GNU Linux-libre 4.19.286-gnu1
[releases.git] / fs / dax.c
1 /*
2  * fs/dax.c - Direct Access filesystem code
3  * Copyright (c) 2013-2014 Intel Corporation
4  * Author: Matthew Wilcox <matthew.r.wilcox@intel.com>
5  * Author: Ross Zwisler <ross.zwisler@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms and conditions of the GNU General Public License,
9  * version 2, as published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  */
16
17 #include <linux/atomic.h>
18 #include <linux/blkdev.h>
19 #include <linux/buffer_head.h>
20 #include <linux/dax.h>
21 #include <linux/fs.h>
22 #include <linux/genhd.h>
23 #include <linux/highmem.h>
24 #include <linux/memcontrol.h>
25 #include <linux/mm.h>
26 #include <linux/mutex.h>
27 #include <linux/pagevec.h>
28 #include <linux/sched.h>
29 #include <linux/sched/signal.h>
30 #include <linux/uio.h>
31 #include <linux/vmstat.h>
32 #include <linux/pfn_t.h>
33 #include <linux/sizes.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/iomap.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/fs_dax.h>
40
41 /* We choose 4096 entries - same as per-zone page wait tables */
42 #define DAX_WAIT_TABLE_BITS 12
43 #define DAX_WAIT_TABLE_ENTRIES (1 << DAX_WAIT_TABLE_BITS)
44
45 /* The 'colour' (ie low bits) within a PMD of a page offset.  */
46 #define PG_PMD_COLOUR   ((PMD_SIZE >> PAGE_SHIFT) - 1)
47 #define PG_PMD_NR       (PMD_SIZE >> PAGE_SHIFT)
48
49 static wait_queue_head_t wait_table[DAX_WAIT_TABLE_ENTRIES];
50
51 static int __init init_dax_wait_table(void)
52 {
53         int i;
54
55         for (i = 0; i < DAX_WAIT_TABLE_ENTRIES; i++)
56                 init_waitqueue_head(wait_table + i);
57         return 0;
58 }
59 fs_initcall(init_dax_wait_table);
60
61 /*
62  * We use lowest available bit in exceptional entry for locking, one bit for
63  * the entry size (PMD) and two more to tell us if the entry is a zero page or
64  * an empty entry that is just used for locking.  In total four special bits.
65  *
66  * If the PMD bit isn't set the entry has size PAGE_SIZE, and if the ZERO_PAGE
67  * and EMPTY bits aren't set the entry is a normal DAX entry with a filesystem
68  * block allocation.
69  */
70 #define RADIX_DAX_SHIFT         (RADIX_TREE_EXCEPTIONAL_SHIFT + 4)
71 #define RADIX_DAX_ENTRY_LOCK    (1 << RADIX_TREE_EXCEPTIONAL_SHIFT)
72 #define RADIX_DAX_PMD           (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 1))
73 #define RADIX_DAX_ZERO_PAGE     (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 2))
74 #define RADIX_DAX_EMPTY         (1 << (RADIX_TREE_EXCEPTIONAL_SHIFT + 3))
75
76 static unsigned long dax_radix_pfn(void *entry)
77 {
78         return (unsigned long)entry >> RADIX_DAX_SHIFT;
79 }
80
81 static void *dax_radix_locked_entry(unsigned long pfn, unsigned long flags)
82 {
83         return (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY | flags |
84                         (pfn << RADIX_DAX_SHIFT) | RADIX_DAX_ENTRY_LOCK);
85 }
86
87 static unsigned int dax_radix_order(void *entry)
88 {
89         if ((unsigned long)entry & RADIX_DAX_PMD)
90                 return PMD_SHIFT - PAGE_SHIFT;
91         return 0;
92 }
93
94 static int dax_is_pmd_entry(void *entry)
95 {
96         return (unsigned long)entry & RADIX_DAX_PMD;
97 }
98
99 static int dax_is_pte_entry(void *entry)
100 {
101         return !((unsigned long)entry & RADIX_DAX_PMD);
102 }
103
104 static int dax_is_zero_entry(void *entry)
105 {
106         return (unsigned long)entry & RADIX_DAX_ZERO_PAGE;
107 }
108
109 static int dax_is_empty_entry(void *entry)
110 {
111         return (unsigned long)entry & RADIX_DAX_EMPTY;
112 }
113
114 /*
115  * DAX radix tree locking
116  */
117 struct exceptional_entry_key {
118         struct address_space *mapping;
119         pgoff_t entry_start;
120 };
121
122 struct wait_exceptional_entry_queue {
123         wait_queue_entry_t wait;
124         struct exceptional_entry_key key;
125 };
126
127 static wait_queue_head_t *dax_entry_waitqueue(struct address_space *mapping,
128                 pgoff_t index, void *entry, struct exceptional_entry_key *key)
129 {
130         unsigned long hash;
131
132         /*
133          * If 'entry' is a PMD, align the 'index' that we use for the wait
134          * queue to the start of that PMD.  This ensures that all offsets in
135          * the range covered by the PMD map to the same bit lock.
136          */
137         if (dax_is_pmd_entry(entry))
138                 index &= ~PG_PMD_COLOUR;
139
140         key->mapping = mapping;
141         key->entry_start = index;
142
143         hash = hash_long((unsigned long)mapping ^ index, DAX_WAIT_TABLE_BITS);
144         return wait_table + hash;
145 }
146
147 static int wake_exceptional_entry_func(wait_queue_entry_t *wait, unsigned int mode,
148                                        int sync, void *keyp)
149 {
150         struct exceptional_entry_key *key = keyp;
151         struct wait_exceptional_entry_queue *ewait =
152                 container_of(wait, struct wait_exceptional_entry_queue, wait);
153
154         if (key->mapping != ewait->key.mapping ||
155             key->entry_start != ewait->key.entry_start)
156                 return 0;
157         return autoremove_wake_function(wait, mode, sync, NULL);
158 }
159
160 /*
161  * @entry may no longer be the entry at the index in the mapping.
162  * The important information it's conveying is whether the entry at
163  * this index used to be a PMD entry.
164  */
165 static void dax_wake_mapping_entry_waiter(struct address_space *mapping,
166                 pgoff_t index, void *entry, bool wake_all)
167 {
168         struct exceptional_entry_key key;
169         wait_queue_head_t *wq;
170
171         wq = dax_entry_waitqueue(mapping, index, entry, &key);
172
173         /*
174          * Checking for locked entry and prepare_to_wait_exclusive() happens
175          * under the i_pages lock, ditto for entry handling in our callers.
176          * So at this point all tasks that could have seen our entry locked
177          * must be in the waitqueue and the following check will see them.
178          */
179         if (waitqueue_active(wq))
180                 __wake_up(wq, TASK_NORMAL, wake_all ? 0 : 1, &key);
181 }
182
183 /*
184  * Check whether the given slot is locked.  Must be called with the i_pages
185  * lock held.
186  */
187 static inline int slot_locked(struct address_space *mapping, void **slot)
188 {
189         unsigned long entry = (unsigned long)
190                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
191         return entry & RADIX_DAX_ENTRY_LOCK;
192 }
193
194 /*
195  * Mark the given slot as locked.  Must be called with the i_pages lock held.
196  */
197 static inline void *lock_slot(struct address_space *mapping, void **slot)
198 {
199         unsigned long entry = (unsigned long)
200                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
201
202         entry |= RADIX_DAX_ENTRY_LOCK;
203         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
204         return (void *)entry;
205 }
206
207 /*
208  * Mark the given slot as unlocked.  Must be called with the i_pages lock held.
209  */
210 static inline void *unlock_slot(struct address_space *mapping, void **slot)
211 {
212         unsigned long entry = (unsigned long)
213                 radix_tree_deref_slot_protected(slot, &mapping->i_pages.xa_lock);
214
215         entry &= ~(unsigned long)RADIX_DAX_ENTRY_LOCK;
216         radix_tree_replace_slot(&mapping->i_pages, slot, (void *)entry);
217         return (void *)entry;
218 }
219
220 static void put_unlocked_mapping_entry(struct address_space *mapping,
221                                        pgoff_t index, void *entry);
222
223 /*
224  * Lookup entry in radix tree, wait for it to become unlocked if it is
225  * exceptional entry and return it. The caller must call
226  * put_unlocked_mapping_entry() when he decided not to lock the entry or
227  * put_locked_mapping_entry() when he locked the entry and now wants to
228  * unlock it.
229  *
230  * Must be called with the i_pages lock held.
231  */
232 static void *get_unlocked_mapping_entry(struct address_space *mapping,
233                 pgoff_t index, void ***slotp)
234 {
235         void *entry, **slot;
236         struct wait_exceptional_entry_queue ewait;
237         wait_queue_head_t *wq;
238
239         init_wait(&ewait.wait);
240         ewait.wait.func = wake_exceptional_entry_func;
241
242         for (;;) {
243                 entry = __radix_tree_lookup(&mapping->i_pages, index, NULL,
244                                           &slot);
245                 if (!entry ||
246                     WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)) ||
247                     !slot_locked(mapping, slot)) {
248                         if (slotp)
249                                 *slotp = slot;
250                         return entry;
251                 }
252
253                 wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
254                 prepare_to_wait_exclusive(wq, &ewait.wait,
255                                           TASK_UNINTERRUPTIBLE);
256                 xa_unlock_irq(&mapping->i_pages);
257                 schedule();
258                 finish_wait(wq, &ewait.wait);
259                 xa_lock_irq(&mapping->i_pages);
260         }
261 }
262
263 /*
264  * The only thing keeping the address space around is the i_pages lock
265  * (it's cycled in clear_inode() after removing the entries from i_pages)
266  * After we call xas_unlock_irq(), we cannot touch xas->xa.
267  */
268 static void wait_entry_unlocked(struct address_space *mapping, pgoff_t index,
269                 void ***slotp, void *entry)
270 {
271         struct wait_exceptional_entry_queue ewait;
272         wait_queue_head_t *wq;
273
274         init_wait(&ewait.wait);
275         ewait.wait.func = wake_exceptional_entry_func;
276
277         wq = dax_entry_waitqueue(mapping, index, entry, &ewait.key);
278         /*
279          * Unlike get_unlocked_entry() there is no guarantee that this
280          * path ever successfully retrieves an unlocked entry before an
281          * inode dies. Perform a non-exclusive wait in case this path
282          * never successfully performs its own wake up.
283          */
284         prepare_to_wait(wq, &ewait.wait, TASK_UNINTERRUPTIBLE);
285         xa_unlock_irq(&mapping->i_pages);
286         schedule();
287         finish_wait(wq, &ewait.wait);
288 }
289
290 static void unlock_mapping_entry(struct address_space *mapping, pgoff_t index)
291 {
292         void *entry, **slot;
293
294         xa_lock_irq(&mapping->i_pages);
295         entry = __radix_tree_lookup(&mapping->i_pages, index, NULL, &slot);
296         if (WARN_ON_ONCE(!entry || !radix_tree_exceptional_entry(entry) ||
297                          !slot_locked(mapping, slot))) {
298                 xa_unlock_irq(&mapping->i_pages);
299                 return;
300         }
301         unlock_slot(mapping, slot);
302         xa_unlock_irq(&mapping->i_pages);
303         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
304 }
305
306 static void put_locked_mapping_entry(struct address_space *mapping,
307                 pgoff_t index)
308 {
309         unlock_mapping_entry(mapping, index);
310 }
311
312 /*
313  * Called when we are done with radix tree entry we looked up via
314  * get_unlocked_mapping_entry() and which we didn't lock in the end.
315  */
316 static void put_unlocked_mapping_entry(struct address_space *mapping,
317                                        pgoff_t index, void *entry)
318 {
319         if (!entry)
320                 return;
321
322         /* We have to wake up next waiter for the radix tree entry lock */
323         dax_wake_mapping_entry_waiter(mapping, index, entry, false);
324 }
325
326 static unsigned long dax_entry_size(void *entry)
327 {
328         if (dax_is_zero_entry(entry))
329                 return 0;
330         else if (dax_is_empty_entry(entry))
331                 return 0;
332         else if (dax_is_pmd_entry(entry))
333                 return PMD_SIZE;
334         else
335                 return PAGE_SIZE;
336 }
337
338 static unsigned long dax_radix_end_pfn(void *entry)
339 {
340         return dax_radix_pfn(entry) + dax_entry_size(entry) / PAGE_SIZE;
341 }
342
343 /*
344  * Iterate through all mapped pfns represented by an entry, i.e. skip
345  * 'empty' and 'zero' entries.
346  */
347 #define for_each_mapped_pfn(entry, pfn) \
348         for (pfn = dax_radix_pfn(entry); \
349                         pfn < dax_radix_end_pfn(entry); pfn++)
350
351 /*
352  * TODO: for reflink+dax we need a way to associate a single page with
353  * multiple address_space instances at different linear_page_index()
354  * offsets.
355  */
356 static void dax_associate_entry(void *entry, struct address_space *mapping,
357                 struct vm_area_struct *vma, unsigned long address)
358 {
359         unsigned long size = dax_entry_size(entry), pfn, index;
360         int i = 0;
361
362         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
363                 return;
364
365         index = linear_page_index(vma, address & ~(size - 1));
366         for_each_mapped_pfn(entry, pfn) {
367                 struct page *page = pfn_to_page(pfn);
368
369                 WARN_ON_ONCE(page->mapping);
370                 page->mapping = mapping;
371                 page->index = index + i++;
372         }
373 }
374
375 static void dax_disassociate_entry(void *entry, struct address_space *mapping,
376                 bool trunc)
377 {
378         unsigned long pfn;
379
380         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
381                 return;
382
383         for_each_mapped_pfn(entry, pfn) {
384                 struct page *page = pfn_to_page(pfn);
385
386                 WARN_ON_ONCE(trunc && page_ref_count(page) > 1);
387                 WARN_ON_ONCE(page->mapping && page->mapping != mapping);
388                 page->mapping = NULL;
389                 page->index = 0;
390         }
391 }
392
393 static struct page *dax_busy_page(void *entry)
394 {
395         unsigned long pfn;
396
397         for_each_mapped_pfn(entry, pfn) {
398                 struct page *page = pfn_to_page(pfn);
399
400                 if (page_ref_count(page) > 1)
401                         return page;
402         }
403         return NULL;
404 }
405
406 bool dax_lock_mapping_entry(struct page *page)
407 {
408         pgoff_t index;
409         struct inode *inode;
410         bool did_lock = false;
411         void *entry = NULL, **slot;
412         struct address_space *mapping;
413
414         rcu_read_lock();
415         for (;;) {
416                 mapping = READ_ONCE(page->mapping);
417
418                 if (!mapping || !dax_mapping(mapping))
419                         break;
420
421                 /*
422                  * In the device-dax case there's no need to lock, a
423                  * struct dev_pagemap pin is sufficient to keep the
424                  * inode alive, and we assume we have dev_pagemap pin
425                  * otherwise we would not have a valid pfn_to_page()
426                  * translation.
427                  */
428                 inode = mapping->host;
429                 if (S_ISCHR(inode->i_mode)) {
430                         did_lock = true;
431                         break;
432                 }
433
434                 xa_lock_irq(&mapping->i_pages);
435                 if (mapping != page->mapping) {
436                         xa_unlock_irq(&mapping->i_pages);
437                         continue;
438                 }
439                 index = page->index;
440
441                 entry = __radix_tree_lookup(&mapping->i_pages, index,
442                                                 NULL, &slot);
443                 if (!entry) {
444                         xa_unlock_irq(&mapping->i_pages);
445                         break;
446                 } else if (slot_locked(mapping, slot)) {
447                         rcu_read_unlock();
448                         wait_entry_unlocked(mapping, index, &slot, entry);
449                         rcu_read_lock();
450                         continue;
451                 }
452                 lock_slot(mapping, slot);
453                 did_lock = true;
454                 xa_unlock_irq(&mapping->i_pages);
455                 break;
456         }
457         rcu_read_unlock();
458
459         return did_lock;
460 }
461
462 void dax_unlock_mapping_entry(struct page *page)
463 {
464         struct address_space *mapping = page->mapping;
465         struct inode *inode = mapping->host;
466
467         if (S_ISCHR(inode->i_mode))
468                 return;
469
470         unlock_mapping_entry(mapping, page->index);
471 }
472
473 /*
474  * Find radix tree entry at given index. If it points to an exceptional entry,
475  * return it with the radix tree entry locked. If the radix tree doesn't
476  * contain given index, create an empty exceptional entry for the index and
477  * return with it locked.
478  *
479  * When requesting an entry with size RADIX_DAX_PMD, grab_mapping_entry() will
480  * either return that locked entry or will return an error.  This error will
481  * happen if there are any 4k entries within the 2MiB range that we are
482  * requesting.
483  *
484  * We always favor 4k entries over 2MiB entries. There isn't a flow where we
485  * evict 4k entries in order to 'upgrade' them to a 2MiB entry.  A 2MiB
486  * insertion will fail if it finds any 4k entries already in the tree, and a
487  * 4k insertion will cause an existing 2MiB entry to be unmapped and
488  * downgraded to 4k entries.  This happens for both 2MiB huge zero pages as
489  * well as 2MiB empty entries.
490  *
491  * The exception to this downgrade path is for 2MiB DAX PMD entries that have
492  * real storage backing them.  We will leave these real 2MiB DAX entries in
493  * the tree, and PTE writes will simply dirty the entire 2MiB DAX entry.
494  *
495  * Note: Unlike filemap_fault() we don't honor FAULT_FLAG_RETRY flags. For
496  * persistent memory the benefit is doubtful. We can add that later if we can
497  * show it helps.
498  */
499 static void *grab_mapping_entry(struct address_space *mapping, pgoff_t index,
500                 unsigned long size_flag)
501 {
502         bool pmd_downgrade = false; /* splitting 2MiB entry into 4k entries? */
503         void *entry, **slot;
504
505 restart:
506         xa_lock_irq(&mapping->i_pages);
507         entry = get_unlocked_mapping_entry(mapping, index, &slot);
508
509         if (WARN_ON_ONCE(entry && !radix_tree_exceptional_entry(entry))) {
510                 entry = ERR_PTR(-EIO);
511                 goto out_unlock;
512         }
513
514         if (entry) {
515                 if (size_flag & RADIX_DAX_PMD) {
516                         if (dax_is_pte_entry(entry)) {
517                                 put_unlocked_mapping_entry(mapping, index,
518                                                 entry);
519                                 entry = ERR_PTR(-EEXIST);
520                                 goto out_unlock;
521                         }
522                 } else { /* trying to grab a PTE entry */
523                         if (dax_is_pmd_entry(entry) &&
524                             (dax_is_zero_entry(entry) ||
525                              dax_is_empty_entry(entry))) {
526                                 pmd_downgrade = true;
527                         }
528                 }
529         }
530
531         /* No entry for given index? Make sure radix tree is big enough. */
532         if (!entry || pmd_downgrade) {
533                 int err;
534
535                 if (pmd_downgrade) {
536                         /*
537                          * Make sure 'entry' remains valid while we drop
538                          * the i_pages lock.
539                          */
540                         entry = lock_slot(mapping, slot);
541                 }
542
543                 xa_unlock_irq(&mapping->i_pages);
544                 /*
545                  * Besides huge zero pages the only other thing that gets
546                  * downgraded are empty entries which don't need to be
547                  * unmapped.
548                  */
549                 if (pmd_downgrade && dax_is_zero_entry(entry))
550                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
551                                                         PG_PMD_NR, false);
552
553                 err = radix_tree_preload(
554                                 mapping_gfp_mask(mapping) & ~__GFP_HIGHMEM);
555                 if (err) {
556                         if (pmd_downgrade)
557                                 put_locked_mapping_entry(mapping, index);
558                         return ERR_PTR(err);
559                 }
560                 xa_lock_irq(&mapping->i_pages);
561
562                 if (!entry) {
563                         /*
564                          * We needed to drop the i_pages lock while calling
565                          * radix_tree_preload() and we didn't have an entry to
566                          * lock.  See if another thread inserted an entry at
567                          * our index during this time.
568                          */
569                         entry = __radix_tree_lookup(&mapping->i_pages, index,
570                                         NULL, &slot);
571                         if (entry) {
572                                 radix_tree_preload_end();
573                                 xa_unlock_irq(&mapping->i_pages);
574                                 goto restart;
575                         }
576                 }
577
578                 if (pmd_downgrade) {
579                         dax_disassociate_entry(entry, mapping, false);
580                         radix_tree_delete(&mapping->i_pages, index);
581                         mapping->nrexceptional--;
582                         dax_wake_mapping_entry_waiter(mapping, index, entry,
583                                         true);
584                 }
585
586                 entry = dax_radix_locked_entry(0, size_flag | RADIX_DAX_EMPTY);
587
588                 err = __radix_tree_insert(&mapping->i_pages, index,
589                                 dax_radix_order(entry), entry);
590                 radix_tree_preload_end();
591                 if (err) {
592                         xa_unlock_irq(&mapping->i_pages);
593                         /*
594                          * Our insertion of a DAX entry failed, most likely
595                          * because we were inserting a PMD entry and it
596                          * collided with a PTE sized entry at a different
597                          * index in the PMD range.  We haven't inserted
598                          * anything into the radix tree and have no waiters to
599                          * wake.
600                          */
601                         return ERR_PTR(err);
602                 }
603                 /* Good, we have inserted empty locked entry into the tree. */
604                 mapping->nrexceptional++;
605                 xa_unlock_irq(&mapping->i_pages);
606                 return entry;
607         }
608         entry = lock_slot(mapping, slot);
609  out_unlock:
610         xa_unlock_irq(&mapping->i_pages);
611         return entry;
612 }
613
614 /**
615  * dax_layout_busy_page - find first pinned page in @mapping
616  * @mapping: address space to scan for a page with ref count > 1
617  *
618  * DAX requires ZONE_DEVICE mapped pages. These pages are never
619  * 'onlined' to the page allocator so they are considered idle when
620  * page->count == 1. A filesystem uses this interface to determine if
621  * any page in the mapping is busy, i.e. for DMA, or other
622  * get_user_pages() usages.
623  *
624  * It is expected that the filesystem is holding locks to block the
625  * establishment of new mappings in this address_space. I.e. it expects
626  * to be able to run unmap_mapping_range() and subsequently not race
627  * mapping_mapped() becoming true.
628  */
629 struct page *dax_layout_busy_page(struct address_space *mapping)
630 {
631         pgoff_t indices[PAGEVEC_SIZE];
632         struct page *page = NULL;
633         struct pagevec pvec;
634         pgoff_t index, end;
635         unsigned i;
636
637         /*
638          * In the 'limited' case get_user_pages() for dax is disabled.
639          */
640         if (IS_ENABLED(CONFIG_FS_DAX_LIMITED))
641                 return NULL;
642
643         if (!dax_mapping(mapping) || !mapping_mapped(mapping))
644                 return NULL;
645
646         pagevec_init(&pvec);
647         index = 0;
648         end = -1;
649
650         /*
651          * If we race get_user_pages_fast() here either we'll see the
652          * elevated page count in the pagevec_lookup and wait, or
653          * get_user_pages_fast() will see that the page it took a reference
654          * against is no longer mapped in the page tables and bail to the
655          * get_user_pages() slow path.  The slow path is protected by
656          * pte_lock() and pmd_lock(). New references are not taken without
657          * holding those locks, and unmap_mapping_range() will not zero the
658          * pte or pmd without holding the respective lock, so we are
659          * guaranteed to either see new references or prevent new
660          * references from being established.
661          */
662         unmap_mapping_range(mapping, 0, 0, 0);
663
664         while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
665                                 min(end - index, (pgoff_t)PAGEVEC_SIZE),
666                                 indices)) {
667                 pgoff_t nr_pages = 1;
668
669                 for (i = 0; i < pagevec_count(&pvec); i++) {
670                         struct page *pvec_ent = pvec.pages[i];
671                         void *entry;
672
673                         index = indices[i];
674                         if (index >= end)
675                                 break;
676
677                         if (WARN_ON_ONCE(
678                              !radix_tree_exceptional_entry(pvec_ent)))
679                                 continue;
680
681                         xa_lock_irq(&mapping->i_pages);
682                         entry = get_unlocked_mapping_entry(mapping, index, NULL);
683                         if (entry) {
684                                 page = dax_busy_page(entry);
685                                 /*
686                                  * Account for multi-order entries at
687                                  * the end of the pagevec.
688                                  */
689                                 if (i + 1 >= pagevec_count(&pvec))
690                                         nr_pages = 1UL << dax_radix_order(entry);
691                         }
692                         put_unlocked_mapping_entry(mapping, index, entry);
693                         xa_unlock_irq(&mapping->i_pages);
694                         if (page)
695                                 break;
696                 }
697
698                 /*
699                  * We don't expect normal struct page entries to exist in our
700                  * tree, but we keep these pagevec calls so that this code is
701                  * consistent with the common pattern for handling pagevecs
702                  * throughout the kernel.
703                  */
704                 pagevec_remove_exceptionals(&pvec);
705                 pagevec_release(&pvec);
706                 index += nr_pages;
707
708                 if (page)
709                         break;
710         }
711         return page;
712 }
713 EXPORT_SYMBOL_GPL(dax_layout_busy_page);
714
715 static int __dax_invalidate_mapping_entry(struct address_space *mapping,
716                                           pgoff_t index, bool trunc)
717 {
718         int ret = 0;
719         void *entry;
720         struct radix_tree_root *pages = &mapping->i_pages;
721
722         xa_lock_irq(pages);
723         entry = get_unlocked_mapping_entry(mapping, index, NULL);
724         if (!entry || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry)))
725                 goto out;
726         if (!trunc &&
727             (radix_tree_tag_get(pages, index, PAGECACHE_TAG_DIRTY) ||
728              radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE)))
729                 goto out;
730         dax_disassociate_entry(entry, mapping, trunc);
731         radix_tree_delete(pages, index);
732         mapping->nrexceptional--;
733         ret = 1;
734 out:
735         put_unlocked_mapping_entry(mapping, index, entry);
736         xa_unlock_irq(pages);
737         return ret;
738 }
739 /*
740  * Delete exceptional DAX entry at @index from @mapping. Wait for radix tree
741  * entry to get unlocked before deleting it.
742  */
743 int dax_delete_mapping_entry(struct address_space *mapping, pgoff_t index)
744 {
745         int ret = __dax_invalidate_mapping_entry(mapping, index, true);
746
747         /*
748          * This gets called from truncate / punch_hole path. As such, the caller
749          * must hold locks protecting against concurrent modifications of the
750          * radix tree (usually fs-private i_mmap_sem for writing). Since the
751          * caller has seen exceptional entry for this index, we better find it
752          * at that index as well...
753          */
754         WARN_ON_ONCE(!ret);
755         return ret;
756 }
757
758 /*
759  * Invalidate exceptional DAX entry if it is clean.
760  */
761 int dax_invalidate_mapping_entry_sync(struct address_space *mapping,
762                                       pgoff_t index)
763 {
764         return __dax_invalidate_mapping_entry(mapping, index, false);
765 }
766
767 static int copy_user_dax(struct block_device *bdev, struct dax_device *dax_dev,
768                 sector_t sector, size_t size, struct page *to,
769                 unsigned long vaddr)
770 {
771         void *vto, *kaddr;
772         pgoff_t pgoff;
773         long rc;
774         int id;
775
776         rc = bdev_dax_pgoff(bdev, sector, size, &pgoff);
777         if (rc)
778                 return rc;
779
780         id = dax_read_lock();
781         rc = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size), &kaddr, NULL);
782         if (rc < 0) {
783                 dax_read_unlock(id);
784                 return rc;
785         }
786         vto = kmap_atomic(to);
787         copy_user_page(vto, (void __force *)kaddr, vaddr, to);
788         kunmap_atomic(vto);
789         dax_read_unlock(id);
790         return 0;
791 }
792
793 /*
794  * By this point grab_mapping_entry() has ensured that we have a locked entry
795  * of the appropriate size so we don't have to worry about downgrading PMDs to
796  * PTEs.  If we happen to be trying to insert a PTE and there is a PMD
797  * already in the tree, we will skip the insertion and just dirty the PMD as
798  * appropriate.
799  */
800 static void *dax_insert_mapping_entry(struct address_space *mapping,
801                                       struct vm_fault *vmf,
802                                       void *entry, pfn_t pfn_t,
803                                       unsigned long flags, bool dirty)
804 {
805         struct radix_tree_root *pages = &mapping->i_pages;
806         unsigned long pfn = pfn_t_to_pfn(pfn_t);
807         pgoff_t index = vmf->pgoff;
808         void *new_entry;
809
810         if (dirty)
811                 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
812
813         if (dax_is_zero_entry(entry) && !(flags & RADIX_DAX_ZERO_PAGE)) {
814                 /* we are replacing a zero page with block mapping */
815                 if (dax_is_pmd_entry(entry))
816                         unmap_mapping_pages(mapping, index & ~PG_PMD_COLOUR,
817                                                         PG_PMD_NR, false);
818                 else /* pte entry */
819                         unmap_mapping_pages(mapping, vmf->pgoff, 1, false);
820         }
821
822         xa_lock_irq(pages);
823         new_entry = dax_radix_locked_entry(pfn, flags);
824         if (dax_entry_size(entry) != dax_entry_size(new_entry)) {
825                 dax_disassociate_entry(entry, mapping, false);
826                 dax_associate_entry(new_entry, mapping, vmf->vma, vmf->address);
827         }
828
829         if (dax_is_zero_entry(entry) || dax_is_empty_entry(entry)) {
830                 /*
831                  * Only swap our new entry into the radix tree if the current
832                  * entry is a zero page or an empty entry.  If a normal PTE or
833                  * PMD entry is already in the tree, we leave it alone.  This
834                  * means that if we are trying to insert a PTE and the
835                  * existing entry is a PMD, we will just leave the PMD in the
836                  * tree and dirty it if necessary.
837                  */
838                 struct radix_tree_node *node;
839                 void **slot;
840                 void *ret;
841
842                 ret = __radix_tree_lookup(pages, index, &node, &slot);
843                 WARN_ON_ONCE(ret != entry);
844                 __radix_tree_replace(pages, node, slot,
845                                      new_entry, NULL);
846                 entry = new_entry;
847         }
848
849         if (dirty)
850                 radix_tree_tag_set(pages, index, PAGECACHE_TAG_DIRTY);
851
852         xa_unlock_irq(pages);
853         return entry;
854 }
855
856 static inline unsigned long
857 pgoff_address(pgoff_t pgoff, struct vm_area_struct *vma)
858 {
859         unsigned long address;
860
861         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
862         VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
863         return address;
864 }
865
866 /* Walk all mappings of a given index of a file and writeprotect them */
867 static void dax_mapping_entry_mkclean(struct address_space *mapping,
868                                       pgoff_t index, unsigned long pfn)
869 {
870         struct vm_area_struct *vma;
871         pte_t pte, *ptep = NULL;
872         pmd_t *pmdp = NULL;
873         spinlock_t *ptl;
874
875         i_mmap_lock_read(mapping);
876         vma_interval_tree_foreach(vma, &mapping->i_mmap, index, index) {
877                 unsigned long address, start, end;
878
879                 cond_resched();
880
881                 if (!(vma->vm_flags & VM_SHARED))
882                         continue;
883
884                 address = pgoff_address(index, vma);
885
886                 /*
887                  * Note because we provide start/end to follow_pte_pmd it will
888                  * call mmu_notifier_invalidate_range_start() on our behalf
889                  * before taking any lock.
890                  */
891                 if (follow_pte_pmd(vma->vm_mm, address, &start, &end, &ptep, &pmdp, &ptl))
892                         continue;
893
894                 /*
895                  * No need to call mmu_notifier_invalidate_range() as we are
896                  * downgrading page table protection not changing it to point
897                  * to a new page.
898                  *
899                  * See Documentation/vm/mmu_notifier.rst
900                  */
901                 if (pmdp) {
902 #ifdef CONFIG_FS_DAX_PMD
903                         pmd_t pmd;
904
905                         if (pfn != pmd_pfn(*pmdp))
906                                 goto unlock_pmd;
907                         if (!pmd_dirty(*pmdp) && !pmd_write(*pmdp))
908                                 goto unlock_pmd;
909
910                         flush_cache_range(vma, address,
911                                           address + HPAGE_PMD_SIZE);
912                         pmd = pmdp_invalidate(vma, address, pmdp);
913                         pmd = pmd_wrprotect(pmd);
914                         pmd = pmd_mkclean(pmd);
915                         set_pmd_at(vma->vm_mm, address, pmdp, pmd);
916 unlock_pmd:
917 #endif
918                         spin_unlock(ptl);
919                 } else {
920                         if (pfn != pte_pfn(*ptep))
921                                 goto unlock_pte;
922                         if (!pte_dirty(*ptep) && !pte_write(*ptep))
923                                 goto unlock_pte;
924
925                         flush_cache_page(vma, address, pfn);
926                         pte = ptep_clear_flush(vma, address, ptep);
927                         pte = pte_wrprotect(pte);
928                         pte = pte_mkclean(pte);
929                         set_pte_at(vma->vm_mm, address, ptep, pte);
930 unlock_pte:
931                         pte_unmap_unlock(ptep, ptl);
932                 }
933
934                 mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
935         }
936         i_mmap_unlock_read(mapping);
937 }
938
939 static int dax_writeback_one(struct dax_device *dax_dev,
940                 struct address_space *mapping, pgoff_t index, void *entry)
941 {
942         struct radix_tree_root *pages = &mapping->i_pages;
943         void *entry2, **slot;
944         unsigned long pfn;
945         long ret = 0;
946         size_t size;
947
948         /*
949          * A page got tagged dirty in DAX mapping? Something is seriously
950          * wrong.
951          */
952         if (WARN_ON(!radix_tree_exceptional_entry(entry)))
953                 return -EIO;
954
955         xa_lock_irq(pages);
956         entry2 = get_unlocked_mapping_entry(mapping, index, &slot);
957         /* Entry got punched out / reallocated? */
958         if (!entry2 || WARN_ON_ONCE(!radix_tree_exceptional_entry(entry2)))
959                 goto put_unlocked;
960         /*
961          * Entry got reallocated elsewhere? No need to writeback. We have to
962          * compare pfns as we must not bail out due to difference in lockbit
963          * or entry type.
964          */
965         if (dax_radix_pfn(entry2) != dax_radix_pfn(entry))
966                 goto put_unlocked;
967         if (WARN_ON_ONCE(dax_is_empty_entry(entry) ||
968                                 dax_is_zero_entry(entry))) {
969                 ret = -EIO;
970                 goto put_unlocked;
971         }
972
973         /* Another fsync thread may have already written back this entry */
974         if (!radix_tree_tag_get(pages, index, PAGECACHE_TAG_TOWRITE))
975                 goto put_unlocked;
976         /* Lock the entry to serialize with page faults */
977         entry = lock_slot(mapping, slot);
978         /*
979          * We can clear the tag now but we have to be careful so that concurrent
980          * dax_writeback_one() calls for the same index cannot finish before we
981          * actually flush the caches. This is achieved as the calls will look
982          * at the entry only under the i_pages lock and once they do that
983          * they will see the entry locked and wait for it to unlock.
984          */
985         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_TOWRITE);
986         xa_unlock_irq(pages);
987
988         /*
989          * Even if dax_writeback_mapping_range() was given a wbc->range_start
990          * in the middle of a PMD, the 'index' we are given will be aligned to
991          * the start index of the PMD, as will the pfn we pull from 'entry'.
992          * This allows us to flush for PMD_SIZE and not have to worry about
993          * partial PMD writebacks.
994          */
995         pfn = dax_radix_pfn(entry);
996         size = PAGE_SIZE << dax_radix_order(entry);
997
998         dax_mapping_entry_mkclean(mapping, index, pfn);
999         dax_flush(dax_dev, page_address(pfn_to_page(pfn)), size);
1000         /*
1001          * After we have flushed the cache, we can clear the dirty tag. There
1002          * cannot be new dirty data in the pfn after the flush has completed as
1003          * the pfn mappings are writeprotected and fault waits for mapping
1004          * entry lock.
1005          */
1006         xa_lock_irq(pages);
1007         radix_tree_tag_clear(pages, index, PAGECACHE_TAG_DIRTY);
1008         xa_unlock_irq(pages);
1009         trace_dax_writeback_one(mapping->host, index, size >> PAGE_SHIFT);
1010         put_locked_mapping_entry(mapping, index);
1011         return ret;
1012
1013  put_unlocked:
1014         put_unlocked_mapping_entry(mapping, index, entry2);
1015         xa_unlock_irq(pages);
1016         return ret;
1017 }
1018
1019 /*
1020  * Flush the mapping to the persistent domain within the byte range of [start,
1021  * end]. This is required by data integrity operations to ensure file data is
1022  * on persistent storage prior to completion of the operation.
1023  */
1024 int dax_writeback_mapping_range(struct address_space *mapping,
1025                 struct block_device *bdev, struct writeback_control *wbc)
1026 {
1027         struct inode *inode = mapping->host;
1028         pgoff_t start_index, end_index;
1029         pgoff_t indices[PAGEVEC_SIZE];
1030         struct dax_device *dax_dev;
1031         struct pagevec pvec;
1032         bool done = false;
1033         int i, ret = 0;
1034
1035         if (WARN_ON_ONCE(inode->i_blkbits != PAGE_SHIFT))
1036                 return -EIO;
1037
1038         if (!mapping->nrexceptional || wbc->sync_mode != WB_SYNC_ALL)
1039                 return 0;
1040
1041         dax_dev = dax_get_by_host(bdev->bd_disk->disk_name);
1042         if (!dax_dev)
1043                 return -EIO;
1044
1045         start_index = wbc->range_start >> PAGE_SHIFT;
1046         end_index = wbc->range_end >> PAGE_SHIFT;
1047
1048         trace_dax_writeback_range(inode, start_index, end_index);
1049
1050         tag_pages_for_writeback(mapping, start_index, end_index);
1051
1052         pagevec_init(&pvec);
1053         while (!done) {
1054                 pvec.nr = find_get_entries_tag(mapping, start_index,
1055                                 PAGECACHE_TAG_TOWRITE, PAGEVEC_SIZE,
1056                                 pvec.pages, indices);
1057
1058                 if (pvec.nr == 0)
1059                         break;
1060
1061                 for (i = 0; i < pvec.nr; i++) {
1062                         if (indices[i] > end_index) {
1063                                 done = true;
1064                                 break;
1065                         }
1066
1067                         ret = dax_writeback_one(dax_dev, mapping, indices[i],
1068                                         pvec.pages[i]);
1069                         if (ret < 0) {
1070                                 mapping_set_error(mapping, ret);
1071                                 goto out;
1072                         }
1073                 }
1074                 start_index = indices[pvec.nr - 1] + 1;
1075         }
1076 out:
1077         put_dax(dax_dev);
1078         trace_dax_writeback_range_done(inode, start_index, end_index);
1079         return (ret < 0 ? ret : 0);
1080 }
1081 EXPORT_SYMBOL_GPL(dax_writeback_mapping_range);
1082
1083 static sector_t dax_iomap_sector(struct iomap *iomap, loff_t pos)
1084 {
1085         return (iomap->addr + (pos & PAGE_MASK) - iomap->offset) >> 9;
1086 }
1087
1088 static int dax_iomap_pfn(struct iomap *iomap, loff_t pos, size_t size,
1089                          pfn_t *pfnp)
1090 {
1091         const sector_t sector = dax_iomap_sector(iomap, pos);
1092         pgoff_t pgoff;
1093         int id, rc;
1094         long length;
1095
1096         rc = bdev_dax_pgoff(iomap->bdev, sector, size, &pgoff);
1097         if (rc)
1098                 return rc;
1099         id = dax_read_lock();
1100         length = dax_direct_access(iomap->dax_dev, pgoff, PHYS_PFN(size),
1101                                    NULL, pfnp);
1102         if (length < 0) {
1103                 rc = length;
1104                 goto out;
1105         }
1106         rc = -EINVAL;
1107         if (PFN_PHYS(length) < size)
1108                 goto out;
1109         if (pfn_t_to_pfn(*pfnp) & (PHYS_PFN(size)-1))
1110                 goto out;
1111         /* For larger pages we need devmap */
1112         if (length > 1 && !pfn_t_devmap(*pfnp))
1113                 goto out;
1114         rc = 0;
1115 out:
1116         dax_read_unlock(id);
1117         return rc;
1118 }
1119
1120 /*
1121  * The user has performed a load from a hole in the file.  Allocating a new
1122  * page in the file would cause excessive storage usage for workloads with
1123  * sparse files.  Instead we insert a read-only mapping of the 4k zero page.
1124  * If this page is ever written to we will re-fault and change the mapping to
1125  * point to real DAX storage instead.
1126  */
1127 static vm_fault_t dax_load_hole(struct address_space *mapping, void *entry,
1128                          struct vm_fault *vmf)
1129 {
1130         struct inode *inode = mapping->host;
1131         unsigned long vaddr = vmf->address;
1132         pfn_t pfn = pfn_to_pfn_t(my_zero_pfn(vaddr));
1133         vm_fault_t ret;
1134
1135         dax_insert_mapping_entry(mapping, vmf, entry, pfn, RADIX_DAX_ZERO_PAGE,
1136                         false);
1137         ret = vmf_insert_mixed(vmf->vma, vaddr, pfn);
1138         trace_dax_load_hole(inode, vmf, ret);
1139         return ret;
1140 }
1141
1142 static bool dax_range_is_aligned(struct block_device *bdev,
1143                                  unsigned int offset, unsigned int length)
1144 {
1145         unsigned short sector_size = bdev_logical_block_size(bdev);
1146
1147         if (!IS_ALIGNED(offset, sector_size))
1148                 return false;
1149         if (!IS_ALIGNED(length, sector_size))
1150                 return false;
1151
1152         return true;
1153 }
1154
1155 int __dax_zero_page_range(struct block_device *bdev,
1156                 struct dax_device *dax_dev, sector_t sector,
1157                 unsigned int offset, unsigned int size)
1158 {
1159         if (dax_range_is_aligned(bdev, offset, size)) {
1160                 sector_t start_sector = sector + (offset >> 9);
1161
1162                 return blkdev_issue_zeroout(bdev, start_sector,
1163                                 size >> 9, GFP_NOFS, 0);
1164         } else {
1165                 pgoff_t pgoff;
1166                 long rc, id;
1167                 void *kaddr;
1168
1169                 rc = bdev_dax_pgoff(bdev, sector, PAGE_SIZE, &pgoff);
1170                 if (rc)
1171                         return rc;
1172
1173                 id = dax_read_lock();
1174                 rc = dax_direct_access(dax_dev, pgoff, 1, &kaddr, NULL);
1175                 if (rc < 0) {
1176                         dax_read_unlock(id);
1177                         return rc;
1178                 }
1179                 memset(kaddr + offset, 0, size);
1180                 dax_flush(dax_dev, kaddr + offset, size);
1181                 dax_read_unlock(id);
1182         }
1183         return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(__dax_zero_page_range);
1186
1187 static loff_t
1188 dax_iomap_actor(struct inode *inode, loff_t pos, loff_t length, void *data,
1189                 struct iomap *iomap)
1190 {
1191         struct block_device *bdev = iomap->bdev;
1192         struct dax_device *dax_dev = iomap->dax_dev;
1193         struct iov_iter *iter = data;
1194         loff_t end = pos + length, done = 0;
1195         ssize_t ret = 0;
1196         size_t xfer;
1197         int id;
1198
1199         if (iov_iter_rw(iter) == READ) {
1200                 end = min(end, i_size_read(inode));
1201                 if (pos >= end)
1202                         return 0;
1203
1204                 if (iomap->type == IOMAP_HOLE || iomap->type == IOMAP_UNWRITTEN)
1205                         return iov_iter_zero(min(length, end - pos), iter);
1206         }
1207
1208         if (WARN_ON_ONCE(iomap->type != IOMAP_MAPPED))
1209                 return -EIO;
1210
1211         /*
1212          * Write can allocate block for an area which has a hole page mapped
1213          * into page tables. We have to tear down these mappings so that data
1214          * written by write(2) is visible in mmap.
1215          */
1216         if (iomap->flags & IOMAP_F_NEW) {
1217                 invalidate_inode_pages2_range(inode->i_mapping,
1218                                               pos >> PAGE_SHIFT,
1219                                               (end - 1) >> PAGE_SHIFT);
1220         }
1221
1222         id = dax_read_lock();
1223         while (pos < end) {
1224                 unsigned offset = pos & (PAGE_SIZE - 1);
1225                 const size_t size = ALIGN(length + offset, PAGE_SIZE);
1226                 const sector_t sector = dax_iomap_sector(iomap, pos);
1227                 ssize_t map_len;
1228                 pgoff_t pgoff;
1229                 void *kaddr;
1230
1231                 if (fatal_signal_pending(current)) {
1232                         ret = -EINTR;
1233                         break;
1234                 }
1235
1236                 ret = bdev_dax_pgoff(bdev, sector, size, &pgoff);
1237                 if (ret)
1238                         break;
1239
1240                 map_len = dax_direct_access(dax_dev, pgoff, PHYS_PFN(size),
1241                                 &kaddr, NULL);
1242                 if (map_len < 0) {
1243                         ret = map_len;
1244                         break;
1245                 }
1246
1247                 map_len = PFN_PHYS(map_len);
1248                 kaddr += offset;
1249                 map_len -= offset;
1250                 if (map_len > end - pos)
1251                         map_len = end - pos;
1252
1253                 /*
1254                  * The userspace address for the memory copy has already been
1255                  * validated via access_ok() in either vfs_read() or
1256                  * vfs_write(), depending on which operation we are doing.
1257                  */
1258                 if (iov_iter_rw(iter) == WRITE)
1259                         xfer = dax_copy_from_iter(dax_dev, pgoff, kaddr,
1260                                         map_len, iter);
1261                 else
1262                         xfer = dax_copy_to_iter(dax_dev, pgoff, kaddr,
1263                                         map_len, iter);
1264
1265                 pos += xfer;
1266                 length -= xfer;
1267                 done += xfer;
1268
1269                 if (xfer == 0)
1270                         ret = -EFAULT;
1271                 if (xfer < map_len)
1272                         break;
1273         }
1274         dax_read_unlock(id);
1275
1276         return done ? done : ret;
1277 }
1278
1279 /**
1280  * dax_iomap_rw - Perform I/O to a DAX file
1281  * @iocb:       The control block for this I/O
1282  * @iter:       The addresses to do I/O from or to
1283  * @ops:        iomap ops passed from the file system
1284  *
1285  * This function performs read and write operations to directly mapped
1286  * persistent memory.  The callers needs to take care of read/write exclusion
1287  * and evicting any page cache pages in the region under I/O.
1288  */
1289 ssize_t
1290 dax_iomap_rw(struct kiocb *iocb, struct iov_iter *iter,
1291                 const struct iomap_ops *ops)
1292 {
1293         struct address_space *mapping = iocb->ki_filp->f_mapping;
1294         struct inode *inode = mapping->host;
1295         loff_t pos = iocb->ki_pos, ret = 0, done = 0;
1296         unsigned flags = 0;
1297
1298         if (iov_iter_rw(iter) == WRITE) {
1299                 lockdep_assert_held_exclusive(&inode->i_rwsem);
1300                 flags |= IOMAP_WRITE;
1301         } else {
1302                 lockdep_assert_held(&inode->i_rwsem);
1303         }
1304
1305         if (iocb->ki_flags & IOCB_NOWAIT)
1306                 flags |= IOMAP_NOWAIT;
1307
1308         while (iov_iter_count(iter)) {
1309                 ret = iomap_apply(inode, pos, iov_iter_count(iter), flags, ops,
1310                                 iter, dax_iomap_actor);
1311                 if (ret <= 0)
1312                         break;
1313                 pos += ret;
1314                 done += ret;
1315         }
1316
1317         iocb->ki_pos += done;
1318         return done ? done : ret;
1319 }
1320 EXPORT_SYMBOL_GPL(dax_iomap_rw);
1321
1322 static vm_fault_t dax_fault_return(int error)
1323 {
1324         if (error == 0)
1325                 return VM_FAULT_NOPAGE;
1326         if (error == -ENOMEM)
1327                 return VM_FAULT_OOM;
1328         return VM_FAULT_SIGBUS;
1329 }
1330
1331 /*
1332  * MAP_SYNC on a dax mapping guarantees dirty metadata is
1333  * flushed on write-faults (non-cow), but not read-faults.
1334  */
1335 static bool dax_fault_is_synchronous(unsigned long flags,
1336                 struct vm_area_struct *vma, struct iomap *iomap)
1337 {
1338         return (flags & IOMAP_WRITE) && (vma->vm_flags & VM_SYNC)
1339                 && (iomap->flags & IOMAP_F_DIRTY);
1340 }
1341
1342 static vm_fault_t dax_iomap_pte_fault(struct vm_fault *vmf, pfn_t *pfnp,
1343                                int *iomap_errp, const struct iomap_ops *ops)
1344 {
1345         struct vm_area_struct *vma = vmf->vma;
1346         struct address_space *mapping = vma->vm_file->f_mapping;
1347         struct inode *inode = mapping->host;
1348         unsigned long vaddr = vmf->address;
1349         loff_t pos = (loff_t)vmf->pgoff << PAGE_SHIFT;
1350         struct iomap iomap = { 0 };
1351         unsigned flags = IOMAP_FAULT;
1352         int error, major = 0;
1353         bool write = vmf->flags & FAULT_FLAG_WRITE;
1354         bool sync;
1355         vm_fault_t ret = 0;
1356         void *entry;
1357         pfn_t pfn;
1358
1359         trace_dax_pte_fault(inode, vmf, ret);
1360         /*
1361          * Check whether offset isn't beyond end of file now. Caller is supposed
1362          * to hold locks serializing us with truncate / punch hole so this is
1363          * a reliable test.
1364          */
1365         if (pos >= i_size_read(inode)) {
1366                 ret = VM_FAULT_SIGBUS;
1367                 goto out;
1368         }
1369
1370         if (write && !vmf->cow_page)
1371                 flags |= IOMAP_WRITE;
1372
1373         entry = grab_mapping_entry(mapping, vmf->pgoff, 0);
1374         if (IS_ERR(entry)) {
1375                 ret = dax_fault_return(PTR_ERR(entry));
1376                 goto out;
1377         }
1378
1379         /*
1380          * It is possible, particularly with mixed reads & writes to private
1381          * mappings, that we have raced with a PMD fault that overlaps with
1382          * the PTE we need to set up.  If so just return and the fault will be
1383          * retried.
1384          */
1385         if (pmd_trans_huge(*vmf->pmd) || pmd_devmap(*vmf->pmd)) {
1386                 ret = VM_FAULT_NOPAGE;
1387                 goto unlock_entry;
1388         }
1389
1390         /*
1391          * Note that we don't bother to use iomap_apply here: DAX required
1392          * the file system block size to be equal the page size, which means
1393          * that we never have to deal with more than a single extent here.
1394          */
1395         error = ops->iomap_begin(inode, pos, PAGE_SIZE, flags, &iomap);
1396         if (iomap_errp)
1397                 *iomap_errp = error;
1398         if (error) {
1399                 ret = dax_fault_return(error);
1400                 goto unlock_entry;
1401         }
1402         if (WARN_ON_ONCE(iomap.offset + iomap.length < pos + PAGE_SIZE)) {
1403                 error = -EIO;   /* fs corruption? */
1404                 goto error_finish_iomap;
1405         }
1406
1407         if (vmf->cow_page) {
1408                 sector_t sector = dax_iomap_sector(&iomap, pos);
1409
1410                 switch (iomap.type) {
1411                 case IOMAP_HOLE:
1412                 case IOMAP_UNWRITTEN:
1413                         clear_user_highpage(vmf->cow_page, vaddr);
1414                         break;
1415                 case IOMAP_MAPPED:
1416                         error = copy_user_dax(iomap.bdev, iomap.dax_dev,
1417                                         sector, PAGE_SIZE, vmf->cow_page, vaddr);
1418                         break;
1419                 default:
1420                         WARN_ON_ONCE(1);
1421                         error = -EIO;
1422                         break;
1423                 }
1424
1425                 if (error)
1426                         goto error_finish_iomap;
1427
1428                 __SetPageUptodate(vmf->cow_page);
1429                 ret = finish_fault(vmf);
1430                 if (!ret)
1431                         ret = VM_FAULT_DONE_COW;
1432                 goto finish_iomap;
1433         }
1434
1435         sync = dax_fault_is_synchronous(flags, vma, &iomap);
1436
1437         switch (iomap.type) {
1438         case IOMAP_MAPPED:
1439                 if (iomap.flags & IOMAP_F_NEW) {
1440                         count_vm_event(PGMAJFAULT);
1441                         count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
1442                         major = VM_FAULT_MAJOR;
1443                 }
1444                 error = dax_iomap_pfn(&iomap, pos, PAGE_SIZE, &pfn);
1445                 if (error < 0)
1446                         goto error_finish_iomap;
1447
1448                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1449                                                  0, write && !sync);
1450
1451                 /*
1452                  * If we are doing synchronous page fault and inode needs fsync,
1453                  * we can insert PTE into page tables only after that happens.
1454                  * Skip insertion for now and return the pfn so that caller can
1455                  * insert it after fsync is done.
1456                  */
1457                 if (sync) {
1458                         if (WARN_ON_ONCE(!pfnp)) {
1459                                 error = -EIO;
1460                                 goto error_finish_iomap;
1461                         }
1462                         *pfnp = pfn;
1463                         ret = VM_FAULT_NEEDDSYNC | major;
1464                         goto finish_iomap;
1465                 }
1466                 trace_dax_insert_mapping(inode, vmf, entry);
1467                 if (write)
1468                         ret = vmf_insert_mixed_mkwrite(vma, vaddr, pfn);
1469                 else
1470                         ret = vmf_insert_mixed(vma, vaddr, pfn);
1471
1472                 goto finish_iomap;
1473         case IOMAP_UNWRITTEN:
1474         case IOMAP_HOLE:
1475                 if (!write) {
1476                         ret = dax_load_hole(mapping, entry, vmf);
1477                         goto finish_iomap;
1478                 }
1479                 /*FALLTHRU*/
1480         default:
1481                 WARN_ON_ONCE(1);
1482                 error = -EIO;
1483                 break;
1484         }
1485
1486  error_finish_iomap:
1487         ret = dax_fault_return(error);
1488  finish_iomap:
1489         if (ops->iomap_end) {
1490                 int copied = PAGE_SIZE;
1491
1492                 if (ret & VM_FAULT_ERROR)
1493                         copied = 0;
1494                 /*
1495                  * The fault is done by now and there's no way back (other
1496                  * thread may be already happily using PTE we have installed).
1497                  * Just ignore error from ->iomap_end since we cannot do much
1498                  * with it.
1499                  */
1500                 ops->iomap_end(inode, pos, PAGE_SIZE, copied, flags, &iomap);
1501         }
1502  unlock_entry:
1503         put_locked_mapping_entry(mapping, vmf->pgoff);
1504  out:
1505         trace_dax_pte_fault_done(inode, vmf, ret);
1506         return ret | major;
1507 }
1508
1509 #ifdef CONFIG_FS_DAX_PMD
1510 static vm_fault_t dax_pmd_load_hole(struct vm_fault *vmf, struct iomap *iomap,
1511                 void *entry)
1512 {
1513         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1514         unsigned long pmd_addr = vmf->address & PMD_MASK;
1515         struct inode *inode = mapping->host;
1516         struct page *zero_page;
1517         void *ret = NULL;
1518         spinlock_t *ptl;
1519         pmd_t pmd_entry;
1520         pfn_t pfn;
1521
1522         zero_page = mm_get_huge_zero_page(vmf->vma->vm_mm);
1523
1524         if (unlikely(!zero_page))
1525                 goto fallback;
1526
1527         pfn = page_to_pfn_t(zero_page);
1528         ret = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1529                         RADIX_DAX_PMD | RADIX_DAX_ZERO_PAGE, false);
1530
1531         ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1532         if (!pmd_none(*(vmf->pmd))) {
1533                 spin_unlock(ptl);
1534                 goto fallback;
1535         }
1536
1537         pmd_entry = mk_pmd(zero_page, vmf->vma->vm_page_prot);
1538         pmd_entry = pmd_mkhuge(pmd_entry);
1539         set_pmd_at(vmf->vma->vm_mm, pmd_addr, vmf->pmd, pmd_entry);
1540         spin_unlock(ptl);
1541         trace_dax_pmd_load_hole(inode, vmf, zero_page, ret);
1542         return VM_FAULT_NOPAGE;
1543
1544 fallback:
1545         trace_dax_pmd_load_hole_fallback(inode, vmf, zero_page, ret);
1546         return VM_FAULT_FALLBACK;
1547 }
1548
1549 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1550                                const struct iomap_ops *ops)
1551 {
1552         struct vm_area_struct *vma = vmf->vma;
1553         struct address_space *mapping = vma->vm_file->f_mapping;
1554         unsigned long pmd_addr = vmf->address & PMD_MASK;
1555         bool write = vmf->flags & FAULT_FLAG_WRITE;
1556         bool sync;
1557         unsigned int iomap_flags = (write ? IOMAP_WRITE : 0) | IOMAP_FAULT;
1558         struct inode *inode = mapping->host;
1559         vm_fault_t result = VM_FAULT_FALLBACK;
1560         struct iomap iomap = { 0 };
1561         pgoff_t max_pgoff, pgoff;
1562         void *entry;
1563         loff_t pos;
1564         int error;
1565         pfn_t pfn;
1566
1567         /*
1568          * Check whether offset isn't beyond end of file now. Caller is
1569          * supposed to hold locks serializing us with truncate / punch hole so
1570          * this is a reliable test.
1571          */
1572         pgoff = linear_page_index(vma, pmd_addr);
1573         max_pgoff = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
1574
1575         trace_dax_pmd_fault(inode, vmf, max_pgoff, 0);
1576
1577         /*
1578          * Make sure that the faulting address's PMD offset (color) matches
1579          * the PMD offset from the start of the file.  This is necessary so
1580          * that a PMD range in the page table overlaps exactly with a PMD
1581          * range in the radix tree.
1582          */
1583         if ((vmf->pgoff & PG_PMD_COLOUR) !=
1584             ((vmf->address >> PAGE_SHIFT) & PG_PMD_COLOUR))
1585                 goto fallback;
1586
1587         /* Fall back to PTEs if we're going to COW */
1588         if (write && !(vma->vm_flags & VM_SHARED))
1589                 goto fallback;
1590
1591         /* If the PMD would extend outside the VMA */
1592         if (pmd_addr < vma->vm_start)
1593                 goto fallback;
1594         if ((pmd_addr + PMD_SIZE) > vma->vm_end)
1595                 goto fallback;
1596
1597         if (pgoff >= max_pgoff) {
1598                 result = VM_FAULT_SIGBUS;
1599                 goto out;
1600         }
1601
1602         /* If the PMD would extend beyond the file size */
1603         if ((pgoff | PG_PMD_COLOUR) >= max_pgoff)
1604                 goto fallback;
1605
1606         /*
1607          * grab_mapping_entry() will make sure we get a 2MiB empty entry, a
1608          * 2MiB zero page entry or a DAX PMD.  If it can't (because a 4k page
1609          * is already in the tree, for instance), it will return -EEXIST and
1610          * we just fall back to 4k entries.
1611          */
1612         entry = grab_mapping_entry(mapping, pgoff, RADIX_DAX_PMD);
1613         if (IS_ERR(entry))
1614                 goto fallback;
1615
1616         /*
1617          * It is possible, particularly with mixed reads & writes to private
1618          * mappings, that we have raced with a PTE fault that overlaps with
1619          * the PMD we need to set up.  If so just return and the fault will be
1620          * retried.
1621          */
1622         if (!pmd_none(*vmf->pmd) && !pmd_trans_huge(*vmf->pmd) &&
1623                         !pmd_devmap(*vmf->pmd)) {
1624                 result = 0;
1625                 goto unlock_entry;
1626         }
1627
1628         /*
1629          * Note that we don't use iomap_apply here.  We aren't doing I/O, only
1630          * setting up a mapping, so really we're using iomap_begin() as a way
1631          * to look up our filesystem block.
1632          */
1633         pos = (loff_t)pgoff << PAGE_SHIFT;
1634         error = ops->iomap_begin(inode, pos, PMD_SIZE, iomap_flags, &iomap);
1635         if (error)
1636                 goto unlock_entry;
1637
1638         if (iomap.offset + iomap.length < pos + PMD_SIZE)
1639                 goto finish_iomap;
1640
1641         sync = dax_fault_is_synchronous(iomap_flags, vma, &iomap);
1642
1643         switch (iomap.type) {
1644         case IOMAP_MAPPED:
1645                 error = dax_iomap_pfn(&iomap, pos, PMD_SIZE, &pfn);
1646                 if (error < 0)
1647                         goto finish_iomap;
1648
1649                 entry = dax_insert_mapping_entry(mapping, vmf, entry, pfn,
1650                                                 RADIX_DAX_PMD, write && !sync);
1651
1652                 /*
1653                  * If we are doing synchronous page fault and inode needs fsync,
1654                  * we can insert PMD into page tables only after that happens.
1655                  * Skip insertion for now and return the pfn so that caller can
1656                  * insert it after fsync is done.
1657                  */
1658                 if (sync) {
1659                         if (WARN_ON_ONCE(!pfnp))
1660                                 goto finish_iomap;
1661                         *pfnp = pfn;
1662                         result = VM_FAULT_NEEDDSYNC;
1663                         goto finish_iomap;
1664                 }
1665
1666                 trace_dax_pmd_insert_mapping(inode, vmf, PMD_SIZE, pfn, entry);
1667                 result = vmf_insert_pfn_pmd(vmf, pfn, write);
1668                 break;
1669         case IOMAP_UNWRITTEN:
1670         case IOMAP_HOLE:
1671                 if (WARN_ON_ONCE(write))
1672                         break;
1673                 result = dax_pmd_load_hole(vmf, &iomap, entry);
1674                 break;
1675         default:
1676                 WARN_ON_ONCE(1);
1677                 break;
1678         }
1679
1680  finish_iomap:
1681         if (ops->iomap_end) {
1682                 int copied = PMD_SIZE;
1683
1684                 if (result == VM_FAULT_FALLBACK)
1685                         copied = 0;
1686                 /*
1687                  * The fault is done by now and there's no way back (other
1688                  * thread may be already happily using PMD we have installed).
1689                  * Just ignore error from ->iomap_end since we cannot do much
1690                  * with it.
1691                  */
1692                 ops->iomap_end(inode, pos, PMD_SIZE, copied, iomap_flags,
1693                                 &iomap);
1694         }
1695  unlock_entry:
1696         put_locked_mapping_entry(mapping, pgoff);
1697  fallback:
1698         if (result == VM_FAULT_FALLBACK) {
1699                 split_huge_pmd(vma, vmf->pmd, vmf->address);
1700                 count_vm_event(THP_FAULT_FALLBACK);
1701         }
1702 out:
1703         trace_dax_pmd_fault_done(inode, vmf, max_pgoff, result);
1704         return result;
1705 }
1706 #else
1707 static vm_fault_t dax_iomap_pmd_fault(struct vm_fault *vmf, pfn_t *pfnp,
1708                                const struct iomap_ops *ops)
1709 {
1710         return VM_FAULT_FALLBACK;
1711 }
1712 #endif /* CONFIG_FS_DAX_PMD */
1713
1714 /**
1715  * dax_iomap_fault - handle a page fault on a DAX file
1716  * @vmf: The description of the fault
1717  * @pe_size: Size of the page to fault in
1718  * @pfnp: PFN to insert for synchronous faults if fsync is required
1719  * @iomap_errp: Storage for detailed error code in case of error
1720  * @ops: Iomap ops passed from the file system
1721  *
1722  * When a page fault occurs, filesystems may call this helper in
1723  * their fault handler for DAX files. dax_iomap_fault() assumes the caller
1724  * has done all the necessary locking for page fault to proceed
1725  * successfully.
1726  */
1727 vm_fault_t dax_iomap_fault(struct vm_fault *vmf, enum page_entry_size pe_size,
1728                     pfn_t *pfnp, int *iomap_errp, const struct iomap_ops *ops)
1729 {
1730         switch (pe_size) {
1731         case PE_SIZE_PTE:
1732                 return dax_iomap_pte_fault(vmf, pfnp, iomap_errp, ops);
1733         case PE_SIZE_PMD:
1734                 return dax_iomap_pmd_fault(vmf, pfnp, ops);
1735         default:
1736                 return VM_FAULT_FALLBACK;
1737         }
1738 }
1739 EXPORT_SYMBOL_GPL(dax_iomap_fault);
1740
1741 /**
1742  * dax_insert_pfn_mkwrite - insert PTE or PMD entry into page tables
1743  * @vmf: The description of the fault
1744  * @pe_size: Size of entry to be inserted
1745  * @pfn: PFN to insert
1746  *
1747  * This function inserts writeable PTE or PMD entry into page tables for mmaped
1748  * DAX file.  It takes care of marking corresponding radix tree entry as dirty
1749  * as well.
1750  */
1751 static vm_fault_t dax_insert_pfn_mkwrite(struct vm_fault *vmf,
1752                                   enum page_entry_size pe_size,
1753                                   pfn_t pfn)
1754 {
1755         struct address_space *mapping = vmf->vma->vm_file->f_mapping;
1756         void *entry, **slot;
1757         pgoff_t index = vmf->pgoff;
1758         vm_fault_t ret;
1759
1760         xa_lock_irq(&mapping->i_pages);
1761         entry = get_unlocked_mapping_entry(mapping, index, &slot);
1762         /* Did we race with someone splitting entry or so? */
1763         if (!entry ||
1764             (pe_size == PE_SIZE_PTE && !dax_is_pte_entry(entry)) ||
1765             (pe_size == PE_SIZE_PMD && !dax_is_pmd_entry(entry))) {
1766                 put_unlocked_mapping_entry(mapping, index, entry);
1767                 xa_unlock_irq(&mapping->i_pages);
1768                 trace_dax_insert_pfn_mkwrite_no_entry(mapping->host, vmf,
1769                                                       VM_FAULT_NOPAGE);
1770                 return VM_FAULT_NOPAGE;
1771         }
1772         radix_tree_tag_set(&mapping->i_pages, index, PAGECACHE_TAG_DIRTY);
1773         entry = lock_slot(mapping, slot);
1774         xa_unlock_irq(&mapping->i_pages);
1775         switch (pe_size) {
1776         case PE_SIZE_PTE:
1777                 ret = vmf_insert_mixed_mkwrite(vmf->vma, vmf->address, pfn);
1778                 break;
1779 #ifdef CONFIG_FS_DAX_PMD
1780         case PE_SIZE_PMD:
1781                 ret = vmf_insert_pfn_pmd(vmf, pfn, FAULT_FLAG_WRITE);
1782                 break;
1783 #endif
1784         default:
1785                 ret = VM_FAULT_FALLBACK;
1786         }
1787         put_locked_mapping_entry(mapping, index);
1788         trace_dax_insert_pfn_mkwrite(mapping->host, vmf, ret);
1789         return ret;
1790 }
1791
1792 /**
1793  * dax_finish_sync_fault - finish synchronous page fault
1794  * @vmf: The description of the fault
1795  * @pe_size: Size of entry to be inserted
1796  * @pfn: PFN to insert
1797  *
1798  * This function ensures that the file range touched by the page fault is
1799  * stored persistently on the media and handles inserting of appropriate page
1800  * table entry.
1801  */
1802 vm_fault_t dax_finish_sync_fault(struct vm_fault *vmf,
1803                 enum page_entry_size pe_size, pfn_t pfn)
1804 {
1805         int err;
1806         loff_t start = ((loff_t)vmf->pgoff) << PAGE_SHIFT;
1807         size_t len = 0;
1808
1809         if (pe_size == PE_SIZE_PTE)
1810                 len = PAGE_SIZE;
1811         else if (pe_size == PE_SIZE_PMD)
1812                 len = PMD_SIZE;
1813         else
1814                 WARN_ON_ONCE(1);
1815         err = vfs_fsync_range(vmf->vma->vm_file, start, start + len - 1, 1);
1816         if (err)
1817                 return VM_FAULT_SIGBUS;
1818         return dax_insert_pfn_mkwrite(vmf, pe_size, pfn);
1819 }
1820 EXPORT_SYMBOL_GPL(dax_finish_sync_fault);