GNU Linux-libre 4.19.264-gnu1
[releases.git] / fs / buffer.c
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20
21 #include <linux/kernel.h>
22 #include <linux/sched/signal.h>
23 #include <linux/syscalls.h>
24 #include <linux/fs.h>
25 #include <linux/iomap.h>
26 #include <linux/mm.h>
27 #include <linux/percpu.h>
28 #include <linux/slab.h>
29 #include <linux/capability.h>
30 #include <linux/blkdev.h>
31 #include <linux/file.h>
32 #include <linux/quotaops.h>
33 #include <linux/highmem.h>
34 #include <linux/export.h>
35 #include <linux/backing-dev.h>
36 #include <linux/writeback.h>
37 #include <linux/hash.h>
38 #include <linux/suspend.h>
39 #include <linux/buffer_head.h>
40 #include <linux/task_io_accounting_ops.h>
41 #include <linux/bio.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <linux/pagevec.h>
47 #include <linux/sched/mm.h>
48 #include <trace/events/block.h>
49
50 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
51 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
52                          enum rw_hint hint, struct writeback_control *wbc);
53
54 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55
56 inline void touch_buffer(struct buffer_head *bh)
57 {
58         trace_block_touch_buffer(bh);
59         mark_page_accessed(bh->b_page);
60 }
61 EXPORT_SYMBOL(touch_buffer);
62
63 void __lock_buffer(struct buffer_head *bh)
64 {
65         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
66 }
67 EXPORT_SYMBOL(__lock_buffer);
68
69 void unlock_buffer(struct buffer_head *bh)
70 {
71         clear_bit_unlock(BH_Lock, &bh->b_state);
72         smp_mb__after_atomic();
73         wake_up_bit(&bh->b_state, BH_Lock);
74 }
75 EXPORT_SYMBOL(unlock_buffer);
76
77 /*
78  * Returns if the page has dirty or writeback buffers. If all the buffers
79  * are unlocked and clean then the PageDirty information is stale. If
80  * any of the pages are locked, it is assumed they are locked for IO.
81  */
82 void buffer_check_dirty_writeback(struct page *page,
83                                      bool *dirty, bool *writeback)
84 {
85         struct buffer_head *head, *bh;
86         *dirty = false;
87         *writeback = false;
88
89         BUG_ON(!PageLocked(page));
90
91         if (!page_has_buffers(page))
92                 return;
93
94         if (PageWriteback(page))
95                 *writeback = true;
96
97         head = page_buffers(page);
98         bh = head;
99         do {
100                 if (buffer_locked(bh))
101                         *writeback = true;
102
103                 if (buffer_dirty(bh))
104                         *dirty = true;
105
106                 bh = bh->b_this_page;
107         } while (bh != head);
108 }
109 EXPORT_SYMBOL(buffer_check_dirty_writeback);
110
111 /*
112  * Block until a buffer comes unlocked.  This doesn't stop it
113  * from becoming locked again - you have to lock it yourself
114  * if you want to preserve its state.
115  */
116 void __wait_on_buffer(struct buffer_head * bh)
117 {
118         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
119 }
120 EXPORT_SYMBOL(__wait_on_buffer);
121
122 static void
123 __clear_page_buffers(struct page *page)
124 {
125         ClearPagePrivate(page);
126         set_page_private(page, 0);
127         put_page(page);
128 }
129
130 static void buffer_io_error(struct buffer_head *bh, char *msg)
131 {
132         if (!test_bit(BH_Quiet, &bh->b_state))
133                 printk_ratelimited(KERN_ERR
134                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
135                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
136 }
137
138 /*
139  * End-of-IO handler helper function which does not touch the bh after
140  * unlocking it.
141  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
142  * a race there is benign: unlock_buffer() only use the bh's address for
143  * hashing after unlocking the buffer, so it doesn't actually touch the bh
144  * itself.
145  */
146 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
147 {
148         if (uptodate) {
149                 set_buffer_uptodate(bh);
150         } else {
151                 /* This happens, due to failed read-ahead attempts. */
152                 clear_buffer_uptodate(bh);
153         }
154         unlock_buffer(bh);
155 }
156
157 /*
158  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
159  * unlock the buffer. This is what ll_rw_block uses too.
160  */
161 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
162 {
163         __end_buffer_read_notouch(bh, uptodate);
164         put_bh(bh);
165 }
166 EXPORT_SYMBOL(end_buffer_read_sync);
167
168 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
169 {
170         if (uptodate) {
171                 set_buffer_uptodate(bh);
172         } else {
173                 buffer_io_error(bh, ", lost sync page write");
174                 mark_buffer_write_io_error(bh);
175                 clear_buffer_uptodate(bh);
176         }
177         unlock_buffer(bh);
178         put_bh(bh);
179 }
180 EXPORT_SYMBOL(end_buffer_write_sync);
181
182 /*
183  * Various filesystems appear to want __find_get_block to be non-blocking.
184  * But it's the page lock which protects the buffers.  To get around this,
185  * we get exclusion from try_to_free_buffers with the blockdev mapping's
186  * private_lock.
187  *
188  * Hack idea: for the blockdev mapping, private_lock contention
189  * may be quite high.  This code could TryLock the page, and if that
190  * succeeds, there is no need to take private_lock.
191  */
192 static struct buffer_head *
193 __find_get_block_slow(struct block_device *bdev, sector_t block)
194 {
195         struct inode *bd_inode = bdev->bd_inode;
196         struct address_space *bd_mapping = bd_inode->i_mapping;
197         struct buffer_head *ret = NULL;
198         pgoff_t index;
199         struct buffer_head *bh;
200         struct buffer_head *head;
201         struct page *page;
202         int all_mapped = 1;
203         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
204
205         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
206         page = find_get_page_flags(bd_mapping, index, FGP_ACCESSED);
207         if (!page)
208                 goto out;
209
210         spin_lock(&bd_mapping->private_lock);
211         if (!page_has_buffers(page))
212                 goto out_unlock;
213         head = page_buffers(page);
214         bh = head;
215         do {
216                 if (!buffer_mapped(bh))
217                         all_mapped = 0;
218                 else if (bh->b_blocknr == block) {
219                         ret = bh;
220                         get_bh(bh);
221                         goto out_unlock;
222                 }
223                 bh = bh->b_this_page;
224         } while (bh != head);
225
226         /* we might be here because some of the buffers on this page are
227          * not mapped.  This is due to various races between
228          * file io on the block device and getblk.  It gets dealt with
229          * elsewhere, don't buffer_error if we had some unmapped buffers
230          */
231         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
232         if (all_mapped && __ratelimit(&last_warned)) {
233                 printk("__find_get_block_slow() failed. block=%llu, "
234                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
235                        "device %pg blocksize: %d\n",
236                        (unsigned long long)block,
237                        (unsigned long long)bh->b_blocknr,
238                        bh->b_state, bh->b_size, bdev,
239                        1 << bd_inode->i_blkbits);
240         }
241 out_unlock:
242         spin_unlock(&bd_mapping->private_lock);
243         put_page(page);
244 out:
245         return ret;
246 }
247
248 /*
249  * I/O completion handler for block_read_full_page() - pages
250  * which come unlocked at the end of I/O.
251  */
252 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
253 {
254         unsigned long flags;
255         struct buffer_head *first;
256         struct buffer_head *tmp;
257         struct page *page;
258         int page_uptodate = 1;
259
260         BUG_ON(!buffer_async_read(bh));
261
262         page = bh->b_page;
263         if (uptodate) {
264                 set_buffer_uptodate(bh);
265         } else {
266                 clear_buffer_uptodate(bh);
267                 buffer_io_error(bh, ", async page read");
268                 SetPageError(page);
269         }
270
271         /*
272          * Be _very_ careful from here on. Bad things can happen if
273          * two buffer heads end IO at almost the same time and both
274          * decide that the page is now completely done.
275          */
276         first = page_buffers(page);
277         local_irq_save(flags);
278         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
279         clear_buffer_async_read(bh);
280         unlock_buffer(bh);
281         tmp = bh;
282         do {
283                 if (!buffer_uptodate(tmp))
284                         page_uptodate = 0;
285                 if (buffer_async_read(tmp)) {
286                         BUG_ON(!buffer_locked(tmp));
287                         goto still_busy;
288                 }
289                 tmp = tmp->b_this_page;
290         } while (tmp != bh);
291         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
292         local_irq_restore(flags);
293
294         /*
295          * If none of the buffers had errors and they are all
296          * uptodate then we can set the page uptodate.
297          */
298         if (page_uptodate && !PageError(page))
299                 SetPageUptodate(page);
300         unlock_page(page);
301         return;
302
303 still_busy:
304         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
305         local_irq_restore(flags);
306         return;
307 }
308
309 /*
310  * Completion handler for block_write_full_page() - pages which are unlocked
311  * during I/O, and which have PageWriteback cleared upon I/O completion.
312  */
313 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
314 {
315         unsigned long flags;
316         struct buffer_head *first;
317         struct buffer_head *tmp;
318         struct page *page;
319
320         BUG_ON(!buffer_async_write(bh));
321
322         page = bh->b_page;
323         if (uptodate) {
324                 set_buffer_uptodate(bh);
325         } else {
326                 buffer_io_error(bh, ", lost async page write");
327                 mark_buffer_write_io_error(bh);
328                 clear_buffer_uptodate(bh);
329                 SetPageError(page);
330         }
331
332         first = page_buffers(page);
333         local_irq_save(flags);
334         bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
335
336         clear_buffer_async_write(bh);
337         unlock_buffer(bh);
338         tmp = bh->b_this_page;
339         while (tmp != bh) {
340                 if (buffer_async_write(tmp)) {
341                         BUG_ON(!buffer_locked(tmp));
342                         goto still_busy;
343                 }
344                 tmp = tmp->b_this_page;
345         }
346         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
347         local_irq_restore(flags);
348         end_page_writeback(page);
349         return;
350
351 still_busy:
352         bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
353         local_irq_restore(flags);
354         return;
355 }
356 EXPORT_SYMBOL(end_buffer_async_write);
357
358 /*
359  * If a page's buffers are under async readin (end_buffer_async_read
360  * completion) then there is a possibility that another thread of
361  * control could lock one of the buffers after it has completed
362  * but while some of the other buffers have not completed.  This
363  * locked buffer would confuse end_buffer_async_read() into not unlocking
364  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
365  * that this buffer is not under async I/O.
366  *
367  * The page comes unlocked when it has no locked buffer_async buffers
368  * left.
369  *
370  * PageLocked prevents anyone starting new async I/O reads any of
371  * the buffers.
372  *
373  * PageWriteback is used to prevent simultaneous writeout of the same
374  * page.
375  *
376  * PageLocked prevents anyone from starting writeback of a page which is
377  * under read I/O (PageWriteback is only ever set against a locked page).
378  */
379 static void mark_buffer_async_read(struct buffer_head *bh)
380 {
381         bh->b_end_io = end_buffer_async_read;
382         set_buffer_async_read(bh);
383 }
384
385 static void mark_buffer_async_write_endio(struct buffer_head *bh,
386                                           bh_end_io_t *handler)
387 {
388         bh->b_end_io = handler;
389         set_buffer_async_write(bh);
390 }
391
392 void mark_buffer_async_write(struct buffer_head *bh)
393 {
394         mark_buffer_async_write_endio(bh, end_buffer_async_write);
395 }
396 EXPORT_SYMBOL(mark_buffer_async_write);
397
398
399 /*
400  * fs/buffer.c contains helper functions for buffer-backed address space's
401  * fsync functions.  A common requirement for buffer-based filesystems is
402  * that certain data from the backing blockdev needs to be written out for
403  * a successful fsync().  For example, ext2 indirect blocks need to be
404  * written back and waited upon before fsync() returns.
405  *
406  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
407  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
408  * management of a list of dependent buffers at ->i_mapping->private_list.
409  *
410  * Locking is a little subtle: try_to_free_buffers() will remove buffers
411  * from their controlling inode's queue when they are being freed.  But
412  * try_to_free_buffers() will be operating against the *blockdev* mapping
413  * at the time, not against the S_ISREG file which depends on those buffers.
414  * So the locking for private_list is via the private_lock in the address_space
415  * which backs the buffers.  Which is different from the address_space 
416  * against which the buffers are listed.  So for a particular address_space,
417  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
418  * mapping->private_list will always be protected by the backing blockdev's
419  * ->private_lock.
420  *
421  * Which introduces a requirement: all buffers on an address_space's
422  * ->private_list must be from the same address_space: the blockdev's.
423  *
424  * address_spaces which do not place buffers at ->private_list via these
425  * utility functions are free to use private_lock and private_list for
426  * whatever they want.  The only requirement is that list_empty(private_list)
427  * be true at clear_inode() time.
428  *
429  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
430  * filesystems should do that.  invalidate_inode_buffers() should just go
431  * BUG_ON(!list_empty).
432  *
433  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
434  * take an address_space, not an inode.  And it should be called
435  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
436  * queued up.
437  *
438  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
439  * list if it is already on a list.  Because if the buffer is on a list,
440  * it *must* already be on the right one.  If not, the filesystem is being
441  * silly.  This will save a ton of locking.  But first we have to ensure
442  * that buffers are taken *off* the old inode's list when they are freed
443  * (presumably in truncate).  That requires careful auditing of all
444  * filesystems (do it inside bforget()).  It could also be done by bringing
445  * b_inode back.
446  */
447
448 /*
449  * The buffer's backing address_space's private_lock must be held
450  */
451 static void __remove_assoc_queue(struct buffer_head *bh)
452 {
453         list_del_init(&bh->b_assoc_buffers);
454         WARN_ON(!bh->b_assoc_map);
455         bh->b_assoc_map = NULL;
456 }
457
458 int inode_has_buffers(struct inode *inode)
459 {
460         return !list_empty(&inode->i_data.private_list);
461 }
462
463 /*
464  * osync is designed to support O_SYNC io.  It waits synchronously for
465  * all already-submitted IO to complete, but does not queue any new
466  * writes to the disk.
467  *
468  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
469  * you dirty the buffers, and then use osync_inode_buffers to wait for
470  * completion.  Any other dirty buffers which are not yet queued for
471  * write will not be flushed to disk by the osync.
472  */
473 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
474 {
475         struct buffer_head *bh;
476         struct list_head *p;
477         int err = 0;
478
479         spin_lock(lock);
480 repeat:
481         list_for_each_prev(p, list) {
482                 bh = BH_ENTRY(p);
483                 if (buffer_locked(bh)) {
484                         get_bh(bh);
485                         spin_unlock(lock);
486                         wait_on_buffer(bh);
487                         if (!buffer_uptodate(bh))
488                                 err = -EIO;
489                         brelse(bh);
490                         spin_lock(lock);
491                         goto repeat;
492                 }
493         }
494         spin_unlock(lock);
495         return err;
496 }
497
498 void emergency_thaw_bdev(struct super_block *sb)
499 {
500         while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
501                 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
502 }
503
504 /**
505  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
506  * @mapping: the mapping which wants those buffers written
507  *
508  * Starts I/O against the buffers at mapping->private_list, and waits upon
509  * that I/O.
510  *
511  * Basically, this is a convenience function for fsync().
512  * @mapping is a file or directory which needs those buffers to be written for
513  * a successful fsync().
514  */
515 int sync_mapping_buffers(struct address_space *mapping)
516 {
517         struct address_space *buffer_mapping = mapping->private_data;
518
519         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
520                 return 0;
521
522         return fsync_buffers_list(&buffer_mapping->private_lock,
523                                         &mapping->private_list);
524 }
525 EXPORT_SYMBOL(sync_mapping_buffers);
526
527 /*
528  * Called when we've recently written block `bblock', and it is known that
529  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
530  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
531  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
532  */
533 void write_boundary_block(struct block_device *bdev,
534                         sector_t bblock, unsigned blocksize)
535 {
536         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
537         if (bh) {
538                 if (buffer_dirty(bh))
539                         ll_rw_block(REQ_OP_WRITE, 0, 1, &bh);
540                 put_bh(bh);
541         }
542 }
543
544 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
545 {
546         struct address_space *mapping = inode->i_mapping;
547         struct address_space *buffer_mapping = bh->b_page->mapping;
548
549         mark_buffer_dirty(bh);
550         if (!mapping->private_data) {
551                 mapping->private_data = buffer_mapping;
552         } else {
553                 BUG_ON(mapping->private_data != buffer_mapping);
554         }
555         if (!bh->b_assoc_map) {
556                 spin_lock(&buffer_mapping->private_lock);
557                 list_move_tail(&bh->b_assoc_buffers,
558                                 &mapping->private_list);
559                 bh->b_assoc_map = mapping;
560                 spin_unlock(&buffer_mapping->private_lock);
561         }
562 }
563 EXPORT_SYMBOL(mark_buffer_dirty_inode);
564
565 /*
566  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
567  * dirty.
568  *
569  * If warn is true, then emit a warning if the page is not uptodate and has
570  * not been truncated.
571  *
572  * The caller must hold lock_page_memcg().
573  */
574 void __set_page_dirty(struct page *page, struct address_space *mapping,
575                              int warn)
576 {
577         unsigned long flags;
578
579         xa_lock_irqsave(&mapping->i_pages, flags);
580         if (page->mapping) {    /* Race with truncate? */
581                 WARN_ON_ONCE(warn && !PageUptodate(page));
582                 account_page_dirtied(page, mapping);
583                 radix_tree_tag_set(&mapping->i_pages,
584                                 page_index(page), PAGECACHE_TAG_DIRTY);
585         }
586         xa_unlock_irqrestore(&mapping->i_pages, flags);
587 }
588 EXPORT_SYMBOL_GPL(__set_page_dirty);
589
590 /*
591  * Add a page to the dirty page list.
592  *
593  * It is a sad fact of life that this function is called from several places
594  * deeply under spinlocking.  It may not sleep.
595  *
596  * If the page has buffers, the uptodate buffers are set dirty, to preserve
597  * dirty-state coherency between the page and the buffers.  It the page does
598  * not have buffers then when they are later attached they will all be set
599  * dirty.
600  *
601  * The buffers are dirtied before the page is dirtied.  There's a small race
602  * window in which a writepage caller may see the page cleanness but not the
603  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
604  * before the buffers, a concurrent writepage caller could clear the page dirty
605  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
606  * page on the dirty page list.
607  *
608  * We use private_lock to lock against try_to_free_buffers while using the
609  * page's buffer list.  Also use this to protect against clean buffers being
610  * added to the page after it was set dirty.
611  *
612  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
613  * address_space though.
614  */
615 int __set_page_dirty_buffers(struct page *page)
616 {
617         int newly_dirty;
618         struct address_space *mapping = page_mapping(page);
619
620         if (unlikely(!mapping))
621                 return !TestSetPageDirty(page);
622
623         spin_lock(&mapping->private_lock);
624         if (page_has_buffers(page)) {
625                 struct buffer_head *head = page_buffers(page);
626                 struct buffer_head *bh = head;
627
628                 do {
629                         set_buffer_dirty(bh);
630                         bh = bh->b_this_page;
631                 } while (bh != head);
632         }
633         /*
634          * Lock out page->mem_cgroup migration to keep PageDirty
635          * synchronized with per-memcg dirty page counters.
636          */
637         lock_page_memcg(page);
638         newly_dirty = !TestSetPageDirty(page);
639         spin_unlock(&mapping->private_lock);
640
641         if (newly_dirty)
642                 __set_page_dirty(page, mapping, 1);
643
644         unlock_page_memcg(page);
645
646         if (newly_dirty)
647                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
648
649         return newly_dirty;
650 }
651 EXPORT_SYMBOL(__set_page_dirty_buffers);
652
653 /*
654  * Write out and wait upon a list of buffers.
655  *
656  * We have conflicting pressures: we want to make sure that all
657  * initially dirty buffers get waited on, but that any subsequently
658  * dirtied buffers don't.  After all, we don't want fsync to last
659  * forever if somebody is actively writing to the file.
660  *
661  * Do this in two main stages: first we copy dirty buffers to a
662  * temporary inode list, queueing the writes as we go.  Then we clean
663  * up, waiting for those writes to complete.
664  * 
665  * During this second stage, any subsequent updates to the file may end
666  * up refiling the buffer on the original inode's dirty list again, so
667  * there is a chance we will end up with a buffer queued for write but
668  * not yet completed on that list.  So, as a final cleanup we go through
669  * the osync code to catch these locked, dirty buffers without requeuing
670  * any newly dirty buffers for write.
671  */
672 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
673 {
674         struct buffer_head *bh;
675         struct list_head tmp;
676         struct address_space *mapping;
677         int err = 0, err2;
678         struct blk_plug plug;
679
680         INIT_LIST_HEAD(&tmp);
681         blk_start_plug(&plug);
682
683         spin_lock(lock);
684         while (!list_empty(list)) {
685                 bh = BH_ENTRY(list->next);
686                 mapping = bh->b_assoc_map;
687                 __remove_assoc_queue(bh);
688                 /* Avoid race with mark_buffer_dirty_inode() which does
689                  * a lockless check and we rely on seeing the dirty bit */
690                 smp_mb();
691                 if (buffer_dirty(bh) || buffer_locked(bh)) {
692                         list_add(&bh->b_assoc_buffers, &tmp);
693                         bh->b_assoc_map = mapping;
694                         if (buffer_dirty(bh)) {
695                                 get_bh(bh);
696                                 spin_unlock(lock);
697                                 /*
698                                  * Ensure any pending I/O completes so that
699                                  * write_dirty_buffer() actually writes the
700                                  * current contents - it is a noop if I/O is
701                                  * still in flight on potentially older
702                                  * contents.
703                                  */
704                                 write_dirty_buffer(bh, REQ_SYNC);
705
706                                 /*
707                                  * Kick off IO for the previous mapping. Note
708                                  * that we will not run the very last mapping,
709                                  * wait_on_buffer() will do that for us
710                                  * through sync_buffer().
711                                  */
712                                 brelse(bh);
713                                 spin_lock(lock);
714                         }
715                 }
716         }
717
718         spin_unlock(lock);
719         blk_finish_plug(&plug);
720         spin_lock(lock);
721
722         while (!list_empty(&tmp)) {
723                 bh = BH_ENTRY(tmp.prev);
724                 get_bh(bh);
725                 mapping = bh->b_assoc_map;
726                 __remove_assoc_queue(bh);
727                 /* Avoid race with mark_buffer_dirty_inode() which does
728                  * a lockless check and we rely on seeing the dirty bit */
729                 smp_mb();
730                 if (buffer_dirty(bh)) {
731                         list_add(&bh->b_assoc_buffers,
732                                  &mapping->private_list);
733                         bh->b_assoc_map = mapping;
734                 }
735                 spin_unlock(lock);
736                 wait_on_buffer(bh);
737                 if (!buffer_uptodate(bh))
738                         err = -EIO;
739                 brelse(bh);
740                 spin_lock(lock);
741         }
742         
743         spin_unlock(lock);
744         err2 = osync_buffers_list(lock, list);
745         if (err)
746                 return err;
747         else
748                 return err2;
749 }
750
751 /*
752  * Invalidate any and all dirty buffers on a given inode.  We are
753  * probably unmounting the fs, but that doesn't mean we have already
754  * done a sync().  Just drop the buffers from the inode list.
755  *
756  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
757  * assumes that all the buffers are against the blockdev.  Not true
758  * for reiserfs.
759  */
760 void invalidate_inode_buffers(struct inode *inode)
761 {
762         if (inode_has_buffers(inode)) {
763                 struct address_space *mapping = &inode->i_data;
764                 struct list_head *list = &mapping->private_list;
765                 struct address_space *buffer_mapping = mapping->private_data;
766
767                 spin_lock(&buffer_mapping->private_lock);
768                 while (!list_empty(list))
769                         __remove_assoc_queue(BH_ENTRY(list->next));
770                 spin_unlock(&buffer_mapping->private_lock);
771         }
772 }
773 EXPORT_SYMBOL(invalidate_inode_buffers);
774
775 /*
776  * Remove any clean buffers from the inode's buffer list.  This is called
777  * when we're trying to free the inode itself.  Those buffers can pin it.
778  *
779  * Returns true if all buffers were removed.
780  */
781 int remove_inode_buffers(struct inode *inode)
782 {
783         int ret = 1;
784
785         if (inode_has_buffers(inode)) {
786                 struct address_space *mapping = &inode->i_data;
787                 struct list_head *list = &mapping->private_list;
788                 struct address_space *buffer_mapping = mapping->private_data;
789
790                 spin_lock(&buffer_mapping->private_lock);
791                 while (!list_empty(list)) {
792                         struct buffer_head *bh = BH_ENTRY(list->next);
793                         if (buffer_dirty(bh)) {
794                                 ret = 0;
795                                 break;
796                         }
797                         __remove_assoc_queue(bh);
798                 }
799                 spin_unlock(&buffer_mapping->private_lock);
800         }
801         return ret;
802 }
803
804 /*
805  * Create the appropriate buffers when given a page for data area and
806  * the size of each buffer.. Use the bh->b_this_page linked list to
807  * follow the buffers created.  Return NULL if unable to create more
808  * buffers.
809  *
810  * The retry flag is used to differentiate async IO (paging, swapping)
811  * which may not fail from ordinary buffer allocations.
812  */
813 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
814                 bool retry)
815 {
816         struct buffer_head *bh, *head;
817         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
818         long offset;
819         struct mem_cgroup *memcg;
820
821         if (retry)
822                 gfp |= __GFP_NOFAIL;
823
824         memcg = get_mem_cgroup_from_page(page);
825         memalloc_use_memcg(memcg);
826
827         head = NULL;
828         offset = PAGE_SIZE;
829         while ((offset -= size) >= 0) {
830                 bh = alloc_buffer_head(gfp);
831                 if (!bh)
832                         goto no_grow;
833
834                 bh->b_this_page = head;
835                 bh->b_blocknr = -1;
836                 head = bh;
837
838                 bh->b_size = size;
839
840                 /* Link the buffer to its page */
841                 set_bh_page(bh, page, offset);
842         }
843 out:
844         memalloc_unuse_memcg();
845         mem_cgroup_put(memcg);
846         return head;
847 /*
848  * In case anything failed, we just free everything we got.
849  */
850 no_grow:
851         if (head) {
852                 do {
853                         bh = head;
854                         head = head->b_this_page;
855                         free_buffer_head(bh);
856                 } while (head);
857         }
858
859         goto out;
860 }
861 EXPORT_SYMBOL_GPL(alloc_page_buffers);
862
863 static inline void
864 link_dev_buffers(struct page *page, struct buffer_head *head)
865 {
866         struct buffer_head *bh, *tail;
867
868         bh = head;
869         do {
870                 tail = bh;
871                 bh = bh->b_this_page;
872         } while (bh);
873         tail->b_this_page = head;
874         attach_page_buffers(page, head);
875 }
876
877 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
878 {
879         sector_t retval = ~((sector_t)0);
880         loff_t sz = i_size_read(bdev->bd_inode);
881
882         if (sz) {
883                 unsigned int sizebits = blksize_bits(size);
884                 retval = (sz >> sizebits);
885         }
886         return retval;
887 }
888
889 /*
890  * Initialise the state of a blockdev page's buffers.
891  */ 
892 static sector_t
893 init_page_buffers(struct page *page, struct block_device *bdev,
894                         sector_t block, int size)
895 {
896         struct buffer_head *head = page_buffers(page);
897         struct buffer_head *bh = head;
898         int uptodate = PageUptodate(page);
899         sector_t end_block = blkdev_max_block(I_BDEV(bdev->bd_inode), size);
900
901         do {
902                 if (!buffer_mapped(bh)) {
903                         bh->b_end_io = NULL;
904                         bh->b_private = NULL;
905                         bh->b_bdev = bdev;
906                         bh->b_blocknr = block;
907                         if (uptodate)
908                                 set_buffer_uptodate(bh);
909                         if (block < end_block)
910                                 set_buffer_mapped(bh);
911                 }
912                 block++;
913                 bh = bh->b_this_page;
914         } while (bh != head);
915
916         /*
917          * Caller needs to validate requested block against end of device.
918          */
919         return end_block;
920 }
921
922 /*
923  * Create the page-cache page that contains the requested block.
924  *
925  * This is used purely for blockdev mappings.
926  */
927 static int
928 grow_dev_page(struct block_device *bdev, sector_t block,
929               pgoff_t index, int size, int sizebits, gfp_t gfp)
930 {
931         struct inode *inode = bdev->bd_inode;
932         struct page *page;
933         struct buffer_head *bh;
934         sector_t end_block;
935         int ret = 0;            /* Will call free_more_memory() */
936         gfp_t gfp_mask;
937
938         gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
939
940         /*
941          * XXX: __getblk_slow() can not really deal with failure and
942          * will endlessly loop on improvised global reclaim.  Prefer
943          * looping in the allocator rather than here, at least that
944          * code knows what it's doing.
945          */
946         gfp_mask |= __GFP_NOFAIL;
947
948         page = find_or_create_page(inode->i_mapping, index, gfp_mask);
949
950         BUG_ON(!PageLocked(page));
951
952         if (page_has_buffers(page)) {
953                 bh = page_buffers(page);
954                 if (bh->b_size == size) {
955                         end_block = init_page_buffers(page, bdev,
956                                                 (sector_t)index << sizebits,
957                                                 size);
958                         goto done;
959                 }
960                 if (!try_to_free_buffers(page))
961                         goto failed;
962         }
963
964         /*
965          * Allocate some buffers for this page
966          */
967         bh = alloc_page_buffers(page, size, true);
968
969         /*
970          * Link the page to the buffers and initialise them.  Take the
971          * lock to be atomic wrt __find_get_block(), which does not
972          * run under the page lock.
973          */
974         spin_lock(&inode->i_mapping->private_lock);
975         link_dev_buffers(page, bh);
976         end_block = init_page_buffers(page, bdev, (sector_t)index << sizebits,
977                         size);
978         spin_unlock(&inode->i_mapping->private_lock);
979 done:
980         ret = (block < end_block) ? 1 : -ENXIO;
981 failed:
982         unlock_page(page);
983         put_page(page);
984         return ret;
985 }
986
987 /*
988  * Create buffers for the specified block device block's page.  If
989  * that page was dirty, the buffers are set dirty also.
990  */
991 static int
992 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
993 {
994         pgoff_t index;
995         int sizebits;
996
997         sizebits = -1;
998         do {
999                 sizebits++;
1000         } while ((size << sizebits) < PAGE_SIZE);
1001
1002         index = block >> sizebits;
1003
1004         /*
1005          * Check for a block which wants to lie outside our maximum possible
1006          * pagecache index.  (this comparison is done using sector_t types).
1007          */
1008         if (unlikely(index != block >> sizebits)) {
1009                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1010                         "device %pg\n",
1011                         __func__, (unsigned long long)block,
1012                         bdev);
1013                 return -EIO;
1014         }
1015
1016         /* Create a page with the proper size buffers.. */
1017         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1018 }
1019
1020 static struct buffer_head *
1021 __getblk_slow(struct block_device *bdev, sector_t block,
1022              unsigned size, gfp_t gfp)
1023 {
1024         /* Size must be multiple of hard sectorsize */
1025         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1026                         (size < 512 || size > PAGE_SIZE))) {
1027                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1028                                         size);
1029                 printk(KERN_ERR "logical block size: %d\n",
1030                                         bdev_logical_block_size(bdev));
1031
1032                 dump_stack();
1033                 return NULL;
1034         }
1035
1036         for (;;) {
1037                 struct buffer_head *bh;
1038                 int ret;
1039
1040                 bh = __find_get_block(bdev, block, size);
1041                 if (bh)
1042                         return bh;
1043
1044                 ret = grow_buffers(bdev, block, size, gfp);
1045                 if (ret < 0)
1046                         return NULL;
1047         }
1048 }
1049
1050 /*
1051  * The relationship between dirty buffers and dirty pages:
1052  *
1053  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1054  * the page is tagged dirty in its radix tree.
1055  *
1056  * At all times, the dirtiness of the buffers represents the dirtiness of
1057  * subsections of the page.  If the page has buffers, the page dirty bit is
1058  * merely a hint about the true dirty state.
1059  *
1060  * When a page is set dirty in its entirety, all its buffers are marked dirty
1061  * (if the page has buffers).
1062  *
1063  * When a buffer is marked dirty, its page is dirtied, but the page's other
1064  * buffers are not.
1065  *
1066  * Also.  When blockdev buffers are explicitly read with bread(), they
1067  * individually become uptodate.  But their backing page remains not
1068  * uptodate - even if all of its buffers are uptodate.  A subsequent
1069  * block_read_full_page() against that page will discover all the uptodate
1070  * buffers, will set the page uptodate and will perform no I/O.
1071  */
1072
1073 /**
1074  * mark_buffer_dirty - mark a buffer_head as needing writeout
1075  * @bh: the buffer_head to mark dirty
1076  *
1077  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1078  * backing page dirty, then tag the page as dirty in its address_space's radix
1079  * tree and then attach the address_space's inode to its superblock's dirty
1080  * inode list.
1081  *
1082  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1083  * i_pages lock and mapping->host->i_lock.
1084  */
1085 void mark_buffer_dirty(struct buffer_head *bh)
1086 {
1087         WARN_ON_ONCE(!buffer_uptodate(bh));
1088
1089         trace_block_dirty_buffer(bh);
1090
1091         /*
1092          * Very *carefully* optimize the it-is-already-dirty case.
1093          *
1094          * Don't let the final "is it dirty" escape to before we
1095          * perhaps modified the buffer.
1096          */
1097         if (buffer_dirty(bh)) {
1098                 smp_mb();
1099                 if (buffer_dirty(bh))
1100                         return;
1101         }
1102
1103         if (!test_set_buffer_dirty(bh)) {
1104                 struct page *page = bh->b_page;
1105                 struct address_space *mapping = NULL;
1106
1107                 lock_page_memcg(page);
1108                 if (!TestSetPageDirty(page)) {
1109                         mapping = page_mapping(page);
1110                         if (mapping)
1111                                 __set_page_dirty(page, mapping, 0);
1112                 }
1113                 unlock_page_memcg(page);
1114                 if (mapping)
1115                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1116         }
1117 }
1118 EXPORT_SYMBOL(mark_buffer_dirty);
1119
1120 void mark_buffer_write_io_error(struct buffer_head *bh)
1121 {
1122         set_buffer_write_io_error(bh);
1123         /* FIXME: do we need to set this in both places? */
1124         if (bh->b_page && bh->b_page->mapping)
1125                 mapping_set_error(bh->b_page->mapping, -EIO);
1126         if (bh->b_assoc_map)
1127                 mapping_set_error(bh->b_assoc_map, -EIO);
1128 }
1129 EXPORT_SYMBOL(mark_buffer_write_io_error);
1130
1131 /*
1132  * Decrement a buffer_head's reference count.  If all buffers against a page
1133  * have zero reference count, are clean and unlocked, and if the page is clean
1134  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1135  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1136  * a page but it ends up not being freed, and buffers may later be reattached).
1137  */
1138 void __brelse(struct buffer_head * buf)
1139 {
1140         if (atomic_read(&buf->b_count)) {
1141                 put_bh(buf);
1142                 return;
1143         }
1144         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1145 }
1146 EXPORT_SYMBOL(__brelse);
1147
1148 /*
1149  * bforget() is like brelse(), except it discards any
1150  * potentially dirty data.
1151  */
1152 void __bforget(struct buffer_head *bh)
1153 {
1154         clear_buffer_dirty(bh);
1155         if (bh->b_assoc_map) {
1156                 struct address_space *buffer_mapping = bh->b_page->mapping;
1157
1158                 spin_lock(&buffer_mapping->private_lock);
1159                 list_del_init(&bh->b_assoc_buffers);
1160                 bh->b_assoc_map = NULL;
1161                 spin_unlock(&buffer_mapping->private_lock);
1162         }
1163         __brelse(bh);
1164 }
1165 EXPORT_SYMBOL(__bforget);
1166
1167 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1168 {
1169         lock_buffer(bh);
1170         if (buffer_uptodate(bh)) {
1171                 unlock_buffer(bh);
1172                 return bh;
1173         } else {
1174                 get_bh(bh);
1175                 bh->b_end_io = end_buffer_read_sync;
1176                 submit_bh(REQ_OP_READ, 0, bh);
1177                 wait_on_buffer(bh);
1178                 if (buffer_uptodate(bh))
1179                         return bh;
1180         }
1181         brelse(bh);
1182         return NULL;
1183 }
1184
1185 /*
1186  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1187  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1188  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1189  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1190  * CPU's LRUs at the same time.
1191  *
1192  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1193  * sb_find_get_block().
1194  *
1195  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1196  * a local interrupt disable for that.
1197  */
1198
1199 #define BH_LRU_SIZE     16
1200
1201 struct bh_lru {
1202         struct buffer_head *bhs[BH_LRU_SIZE];
1203 };
1204
1205 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1206
1207 #ifdef CONFIG_SMP
1208 #define bh_lru_lock()   local_irq_disable()
1209 #define bh_lru_unlock() local_irq_enable()
1210 #else
1211 #define bh_lru_lock()   preempt_disable()
1212 #define bh_lru_unlock() preempt_enable()
1213 #endif
1214
1215 static inline void check_irqs_on(void)
1216 {
1217 #ifdef irqs_disabled
1218         BUG_ON(irqs_disabled());
1219 #endif
1220 }
1221
1222 /*
1223  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1224  * inserted at the front, and the buffer_head at the back if any is evicted.
1225  * Or, if already in the LRU it is moved to the front.
1226  */
1227 static void bh_lru_install(struct buffer_head *bh)
1228 {
1229         struct buffer_head *evictee = bh;
1230         struct bh_lru *b;
1231         int i;
1232
1233         check_irqs_on();
1234         bh_lru_lock();
1235
1236         b = this_cpu_ptr(&bh_lrus);
1237         for (i = 0; i < BH_LRU_SIZE; i++) {
1238                 swap(evictee, b->bhs[i]);
1239                 if (evictee == bh) {
1240                         bh_lru_unlock();
1241                         return;
1242                 }
1243         }
1244
1245         get_bh(bh);
1246         bh_lru_unlock();
1247         brelse(evictee);
1248 }
1249
1250 /*
1251  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1252  */
1253 static struct buffer_head *
1254 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1255 {
1256         struct buffer_head *ret = NULL;
1257         unsigned int i;
1258
1259         check_irqs_on();
1260         bh_lru_lock();
1261         for (i = 0; i < BH_LRU_SIZE; i++) {
1262                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1263
1264                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1265                     bh->b_size == size) {
1266                         if (i) {
1267                                 while (i) {
1268                                         __this_cpu_write(bh_lrus.bhs[i],
1269                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1270                                         i--;
1271                                 }
1272                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1273                         }
1274                         get_bh(bh);
1275                         ret = bh;
1276                         break;
1277                 }
1278         }
1279         bh_lru_unlock();
1280         return ret;
1281 }
1282
1283 /*
1284  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1285  * it in the LRU and mark it as accessed.  If it is not present then return
1286  * NULL
1287  */
1288 struct buffer_head *
1289 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1290 {
1291         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1292
1293         if (bh == NULL) {
1294                 /* __find_get_block_slow will mark the page accessed */
1295                 bh = __find_get_block_slow(bdev, block);
1296                 if (bh)
1297                         bh_lru_install(bh);
1298         } else
1299                 touch_buffer(bh);
1300
1301         return bh;
1302 }
1303 EXPORT_SYMBOL(__find_get_block);
1304
1305 /*
1306  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1307  * which corresponds to the passed block_device, block and size. The
1308  * returned buffer has its reference count incremented.
1309  *
1310  * __getblk_gfp() will lock up the machine if grow_dev_page's
1311  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1312  */
1313 struct buffer_head *
1314 __getblk_gfp(struct block_device *bdev, sector_t block,
1315              unsigned size, gfp_t gfp)
1316 {
1317         struct buffer_head *bh = __find_get_block(bdev, block, size);
1318
1319         might_sleep();
1320         if (bh == NULL)
1321                 bh = __getblk_slow(bdev, block, size, gfp);
1322         return bh;
1323 }
1324 EXPORT_SYMBOL(__getblk_gfp);
1325
1326 /*
1327  * Do async read-ahead on a buffer..
1328  */
1329 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1330 {
1331         struct buffer_head *bh = __getblk(bdev, block, size);
1332         if (likely(bh)) {
1333                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1334                 brelse(bh);
1335         }
1336 }
1337 EXPORT_SYMBOL(__breadahead);
1338
1339 void __breadahead_gfp(struct block_device *bdev, sector_t block, unsigned size,
1340                       gfp_t gfp)
1341 {
1342         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1343         if (likely(bh)) {
1344                 ll_rw_block(REQ_OP_READ, REQ_RAHEAD, 1, &bh);
1345                 brelse(bh);
1346         }
1347 }
1348 EXPORT_SYMBOL(__breadahead_gfp);
1349
1350 /**
1351  *  __bread_gfp() - reads a specified block and returns the bh
1352  *  @bdev: the block_device to read from
1353  *  @block: number of block
1354  *  @size: size (in bytes) to read
1355  *  @gfp: page allocation flag
1356  *
1357  *  Reads a specified block, and returns buffer head that contains it.
1358  *  The page cache can be allocated from non-movable area
1359  *  not to prevent page migration if you set gfp to zero.
1360  *  It returns NULL if the block was unreadable.
1361  */
1362 struct buffer_head *
1363 __bread_gfp(struct block_device *bdev, sector_t block,
1364                    unsigned size, gfp_t gfp)
1365 {
1366         struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1367
1368         if (likely(bh) && !buffer_uptodate(bh))
1369                 bh = __bread_slow(bh);
1370         return bh;
1371 }
1372 EXPORT_SYMBOL(__bread_gfp);
1373
1374 /*
1375  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1376  * This doesn't race because it runs in each cpu either in irq
1377  * or with preempt disabled.
1378  */
1379 static void invalidate_bh_lru(void *arg)
1380 {
1381         struct bh_lru *b = &get_cpu_var(bh_lrus);
1382         int i;
1383
1384         for (i = 0; i < BH_LRU_SIZE; i++) {
1385                 brelse(b->bhs[i]);
1386                 b->bhs[i] = NULL;
1387         }
1388         put_cpu_var(bh_lrus);
1389 }
1390
1391 static bool has_bh_in_lru(int cpu, void *dummy)
1392 {
1393         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1394         int i;
1395         
1396         for (i = 0; i < BH_LRU_SIZE; i++) {
1397                 if (b->bhs[i])
1398                         return 1;
1399         }
1400
1401         return 0;
1402 }
1403
1404 void invalidate_bh_lrus(void)
1405 {
1406         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1, GFP_KERNEL);
1407 }
1408 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1409
1410 void set_bh_page(struct buffer_head *bh,
1411                 struct page *page, unsigned long offset)
1412 {
1413         bh->b_page = page;
1414         BUG_ON(offset >= PAGE_SIZE);
1415         if (PageHighMem(page))
1416                 /*
1417                  * This catches illegal uses and preserves the offset:
1418                  */
1419                 bh->b_data = (char *)(0 + offset);
1420         else
1421                 bh->b_data = page_address(page) + offset;
1422 }
1423 EXPORT_SYMBOL(set_bh_page);
1424
1425 /*
1426  * Called when truncating a buffer on a page completely.
1427  */
1428
1429 /* Bits that are cleared during an invalidate */
1430 #define BUFFER_FLAGS_DISCARD \
1431         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1432          1 << BH_Delay | 1 << BH_Unwritten)
1433
1434 static void discard_buffer(struct buffer_head * bh)
1435 {
1436         unsigned long b_state, b_state_old;
1437
1438         lock_buffer(bh);
1439         clear_buffer_dirty(bh);
1440         bh->b_bdev = NULL;
1441         b_state = bh->b_state;
1442         for (;;) {
1443                 b_state_old = cmpxchg(&bh->b_state, b_state,
1444                                       (b_state & ~BUFFER_FLAGS_DISCARD));
1445                 if (b_state_old == b_state)
1446                         break;
1447                 b_state = b_state_old;
1448         }
1449         unlock_buffer(bh);
1450 }
1451
1452 /**
1453  * block_invalidatepage - invalidate part or all of a buffer-backed page
1454  *
1455  * @page: the page which is affected
1456  * @offset: start of the range to invalidate
1457  * @length: length of the range to invalidate
1458  *
1459  * block_invalidatepage() is called when all or part of the page has become
1460  * invalidated by a truncate operation.
1461  *
1462  * block_invalidatepage() does not have to release all buffers, but it must
1463  * ensure that no dirty buffer is left outside @offset and that no I/O
1464  * is underway against any of the blocks which are outside the truncation
1465  * point.  Because the caller is about to free (and possibly reuse) those
1466  * blocks on-disk.
1467  */
1468 void block_invalidatepage(struct page *page, unsigned int offset,
1469                           unsigned int length)
1470 {
1471         struct buffer_head *head, *bh, *next;
1472         unsigned int curr_off = 0;
1473         unsigned int stop = length + offset;
1474
1475         BUG_ON(!PageLocked(page));
1476         if (!page_has_buffers(page))
1477                 goto out;
1478
1479         /*
1480          * Check for overflow
1481          */
1482         BUG_ON(stop > PAGE_SIZE || stop < length);
1483
1484         head = page_buffers(page);
1485         bh = head;
1486         do {
1487                 unsigned int next_off = curr_off + bh->b_size;
1488                 next = bh->b_this_page;
1489
1490                 /*
1491                  * Are we still fully in range ?
1492                  */
1493                 if (next_off > stop)
1494                         goto out;
1495
1496                 /*
1497                  * is this block fully invalidated?
1498                  */
1499                 if (offset <= curr_off)
1500                         discard_buffer(bh);
1501                 curr_off = next_off;
1502                 bh = next;
1503         } while (bh != head);
1504
1505         /*
1506          * We release buffers only if the entire page is being invalidated.
1507          * The get_block cached value has been unconditionally invalidated,
1508          * so real IO is not possible anymore.
1509          */
1510         if (length == PAGE_SIZE)
1511                 try_to_release_page(page, 0);
1512 out:
1513         return;
1514 }
1515 EXPORT_SYMBOL(block_invalidatepage);
1516
1517
1518 /*
1519  * We attach and possibly dirty the buffers atomically wrt
1520  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1521  * is already excluded via the page lock.
1522  */
1523 void create_empty_buffers(struct page *page,
1524                         unsigned long blocksize, unsigned long b_state)
1525 {
1526         struct buffer_head *bh, *head, *tail;
1527
1528         head = alloc_page_buffers(page, blocksize, true);
1529         bh = head;
1530         do {
1531                 bh->b_state |= b_state;
1532                 tail = bh;
1533                 bh = bh->b_this_page;
1534         } while (bh);
1535         tail->b_this_page = head;
1536
1537         spin_lock(&page->mapping->private_lock);
1538         if (PageUptodate(page) || PageDirty(page)) {
1539                 bh = head;
1540                 do {
1541                         if (PageDirty(page))
1542                                 set_buffer_dirty(bh);
1543                         if (PageUptodate(page))
1544                                 set_buffer_uptodate(bh);
1545                         bh = bh->b_this_page;
1546                 } while (bh != head);
1547         }
1548         attach_page_buffers(page, head);
1549         spin_unlock(&page->mapping->private_lock);
1550 }
1551 EXPORT_SYMBOL(create_empty_buffers);
1552
1553 /**
1554  * clean_bdev_aliases: clean a range of buffers in block device
1555  * @bdev: Block device to clean buffers in
1556  * @block: Start of a range of blocks to clean
1557  * @len: Number of blocks to clean
1558  *
1559  * We are taking a range of blocks for data and we don't want writeback of any
1560  * buffer-cache aliases starting from return from this function and until the
1561  * moment when something will explicitly mark the buffer dirty (hopefully that
1562  * will not happen until we will free that block ;-) We don't even need to mark
1563  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1564  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1565  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1566  * would confuse anyone who might pick it with bread() afterwards...
1567  *
1568  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1569  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1570  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1571  * need to.  That happens here.
1572  */
1573 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1574 {
1575         struct inode *bd_inode = bdev->bd_inode;
1576         struct address_space *bd_mapping = bd_inode->i_mapping;
1577         struct pagevec pvec;
1578         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1579         pgoff_t end;
1580         int i, count;
1581         struct buffer_head *bh;
1582         struct buffer_head *head;
1583
1584         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1585         pagevec_init(&pvec);
1586         while (pagevec_lookup_range(&pvec, bd_mapping, &index, end)) {
1587                 count = pagevec_count(&pvec);
1588                 for (i = 0; i < count; i++) {
1589                         struct page *page = pvec.pages[i];
1590
1591                         if (!page_has_buffers(page))
1592                                 continue;
1593                         /*
1594                          * We use page lock instead of bd_mapping->private_lock
1595                          * to pin buffers here since we can afford to sleep and
1596                          * it scales better than a global spinlock lock.
1597                          */
1598                         lock_page(page);
1599                         /* Recheck when the page is locked which pins bhs */
1600                         if (!page_has_buffers(page))
1601                                 goto unlock_page;
1602                         head = page_buffers(page);
1603                         bh = head;
1604                         do {
1605                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1606                                         goto next;
1607                                 if (bh->b_blocknr >= block + len)
1608                                         break;
1609                                 clear_buffer_dirty(bh);
1610                                 wait_on_buffer(bh);
1611                                 clear_buffer_req(bh);
1612 next:
1613                                 bh = bh->b_this_page;
1614                         } while (bh != head);
1615 unlock_page:
1616                         unlock_page(page);
1617                 }
1618                 pagevec_release(&pvec);
1619                 cond_resched();
1620                 /* End of range already reached? */
1621                 if (index > end || !index)
1622                         break;
1623         }
1624 }
1625 EXPORT_SYMBOL(clean_bdev_aliases);
1626
1627 /*
1628  * Size is a power-of-two in the range 512..PAGE_SIZE,
1629  * and the case we care about most is PAGE_SIZE.
1630  *
1631  * So this *could* possibly be written with those
1632  * constraints in mind (relevant mostly if some
1633  * architecture has a slow bit-scan instruction)
1634  */
1635 static inline int block_size_bits(unsigned int blocksize)
1636 {
1637         return ilog2(blocksize);
1638 }
1639
1640 static struct buffer_head *create_page_buffers(struct page *page, struct inode *inode, unsigned int b_state)
1641 {
1642         BUG_ON(!PageLocked(page));
1643
1644         if (!page_has_buffers(page))
1645                 create_empty_buffers(page, 1 << READ_ONCE(inode->i_blkbits),
1646                                      b_state);
1647         return page_buffers(page);
1648 }
1649
1650 /*
1651  * NOTE! All mapped/uptodate combinations are valid:
1652  *
1653  *      Mapped  Uptodate        Meaning
1654  *
1655  *      No      No              "unknown" - must do get_block()
1656  *      No      Yes             "hole" - zero-filled
1657  *      Yes     No              "allocated" - allocated on disk, not read in
1658  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1659  *
1660  * "Dirty" is valid only with the last case (mapped+uptodate).
1661  */
1662
1663 /*
1664  * While block_write_full_page is writing back the dirty buffers under
1665  * the page lock, whoever dirtied the buffers may decide to clean them
1666  * again at any time.  We handle that by only looking at the buffer
1667  * state inside lock_buffer().
1668  *
1669  * If block_write_full_page() is called for regular writeback
1670  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1671  * locked buffer.   This only can happen if someone has written the buffer
1672  * directly, with submit_bh().  At the address_space level PageWriteback
1673  * prevents this contention from occurring.
1674  *
1675  * If block_write_full_page() is called with wbc->sync_mode ==
1676  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1677  * causes the writes to be flagged as synchronous writes.
1678  */
1679 int __block_write_full_page(struct inode *inode, struct page *page,
1680                         get_block_t *get_block, struct writeback_control *wbc,
1681                         bh_end_io_t *handler)
1682 {
1683         int err;
1684         sector_t block;
1685         sector_t last_block;
1686         struct buffer_head *bh, *head;
1687         unsigned int blocksize, bbits;
1688         int nr_underway = 0;
1689         int write_flags = wbc_to_write_flags(wbc);
1690
1691         head = create_page_buffers(page, inode,
1692                                         (1 << BH_Dirty)|(1 << BH_Uptodate));
1693
1694         /*
1695          * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1696          * here, and the (potentially unmapped) buffers may become dirty at
1697          * any time.  If a buffer becomes dirty here after we've inspected it
1698          * then we just miss that fact, and the page stays dirty.
1699          *
1700          * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1701          * handle that here by just cleaning them.
1702          */
1703
1704         bh = head;
1705         blocksize = bh->b_size;
1706         bbits = block_size_bits(blocksize);
1707
1708         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1709         last_block = (i_size_read(inode) - 1) >> bbits;
1710
1711         /*
1712          * Get all the dirty buffers mapped to disk addresses and
1713          * handle any aliases from the underlying blockdev's mapping.
1714          */
1715         do {
1716                 if (block > last_block) {
1717                         /*
1718                          * mapped buffers outside i_size will occur, because
1719                          * this page can be outside i_size when there is a
1720                          * truncate in progress.
1721                          */
1722                         /*
1723                          * The buffer was zeroed by block_write_full_page()
1724                          */
1725                         clear_buffer_dirty(bh);
1726                         set_buffer_uptodate(bh);
1727                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1728                            buffer_dirty(bh)) {
1729                         WARN_ON(bh->b_size != blocksize);
1730                         err = get_block(inode, block, bh, 1);
1731                         if (err)
1732                                 goto recover;
1733                         clear_buffer_delay(bh);
1734                         if (buffer_new(bh)) {
1735                                 /* blockdev mappings never come here */
1736                                 clear_buffer_new(bh);
1737                                 clean_bdev_bh_alias(bh);
1738                         }
1739                 }
1740                 bh = bh->b_this_page;
1741                 block++;
1742         } while (bh != head);
1743
1744         do {
1745                 if (!buffer_mapped(bh))
1746                         continue;
1747                 /*
1748                  * If it's a fully non-blocking write attempt and we cannot
1749                  * lock the buffer then redirty the page.  Note that this can
1750                  * potentially cause a busy-wait loop from writeback threads
1751                  * and kswapd activity, but those code paths have their own
1752                  * higher-level throttling.
1753                  */
1754                 if (wbc->sync_mode != WB_SYNC_NONE) {
1755                         lock_buffer(bh);
1756                 } else if (!trylock_buffer(bh)) {
1757                         redirty_page_for_writepage(wbc, page);
1758                         continue;
1759                 }
1760                 if (test_clear_buffer_dirty(bh)) {
1761                         mark_buffer_async_write_endio(bh, handler);
1762                 } else {
1763                         unlock_buffer(bh);
1764                 }
1765         } while ((bh = bh->b_this_page) != head);
1766
1767         /*
1768          * The page and its buffers are protected by PageWriteback(), so we can
1769          * drop the bh refcounts early.
1770          */
1771         BUG_ON(PageWriteback(page));
1772         set_page_writeback(page);
1773
1774         do {
1775                 struct buffer_head *next = bh->b_this_page;
1776                 if (buffer_async_write(bh)) {
1777                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1778                                         inode->i_write_hint, wbc);
1779                         nr_underway++;
1780                 }
1781                 bh = next;
1782         } while (bh != head);
1783         unlock_page(page);
1784
1785         err = 0;
1786 done:
1787         if (nr_underway == 0) {
1788                 /*
1789                  * The page was marked dirty, but the buffers were
1790                  * clean.  Someone wrote them back by hand with
1791                  * ll_rw_block/submit_bh.  A rare case.
1792                  */
1793                 end_page_writeback(page);
1794
1795                 /*
1796                  * The page and buffer_heads can be released at any time from
1797                  * here on.
1798                  */
1799         }
1800         return err;
1801
1802 recover:
1803         /*
1804          * ENOSPC, or some other error.  We may already have added some
1805          * blocks to the file, so we need to write these out to avoid
1806          * exposing stale data.
1807          * The page is currently locked and not marked for writeback
1808          */
1809         bh = head;
1810         /* Recovery: lock and submit the mapped buffers */
1811         do {
1812                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1813                     !buffer_delay(bh)) {
1814                         lock_buffer(bh);
1815                         mark_buffer_async_write_endio(bh, handler);
1816                 } else {
1817                         /*
1818                          * The buffer may have been set dirty during
1819                          * attachment to a dirty page.
1820                          */
1821                         clear_buffer_dirty(bh);
1822                 }
1823         } while ((bh = bh->b_this_page) != head);
1824         SetPageError(page);
1825         BUG_ON(PageWriteback(page));
1826         mapping_set_error(page->mapping, err);
1827         set_page_writeback(page);
1828         do {
1829                 struct buffer_head *next = bh->b_this_page;
1830                 if (buffer_async_write(bh)) {
1831                         clear_buffer_dirty(bh);
1832                         submit_bh_wbc(REQ_OP_WRITE, write_flags, bh,
1833                                         inode->i_write_hint, wbc);
1834                         nr_underway++;
1835                 }
1836                 bh = next;
1837         } while (bh != head);
1838         unlock_page(page);
1839         goto done;
1840 }
1841 EXPORT_SYMBOL(__block_write_full_page);
1842
1843 /*
1844  * If a page has any new buffers, zero them out here, and mark them uptodate
1845  * and dirty so they'll be written out (in order to prevent uninitialised
1846  * block data from leaking). And clear the new bit.
1847  */
1848 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1849 {
1850         unsigned int block_start, block_end;
1851         struct buffer_head *head, *bh;
1852
1853         BUG_ON(!PageLocked(page));
1854         if (!page_has_buffers(page))
1855                 return;
1856
1857         bh = head = page_buffers(page);
1858         block_start = 0;
1859         do {
1860                 block_end = block_start + bh->b_size;
1861
1862                 if (buffer_new(bh)) {
1863                         if (block_end > from && block_start < to) {
1864                                 if (!PageUptodate(page)) {
1865                                         unsigned start, size;
1866
1867                                         start = max(from, block_start);
1868                                         size = min(to, block_end) - start;
1869
1870                                         zero_user(page, start, size);
1871                                         set_buffer_uptodate(bh);
1872                                 }
1873
1874                                 clear_buffer_new(bh);
1875                                 mark_buffer_dirty(bh);
1876                         }
1877                 }
1878
1879                 block_start = block_end;
1880                 bh = bh->b_this_page;
1881         } while (bh != head);
1882 }
1883 EXPORT_SYMBOL(page_zero_new_buffers);
1884
1885 static void
1886 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
1887                 struct iomap *iomap)
1888 {
1889         loff_t offset = block << inode->i_blkbits;
1890
1891         bh->b_bdev = iomap->bdev;
1892
1893         /*
1894          * Block points to offset in file we need to map, iomap contains
1895          * the offset at which the map starts. If the map ends before the
1896          * current block, then do not map the buffer and let the caller
1897          * handle it.
1898          */
1899         BUG_ON(offset >= iomap->offset + iomap->length);
1900
1901         switch (iomap->type) {
1902         case IOMAP_HOLE:
1903                 /*
1904                  * If the buffer is not up to date or beyond the current EOF,
1905                  * we need to mark it as new to ensure sub-block zeroing is
1906                  * executed if necessary.
1907                  */
1908                 if (!buffer_uptodate(bh) ||
1909                     (offset >= i_size_read(inode)))
1910                         set_buffer_new(bh);
1911                 break;
1912         case IOMAP_DELALLOC:
1913                 if (!buffer_uptodate(bh) ||
1914                     (offset >= i_size_read(inode)))
1915                         set_buffer_new(bh);
1916                 set_buffer_uptodate(bh);
1917                 set_buffer_mapped(bh);
1918                 set_buffer_delay(bh);
1919                 break;
1920         case IOMAP_UNWRITTEN:
1921                 /*
1922                  * For unwritten regions, we always need to ensure that regions
1923                  * in the block we are not writing to are zeroed. Mark the
1924                  * buffer as new to ensure this.
1925                  */
1926                 set_buffer_new(bh);
1927                 set_buffer_unwritten(bh);
1928                 /* FALLTHRU */
1929         case IOMAP_MAPPED:
1930                 if ((iomap->flags & IOMAP_F_NEW) ||
1931                     offset >= i_size_read(inode))
1932                         set_buffer_new(bh);
1933                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
1934                                 inode->i_blkbits;
1935                 set_buffer_mapped(bh);
1936                 break;
1937         }
1938 }
1939
1940 int __block_write_begin_int(struct page *page, loff_t pos, unsigned len,
1941                 get_block_t *get_block, struct iomap *iomap)
1942 {
1943         unsigned from = pos & (PAGE_SIZE - 1);
1944         unsigned to = from + len;
1945         struct inode *inode = page->mapping->host;
1946         unsigned block_start, block_end;
1947         sector_t block;
1948         int err = 0;
1949         unsigned blocksize, bbits;
1950         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1951
1952         BUG_ON(!PageLocked(page));
1953         BUG_ON(from > PAGE_SIZE);
1954         BUG_ON(to > PAGE_SIZE);
1955         BUG_ON(from > to);
1956
1957         head = create_page_buffers(page, inode, 0);
1958         blocksize = head->b_size;
1959         bbits = block_size_bits(blocksize);
1960
1961         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1962
1963         for(bh = head, block_start = 0; bh != head || !block_start;
1964             block++, block_start=block_end, bh = bh->b_this_page) {
1965                 block_end = block_start + blocksize;
1966                 if (block_end <= from || block_start >= to) {
1967                         if (PageUptodate(page)) {
1968                                 if (!buffer_uptodate(bh))
1969                                         set_buffer_uptodate(bh);
1970                         }
1971                         continue;
1972                 }
1973                 if (buffer_new(bh))
1974                         clear_buffer_new(bh);
1975                 if (!buffer_mapped(bh)) {
1976                         WARN_ON(bh->b_size != blocksize);
1977                         if (get_block) {
1978                                 err = get_block(inode, block, bh, 1);
1979                                 if (err)
1980                                         break;
1981                         } else {
1982                                 iomap_to_bh(inode, block, bh, iomap);
1983                         }
1984
1985                         if (buffer_new(bh)) {
1986                                 clean_bdev_bh_alias(bh);
1987                                 if (PageUptodate(page)) {
1988                                         clear_buffer_new(bh);
1989                                         set_buffer_uptodate(bh);
1990                                         mark_buffer_dirty(bh);
1991                                         continue;
1992                                 }
1993                                 if (block_end > to || block_start < from)
1994                                         zero_user_segments(page,
1995                                                 to, block_end,
1996                                                 block_start, from);
1997                                 continue;
1998                         }
1999                 }
2000                 if (PageUptodate(page)) {
2001                         if (!buffer_uptodate(bh))
2002                                 set_buffer_uptodate(bh);
2003                         continue; 
2004                 }
2005                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2006                     !buffer_unwritten(bh) &&
2007                      (block_start < from || block_end > to)) {
2008                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2009                         *wait_bh++=bh;
2010                 }
2011         }
2012         /*
2013          * If we issued read requests - let them complete.
2014          */
2015         while(wait_bh > wait) {
2016                 wait_on_buffer(*--wait_bh);
2017                 if (!buffer_uptodate(*wait_bh))
2018                         err = -EIO;
2019         }
2020         if (unlikely(err))
2021                 page_zero_new_buffers(page, from, to);
2022         return err;
2023 }
2024
2025 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2026                 get_block_t *get_block)
2027 {
2028         return __block_write_begin_int(page, pos, len, get_block, NULL);
2029 }
2030 EXPORT_SYMBOL(__block_write_begin);
2031
2032 static int __block_commit_write(struct inode *inode, struct page *page,
2033                 unsigned from, unsigned to)
2034 {
2035         unsigned block_start, block_end;
2036         int partial = 0;
2037         unsigned blocksize;
2038         struct buffer_head *bh, *head;
2039
2040         bh = head = page_buffers(page);
2041         blocksize = bh->b_size;
2042
2043         block_start = 0;
2044         do {
2045                 block_end = block_start + blocksize;
2046                 if (block_end <= from || block_start >= to) {
2047                         if (!buffer_uptodate(bh))
2048                                 partial = 1;
2049                 } else {
2050                         set_buffer_uptodate(bh);
2051                         mark_buffer_dirty(bh);
2052                 }
2053                 clear_buffer_new(bh);
2054
2055                 block_start = block_end;
2056                 bh = bh->b_this_page;
2057         } while (bh != head);
2058
2059         /*
2060          * If this is a partial write which happened to make all buffers
2061          * uptodate then we can optimize away a bogus readpage() for
2062          * the next read(). Here we 'discover' whether the page went
2063          * uptodate as a result of this (potentially partial) write.
2064          */
2065         if (!partial)
2066                 SetPageUptodate(page);
2067         return 0;
2068 }
2069
2070 /*
2071  * block_write_begin takes care of the basic task of block allocation and
2072  * bringing partial write blocks uptodate first.
2073  *
2074  * The filesystem needs to handle block truncation upon failure.
2075  */
2076 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2077                 unsigned flags, struct page **pagep, get_block_t *get_block)
2078 {
2079         pgoff_t index = pos >> PAGE_SHIFT;
2080         struct page *page;
2081         int status;
2082
2083         page = grab_cache_page_write_begin(mapping, index, flags);
2084         if (!page)
2085                 return -ENOMEM;
2086
2087         status = __block_write_begin(page, pos, len, get_block);
2088         if (unlikely(status)) {
2089                 unlock_page(page);
2090                 put_page(page);
2091                 page = NULL;
2092         }
2093
2094         *pagep = page;
2095         return status;
2096 }
2097 EXPORT_SYMBOL(block_write_begin);
2098
2099 int __generic_write_end(struct inode *inode, loff_t pos, unsigned copied,
2100                 struct page *page)
2101 {
2102         loff_t old_size = inode->i_size;
2103         bool i_size_changed = false;
2104
2105         /*
2106          * No need to use i_size_read() here, the i_size cannot change under us
2107          * because we hold i_rwsem.
2108          *
2109          * But it's important to update i_size while still holding page lock:
2110          * page writeout could otherwise come in and zero beyond i_size.
2111          */
2112         if (pos + copied > inode->i_size) {
2113                 i_size_write(inode, pos + copied);
2114                 i_size_changed = true;
2115         }
2116
2117         unlock_page(page);
2118         put_page(page);
2119
2120         if (old_size < pos)
2121                 pagecache_isize_extended(inode, old_size, pos);
2122         /*
2123          * Don't mark the inode dirty under page lock. First, it unnecessarily
2124          * makes the holding time of page lock longer. Second, it forces lock
2125          * ordering of page lock and transaction start for journaling
2126          * filesystems.
2127          */
2128         if (i_size_changed)
2129                 mark_inode_dirty(inode);
2130         return copied;
2131 }
2132
2133 int block_write_end(struct file *file, struct address_space *mapping,
2134                         loff_t pos, unsigned len, unsigned copied,
2135                         struct page *page, void *fsdata)
2136 {
2137         struct inode *inode = mapping->host;
2138         unsigned start;
2139
2140         start = pos & (PAGE_SIZE - 1);
2141
2142         if (unlikely(copied < len)) {
2143                 /*
2144                  * The buffers that were written will now be uptodate, so we
2145                  * don't have to worry about a readpage reading them and
2146                  * overwriting a partial write. However if we have encountered
2147                  * a short write and only partially written into a buffer, it
2148                  * will not be marked uptodate, so a readpage might come in and
2149                  * destroy our partial write.
2150                  *
2151                  * Do the simplest thing, and just treat any short write to a
2152                  * non uptodate page as a zero-length write, and force the
2153                  * caller to redo the whole thing.
2154                  */
2155                 if (!PageUptodate(page))
2156                         copied = 0;
2157
2158                 page_zero_new_buffers(page, start+copied, start+len);
2159         }
2160         flush_dcache_page(page);
2161
2162         /* This could be a short (even 0-length) commit */
2163         __block_commit_write(inode, page, start, start+copied);
2164
2165         return copied;
2166 }
2167 EXPORT_SYMBOL(block_write_end);
2168
2169 int generic_write_end(struct file *file, struct address_space *mapping,
2170                         loff_t pos, unsigned len, unsigned copied,
2171                         struct page *page, void *fsdata)
2172 {
2173         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2174         return __generic_write_end(mapping->host, pos, copied, page);
2175 }
2176 EXPORT_SYMBOL(generic_write_end);
2177
2178 /*
2179  * block_is_partially_uptodate checks whether buffers within a page are
2180  * uptodate or not.
2181  *
2182  * Returns true if all buffers which correspond to a file portion
2183  * we want to read are uptodate.
2184  */
2185 int block_is_partially_uptodate(struct page *page, unsigned long from,
2186                                         unsigned long count)
2187 {
2188         unsigned block_start, block_end, blocksize;
2189         unsigned to;
2190         struct buffer_head *bh, *head;
2191         int ret = 1;
2192
2193         if (!page_has_buffers(page))
2194                 return 0;
2195
2196         head = page_buffers(page);
2197         blocksize = head->b_size;
2198         to = min_t(unsigned, PAGE_SIZE - from, count);
2199         to = from + to;
2200         if (from < blocksize && to > PAGE_SIZE - blocksize)
2201                 return 0;
2202
2203         bh = head;
2204         block_start = 0;
2205         do {
2206                 block_end = block_start + blocksize;
2207                 if (block_end > from && block_start < to) {
2208                         if (!buffer_uptodate(bh)) {
2209                                 ret = 0;
2210                                 break;
2211                         }
2212                         if (block_end >= to)
2213                                 break;
2214                 }
2215                 block_start = block_end;
2216                 bh = bh->b_this_page;
2217         } while (bh != head);
2218
2219         return ret;
2220 }
2221 EXPORT_SYMBOL(block_is_partially_uptodate);
2222
2223 /*
2224  * Generic "read page" function for block devices that have the normal
2225  * get_block functionality. This is most of the block device filesystems.
2226  * Reads the page asynchronously --- the unlock_buffer() and
2227  * set/clear_buffer_uptodate() functions propagate buffer state into the
2228  * page struct once IO has completed.
2229  */
2230 int block_read_full_page(struct page *page, get_block_t *get_block)
2231 {
2232         struct inode *inode = page->mapping->host;
2233         sector_t iblock, lblock;
2234         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2235         unsigned int blocksize, bbits;
2236         int nr, i;
2237         int fully_mapped = 1;
2238
2239         head = create_page_buffers(page, inode, 0);
2240         blocksize = head->b_size;
2241         bbits = block_size_bits(blocksize);
2242
2243         iblock = (sector_t)page->index << (PAGE_SHIFT - bbits);
2244         lblock = (i_size_read(inode)+blocksize-1) >> bbits;
2245         bh = head;
2246         nr = 0;
2247         i = 0;
2248
2249         do {
2250                 if (buffer_uptodate(bh))
2251                         continue;
2252
2253                 if (!buffer_mapped(bh)) {
2254                         int err = 0;
2255
2256                         fully_mapped = 0;
2257                         if (iblock < lblock) {
2258                                 WARN_ON(bh->b_size != blocksize);
2259                                 err = get_block(inode, iblock, bh, 0);
2260                                 if (err)
2261                                         SetPageError(page);
2262                         }
2263                         if (!buffer_mapped(bh)) {
2264                                 zero_user(page, i * blocksize, blocksize);
2265                                 if (!err)
2266                                         set_buffer_uptodate(bh);
2267                                 continue;
2268                         }
2269                         /*
2270                          * get_block() might have updated the buffer
2271                          * synchronously
2272                          */
2273                         if (buffer_uptodate(bh))
2274                                 continue;
2275                 }
2276                 arr[nr++] = bh;
2277         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2278
2279         if (fully_mapped)
2280                 SetPageMappedToDisk(page);
2281
2282         if (!nr) {
2283                 /*
2284                  * All buffers are uptodate - we can set the page uptodate
2285                  * as well. But not if get_block() returned an error.
2286                  */
2287                 if (!PageError(page))
2288                         SetPageUptodate(page);
2289                 unlock_page(page);
2290                 return 0;
2291         }
2292
2293         /* Stage two: lock the buffers */
2294         for (i = 0; i < nr; i++) {
2295                 bh = arr[i];
2296                 lock_buffer(bh);
2297                 mark_buffer_async_read(bh);
2298         }
2299
2300         /*
2301          * Stage 3: start the IO.  Check for uptodateness
2302          * inside the buffer lock in case another process reading
2303          * the underlying blockdev brought it uptodate (the sct fix).
2304          */
2305         for (i = 0; i < nr; i++) {
2306                 bh = arr[i];
2307                 if (buffer_uptodate(bh))
2308                         end_buffer_async_read(bh, 1);
2309                 else
2310                         submit_bh(REQ_OP_READ, 0, bh);
2311         }
2312         return 0;
2313 }
2314 EXPORT_SYMBOL(block_read_full_page);
2315
2316 /* utility function for filesystems that need to do work on expanding
2317  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2318  * deal with the hole.  
2319  */
2320 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2321 {
2322         struct address_space *mapping = inode->i_mapping;
2323         struct page *page;
2324         void *fsdata;
2325         int err;
2326
2327         err = inode_newsize_ok(inode, size);
2328         if (err)
2329                 goto out;
2330
2331         err = pagecache_write_begin(NULL, mapping, size, 0,
2332                                     AOP_FLAG_CONT_EXPAND, &page, &fsdata);
2333         if (err)
2334                 goto out;
2335
2336         err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2337         BUG_ON(err > 0);
2338
2339 out:
2340         return err;
2341 }
2342 EXPORT_SYMBOL(generic_cont_expand_simple);
2343
2344 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2345                             loff_t pos, loff_t *bytes)
2346 {
2347         struct inode *inode = mapping->host;
2348         unsigned int blocksize = i_blocksize(inode);
2349         struct page *page;
2350         void *fsdata;
2351         pgoff_t index, curidx;
2352         loff_t curpos;
2353         unsigned zerofrom, offset, len;
2354         int err = 0;
2355
2356         index = pos >> PAGE_SHIFT;
2357         offset = pos & ~PAGE_MASK;
2358
2359         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2360                 zerofrom = curpos & ~PAGE_MASK;
2361                 if (zerofrom & (blocksize-1)) {
2362                         *bytes |= (blocksize-1);
2363                         (*bytes)++;
2364                 }
2365                 len = PAGE_SIZE - zerofrom;
2366
2367                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2368                                             &page, &fsdata);
2369                 if (err)
2370                         goto out;
2371                 zero_user(page, zerofrom, len);
2372                 err = pagecache_write_end(file, mapping, curpos, len, len,
2373                                                 page, fsdata);
2374                 if (err < 0)
2375                         goto out;
2376                 BUG_ON(err != len);
2377                 err = 0;
2378
2379                 balance_dirty_pages_ratelimited(mapping);
2380
2381                 if (unlikely(fatal_signal_pending(current))) {
2382                         err = -EINTR;
2383                         goto out;
2384                 }
2385         }
2386
2387         /* page covers the boundary, find the boundary offset */
2388         if (index == curidx) {
2389                 zerofrom = curpos & ~PAGE_MASK;
2390                 /* if we will expand the thing last block will be filled */
2391                 if (offset <= zerofrom) {
2392                         goto out;
2393                 }
2394                 if (zerofrom & (blocksize-1)) {
2395                         *bytes |= (blocksize-1);
2396                         (*bytes)++;
2397                 }
2398                 len = offset - zerofrom;
2399
2400                 err = pagecache_write_begin(file, mapping, curpos, len, 0,
2401                                             &page, &fsdata);
2402                 if (err)
2403                         goto out;
2404                 zero_user(page, zerofrom, len);
2405                 err = pagecache_write_end(file, mapping, curpos, len, len,
2406                                                 page, fsdata);
2407                 if (err < 0)
2408                         goto out;
2409                 BUG_ON(err != len);
2410                 err = 0;
2411         }
2412 out:
2413         return err;
2414 }
2415
2416 /*
2417  * For moronic filesystems that do not allow holes in file.
2418  * We may have to extend the file.
2419  */
2420 int cont_write_begin(struct file *file, struct address_space *mapping,
2421                         loff_t pos, unsigned len, unsigned flags,
2422                         struct page **pagep, void **fsdata,
2423                         get_block_t *get_block, loff_t *bytes)
2424 {
2425         struct inode *inode = mapping->host;
2426         unsigned int blocksize = i_blocksize(inode);
2427         unsigned int zerofrom;
2428         int err;
2429
2430         err = cont_expand_zero(file, mapping, pos, bytes);
2431         if (err)
2432                 return err;
2433
2434         zerofrom = *bytes & ~PAGE_MASK;
2435         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2436                 *bytes |= (blocksize-1);
2437                 (*bytes)++;
2438         }
2439
2440         return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2441 }
2442 EXPORT_SYMBOL(cont_write_begin);
2443
2444 int block_commit_write(struct page *page, unsigned from, unsigned to)
2445 {
2446         struct inode *inode = page->mapping->host;
2447         __block_commit_write(inode,page,from,to);
2448         return 0;
2449 }
2450 EXPORT_SYMBOL(block_commit_write);
2451
2452 /*
2453  * block_page_mkwrite() is not allowed to change the file size as it gets
2454  * called from a page fault handler when a page is first dirtied. Hence we must
2455  * be careful to check for EOF conditions here. We set the page up correctly
2456  * for a written page which means we get ENOSPC checking when writing into
2457  * holes and correct delalloc and unwritten extent mapping on filesystems that
2458  * support these features.
2459  *
2460  * We are not allowed to take the i_mutex here so we have to play games to
2461  * protect against truncate races as the page could now be beyond EOF.  Because
2462  * truncate writes the inode size before removing pages, once we have the
2463  * page lock we can determine safely if the page is beyond EOF. If it is not
2464  * beyond EOF, then the page is guaranteed safe against truncation until we
2465  * unlock the page.
2466  *
2467  * Direct callers of this function should protect against filesystem freezing
2468  * using sb_start_pagefault() - sb_end_pagefault() functions.
2469  */
2470 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2471                          get_block_t get_block)
2472 {
2473         struct page *page = vmf->page;
2474         struct inode *inode = file_inode(vma->vm_file);
2475         unsigned long end;
2476         loff_t size;
2477         int ret;
2478
2479         lock_page(page);
2480         size = i_size_read(inode);
2481         if ((page->mapping != inode->i_mapping) ||
2482             (page_offset(page) > size)) {
2483                 /* We overload EFAULT to mean page got truncated */
2484                 ret = -EFAULT;
2485                 goto out_unlock;
2486         }
2487
2488         /* page is wholly or partially inside EOF */
2489         if (((page->index + 1) << PAGE_SHIFT) > size)
2490                 end = size & ~PAGE_MASK;
2491         else
2492                 end = PAGE_SIZE;
2493
2494         ret = __block_write_begin(page, 0, end, get_block);
2495         if (!ret)
2496                 ret = block_commit_write(page, 0, end);
2497
2498         if (unlikely(ret < 0))
2499                 goto out_unlock;
2500         set_page_dirty(page);
2501         wait_for_stable_page(page);
2502         return 0;
2503 out_unlock:
2504         unlock_page(page);
2505         return ret;
2506 }
2507 EXPORT_SYMBOL(block_page_mkwrite);
2508
2509 /*
2510  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2511  * immediately, while under the page lock.  So it needs a special end_io
2512  * handler which does not touch the bh after unlocking it.
2513  */
2514 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2515 {
2516         __end_buffer_read_notouch(bh, uptodate);
2517 }
2518
2519 /*
2520  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2521  * the page (converting it to circular linked list and taking care of page
2522  * dirty races).
2523  */
2524 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2525 {
2526         struct buffer_head *bh;
2527
2528         BUG_ON(!PageLocked(page));
2529
2530         spin_lock(&page->mapping->private_lock);
2531         bh = head;
2532         do {
2533                 if (PageDirty(page))
2534                         set_buffer_dirty(bh);
2535                 if (!bh->b_this_page)
2536                         bh->b_this_page = head;
2537                 bh = bh->b_this_page;
2538         } while (bh != head);
2539         attach_page_buffers(page, head);
2540         spin_unlock(&page->mapping->private_lock);
2541 }
2542
2543 /*
2544  * On entry, the page is fully not uptodate.
2545  * On exit the page is fully uptodate in the areas outside (from,to)
2546  * The filesystem needs to handle block truncation upon failure.
2547  */
2548 int nobh_write_begin(struct address_space *mapping,
2549                         loff_t pos, unsigned len, unsigned flags,
2550                         struct page **pagep, void **fsdata,
2551                         get_block_t *get_block)
2552 {
2553         struct inode *inode = mapping->host;
2554         const unsigned blkbits = inode->i_blkbits;
2555         const unsigned blocksize = 1 << blkbits;
2556         struct buffer_head *head, *bh;
2557         struct page *page;
2558         pgoff_t index;
2559         unsigned from, to;
2560         unsigned block_in_page;
2561         unsigned block_start, block_end;
2562         sector_t block_in_file;
2563         int nr_reads = 0;
2564         int ret = 0;
2565         int is_mapped_to_disk = 1;
2566
2567         index = pos >> PAGE_SHIFT;
2568         from = pos & (PAGE_SIZE - 1);
2569         to = from + len;
2570
2571         page = grab_cache_page_write_begin(mapping, index, flags);
2572         if (!page)
2573                 return -ENOMEM;
2574         *pagep = page;
2575         *fsdata = NULL;
2576
2577         if (page_has_buffers(page)) {
2578                 ret = __block_write_begin(page, pos, len, get_block);
2579                 if (unlikely(ret))
2580                         goto out_release;
2581                 return ret;
2582         }
2583
2584         if (PageMappedToDisk(page))
2585                 return 0;
2586
2587         /*
2588          * Allocate buffers so that we can keep track of state, and potentially
2589          * attach them to the page if an error occurs. In the common case of
2590          * no error, they will just be freed again without ever being attached
2591          * to the page (which is all OK, because we're under the page lock).
2592          *
2593          * Be careful: the buffer linked list is a NULL terminated one, rather
2594          * than the circular one we're used to.
2595          */
2596         head = alloc_page_buffers(page, blocksize, false);
2597         if (!head) {
2598                 ret = -ENOMEM;
2599                 goto out_release;
2600         }
2601
2602         block_in_file = (sector_t)page->index << (PAGE_SHIFT - blkbits);
2603
2604         /*
2605          * We loop across all blocks in the page, whether or not they are
2606          * part of the affected region.  This is so we can discover if the
2607          * page is fully mapped-to-disk.
2608          */
2609         for (block_start = 0, block_in_page = 0, bh = head;
2610                   block_start < PAGE_SIZE;
2611                   block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2612                 int create;
2613
2614                 block_end = block_start + blocksize;
2615                 bh->b_state = 0;
2616                 create = 1;
2617                 if (block_start >= to)
2618                         create = 0;
2619                 ret = get_block(inode, block_in_file + block_in_page,
2620                                         bh, create);
2621                 if (ret)
2622                         goto failed;
2623                 if (!buffer_mapped(bh))
2624                         is_mapped_to_disk = 0;
2625                 if (buffer_new(bh))
2626                         clean_bdev_bh_alias(bh);
2627                 if (PageUptodate(page)) {
2628                         set_buffer_uptodate(bh);
2629                         continue;
2630                 }
2631                 if (buffer_new(bh) || !buffer_mapped(bh)) {
2632                         zero_user_segments(page, block_start, from,
2633                                                         to, block_end);
2634                         continue;
2635                 }
2636                 if (buffer_uptodate(bh))
2637                         continue;       /* reiserfs does this */
2638                 if (block_start < from || block_end > to) {
2639                         lock_buffer(bh);
2640                         bh->b_end_io = end_buffer_read_nobh;
2641                         submit_bh(REQ_OP_READ, 0, bh);
2642                         nr_reads++;
2643                 }
2644         }
2645
2646         if (nr_reads) {
2647                 /*
2648                  * The page is locked, so these buffers are protected from
2649                  * any VM or truncate activity.  Hence we don't need to care
2650                  * for the buffer_head refcounts.
2651                  */
2652                 for (bh = head; bh; bh = bh->b_this_page) {
2653                         wait_on_buffer(bh);
2654                         if (!buffer_uptodate(bh))
2655                                 ret = -EIO;
2656                 }
2657                 if (ret)
2658                         goto failed;
2659         }
2660
2661         if (is_mapped_to_disk)
2662                 SetPageMappedToDisk(page);
2663
2664         *fsdata = head; /* to be released by nobh_write_end */
2665
2666         return 0;
2667
2668 failed:
2669         BUG_ON(!ret);
2670         /*
2671          * Error recovery is a bit difficult. We need to zero out blocks that
2672          * were newly allocated, and dirty them to ensure they get written out.
2673          * Buffers need to be attached to the page at this point, otherwise
2674          * the handling of potential IO errors during writeout would be hard
2675          * (could try doing synchronous writeout, but what if that fails too?)
2676          */
2677         attach_nobh_buffers(page, head);
2678         page_zero_new_buffers(page, from, to);
2679
2680 out_release:
2681         unlock_page(page);
2682         put_page(page);
2683         *pagep = NULL;
2684
2685         return ret;
2686 }
2687 EXPORT_SYMBOL(nobh_write_begin);
2688
2689 int nobh_write_end(struct file *file, struct address_space *mapping,
2690                         loff_t pos, unsigned len, unsigned copied,
2691                         struct page *page, void *fsdata)
2692 {
2693         struct inode *inode = page->mapping->host;
2694         struct buffer_head *head = fsdata;
2695         struct buffer_head *bh;
2696         BUG_ON(fsdata != NULL && page_has_buffers(page));
2697
2698         if (unlikely(copied < len) && head)
2699                 attach_nobh_buffers(page, head);
2700         if (page_has_buffers(page))
2701                 return generic_write_end(file, mapping, pos, len,
2702                                         copied, page, fsdata);
2703
2704         SetPageUptodate(page);
2705         set_page_dirty(page);
2706         if (pos+copied > inode->i_size) {
2707                 i_size_write(inode, pos+copied);
2708                 mark_inode_dirty(inode);
2709         }
2710
2711         unlock_page(page);
2712         put_page(page);
2713
2714         while (head) {
2715                 bh = head;
2716                 head = head->b_this_page;
2717                 free_buffer_head(bh);
2718         }
2719
2720         return copied;
2721 }
2722 EXPORT_SYMBOL(nobh_write_end);
2723
2724 /*
2725  * nobh_writepage() - based on block_full_write_page() except
2726  * that it tries to operate without attaching bufferheads to
2727  * the page.
2728  */
2729 int nobh_writepage(struct page *page, get_block_t *get_block,
2730                         struct writeback_control *wbc)
2731 {
2732         struct inode * const inode = page->mapping->host;
2733         loff_t i_size = i_size_read(inode);
2734         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2735         unsigned offset;
2736         int ret;
2737
2738         /* Is the page fully inside i_size? */
2739         if (page->index < end_index)
2740                 goto out;
2741
2742         /* Is the page fully outside i_size? (truncate in progress) */
2743         offset = i_size & (PAGE_SIZE-1);
2744         if (page->index >= end_index+1 || !offset) {
2745                 unlock_page(page);
2746                 return 0; /* don't care */
2747         }
2748
2749         /*
2750          * The page straddles i_size.  It must be zeroed out on each and every
2751          * writepage invocation because it may be mmapped.  "A file is mapped
2752          * in multiples of the page size.  For a file that is not a multiple of
2753          * the  page size, the remaining memory is zeroed when mapped, and
2754          * writes to that region are not written out to the file."
2755          */
2756         zero_user_segment(page, offset, PAGE_SIZE);
2757 out:
2758         ret = mpage_writepage(page, get_block, wbc);
2759         if (ret == -EAGAIN)
2760                 ret = __block_write_full_page(inode, page, get_block, wbc,
2761                                               end_buffer_async_write);
2762         return ret;
2763 }
2764 EXPORT_SYMBOL(nobh_writepage);
2765
2766 int nobh_truncate_page(struct address_space *mapping,
2767                         loff_t from, get_block_t *get_block)
2768 {
2769         pgoff_t index = from >> PAGE_SHIFT;
2770         unsigned offset = from & (PAGE_SIZE-1);
2771         unsigned blocksize;
2772         sector_t iblock;
2773         unsigned length, pos;
2774         struct inode *inode = mapping->host;
2775         struct page *page;
2776         struct buffer_head map_bh;
2777         int err;
2778
2779         blocksize = i_blocksize(inode);
2780         length = offset & (blocksize - 1);
2781
2782         /* Block boundary? Nothing to do */
2783         if (!length)
2784                 return 0;
2785
2786         length = blocksize - length;
2787         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2788
2789         page = grab_cache_page(mapping, index);
2790         err = -ENOMEM;
2791         if (!page)
2792                 goto out;
2793
2794         if (page_has_buffers(page)) {
2795 has_buffers:
2796                 unlock_page(page);
2797                 put_page(page);
2798                 return block_truncate_page(mapping, from, get_block);
2799         }
2800
2801         /* Find the buffer that contains "offset" */
2802         pos = blocksize;
2803         while (offset >= pos) {
2804                 iblock++;
2805                 pos += blocksize;
2806         }
2807
2808         map_bh.b_size = blocksize;
2809         map_bh.b_state = 0;
2810         err = get_block(inode, iblock, &map_bh, 0);
2811         if (err)
2812                 goto unlock;
2813         /* unmapped? It's a hole - nothing to do */
2814         if (!buffer_mapped(&map_bh))
2815                 goto unlock;
2816
2817         /* Ok, it's mapped. Make sure it's up-to-date */
2818         if (!PageUptodate(page)) {
2819                 err = mapping->a_ops->readpage(NULL, page);
2820                 if (err) {
2821                         put_page(page);
2822                         goto out;
2823                 }
2824                 lock_page(page);
2825                 if (!PageUptodate(page)) {
2826                         err = -EIO;
2827                         goto unlock;
2828                 }
2829                 if (page_has_buffers(page))
2830                         goto has_buffers;
2831         }
2832         zero_user(page, offset, length);
2833         set_page_dirty(page);
2834         err = 0;
2835
2836 unlock:
2837         unlock_page(page);
2838         put_page(page);
2839 out:
2840         return err;
2841 }
2842 EXPORT_SYMBOL(nobh_truncate_page);
2843
2844 int block_truncate_page(struct address_space *mapping,
2845                         loff_t from, get_block_t *get_block)
2846 {
2847         pgoff_t index = from >> PAGE_SHIFT;
2848         unsigned offset = from & (PAGE_SIZE-1);
2849         unsigned blocksize;
2850         sector_t iblock;
2851         unsigned length, pos;
2852         struct inode *inode = mapping->host;
2853         struct page *page;
2854         struct buffer_head *bh;
2855         int err;
2856
2857         blocksize = i_blocksize(inode);
2858         length = offset & (blocksize - 1);
2859
2860         /* Block boundary? Nothing to do */
2861         if (!length)
2862                 return 0;
2863
2864         length = blocksize - length;
2865         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2866         
2867         page = grab_cache_page(mapping, index);
2868         err = -ENOMEM;
2869         if (!page)
2870                 goto out;
2871
2872         if (!page_has_buffers(page))
2873                 create_empty_buffers(page, blocksize, 0);
2874
2875         /* Find the buffer that contains "offset" */
2876         bh = page_buffers(page);
2877         pos = blocksize;
2878         while (offset >= pos) {
2879                 bh = bh->b_this_page;
2880                 iblock++;
2881                 pos += blocksize;
2882         }
2883
2884         err = 0;
2885         if (!buffer_mapped(bh)) {
2886                 WARN_ON(bh->b_size != blocksize);
2887                 err = get_block(inode, iblock, bh, 0);
2888                 if (err)
2889                         goto unlock;
2890                 /* unmapped? It's a hole - nothing to do */
2891                 if (!buffer_mapped(bh))
2892                         goto unlock;
2893         }
2894
2895         /* Ok, it's mapped. Make sure it's up-to-date */
2896         if (PageUptodate(page))
2897                 set_buffer_uptodate(bh);
2898
2899         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2900                 err = -EIO;
2901                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
2902                 wait_on_buffer(bh);
2903                 /* Uhhuh. Read error. Complain and punt. */
2904                 if (!buffer_uptodate(bh))
2905                         goto unlock;
2906         }
2907
2908         zero_user(page, offset, length);
2909         mark_buffer_dirty(bh);
2910         err = 0;
2911
2912 unlock:
2913         unlock_page(page);
2914         put_page(page);
2915 out:
2916         return err;
2917 }
2918 EXPORT_SYMBOL(block_truncate_page);
2919
2920 /*
2921  * The generic ->writepage function for buffer-backed address_spaces
2922  */
2923 int block_write_full_page(struct page *page, get_block_t *get_block,
2924                         struct writeback_control *wbc)
2925 {
2926         struct inode * const inode = page->mapping->host;
2927         loff_t i_size = i_size_read(inode);
2928         const pgoff_t end_index = i_size >> PAGE_SHIFT;
2929         unsigned offset;
2930
2931         /* Is the page fully inside i_size? */
2932         if (page->index < end_index)
2933                 return __block_write_full_page(inode, page, get_block, wbc,
2934                                                end_buffer_async_write);
2935
2936         /* Is the page fully outside i_size? (truncate in progress) */
2937         offset = i_size & (PAGE_SIZE-1);
2938         if (page->index >= end_index+1 || !offset) {
2939                 unlock_page(page);
2940                 return 0; /* don't care */
2941         }
2942
2943         /*
2944          * The page straddles i_size.  It must be zeroed out on each and every
2945          * writepage invocation because it may be mmapped.  "A file is mapped
2946          * in multiples of the page size.  For a file that is not a multiple of
2947          * the  page size, the remaining memory is zeroed when mapped, and
2948          * writes to that region are not written out to the file."
2949          */
2950         zero_user_segment(page, offset, PAGE_SIZE);
2951         return __block_write_full_page(inode, page, get_block, wbc,
2952                                                         end_buffer_async_write);
2953 }
2954 EXPORT_SYMBOL(block_write_full_page);
2955
2956 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2957                             get_block_t *get_block)
2958 {
2959         struct inode *inode = mapping->host;
2960         struct buffer_head tmp = {
2961                 .b_size = i_blocksize(inode),
2962         };
2963
2964         get_block(inode, block, &tmp, 0);
2965         return tmp.b_blocknr;
2966 }
2967 EXPORT_SYMBOL(generic_block_bmap);
2968
2969 static void end_bio_bh_io_sync(struct bio *bio)
2970 {
2971         struct buffer_head *bh = bio->bi_private;
2972
2973         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2974                 set_bit(BH_Quiet, &bh->b_state);
2975
2976         bh->b_end_io(bh, !bio->bi_status);
2977         bio_put(bio);
2978 }
2979
2980 /*
2981  * This allows us to do IO even on the odd last sectors
2982  * of a device, even if the block size is some multiple
2983  * of the physical sector size.
2984  *
2985  * We'll just truncate the bio to the size of the device,
2986  * and clear the end of the buffer head manually.
2987  *
2988  * Truly out-of-range accesses will turn into actual IO
2989  * errors, this only handles the "we need to be able to
2990  * do IO at the final sector" case.
2991  */
2992 void guard_bio_eod(int op, struct bio *bio)
2993 {
2994         sector_t maxsector;
2995         struct bio_vec *bvec = bio_last_bvec_all(bio);
2996         unsigned truncated_bytes;
2997         struct hd_struct *part;
2998
2999         rcu_read_lock();
3000         part = __disk_get_part(bio->bi_disk, bio->bi_partno);
3001         if (part)
3002                 maxsector = part_nr_sects_read(part);
3003         else
3004                 maxsector = get_capacity(bio->bi_disk);
3005         rcu_read_unlock();
3006
3007         if (!maxsector)
3008                 return;
3009
3010         /*
3011          * If the *whole* IO is past the end of the device,
3012          * let it through, and the IO layer will turn it into
3013          * an EIO.
3014          */
3015         if (unlikely(bio->bi_iter.bi_sector >= maxsector))
3016                 return;
3017
3018         maxsector -= bio->bi_iter.bi_sector;
3019         if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
3020                 return;
3021
3022         /* Uhhuh. We've got a bio that straddles the device size! */
3023         truncated_bytes = bio->bi_iter.bi_size - (maxsector << 9);
3024
3025         /*
3026          * The bio contains more than one segment which spans EOD, just return
3027          * and let IO layer turn it into an EIO
3028          */
3029         if (truncated_bytes > bvec->bv_len)
3030                 return;
3031
3032         /* Truncate the bio.. */
3033         bio->bi_iter.bi_size -= truncated_bytes;
3034         bvec->bv_len -= truncated_bytes;
3035
3036         /* ..and clear the end of the buffer for reads */
3037         if (op == REQ_OP_READ) {
3038                 zero_user(bvec->bv_page, bvec->bv_offset + bvec->bv_len,
3039                                 truncated_bytes);
3040         }
3041 }
3042
3043 static int submit_bh_wbc(int op, int op_flags, struct buffer_head *bh,
3044                          enum rw_hint write_hint, struct writeback_control *wbc)
3045 {
3046         struct bio *bio;
3047
3048         BUG_ON(!buffer_locked(bh));
3049         BUG_ON(!buffer_mapped(bh));
3050         BUG_ON(!bh->b_end_io);
3051         BUG_ON(buffer_delay(bh));
3052         BUG_ON(buffer_unwritten(bh));
3053
3054         /*
3055          * Only clear out a write error when rewriting
3056          */
3057         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
3058                 clear_buffer_write_io_error(bh);
3059
3060         /*
3061          * from here on down, it's all bio -- do the initial mapping,
3062          * submit_bio -> generic_make_request may further map this bio around
3063          */
3064         bio = bio_alloc(GFP_NOIO, 1);
3065
3066         if (wbc) {
3067                 wbc_init_bio(wbc, bio);
3068                 wbc_account_io(wbc, bh->b_page, bh->b_size);
3069         }
3070
3071         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
3072         bio_set_dev(bio, bh->b_bdev);
3073         bio->bi_write_hint = write_hint;
3074
3075         bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
3076         BUG_ON(bio->bi_iter.bi_size != bh->b_size);
3077
3078         bio->bi_end_io = end_bio_bh_io_sync;
3079         bio->bi_private = bh;
3080
3081         /* Take care of bh's that straddle the end of the device */
3082         guard_bio_eod(op, bio);
3083
3084         if (buffer_meta(bh))
3085                 op_flags |= REQ_META;
3086         if (buffer_prio(bh))
3087                 op_flags |= REQ_PRIO;
3088         bio_set_op_attrs(bio, op, op_flags);
3089
3090         submit_bio(bio);
3091         return 0;
3092 }
3093
3094 int submit_bh(int op, int op_flags, struct buffer_head *bh)
3095 {
3096         return submit_bh_wbc(op, op_flags, bh, 0, NULL);
3097 }
3098 EXPORT_SYMBOL(submit_bh);
3099
3100 /**
3101  * ll_rw_block: low-level access to block devices (DEPRECATED)
3102  * @op: whether to %READ or %WRITE
3103  * @op_flags: req_flag_bits
3104  * @nr: number of &struct buffer_heads in the array
3105  * @bhs: array of pointers to &struct buffer_head
3106  *
3107  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3108  * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3109  * @op_flags contains flags modifying the detailed I/O behavior, most notably
3110  * %REQ_RAHEAD.
3111  *
3112  * This function drops any buffer that it cannot get a lock on (with the
3113  * BH_Lock state bit), any buffer that appears to be clean when doing a write
3114  * request, and any buffer that appears to be up-to-date when doing read
3115  * request.  Further it marks as clean buffers that are processed for
3116  * writing (the buffer cache won't assume that they are actually clean
3117  * until the buffer gets unlocked).
3118  *
3119  * ll_rw_block sets b_end_io to simple completion handler that marks
3120  * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3121  * any waiters. 
3122  *
3123  * All of the buffers must be for the same device, and must also be a
3124  * multiple of the current approved size for the device.
3125  */
3126 void ll_rw_block(int op, int op_flags,  int nr, struct buffer_head *bhs[])
3127 {
3128         int i;
3129
3130         for (i = 0; i < nr; i++) {
3131                 struct buffer_head *bh = bhs[i];
3132
3133                 if (!trylock_buffer(bh))
3134                         continue;
3135                 if (op == WRITE) {
3136                         if (test_clear_buffer_dirty(bh)) {
3137                                 bh->b_end_io = end_buffer_write_sync;
3138                                 get_bh(bh);
3139                                 submit_bh(op, op_flags, bh);
3140                                 continue;
3141                         }
3142                 } else {
3143                         if (!buffer_uptodate(bh)) {
3144                                 bh->b_end_io = end_buffer_read_sync;
3145                                 get_bh(bh);
3146                                 submit_bh(op, op_flags, bh);
3147                                 continue;
3148                         }
3149                 }
3150                 unlock_buffer(bh);
3151         }
3152 }
3153 EXPORT_SYMBOL(ll_rw_block);
3154
3155 void write_dirty_buffer(struct buffer_head *bh, int op_flags)
3156 {
3157         lock_buffer(bh);
3158         if (!test_clear_buffer_dirty(bh)) {
3159                 unlock_buffer(bh);
3160                 return;
3161         }
3162         bh->b_end_io = end_buffer_write_sync;
3163         get_bh(bh);
3164         submit_bh(REQ_OP_WRITE, op_flags, bh);
3165 }
3166 EXPORT_SYMBOL(write_dirty_buffer);
3167
3168 /*
3169  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3170  * and then start new I/O and then wait upon it.  The caller must have a ref on
3171  * the buffer_head.
3172  */
3173 int __sync_dirty_buffer(struct buffer_head *bh, int op_flags)
3174 {
3175         int ret = 0;
3176
3177         WARN_ON(atomic_read(&bh->b_count) < 1);
3178         lock_buffer(bh);
3179         if (test_clear_buffer_dirty(bh)) {
3180                 /*
3181                  * The bh should be mapped, but it might not be if the
3182                  * device was hot-removed. Not much we can do but fail the I/O.
3183                  */
3184                 if (!buffer_mapped(bh)) {
3185                         unlock_buffer(bh);
3186                         return -EIO;
3187                 }
3188
3189                 get_bh(bh);
3190                 bh->b_end_io = end_buffer_write_sync;
3191                 ret = submit_bh(REQ_OP_WRITE, op_flags, bh);
3192                 wait_on_buffer(bh);
3193                 if (!ret && !buffer_uptodate(bh))
3194                         ret = -EIO;
3195         } else {
3196                 unlock_buffer(bh);
3197         }
3198         return ret;
3199 }
3200 EXPORT_SYMBOL(__sync_dirty_buffer);
3201
3202 int sync_dirty_buffer(struct buffer_head *bh)
3203 {
3204         return __sync_dirty_buffer(bh, REQ_SYNC);
3205 }
3206 EXPORT_SYMBOL(sync_dirty_buffer);
3207
3208 /*
3209  * try_to_free_buffers() checks if all the buffers on this particular page
3210  * are unused, and releases them if so.
3211  *
3212  * Exclusion against try_to_free_buffers may be obtained by either
3213  * locking the page or by holding its mapping's private_lock.
3214  *
3215  * If the page is dirty but all the buffers are clean then we need to
3216  * be sure to mark the page clean as well.  This is because the page
3217  * may be against a block device, and a later reattachment of buffers
3218  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3219  * filesystem data on the same device.
3220  *
3221  * The same applies to regular filesystem pages: if all the buffers are
3222  * clean then we set the page clean and proceed.  To do that, we require
3223  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3224  * private_lock.
3225  *
3226  * try_to_free_buffers() is non-blocking.
3227  */
3228 static inline int buffer_busy(struct buffer_head *bh)
3229 {
3230         return atomic_read(&bh->b_count) |
3231                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3232 }
3233
3234 static int
3235 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3236 {
3237         struct buffer_head *head = page_buffers(page);
3238         struct buffer_head *bh;
3239
3240         bh = head;
3241         do {
3242                 if (buffer_busy(bh))
3243                         goto failed;
3244                 bh = bh->b_this_page;
3245         } while (bh != head);
3246
3247         do {
3248                 struct buffer_head *next = bh->b_this_page;
3249
3250                 if (bh->b_assoc_map)
3251                         __remove_assoc_queue(bh);
3252                 bh = next;
3253         } while (bh != head);
3254         *buffers_to_free = head;
3255         __clear_page_buffers(page);
3256         return 1;
3257 failed:
3258         return 0;
3259 }
3260
3261 int try_to_free_buffers(struct page *page)
3262 {
3263         struct address_space * const mapping = page->mapping;
3264         struct buffer_head *buffers_to_free = NULL;
3265         int ret = 0;
3266
3267         BUG_ON(!PageLocked(page));
3268         if (PageWriteback(page))
3269                 return 0;
3270
3271         if (mapping == NULL) {          /* can this still happen? */
3272                 ret = drop_buffers(page, &buffers_to_free);
3273                 goto out;
3274         }
3275
3276         spin_lock(&mapping->private_lock);
3277         ret = drop_buffers(page, &buffers_to_free);
3278
3279         /*
3280          * If the filesystem writes its buffers by hand (eg ext3)
3281          * then we can have clean buffers against a dirty page.  We
3282          * clean the page here; otherwise the VM will never notice
3283          * that the filesystem did any IO at all.
3284          *
3285          * Also, during truncate, discard_buffer will have marked all
3286          * the page's buffers clean.  We discover that here and clean
3287          * the page also.
3288          *
3289          * private_lock must be held over this entire operation in order
3290          * to synchronise against __set_page_dirty_buffers and prevent the
3291          * dirty bit from being lost.
3292          */
3293         if (ret)
3294                 cancel_dirty_page(page);
3295         spin_unlock(&mapping->private_lock);
3296 out:
3297         if (buffers_to_free) {
3298                 struct buffer_head *bh = buffers_to_free;
3299
3300                 do {
3301                         struct buffer_head *next = bh->b_this_page;
3302                         free_buffer_head(bh);
3303                         bh = next;
3304                 } while (bh != buffers_to_free);
3305         }
3306         return ret;
3307 }
3308 EXPORT_SYMBOL(try_to_free_buffers);
3309
3310 /*
3311  * There are no bdflush tunables left.  But distributions are
3312  * still running obsolete flush daemons, so we terminate them here.
3313  *
3314  * Use of bdflush() is deprecated and will be removed in a future kernel.
3315  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3316  */
3317 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3318 {
3319         static int msg_count;
3320
3321         if (!capable(CAP_SYS_ADMIN))
3322                 return -EPERM;
3323
3324         if (msg_count < 5) {
3325                 msg_count++;
3326                 printk(KERN_INFO
3327                         "warning: process `%s' used the obsolete bdflush"
3328                         " system call\n", current->comm);
3329                 printk(KERN_INFO "Fix your initscripts?\n");
3330         }
3331
3332         if (func == 1)
3333                 do_exit(0);
3334         return 0;
3335 }
3336
3337 /*
3338  * Buffer-head allocation
3339  */
3340 static struct kmem_cache *bh_cachep __read_mostly;
3341
3342 /*
3343  * Once the number of bh's in the machine exceeds this level, we start
3344  * stripping them in writeback.
3345  */
3346 static unsigned long max_buffer_heads;
3347
3348 int buffer_heads_over_limit;
3349
3350 struct bh_accounting {
3351         int nr;                 /* Number of live bh's */
3352         int ratelimit;          /* Limit cacheline bouncing */
3353 };
3354
3355 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3356
3357 static void recalc_bh_state(void)
3358 {
3359         int i;
3360         int tot = 0;
3361
3362         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3363                 return;
3364         __this_cpu_write(bh_accounting.ratelimit, 0);
3365         for_each_online_cpu(i)
3366                 tot += per_cpu(bh_accounting, i).nr;
3367         buffer_heads_over_limit = (tot > max_buffer_heads);
3368 }
3369
3370 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3371 {
3372         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3373         if (ret) {
3374                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3375                 preempt_disable();
3376                 __this_cpu_inc(bh_accounting.nr);
3377                 recalc_bh_state();
3378                 preempt_enable();
3379         }
3380         return ret;
3381 }
3382 EXPORT_SYMBOL(alloc_buffer_head);
3383
3384 void free_buffer_head(struct buffer_head *bh)
3385 {
3386         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3387         kmem_cache_free(bh_cachep, bh);
3388         preempt_disable();
3389         __this_cpu_dec(bh_accounting.nr);
3390         recalc_bh_state();
3391         preempt_enable();
3392 }
3393 EXPORT_SYMBOL(free_buffer_head);
3394
3395 static int buffer_exit_cpu_dead(unsigned int cpu)
3396 {
3397         int i;
3398         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3399
3400         for (i = 0; i < BH_LRU_SIZE; i++) {
3401                 brelse(b->bhs[i]);
3402                 b->bhs[i] = NULL;
3403         }
3404         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3405         per_cpu(bh_accounting, cpu).nr = 0;
3406         return 0;
3407 }
3408
3409 /**
3410  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3411  * @bh: struct buffer_head
3412  *
3413  * Return true if the buffer is up-to-date and false,
3414  * with the buffer locked, if not.
3415  */
3416 int bh_uptodate_or_lock(struct buffer_head *bh)
3417 {
3418         if (!buffer_uptodate(bh)) {
3419                 lock_buffer(bh);
3420                 if (!buffer_uptodate(bh))
3421                         return 0;
3422                 unlock_buffer(bh);
3423         }
3424         return 1;
3425 }
3426 EXPORT_SYMBOL(bh_uptodate_or_lock);
3427
3428 /**
3429  * bh_submit_read - Submit a locked buffer for reading
3430  * @bh: struct buffer_head
3431  *
3432  * Returns zero on success and -EIO on error.
3433  */
3434 int bh_submit_read(struct buffer_head *bh)
3435 {
3436         BUG_ON(!buffer_locked(bh));
3437
3438         if (buffer_uptodate(bh)) {
3439                 unlock_buffer(bh);
3440                 return 0;
3441         }
3442
3443         get_bh(bh);
3444         bh->b_end_io = end_buffer_read_sync;
3445         submit_bh(REQ_OP_READ, 0, bh);
3446         wait_on_buffer(bh);
3447         if (buffer_uptodate(bh))
3448                 return 0;
3449         return -EIO;
3450 }
3451 EXPORT_SYMBOL(bh_submit_read);
3452
3453 void __init buffer_init(void)
3454 {
3455         unsigned long nrpages;
3456         int ret;
3457
3458         bh_cachep = kmem_cache_create("buffer_head",
3459                         sizeof(struct buffer_head), 0,
3460                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3461                                 SLAB_MEM_SPREAD),
3462                                 NULL);
3463
3464         /*
3465          * Limit the bh occupancy to 10% of ZONE_NORMAL
3466          */
3467         nrpages = (nr_free_buffer_pages() * 10) / 100;
3468         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3469         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3470                                         NULL, buffer_exit_cpu_dead);
3471         WARN_ON(ret < 0);
3472 }