arm64: dts: qcom: sm8550: add TRNG node
[linux-modified.git] / fs / buffer.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 #include <linux/sched/isolation.h>
53
54 #include "internal.h"
55
56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
58                           struct writeback_control *wbc);
59
60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
61
62 inline void touch_buffer(struct buffer_head *bh)
63 {
64         trace_block_touch_buffer(bh);
65         folio_mark_accessed(bh->b_folio);
66 }
67 EXPORT_SYMBOL(touch_buffer);
68
69 void __lock_buffer(struct buffer_head *bh)
70 {
71         wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
72 }
73 EXPORT_SYMBOL(__lock_buffer);
74
75 void unlock_buffer(struct buffer_head *bh)
76 {
77         clear_bit_unlock(BH_Lock, &bh->b_state);
78         smp_mb__after_atomic();
79         wake_up_bit(&bh->b_state, BH_Lock);
80 }
81 EXPORT_SYMBOL(unlock_buffer);
82
83 /*
84  * Returns if the folio has dirty or writeback buffers. If all the buffers
85  * are unlocked and clean then the folio_test_dirty information is stale. If
86  * any of the buffers are locked, it is assumed they are locked for IO.
87  */
88 void buffer_check_dirty_writeback(struct folio *folio,
89                                      bool *dirty, bool *writeback)
90 {
91         struct buffer_head *head, *bh;
92         *dirty = false;
93         *writeback = false;
94
95         BUG_ON(!folio_test_locked(folio));
96
97         head = folio_buffers(folio);
98         if (!head)
99                 return;
100
101         if (folio_test_writeback(folio))
102                 *writeback = true;
103
104         bh = head;
105         do {
106                 if (buffer_locked(bh))
107                         *writeback = true;
108
109                 if (buffer_dirty(bh))
110                         *dirty = true;
111
112                 bh = bh->b_this_page;
113         } while (bh != head);
114 }
115
116 /*
117  * Block until a buffer comes unlocked.  This doesn't stop it
118  * from becoming locked again - you have to lock it yourself
119  * if you want to preserve its state.
120  */
121 void __wait_on_buffer(struct buffer_head * bh)
122 {
123         wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
124 }
125 EXPORT_SYMBOL(__wait_on_buffer);
126
127 static void buffer_io_error(struct buffer_head *bh, char *msg)
128 {
129         if (!test_bit(BH_Quiet, &bh->b_state))
130                 printk_ratelimited(KERN_ERR
131                         "Buffer I/O error on dev %pg, logical block %llu%s\n",
132                         bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
133 }
134
135 /*
136  * End-of-IO handler helper function which does not touch the bh after
137  * unlocking it.
138  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
139  * a race there is benign: unlock_buffer() only use the bh's address for
140  * hashing after unlocking the buffer, so it doesn't actually touch the bh
141  * itself.
142  */
143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
144 {
145         if (uptodate) {
146                 set_buffer_uptodate(bh);
147         } else {
148                 /* This happens, due to failed read-ahead attempts. */
149                 clear_buffer_uptodate(bh);
150         }
151         unlock_buffer(bh);
152 }
153
154 /*
155  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
156  * unlock the buffer.
157  */
158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
159 {
160         __end_buffer_read_notouch(bh, uptodate);
161         put_bh(bh);
162 }
163 EXPORT_SYMBOL(end_buffer_read_sync);
164
165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
166 {
167         if (uptodate) {
168                 set_buffer_uptodate(bh);
169         } else {
170                 buffer_io_error(bh, ", lost sync page write");
171                 mark_buffer_write_io_error(bh);
172                 clear_buffer_uptodate(bh);
173         }
174         unlock_buffer(bh);
175         put_bh(bh);
176 }
177 EXPORT_SYMBOL(end_buffer_write_sync);
178
179 /*
180  * Various filesystems appear to want __find_get_block to be non-blocking.
181  * But it's the page lock which protects the buffers.  To get around this,
182  * we get exclusion from try_to_free_buffers with the blockdev mapping's
183  * private_lock.
184  *
185  * Hack idea: for the blockdev mapping, private_lock contention
186  * may be quite high.  This code could TryLock the page, and if that
187  * succeeds, there is no need to take private_lock.
188  */
189 static struct buffer_head *
190 __find_get_block_slow(struct block_device *bdev, sector_t block)
191 {
192         struct inode *bd_inode = bdev->bd_inode;
193         struct address_space *bd_mapping = bd_inode->i_mapping;
194         struct buffer_head *ret = NULL;
195         pgoff_t index;
196         struct buffer_head *bh;
197         struct buffer_head *head;
198         struct folio *folio;
199         int all_mapped = 1;
200         static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
201
202         index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
203         folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
204         if (IS_ERR(folio))
205                 goto out;
206
207         spin_lock(&bd_mapping->private_lock);
208         head = folio_buffers(folio);
209         if (!head)
210                 goto out_unlock;
211         bh = head;
212         do {
213                 if (!buffer_mapped(bh))
214                         all_mapped = 0;
215                 else if (bh->b_blocknr == block) {
216                         ret = bh;
217                         get_bh(bh);
218                         goto out_unlock;
219                 }
220                 bh = bh->b_this_page;
221         } while (bh != head);
222
223         /* we might be here because some of the buffers on this page are
224          * not mapped.  This is due to various races between
225          * file io on the block device and getblk.  It gets dealt with
226          * elsewhere, don't buffer_error if we had some unmapped buffers
227          */
228         ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
229         if (all_mapped && __ratelimit(&last_warned)) {
230                 printk("__find_get_block_slow() failed. block=%llu, "
231                        "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
232                        "device %pg blocksize: %d\n",
233                        (unsigned long long)block,
234                        (unsigned long long)bh->b_blocknr,
235                        bh->b_state, bh->b_size, bdev,
236                        1 << bd_inode->i_blkbits);
237         }
238 out_unlock:
239         spin_unlock(&bd_mapping->private_lock);
240         folio_put(folio);
241 out:
242         return ret;
243 }
244
245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
246 {
247         unsigned long flags;
248         struct buffer_head *first;
249         struct buffer_head *tmp;
250         struct folio *folio;
251         int folio_uptodate = 1;
252
253         BUG_ON(!buffer_async_read(bh));
254
255         folio = bh->b_folio;
256         if (uptodate) {
257                 set_buffer_uptodate(bh);
258         } else {
259                 clear_buffer_uptodate(bh);
260                 buffer_io_error(bh, ", async page read");
261                 folio_set_error(folio);
262         }
263
264         /*
265          * Be _very_ careful from here on. Bad things can happen if
266          * two buffer heads end IO at almost the same time and both
267          * decide that the page is now completely done.
268          */
269         first = folio_buffers(folio);
270         spin_lock_irqsave(&first->b_uptodate_lock, flags);
271         clear_buffer_async_read(bh);
272         unlock_buffer(bh);
273         tmp = bh;
274         do {
275                 if (!buffer_uptodate(tmp))
276                         folio_uptodate = 0;
277                 if (buffer_async_read(tmp)) {
278                         BUG_ON(!buffer_locked(tmp));
279                         goto still_busy;
280                 }
281                 tmp = tmp->b_this_page;
282         } while (tmp != bh);
283         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
284
285         folio_end_read(folio, folio_uptodate);
286         return;
287
288 still_busy:
289         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
290         return;
291 }
292
293 struct postprocess_bh_ctx {
294         struct work_struct work;
295         struct buffer_head *bh;
296 };
297
298 static void verify_bh(struct work_struct *work)
299 {
300         struct postprocess_bh_ctx *ctx =
301                 container_of(work, struct postprocess_bh_ctx, work);
302         struct buffer_head *bh = ctx->bh;
303         bool valid;
304
305         valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
306         end_buffer_async_read(bh, valid);
307         kfree(ctx);
308 }
309
310 static bool need_fsverity(struct buffer_head *bh)
311 {
312         struct folio *folio = bh->b_folio;
313         struct inode *inode = folio->mapping->host;
314
315         return fsverity_active(inode) &&
316                 /* needed by ext4 */
317                 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
318 }
319
320 static void decrypt_bh(struct work_struct *work)
321 {
322         struct postprocess_bh_ctx *ctx =
323                 container_of(work, struct postprocess_bh_ctx, work);
324         struct buffer_head *bh = ctx->bh;
325         int err;
326
327         err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
328                                                bh_offset(bh));
329         if (err == 0 && need_fsverity(bh)) {
330                 /*
331                  * We use different work queues for decryption and for verity
332                  * because verity may require reading metadata pages that need
333                  * decryption, and we shouldn't recurse to the same workqueue.
334                  */
335                 INIT_WORK(&ctx->work, verify_bh);
336                 fsverity_enqueue_verify_work(&ctx->work);
337                 return;
338         }
339         end_buffer_async_read(bh, err == 0);
340         kfree(ctx);
341 }
342
343 /*
344  * I/O completion handler for block_read_full_folio() - pages
345  * which come unlocked at the end of I/O.
346  */
347 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
348 {
349         struct inode *inode = bh->b_folio->mapping->host;
350         bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
351         bool verify = need_fsverity(bh);
352
353         /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
354         if (uptodate && (decrypt || verify)) {
355                 struct postprocess_bh_ctx *ctx =
356                         kmalloc(sizeof(*ctx), GFP_ATOMIC);
357
358                 if (ctx) {
359                         ctx->bh = bh;
360                         if (decrypt) {
361                                 INIT_WORK(&ctx->work, decrypt_bh);
362                                 fscrypt_enqueue_decrypt_work(&ctx->work);
363                         } else {
364                                 INIT_WORK(&ctx->work, verify_bh);
365                                 fsverity_enqueue_verify_work(&ctx->work);
366                         }
367                         return;
368                 }
369                 uptodate = 0;
370         }
371         end_buffer_async_read(bh, uptodate);
372 }
373
374 /*
375  * Completion handler for block_write_full_page() - pages which are unlocked
376  * during I/O, and which have PageWriteback cleared upon I/O completion.
377  */
378 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
379 {
380         unsigned long flags;
381         struct buffer_head *first;
382         struct buffer_head *tmp;
383         struct folio *folio;
384
385         BUG_ON(!buffer_async_write(bh));
386
387         folio = bh->b_folio;
388         if (uptodate) {
389                 set_buffer_uptodate(bh);
390         } else {
391                 buffer_io_error(bh, ", lost async page write");
392                 mark_buffer_write_io_error(bh);
393                 clear_buffer_uptodate(bh);
394                 folio_set_error(folio);
395         }
396
397         first = folio_buffers(folio);
398         spin_lock_irqsave(&first->b_uptodate_lock, flags);
399
400         clear_buffer_async_write(bh);
401         unlock_buffer(bh);
402         tmp = bh->b_this_page;
403         while (tmp != bh) {
404                 if (buffer_async_write(tmp)) {
405                         BUG_ON(!buffer_locked(tmp));
406                         goto still_busy;
407                 }
408                 tmp = tmp->b_this_page;
409         }
410         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
411         folio_end_writeback(folio);
412         return;
413
414 still_busy:
415         spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416         return;
417 }
418 EXPORT_SYMBOL(end_buffer_async_write);
419
420 /*
421  * If a page's buffers are under async readin (end_buffer_async_read
422  * completion) then there is a possibility that another thread of
423  * control could lock one of the buffers after it has completed
424  * but while some of the other buffers have not completed.  This
425  * locked buffer would confuse end_buffer_async_read() into not unlocking
426  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
427  * that this buffer is not under async I/O.
428  *
429  * The page comes unlocked when it has no locked buffer_async buffers
430  * left.
431  *
432  * PageLocked prevents anyone starting new async I/O reads any of
433  * the buffers.
434  *
435  * PageWriteback is used to prevent simultaneous writeout of the same
436  * page.
437  *
438  * PageLocked prevents anyone from starting writeback of a page which is
439  * under read I/O (PageWriteback is only ever set against a locked page).
440  */
441 static void mark_buffer_async_read(struct buffer_head *bh)
442 {
443         bh->b_end_io = end_buffer_async_read_io;
444         set_buffer_async_read(bh);
445 }
446
447 static void mark_buffer_async_write_endio(struct buffer_head *bh,
448                                           bh_end_io_t *handler)
449 {
450         bh->b_end_io = handler;
451         set_buffer_async_write(bh);
452 }
453
454 void mark_buffer_async_write(struct buffer_head *bh)
455 {
456         mark_buffer_async_write_endio(bh, end_buffer_async_write);
457 }
458 EXPORT_SYMBOL(mark_buffer_async_write);
459
460
461 /*
462  * fs/buffer.c contains helper functions for buffer-backed address space's
463  * fsync functions.  A common requirement for buffer-based filesystems is
464  * that certain data from the backing blockdev needs to be written out for
465  * a successful fsync().  For example, ext2 indirect blocks need to be
466  * written back and waited upon before fsync() returns.
467  *
468  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
469  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
470  * management of a list of dependent buffers at ->i_mapping->private_list.
471  *
472  * Locking is a little subtle: try_to_free_buffers() will remove buffers
473  * from their controlling inode's queue when they are being freed.  But
474  * try_to_free_buffers() will be operating against the *blockdev* mapping
475  * at the time, not against the S_ISREG file which depends on those buffers.
476  * So the locking for private_list is via the private_lock in the address_space
477  * which backs the buffers.  Which is different from the address_space 
478  * against which the buffers are listed.  So for a particular address_space,
479  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
480  * mapping->private_list will always be protected by the backing blockdev's
481  * ->private_lock.
482  *
483  * Which introduces a requirement: all buffers on an address_space's
484  * ->private_list must be from the same address_space: the blockdev's.
485  *
486  * address_spaces which do not place buffers at ->private_list via these
487  * utility functions are free to use private_lock and private_list for
488  * whatever they want.  The only requirement is that list_empty(private_list)
489  * be true at clear_inode() time.
490  *
491  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
492  * filesystems should do that.  invalidate_inode_buffers() should just go
493  * BUG_ON(!list_empty).
494  *
495  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
496  * take an address_space, not an inode.  And it should be called
497  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
498  * queued up.
499  *
500  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
501  * list if it is already on a list.  Because if the buffer is on a list,
502  * it *must* already be on the right one.  If not, the filesystem is being
503  * silly.  This will save a ton of locking.  But first we have to ensure
504  * that buffers are taken *off* the old inode's list when they are freed
505  * (presumably in truncate).  That requires careful auditing of all
506  * filesystems (do it inside bforget()).  It could also be done by bringing
507  * b_inode back.
508  */
509
510 /*
511  * The buffer's backing address_space's private_lock must be held
512  */
513 static void __remove_assoc_queue(struct buffer_head *bh)
514 {
515         list_del_init(&bh->b_assoc_buffers);
516         WARN_ON(!bh->b_assoc_map);
517         bh->b_assoc_map = NULL;
518 }
519
520 int inode_has_buffers(struct inode *inode)
521 {
522         return !list_empty(&inode->i_data.private_list);
523 }
524
525 /*
526  * osync is designed to support O_SYNC io.  It waits synchronously for
527  * all already-submitted IO to complete, but does not queue any new
528  * writes to the disk.
529  *
530  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
531  * as you dirty the buffers, and then use osync_inode_buffers to wait for
532  * completion.  Any other dirty buffers which are not yet queued for
533  * write will not be flushed to disk by the osync.
534  */
535 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
536 {
537         struct buffer_head *bh;
538         struct list_head *p;
539         int err = 0;
540
541         spin_lock(lock);
542 repeat:
543         list_for_each_prev(p, list) {
544                 bh = BH_ENTRY(p);
545                 if (buffer_locked(bh)) {
546                         get_bh(bh);
547                         spin_unlock(lock);
548                         wait_on_buffer(bh);
549                         if (!buffer_uptodate(bh))
550                                 err = -EIO;
551                         brelse(bh);
552                         spin_lock(lock);
553                         goto repeat;
554                 }
555         }
556         spin_unlock(lock);
557         return err;
558 }
559
560 /**
561  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
562  * @mapping: the mapping which wants those buffers written
563  *
564  * Starts I/O against the buffers at mapping->private_list, and waits upon
565  * that I/O.
566  *
567  * Basically, this is a convenience function for fsync().
568  * @mapping is a file or directory which needs those buffers to be written for
569  * a successful fsync().
570  */
571 int sync_mapping_buffers(struct address_space *mapping)
572 {
573         struct address_space *buffer_mapping = mapping->private_data;
574
575         if (buffer_mapping == NULL || list_empty(&mapping->private_list))
576                 return 0;
577
578         return fsync_buffers_list(&buffer_mapping->private_lock,
579                                         &mapping->private_list);
580 }
581 EXPORT_SYMBOL(sync_mapping_buffers);
582
583 /**
584  * generic_buffers_fsync_noflush - generic buffer fsync implementation
585  * for simple filesystems with no inode lock
586  *
587  * @file:       file to synchronize
588  * @start:      start offset in bytes
589  * @end:        end offset in bytes (inclusive)
590  * @datasync:   only synchronize essential metadata if true
591  *
592  * This is a generic implementation of the fsync method for simple
593  * filesystems which track all non-inode metadata in the buffers list
594  * hanging off the address_space structure.
595  */
596 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
597                                   bool datasync)
598 {
599         struct inode *inode = file->f_mapping->host;
600         int err;
601         int ret;
602
603         err = file_write_and_wait_range(file, start, end);
604         if (err)
605                 return err;
606
607         ret = sync_mapping_buffers(inode->i_mapping);
608         if (!(inode->i_state & I_DIRTY_ALL))
609                 goto out;
610         if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
611                 goto out;
612
613         err = sync_inode_metadata(inode, 1);
614         if (ret == 0)
615                 ret = err;
616
617 out:
618         /* check and advance again to catch errors after syncing out buffers */
619         err = file_check_and_advance_wb_err(file);
620         if (ret == 0)
621                 ret = err;
622         return ret;
623 }
624 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
625
626 /**
627  * generic_buffers_fsync - generic buffer fsync implementation
628  * for simple filesystems with no inode lock
629  *
630  * @file:       file to synchronize
631  * @start:      start offset in bytes
632  * @end:        end offset in bytes (inclusive)
633  * @datasync:   only synchronize essential metadata if true
634  *
635  * This is a generic implementation of the fsync method for simple
636  * filesystems which track all non-inode metadata in the buffers list
637  * hanging off the address_space structure. This also makes sure that
638  * a device cache flush operation is called at the end.
639  */
640 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
641                           bool datasync)
642 {
643         struct inode *inode = file->f_mapping->host;
644         int ret;
645
646         ret = generic_buffers_fsync_noflush(file, start, end, datasync);
647         if (!ret)
648                 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
649         return ret;
650 }
651 EXPORT_SYMBOL(generic_buffers_fsync);
652
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660                         sector_t bblock, unsigned blocksize)
661 {
662         struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663         if (bh) {
664                 if (buffer_dirty(bh))
665                         write_dirty_buffer(bh, 0);
666                 put_bh(bh);
667         }
668 }
669
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672         struct address_space *mapping = inode->i_mapping;
673         struct address_space *buffer_mapping = bh->b_folio->mapping;
674
675         mark_buffer_dirty(bh);
676         if (!mapping->private_data) {
677                 mapping->private_data = buffer_mapping;
678         } else {
679                 BUG_ON(mapping->private_data != buffer_mapping);
680         }
681         if (!bh->b_assoc_map) {
682                 spin_lock(&buffer_mapping->private_lock);
683                 list_move_tail(&bh->b_assoc_buffers,
684                                 &mapping->private_list);
685                 bh->b_assoc_map = mapping;
686                 spin_unlock(&buffer_mapping->private_lock);
687         }
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690
691 /*
692  * Add a page to the dirty page list.
693  *
694  * It is a sad fact of life that this function is called from several places
695  * deeply under spinlocking.  It may not sleep.
696  *
697  * If the page has buffers, the uptodate buffers are set dirty, to preserve
698  * dirty-state coherency between the page and the buffers.  It the page does
699  * not have buffers then when they are later attached they will all be set
700  * dirty.
701  *
702  * The buffers are dirtied before the page is dirtied.  There's a small race
703  * window in which a writepage caller may see the page cleanness but not the
704  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
705  * before the buffers, a concurrent writepage caller could clear the page dirty
706  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
707  * page on the dirty page list.
708  *
709  * We use private_lock to lock against try_to_free_buffers while using the
710  * page's buffer list.  Also use this to protect against clean buffers being
711  * added to the page after it was set dirty.
712  *
713  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
714  * address_space though.
715  */
716 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
717 {
718         struct buffer_head *head;
719         bool newly_dirty;
720
721         spin_lock(&mapping->private_lock);
722         head = folio_buffers(folio);
723         if (head) {
724                 struct buffer_head *bh = head;
725
726                 do {
727                         set_buffer_dirty(bh);
728                         bh = bh->b_this_page;
729                 } while (bh != head);
730         }
731         /*
732          * Lock out page's memcg migration to keep PageDirty
733          * synchronized with per-memcg dirty page counters.
734          */
735         folio_memcg_lock(folio);
736         newly_dirty = !folio_test_set_dirty(folio);
737         spin_unlock(&mapping->private_lock);
738
739         if (newly_dirty)
740                 __folio_mark_dirty(folio, mapping, 1);
741
742         folio_memcg_unlock(folio);
743
744         if (newly_dirty)
745                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
746
747         return newly_dirty;
748 }
749 EXPORT_SYMBOL(block_dirty_folio);
750
751 /*
752  * Write out and wait upon a list of buffers.
753  *
754  * We have conflicting pressures: we want to make sure that all
755  * initially dirty buffers get waited on, but that any subsequently
756  * dirtied buffers don't.  After all, we don't want fsync to last
757  * forever if somebody is actively writing to the file.
758  *
759  * Do this in two main stages: first we copy dirty buffers to a
760  * temporary inode list, queueing the writes as we go.  Then we clean
761  * up, waiting for those writes to complete.
762  * 
763  * During this second stage, any subsequent updates to the file may end
764  * up refiling the buffer on the original inode's dirty list again, so
765  * there is a chance we will end up with a buffer queued for write but
766  * not yet completed on that list.  So, as a final cleanup we go through
767  * the osync code to catch these locked, dirty buffers without requeuing
768  * any newly dirty buffers for write.
769  */
770 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
771 {
772         struct buffer_head *bh;
773         struct list_head tmp;
774         struct address_space *mapping;
775         int err = 0, err2;
776         struct blk_plug plug;
777
778         INIT_LIST_HEAD(&tmp);
779         blk_start_plug(&plug);
780
781         spin_lock(lock);
782         while (!list_empty(list)) {
783                 bh = BH_ENTRY(list->next);
784                 mapping = bh->b_assoc_map;
785                 __remove_assoc_queue(bh);
786                 /* Avoid race with mark_buffer_dirty_inode() which does
787                  * a lockless check and we rely on seeing the dirty bit */
788                 smp_mb();
789                 if (buffer_dirty(bh) || buffer_locked(bh)) {
790                         list_add(&bh->b_assoc_buffers, &tmp);
791                         bh->b_assoc_map = mapping;
792                         if (buffer_dirty(bh)) {
793                                 get_bh(bh);
794                                 spin_unlock(lock);
795                                 /*
796                                  * Ensure any pending I/O completes so that
797                                  * write_dirty_buffer() actually writes the
798                                  * current contents - it is a noop if I/O is
799                                  * still in flight on potentially older
800                                  * contents.
801                                  */
802                                 write_dirty_buffer(bh, REQ_SYNC);
803
804                                 /*
805                                  * Kick off IO for the previous mapping. Note
806                                  * that we will not run the very last mapping,
807                                  * wait_on_buffer() will do that for us
808                                  * through sync_buffer().
809                                  */
810                                 brelse(bh);
811                                 spin_lock(lock);
812                         }
813                 }
814         }
815
816         spin_unlock(lock);
817         blk_finish_plug(&plug);
818         spin_lock(lock);
819
820         while (!list_empty(&tmp)) {
821                 bh = BH_ENTRY(tmp.prev);
822                 get_bh(bh);
823                 mapping = bh->b_assoc_map;
824                 __remove_assoc_queue(bh);
825                 /* Avoid race with mark_buffer_dirty_inode() which does
826                  * a lockless check and we rely on seeing the dirty bit */
827                 smp_mb();
828                 if (buffer_dirty(bh)) {
829                         list_add(&bh->b_assoc_buffers,
830                                  &mapping->private_list);
831                         bh->b_assoc_map = mapping;
832                 }
833                 spin_unlock(lock);
834                 wait_on_buffer(bh);
835                 if (!buffer_uptodate(bh))
836                         err = -EIO;
837                 brelse(bh);
838                 spin_lock(lock);
839         }
840         
841         spin_unlock(lock);
842         err2 = osync_buffers_list(lock, list);
843         if (err)
844                 return err;
845         else
846                 return err2;
847 }
848
849 /*
850  * Invalidate any and all dirty buffers on a given inode.  We are
851  * probably unmounting the fs, but that doesn't mean we have already
852  * done a sync().  Just drop the buffers from the inode list.
853  *
854  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
855  * assumes that all the buffers are against the blockdev.  Not true
856  * for reiserfs.
857  */
858 void invalidate_inode_buffers(struct inode *inode)
859 {
860         if (inode_has_buffers(inode)) {
861                 struct address_space *mapping = &inode->i_data;
862                 struct list_head *list = &mapping->private_list;
863                 struct address_space *buffer_mapping = mapping->private_data;
864
865                 spin_lock(&buffer_mapping->private_lock);
866                 while (!list_empty(list))
867                         __remove_assoc_queue(BH_ENTRY(list->next));
868                 spin_unlock(&buffer_mapping->private_lock);
869         }
870 }
871 EXPORT_SYMBOL(invalidate_inode_buffers);
872
873 /*
874  * Remove any clean buffers from the inode's buffer list.  This is called
875  * when we're trying to free the inode itself.  Those buffers can pin it.
876  *
877  * Returns true if all buffers were removed.
878  */
879 int remove_inode_buffers(struct inode *inode)
880 {
881         int ret = 1;
882
883         if (inode_has_buffers(inode)) {
884                 struct address_space *mapping = &inode->i_data;
885                 struct list_head *list = &mapping->private_list;
886                 struct address_space *buffer_mapping = mapping->private_data;
887
888                 spin_lock(&buffer_mapping->private_lock);
889                 while (!list_empty(list)) {
890                         struct buffer_head *bh = BH_ENTRY(list->next);
891                         if (buffer_dirty(bh)) {
892                                 ret = 0;
893                                 break;
894                         }
895                         __remove_assoc_queue(bh);
896                 }
897                 spin_unlock(&buffer_mapping->private_lock);
898         }
899         return ret;
900 }
901
902 /*
903  * Create the appropriate buffers when given a folio for data area and
904  * the size of each buffer.. Use the bh->b_this_page linked list to
905  * follow the buffers created.  Return NULL if unable to create more
906  * buffers.
907  *
908  * The retry flag is used to differentiate async IO (paging, swapping)
909  * which may not fail from ordinary buffer allocations.
910  */
911 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
912                                         gfp_t gfp)
913 {
914         struct buffer_head *bh, *head;
915         long offset;
916         struct mem_cgroup *memcg, *old_memcg;
917
918         /* The folio lock pins the memcg */
919         memcg = folio_memcg(folio);
920         old_memcg = set_active_memcg(memcg);
921
922         head = NULL;
923         offset = folio_size(folio);
924         while ((offset -= size) >= 0) {
925                 bh = alloc_buffer_head(gfp);
926                 if (!bh)
927                         goto no_grow;
928
929                 bh->b_this_page = head;
930                 bh->b_blocknr = -1;
931                 head = bh;
932
933                 bh->b_size = size;
934
935                 /* Link the buffer to its folio */
936                 folio_set_bh(bh, folio, offset);
937         }
938 out:
939         set_active_memcg(old_memcg);
940         return head;
941 /*
942  * In case anything failed, we just free everything we got.
943  */
944 no_grow:
945         if (head) {
946                 do {
947                         bh = head;
948                         head = head->b_this_page;
949                         free_buffer_head(bh);
950                 } while (head);
951         }
952
953         goto out;
954 }
955 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
956
957 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
958                                        bool retry)
959 {
960         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
961         if (retry)
962                 gfp |= __GFP_NOFAIL;
963
964         return folio_alloc_buffers(page_folio(page), size, gfp);
965 }
966 EXPORT_SYMBOL_GPL(alloc_page_buffers);
967
968 static inline void link_dev_buffers(struct folio *folio,
969                 struct buffer_head *head)
970 {
971         struct buffer_head *bh, *tail;
972
973         bh = head;
974         do {
975                 tail = bh;
976                 bh = bh->b_this_page;
977         } while (bh);
978         tail->b_this_page = head;
979         folio_attach_private(folio, head);
980 }
981
982 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
983 {
984         sector_t retval = ~((sector_t)0);
985         loff_t sz = bdev_nr_bytes(bdev);
986
987         if (sz) {
988                 unsigned int sizebits = blksize_bits(size);
989                 retval = (sz >> sizebits);
990         }
991         return retval;
992 }
993
994 /*
995  * Initialise the state of a blockdev folio's buffers.
996  */ 
997 static sector_t folio_init_buffers(struct folio *folio,
998                 struct block_device *bdev, sector_t block, int size)
999 {
1000         struct buffer_head *head = folio_buffers(folio);
1001         struct buffer_head *bh = head;
1002         bool uptodate = folio_test_uptodate(folio);
1003         sector_t end_block = blkdev_max_block(bdev, size);
1004
1005         do {
1006                 if (!buffer_mapped(bh)) {
1007                         bh->b_end_io = NULL;
1008                         bh->b_private = NULL;
1009                         bh->b_bdev = bdev;
1010                         bh->b_blocknr = block;
1011                         if (uptodate)
1012                                 set_buffer_uptodate(bh);
1013                         if (block < end_block)
1014                                 set_buffer_mapped(bh);
1015                 }
1016                 block++;
1017                 bh = bh->b_this_page;
1018         } while (bh != head);
1019
1020         /*
1021          * Caller needs to validate requested block against end of device.
1022          */
1023         return end_block;
1024 }
1025
1026 /*
1027  * Create the page-cache page that contains the requested block.
1028  *
1029  * This is used purely for blockdev mappings.
1030  */
1031 static int
1032 grow_dev_page(struct block_device *bdev, sector_t block,
1033               pgoff_t index, int size, int sizebits, gfp_t gfp)
1034 {
1035         struct inode *inode = bdev->bd_inode;
1036         struct folio *folio;
1037         struct buffer_head *bh;
1038         sector_t end_block;
1039         int ret = 0;
1040
1041         folio = __filemap_get_folio(inode->i_mapping, index,
1042                         FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp);
1043         if (IS_ERR(folio))
1044                 return PTR_ERR(folio);
1045
1046         bh = folio_buffers(folio);
1047         if (bh) {
1048                 if (bh->b_size == size) {
1049                         end_block = folio_init_buffers(folio, bdev,
1050                                         (sector_t)index << sizebits, size);
1051                         goto done;
1052                 }
1053                 if (!try_to_free_buffers(folio))
1054                         goto failed;
1055         }
1056
1057         ret = -ENOMEM;
1058         bh = folio_alloc_buffers(folio, size, gfp | __GFP_ACCOUNT);
1059         if (!bh)
1060                 goto failed;
1061
1062         /*
1063          * Link the folio to the buffers and initialise them.  Take the
1064          * lock to be atomic wrt __find_get_block(), which does not
1065          * run under the folio lock.
1066          */
1067         spin_lock(&inode->i_mapping->private_lock);
1068         link_dev_buffers(folio, bh);
1069         end_block = folio_init_buffers(folio, bdev,
1070                         (sector_t)index << sizebits, size);
1071         spin_unlock(&inode->i_mapping->private_lock);
1072 done:
1073         ret = (block < end_block) ? 1 : -ENXIO;
1074 failed:
1075         folio_unlock(folio);
1076         folio_put(folio);
1077         return ret;
1078 }
1079
1080 /*
1081  * Create buffers for the specified block device block's page.  If
1082  * that page was dirty, the buffers are set dirty also.
1083  */
1084 static int
1085 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1086 {
1087         pgoff_t index;
1088         int sizebits;
1089
1090         sizebits = PAGE_SHIFT - __ffs(size);
1091         index = block >> sizebits;
1092
1093         /*
1094          * Check for a block which wants to lie outside our maximum possible
1095          * pagecache index.  (this comparison is done using sector_t types).
1096          */
1097         if (unlikely(index != block >> sizebits)) {
1098                 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1099                         "device %pg\n",
1100                         __func__, (unsigned long long)block,
1101                         bdev);
1102                 return -EIO;
1103         }
1104
1105         /* Create a page with the proper size buffers.. */
1106         return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1107 }
1108
1109 static struct buffer_head *
1110 __getblk_slow(struct block_device *bdev, sector_t block,
1111              unsigned size, gfp_t gfp)
1112 {
1113         /* Size must be multiple of hard sectorsize */
1114         if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1115                         (size < 512 || size > PAGE_SIZE))) {
1116                 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1117                                         size);
1118                 printk(KERN_ERR "logical block size: %d\n",
1119                                         bdev_logical_block_size(bdev));
1120
1121                 dump_stack();
1122                 return NULL;
1123         }
1124
1125         for (;;) {
1126                 struct buffer_head *bh;
1127                 int ret;
1128
1129                 bh = __find_get_block(bdev, block, size);
1130                 if (bh)
1131                         return bh;
1132
1133                 ret = grow_buffers(bdev, block, size, gfp);
1134                 if (ret < 0)
1135                         return NULL;
1136         }
1137 }
1138
1139 /*
1140  * The relationship between dirty buffers and dirty pages:
1141  *
1142  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1143  * the page is tagged dirty in the page cache.
1144  *
1145  * At all times, the dirtiness of the buffers represents the dirtiness of
1146  * subsections of the page.  If the page has buffers, the page dirty bit is
1147  * merely a hint about the true dirty state.
1148  *
1149  * When a page is set dirty in its entirety, all its buffers are marked dirty
1150  * (if the page has buffers).
1151  *
1152  * When a buffer is marked dirty, its page is dirtied, but the page's other
1153  * buffers are not.
1154  *
1155  * Also.  When blockdev buffers are explicitly read with bread(), they
1156  * individually become uptodate.  But their backing page remains not
1157  * uptodate - even if all of its buffers are uptodate.  A subsequent
1158  * block_read_full_folio() against that folio will discover all the uptodate
1159  * buffers, will set the folio uptodate and will perform no I/O.
1160  */
1161
1162 /**
1163  * mark_buffer_dirty - mark a buffer_head as needing writeout
1164  * @bh: the buffer_head to mark dirty
1165  *
1166  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1167  * its backing page dirty, then tag the page as dirty in the page cache
1168  * and then attach the address_space's inode to its superblock's dirty
1169  * inode list.
1170  *
1171  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1172  * i_pages lock and mapping->host->i_lock.
1173  */
1174 void mark_buffer_dirty(struct buffer_head *bh)
1175 {
1176         WARN_ON_ONCE(!buffer_uptodate(bh));
1177
1178         trace_block_dirty_buffer(bh);
1179
1180         /*
1181          * Very *carefully* optimize the it-is-already-dirty case.
1182          *
1183          * Don't let the final "is it dirty" escape to before we
1184          * perhaps modified the buffer.
1185          */
1186         if (buffer_dirty(bh)) {
1187                 smp_mb();
1188                 if (buffer_dirty(bh))
1189                         return;
1190         }
1191
1192         if (!test_set_buffer_dirty(bh)) {
1193                 struct folio *folio = bh->b_folio;
1194                 struct address_space *mapping = NULL;
1195
1196                 folio_memcg_lock(folio);
1197                 if (!folio_test_set_dirty(folio)) {
1198                         mapping = folio->mapping;
1199                         if (mapping)
1200                                 __folio_mark_dirty(folio, mapping, 0);
1201                 }
1202                 folio_memcg_unlock(folio);
1203                 if (mapping)
1204                         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1205         }
1206 }
1207 EXPORT_SYMBOL(mark_buffer_dirty);
1208
1209 void mark_buffer_write_io_error(struct buffer_head *bh)
1210 {
1211         set_buffer_write_io_error(bh);
1212         /* FIXME: do we need to set this in both places? */
1213         if (bh->b_folio && bh->b_folio->mapping)
1214                 mapping_set_error(bh->b_folio->mapping, -EIO);
1215         if (bh->b_assoc_map) {
1216                 mapping_set_error(bh->b_assoc_map, -EIO);
1217                 errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1218         }
1219 }
1220 EXPORT_SYMBOL(mark_buffer_write_io_error);
1221
1222 /*
1223  * Decrement a buffer_head's reference count.  If all buffers against a page
1224  * have zero reference count, are clean and unlocked, and if the page is clean
1225  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1226  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1227  * a page but it ends up not being freed, and buffers may later be reattached).
1228  */
1229 void __brelse(struct buffer_head * buf)
1230 {
1231         if (atomic_read(&buf->b_count)) {
1232                 put_bh(buf);
1233                 return;
1234         }
1235         WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1236 }
1237 EXPORT_SYMBOL(__brelse);
1238
1239 /*
1240  * bforget() is like brelse(), except it discards any
1241  * potentially dirty data.
1242  */
1243 void __bforget(struct buffer_head *bh)
1244 {
1245         clear_buffer_dirty(bh);
1246         if (bh->b_assoc_map) {
1247                 struct address_space *buffer_mapping = bh->b_folio->mapping;
1248
1249                 spin_lock(&buffer_mapping->private_lock);
1250                 list_del_init(&bh->b_assoc_buffers);
1251                 bh->b_assoc_map = NULL;
1252                 spin_unlock(&buffer_mapping->private_lock);
1253         }
1254         __brelse(bh);
1255 }
1256 EXPORT_SYMBOL(__bforget);
1257
1258 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1259 {
1260         lock_buffer(bh);
1261         if (buffer_uptodate(bh)) {
1262                 unlock_buffer(bh);
1263                 return bh;
1264         } else {
1265                 get_bh(bh);
1266                 bh->b_end_io = end_buffer_read_sync;
1267                 submit_bh(REQ_OP_READ, bh);
1268                 wait_on_buffer(bh);
1269                 if (buffer_uptodate(bh))
1270                         return bh;
1271         }
1272         brelse(bh);
1273         return NULL;
1274 }
1275
1276 /*
1277  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1278  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1279  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1280  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1281  * CPU's LRUs at the same time.
1282  *
1283  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1284  * sb_find_get_block().
1285  *
1286  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1287  * a local interrupt disable for that.
1288  */
1289
1290 #define BH_LRU_SIZE     16
1291
1292 struct bh_lru {
1293         struct buffer_head *bhs[BH_LRU_SIZE];
1294 };
1295
1296 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1297
1298 #ifdef CONFIG_SMP
1299 #define bh_lru_lock()   local_irq_disable()
1300 #define bh_lru_unlock() local_irq_enable()
1301 #else
1302 #define bh_lru_lock()   preempt_disable()
1303 #define bh_lru_unlock() preempt_enable()
1304 #endif
1305
1306 static inline void check_irqs_on(void)
1307 {
1308 #ifdef irqs_disabled
1309         BUG_ON(irqs_disabled());
1310 #endif
1311 }
1312
1313 /*
1314  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1315  * inserted at the front, and the buffer_head at the back if any is evicted.
1316  * Or, if already in the LRU it is moved to the front.
1317  */
1318 static void bh_lru_install(struct buffer_head *bh)
1319 {
1320         struct buffer_head *evictee = bh;
1321         struct bh_lru *b;
1322         int i;
1323
1324         check_irqs_on();
1325         bh_lru_lock();
1326
1327         /*
1328          * the refcount of buffer_head in bh_lru prevents dropping the
1329          * attached page(i.e., try_to_free_buffers) so it could cause
1330          * failing page migration.
1331          * Skip putting upcoming bh into bh_lru until migration is done.
1332          */
1333         if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) {
1334                 bh_lru_unlock();
1335                 return;
1336         }
1337
1338         b = this_cpu_ptr(&bh_lrus);
1339         for (i = 0; i < BH_LRU_SIZE; i++) {
1340                 swap(evictee, b->bhs[i]);
1341                 if (evictee == bh) {
1342                         bh_lru_unlock();
1343                         return;
1344                 }
1345         }
1346
1347         get_bh(bh);
1348         bh_lru_unlock();
1349         brelse(evictee);
1350 }
1351
1352 /*
1353  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1354  */
1355 static struct buffer_head *
1356 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1357 {
1358         struct buffer_head *ret = NULL;
1359         unsigned int i;
1360
1361         check_irqs_on();
1362         bh_lru_lock();
1363         if (cpu_is_isolated(smp_processor_id())) {
1364                 bh_lru_unlock();
1365                 return NULL;
1366         }
1367         for (i = 0; i < BH_LRU_SIZE; i++) {
1368                 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1369
1370                 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1371                     bh->b_size == size) {
1372                         if (i) {
1373                                 while (i) {
1374                                         __this_cpu_write(bh_lrus.bhs[i],
1375                                                 __this_cpu_read(bh_lrus.bhs[i - 1]));
1376                                         i--;
1377                                 }
1378                                 __this_cpu_write(bh_lrus.bhs[0], bh);
1379                         }
1380                         get_bh(bh);
1381                         ret = bh;
1382                         break;
1383                 }
1384         }
1385         bh_lru_unlock();
1386         return ret;
1387 }
1388
1389 /*
1390  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1391  * it in the LRU and mark it as accessed.  If it is not present then return
1392  * NULL
1393  */
1394 struct buffer_head *
1395 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1396 {
1397         struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1398
1399         if (bh == NULL) {
1400                 /* __find_get_block_slow will mark the page accessed */
1401                 bh = __find_get_block_slow(bdev, block);
1402                 if (bh)
1403                         bh_lru_install(bh);
1404         } else
1405                 touch_buffer(bh);
1406
1407         return bh;
1408 }
1409 EXPORT_SYMBOL(__find_get_block);
1410
1411 /**
1412  * bdev_getblk - Get a buffer_head in a block device's buffer cache.
1413  * @bdev: The block device.
1414  * @block: The block number.
1415  * @size: The size of buffer_heads for this @bdev.
1416  * @gfp: The memory allocation flags to use.
1417  *
1418  * Return: The buffer head, or NULL if memory could not be allocated.
1419  */
1420 struct buffer_head *bdev_getblk(struct block_device *bdev, sector_t block,
1421                 unsigned size, gfp_t gfp)
1422 {
1423         struct buffer_head *bh = __find_get_block(bdev, block, size);
1424
1425         might_alloc(gfp);
1426         if (bh)
1427                 return bh;
1428
1429         return __getblk_slow(bdev, block, size, gfp);
1430 }
1431 EXPORT_SYMBOL(bdev_getblk);
1432
1433 /*
1434  * Do async read-ahead on a buffer..
1435  */
1436 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1437 {
1438         struct buffer_head *bh = bdev_getblk(bdev, block, size,
1439                         GFP_NOWAIT | __GFP_MOVABLE);
1440
1441         if (likely(bh)) {
1442                 bh_readahead(bh, REQ_RAHEAD);
1443                 brelse(bh);
1444         }
1445 }
1446 EXPORT_SYMBOL(__breadahead);
1447
1448 /**
1449  *  __bread_gfp() - reads a specified block and returns the bh
1450  *  @bdev: the block_device to read from
1451  *  @block: number of block
1452  *  @size: size (in bytes) to read
1453  *  @gfp: page allocation flag
1454  *
1455  *  Reads a specified block, and returns buffer head that contains it.
1456  *  The page cache can be allocated from non-movable area
1457  *  not to prevent page migration if you set gfp to zero.
1458  *  It returns NULL if the block was unreadable.
1459  */
1460 struct buffer_head *
1461 __bread_gfp(struct block_device *bdev, sector_t block,
1462                    unsigned size, gfp_t gfp)
1463 {
1464         struct buffer_head *bh;
1465
1466         gfp |= mapping_gfp_constraint(bdev->bd_inode->i_mapping, ~__GFP_FS);
1467
1468         /*
1469          * Prefer looping in the allocator rather than here, at least that
1470          * code knows what it's doing.
1471          */
1472         gfp |= __GFP_NOFAIL;
1473
1474         bh = bdev_getblk(bdev, block, size, gfp);
1475
1476         if (likely(bh) && !buffer_uptodate(bh))
1477                 bh = __bread_slow(bh);
1478         return bh;
1479 }
1480 EXPORT_SYMBOL(__bread_gfp);
1481
1482 static void __invalidate_bh_lrus(struct bh_lru *b)
1483 {
1484         int i;
1485
1486         for (i = 0; i < BH_LRU_SIZE; i++) {
1487                 brelse(b->bhs[i]);
1488                 b->bhs[i] = NULL;
1489         }
1490 }
1491 /*
1492  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493  * This doesn't race because it runs in each cpu either in irq
1494  * or with preempt disabled.
1495  */
1496 static void invalidate_bh_lru(void *arg)
1497 {
1498         struct bh_lru *b = &get_cpu_var(bh_lrus);
1499
1500         __invalidate_bh_lrus(b);
1501         put_cpu_var(bh_lrus);
1502 }
1503
1504 bool has_bh_in_lru(int cpu, void *dummy)
1505 {
1506         struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507         int i;
1508         
1509         for (i = 0; i < BH_LRU_SIZE; i++) {
1510                 if (b->bhs[i])
1511                         return true;
1512         }
1513
1514         return false;
1515 }
1516
1517 void invalidate_bh_lrus(void)
1518 {
1519         on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522
1523 /*
1524  * It's called from workqueue context so we need a bh_lru_lock to close
1525  * the race with preemption/irq.
1526  */
1527 void invalidate_bh_lrus_cpu(void)
1528 {
1529         struct bh_lru *b;
1530
1531         bh_lru_lock();
1532         b = this_cpu_ptr(&bh_lrus);
1533         __invalidate_bh_lrus(b);
1534         bh_lru_unlock();
1535 }
1536
1537 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1538                   unsigned long offset)
1539 {
1540         bh->b_folio = folio;
1541         BUG_ON(offset >= folio_size(folio));
1542         if (folio_test_highmem(folio))
1543                 /*
1544                  * This catches illegal uses and preserves the offset:
1545                  */
1546                 bh->b_data = (char *)(0 + offset);
1547         else
1548                 bh->b_data = folio_address(folio) + offset;
1549 }
1550 EXPORT_SYMBOL(folio_set_bh);
1551
1552 /*
1553  * Called when truncating a buffer on a page completely.
1554  */
1555
1556 /* Bits that are cleared during an invalidate */
1557 #define BUFFER_FLAGS_DISCARD \
1558         (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1559          1 << BH_Delay | 1 << BH_Unwritten)
1560
1561 static void discard_buffer(struct buffer_head * bh)
1562 {
1563         unsigned long b_state;
1564
1565         lock_buffer(bh);
1566         clear_buffer_dirty(bh);
1567         bh->b_bdev = NULL;
1568         b_state = READ_ONCE(bh->b_state);
1569         do {
1570         } while (!try_cmpxchg(&bh->b_state, &b_state,
1571                               b_state & ~BUFFER_FLAGS_DISCARD));
1572         unlock_buffer(bh);
1573 }
1574
1575 /**
1576  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1577  * @folio: The folio which is affected.
1578  * @offset: start of the range to invalidate
1579  * @length: length of the range to invalidate
1580  *
1581  * block_invalidate_folio() is called when all or part of the folio has been
1582  * invalidated by a truncate operation.
1583  *
1584  * block_invalidate_folio() does not have to release all buffers, but it must
1585  * ensure that no dirty buffer is left outside @offset and that no I/O
1586  * is underway against any of the blocks which are outside the truncation
1587  * point.  Because the caller is about to free (and possibly reuse) those
1588  * blocks on-disk.
1589  */
1590 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1591 {
1592         struct buffer_head *head, *bh, *next;
1593         size_t curr_off = 0;
1594         size_t stop = length + offset;
1595
1596         BUG_ON(!folio_test_locked(folio));
1597
1598         /*
1599          * Check for overflow
1600          */
1601         BUG_ON(stop > folio_size(folio) || stop < length);
1602
1603         head = folio_buffers(folio);
1604         if (!head)
1605                 return;
1606
1607         bh = head;
1608         do {
1609                 size_t next_off = curr_off + bh->b_size;
1610                 next = bh->b_this_page;
1611
1612                 /*
1613                  * Are we still fully in range ?
1614                  */
1615                 if (next_off > stop)
1616                         goto out;
1617
1618                 /*
1619                  * is this block fully invalidated?
1620                  */
1621                 if (offset <= curr_off)
1622                         discard_buffer(bh);
1623                 curr_off = next_off;
1624                 bh = next;
1625         } while (bh != head);
1626
1627         /*
1628          * We release buffers only if the entire folio is being invalidated.
1629          * The get_block cached value has been unconditionally invalidated,
1630          * so real IO is not possible anymore.
1631          */
1632         if (length == folio_size(folio))
1633                 filemap_release_folio(folio, 0);
1634 out:
1635         return;
1636 }
1637 EXPORT_SYMBOL(block_invalidate_folio);
1638
1639 /*
1640  * We attach and possibly dirty the buffers atomically wrt
1641  * block_dirty_folio() via private_lock.  try_to_free_buffers
1642  * is already excluded via the folio lock.
1643  */
1644 struct buffer_head *create_empty_buffers(struct folio *folio,
1645                 unsigned long blocksize, unsigned long b_state)
1646 {
1647         struct buffer_head *bh, *head, *tail;
1648         gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT | __GFP_NOFAIL;
1649
1650         head = folio_alloc_buffers(folio, blocksize, gfp);
1651         bh = head;
1652         do {
1653                 bh->b_state |= b_state;
1654                 tail = bh;
1655                 bh = bh->b_this_page;
1656         } while (bh);
1657         tail->b_this_page = head;
1658
1659         spin_lock(&folio->mapping->private_lock);
1660         if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1661                 bh = head;
1662                 do {
1663                         if (folio_test_dirty(folio))
1664                                 set_buffer_dirty(bh);
1665                         if (folio_test_uptodate(folio))
1666                                 set_buffer_uptodate(bh);
1667                         bh = bh->b_this_page;
1668                 } while (bh != head);
1669         }
1670         folio_attach_private(folio, head);
1671         spin_unlock(&folio->mapping->private_lock);
1672
1673         return head;
1674 }
1675 EXPORT_SYMBOL(create_empty_buffers);
1676
1677 /**
1678  * clean_bdev_aliases: clean a range of buffers in block device
1679  * @bdev: Block device to clean buffers in
1680  * @block: Start of a range of blocks to clean
1681  * @len: Number of blocks to clean
1682  *
1683  * We are taking a range of blocks for data and we don't want writeback of any
1684  * buffer-cache aliases starting from return from this function and until the
1685  * moment when something will explicitly mark the buffer dirty (hopefully that
1686  * will not happen until we will free that block ;-) We don't even need to mark
1687  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1688  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1689  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1690  * would confuse anyone who might pick it with bread() afterwards...
1691  *
1692  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1693  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1694  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1695  * need to.  That happens here.
1696  */
1697 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1698 {
1699         struct inode *bd_inode = bdev->bd_inode;
1700         struct address_space *bd_mapping = bd_inode->i_mapping;
1701         struct folio_batch fbatch;
1702         pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1703         pgoff_t end;
1704         int i, count;
1705         struct buffer_head *bh;
1706         struct buffer_head *head;
1707
1708         end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1709         folio_batch_init(&fbatch);
1710         while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1711                 count = folio_batch_count(&fbatch);
1712                 for (i = 0; i < count; i++) {
1713                         struct folio *folio = fbatch.folios[i];
1714
1715                         if (!folio_buffers(folio))
1716                                 continue;
1717                         /*
1718                          * We use folio lock instead of bd_mapping->private_lock
1719                          * to pin buffers here since we can afford to sleep and
1720                          * it scales better than a global spinlock lock.
1721                          */
1722                         folio_lock(folio);
1723                         /* Recheck when the folio is locked which pins bhs */
1724                         head = folio_buffers(folio);
1725                         if (!head)
1726                                 goto unlock_page;
1727                         bh = head;
1728                         do {
1729                                 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1730                                         goto next;
1731                                 if (bh->b_blocknr >= block + len)
1732                                         break;
1733                                 clear_buffer_dirty(bh);
1734                                 wait_on_buffer(bh);
1735                                 clear_buffer_req(bh);
1736 next:
1737                                 bh = bh->b_this_page;
1738                         } while (bh != head);
1739 unlock_page:
1740                         folio_unlock(folio);
1741                 }
1742                 folio_batch_release(&fbatch);
1743                 cond_resched();
1744                 /* End of range already reached? */
1745                 if (index > end || !index)
1746                         break;
1747         }
1748 }
1749 EXPORT_SYMBOL(clean_bdev_aliases);
1750
1751 /*
1752  * Size is a power-of-two in the range 512..PAGE_SIZE,
1753  * and the case we care about most is PAGE_SIZE.
1754  *
1755  * So this *could* possibly be written with those
1756  * constraints in mind (relevant mostly if some
1757  * architecture has a slow bit-scan instruction)
1758  */
1759 static inline int block_size_bits(unsigned int blocksize)
1760 {
1761         return ilog2(blocksize);
1762 }
1763
1764 static struct buffer_head *folio_create_buffers(struct folio *folio,
1765                                                 struct inode *inode,
1766                                                 unsigned int b_state)
1767 {
1768         struct buffer_head *bh;
1769
1770         BUG_ON(!folio_test_locked(folio));
1771
1772         bh = folio_buffers(folio);
1773         if (!bh)
1774                 bh = create_empty_buffers(folio,
1775                                 1 << READ_ONCE(inode->i_blkbits), b_state);
1776         return bh;
1777 }
1778
1779 /*
1780  * NOTE! All mapped/uptodate combinations are valid:
1781  *
1782  *      Mapped  Uptodate        Meaning
1783  *
1784  *      No      No              "unknown" - must do get_block()
1785  *      No      Yes             "hole" - zero-filled
1786  *      Yes     No              "allocated" - allocated on disk, not read in
1787  *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1788  *
1789  * "Dirty" is valid only with the last case (mapped+uptodate).
1790  */
1791
1792 /*
1793  * While block_write_full_page is writing back the dirty buffers under
1794  * the page lock, whoever dirtied the buffers may decide to clean them
1795  * again at any time.  We handle that by only looking at the buffer
1796  * state inside lock_buffer().
1797  *
1798  * If block_write_full_page() is called for regular writeback
1799  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1800  * locked buffer.   This only can happen if someone has written the buffer
1801  * directly, with submit_bh().  At the address_space level PageWriteback
1802  * prevents this contention from occurring.
1803  *
1804  * If block_write_full_page() is called with wbc->sync_mode ==
1805  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1806  * causes the writes to be flagged as synchronous writes.
1807  */
1808 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1809                         get_block_t *get_block, struct writeback_control *wbc,
1810                         bh_end_io_t *handler)
1811 {
1812         int err;
1813         sector_t block;
1814         sector_t last_block;
1815         struct buffer_head *bh, *head;
1816         unsigned int blocksize, bbits;
1817         int nr_underway = 0;
1818         blk_opf_t write_flags = wbc_to_write_flags(wbc);
1819
1820         head = folio_create_buffers(folio, inode,
1821                                     (1 << BH_Dirty) | (1 << BH_Uptodate));
1822
1823         /*
1824          * Be very careful.  We have no exclusion from block_dirty_folio
1825          * here, and the (potentially unmapped) buffers may become dirty at
1826          * any time.  If a buffer becomes dirty here after we've inspected it
1827          * then we just miss that fact, and the folio stays dirty.
1828          *
1829          * Buffers outside i_size may be dirtied by block_dirty_folio;
1830          * handle that here by just cleaning them.
1831          */
1832
1833         bh = head;
1834         blocksize = bh->b_size;
1835         bbits = block_size_bits(blocksize);
1836
1837         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1838         last_block = (i_size_read(inode) - 1) >> bbits;
1839
1840         /*
1841          * Get all the dirty buffers mapped to disk addresses and
1842          * handle any aliases from the underlying blockdev's mapping.
1843          */
1844         do {
1845                 if (block > last_block) {
1846                         /*
1847                          * mapped buffers outside i_size will occur, because
1848                          * this folio can be outside i_size when there is a
1849                          * truncate in progress.
1850                          */
1851                         /*
1852                          * The buffer was zeroed by block_write_full_page()
1853                          */
1854                         clear_buffer_dirty(bh);
1855                         set_buffer_uptodate(bh);
1856                 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1857                            buffer_dirty(bh)) {
1858                         WARN_ON(bh->b_size != blocksize);
1859                         err = get_block(inode, block, bh, 1);
1860                         if (err)
1861                                 goto recover;
1862                         clear_buffer_delay(bh);
1863                         if (buffer_new(bh)) {
1864                                 /* blockdev mappings never come here */
1865                                 clear_buffer_new(bh);
1866                                 clean_bdev_bh_alias(bh);
1867                         }
1868                 }
1869                 bh = bh->b_this_page;
1870                 block++;
1871         } while (bh != head);
1872
1873         do {
1874                 if (!buffer_mapped(bh))
1875                         continue;
1876                 /*
1877                  * If it's a fully non-blocking write attempt and we cannot
1878                  * lock the buffer then redirty the folio.  Note that this can
1879                  * potentially cause a busy-wait loop from writeback threads
1880                  * and kswapd activity, but those code paths have their own
1881                  * higher-level throttling.
1882                  */
1883                 if (wbc->sync_mode != WB_SYNC_NONE) {
1884                         lock_buffer(bh);
1885                 } else if (!trylock_buffer(bh)) {
1886                         folio_redirty_for_writepage(wbc, folio);
1887                         continue;
1888                 }
1889                 if (test_clear_buffer_dirty(bh)) {
1890                         mark_buffer_async_write_endio(bh, handler);
1891                 } else {
1892                         unlock_buffer(bh);
1893                 }
1894         } while ((bh = bh->b_this_page) != head);
1895
1896         /*
1897          * The folio and its buffers are protected by the writeback flag,
1898          * so we can drop the bh refcounts early.
1899          */
1900         BUG_ON(folio_test_writeback(folio));
1901         folio_start_writeback(folio);
1902
1903         do {
1904                 struct buffer_head *next = bh->b_this_page;
1905                 if (buffer_async_write(bh)) {
1906                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1907                         nr_underway++;
1908                 }
1909                 bh = next;
1910         } while (bh != head);
1911         folio_unlock(folio);
1912
1913         err = 0;
1914 done:
1915         if (nr_underway == 0) {
1916                 /*
1917                  * The folio was marked dirty, but the buffers were
1918                  * clean.  Someone wrote them back by hand with
1919                  * write_dirty_buffer/submit_bh.  A rare case.
1920                  */
1921                 folio_end_writeback(folio);
1922
1923                 /*
1924                  * The folio and buffer_heads can be released at any time from
1925                  * here on.
1926                  */
1927         }
1928         return err;
1929
1930 recover:
1931         /*
1932          * ENOSPC, or some other error.  We may already have added some
1933          * blocks to the file, so we need to write these out to avoid
1934          * exposing stale data.
1935          * The folio is currently locked and not marked for writeback
1936          */
1937         bh = head;
1938         /* Recovery: lock and submit the mapped buffers */
1939         do {
1940                 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1941                     !buffer_delay(bh)) {
1942                         lock_buffer(bh);
1943                         mark_buffer_async_write_endio(bh, handler);
1944                 } else {
1945                         /*
1946                          * The buffer may have been set dirty during
1947                          * attachment to a dirty folio.
1948                          */
1949                         clear_buffer_dirty(bh);
1950                 }
1951         } while ((bh = bh->b_this_page) != head);
1952         folio_set_error(folio);
1953         BUG_ON(folio_test_writeback(folio));
1954         mapping_set_error(folio->mapping, err);
1955         folio_start_writeback(folio);
1956         do {
1957                 struct buffer_head *next = bh->b_this_page;
1958                 if (buffer_async_write(bh)) {
1959                         clear_buffer_dirty(bh);
1960                         submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1961                         nr_underway++;
1962                 }
1963                 bh = next;
1964         } while (bh != head);
1965         folio_unlock(folio);
1966         goto done;
1967 }
1968 EXPORT_SYMBOL(__block_write_full_folio);
1969
1970 /*
1971  * If a folio has any new buffers, zero them out here, and mark them uptodate
1972  * and dirty so they'll be written out (in order to prevent uninitialised
1973  * block data from leaking). And clear the new bit.
1974  */
1975 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1976 {
1977         size_t block_start, block_end;
1978         struct buffer_head *head, *bh;
1979
1980         BUG_ON(!folio_test_locked(folio));
1981         head = folio_buffers(folio);
1982         if (!head)
1983                 return;
1984
1985         bh = head;
1986         block_start = 0;
1987         do {
1988                 block_end = block_start + bh->b_size;
1989
1990                 if (buffer_new(bh)) {
1991                         if (block_end > from && block_start < to) {
1992                                 if (!folio_test_uptodate(folio)) {
1993                                         size_t start, xend;
1994
1995                                         start = max(from, block_start);
1996                                         xend = min(to, block_end);
1997
1998                                         folio_zero_segment(folio, start, xend);
1999                                         set_buffer_uptodate(bh);
2000                                 }
2001
2002                                 clear_buffer_new(bh);
2003                                 mark_buffer_dirty(bh);
2004                         }
2005                 }
2006
2007                 block_start = block_end;
2008                 bh = bh->b_this_page;
2009         } while (bh != head);
2010 }
2011 EXPORT_SYMBOL(folio_zero_new_buffers);
2012
2013 static int
2014 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2015                 const struct iomap *iomap)
2016 {
2017         loff_t offset = block << inode->i_blkbits;
2018
2019         bh->b_bdev = iomap->bdev;
2020
2021         /*
2022          * Block points to offset in file we need to map, iomap contains
2023          * the offset at which the map starts. If the map ends before the
2024          * current block, then do not map the buffer and let the caller
2025          * handle it.
2026          */
2027         if (offset >= iomap->offset + iomap->length)
2028                 return -EIO;
2029
2030         switch (iomap->type) {
2031         case IOMAP_HOLE:
2032                 /*
2033                  * If the buffer is not up to date or beyond the current EOF,
2034                  * we need to mark it as new to ensure sub-block zeroing is
2035                  * executed if necessary.
2036                  */
2037                 if (!buffer_uptodate(bh) ||
2038                     (offset >= i_size_read(inode)))
2039                         set_buffer_new(bh);
2040                 return 0;
2041         case IOMAP_DELALLOC:
2042                 if (!buffer_uptodate(bh) ||
2043                     (offset >= i_size_read(inode)))
2044                         set_buffer_new(bh);
2045                 set_buffer_uptodate(bh);
2046                 set_buffer_mapped(bh);
2047                 set_buffer_delay(bh);
2048                 return 0;
2049         case IOMAP_UNWRITTEN:
2050                 /*
2051                  * For unwritten regions, we always need to ensure that regions
2052                  * in the block we are not writing to are zeroed. Mark the
2053                  * buffer as new to ensure this.
2054                  */
2055                 set_buffer_new(bh);
2056                 set_buffer_unwritten(bh);
2057                 fallthrough;
2058         case IOMAP_MAPPED:
2059                 if ((iomap->flags & IOMAP_F_NEW) ||
2060                     offset >= i_size_read(inode)) {
2061                         /*
2062                          * This can happen if truncating the block device races
2063                          * with the check in the caller as i_size updates on
2064                          * block devices aren't synchronized by i_rwsem for
2065                          * block devices.
2066                          */
2067                         if (S_ISBLK(inode->i_mode))
2068                                 return -EIO;
2069                         set_buffer_new(bh);
2070                 }
2071                 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2072                                 inode->i_blkbits;
2073                 set_buffer_mapped(bh);
2074                 return 0;
2075         default:
2076                 WARN_ON_ONCE(1);
2077                 return -EIO;
2078         }
2079 }
2080
2081 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2082                 get_block_t *get_block, const struct iomap *iomap)
2083 {
2084         unsigned from = pos & (PAGE_SIZE - 1);
2085         unsigned to = from + len;
2086         struct inode *inode = folio->mapping->host;
2087         unsigned block_start, block_end;
2088         sector_t block;
2089         int err = 0;
2090         unsigned blocksize, bbits;
2091         struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2092
2093         BUG_ON(!folio_test_locked(folio));
2094         BUG_ON(from > PAGE_SIZE);
2095         BUG_ON(to > PAGE_SIZE);
2096         BUG_ON(from > to);
2097
2098         head = folio_create_buffers(folio, inode, 0);
2099         blocksize = head->b_size;
2100         bbits = block_size_bits(blocksize);
2101
2102         block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2103
2104         for(bh = head, block_start = 0; bh != head || !block_start;
2105             block++, block_start=block_end, bh = bh->b_this_page) {
2106                 block_end = block_start + blocksize;
2107                 if (block_end <= from || block_start >= to) {
2108                         if (folio_test_uptodate(folio)) {
2109                                 if (!buffer_uptodate(bh))
2110                                         set_buffer_uptodate(bh);
2111                         }
2112                         continue;
2113                 }
2114                 if (buffer_new(bh))
2115                         clear_buffer_new(bh);
2116                 if (!buffer_mapped(bh)) {
2117                         WARN_ON(bh->b_size != blocksize);
2118                         if (get_block)
2119                                 err = get_block(inode, block, bh, 1);
2120                         else
2121                                 err = iomap_to_bh(inode, block, bh, iomap);
2122                         if (err)
2123                                 break;
2124
2125                         if (buffer_new(bh)) {
2126                                 clean_bdev_bh_alias(bh);
2127                                 if (folio_test_uptodate(folio)) {
2128                                         clear_buffer_new(bh);
2129                                         set_buffer_uptodate(bh);
2130                                         mark_buffer_dirty(bh);
2131                                         continue;
2132                                 }
2133                                 if (block_end > to || block_start < from)
2134                                         folio_zero_segments(folio,
2135                                                 to, block_end,
2136                                                 block_start, from);
2137                                 continue;
2138                         }
2139                 }
2140                 if (folio_test_uptodate(folio)) {
2141                         if (!buffer_uptodate(bh))
2142                                 set_buffer_uptodate(bh);
2143                         continue; 
2144                 }
2145                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2146                     !buffer_unwritten(bh) &&
2147                      (block_start < from || block_end > to)) {
2148                         bh_read_nowait(bh, 0);
2149                         *wait_bh++=bh;
2150                 }
2151         }
2152         /*
2153          * If we issued read requests - let them complete.
2154          */
2155         while(wait_bh > wait) {
2156                 wait_on_buffer(*--wait_bh);
2157                 if (!buffer_uptodate(*wait_bh))
2158                         err = -EIO;
2159         }
2160         if (unlikely(err))
2161                 folio_zero_new_buffers(folio, from, to);
2162         return err;
2163 }
2164
2165 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2166                 get_block_t *get_block)
2167 {
2168         return __block_write_begin_int(page_folio(page), pos, len, get_block,
2169                                        NULL);
2170 }
2171 EXPORT_SYMBOL(__block_write_begin);
2172
2173 static void __block_commit_write(struct folio *folio, size_t from, size_t to)
2174 {
2175         size_t block_start, block_end;
2176         bool partial = false;
2177         unsigned blocksize;
2178         struct buffer_head *bh, *head;
2179
2180         bh = head = folio_buffers(folio);
2181         blocksize = bh->b_size;
2182
2183         block_start = 0;
2184         do {
2185                 block_end = block_start + blocksize;
2186                 if (block_end <= from || block_start >= to) {
2187                         if (!buffer_uptodate(bh))
2188                                 partial = true;
2189                 } else {
2190                         set_buffer_uptodate(bh);
2191                         mark_buffer_dirty(bh);
2192                 }
2193                 if (buffer_new(bh))
2194                         clear_buffer_new(bh);
2195
2196                 block_start = block_end;
2197                 bh = bh->b_this_page;
2198         } while (bh != head);
2199
2200         /*
2201          * If this is a partial write which happened to make all buffers
2202          * uptodate then we can optimize away a bogus read_folio() for
2203          * the next read(). Here we 'discover' whether the folio went
2204          * uptodate as a result of this (potentially partial) write.
2205          */
2206         if (!partial)
2207                 folio_mark_uptodate(folio);
2208 }
2209
2210 /*
2211  * block_write_begin takes care of the basic task of block allocation and
2212  * bringing partial write blocks uptodate first.
2213  *
2214  * The filesystem needs to handle block truncation upon failure.
2215  */
2216 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2217                 struct page **pagep, get_block_t *get_block)
2218 {
2219         pgoff_t index = pos >> PAGE_SHIFT;
2220         struct page *page;
2221         int status;
2222
2223         page = grab_cache_page_write_begin(mapping, index);
2224         if (!page)
2225                 return -ENOMEM;
2226
2227         status = __block_write_begin(page, pos, len, get_block);
2228         if (unlikely(status)) {
2229                 unlock_page(page);
2230                 put_page(page);
2231                 page = NULL;
2232         }
2233
2234         *pagep = page;
2235         return status;
2236 }
2237 EXPORT_SYMBOL(block_write_begin);
2238
2239 int block_write_end(struct file *file, struct address_space *mapping,
2240                         loff_t pos, unsigned len, unsigned copied,
2241                         struct page *page, void *fsdata)
2242 {
2243         struct folio *folio = page_folio(page);
2244         size_t start = pos - folio_pos(folio);
2245
2246         if (unlikely(copied < len)) {
2247                 /*
2248                  * The buffers that were written will now be uptodate, so
2249                  * we don't have to worry about a read_folio reading them
2250                  * and overwriting a partial write. However if we have
2251                  * encountered a short write and only partially written
2252                  * into a buffer, it will not be marked uptodate, so a
2253                  * read_folio might come in and destroy our partial write.
2254                  *
2255                  * Do the simplest thing, and just treat any short write to a
2256                  * non uptodate folio as a zero-length write, and force the
2257                  * caller to redo the whole thing.
2258                  */
2259                 if (!folio_test_uptodate(folio))
2260                         copied = 0;
2261
2262                 folio_zero_new_buffers(folio, start+copied, start+len);
2263         }
2264         flush_dcache_folio(folio);
2265
2266         /* This could be a short (even 0-length) commit */
2267         __block_commit_write(folio, start, start + copied);
2268
2269         return copied;
2270 }
2271 EXPORT_SYMBOL(block_write_end);
2272
2273 int generic_write_end(struct file *file, struct address_space *mapping,
2274                         loff_t pos, unsigned len, unsigned copied,
2275                         struct page *page, void *fsdata)
2276 {
2277         struct inode *inode = mapping->host;
2278         loff_t old_size = inode->i_size;
2279         bool i_size_changed = false;
2280
2281         copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2282
2283         /*
2284          * No need to use i_size_read() here, the i_size cannot change under us
2285          * because we hold i_rwsem.
2286          *
2287          * But it's important to update i_size while still holding page lock:
2288          * page writeout could otherwise come in and zero beyond i_size.
2289          */
2290         if (pos + copied > inode->i_size) {
2291                 i_size_write(inode, pos + copied);
2292                 i_size_changed = true;
2293         }
2294
2295         unlock_page(page);
2296         put_page(page);
2297
2298         if (old_size < pos)
2299                 pagecache_isize_extended(inode, old_size, pos);
2300         /*
2301          * Don't mark the inode dirty under page lock. First, it unnecessarily
2302          * makes the holding time of page lock longer. Second, it forces lock
2303          * ordering of page lock and transaction start for journaling
2304          * filesystems.
2305          */
2306         if (i_size_changed)
2307                 mark_inode_dirty(inode);
2308         return copied;
2309 }
2310 EXPORT_SYMBOL(generic_write_end);
2311
2312 /*
2313  * block_is_partially_uptodate checks whether buffers within a folio are
2314  * uptodate or not.
2315  *
2316  * Returns true if all buffers which correspond to the specified part
2317  * of the folio are uptodate.
2318  */
2319 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2320 {
2321         unsigned block_start, block_end, blocksize;
2322         unsigned to;
2323         struct buffer_head *bh, *head;
2324         bool ret = true;
2325
2326         head = folio_buffers(folio);
2327         if (!head)
2328                 return false;
2329         blocksize = head->b_size;
2330         to = min_t(unsigned, folio_size(folio) - from, count);
2331         to = from + to;
2332         if (from < blocksize && to > folio_size(folio) - blocksize)
2333                 return false;
2334
2335         bh = head;
2336         block_start = 0;
2337         do {
2338                 block_end = block_start + blocksize;
2339                 if (block_end > from && block_start < to) {
2340                         if (!buffer_uptodate(bh)) {
2341                                 ret = false;
2342                                 break;
2343                         }
2344                         if (block_end >= to)
2345                                 break;
2346                 }
2347                 block_start = block_end;
2348                 bh = bh->b_this_page;
2349         } while (bh != head);
2350
2351         return ret;
2352 }
2353 EXPORT_SYMBOL(block_is_partially_uptodate);
2354
2355 /*
2356  * Generic "read_folio" function for block devices that have the normal
2357  * get_block functionality. This is most of the block device filesystems.
2358  * Reads the folio asynchronously --- the unlock_buffer() and
2359  * set/clear_buffer_uptodate() functions propagate buffer state into the
2360  * folio once IO has completed.
2361  */
2362 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2363 {
2364         struct inode *inode = folio->mapping->host;
2365         sector_t iblock, lblock;
2366         struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2367         unsigned int blocksize, bbits;
2368         int nr, i;
2369         int fully_mapped = 1;
2370         bool page_error = false;
2371         loff_t limit = i_size_read(inode);
2372
2373         /* This is needed for ext4. */
2374         if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2375                 limit = inode->i_sb->s_maxbytes;
2376
2377         VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2378
2379         head = folio_create_buffers(folio, inode, 0);
2380         blocksize = head->b_size;
2381         bbits = block_size_bits(blocksize);
2382
2383         iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2384         lblock = (limit+blocksize-1) >> bbits;
2385         bh = head;
2386         nr = 0;
2387         i = 0;
2388
2389         do {
2390                 if (buffer_uptodate(bh))
2391                         continue;
2392
2393                 if (!buffer_mapped(bh)) {
2394                         int err = 0;
2395
2396                         fully_mapped = 0;
2397                         if (iblock < lblock) {
2398                                 WARN_ON(bh->b_size != blocksize);
2399                                 err = get_block(inode, iblock, bh, 0);
2400                                 if (err) {
2401                                         folio_set_error(folio);
2402                                         page_error = true;
2403                                 }
2404                         }
2405                         if (!buffer_mapped(bh)) {
2406                                 folio_zero_range(folio, i * blocksize,
2407                                                 blocksize);
2408                                 if (!err)
2409                                         set_buffer_uptodate(bh);
2410                                 continue;
2411                         }
2412                         /*
2413                          * get_block() might have updated the buffer
2414                          * synchronously
2415                          */
2416                         if (buffer_uptodate(bh))
2417                                 continue;
2418                 }
2419                 arr[nr++] = bh;
2420         } while (i++, iblock++, (bh = bh->b_this_page) != head);
2421
2422         if (fully_mapped)
2423                 folio_set_mappedtodisk(folio);
2424
2425         if (!nr) {
2426                 /*
2427                  * All buffers are uptodate or get_block() returned an
2428                  * error when trying to map them - we can finish the read.
2429                  */
2430                 folio_end_read(folio, !page_error);
2431                 return 0;
2432         }
2433
2434         /* Stage two: lock the buffers */
2435         for (i = 0; i < nr; i++) {
2436                 bh = arr[i];
2437                 lock_buffer(bh);
2438                 mark_buffer_async_read(bh);
2439         }
2440
2441         /*
2442          * Stage 3: start the IO.  Check for uptodateness
2443          * inside the buffer lock in case another process reading
2444          * the underlying blockdev brought it uptodate (the sct fix).
2445          */
2446         for (i = 0; i < nr; i++) {
2447                 bh = arr[i];
2448                 if (buffer_uptodate(bh))
2449                         end_buffer_async_read(bh, 1);
2450                 else
2451                         submit_bh(REQ_OP_READ, bh);
2452         }
2453         return 0;
2454 }
2455 EXPORT_SYMBOL(block_read_full_folio);
2456
2457 /* utility function for filesystems that need to do work on expanding
2458  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2459  * deal with the hole.  
2460  */
2461 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2462 {
2463         struct address_space *mapping = inode->i_mapping;
2464         const struct address_space_operations *aops = mapping->a_ops;
2465         struct page *page;
2466         void *fsdata = NULL;
2467         int err;
2468
2469         err = inode_newsize_ok(inode, size);
2470         if (err)
2471                 goto out;
2472
2473         err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2474         if (err)
2475                 goto out;
2476
2477         err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2478         BUG_ON(err > 0);
2479
2480 out:
2481         return err;
2482 }
2483 EXPORT_SYMBOL(generic_cont_expand_simple);
2484
2485 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2486                             loff_t pos, loff_t *bytes)
2487 {
2488         struct inode *inode = mapping->host;
2489         const struct address_space_operations *aops = mapping->a_ops;
2490         unsigned int blocksize = i_blocksize(inode);
2491         struct page *page;
2492         void *fsdata = NULL;
2493         pgoff_t index, curidx;
2494         loff_t curpos;
2495         unsigned zerofrom, offset, len;
2496         int err = 0;
2497
2498         index = pos >> PAGE_SHIFT;
2499         offset = pos & ~PAGE_MASK;
2500
2501         while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2502                 zerofrom = curpos & ~PAGE_MASK;
2503                 if (zerofrom & (blocksize-1)) {
2504                         *bytes |= (blocksize-1);
2505                         (*bytes)++;
2506                 }
2507                 len = PAGE_SIZE - zerofrom;
2508
2509                 err = aops->write_begin(file, mapping, curpos, len,
2510                                             &page, &fsdata);
2511                 if (err)
2512                         goto out;
2513                 zero_user(page, zerofrom, len);
2514                 err = aops->write_end(file, mapping, curpos, len, len,
2515                                                 page, fsdata);
2516                 if (err < 0)
2517                         goto out;
2518                 BUG_ON(err != len);
2519                 err = 0;
2520
2521                 balance_dirty_pages_ratelimited(mapping);
2522
2523                 if (fatal_signal_pending(current)) {
2524                         err = -EINTR;
2525                         goto out;
2526                 }
2527         }
2528
2529         /* page covers the boundary, find the boundary offset */
2530         if (index == curidx) {
2531                 zerofrom = curpos & ~PAGE_MASK;
2532                 /* if we will expand the thing last block will be filled */
2533                 if (offset <= zerofrom) {
2534                         goto out;
2535                 }
2536                 if (zerofrom & (blocksize-1)) {
2537                         *bytes |= (blocksize-1);
2538                         (*bytes)++;
2539                 }
2540                 len = offset - zerofrom;
2541
2542                 err = aops->write_begin(file, mapping, curpos, len,
2543                                             &page, &fsdata);
2544                 if (err)
2545                         goto out;
2546                 zero_user(page, zerofrom, len);
2547                 err = aops->write_end(file, mapping, curpos, len, len,
2548                                                 page, fsdata);
2549                 if (err < 0)
2550                         goto out;
2551                 BUG_ON(err != len);
2552                 err = 0;
2553         }
2554 out:
2555         return err;
2556 }
2557
2558 /*
2559  * For moronic filesystems that do not allow holes in file.
2560  * We may have to extend the file.
2561  */
2562 int cont_write_begin(struct file *file, struct address_space *mapping,
2563                         loff_t pos, unsigned len,
2564                         struct page **pagep, void **fsdata,
2565                         get_block_t *get_block, loff_t *bytes)
2566 {
2567         struct inode *inode = mapping->host;
2568         unsigned int blocksize = i_blocksize(inode);
2569         unsigned int zerofrom;
2570         int err;
2571
2572         err = cont_expand_zero(file, mapping, pos, bytes);
2573         if (err)
2574                 return err;
2575
2576         zerofrom = *bytes & ~PAGE_MASK;
2577         if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2578                 *bytes |= (blocksize-1);
2579                 (*bytes)++;
2580         }
2581
2582         return block_write_begin(mapping, pos, len, pagep, get_block);
2583 }
2584 EXPORT_SYMBOL(cont_write_begin);
2585
2586 void block_commit_write(struct page *page, unsigned from, unsigned to)
2587 {
2588         struct folio *folio = page_folio(page);
2589         __block_commit_write(folio, from, to);
2590 }
2591 EXPORT_SYMBOL(block_commit_write);
2592
2593 /*
2594  * block_page_mkwrite() is not allowed to change the file size as it gets
2595  * called from a page fault handler when a page is first dirtied. Hence we must
2596  * be careful to check for EOF conditions here. We set the page up correctly
2597  * for a written page which means we get ENOSPC checking when writing into
2598  * holes and correct delalloc and unwritten extent mapping on filesystems that
2599  * support these features.
2600  *
2601  * We are not allowed to take the i_mutex here so we have to play games to
2602  * protect against truncate races as the page could now be beyond EOF.  Because
2603  * truncate writes the inode size before removing pages, once we have the
2604  * page lock we can determine safely if the page is beyond EOF. If it is not
2605  * beyond EOF, then the page is guaranteed safe against truncation until we
2606  * unlock the page.
2607  *
2608  * Direct callers of this function should protect against filesystem freezing
2609  * using sb_start_pagefault() - sb_end_pagefault() functions.
2610  */
2611 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2612                          get_block_t get_block)
2613 {
2614         struct folio *folio = page_folio(vmf->page);
2615         struct inode *inode = file_inode(vma->vm_file);
2616         unsigned long end;
2617         loff_t size;
2618         int ret;
2619
2620         folio_lock(folio);
2621         size = i_size_read(inode);
2622         if ((folio->mapping != inode->i_mapping) ||
2623             (folio_pos(folio) >= size)) {
2624                 /* We overload EFAULT to mean page got truncated */
2625                 ret = -EFAULT;
2626                 goto out_unlock;
2627         }
2628
2629         end = folio_size(folio);
2630         /* folio is wholly or partially inside EOF */
2631         if (folio_pos(folio) + end > size)
2632                 end = size - folio_pos(folio);
2633
2634         ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2635         if (unlikely(ret))
2636                 goto out_unlock;
2637
2638         __block_commit_write(folio, 0, end);
2639
2640         folio_mark_dirty(folio);
2641         folio_wait_stable(folio);
2642         return 0;
2643 out_unlock:
2644         folio_unlock(folio);
2645         return ret;
2646 }
2647 EXPORT_SYMBOL(block_page_mkwrite);
2648
2649 int block_truncate_page(struct address_space *mapping,
2650                         loff_t from, get_block_t *get_block)
2651 {
2652         pgoff_t index = from >> PAGE_SHIFT;
2653         unsigned blocksize;
2654         sector_t iblock;
2655         size_t offset, length, pos;
2656         struct inode *inode = mapping->host;
2657         struct folio *folio;
2658         struct buffer_head *bh;
2659         int err = 0;
2660
2661         blocksize = i_blocksize(inode);
2662         length = from & (blocksize - 1);
2663
2664         /* Block boundary? Nothing to do */
2665         if (!length)
2666                 return 0;
2667
2668         length = blocksize - length;
2669         iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2670         
2671         folio = filemap_grab_folio(mapping, index);
2672         if (IS_ERR(folio))
2673                 return PTR_ERR(folio);
2674
2675         bh = folio_buffers(folio);
2676         if (!bh)
2677                 bh = create_empty_buffers(folio, blocksize, 0);
2678
2679         /* Find the buffer that contains "offset" */
2680         offset = offset_in_folio(folio, from);
2681         pos = blocksize;
2682         while (offset >= pos) {
2683                 bh = bh->b_this_page;
2684                 iblock++;
2685                 pos += blocksize;
2686         }
2687
2688         if (!buffer_mapped(bh)) {
2689                 WARN_ON(bh->b_size != blocksize);
2690                 err = get_block(inode, iblock, bh, 0);
2691                 if (err)
2692                         goto unlock;
2693                 /* unmapped? It's a hole - nothing to do */
2694                 if (!buffer_mapped(bh))
2695                         goto unlock;
2696         }
2697
2698         /* Ok, it's mapped. Make sure it's up-to-date */
2699         if (folio_test_uptodate(folio))
2700                 set_buffer_uptodate(bh);
2701
2702         if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2703                 err = bh_read(bh, 0);
2704                 /* Uhhuh. Read error. Complain and punt. */
2705                 if (err < 0)
2706                         goto unlock;
2707         }
2708
2709         folio_zero_range(folio, offset, length);
2710         mark_buffer_dirty(bh);
2711
2712 unlock:
2713         folio_unlock(folio);
2714         folio_put(folio);
2715
2716         return err;
2717 }
2718 EXPORT_SYMBOL(block_truncate_page);
2719
2720 /*
2721  * The generic ->writepage function for buffer-backed address_spaces
2722  */
2723 int block_write_full_page(struct page *page, get_block_t *get_block,
2724                         struct writeback_control *wbc)
2725 {
2726         struct folio *folio = page_folio(page);
2727         struct inode * const inode = folio->mapping->host;
2728         loff_t i_size = i_size_read(inode);
2729
2730         /* Is the folio fully inside i_size? */
2731         if (folio_pos(folio) + folio_size(folio) <= i_size)
2732                 return __block_write_full_folio(inode, folio, get_block, wbc,
2733                                                end_buffer_async_write);
2734
2735         /* Is the folio fully outside i_size? (truncate in progress) */
2736         if (folio_pos(folio) >= i_size) {
2737                 folio_unlock(folio);
2738                 return 0; /* don't care */
2739         }
2740
2741         /*
2742          * The folio straddles i_size.  It must be zeroed out on each and every
2743          * writepage invocation because it may be mmapped.  "A file is mapped
2744          * in multiples of the page size.  For a file that is not a multiple of
2745          * the page size, the remaining memory is zeroed when mapped, and
2746          * writes to that region are not written out to the file."
2747          */
2748         folio_zero_segment(folio, offset_in_folio(folio, i_size),
2749                         folio_size(folio));
2750         return __block_write_full_folio(inode, folio, get_block, wbc,
2751                         end_buffer_async_write);
2752 }
2753 EXPORT_SYMBOL(block_write_full_page);
2754
2755 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2756                             get_block_t *get_block)
2757 {
2758         struct inode *inode = mapping->host;
2759         struct buffer_head tmp = {
2760                 .b_size = i_blocksize(inode),
2761         };
2762
2763         get_block(inode, block, &tmp, 0);
2764         return tmp.b_blocknr;
2765 }
2766 EXPORT_SYMBOL(generic_block_bmap);
2767
2768 static void end_bio_bh_io_sync(struct bio *bio)
2769 {
2770         struct buffer_head *bh = bio->bi_private;
2771
2772         if (unlikely(bio_flagged(bio, BIO_QUIET)))
2773                 set_bit(BH_Quiet, &bh->b_state);
2774
2775         bh->b_end_io(bh, !bio->bi_status);
2776         bio_put(bio);
2777 }
2778
2779 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2780                           struct writeback_control *wbc)
2781 {
2782         const enum req_op op = opf & REQ_OP_MASK;
2783         struct bio *bio;
2784
2785         BUG_ON(!buffer_locked(bh));
2786         BUG_ON(!buffer_mapped(bh));
2787         BUG_ON(!bh->b_end_io);
2788         BUG_ON(buffer_delay(bh));
2789         BUG_ON(buffer_unwritten(bh));
2790
2791         /*
2792          * Only clear out a write error when rewriting
2793          */
2794         if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2795                 clear_buffer_write_io_error(bh);
2796
2797         if (buffer_meta(bh))
2798                 opf |= REQ_META;
2799         if (buffer_prio(bh))
2800                 opf |= REQ_PRIO;
2801
2802         bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2803
2804         fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2805
2806         bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2807
2808         __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2809
2810         bio->bi_end_io = end_bio_bh_io_sync;
2811         bio->bi_private = bh;
2812
2813         /* Take care of bh's that straddle the end of the device */
2814         guard_bio_eod(bio);
2815
2816         if (wbc) {
2817                 wbc_init_bio(wbc, bio);
2818                 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2819         }
2820
2821         submit_bio(bio);
2822 }
2823
2824 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2825 {
2826         submit_bh_wbc(opf, bh, NULL);
2827 }
2828 EXPORT_SYMBOL(submit_bh);
2829
2830 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2831 {
2832         lock_buffer(bh);
2833         if (!test_clear_buffer_dirty(bh)) {
2834                 unlock_buffer(bh);
2835                 return;
2836         }
2837         bh->b_end_io = end_buffer_write_sync;
2838         get_bh(bh);
2839         submit_bh(REQ_OP_WRITE | op_flags, bh);
2840 }
2841 EXPORT_SYMBOL(write_dirty_buffer);
2842
2843 /*
2844  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2845  * and then start new I/O and then wait upon it.  The caller must have a ref on
2846  * the buffer_head.
2847  */
2848 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2849 {
2850         WARN_ON(atomic_read(&bh->b_count) < 1);
2851         lock_buffer(bh);
2852         if (test_clear_buffer_dirty(bh)) {
2853                 /*
2854                  * The bh should be mapped, but it might not be if the
2855                  * device was hot-removed. Not much we can do but fail the I/O.
2856                  */
2857                 if (!buffer_mapped(bh)) {
2858                         unlock_buffer(bh);
2859                         return -EIO;
2860                 }
2861
2862                 get_bh(bh);
2863                 bh->b_end_io = end_buffer_write_sync;
2864                 submit_bh(REQ_OP_WRITE | op_flags, bh);
2865                 wait_on_buffer(bh);
2866                 if (!buffer_uptodate(bh))
2867                         return -EIO;
2868         } else {
2869                 unlock_buffer(bh);
2870         }
2871         return 0;
2872 }
2873 EXPORT_SYMBOL(__sync_dirty_buffer);
2874
2875 int sync_dirty_buffer(struct buffer_head *bh)
2876 {
2877         return __sync_dirty_buffer(bh, REQ_SYNC);
2878 }
2879 EXPORT_SYMBOL(sync_dirty_buffer);
2880
2881 /*
2882  * try_to_free_buffers() checks if all the buffers on this particular folio
2883  * are unused, and releases them if so.
2884  *
2885  * Exclusion against try_to_free_buffers may be obtained by either
2886  * locking the folio or by holding its mapping's private_lock.
2887  *
2888  * If the folio is dirty but all the buffers are clean then we need to
2889  * be sure to mark the folio clean as well.  This is because the folio
2890  * may be against a block device, and a later reattachment of buffers
2891  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2892  * filesystem data on the same device.
2893  *
2894  * The same applies to regular filesystem folios: if all the buffers are
2895  * clean then we set the folio clean and proceed.  To do that, we require
2896  * total exclusion from block_dirty_folio().  That is obtained with
2897  * private_lock.
2898  *
2899  * try_to_free_buffers() is non-blocking.
2900  */
2901 static inline int buffer_busy(struct buffer_head *bh)
2902 {
2903         return atomic_read(&bh->b_count) |
2904                 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2905 }
2906
2907 static bool
2908 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2909 {
2910         struct buffer_head *head = folio_buffers(folio);
2911         struct buffer_head *bh;
2912
2913         bh = head;
2914         do {
2915                 if (buffer_busy(bh))
2916                         goto failed;
2917                 bh = bh->b_this_page;
2918         } while (bh != head);
2919
2920         do {
2921                 struct buffer_head *next = bh->b_this_page;
2922
2923                 if (bh->b_assoc_map)
2924                         __remove_assoc_queue(bh);
2925                 bh = next;
2926         } while (bh != head);
2927         *buffers_to_free = head;
2928         folio_detach_private(folio);
2929         return true;
2930 failed:
2931         return false;
2932 }
2933
2934 bool try_to_free_buffers(struct folio *folio)
2935 {
2936         struct address_space * const mapping = folio->mapping;
2937         struct buffer_head *buffers_to_free = NULL;
2938         bool ret = 0;
2939
2940         BUG_ON(!folio_test_locked(folio));
2941         if (folio_test_writeback(folio))
2942                 return false;
2943
2944         if (mapping == NULL) {          /* can this still happen? */
2945                 ret = drop_buffers(folio, &buffers_to_free);
2946                 goto out;
2947         }
2948
2949         spin_lock(&mapping->private_lock);
2950         ret = drop_buffers(folio, &buffers_to_free);
2951
2952         /*
2953          * If the filesystem writes its buffers by hand (eg ext3)
2954          * then we can have clean buffers against a dirty folio.  We
2955          * clean the folio here; otherwise the VM will never notice
2956          * that the filesystem did any IO at all.
2957          *
2958          * Also, during truncate, discard_buffer will have marked all
2959          * the folio's buffers clean.  We discover that here and clean
2960          * the folio also.
2961          *
2962          * private_lock must be held over this entire operation in order
2963          * to synchronise against block_dirty_folio and prevent the
2964          * dirty bit from being lost.
2965          */
2966         if (ret)
2967                 folio_cancel_dirty(folio);
2968         spin_unlock(&mapping->private_lock);
2969 out:
2970         if (buffers_to_free) {
2971                 struct buffer_head *bh = buffers_to_free;
2972
2973                 do {
2974                         struct buffer_head *next = bh->b_this_page;
2975                         free_buffer_head(bh);
2976                         bh = next;
2977                 } while (bh != buffers_to_free);
2978         }
2979         return ret;
2980 }
2981 EXPORT_SYMBOL(try_to_free_buffers);
2982
2983 /*
2984  * Buffer-head allocation
2985  */
2986 static struct kmem_cache *bh_cachep __ro_after_init;
2987
2988 /*
2989  * Once the number of bh's in the machine exceeds this level, we start
2990  * stripping them in writeback.
2991  */
2992 static unsigned long max_buffer_heads __ro_after_init;
2993
2994 int buffer_heads_over_limit;
2995
2996 struct bh_accounting {
2997         int nr;                 /* Number of live bh's */
2998         int ratelimit;          /* Limit cacheline bouncing */
2999 };
3000
3001 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3002
3003 static void recalc_bh_state(void)
3004 {
3005         int i;
3006         int tot = 0;
3007
3008         if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3009                 return;
3010         __this_cpu_write(bh_accounting.ratelimit, 0);
3011         for_each_online_cpu(i)
3012                 tot += per_cpu(bh_accounting, i).nr;
3013         buffer_heads_over_limit = (tot > max_buffer_heads);
3014 }
3015
3016 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3017 {
3018         struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3019         if (ret) {
3020                 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3021                 spin_lock_init(&ret->b_uptodate_lock);
3022                 preempt_disable();
3023                 __this_cpu_inc(bh_accounting.nr);
3024                 recalc_bh_state();
3025                 preempt_enable();
3026         }
3027         return ret;
3028 }
3029 EXPORT_SYMBOL(alloc_buffer_head);
3030
3031 void free_buffer_head(struct buffer_head *bh)
3032 {
3033         BUG_ON(!list_empty(&bh->b_assoc_buffers));
3034         kmem_cache_free(bh_cachep, bh);
3035         preempt_disable();
3036         __this_cpu_dec(bh_accounting.nr);
3037         recalc_bh_state();
3038         preempt_enable();
3039 }
3040 EXPORT_SYMBOL(free_buffer_head);
3041
3042 static int buffer_exit_cpu_dead(unsigned int cpu)
3043 {
3044         int i;
3045         struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3046
3047         for (i = 0; i < BH_LRU_SIZE; i++) {
3048                 brelse(b->bhs[i]);
3049                 b->bhs[i] = NULL;
3050         }
3051         this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3052         per_cpu(bh_accounting, cpu).nr = 0;
3053         return 0;
3054 }
3055
3056 /**
3057  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3058  * @bh: struct buffer_head
3059  *
3060  * Return true if the buffer is up-to-date and false,
3061  * with the buffer locked, if not.
3062  */
3063 int bh_uptodate_or_lock(struct buffer_head *bh)
3064 {
3065         if (!buffer_uptodate(bh)) {
3066                 lock_buffer(bh);
3067                 if (!buffer_uptodate(bh))
3068                         return 0;
3069                 unlock_buffer(bh);
3070         }
3071         return 1;
3072 }
3073 EXPORT_SYMBOL(bh_uptodate_or_lock);
3074
3075 /**
3076  * __bh_read - Submit read for a locked buffer
3077  * @bh: struct buffer_head
3078  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3079  * @wait: wait until reading finish
3080  *
3081  * Returns zero on success or don't wait, and -EIO on error.
3082  */
3083 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3084 {
3085         int ret = 0;
3086
3087         BUG_ON(!buffer_locked(bh));
3088
3089         get_bh(bh);
3090         bh->b_end_io = end_buffer_read_sync;
3091         submit_bh(REQ_OP_READ | op_flags, bh);
3092         if (wait) {
3093                 wait_on_buffer(bh);
3094                 if (!buffer_uptodate(bh))
3095                         ret = -EIO;
3096         }
3097         return ret;
3098 }
3099 EXPORT_SYMBOL(__bh_read);
3100
3101 /**
3102  * __bh_read_batch - Submit read for a batch of unlocked buffers
3103  * @nr: entry number of the buffer batch
3104  * @bhs: a batch of struct buffer_head
3105  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3106  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3107  *              buffer that cannot lock.
3108  *
3109  * Returns zero on success or don't wait, and -EIO on error.
3110  */
3111 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3112                      blk_opf_t op_flags, bool force_lock)
3113 {
3114         int i;
3115
3116         for (i = 0; i < nr; i++) {
3117                 struct buffer_head *bh = bhs[i];
3118
3119                 if (buffer_uptodate(bh))
3120                         continue;
3121
3122                 if (force_lock)
3123                         lock_buffer(bh);
3124                 else
3125                         if (!trylock_buffer(bh))
3126                                 continue;
3127
3128                 if (buffer_uptodate(bh)) {
3129                         unlock_buffer(bh);
3130                         continue;
3131                 }
3132
3133                 bh->b_end_io = end_buffer_read_sync;
3134                 get_bh(bh);
3135                 submit_bh(REQ_OP_READ | op_flags, bh);
3136         }
3137 }
3138 EXPORT_SYMBOL(__bh_read_batch);
3139
3140 void __init buffer_init(void)
3141 {
3142         unsigned long nrpages;
3143         int ret;
3144
3145         bh_cachep = kmem_cache_create("buffer_head",
3146                         sizeof(struct buffer_head), 0,
3147                                 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3148                                 SLAB_MEM_SPREAD),
3149                                 NULL);
3150
3151         /*
3152          * Limit the bh occupancy to 10% of ZONE_NORMAL
3153          */
3154         nrpages = (nr_free_buffer_pages() * 10) / 100;
3155         max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3156         ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3157                                         NULL, buffer_exit_cpu_dead);
3158         WARN_ON(ret < 0);
3159 }