btrfs_space_info *space_info;
8369
8370         /*
8371          * Mixed block groups will exclude before processing the log so we only
8372          * need to do the exclude dance if this fs isn't mixed.
8373          */
8374         if (!btrfs_fs_incompat(fs_info, MIXED_GROUPS)) {
8375                 ret = __exclude_logged_extent(fs_info, ins->objectid,
8376                                               ins->offset);
8377                 if (ret)
8378                         return ret;
8379         }
8380
8381         block_group = btrfs_lookup_block_group(fs_info, ins->objectid);
8382         if (!block_group)
8383                 return -EINVAL;
8384
8385         space_info = block_group->space_info;
8386         spin_lock(&space_info->lock);
8387         spin_lock(&block_group->lock);
8388         space_info->bytes_reserved += ins->offset;
8389         block_group->reserved += ins->offset;
8390         spin_unlock(&block_group->lock);
8391         spin_unlock(&space_info->lock);
8392
8393         ret = alloc_reserved_file_extent(trans, fs_info, 0, root_objectid,
8394                                          0, owner, offset, ins, 1);
8395         btrfs_put_block_group(block_group);
8396         return ret;
8397 }
8398
8399 static struct extent_buffer *
8400 btrfs_init_new_buffer(struct btrfs_trans_handle *trans, struct btrfs_root *root,
8401                       u64 bytenr, int level)
8402 {
8403         struct btrfs_fs_info *fs_info = root->fs_info;
8404         struct extent_buffer *buf;
8405
8406         buf = btrfs_find_create_tree_block(fs_info, bytenr);
8407         if (IS_ERR(buf))
8408                 return buf;
8409
8410         /*
8411          * Extra safety check in case the extent tree is corrupted and extent
8412          * allocator chooses to use a tree block which is already used and
8413          * locked.
8414          */
8415         if (buf->lock_owner == current->pid) {
8416                 btrfs_err_rl(fs_info,
8417 "tree block %llu owner %llu already locked by pid=%d, extent tree corruption detected",
8418                         buf->start, btrfs_header_owner(buf), current->pid);
8419                 free_extent_buffer(buf);
8420                 return ERR_PTR(-EUCLEAN);
8421         }
8422
8423         btrfs_set_header_generation(buf, trans->transid);
8424         btrfs_set_buffer_lockdep_class(root->root_key.objectid, buf, level);
8425         btrfs_tree_lock(buf);
8426         clean_tree_block(fs_info, buf);
8427         clear_bit(EXTENT_BUFFER_STALE, &buf->bflags);
8428
8429         btrfs_set_lock_blocking(buf);
8430         set_extent_buffer_uptodate(buf);
8431
8432         if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
8433                 buf->log_index = root->log_transid % 2;
8434                 /*
8435                  * we allow two log transactions at a time, use different
8436                  * EXENT bit to differentiate dirty pages.
8437                  */
8438                 if (buf->log_index == 0)
8439                         set_extent_dirty(&root->dirty_log_pages, buf->start,
8440                                         buf->start + buf->len - 1, GFP_NOFS);
8441                 else
8442                         set_extent_new(&root->dirty_log_pages, buf->start,
8443                                         buf->start + buf->len - 1);
8444         } else {
8445                 buf->log_index = -1;
8446                 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
8447                          buf->start + buf->len - 1, GFP_NOFS);
8448         }
8449         trans->dirty = true;
8450         /* this returns a buffer locked for blocking */
8451         return buf;
8452 }
8453
8454 static struct btrfs_block_rsv *
8455 use_block_rsv(struct btrfs_trans_handle *trans,
8456               struct btrfs_root *root, u32 blocksize)
8457 {
8458         struct btrfs_fs_info *fs_info = root->fs_info;
8459         struct btrfs_block_rsv *block_rsv;
8460         struct btrfs_block_rsv *global_rsv = &fs_info->global_block_rsv;
8461         int ret;
8462         bool global_updated = false;
8463
8464         block_rsv = get_block_rsv(trans, root);
8465
8466         if (unlikely(block_rsv->size == 0))
8467                 goto try_reserve;
8468 again:
8469         ret = block_rsv_use_bytes(block_rsv, blocksize);
8470         if (!ret)
8471                 return block_rsv;
8472
8473         if (block_rsv->failfast)
8474                 return ERR_PTR(ret);
8475
8476         if (block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL && !global_updated) {
8477                 global_updated = true;
8478                 update_global_block_rsv(fs_info);
8479                 goto again;
8480         }
8481
8482         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
8483                 static DEFINE_RATELIMIT_STATE(_rs,
8484                                 DEFAULT_RATELIMIT_INTERVAL * 10,
8485                                 /*DEFAULT_RATELIMIT_BURST*/ 1);
8486                 if (__ratelimit(&_rs))
8487                         WARN(1, KERN_DEBUG
8488                                 "BTRFS: block rsv returned %d\n", ret);
8489         }
8490 try_reserve:
8491         ret = reserve_metadata_bytes(root, block_rsv, blocksize,
8492                                      BTRFS_RESERVE_NO_FLUSH);
8493         if (!ret)
8494                 return block_rsv;
8495         /*
8496          * If we couldn't reserve metadata bytes try and use some from
8497          * the global reserve if its space type is the same as the global
8498          * reservation.
8499          */
8500         if (block_rsv->type != BTRFS_BLOCK_RSV_GLOBAL &&
8501             block_rsv->space_info == global_rsv->space_info) {
8502                 ret = block_rsv_use_bytes(global_rsv, blocksize);
8503                 if (!ret)
8504                         return global_rsv;
8505         }
8506         return ERR_PTR(ret);
8507 }
8508
8509 static void unuse_block_rsv(struct btrfs_fs_info *fs_info,
8510                             struct btrfs_block_rsv *block_rsv, u32 blocksize)
8511 {
8512         block_rsv_add_bytes(block_rsv, blocksize, 0);
8513         block_rsv_release_bytes(fs_info, block_rsv, NULL, 0);
8514 }
8515
8516 /*
8517  * finds a free extent and does all the dirty work required for allocation
8518  * returns the tree buffer or an ERR_PTR on error.
8519  */
8520 struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
8521                                              struct btrfs_root *root,
8522                                              u64 parent, u64 root_objectid,
8523                                              const struct btrfs_disk_key *key,
8524                                              int level, u64 hint,
8525                                              u64 empty_size)
8526 {
8527         struct btrfs_fs_info *fs_info = root->fs_info;
8528         struct btrfs_key ins;
8529         struct btrfs_block_rsv *block_rsv;
8530         struct extent_buffer *buf;
8531         struct btrfs_delayed_extent_op *extent_op;
8532         u64 flags = 0;
8533         int ret;
8534         u32 blocksize = fs_info->nodesize;
8535         bool skinny_metadata = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
8536
8537 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
8538         if (btrfs_is_testing(fs_info)) {
8539                 buf = btrfs_init_new_buffer(trans, root, root->alloc_bytenr,
8540                                             level);
8541                 if (!IS_ERR(buf))
8542                         root->alloc_bytenr += blocksize;
8543                 return buf;
8544         }
8545 #endif
8546
8547         block_rsv = use_block_rsv(trans, root, blocksize);
8548         if (IS_ERR(block_rsv))
8549                 return ERR_CAST(block_rsv);
8550
8551         ret = btrfs_reserve_extent(root, blocksize, blocksize, blocksize,
8552                                    empty_size, hint, &ins, 0, 0);
8553         if (ret)
8554                 goto out_unuse;
8555
8556         buf = btrfs_init_new_buffer(trans, root, ins.objectid, level);
8557         if (IS_ERR(buf)) {
8558                 ret = PTR_ERR(buf);
8559                 goto out_free_reserved;
8560         }
8561
8562         if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
8563                 if (parent == 0)
8564                         parent = ins.objectid;
8565                 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
8566         } else
8567                 BUG_ON(parent > 0);
8568
8569         if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
8570                 extent_op = btrfs_alloc_delayed_extent_op();
8571                 if (!extent_op) {
8572                         ret = -ENOMEM;
8573                         goto out_free_buf;
8574                 }
8575                 if (key)
8576                         memcpy(&extent_op->key, key, sizeof(extent_op->key));
8577                 else
8578                         memset(&extent_op->key, 0, sizeof(extent_op->key));
8579                 extent_op->flags_to_set = flags;
8580                 extent_op->update_key = skinny_metadata ? false : true;
8581                 extent_op->update_flags = true;
8582                 extent_op->is_data = false;
8583                 extent_op->level = level;
8584
8585                 ret = btrfs_add_delayed_tree_ref(fs_info, trans, ins.objectid,
8586                                                  ins.offset, parent,
8587                                                  root_objectid, level,
8588                                                  BTRFS_ADD_DELAYED_EXTENT,
8589                                                  extent_op, NULL, NULL);
8590                 if (ret)
8591                         goto out_free_delayed;
8592         }
8593         return buf;
8594
8595 out_free_delayed:
8596         btrfs_free_delayed_extent_op(extent_op);
8597 out_free_buf:
8598         free_extent_buffer(buf);
8599 out_free_reserved:
8600         btrfs_free_reserved_extent(fs_info, ins.objectid, ins.offset, 0);
8601 out_unuse:
8602         unuse_block_rsv(fs_info, block_rsv, blocksize);
8603         return ERR_PTR(ret);
8604 }
8605
8606 struct walk_control {
8607         u64 refs[BTRFS_MAX_LEVEL];
8608         u64 flags[BTRFS_MAX_LEVEL];
8609         struct btrfs_key update_progress;
8610         int stage;
8611         int level;
8612         int shared_level;
8613         int update_ref;
8614         int keep_locks;
8615         int reada_slot;
8616         int reada_count;
8617         int for_reloc;
8618 };
8619
8620 #define DROP_REFERENCE  1
8621 #define UPDATE_BACKREF  2
8622
8623 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
8624                                      struct btrfs_root *root,
8625                                      struct walk_control *wc,
8626                                      struct btrfs_path *path)
8627 {
8628         struct btrfs_fs_info *fs_info = root->fs_info;
8629         u64 bytenr;
8630         u64 generation;
8631         u64 refs;
8632         u64 flags;
8633         u32 nritems;
8634         struct btrfs_key key;
8635         struct extent_buffer *eb;
8636         int ret;
8637         int slot;
8638         int nread = 0;
8639
8640         if (path->slots[wc->level] < wc->reada_slot) {
8641                 wc->reada_count = wc->reada_count * 2 / 3;
8642                 wc->reada_count = max(wc->reada_count, 2);
8643         } else {
8644                 wc->reada_count = wc->reada_count * 3 / 2;
8645                 wc->reada_count = min_t(int, wc->reada_count,
8646                                         BTRFS_NODEPTRS_PER_BLOCK(fs_info));
8647         }
8648
8649         eb = path->nodes[wc->level];
8650         nritems = btrfs_header_nritems(eb);
8651
8652         for (slot = path->slots[wc->level]; slot < nritems; slot++) {
8653                 if (nread >= wc->reada_count)
8654                         break;
8655
8656                 cond_resched();
8657                 bytenr = btrfs_node_blockptr(eb, slot);
8658                 generation = btrfs_node_ptr_generation(eb, slot);
8659
8660                 if (slot == path->slots[wc->level])
8661                         goto reada;
8662
8663                 if (wc->stage == UPDATE_BACKREF &&
8664                     generation <= root->root_key.offset)
8665                         continue;
8666
8667                 /* We don't lock the tree block, it's OK to be racy here */
8668                 ret = btrfs_lookup_extent_info(trans, fs_info, bytenr,
8669                                                wc->level - 1, 1, &refs,
8670                                                &flags);
8671                 /* We don't care about errors in readahead. */
8672                 if (ret < 0)
8673                         continue;
8674                 BUG_ON(refs == 0);
8675
8676                 if (wc->stage == DROP_REFERENCE) {
8677                         if (refs == 1)
8678                                 goto reada;
8679
8680                         if (wc->level == 1 &&
8681                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8682                                 continue;
8683                         if (!wc->update_ref ||
8684                             generation <= root->root_key.offset)
8685                                 continue;
8686                         btrfs_node_key_to_cpu(eb, &key, slot);
8687                         ret = btrfs_comp_cpu_keys(&key,
8688                                                   &wc->update_progress);
8689                         if (ret < 0)
8690                                 continue;
8691                 } else {
8692                         if (wc->level == 1 &&
8693                             (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8694                                 continue;
8695                 }
8696 reada:
8697                 readahead_tree_block(fs_info, bytenr);
8698                 nread++;
8699         }
8700         wc->reada_slot = slot;
8701 }
8702
8703 /*
8704  * helper to process tree block while walking down the tree.
8705  *
8706  * when wc->stage == UPDATE_BACKREF, this function updates
8707  * back refs for pointers in the block.
8708  *
8709  * NOTE: return value 1 means we should stop walking down.
8710  */
8711 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
8712                                    struct btrfs_root *root,
8713                                    struct btrfs_path *path,
8714                                    struct walk_control *wc, int lookup_info)
8715 {
8716         struct btrfs_fs_info *fs_info = root->fs_info;
8717         int level = wc->level;
8718         struct extent_buffer *eb = path->nodes[level];
8719         u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
8720         int ret;
8721
8722         if (wc->stage == UPDATE_BACKREF &&
8723             btrfs_header_owner(eb) != root->root_key.objectid)
8724                 return 1;
8725
8726         /*
8727          * when reference count of tree block is 1, it won't increase
8728          * again. once full backref flag is set, we never clear it.
8729          */
8730         if (lookup_info &&
8731             ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
8732              (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
8733                 BUG_ON(!path->locks[level]);
8734                 ret = btrfs_lookup_extent_info(trans, fs_info,
8735                                                eb->start, level, 1,
8736                                                &wc->refs[level],
8737                                                &wc->flags[level]);
8738                 BUG_ON(ret == -ENOMEM);
8739                 if (ret)
8740                         return ret;
8741                 BUG_ON(wc->refs[level] == 0);
8742         }
8743
8744         if (wc->stage == DROP_REFERENCE) {
8745                 if (wc->refs[level] > 1)
8746                         return 1;
8747
8748                 if (path->locks[level] && !wc->keep_locks) {
8749                         btrfs_tree_unlock_rw(eb, path->locks[level]);
8750                         path->locks[level] = 0;
8751                 }
8752                 return 0;
8753         }
8754
8755         /* wc->stage == UPDATE_BACKREF */
8756         if (!(wc->flags[level] & flag)) {
8757                 BUG_ON(!path->locks[level]);
8758                 ret = btrfs_inc_ref(trans, root, eb, 1);
8759                 BUG_ON(ret); /* -ENOMEM */
8760                 ret = btrfs_dec_ref(trans, root, eb, 0);
8761                 BUG_ON(ret); /* -ENOMEM */
8762                 ret = btrfs_set_disk_extent_flags(trans, fs_info, eb->start,
8763                                                   eb->len, flag,
8764                                                   btrfs_header_level(eb), 0);
8765                 BUG_ON(ret); /* -ENOMEM */
8766                 wc->flags[level] |= flag;
8767         }
8768
8769         /*
8770          * the block is shared by multiple trees, so it's not good to
8771          * keep the tree lock
8772          */
8773         if (path->locks[level] && level > 0) {
8774                 btrfs_tree_unlock_rw(eb, path->locks[level]);
8775                 path->locks[level] = 0;
8776         }
8777         return 0;
8778 }
8779
8780 /*
8781  * helper to process tree block pointer.
8782  *
8783  * when wc->stage == DROP_REFERENCE, this function checks
8784  * reference count of the block pointed to. if the block
8785  * is shared and we need update back refs for the subtree
8786  * rooted at the block, this function changes wc->stage to
8787  * UPDATE_BACKREF. if the block is shared and there is no
8788  * need to update back, this function drops the reference
8789  * to the block.
8790  *
8791  * NOTE: return value 1 means we should stop walking down.
8792  */
8793 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
8794                                  struct btrfs_root *root,
8795                                  struct btrfs_path *path,
8796                                  struct walk_control *wc, int *lookup_info)
8797 {
8798         struct btrfs_fs_info *fs_info = root->fs_info;
8799         u64 bytenr;
8800         u64 generation;
8801         u64 parent;
8802         u32 blocksize;
8803         struct btrfs_key key;
8804         struct extent_buffer *next;
8805         int level = wc->level;
8806         int reada = 0;
8807         int ret = 0;
8808         bool need_account = false;
8809
8810         generation = btrfs_node_ptr_generation(path->nodes[level],
8811                                                path->slots[level]);
8812         /*
8813          * if the lower level block was created before the snapshot
8814          * was created, we know there is no need to update back refs
8815          * for the subtree
8816          */
8817         if (wc->stage == UPDATE_BACKREF &&
8818             generation <= root->root_key.offset) {
8819                 *lookup_info = 1;
8820                 return 1;
8821         }
8822
8823         bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
8824         blocksize = fs_info->nodesize;
8825
8826         next = find_extent_buffer(fs_info, bytenr);
8827         if (!next) {
8828                 next = btrfs_find_create_tree_block(fs_info, bytenr);
8829                 if (IS_ERR(next))
8830                         return PTR_ERR(next);
8831
8832                 btrfs_set_buffer_lockdep_class(root->root_key.objectid, next,
8833                                                level - 1);
8834                 reada = 1;
8835         }
8836         btrfs_tree_lock(next);
8837         btrfs_set_lock_blocking(next);
8838
8839         ret = btrfs_lookup_extent_info(trans, fs_info, bytenr, level - 1, 1,
8840                                        &wc->refs[level - 1],
8841                                        &wc->flags[level - 1]);
8842         if (ret < 0)
8843                 goto out_unlock;
8844
8845         if (unlikely(wc->refs[level - 1] == 0)) {
8846                 btrfs_err(fs_info, "Missing references.");
8847                 ret = -EIO;
8848                 goto out_unlock;
8849         }
8850         *lookup_info = 0;
8851
8852         if (wc->stage == DROP_REFERENCE) {
8853                 if (wc->refs[level - 1] > 1) {
8854                         need_account = true;
8855                         if (level == 1 &&
8856                             (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8857                                 goto skip;
8858
8859                         if (!wc->update_ref ||
8860                             generation <= root->root_key.offset)
8861                                 goto skip;
8862
8863                         btrfs_node_key_to_cpu(path->nodes[level], &key,
8864                                               path->slots[level]);
8865                         ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
8866                         if (ret < 0)
8867                                 goto skip;
8868
8869                         wc->stage = UPDATE_BACKREF;
8870                         wc->shared_level = level - 1;
8871                 }
8872         } else {
8873                 if (level == 1 &&
8874                     (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
8875                         goto skip;
8876         }
8877
8878         if (!btrfs_buffer_uptodate(next, generation, 0)) {
8879                 btrfs_tree_unlock(next);
8880                 free_extent_buffer(next);
8881                 next = NULL;
8882                 *lookup_info = 1;
8883         }
8884
8885         if (!next) {
8886                 if (reada && level == 1)
8887                         reada_walk_down(trans, root, wc, path);
8888                 next = read_tree_block(fs_info, bytenr, generation);
8889                 if (IS_ERR(next)) {
8890                         return PTR_ERR(next);
8891                 } else if (!extent_buffer_uptodate(next)) {
8892                         free_extent_buffer(next);
8893                         return -EIO;
8894                 }
8895                 btrfs_tree_lock(next);
8896                 btrfs_set_lock_blocking(next);
8897         }
8898
8899         level--;
8900         ASSERT(level == btrfs_header_level(next));
8901         if (level != btrfs_header_level(next)) {
8902                 btrfs_err(root->fs_info, "mismatched level");
8903                 ret = -EIO;
8904                 goto out_unlock;
8905         }
8906         path->nodes[level] = next;
8907         path->slots[level] = 0;
8908         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
8909         wc->level = level;
8910         if (wc->level == 1)
8911                 wc->reada_slot = 0;
8912         return 0;
8913 skip:
8914         wc->refs[level - 1] = 0;
8915         wc->flags[level - 1] = 0;
8916         if (wc->stage == DROP_REFERENCE) {
8917                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
8918                         parent = path->nodes[level]->start;
8919                 } else {
8920                         ASSERT(root->root_key.objectid ==
8921                                btrfs_header_owner(path->nodes[level]));
8922                         if (root->root_key.objectid !=
8923                             btrfs_header_owner(path->nodes[level])) {
8924                                 btrfs_err(root->fs_info,
8925                                                 "mismatched block owner");
8926                                 ret = -EIO;
8927                                 goto out_unlock;
8928                         }
8929                         parent = 0;
8930                 }
8931
8932                 if (need_account) {
8933                         ret = btrfs_qgroup_trace_subtree(trans, root, next,
8934                                                          generation, level - 1);
8935                         if (ret) {
8936                                 btrfs_err_rl(fs_info,
8937                                              "Error %d accounting shared subtree. Quota is out of sync, rescan required.",
8938                                              ret);
8939                         }
8940                 }
8941                 ret = btrfs_free_extent(trans, fs_info, bytenr, blocksize,
8942                                         parent, root->root_key.objectid,
8943                                         level - 1, 0);
8944                 if (ret)
8945                         goto out_unlock;
8946         }
8947
8948         *lookup_info = 1;
8949         ret = 1;
8950
8951 out_unlock:
8952         btrfs_tree_unlock(next);
8953         free_extent_buffer(next);
8954
8955         return ret;
8956 }
8957
8958 /*
8959  * helper to process tree block while walking up the tree.
8960  *
8961  * when wc->stage == DROP_REFERENCE, this function drops
8962  * reference count on the block.
8963  *
8964  * when wc->stage == UPDATE_BACKREF, this function changes
8965  * wc->stage back to DROP_REFERENCE if we changed wc->stage
8966  * to UPDATE_BACKREF previously while processing the block.
8967  *
8968  * NOTE: return value 1 means we should stop walking up.
8969  */
8970 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
8971                                  struct btrfs_root *root,
8972                                  struct btrfs_path *path,
8973                                  struct walk_control *wc)
8974 {
8975         struct btrfs_fs_info *fs_info = root->fs_info;
8976         int ret;
8977         int level = wc->level;
8978         struct extent_buffer *eb = path->nodes[level];
8979         u64 parent = 0;
8980
8981         if (wc->stage == UPDATE_BACKREF) {
8982                 BUG_ON(wc->shared_level < level);
8983                 if (level < wc->shared_level)
8984                         goto out;
8985
8986                 ret = find_next_key(path, level + 1, &wc->update_progress);
8987                 if (ret > 0)
8988                         wc->update_ref = 0;
8989
8990                 wc->stage = DROP_REFERENCE;
8991                 wc->shared_level = -1;
8992                 path->slots[level] = 0;
8993
8994                 /*
8995                  * check reference count again if the block isn't locked.
8996                  * we should start walking down the tree again if reference
8997                  * count is one.
8998                  */
8999                 if (!path->locks[level]) {
9000                         BUG_ON(level == 0);
9001                         btrfs_tree_lock(eb);
9002                         btrfs_set_lock_blocking(eb);
9003                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9004
9005                         ret = btrfs_lookup_extent_info(trans, fs_info,
9006                                                        eb->start, level, 1,
9007                                                        &wc->refs[level],
9008                                                        &wc->flags[level]);
9009                         if (ret < 0) {
9010                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
9011                                 path->locks[level] = 0;
9012                                 return ret;
9013                         }
9014                         BUG_ON(wc->refs[level] == 0);
9015                         if (wc->refs[level] == 1) {
9016                                 btrfs_tree_unlock_rw(eb, path->locks[level]);
9017                                 path->locks[level] = 0;
9018                                 return 1;
9019                         }
9020                 }
9021         }
9022
9023         /* wc->stage == DROP_REFERENCE */
9024         BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
9025
9026         if (wc->refs[level] == 1) {
9027                 if (level == 0) {
9028                         if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9029                                 ret = btrfs_dec_ref(trans, root, eb, 1);
9030                         else
9031                                 ret = btrfs_dec_ref(trans, root, eb, 0);
9032                         BUG_ON(ret); /* -ENOMEM */
9033                         ret = btrfs_qgroup_trace_leaf_items(trans, fs_info, eb);
9034                         if (ret) {
9035                                 btrfs_err_rl(fs_info,
9036                                              "error %d accounting leaf items. Quota is out of sync, rescan required.",
9037                                              ret);
9038                         }
9039                 }
9040                 /* make block locked assertion in clean_tree_block happy */
9041                 if (!path->locks[level] &&
9042                     btrfs_header_generation(eb) == trans->transid) {
9043                         btrfs_tree_lock(eb);
9044                         btrfs_set_lock_blocking(eb);
9045                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9046                 }
9047                 clean_tree_block(fs_info, eb);
9048         }
9049
9050         if (eb == root->node) {
9051                 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9052                         parent = eb->start;
9053                 else if (root->root_key.objectid != btrfs_header_owner(eb))
9054                         goto owner_mismatch;
9055         } else {
9056                 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
9057                         parent = path->nodes[level + 1]->start;
9058                 else if (root->root_key.objectid !=
9059                          btrfs_header_owner(path->nodes[level + 1]))
9060                         goto owner_mismatch;
9061         }
9062
9063         btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
9064 out:
9065         wc->refs[level] = 0;
9066         wc->flags[level] = 0;
9067         return 0;
9068
9069 owner_mismatch:
9070         btrfs_err_rl(fs_info, "unexpected tree owner, have %llu expect %llu",
9071                      btrfs_header_owner(eb), root->root_key.objectid);
9072         return -EUCLEAN;
9073 }
9074
9075 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
9076                                    struct btrfs_root *root,
9077                                    struct btrfs_path *path,
9078                                    struct walk_control *wc)
9079 {
9080         int level = wc->level;
9081         int lookup_info = 1;
9082         int ret;
9083
9084         while (level >= 0) {
9085                 ret = walk_down_proc(trans, root, path, wc, lookup_info);
9086                 if (ret > 0)
9087                         break;
9088
9089                 if (level == 0)
9090                         break;
9091
9092                 if (path->slots[level] >=
9093                     btrfs_header_nritems(path->nodes[level]))
9094                         break;
9095
9096                 ret = do_walk_down(trans, root, path, wc, &lookup_info);
9097                 if (ret > 0) {
9098                         path->slots[level]++;
9099                         continue;
9100                 } else if (ret < 0)
9101                         return ret;
9102                 level = wc->level;
9103         }
9104         return 0;
9105 }
9106
9107 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
9108                                  struct btrfs_root *root,
9109                                  struct btrfs_path *path,
9110                                  struct walk_control *wc, int max_level)
9111 {
9112         int level = wc->level;
9113         int ret;
9114
9115         path->slots[level] = btrfs_header_nritems(path->nodes[level]);
9116         while (level < max_level && path->nodes[level]) {
9117                 wc->level = level;
9118                 if (path->slots[level] + 1 <
9119                     btrfs_header_nritems(path->nodes[level])) {
9120                         path->slots[level]++;
9121                         return 0;
9122                 } else {
9123                         ret = walk_up_proc(trans, root, path, wc);
9124                         if (ret > 0)
9125                                 return 0;
9126                         if (ret < 0)
9127                                 return ret;
9128
9129                         if (path->locks[level]) {
9130                                 btrfs_tree_unlock_rw(path->nodes[level],
9131                                                      path->locks[level]);
9132                                 path->locks[level] = 0;
9133                         }
9134                         free_extent_buffer(path->nodes[level]);
9135                         path->nodes[level] = NULL;
9136                         level++;
9137                 }
9138         }
9139         return 1;
9140 }
9141
9142 /*
9143  * drop a subvolume tree.
9144  *
9145  * this function traverses the tree freeing any blocks that only
9146  * referenced by the tree.
9147  *
9148  * when a shared tree block is found. this function decreases its
9149  * reference count by one. if update_ref is true, this function
9150  * also make sure backrefs for the shared block and all lower level
9151  * blocks are properly updated.
9152  *
9153  * If called with for_reloc == 0, may exit early with -EAGAIN
9154  */
9155 int btrfs_drop_snapshot(struct btrfs_root *root,
9156                          struct btrfs_block_rsv *block_rsv, int update_ref,
9157                          int for_reloc)
9158 {
9159         struct btrfs_fs_info *fs_info = root->fs_info;
9160         struct btrfs_path *path;
9161         struct btrfs_trans_handle *trans;
9162         struct btrfs_root *tree_root = fs_info->tree_root;
9163         struct btrfs_root_item *root_item = &root->root_item;
9164         struct walk_control *wc;
9165         struct btrfs_key key;
9166         int err = 0;
9167         int ret;
9168         int level;
9169         bool root_dropped = false;
9170
9171         btrfs_debug(fs_info, "Drop subvolume %llu", root->objectid);
9172
9173         path = btrfs_alloc_path();
9174         if (!path) {
9175                 err = -ENOMEM;
9176                 goto out;
9177         }
9178
9179         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9180         if (!wc) {
9181                 btrfs_free_path(path);
9182                 err = -ENOMEM;
9183                 goto out;
9184         }
9185
9186         trans = btrfs_start_transaction(tree_root, 0);
9187         if (IS_ERR(trans)) {
9188                 err = PTR_ERR(trans);
9189                 goto out_free;
9190         }
9191
9192         if (block_rsv)
9193                 trans->block_rsv = block_rsv;
9194
9195         if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
9196                 level = btrfs_header_level(root->node);
9197                 path->nodes[level] = btrfs_lock_root_node(root);
9198                 btrfs_set_lock_blocking(path->nodes[level]);
9199                 path->slots[level] = 0;
9200                 path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9201                 memset(&wc->update_progress, 0,
9202                        sizeof(wc->update_progress));
9203         } else {
9204                 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
9205                 memcpy(&wc->update_progress, &key,
9206                        sizeof(wc->update_progress));
9207
9208                 level = root_item->drop_level;
9209                 BUG_ON(level == 0);
9210                 path->lowest_level = level;
9211                 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
9212                 path->lowest_level = 0;
9213                 if (ret < 0) {
9214                         err = ret;
9215                         goto out_end_trans;
9216                 }
9217                 WARN_ON(ret > 0);
9218
9219                 /*
9220                  * unlock our path, this is safe because only this
9221                  * function is allowed to delete this snapshot
9222                  */
9223                 btrfs_unlock_up_safe(path, 0);
9224
9225                 level = btrfs_header_level(root->node);
9226                 while (1) {
9227                         btrfs_tree_lock(path->nodes[level]);
9228                         btrfs_set_lock_blocking(path->nodes[level]);
9229                         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9230
9231                         ret = btrfs_lookup_extent_info(trans, fs_info,
9232                                                 path->nodes[level]->start,
9233                                                 level, 1, &wc->refs[level],
9234                                                 &wc->flags[level]);
9235                         if (ret < 0) {
9236                                 err = ret;
9237                                 goto out_end_trans;
9238                         }
9239                         BUG_ON(wc->refs[level] == 0);
9240
9241                         if (level == root_item->drop_level)
9242                                 break;
9243
9244                         btrfs_tree_unlock(path->nodes[level]);
9245                         path->locks[level] = 0;
9246                         WARN_ON(wc->refs[level] != 1);
9247                         level--;
9248                 }
9249         }
9250
9251         wc->level = level;
9252         wc->shared_level = -1;
9253         wc->stage = DROP_REFERENCE;
9254         wc->update_ref = update_ref;
9255         wc->keep_locks = 0;
9256         wc->for_reloc = for_reloc;
9257         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9258
9259         while (1) {
9260
9261                 ret = walk_down_tree(trans, root, path, wc);
9262                 if (ret < 0) {
9263                         err = ret;
9264                         break;
9265                 }
9266
9267                 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
9268                 if (ret < 0) {
9269                         err = ret;
9270                         break;
9271                 }
9272
9273                 if (ret > 0) {
9274                         BUG_ON(wc->stage != DROP_REFERENCE);
9275                         break;
9276                 }
9277
9278                 if (wc->stage == DROP_REFERENCE) {
9279                         level = wc->level;
9280                         btrfs_node_key(path->nodes[level],
9281                                        &root_item->drop_progress,
9282                                        path->slots[level]);
9283                         root_item->drop_level = level;
9284                 }
9285
9286                 BUG_ON(wc->level == 0);
9287                 if (btrfs_should_end_transaction(trans) ||
9288                     (!for_reloc && btrfs_need_cleaner_sleep(fs_info))) {
9289                         ret = btrfs_update_root(trans, tree_root,
9290                                                 &root->root_key,
9291                                                 root_item);
9292                         if (ret) {
9293                                 btrfs_abort_transaction(trans, ret);
9294                                 err = ret;
9295                                 goto out_end_trans;
9296                         }
9297
9298                         btrfs_end_transaction_throttle(trans);
9299                         if (!for_reloc && btrfs_need_cleaner_sleep(fs_info)) {
9300                                 btrfs_debug(fs_info,
9301                                             "drop snapshot early exit");
9302                                 err = -EAGAIN;
9303                                 goto out_free;
9304                         }
9305
9306                         trans = btrfs_start_transaction(tree_root, 0);
9307                         if (IS_ERR(trans)) {
9308                                 err = PTR_ERR(trans);
9309                                 goto out_free;
9310                         }
9311                         if (block_rsv)
9312                                 trans->block_rsv = block_rsv;
9313                 }
9314         }
9315         btrfs_release_path(path);
9316         if (err)
9317                 goto out_end_trans;
9318
9319         ret = btrfs_del_root(trans, fs_info, &root->root_key);
9320         if (ret) {
9321                 btrfs_abort_transaction(trans, ret);
9322                 err = ret;
9323                 goto out_end_trans;
9324         }
9325
9326         if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
9327                 ret = btrfs_find_root(tree_root, &root->root_key, path,
9328                                       NULL, NULL);
9329                 if (ret < 0) {
9330                         btrfs_abort_transaction(trans, ret);
9331                         err = ret;
9332                         goto out_end_trans;
9333                 } else if (ret > 0) {
9334                         /* if we fail to delete the orphan item this time
9335                          * around, it'll get picked up the next time.
9336                          *
9337                          * The most common failure here is just -ENOENT.
9338                          */
9339                         btrfs_del_orphan_item(trans, tree_root,
9340                                               root->root_key.objectid);
9341                 }
9342         }
9343
9344         if (test_bit(BTRFS_ROOT_IN_RADIX, &root->state)) {
9345                 btrfs_add_dropped_root(trans, root);
9346         } else {
9347                 free_extent_buffer(root->node);
9348                 free_extent_buffer(root->commit_root);
9349                 btrfs_put_fs_root(root);
9350         }
9351         root_dropped = true;
9352 out_end_trans:
9353         btrfs_end_transaction_throttle(trans);
9354 out_free:
9355         kfree(wc);
9356         btrfs_free_path(path);
9357 out:
9358         /*
9359          * So if we need to stop dropping the snapshot for whatever reason we
9360          * need to make sure to add it back to the dead root list so that we
9361          * keep trying to do the work later.  This also cleans up roots if we
9362          * don't have it in the radix (like when we recover after a power fail
9363          * or unmount) so we don't leak memory.
9364          */
9365         if (!for_reloc && root_dropped == false)
9366                 btrfs_add_dead_root(root);
9367         return err;
9368 }
9369
9370 /*
9371  * drop subtree rooted at tree block 'node'.
9372  *
9373  * NOTE: this function will unlock and release tree block 'node'
9374  * only used by relocation code
9375  */
9376 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
9377                         struct btrfs_root *root,
9378                         struct extent_buffer *node,
9379                         struct extent_buffer *parent)
9380 {
9381         struct btrfs_fs_info *fs_info = root->fs_info;
9382         struct btrfs_path *path;
9383         struct walk_control *wc;
9384         int level;
9385         int parent_level;
9386         int ret = 0;
9387         int wret;
9388
9389         BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
9390
9391         path = btrfs_alloc_path();
9392         if (!path)
9393                 return -ENOMEM;
9394
9395         wc = kzalloc(sizeof(*wc), GFP_NOFS);
9396         if (!wc) {
9397                 btrfs_free_path(path);
9398                 return -ENOMEM;
9399         }
9400
9401         btrfs_assert_tree_locked(parent);
9402         parent_level = btrfs_header_level(parent);
9403         extent_buffer_get(parent);
9404         path->nodes[parent_level] = parent;
9405         path->slots[parent_level] = btrfs_header_nritems(parent);
9406
9407         btrfs_assert_tree_locked(node);
9408         level = btrfs_header_level(node);
9409         path->nodes[level] = node;
9410         path->slots[level] = 0;
9411         path->locks[level] = BTRFS_WRITE_LOCK_BLOCKING;
9412
9413         wc->refs[parent_level] = 1;
9414         wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
9415         wc->level = level;
9416         wc->shared_level = -1;
9417         wc->stage = DROP_REFERENCE;
9418         wc->update_ref = 0;
9419         wc->keep_locks = 1;
9420         wc->for_reloc = 1;
9421         wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(fs_info);
9422
9423         while (1) {
9424                 wret = walk_down_tree(trans, root, path, wc);
9425                 if (wret < 0) {
9426                         ret = wret;
9427                         break;
9428                 }
9429
9430                 wret = walk_up_tree(trans, root, path, wc, parent_level);
9431                 if (wret < 0)
9432                         ret = wret;
9433                 if (wret != 0)
9434                         break;
9435         }
9436
9437         kfree(wc);
9438         btrfs_free_path(path);
9439         return ret;
9440 }
9441
9442 static u64 update_block_group_flags(struct btrfs_fs_info *fs_info, u64 flags)
9443 {
9444         u64 num_devices;
9445         u64 stripped;
9446
9447         /*
9448          * if restripe for this chunk_type is on pick target profile and
9449          * return, otherwise do the usual balance
9450          */
9451         stripped = get_restripe_target(fs_info, flags);
9452         if (stripped)
9453                 return extended_to_chunk(stripped);
9454
9455         num_devices = fs_info->fs_devices->rw_devices;
9456
9457         stripped = BTRFS_BLOCK_GROUP_RAID0 |
9458                 BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6 |
9459                 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
9460
9461         if (num_devices == 1) {
9462                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9463                 stripped = flags & ~stripped;
9464
9465                 /* turn raid0 into single device chunks */
9466                 if (flags & BTRFS_BLOCK_GROUP_RAID0)
9467                         return stripped;
9468
9469                 /* turn mirroring into duplication */
9470                 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
9471                              BTRFS_BLOCK_GROUP_RAID10))
9472                         return stripped | BTRFS_BLOCK_GROUP_DUP;
9473         } else {
9474                 /* they already had raid on here, just return */
9475                 if (flags & stripped)
9476                         return flags;
9477
9478                 stripped |= BTRFS_BLOCK_GROUP_DUP;
9479                 stripped = flags & ~stripped;
9480
9481                 /* switch duplicated blocks with raid1 */
9482                 if (flags & BTRFS_BLOCK_GROUP_DUP)
9483                         return stripped | BTRFS_BLOCK_GROUP_RAID1;
9484
9485                 /* this is drive concat, leave it alone */
9486         }
9487
9488         return flags;
9489 }
9490
9491 static int inc_block_group_ro(struct btrfs_block_group_cache *cache, int force)
9492 {
9493         struct btrfs_space_info *sinfo = cache->space_info;
9494         u64 num_bytes;
9495         u64 min_allocable_bytes;
9496         int ret = -ENOSPC;
9497
9498         /*
9499          * We need some metadata space and system metadata space for
9500          * allocating chunks in some corner cases until we force to set
9501          * it to be readonly.
9502          */
9503         if ((sinfo->flags &
9504              (BTRFS_BLOCK_GROUP_SYSTEM | BTRFS_BLOCK_GROUP_METADATA)) &&
9505             !force)
9506                 min_allocable_bytes = SZ_1M;
9507         else
9508                 min_allocable_bytes = 0;
9509
9510         spin_lock(&sinfo->lock);
9511         spin_lock(&cache->lock);
9512
9513         if (cache->ro) {
9514                 cache->ro++;
9515                 ret = 0;
9516                 goto out;
9517         }
9518
9519         num_bytes = cache->key.offset - cache->reserved - cache->pinned -
9520                     cache->bytes_super - btrfs_block_group_used(&cache->item);
9521
9522         if (btrfs_space_info_used(sinfo, true) + num_bytes +
9523             min_allocable_bytes <= sinfo->total_bytes) {
9524                 sinfo->bytes_readonly += num_bytes;
9525                 cache->ro++;
9526                 list_add_tail(&cache->ro_list, &sinfo->ro_bgs);
9527                 ret = 0;
9528         }
9529 out:
9530         spin_unlock(&cache->lock);
9531         spin_unlock(&sinfo->lock);
9532         return ret;
9533 }
9534
9535 int btrfs_inc_block_group_ro(struct btrfs_fs_info *fs_info,
9536                              struct btrfs_block_group_cache *cache)
9537
9538 {
9539         struct btrfs_trans_handle *trans;
9540         u64 alloc_flags;
9541         int ret;
9542
9543 again:
9544         trans = btrfs_join_transaction(fs_info->extent_root);
9545         if (IS_ERR(trans))
9546                 return PTR_ERR(trans);
9547
9548         /*
9549          * we're not allowed to set block groups readonly after the dirty
9550          * block groups cache has started writing.  If it already started,
9551          * back off and let this transaction commit
9552          */
9553         mutex_lock(&fs_info->ro_block_group_mutex);
9554         if (test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &trans->transaction->flags)) {
9555                 u64 transid = trans->transid;
9556
9557                 mutex_unlock(&fs_info->ro_block_group_mutex);
9558                 btrfs_end_transaction(trans);
9559
9560                 ret = btrfs_wait_for_commit(fs_info, transid);
9561                 if (ret)
9562                         return ret;
9563                 goto again;
9564         }
9565
9566         /*
9567          * if we are changing raid levels, try to allocate a corresponding
9568          * block group with the new raid level.
9569          */
9570         alloc_flags = update_block_group_flags(fs_info, cache->flags);
9571         if (alloc_flags != cache->flags) {
9572                 ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9573                                      CHUNK_ALLOC_FORCE);
9574                 /*
9575                  * ENOSPC is allowed here, we may have enough space
9576                  * already allocated at the new raid level to
9577                  * carry on
9578                  */
9579                 if (ret == -ENOSPC)
9580                         ret = 0;
9581                 if (ret < 0)
9582                         goto out;
9583         }
9584
9585         ret = inc_block_group_ro(cache, 0);
9586         if (!ret)
9587                 goto out;
9588         alloc_flags = get_alloc_profile(fs_info, cache->space_info->flags);
9589         ret = do_chunk_alloc(trans, fs_info, alloc_flags,
9590                              CHUNK_ALLOC_FORCE);
9591         if (ret < 0)
9592                 goto out;
9593         ret = inc_block_group_ro(cache, 0);
9594 out:
9595         if (cache->flags & BTRFS_BLOCK_GROUP_SYSTEM) {
9596                 alloc_flags = update_block_group_flags(fs_info, cache->flags);
9597                 mutex_lock(&fs_info->chunk_mutex);
9598                 check_system_chunk(trans, fs_info, alloc_flags);
9599                 mutex_unlock(&fs_info->chunk_mutex);
9600         }
9601         mutex_unlock(&fs_info->ro_block_group_mutex);
9602
9603         btrfs_end_transaction(trans);
9604         return ret;
9605 }
9606
9607 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
9608                             struct btrfs_fs_info *fs_info, u64 type)
9609 {
9610         u64 alloc_flags = get_alloc_profile(fs_info, type);
9611
9612         return do_chunk_alloc(trans, fs_info, alloc_flags, CHUNK_ALLOC_FORCE);
9613 }
9614
9615 /*
9616  * helper to account the unused space of all the readonly block group in the
9617  * space_info. takes mirrors into account.
9618  */
9619 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
9620 {
9621         struct btrfs_block_group_cache *block_group;
9622         u64 free_bytes = 0;
9623         int factor;
9624
9625         /* It's df, we don't care if it's racy */
9626         if (list_empty(&sinfo->ro_bgs))
9627                 return 0;
9628
9629         spin_lock(&sinfo->lock);
9630         list_for_each_entry(block_group, &sinfo->ro_bgs, ro_list) {
9631                 spin_lock(&block_group->lock);
9632
9633                 if (!block_group->ro) {
9634                         spin_unlock(&block_group->lock);
9635                         continue;
9636                 }
9637
9638                 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
9639                                           BTRFS_BLOCK_GROUP_RAID10 |
9640                                           BTRFS_BLOCK_GROUP_DUP))
9641                         factor = 2;
9642                 else
9643                         factor = 1;
9644
9645                 free_bytes += (block_group->key.offset -
9646                                btrfs_block_group_used(&block_group->item)) *
9647                                factor;
9648
9649                 spin_unlock(&block_group->lock);
9650         }
9651         spin_unlock(&sinfo->lock);
9652
9653         return free_bytes;
9654 }
9655
9656 void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache)
9657 {
9658         struct btrfs_space_info *sinfo = cache->space_info;
9659         u64 num_bytes;
9660
9661         BUG_ON(!cache->ro);
9662
9663         spin_lock(&sinfo->lock);
9664         spin_lock(&cache->lock);
9665         if (!--cache->ro) {
9666                 num_bytes = cache->key.offset - cache->reserved -
9667                             cache->pinned - cache->bytes_super -
9668                             btrfs_block_group_used(&cache->item);
9669                 sinfo->bytes_readonly -= num_bytes;
9670                 list_del_init(&cache->ro_list);
9671         }
9672         spin_unlock(&cache->lock);
9673         spin_unlock(&sinfo->lock);
9674 }
9675
9676 /*
9677  * checks to see if its even possible to relocate this block group.
9678  *
9679  * @return - -1 if it's not a good idea to relocate this block group, 0 if its
9680  * ok to go ahead and try.
9681  */
9682 int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr)
9683 {
9684         struct btrfs_root *root = fs_info->extent_root;
9685         struct btrfs_block_group_cache *block_group;
9686         struct btrfs_space_info *space_info;
9687         struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
9688         struct btrfs_device *device;
9689         struct btrfs_trans_handle *trans;
9690         u64 min_free;
9691         u64 dev_min = 1;
9692         u64 dev_nr = 0;
9693         u64 target;
9694         int debug;
9695         int index;
9696         int full = 0;
9697         int ret = 0;
9698
9699         debug = btrfs_test_opt(fs_info, ENOSPC_DEBUG);
9700
9701         block_group = btrfs_lookup_block_group(fs_info, bytenr);
9702
9703         /* odd, couldn't find the block group, leave it alone */
9704         if (!block_group) {
9705                 if (debug)
9706                         btrfs_warn(fs_info,
9707                                    "can't find block group for bytenr %llu",
9708                                    bytenr);
9709                 return -1;
9710         }
9711
9712         min_free = btrfs_block_group_used(&block_group->item);
9713
9714         /* no bytes used, we're good */
9715         if (!min_free)
9716                 goto out;
9717
9718         space_info = block_group->space_info;
9719         spin_lock(&space_info->lock);
9720
9721         full = space_info->full;
9722
9723         /*
9724          * if this is the last block group we have in this space, we can't
9725          * relocate it unless we're able to allocate a new chunk below.
9726          *
9727          * Otherwise, we need to make sure we have room in the space to handle
9728          * all of the extents from this block group.  If we can, we're good
9729          */
9730         if ((space_info->total_bytes != block_group->key.offset) &&
9731             (btrfs_space_info_used(space_info, false) + min_free <
9732              space_info->total_bytes)) {
9733                 spin_unlock(&space_info->lock);
9734                 goto out;
9735         }
9736         spin_unlock(&space_info->lock);
9737
9738         /*
9739          * ok we don't have enough space, but maybe we have free space on our
9740          * devices to allocate new chunks for relocation, so loop through our
9741          * alloc devices and guess if we have enough space.  if this block
9742          * group is going to be restriped, run checks against the target
9743          * profile instead of the current one.
9744          */
9745         ret = -1;
9746
9747         /*
9748          * index:
9749          *      0: raid10
9750          *      1: raid1
9751          *      2: dup
9752          *      3: raid0
9753          *      4: single
9754          */
9755         target = get_restripe_target(fs_info, block_group->flags);
9756         if (target) {
9757                 index = __get_raid_index(extended_to_chunk(target));
9758         } else {
9759                 /*
9760                  * this is just a balance, so if we were marked as full
9761                  * we know there is no space for a new chunk
9762                  */
9763                 if (full) {
9764                         if (debug)
9765                                 btrfs_warn(fs_info,
9766                                            "no space to alloc new chunk for block group %llu",
9767                                            block_group->key.objectid);
9768                         goto out;
9769                 }
9770
9771                 index = get_block_group_index(block_group);
9772         }
9773
9774         if (index == BTRFS_RAID_RAID10) {
9775                 dev_min = 4;
9776                 /* Divide by 2 */
9777                 min_free >>= 1;
9778         } else if (index == BTRFS_RAID_RAID1) {
9779                 dev_min = 2;
9780         } else if (index == BTRFS_RAID_DUP) {
9781                 /* Multiply by 2 */
9782                 min_free <<= 1;
9783         } else if (index == BTRFS_RAID_RAID0) {
9784                 dev_min = fs_devices->rw_devices;
9785                 min_free = div64_u64(min_free, dev_min);
9786         }
9787
9788         /* We need to do this so that we can look at pending chunks */
9789         trans = btrfs_join_transaction(root);
9790         if (IS_ERR(trans)) {
9791                 ret = PTR_ERR(trans);
9792                 goto out;
9793         }
9794
9795         mutex_lock(&fs_info->chunk_mutex);
9796         list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
9797                 u64 dev_offset;
9798
9799                 /*
9800                  * check to make sure we can actually find a chunk with enough
9801                  * space to fit our block group in.
9802                  */
9803                 if (device->total_bytes > device->bytes_used + min_free &&
9804                     !device->is_tgtdev_for_dev_replace) {
9805                         ret = find_free_dev_extent(trans, device, min_free,
9806                                                    &dev_offset, NULL);
9807                         if (!ret)
9808                                 dev_nr++;
9809
9810                         if (dev_nr >= dev_min)
9811                                 break;
9812
9813                         ret = -1;
9814                 }
9815         }
9816         if (debug && ret == -1)
9817                 btrfs_warn(fs_info,
9818                            "no space to allocate a new chunk for block group %llu",
9819                            block_group->key.objectid);
9820         mutex_unlock(&fs_info->chunk_mutex);
9821         btrfs_end_transaction(trans);
9822 out:
9823         btrfs_put_block_group(block_group);
9824         return ret;
9825 }
9826
9827 static int find_first_block_group(struct btrfs_fs_info *fs_info,
9828                                   struct btrfs_path *path,
9829                                   struct btrfs_key *key)
9830 {
9831         struct btrfs_root *root = fs_info->extent_root;
9832         int ret = 0;
9833         struct btrfs_key found_key;
9834         struct extent_buffer *leaf;
9835         struct btrfs_block_group_item bg;
9836         u64 flags;
9837         int slot;
9838
9839         ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
9840         if (ret < 0)
9841                 goto out;
9842
9843         while (1) {
9844                 slot = path->slots[0];
9845                 leaf = path->nodes[0];
9846                 if (slot >= btrfs_header_nritems(leaf)) {
9847                         ret = btrfs_next_leaf(root, path);
9848                         if (ret == 0)
9849                                 continue;
9850                         if (ret < 0)
9851                                 goto out;
9852                         break;
9853                 }
9854                 btrfs_item_key_to_cpu(leaf, &found_key, slot);
9855
9856                 if (found_key.objectid >= key->objectid &&
9857                     found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
9858                         struct extent_map_tree *em_tree;
9859                         struct extent_map *em;
9860
9861                         em_tree = &root->fs_info->mapping_tree.map_tree;
9862                         read_lock(&em_tree->lock);
9863                         em = lookup_extent_mapping(em_tree, found_key.objectid,
9864                                                    found_key.offset);
9865                         read_unlock(&em_tree->lock);
9866                         if (!em) {
9867                                 btrfs_err(fs_info,
9868                         "logical %llu len %llu found bg but no related chunk",
9869                                           found_key.objectid, found_key.offset);
9870                                 ret = -ENOENT;
9871                         } else if (em->start != found_key.objectid ||
9872                                    em->len != found_key.offset) {
9873                                 btrfs_err(fs_info,
9874                 "block group %llu len %llu mismatch with chunk %llu len %llu",
9875                                           found_key.objectid, found_key.offset,
9876                                           em->start, em->len);
9877                                 ret = -EUCLEAN;
9878                         } else {
9879                                 read_extent_buffer(leaf, &bg,
9880                                         btrfs_item_ptr_offset(leaf, slot),
9881                                         sizeof(bg));
9882                                 flags = btrfs_block_group_flags(&bg) &
9883                                         BTRFS_BLOCK_GROUP_TYPE_MASK;
9884
9885                                 if (flags != (em->map_lookup->type &
9886                                               BTRFS_BLOCK_GROUP_TYPE_MASK)) {
9887                                         btrfs_err(fs_info,
9888 "block group %llu len %llu type flags 0x%llx mismatch with chunk type flags 0x%llx",
9889                                                 found_key.objectid,
9890                                                 found_key.offset, flags,
9891                                                 (BTRFS_BLOCK_GROUP_TYPE_MASK &
9892                                                  em->map_lookup->type));
9893                                         ret = -EUCLEAN;
9894                                 } else {
9895                                         ret = 0;
9896                                 }
9897                         }
9898                         free_extent_map(em);
9899                         goto out;
9900                 }
9901                 path->slots[0]++;
9902         }
9903 out:
9904         return ret;
9905 }
9906
9907 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
9908 {
9909         struct btrfs_block_group_cache *block_group;
9910         u64 last = 0;
9911
9912         while (1) {
9913                 struct inode *inode;
9914
9915                 block_group = btrfs_lookup_first_block_group(info, last);
9916                 while (block_group) {
9917                         wait_block_group_cache_done(block_group);
9918                         spin_lock(&block_group->lock);
9919                         if (block_group->iref)
9920                                 break;
9921                         spin_unlock(&block_group->lock);
9922                         block_group = next_block_group(info, block_group);
9923                 }
9924                 if (!block_group) {
9925                         if (last == 0)
9926                                 break;
9927                         last = 0;
9928                         continue;
9929                 }
9930
9931                 inode = block_group->inode;
9932                 block_group->iref = 0;
9933                 block_group->inode = NULL;
9934                 spin_unlock(&block_group->lock);
9935                 ASSERT(block_group->io_ctl.inode == NULL);
9936                 iput(inode);
9937                 last = block_group->key.objectid + block_group->key.offset;
9938                 btrfs_put_block_group(block_group);
9939         }
9940 }
9941
9942 /*
9943  * Must be called only after stopping all workers, since we could have block
9944  * group caching kthreads running, and therefore they could race with us if we
9945  * freed the block groups before stopping them.
9946  */
9947 int btrfs_free_block_groups(struct btrfs_fs_info *info)
9948 {
9949         struct btrfs_block_group_cache *block_group;
9950         struct btrfs_space_info *space_info;
9951         struct btrfs_caching_control *caching_ctl;
9952         struct rb_node *n;
9953
9954         down_write(&info->commit_root_sem);
9955         while (!list_empty(&info->caching_block_groups)) {
9956                 caching_ctl = list_entry(info->caching_block_groups.next,
9957                                          struct btrfs_caching_control, list);
9958                 list_del(&caching_ctl->list);
9959                 put_caching_control(caching_ctl);
9960         }
9961         up_write(&info->commit_root_sem);
9962
9963         spin_lock(&info->unused_bgs_lock);
9964         while (!list_empty(&info->unused_bgs)) {
9965                 block_group = list_first_entry(&info->unused_bgs,
9966                                                struct btrfs_block_group_cache,
9967                                                bg_list);
9968                 list_del_init(&block_group->bg_list);
9969                 btrfs_put_block_group(block_group);
9970         }
9971         spin_unlock(&info->unused_bgs_lock);
9972
9973         spin_lock(&info->block_group_cache_lock);
9974         while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
9975                 block_group = rb_entry(n, struct btrfs_block_group_cache,
9976                                        cache_node);
9977                 rb_erase(&block_group->cache_node,
9978                          &info->block_group_cache_tree);
9979                 RB_CLEAR_NODE(&block_group->cache_node);
9980                 spin_unlock(&info->block_group_cache_lock);
9981
9982                 down_write(&block_group->space_info->groups_sem);
9983                 list_del(&block_group->list);
9984                 up_write(&block_group->space_info->groups_sem);
9985
9986                 /*
9987                  * We haven't cached this block group, which means we could
9988                  * possibly have excluded extents on this block group.
9989                  */
9990                 if (block_group->cached == BTRFS_CACHE_NO ||
9991                     block_group->cached == BTRFS_CACHE_ERROR)
9992                         free_excluded_extents(info, block_group);
9993
9994                 btrfs_remove_free_space_cache(block_group);
9995                 ASSERT(block_group->cached != BTRFS_CACHE_STARTED);
9996                 ASSERT(list_empty(&block_group->dirty_list));
9997                 ASSERT(list_empty(&block_group->io_list));
9998                 ASSERT(list_empty(&block_group->bg_list));
9999                 ASSERT(atomic_read(&block_group->count) == 1);
10000                 btrfs_put_block_group(block_group);
10001
10002                 spin_lock(&info->block_group_cache_lock);
10003         }
10004         spin_unlock(&info->block_group_cache_lock);
10005
10006         /* now that all the block groups are freed, go through and
10007          * free all the space_info structs.  This is only called during
10008          * the final stages of unmount, and so we know nobody is
10009          * using them.  We call synchronize_rcu() once before we start,
10010          * just to be on the safe side.
10011          */
10012         synchronize_rcu();
10013
10014         release_global_block_rsv(info);
10015
10016         while (!list_empty(&info->space_info)) {
10017                 int i;
10018
10019                 space_info = list_entry(info->space_info.next,
10020                                         struct btrfs_space_info,
10021                                         list);
10022
10023                 /*
10024                  * Do not hide this behind enospc_debug, this is actually
10025                  * important and indicates a real bug if this happens.
10026                  */
10027                 if (WARN_ON(space_info->bytes_pinned > 0 ||
10028                             space_info->bytes_reserved > 0 ||
10029                             space_info->bytes_may_use > 0))
10030                         dump_space_info(info, space_info, 0, 0);
10031                 list_del(&space_info->list);
10032                 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
10033                         struct kobject *kobj;
10034                         kobj = space_info->block_group_kobjs[i];
10035                         space_info->block_group_kobjs[i] = NULL;
10036                         if (kobj) {
10037                                 kobject_del(kobj);
10038                                 kobject_put(kobj);
10039                         }
10040                 }
10041                 kobject_del(&space_info->kobj);
10042                 kobject_put(&space_info->kobj);
10043         }
10044         return 0;
10045 }
10046
10047 static void __link_block_group(struct btrfs_space_info *space_info,
10048                                struct btrfs_block_group_cache *cache)
10049 {
10050         int index = get_block_group_index(cache);
10051         bool first = false;
10052
10053         down_write(&space_info->groups_sem);
10054         if (list_empty(&space_info->block_groups[index]))
10055                 first = true;
10056         list_add_tail(&cache->list, &space_info->block_groups[index]);
10057         up_write(&space_info->groups_sem);
10058
10059         if (first) {
10060                 struct raid_kobject *rkobj;
10061                 int ret;
10062
10063                 rkobj = kzalloc(sizeof(*rkobj), GFP_NOFS);
10064                 if (!rkobj)
10065                         goto out_err;
10066                 rkobj->raid_type = index;
10067                 kobject_init(&rkobj->kobj, &btrfs_raid_ktype);
10068                 ret = kobject_add(&rkobj->kobj, &space_info->kobj,
10069                                   "%s", get_raid_name(index));
10070                 if (ret) {
10071                         kobject_put(&rkobj->kobj);
10072                         goto out_err;
10073                 }
10074                 space_info->block_group_kobjs[index] = &rkobj->kobj;
10075         }
10076
10077         return;
10078 out_err:
10079         btrfs_warn(cache->fs_info,
10080                    "failed to add kobject for block cache, ignoring");
10081 }
10082
10083 static struct btrfs_block_group_cache *
10084 btrfs_create_block_group_cache(struct btrfs_fs_info *fs_info,
10085                                u64 start, u64 size)
10086 {
10087         struct btrfs_block_group_cache *cache;
10088
10089         cache = kzalloc(sizeof(*cache), GFP_NOFS);
10090         if (!cache)
10091                 return NULL;
10092
10093         cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
10094                                         GFP_NOFS);
10095         if (!cache->free_space_ctl) {
10096                 kfree(cache);
10097                 return NULL;
10098         }
10099
10100         cache->key.objectid = start;
10101         cache->key.offset = size;
10102         cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10103
10104         cache->fs_info = fs_info;
10105         cache->full_stripe_len = btrfs_full_stripe_len(fs_info, start);
10106         set_free_space_tree_thresholds(cache);
10107
10108         atomic_set(&cache->count, 1);
10109         spin_lock_init(&cache->lock);
10110         init_rwsem(&cache->data_rwsem);
10111         INIT_LIST_HEAD(&cache->list);
10112         INIT_LIST_HEAD(&cache->cluster_list);
10113         INIT_LIST_HEAD(&cache->bg_list);
10114         INIT_LIST_HEAD(&cache->ro_list);
10115         INIT_LIST_HEAD(&cache->dirty_list);
10116         INIT_LIST_HEAD(&cache->io_list);
10117         btrfs_init_free_space_ctl(cache);
10118         atomic_set(&cache->trimming, 0);
10119         mutex_init(&cache->free_space_lock);
10120         btrfs_init_full_stripe_locks_tree(&cache->full_stripe_locks_root);
10121
10122         return cache;
10123 }
10124
10125
10126 /*
10127  * Iterate all chunks and verify that each of them has the corresponding block
10128  * group
10129  */
10130 static int check_chunk_block_group_mappings(struct btrfs_fs_info *fs_info)
10131 {
10132         struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
10133         struct extent_map *em;
10134         struct btrfs_block_group_cache *bg;
10135         u64 start = 0;
10136         int ret = 0;
10137
10138         while (1) {
10139                 read_lock(&map_tree->map_tree.lock);
10140                 /*
10141                  * lookup_extent_mapping will return the first extent map
10142                  * intersecting the range, so setting @len to 1 is enough to
10143                  * get the first chunk.
10144                  */
10145                 em = lookup_extent_mapping(&map_tree->map_tree, start, 1);
10146                 read_unlock(&map_tree->map_tree.lock);
10147                 if (!em)
10148                         break;
10149
10150                 bg = btrfs_lookup_block_group(fs_info, em->start);
10151                 if (!bg) {
10152                         btrfs_err(fs_info,
10153         "chunk start=%llu len=%llu doesn't have corresponding block group",
10154                                      em->start, em->len);
10155                         ret = -EUCLEAN;
10156                         free_extent_map(em);
10157                         break;
10158                 }
10159                 if (bg->key.objectid != em->start ||
10160                     bg->key.offset != em->len ||
10161                     (bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK) !=
10162                     (em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK)) {
10163                         btrfs_err(fs_info,
10164 "chunk start=%llu len=%llu flags=0x%llx doesn't match block group start=%llu len=%llu flags=0x%llx",
10165                                 em->start, em->len,
10166                                 em->map_lookup->type & BTRFS_BLOCK_GROUP_TYPE_MASK,
10167                                 bg->key.objectid, bg->key.offset,
10168                                 bg->flags & BTRFS_BLOCK_GROUP_TYPE_MASK);
10169                         ret = -EUCLEAN;
10170                         free_extent_map(em);
10171                         btrfs_put_block_group(bg);
10172                         break;
10173                 }
10174                 start = em->start + em->len;
10175                 free_extent_map(em);
10176                 btrfs_put_block_group(bg);
10177         }
10178         return ret;
10179 }
10180
10181 int btrfs_read_block_groups(struct btrfs_fs_info *info)
10182 {
10183         struct btrfs_path *path;
10184         int ret;
10185         struct btrfs_block_group_cache *cache;
10186         struct btrfs_space_info *space_info;
10187         struct btrfs_key key;
10188         struct btrfs_key found_key;
10189         struct extent_buffer *leaf;
10190         int need_clear = 0;
10191         u64 cache_gen;
10192         u64 feature;
10193         int mixed;
10194
10195         feature = btrfs_super_incompat_flags(info->super_copy);
10196         mixed = !!(feature & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS);
10197
10198         key.objectid = 0;
10199         key.offset = 0;
10200         key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
10201         path = btrfs_alloc_path();
10202         if (!path)
10203                 return -ENOMEM;
10204         path->reada = READA_FORWARD;
10205
10206         cache_gen = btrfs_super_cache_generation(info->super_copy);
10207         if (btrfs_test_opt(info, SPACE_CACHE) &&
10208             btrfs_super_generation(info->super_copy) != cache_gen)
10209                 need_clear = 1;
10210         if (btrfs_test_opt(info, CLEAR_CACHE))
10211                 need_clear = 1;
10212
10213         while (1) {
10214                 ret = find_first_block_group(info, path, &key);
10215                 if (ret > 0)
10216                         break;
10217                 if (ret != 0)
10218                         goto error;
10219
10220                 leaf = path->nodes[0];
10221                 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
10222
10223                 cache = btrfs_create_block_group_cache(info, found_key.objectid,
10224                                                        found_key.offset);
10225                 if (!cache) {
10226                         ret = -ENOMEM;
10227                         goto error;
10228                 }
10229
10230                 if (need_clear) {
10231                         /*
10232                          * When we mount with old space cache, we need to
10233                          * set BTRFS_DC_CLEAR and set dirty flag.
10234                          *
10235                          * a) Setting 'BTRFS_DC_CLEAR' makes sure that we
10236                          *    truncate the old free space cache inode and
10237                          *    setup a new one.
10238                          * b) Setting 'dirty flag' makes sure that we flush
10239                          *    the new space cache info onto disk.
10240                          */
10241                         if (btrfs_test_opt(info, SPACE_CACHE))
10242                                 cache->disk_cache_state = BTRFS_DC_CLEAR;
10243                 }
10244
10245                 read_extent_buffer(leaf, &cache->item,
10246                                    btrfs_item_ptr_offset(leaf, path->slots[0]),
10247                                    sizeof(cache->item));
10248                 cache->flags = btrfs_block_group_flags(&cache->item);
10249                 if (!mixed &&
10250                     ((cache->flags & BTRFS_BLOCK_GROUP_METADATA) &&
10251                     (cache->flags & BTRFS_BLOCK_GROUP_DATA))) {
10252                         btrfs_err(info,
10253 "bg %llu is a mixed block group but filesystem hasn't enabled mixed block groups",
10254                                   cache->key.objectid);
10255                         btrfs_put_block_group(cache);
10256                         ret = -EINVAL;
10257                         goto error;
10258                 }
10259
10260                 key.objectid = found_key.objectid + found_key.offset;
10261                 btrfs_release_path(path);
10262
10263                 /*
10264                  * We need to exclude the super stripes now so that the space
10265                  * info has super bytes accounted for, otherwise we'll think
10266                  * we have more space than we actually do.
10267                  */
10268                 ret = exclude_super_stripes(info, cache);
10269                 if (ret) {
10270                         /*
10271                          * We may have excluded something, so call this just in
10272                          * case.
10273                          */
10274                         free_excluded_extents(info, cache);
10275                         btrfs_put_block_group(cache);
10276                         goto error;
10277                 }
10278
10279                 /*
10280                  * check for two cases, either we are full, and therefore
10281                  * don't need to bother with the caching work since we won't
10282                  * find any space, or we are empty, and we can just add all
10283                  * the space in and be done with it.  This saves us _alot_ of
10284                  * time, particularly in the full case.
10285                  */
10286                 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
10287                         cache->last_byte_to_unpin = (u64)-1;
10288                         cache->cached = BTRFS_CACHE_FINISHED;
10289                         free_excluded_extents(info, cache);
10290                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10291                         cache->last_byte_to_unpin = (u64)-1;
10292                         cache->cached = BTRFS_CACHE_FINISHED;
10293                         add_new_free_space(cache, info,
10294                                            found_key.objectid,
10295                                            found_key.objectid +
10296                                            found_key.offset);
10297                         free_excluded_extents(info, cache);
10298                 }
10299
10300                 ret = btrfs_add_block_group_cache(info, cache);
10301                 if (ret) {
10302                         btrfs_remove_free_space_cache(cache);
10303                         btrfs_put_block_group(cache);
10304                         goto error;
10305                 }
10306
10307                 trace_btrfs_add_block_group(info, cache, 0);
10308                 update_space_info(info, cache->flags, found_key.offset,
10309                                   btrfs_block_group_used(&cache->item),
10310                                   cache->bytes_super, &space_info);
10311
10312                 cache->space_info = space_info;
10313
10314                 __link_block_group(space_info, cache);
10315
10316                 set_avail_alloc_bits(info, cache->flags);
10317                 if (btrfs_chunk_readonly(info, cache->key.objectid)) {
10318                         inc_block_group_ro(cache, 1);
10319                 } else if (btrfs_block_group_used(&cache->item) == 0) {
10320                         spin_lock(&info->unused_bgs_lock);
10321                         /* Should always be true but just in case. */
10322                         if (list_empty(&cache->bg_list)) {
10323                                 btrfs_get_block_group(cache);
10324                                 list_add_tail(&cache->bg_list,
10325                                               &info->unused_bgs);
10326                         }
10327                         spin_unlock(&info->unused_bgs_lock);
10328                 }
10329         }
10330
10331         list_for_each_entry_rcu(space_info, &info->space_info, list) {
10332                 if (!(get_alloc_profile(info, space_info->flags) &
10333                       (BTRFS_BLOCK_GROUP_RAID10 |
10334                        BTRFS_BLOCK_GROUP_RAID1 |
10335                        BTRFS_BLOCK_GROUP_RAID5 |
10336                        BTRFS_BLOCK_GROUP_RAID6 |
10337                        BTRFS_BLOCK_GROUP_DUP)))
10338                         continue;
10339                 /*
10340                  * avoid allocating from un-mirrored block group if there are
10341                  * mirrored block groups.
10342                  */
10343                 list_for_each_entry(cache,
10344                                 &space_info->block_groups[BTRFS_RAID_RAID0],
10345                                 list)
10346                         inc_block_group_ro(cache, 1);
10347                 list_for_each_entry(cache,
10348                                 &space_info->block_groups[BTRFS_RAID_SINGLE],
10349                                 list)
10350                         inc_block_group_ro(cache, 1);
10351         }
10352
10353         init_global_block_rsv(info);
10354         ret = check_chunk_block_group_mappings(info);
10355 error:
10356         btrfs_free_path(path);
10357         return ret;
10358 }
10359
10360 void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
10361                                        struct btrfs_fs_info *fs_info)
10362 {
10363         struct btrfs_block_group_cache *block_group;
10364         struct btrfs_root *extent_root = fs_info->extent_root;
10365         struct btrfs_block_group_item item;
10366         struct btrfs_key key;
10367         int ret = 0;
10368         bool can_flush_pending_bgs = trans->can_flush_pending_bgs;
10369
10370         trans->can_flush_pending_bgs = false;
10371         while (!list_empty(&trans->new_bgs)) {
10372                 block_group = list_first_entry(&trans->new_bgs,
10373                                                struct btrfs_block_group_cache,
10374                                                bg_list);
10375                 if (ret)
10376                         goto next;
10377
10378                 spin_lock(&block_group->lock);
10379                 memcpy(&item, &block_group->item, sizeof(item));
10380                 memcpy(&key, &block_group->key, sizeof(key));
10381                 spin_unlock(&block_group->lock);
10382
10383                 ret = btrfs_insert_item(trans, extent_root, &key, &item,
10384                                         sizeof(item));
10385                 if (ret)
10386                         btrfs_abort_transaction(trans, ret);
10387                 ret = btrfs_finish_chunk_alloc(trans, fs_info, key.objectid,
10388                                                key.offset);
10389                 if (ret)
10390                         btrfs_abort_transaction(trans, ret);
10391                 add_block_group_free_space(trans, fs_info, block_group);
10392                 /* already aborted the transaction if it failed. */
10393 next:
10394                 list_del_init(&block_group->bg_list);
10395         }
10396         trans->can_flush_pending_bgs = can_flush_pending_bgs;
10397 }
10398
10399 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
10400                            struct btrfs_fs_info *fs_info, u64 bytes_used,
10401                            u64 type, u64 chunk_offset, u64 size)
10402 {
10403         struct btrfs_block_group_cache *cache;
10404         int ret;
10405
10406         btrfs_set_log_full_commit(fs_info, trans);
10407
10408         cache = btrfs_create_block_group_cache(fs_info, chunk_offset, size);
10409         if (!cache)
10410                 return -ENOMEM;
10411
10412         btrfs_set_block_group_used(&cache->item, bytes_used);
10413         btrfs_set_block_group_chunk_objectid(&cache->item,
10414                                              BTRFS_FIRST_CHUNK_TREE_OBJECTID);
10415         btrfs_set_block_group_flags(&cache->item, type);
10416
10417         cache->flags = type;
10418         cache->last_byte_to_unpin = (u64)-1;
10419         cache->cached = BTRFS_CACHE_FINISHED;
10420         cache->needs_free_space = 1;
10421         ret = exclude_super_stripes(fs_info, cache);
10422         if (ret) {
10423                 /*
10424                  * We may have excluded something, so call this just in
10425                  * case.
10426                  */
10427                 free_excluded_extents(fs_info, cache);
10428                 btrfs_put_block_group(cache);
10429                 return ret;
10430         }
10431
10432         add_new_free_space(cache, fs_info, chunk_offset, chunk_offset + size);
10433
10434         free_excluded_extents(fs_info, cache);
10435
10436 #ifdef CONFIG_BTRFS_DEBUG
10437         if (btrfs_should_fragment_free_space(cache)) {
10438                 u64 new_bytes_used = size - bytes_used;
10439
10440                 bytes_used += new_bytes_used >> 1;
10441                 fragment_free_space(cache);
10442         }
10443 #endif
10444         /*
10445          * Ensure the corresponding space_info object is created and
10446          * assigned to our block group. We want our bg to be added to the rbtree
10447          * with its ->space_info set.
10448          */
10449         cache->space_info = __find_space_info(fs_info, cache->flags);
10450         if (!cache->space_info) {
10451                 ret = create_space_info(fs_info, cache->flags,
10452                                        &cache->space_info);
10453                 if (ret) {
10454                         btrfs_remove_free_space_cache(cache);
10455                         btrfs_put_block_group(cache);
10456                         return ret;
10457                 }
10458         }
10459
10460         ret = btrfs_add_block_group_cache(fs_info, cache);
10461         if (ret) {
10462                 btrfs_remove_free_space_cache(cache);
10463                 btrfs_put_block_group(cache);
10464                 return ret;
10465         }
10466
10467         /*
10468          * Now that our block group has its ->space_info set and is inserted in
10469          * the rbtree, update the space info's counters.
10470          */
10471         trace_btrfs_add_block_group(fs_info, cache, 1);
10472         update_space_info(fs_info, cache->flags, size, bytes_used,
10473                                 cache->bytes_super, &cache->space_info);
10474         update_global_block_rsv(fs_info);
10475
10476         __link_block_group(cache->space_info, cache);
10477
10478         list_add_tail(&cache->bg_list, &trans->new_bgs);
10479
10480         set_avail_alloc_bits(fs_info, type);
10481         return 0;
10482 }
10483
10484 static void clear_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
10485 {
10486         u64 extra_flags = chunk_to_extended(flags) &
10487                                 BTRFS_EXTENDED_PROFILE_MASK;
10488
10489         write_seqlock(&fs_info->profiles_lock);
10490         if (flags & BTRFS_BLOCK_GROUP_DATA)
10491                 fs_info->avail_data_alloc_bits &= ~extra_flags;
10492         if (flags & BTRFS_BLOCK_GROUP_METADATA)
10493                 fs_info->avail_metadata_alloc_bits &= ~extra_flags;
10494         if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
10495                 fs_info->avail_system_alloc_bits &= ~extra_flags;
10496         write_sequnlock(&fs_info->profiles_lock);
10497 }
10498
10499 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
10500                              struct btrfs_fs_info *fs_info, u64 group_start,
10501                              struct extent_map *em)
10502 {
10503         struct btrfs_root *root = fs_info->extent_root;
10504         struct btrfs_path *path;
10505         struct btrfs_block_group_cache *block_group;
10506         struct btrfs_free_cluster *cluster;
10507         struct btrfs_root *tree_root = fs_info->tree_root;
10508         struct btrfs_key key;
10509         struct inode *inode;
10510         struct kobject *kobj = NULL;
10511         int ret;
10512         int index;
10513         int factor;
10514         struct btrfs_caching_control *caching_ctl = NULL;
10515         bool remove_em;
10516
10517         block_group = btrfs_lookup_block_group(fs_info, group_start);
10518         BUG_ON(!block_group);
10519         BUG_ON(!block_group->ro);
10520
10521         /*
10522          * Free the reserved super bytes from this block group before
10523          * remove it.
10524          */
10525         free_excluded_extents(fs_info, block_group);
10526
10527         memcpy(&key, &block_group->key, sizeof(key));
10528         index = get_block_group_index(block_group);
10529         if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
10530                                   BTRFS_BLOCK_GROUP_RAID1 |
10531                                   BTRFS_BLOCK_GROUP_RAID10))
10532                 factor = 2;
10533         else
10534                 factor = 1;
10535
10536         /* make sure this block group isn't part of an allocation cluster */
10537         cluster = &fs_info->data_alloc_cluster;
10538         spin_lock(&cluster->refill_lock);
10539         btrfs_return_cluster_to_free_space(block_group, cluster);
10540         spin_unlock(&cluster->refill_lock);
10541
10542         /*
10543          * make sure this block group isn't part of a metadata
10544          * allocation cluster
10545          */
10546         cluster = &fs_info->meta_alloc_cluster;
10547         spin_lock(&cluster->refill_lock);
10548         btrfs_return_cluster_to_free_space(block_group, cluster);
10549         spin_unlock(&cluster->refill_lock);
10550
10551         path = btrfs_alloc_path();
10552         if (!path) {
10553                 ret = -ENOMEM;
10554                 goto out;
10555         }
10556
10557         /*
10558          * get the inode first so any iput calls done for the io_list
10559          * aren't the final iput (no unlinks allowed now)
10560          */
10561         inode = lookup_free_space_inode(fs_info, block_group, path);
10562
10563         mutex_lock(&trans->transaction->cache_write_mutex);
10564         /*
10565          * make sure our free spache cache IO is done before remove the
10566          * free space inode
10567          */
10568         spin_lock(&trans->transaction->dirty_bgs_lock);
10569         if (!list_empty(&block_group->io_list)) {
10570                 list_del_init(&block_group->io_list);
10571
10572                 WARN_ON(!IS_ERR(inode) && inode != block_group->io_ctl.inode);
10573
10574                 spin_unlock(&trans->transaction->dirty_bgs_lock);
10575                 btrfs_wait_cache_io(trans, block_group, path);
10576                 btrfs_put_block_group(block_group);
10577                 spin_lock(&trans->transaction->dirty_bgs_lock);
10578         }
10579
10580         if (!list_empty(&block_group->dirty_list)) {
10581                 list_del_init(&block_group->dirty_list);
10582                 btrfs_put_block_group(block_group);
10583         }
10584         spin_unlock(&trans->transaction->dirty_bgs_lock);
10585         mutex_unlock(&trans->transaction->cache_write_mutex);
10586
10587         if (!IS_ERR(inode)) {
10588                 ret = btrfs_orphan_add(trans, BTRFS_I(inode));
10589                 if (ret) {
10590                         btrfs_add_delayed_iput(inode);
10591                         goto out;
10592                 }
10593                 clear_nlink(inode);
10594                 /* One for the block groups ref */
10595                 spin_lock(&block_group->lock);
10596                 if (block_group->iref) {
10597                         block_group->iref = 0;
10598                         block_group->inode = NULL;
10599                         spin_unlock(&block_group->lock);
10600                         iput(inode);
10601                 } else {
10602                         spin_unlock(&block_group->lock);
10603                 }
10604                 /* One for our lookup ref */
10605                 btrfs_add_delayed_iput(inode);
10606         }
10607
10608         key.objectid = BTRFS_FREE_SPACE_OBJECTID;
10609         key.offset = block_group->key.objectid;
10610         key.type = 0;
10611
10612         ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
10613         if (ret < 0)
10614                 goto out;
10615         if (ret > 0)
10616                 btrfs_release_path(path);
10617         if (ret == 0) {
10618                 ret = btrfs_del_item(trans, tree_root, path);
10619                 if (ret)
10620                         goto out;
10621                 btrfs_release_path(path);
10622         }
10623
10624         spin_lock(&fs_info->block_group_cache_lock);
10625         rb_erase(&block_group->cache_node,
10626                  &fs_info->block_group_cache_tree);
10627         RB_CLEAR_NODE(&block_group->cache_node);
10628
10629         /* Once for the block groups rbtree */
10630         btrfs_put_block_group(block_group);
10631
10632         if (fs_info->first_logical_byte == block_group->key.objectid)
10633                 fs_info->first_logical_byte = (u64)-1;
10634         spin_unlock(&fs_info->block_group_cache_lock);
10635
10636         down_write(&block_group->space_info->groups_sem);
10637         /*
10638          * we must use list_del_init so people can check to see if they
10639          * are still on the list after taking the semaphore
10640          */
10641         list_del_init(&block_group->list);
10642         if (list_empty(&block_group->space_info->block_groups[index])) {
10643                 kobj = block_group->space_info->block_group_kobjs[index];
10644                 block_group->space_info->block_group_kobjs[index] = NULL;
10645                 clear_avail_alloc_bits(fs_info, block_group->flags);
10646         }
10647         up_write(&block_group->space_info->groups_sem);
10648         if (kobj) {
10649                 kobject_del(kobj);
10650                 kobject_put(kobj);
10651         }
10652
10653         if (block_group->has_caching_ctl)
10654                 caching_ctl = get_caching_control(block_group);
10655         if (block_group->cached == BTRFS_CACHE_STARTED)
10656                 wait_block_group_cache_done(block_group);
10657         if (block_group->has_caching_ctl) {
10658                 down_write(&fs_info->commit_root_sem);
10659                 if (!caching_ctl) {
10660                         struct btrfs_caching_control *ctl;
10661
10662                         list_for_each_entry(ctl,
10663                                     &fs_info->caching_block_groups, list)
10664                                 if (ctl->block_group == block_group) {
10665                                         caching_ctl = ctl;
10666                                         refcount_inc(&caching_ctl->count);
10667                                         break;
10668                                 }
10669                 }
10670                 if (caching_ctl)
10671                         list_del_init(&caching_ctl->list);
10672                 up_write(&fs_info->commit_root_sem);
10673                 if (caching_ctl) {
10674                         /* Once for the caching bgs list and once for us. */
10675                         put_caching_control(caching_ctl);
10676                         put_caching_control(caching_ctl);
10677                 }
10678         }
10679
10680         spin_lock(&trans->transaction->dirty_bgs_lock);
10681         if (!list_empty(&block_group->dirty_list)) {
10682                 WARN_ON(1);
10683         }
10684         if (!list_empty(&block_group->io_list)) {
10685                 WARN_ON(1);
10686         }
10687         spin_unlock(&trans->transaction->dirty_bgs_lock);
10688         btrfs_remove_free_space_cache(block_group);
10689
10690         spin_lock(&block_group->space_info->lock);
10691         list_del_init(&block_group->ro_list);
10692
10693         if (btrfs_test_opt(fs_info, ENOSPC_DEBUG)) {
10694                 WARN_ON(block_group->space_info->total_bytes
10695                         < block_group->key.offset);
10696                 WARN_ON(block_group->space_info->bytes_readonly
10697                         < block_group->key.offset);
10698                 WARN_ON(block_group->space_info->disk_total
10699                         < block_group->key.offset * factor);
10700         }
10701         block_group->space_info->total_bytes -= block_group->key.offset;
10702         block_group->space_info->bytes_readonly -= block_group->key.offset;
10703         block_group->space_info->disk_total -= block_group->key.offset * factor;
10704
10705         spin_unlock(&block_group->space_info->lock);
10706
10707         memcpy(&key, &block_group->key, sizeof(key));
10708
10709         mutex_lock(&fs_info->chunk_mutex);
10710         if (!list_empty(&em->list)) {
10711                 /* We're in the transaction->pending_chunks list. */
10712                 free_extent_map(em);
10713         }
10714         spin_lock(&block_group->lock);
10715         block_group->removed = 1;
10716         /*
10717          * At this point trimming can't start on this block group, because we
10718          * removed the block group from the tree fs_info->block_group_cache_tree
10719          * so no one can't find it anymore and even if someone already got this
10720          * block group before we removed it from the rbtree, they have already
10721          * incremented block_group->trimming - if they didn't, they won't find
10722          * any free space entries because we already removed them all when we
10723          * called btrfs_remove_free_space_cache().
10724          *
10725          * And we must not remove the extent map from the fs_info->mapping_tree
10726          * to prevent the same logical address range and physical device space
10727          * ranges from being reused for a new block group. This is because our
10728          * fs trim operation (btrfs_trim_fs() / btrfs_ioctl_fitrim()) is
10729          * completely transactionless, so while it is trimming a range the
10730          * currently running transaction might finish and a new one start,
10731          * allowing for new block groups to be created that can reuse the same
10732          * physical device locations unless we take this special care.
10733          *
10734          * There may also be an implicit trim operation if the file system
10735          * is mounted with -odiscard. The same protections must remain
10736          * in place until the extents have been discarded completely when
10737          * the transaction commit has completed.
10738          */
10739         remove_em = (atomic_read(&block_group->trimming) == 0);
10740         /*
10741          * Make sure a trimmer task always sees the em in the pinned_chunks list
10742          * if it sees block_group->removed == 1 (needs to lock block_group->lock
10743          * before checking block_group->removed).
10744          */
10745         if (!remove_em) {
10746                 /*
10747                  * Our em might be in trans->transaction->pending_chunks which
10748                  * is protected by fs_info->chunk_mutex ([lock|unlock]_chunks),
10749                  * and so is the fs_info->pinned_chunks list.
10750                  *
10751                  * So at this point we must be holding the chunk_mutex to avoid
10752                  * any races with chunk allocation (more specifically at
10753                  * volumes.c:contains_pending_extent()), to ensure it always
10754                  * sees the em, either in the pending_chunks list or in the
10755                  * pinned_chunks list.
10756                  */
10757                 list_move_tail(&em->list, &fs_info->pinned_chunks);
10758         }
10759         spin_unlock(&block_group->lock);
10760
10761         if (remove_em) {
10762                 struct extent_map_tree *em_tree;
10763
10764                 em_tree = &fs_info->mapping_tree.map_tree;
10765                 write_lock(&em_tree->lock);
10766                 /*
10767                  * The em might be in the pending_chunks list, so make sure the
10768                  * chunk mutex is locked, since remove_extent_mapping() will
10769                  * delete us from that list.
10770                  */
10771                 remove_extent_mapping(em_tree, em);
10772                 write_unlock(&em_tree->lock);
10773                 /* once for the tree */
10774                 free_extent_map(em);
10775         }
10776
10777         mutex_unlock(&fs_info->chunk_mutex);
10778
10779         ret = remove_block_group_free_space(trans, fs_info, block_group);
10780         if (ret)
10781                 goto out;
10782
10783         ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
10784         if (ret > 0)
10785                 ret = -EIO;
10786         if (ret < 0)
10787                 goto out;
10788
10789         ret = btrfs_del_item(trans, root, path);
10790
10791 out:
10792         /* Once for the lookup reference */
10793         btrfs_put_block_group(block_group);
10794         btrfs_free_path(path);
10795         return ret;
10796 }
10797
10798 struct btrfs_trans_handle *
10799 btrfs_start_trans_remove_block_group(struct btrfs_fs_info *fs_info,
10800                                      const u64 chunk_offset)
10801 {
10802         struct extent_map_tree *em_tree = &fs_info->mapping_tree.map_tree;
10803         struct extent_map *em;
10804         struct map_lookup *map;
10805         unsigned int num_items;
10806
10807         read_lock(&em_tree->lock);
10808         em = lookup_extent_mapping(em_tree, chunk_offset, 1);
10809         read_unlock(&em_tree->lock);
10810         ASSERT(em && em->start == chunk_offset);
10811
10812         /*
10813          * We need to reserve 3 + N units from the metadata space info in order
10814          * to remove a block group (done at btrfs_remove_chunk() and at
10815          * btrfs_remove_block_group()), which are used for:
10816          *
10817          * 1 unit for adding the free space inode's orphan (located in the tree
10818          * of tree roots).
10819          * 1 unit for deleting the block group item (located in the extent
10820          * tree).
10821          * 1 unit for deleting the free space item (located in tree of tree
10822          * roots).
10823          * N units for deleting N device extent items corresponding to each
10824          * stripe (located in the device tree).
10825          *
10826          * In order to remove a block group we also need to reserve units in the
10827          * system space info in order to update the chunk tree (update one or
10828          * more device items and remove one chunk item), but this is done at
10829          * btrfs_remove_chunk() through a call to check_system_chunk().
10830          */
10831         map = em->map_lookup;
10832         num_items = 3 + map->num_stripes;
10833         free_extent_map(em);
10834
10835         return btrfs_start_transaction_fallback_global_rsv(fs_info->extent_root,
10836                                                            num_items, 1);
10837 }
10838
10839 /*
10840  * Process the unused_bgs list and remove any that don't have any allocated
10841  * space inside of them.
10842  */
10843 void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info)
10844 {
10845         struct btrfs_block_group_cache *block_group;
10846         struct btrfs_space_info *space_info;
10847         struct btrfs_trans_handle *trans;
10848         int ret = 0;
10849
10850         if (!test_bit(BTRFS_FS_OPEN, &fs_info->flags))
10851                 return;
10852
10853         spin_lock(&fs_info->unused_bgs_lock);
10854         while (!list_empty(&fs_info->unused_bgs)) {
10855                 u64 start, end;
10856                 int trimming;
10857
10858                 block_group = list_first_entry(&fs_info->unused_bgs,
10859                                                struct btrfs_block_group_cache,
10860                                                bg_list);
10861                 list_del_init(&block_group->bg_list);
10862
10863                 space_info = block_group->space_info;
10864
10865                 if (ret || btrfs_mixed_space_info(space_info)) {
10866                         btrfs_put_block_group(block_group);
10867                         continue;
10868                 }
10869                 spin_unlock(&fs_info->unused_bgs_lock);
10870
10871                 mutex_lock(&fs_info->delete_unused_bgs_mutex);
10872
10873                 /* Don't want to race with allocators so take the groups_sem */
10874                 down_write(&space_info->groups_sem);
10875                 spin_lock(&block_group->lock);
10876                 if (block_group->reserved || block_group->pinned ||
10877                     btrfs_block_group_used(&block_group->item) ||
10878                     block_group->ro ||
10879                     list_is_singular(&block_group->list)) {
10880                         /*
10881                          * We want to bail if we made new allocations or have
10882                          * outstanding allocations in this block group.  We do
10883                          * the ro check in case balance is currently acting on
10884                          * this block group.
10885                          */
10886                         spin_unlock(&block_group->lock);
10887                         up_write(&space_info->groups_sem);
10888                         goto next;
10889                 }
10890                 spin_unlock(&block_group->lock);
10891
10892                 /* We don't want to force the issue, only flip if it's ok. */
10893                 ret = inc_block_group_ro(block_group, 0);
10894                 up_write(&space_info->groups_sem);
10895                 if (ret < 0) {
10896                         ret = 0;
10897                         goto next;
10898                 }
10899
10900                 /*
10901                  * Want to do this before we do anything else so we can recover
10902                  * properly if we fail to join the transaction.
10903                  */
10904                 trans = btrfs_start_trans_remove_block_group(fs_info,
10905                                                      block_group->key.objectid);
10906                 if (IS_ERR(trans)) {
10907                         btrfs_dec_block_group_ro(block_group);
10908                         ret = PTR_ERR(trans);
10909                         goto next;
10910                 }
10911
10912                 /*
10913                  * We could have pending pinned extents for this block group,
10914                  * just delete them, we don't care about them anymore.
10915                  */
10916                 start = block_group->key.objectid;
10917                 end = start + block_group->key.offset - 1;
10918                 /*
10919                  * Hold the unused_bg_unpin_mutex lock to avoid racing with
10920                  * btrfs_finish_extent_commit(). If we are at transaction N,
10921                  * another task might be running finish_extent_commit() for the
10922                  * previous transaction N - 1, and have seen a range belonging
10923                  * to the block group in freed_extents[] before we were able to
10924                  * clear the whole block group range from freed_extents[]. This
10925                  * means that task can lookup for the block group after we
10926                  * unpinned it from freed_extents[] and removed it, leading to
10927                  * a BUG_ON() at btrfs_unpin_extent_range().
10928                  */
10929                 mutex_lock(&fs_info->unused_bg_unpin_mutex);
10930                 ret = clear_extent_bits(&fs_info->freed_extents[0], start, end,
10931                                   EXTENT_DIRTY);
10932                 if (ret) {
10933                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10934                         btrfs_dec_block_group_ro(block_group);
10935                         goto end_trans;
10936                 }
10937                 ret = clear_extent_bits(&fs_info->freed_extents[1], start, end,
10938                                   EXTENT_DIRTY);
10939                 if (ret) {
10940                         mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10941                         btrfs_dec_block_group_ro(block_group);
10942                         goto end_trans;
10943                 }
10944                 mutex_unlock(&fs_info->unused_bg_unpin_mutex);
10945
10946                 /* Reset pinned so btrfs_put_block_group doesn't complain */
10947                 spin_lock(&space_info->lock);
10948                 spin_lock(&block_group->lock);
10949
10950                 space_info->bytes_pinned -= block_group->pinned;
10951                 space_info->bytes_readonly += block_group->pinned;
10952                 percpu_counter_add(&space_info->total_bytes_pinned,
10953                                    -block_group->pinned);
10954                 block_group->pinned = 0;
10955
10956                 spin_unlock(&block_group->lock);
10957                 spin_unlock(&space_info->lock);
10958
10959                 /* DISCARD can flip during remount */
10960                 trimming = btrfs_test_opt(fs_info, DISCARD);
10961
10962                 /* Implicit trim during transaction commit. */
10963                 if (trimming)
10964                         btrfs_get_block_group_trimming(block_group);
10965
10966                 /*
10967                  * Btrfs_remove_chunk will abort the transaction if things go
10968                  * horribly wrong.
10969                  */
10970                 ret = btrfs_remove_chunk(trans, fs_info,
10971                                          block_group->key.objectid);
10972
10973                 if (ret) {
10974                         if (trimming)
10975                                 btrfs_put_block_group_trimming(block_group);
10976                         goto end_trans;
10977                 }
10978
10979                 /*
10980                  * If we're not mounted with -odiscard, we can just forget
10981                  * about this block group. Otherwise we'll need to wait
10982                  * until transaction commit to do the actual discard.
10983                  */
10984                 if (trimming) {
10985                         spin_lock(&fs_info->unused_bgs_lock);
10986                         /*
10987                          * A concurrent scrub might have added us to the list
10988                          * fs_info->unused_bgs, so use a list_move operation
10989                          * to add the block group to the deleted_bgs list.
10990                          */
10991                         list_move(&block_group->bg_list,
10992                                   &trans->transaction->deleted_bgs);
10993                         spin_unlock(&fs_info->unused_bgs_lock);
10994                         btrfs_get_block_group(block_group);
10995                 }
10996 end_trans:
10997                 btrfs_end_transaction(trans);
10998 next:
10999                 mutex_unlock(&fs_info->delete_unused_bgs_mutex);
11000                 btrfs_put_block_group(block_group);
11001                 spin_lock(&fs_info->unused_bgs_lock);
11002         }
11003         spin_unlock(&fs_info->unused_bgs_lock);
11004 }
11005
11006 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
11007 {
11008         struct btrfs_space_info *space_info;
11009         struct btrfs_super_block *disk_super;
11010         u64 features;
11011         u64 flags;
11012         int mixed = 0;
11013         int ret;
11014
11015         disk_super = fs_info->super_copy;
11016         if (!btrfs_super_root(disk_super))
11017                 return -EINVAL;
11018
11019         features = btrfs_super_incompat_flags(disk_super);
11020         if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
11021                 mixed = 1;
11022
11023         flags = BTRFS_BLOCK_GROUP_SYSTEM;
11024         ret = create_space_info(fs_info, flags, &space_info);
11025         if (ret)
11026                 goto out;
11027
11028         if (mixed) {
11029                 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
11030                 ret = create_space_info(fs_info, flags, &space_info);
11031         } else {
11032                 flags = BTRFS_BLOCK_GROUP_METADATA;
11033                 ret = create_space_info(fs_info, flags, &space_info);
11034                 if (ret)
11035                         goto out;
11036
11037                 flags = BTRFS_BLOCK_GROUP_DATA;
11038                 ret = create_space_info(fs_info, flags, &space_info);
11039         }
11040 out:
11041         return ret;
11042 }
11043
11044 int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
11045                                    u64 start, u64 end)
11046 {
11047         return unpin_extent_range(fs_info, start, end, false);
11048 }
11049
11050 /*
11051  * It used to be that old block groups would be left around forever.
11052  * Iterating over them would be enough to trim unused space.  Since we
11053  * now automatically remove them, we also need to iterate over unallocated
11054  * space.
11055  *
11056  * We don't want a transaction for this since the discard may take a
11057  * substantial amount of time.  We don't require that a transaction be
11058  * running, but we do need to take a running transaction into account
11059  * to ensure that we're not discarding chunks that were released in
11060  * the current transaction.
11061  *
11062  * Holding the chunks lock will prevent other threads from allocating
11063  * or releasing chunks, but it won't prevent a running transaction
11064  * from committing and releasing the memory that the pending chunks
11065  * list head uses.  For that, we need to take a reference to the
11066  * transaction.
11067  */
11068 static int btrfs_trim_free_extents(struct btrfs_device *device,
11069                                    u64 minlen, u64 *trimmed)
11070 {
11071         u64 start = 0, len = 0;
11072         int ret;
11073
11074         *trimmed = 0;
11075
11076         /* Discard not supported = nothing to do. */
11077         if (!blk_queue_discard(bdev_get_queue(device->bdev)))
11078                 return 0;
11079
11080         /* Not writeable = nothing to do. */
11081         if (!device->writeable)
11082                 return 0;
11083
11084         /* No free space = nothing to do. */
11085         if (device->total_bytes <= device->bytes_used)
11086                 return 0;
11087
11088         ret = 0;
11089
11090         while (1) {
11091                 struct btrfs_fs_info *fs_info = device->fs_info;
11092                 struct btrfs_transaction *trans;
11093                 u64 bytes;
11094
11095                 ret = mutex_lock_interruptible(&fs_info->chunk_mutex);
11096                 if (ret)
11097                         return ret;
11098
11099                 down_read(&fs_info->commit_root_sem);
11100
11101                 spin_lock(&fs_info->trans_lock);
11102                 trans = fs_info->running_transaction;
11103                 if (trans)
11104                         refcount_inc(&trans->use_count);
11105                 spin_unlock(&fs_info->trans_lock);
11106
11107                 ret = find_free_dev_extent_start(trans, device, minlen, start,
11108                                                  &start, &len);
11109                 if (trans)
11110                         btrfs_put_transaction(trans);
11111
11112                 if (ret) {
11113                         up_read(&fs_info->commit_root_sem);
11114                         mutex_unlock(&fs_info->chunk_mutex);
11115                         if (ret == -ENOSPC)
11116                                 ret = 0;
11117                         break;
11118                 }
11119
11120                 ret = btrfs_issue_discard(device->bdev, start, len, &bytes);
11121                 up_read(&fs_info->commit_root_sem);
11122                 mutex_unlock(&fs_info->chunk_mutex);
11123
11124                 if (ret)
11125                         break;
11126
11127                 start += len;
11128                 *trimmed += bytes;
11129
11130                 if (fatal_signal_pending(current)) {
11131                         ret = -ERESTARTSYS;
11132                         break;
11133                 }
11134
11135                 cond_resched();
11136         }
11137
11138         return ret;
11139 }
11140
11141 /*
11142  * Trim the whole filesystem by:
11143  * 1) trimming the free space in each block group
11144  * 2) trimming the unallocated space on each device
11145  *
11146  * This will also continue trimming even if a block group or device encounters
11147  * an error.  The return value will be the last error, or 0 if nothing bad
11148  * happens.
11149  */
11150 int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range)
11151 {
11152         struct btrfs_block_group_cache *cache = NULL;
11153         struct btrfs_device *device;
11154         struct list_head *devices;
11155         u64 group_trimmed;
11156         u64 start;
11157         u64 end;
11158         u64 trimmed = 0;
11159         u64 bg_failed = 0;
11160         u64 dev_failed = 0;
11161         int bg_ret = 0;
11162         int dev_ret = 0;
11163         int ret = 0;
11164
11165         cache = btrfs_lookup_first_block_group(fs_info, range->start);
11166         for (; cache; cache = next_block_group(fs_info, cache)) {
11167                 if (cache->key.objectid >= (range->start + range->len)) {
11168                         btrfs_put_block_group(cache);
11169                         break;
11170                 }
11171
11172                 start = max(range->start, cache->key.objectid);
11173                 end = min(range->start + range->len,
11174                                 cache->key.objectid + cache->key.offset);
11175
11176                 if (end - start >= range->minlen) {
11177                         if (!block_group_cache_done(cache)) {
11178                                 ret = cache_block_group(cache, 0);
11179                                 if (ret) {
11180                                         bg_failed++;
11181                                         bg_ret = ret;
11182                                         continue;
11183                                 }
11184                                 ret = wait_block_group_cache_done(cache);
11185                                 if (ret) {
11186                                         bg_failed++;
11187                                         bg_ret = ret;
11188                                         continue;
11189                                 }
11190                         }
11191                         ret = btrfs_trim_block_group(cache,
11192                                                      &group_trimmed,
11193                                                      start,
11194                                                      end,
11195                                                      range->minlen);
11196
11197                         trimmed += group_trimmed;
11198                         if (ret) {
11199                                 bg_failed++;
11200                                 bg_ret = ret;
11201                                 continue;
11202                         }
11203                 }
11204         }
11205
11206         if (bg_failed)
11207                 btrfs_warn(fs_info,
11208                         "failed to trim %llu block group(s), last error %d",
11209                         bg_failed, bg_ret);
11210         mutex_lock(&fs_info->fs_devices->device_list_mutex);
11211         devices = &fs_info->fs_devices->devices;
11212         list_for_each_entry(device, devices, dev_list) {
11213                 ret = btrfs_trim_free_extents(device, range->minlen,
11214                                               &group_trimmed);
11215                 if (ret) {
11216                         dev_failed++;
11217                         dev_ret = ret;
11218                         break;
11219                 }
11220
11221                 trimmed += group_trimmed;
11222         }
11223         mutex_unlock(&fs_info->fs_devices->device_list_mutex);
11224
11225         if (dev_failed)
11226                 btrfs_warn(fs_info,
11227                         "failed to trim %llu device(s), last error %d",
11228                         dev_failed, dev_ret);
11229         range->len = trimmed;
11230         if (bg_ret)
11231                 return bg_ret;
11232         return dev_ret;
11233 }
11234
11235 /*
11236  * btrfs_{start,end}_write_no_snapshotting() are similar to
11237  * mnt_{want,drop}_write(), they are used to prevent some tasks from writing
11238  * data into the page cache through nocow before the subvolume is snapshoted,
11239  * but flush the data into disk after the snapshot creation, or to prevent
11240  * operations while snapshotting is ongoing and that cause the snapshot to be
11241  * inconsistent (writes followed by expanding truncates for example).
11242  */
11243 void btrfs_end_write_no_snapshotting(struct btrfs_root *root)
11244 {
11245         percpu_counter_dec(&root->subv_writers->counter);
11246         /*
11247          * Make sure counter is updated before we wake up waiters.
11248          */
11249         smp_mb();
11250         if (waitqueue_active(&root->subv_writers->wait))
11251                 wake_up(&root->subv_writers->wait);
11252 }
11253
11254 int btrfs_start_write_no_snapshotting(struct btrfs_root *root)
11255 {
11256         if (atomic_read(&root->will_be_snapshotted))
11257                 return 0;
11258
11259         percpu_counter_inc(&root->subv_writers->counter);
11260         /*
11261          * Make sure counter is updated before we check for snapshot creation.
11262          */
11263         smp_mb();
11264         if (atomic_read(&root->will_be_snapshotted)) {
11265                 btrfs_end_write_no_snapshotting(root);
11266                 return 0;
11267         }
11268         return 1;
11269 }
11270
11271 static int wait_snapshotting_atomic_t(atomic_t *a)
11272 {
11273         schedule();
11274         return 0;
11275 }
11276
11277 void btrfs_wait_for_snapshot_creation(struct btrfs_root *root)
11278 {
11279         while (true) {
11280                 int ret;
11281
11282                 ret = btrfs_start_write_no_snapshotting(root);
11283                 if (ret)
11284                         break;
11285                 wait_on_atomic_t(&root->will_be_snapshotted,
11286                                  wait_snapshotting_atomic_t,
11287                                  TASK_UNINTERRUPTIBLE);
11288         }
11289 }