GNU Linux-libre 4.19.286-gnu1
[releases.git] / fs / ecryptfs / crypto.c
1 /**
2  * eCryptfs: Linux filesystem encryption layer
3  *
4  * Copyright (C) 1997-2004 Erez Zadok
5  * Copyright (C) 2001-2004 Stony Brook University
6  * Copyright (C) 2004-2007 International Business Machines Corp.
7  *   Author(s): Michael A. Halcrow <mahalcro@us.ibm.com>
8  *              Michael C. Thompson <mcthomps@us.ibm.com>
9  *
10  * This program is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU General Public License as
12  * published by the Free Software Foundation; either version 2 of the
13  * License, or (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18  * General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License
21  * along with this program; if not, write to the Free Software
22  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
23  * 02111-1307, USA.
24  */
25
26 #include <crypto/hash.h>
27 #include <crypto/skcipher.h>
28 #include <linux/fs.h>
29 #include <linux/mount.h>
30 #include <linux/pagemap.h>
31 #include <linux/random.h>
32 #include <linux/compiler.h>
33 #include <linux/key.h>
34 #include <linux/namei.h>
35 #include <linux/file.h>
36 #include <linux/scatterlist.h>
37 #include <linux/slab.h>
38 #include <asm/unaligned.h>
39 #include <linux/kernel.h>
40 #include "ecryptfs_kernel.h"
41
42 #define DECRYPT         0
43 #define ENCRYPT         1
44
45 /**
46  * ecryptfs_from_hex
47  * @dst: Buffer to take the bytes from src hex; must be at least of
48  *       size (src_size / 2)
49  * @src: Buffer to be converted from a hex string representation to raw value
50  * @dst_size: size of dst buffer, or number of hex characters pairs to convert
51  */
52 void ecryptfs_from_hex(char *dst, char *src, int dst_size)
53 {
54         int x;
55         char tmp[3] = { 0, };
56
57         for (x = 0; x < dst_size; x++) {
58                 tmp[0] = src[x * 2];
59                 tmp[1] = src[x * 2 + 1];
60                 dst[x] = (unsigned char)simple_strtol(tmp, NULL, 16);
61         }
62 }
63
64 static int ecryptfs_hash_digest(struct crypto_shash *tfm,
65                                 char *src, int len, char *dst)
66 {
67         SHASH_DESC_ON_STACK(desc, tfm);
68         int err;
69
70         desc->tfm = tfm;
71         desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
72         err = crypto_shash_digest(desc, src, len, dst);
73         shash_desc_zero(desc);
74         return err;
75 }
76
77 /**
78  * ecryptfs_calculate_md5 - calculates the md5 of @src
79  * @dst: Pointer to 16 bytes of allocated memory
80  * @crypt_stat: Pointer to crypt_stat struct for the current inode
81  * @src: Data to be md5'd
82  * @len: Length of @src
83  *
84  * Uses the allocated crypto context that crypt_stat references to
85  * generate the MD5 sum of the contents of src.
86  */
87 static int ecryptfs_calculate_md5(char *dst,
88                                   struct ecryptfs_crypt_stat *crypt_stat,
89                                   char *src, int len)
90 {
91         struct crypto_shash *tfm;
92         int rc = 0;
93
94         tfm = crypt_stat->hash_tfm;
95         rc = ecryptfs_hash_digest(tfm, src, len, dst);
96         if (rc) {
97                 printk(KERN_ERR
98                        "%s: Error computing crypto hash; rc = [%d]\n",
99                        __func__, rc);
100                 goto out;
101         }
102 out:
103         return rc;
104 }
105
106 static int ecryptfs_crypto_api_algify_cipher_name(char **algified_name,
107                                                   char *cipher_name,
108                                                   char *chaining_modifier)
109 {
110         int cipher_name_len = strlen(cipher_name);
111         int chaining_modifier_len = strlen(chaining_modifier);
112         int algified_name_len;
113         int rc;
114
115         algified_name_len = (chaining_modifier_len + cipher_name_len + 3);
116         (*algified_name) = kmalloc(algified_name_len, GFP_KERNEL);
117         if (!(*algified_name)) {
118                 rc = -ENOMEM;
119                 goto out;
120         }
121         snprintf((*algified_name), algified_name_len, "%s(%s)",
122                  chaining_modifier, cipher_name);
123         rc = 0;
124 out:
125         return rc;
126 }
127
128 /**
129  * ecryptfs_derive_iv
130  * @iv: destination for the derived iv vale
131  * @crypt_stat: Pointer to crypt_stat struct for the current inode
132  * @offset: Offset of the extent whose IV we are to derive
133  *
134  * Generate the initialization vector from the given root IV and page
135  * offset.
136  *
137  * Returns zero on success; non-zero on error.
138  */
139 int ecryptfs_derive_iv(char *iv, struct ecryptfs_crypt_stat *crypt_stat,
140                        loff_t offset)
141 {
142         int rc = 0;
143         char dst[MD5_DIGEST_SIZE];
144         char src[ECRYPTFS_MAX_IV_BYTES + 16];
145
146         if (unlikely(ecryptfs_verbosity > 0)) {
147                 ecryptfs_printk(KERN_DEBUG, "root iv:\n");
148                 ecryptfs_dump_hex(crypt_stat->root_iv, crypt_stat->iv_bytes);
149         }
150         /* TODO: It is probably secure to just cast the least
151          * significant bits of the root IV into an unsigned long and
152          * add the offset to that rather than go through all this
153          * hashing business. -Halcrow */
154         memcpy(src, crypt_stat->root_iv, crypt_stat->iv_bytes);
155         memset((src + crypt_stat->iv_bytes), 0, 16);
156         snprintf((src + crypt_stat->iv_bytes), 16, "%lld", offset);
157         if (unlikely(ecryptfs_verbosity > 0)) {
158                 ecryptfs_printk(KERN_DEBUG, "source:\n");
159                 ecryptfs_dump_hex(src, (crypt_stat->iv_bytes + 16));
160         }
161         rc = ecryptfs_calculate_md5(dst, crypt_stat, src,
162                                     (crypt_stat->iv_bytes + 16));
163         if (rc) {
164                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
165                                 "MD5 while generating IV for a page\n");
166                 goto out;
167         }
168         memcpy(iv, dst, crypt_stat->iv_bytes);
169         if (unlikely(ecryptfs_verbosity > 0)) {
170                 ecryptfs_printk(KERN_DEBUG, "derived iv:\n");
171                 ecryptfs_dump_hex(iv, crypt_stat->iv_bytes);
172         }
173 out:
174         return rc;
175 }
176
177 /**
178  * ecryptfs_init_crypt_stat
179  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
180  *
181  * Initialize the crypt_stat structure.
182  */
183 int ecryptfs_init_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
184 {
185         struct crypto_shash *tfm;
186         int rc;
187
188         tfm = crypto_alloc_shash(ECRYPTFS_DEFAULT_HASH, 0, 0);
189         if (IS_ERR(tfm)) {
190                 rc = PTR_ERR(tfm);
191                 ecryptfs_printk(KERN_ERR, "Error attempting to "
192                                 "allocate crypto context; rc = [%d]\n",
193                                 rc);
194                 return rc;
195         }
196
197         memset((void *)crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
198         INIT_LIST_HEAD(&crypt_stat->keysig_list);
199         mutex_init(&crypt_stat->keysig_list_mutex);
200         mutex_init(&crypt_stat->cs_mutex);
201         mutex_init(&crypt_stat->cs_tfm_mutex);
202         crypt_stat->hash_tfm = tfm;
203         crypt_stat->flags |= ECRYPTFS_STRUCT_INITIALIZED;
204
205         return 0;
206 }
207
208 /**
209  * ecryptfs_destroy_crypt_stat
210  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
211  *
212  * Releases all memory associated with a crypt_stat struct.
213  */
214 void ecryptfs_destroy_crypt_stat(struct ecryptfs_crypt_stat *crypt_stat)
215 {
216         struct ecryptfs_key_sig *key_sig, *key_sig_tmp;
217
218         crypto_free_skcipher(crypt_stat->tfm);
219         crypto_free_shash(crypt_stat->hash_tfm);
220         list_for_each_entry_safe(key_sig, key_sig_tmp,
221                                  &crypt_stat->keysig_list, crypt_stat_list) {
222                 list_del(&key_sig->crypt_stat_list);
223                 kmem_cache_free(ecryptfs_key_sig_cache, key_sig);
224         }
225         memset(crypt_stat, 0, sizeof(struct ecryptfs_crypt_stat));
226 }
227
228 void ecryptfs_destroy_mount_crypt_stat(
229         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
230 {
231         struct ecryptfs_global_auth_tok *auth_tok, *auth_tok_tmp;
232
233         if (!(mount_crypt_stat->flags & ECRYPTFS_MOUNT_CRYPT_STAT_INITIALIZED))
234                 return;
235         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
236         list_for_each_entry_safe(auth_tok, auth_tok_tmp,
237                                  &mount_crypt_stat->global_auth_tok_list,
238                                  mount_crypt_stat_list) {
239                 list_del(&auth_tok->mount_crypt_stat_list);
240                 if (!(auth_tok->flags & ECRYPTFS_AUTH_TOK_INVALID))
241                         key_put(auth_tok->global_auth_tok_key);
242                 kmem_cache_free(ecryptfs_global_auth_tok_cache, auth_tok);
243         }
244         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
245         memset(mount_crypt_stat, 0, sizeof(struct ecryptfs_mount_crypt_stat));
246 }
247
248 /**
249  * virt_to_scatterlist
250  * @addr: Virtual address
251  * @size: Size of data; should be an even multiple of the block size
252  * @sg: Pointer to scatterlist array; set to NULL to obtain only
253  *      the number of scatterlist structs required in array
254  * @sg_size: Max array size
255  *
256  * Fills in a scatterlist array with page references for a passed
257  * virtual address.
258  *
259  * Returns the number of scatterlist structs in array used
260  */
261 int virt_to_scatterlist(const void *addr, int size, struct scatterlist *sg,
262                         int sg_size)
263 {
264         int i = 0;
265         struct page *pg;
266         int offset;
267         int remainder_of_page;
268
269         sg_init_table(sg, sg_size);
270
271         while (size > 0 && i < sg_size) {
272                 pg = virt_to_page(addr);
273                 offset = offset_in_page(addr);
274                 sg_set_page(&sg[i], pg, 0, offset);
275                 remainder_of_page = PAGE_SIZE - offset;
276                 if (size >= remainder_of_page) {
277                         sg[i].length = remainder_of_page;
278                         addr += remainder_of_page;
279                         size -= remainder_of_page;
280                 } else {
281                         sg[i].length = size;
282                         addr += size;
283                         size = 0;
284                 }
285                 i++;
286         }
287         if (size > 0)
288                 return -ENOMEM;
289         return i;
290 }
291
292 struct extent_crypt_result {
293         struct completion completion;
294         int rc;
295 };
296
297 static void extent_crypt_complete(struct crypto_async_request *req, int rc)
298 {
299         struct extent_crypt_result *ecr = req->data;
300
301         if (rc == -EINPROGRESS)
302                 return;
303
304         ecr->rc = rc;
305         complete(&ecr->completion);
306 }
307
308 /**
309  * crypt_scatterlist
310  * @crypt_stat: Pointer to the crypt_stat struct to initialize.
311  * @dst_sg: Destination of the data after performing the crypto operation
312  * @src_sg: Data to be encrypted or decrypted
313  * @size: Length of data
314  * @iv: IV to use
315  * @op: ENCRYPT or DECRYPT to indicate the desired operation
316  *
317  * Returns the number of bytes encrypted or decrypted; negative value on error
318  */
319 static int crypt_scatterlist(struct ecryptfs_crypt_stat *crypt_stat,
320                              struct scatterlist *dst_sg,
321                              struct scatterlist *src_sg, int size,
322                              unsigned char *iv, int op)
323 {
324         struct skcipher_request *req = NULL;
325         struct extent_crypt_result ecr;
326         int rc = 0;
327
328         BUG_ON(!crypt_stat || !crypt_stat->tfm
329                || !(crypt_stat->flags & ECRYPTFS_STRUCT_INITIALIZED));
330         if (unlikely(ecryptfs_verbosity > 0)) {
331                 ecryptfs_printk(KERN_DEBUG, "Key size [%zd]; key:\n",
332                                 crypt_stat->key_size);
333                 ecryptfs_dump_hex(crypt_stat->key,
334                                   crypt_stat->key_size);
335         }
336
337         init_completion(&ecr.completion);
338
339         mutex_lock(&crypt_stat->cs_tfm_mutex);
340         req = skcipher_request_alloc(crypt_stat->tfm, GFP_NOFS);
341         if (!req) {
342                 mutex_unlock(&crypt_stat->cs_tfm_mutex);
343                 rc = -ENOMEM;
344                 goto out;
345         }
346
347         skcipher_request_set_callback(req,
348                         CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
349                         extent_crypt_complete, &ecr);
350         /* Consider doing this once, when the file is opened */
351         if (!(crypt_stat->flags & ECRYPTFS_KEY_SET)) {
352                 rc = crypto_skcipher_setkey(crypt_stat->tfm, crypt_stat->key,
353                                             crypt_stat->key_size);
354                 if (rc) {
355                         ecryptfs_printk(KERN_ERR,
356                                         "Error setting key; rc = [%d]\n",
357                                         rc);
358                         mutex_unlock(&crypt_stat->cs_tfm_mutex);
359                         rc = -EINVAL;
360                         goto out;
361                 }
362                 crypt_stat->flags |= ECRYPTFS_KEY_SET;
363         }
364         mutex_unlock(&crypt_stat->cs_tfm_mutex);
365         skcipher_request_set_crypt(req, src_sg, dst_sg, size, iv);
366         rc = op == ENCRYPT ? crypto_skcipher_encrypt(req) :
367                              crypto_skcipher_decrypt(req);
368         if (rc == -EINPROGRESS || rc == -EBUSY) {
369                 struct extent_crypt_result *ecr = req->base.data;
370
371                 wait_for_completion(&ecr->completion);
372                 rc = ecr->rc;
373                 reinit_completion(&ecr->completion);
374         }
375 out:
376         skcipher_request_free(req);
377         return rc;
378 }
379
380 /**
381  * lower_offset_for_page
382  *
383  * Convert an eCryptfs page index into a lower byte offset
384  */
385 static loff_t lower_offset_for_page(struct ecryptfs_crypt_stat *crypt_stat,
386                                     struct page *page)
387 {
388         return ecryptfs_lower_header_size(crypt_stat) +
389                ((loff_t)page->index << PAGE_SHIFT);
390 }
391
392 /**
393  * crypt_extent
394  * @crypt_stat: crypt_stat containing cryptographic context for the
395  *              encryption operation
396  * @dst_page: The page to write the result into
397  * @src_page: The page to read from
398  * @extent_offset: Page extent offset for use in generating IV
399  * @op: ENCRYPT or DECRYPT to indicate the desired operation
400  *
401  * Encrypts or decrypts one extent of data.
402  *
403  * Return zero on success; non-zero otherwise
404  */
405 static int crypt_extent(struct ecryptfs_crypt_stat *crypt_stat,
406                         struct page *dst_page,
407                         struct page *src_page,
408                         unsigned long extent_offset, int op)
409 {
410         pgoff_t page_index = op == ENCRYPT ? src_page->index : dst_page->index;
411         loff_t extent_base;
412         char extent_iv[ECRYPTFS_MAX_IV_BYTES];
413         struct scatterlist src_sg, dst_sg;
414         size_t extent_size = crypt_stat->extent_size;
415         int rc;
416
417         extent_base = (((loff_t)page_index) * (PAGE_SIZE / extent_size));
418         rc = ecryptfs_derive_iv(extent_iv, crypt_stat,
419                                 (extent_base + extent_offset));
420         if (rc) {
421                 ecryptfs_printk(KERN_ERR, "Error attempting to derive IV for "
422                         "extent [0x%.16llx]; rc = [%d]\n",
423                         (unsigned long long)(extent_base + extent_offset), rc);
424                 goto out;
425         }
426
427         sg_init_table(&src_sg, 1);
428         sg_init_table(&dst_sg, 1);
429
430         sg_set_page(&src_sg, src_page, extent_size,
431                     extent_offset * extent_size);
432         sg_set_page(&dst_sg, dst_page, extent_size,
433                     extent_offset * extent_size);
434
435         rc = crypt_scatterlist(crypt_stat, &dst_sg, &src_sg, extent_size,
436                                extent_iv, op);
437         if (rc < 0) {
438                 printk(KERN_ERR "%s: Error attempting to crypt page with "
439                        "page_index = [%ld], extent_offset = [%ld]; "
440                        "rc = [%d]\n", __func__, page_index, extent_offset, rc);
441                 goto out;
442         }
443         rc = 0;
444 out:
445         return rc;
446 }
447
448 /**
449  * ecryptfs_encrypt_page
450  * @page: Page mapped from the eCryptfs inode for the file; contains
451  *        decrypted content that needs to be encrypted (to a temporary
452  *        page; not in place) and written out to the lower file
453  *
454  * Encrypt an eCryptfs page. This is done on a per-extent basis. Note
455  * that eCryptfs pages may straddle the lower pages -- for instance,
456  * if the file was created on a machine with an 8K page size
457  * (resulting in an 8K header), and then the file is copied onto a
458  * host with a 32K page size, then when reading page 0 of the eCryptfs
459  * file, 24K of page 0 of the lower file will be read and decrypted,
460  * and then 8K of page 1 of the lower file will be read and decrypted.
461  *
462  * Returns zero on success; negative on error
463  */
464 int ecryptfs_encrypt_page(struct page *page)
465 {
466         struct inode *ecryptfs_inode;
467         struct ecryptfs_crypt_stat *crypt_stat;
468         char *enc_extent_virt;
469         struct page *enc_extent_page = NULL;
470         loff_t extent_offset;
471         loff_t lower_offset;
472         int rc = 0;
473
474         ecryptfs_inode = page->mapping->host;
475         crypt_stat =
476                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
477         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
478         enc_extent_page = alloc_page(GFP_USER);
479         if (!enc_extent_page) {
480                 rc = -ENOMEM;
481                 ecryptfs_printk(KERN_ERR, "Error allocating memory for "
482                                 "encrypted extent\n");
483                 goto out;
484         }
485
486         for (extent_offset = 0;
487              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
488              extent_offset++) {
489                 rc = crypt_extent(crypt_stat, enc_extent_page, page,
490                                   extent_offset, ENCRYPT);
491                 if (rc) {
492                         printk(KERN_ERR "%s: Error encrypting extent; "
493                                "rc = [%d]\n", __func__, rc);
494                         goto out;
495                 }
496         }
497
498         lower_offset = lower_offset_for_page(crypt_stat, page);
499         enc_extent_virt = kmap(enc_extent_page);
500         rc = ecryptfs_write_lower(ecryptfs_inode, enc_extent_virt, lower_offset,
501                                   PAGE_SIZE);
502         kunmap(enc_extent_page);
503         if (rc < 0) {
504                 ecryptfs_printk(KERN_ERR,
505                         "Error attempting to write lower page; rc = [%d]\n",
506                         rc);
507                 goto out;
508         }
509         rc = 0;
510 out:
511         if (enc_extent_page) {
512                 __free_page(enc_extent_page);
513         }
514         return rc;
515 }
516
517 /**
518  * ecryptfs_decrypt_page
519  * @page: Page mapped from the eCryptfs inode for the file; data read
520  *        and decrypted from the lower file will be written into this
521  *        page
522  *
523  * Decrypt an eCryptfs page. This is done on a per-extent basis. Note
524  * that eCryptfs pages may straddle the lower pages -- for instance,
525  * if the file was created on a machine with an 8K page size
526  * (resulting in an 8K header), and then the file is copied onto a
527  * host with a 32K page size, then when reading page 0 of the eCryptfs
528  * file, 24K of page 0 of the lower file will be read and decrypted,
529  * and then 8K of page 1 of the lower file will be read and decrypted.
530  *
531  * Returns zero on success; negative on error
532  */
533 int ecryptfs_decrypt_page(struct page *page)
534 {
535         struct inode *ecryptfs_inode;
536         struct ecryptfs_crypt_stat *crypt_stat;
537         char *page_virt;
538         unsigned long extent_offset;
539         loff_t lower_offset;
540         int rc = 0;
541
542         ecryptfs_inode = page->mapping->host;
543         crypt_stat =
544                 &(ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat);
545         BUG_ON(!(crypt_stat->flags & ECRYPTFS_ENCRYPTED));
546
547         lower_offset = lower_offset_for_page(crypt_stat, page);
548         page_virt = kmap(page);
549         rc = ecryptfs_read_lower(page_virt, lower_offset, PAGE_SIZE,
550                                  ecryptfs_inode);
551         kunmap(page);
552         if (rc < 0) {
553                 ecryptfs_printk(KERN_ERR,
554                         "Error attempting to read lower page; rc = [%d]\n",
555                         rc);
556                 goto out;
557         }
558
559         for (extent_offset = 0;
560              extent_offset < (PAGE_SIZE / crypt_stat->extent_size);
561              extent_offset++) {
562                 rc = crypt_extent(crypt_stat, page, page,
563                                   extent_offset, DECRYPT);
564                 if (rc) {
565                         printk(KERN_ERR "%s: Error encrypting extent; "
566                                "rc = [%d]\n", __func__, rc);
567                         goto out;
568                 }
569         }
570 out:
571         return rc;
572 }
573
574 #define ECRYPTFS_MAX_SCATTERLIST_LEN 4
575
576 /**
577  * ecryptfs_init_crypt_ctx
578  * @crypt_stat: Uninitialized crypt stats structure
579  *
580  * Initialize the crypto context.
581  *
582  * TODO: Performance: Keep a cache of initialized cipher contexts;
583  * only init if needed
584  */
585 int ecryptfs_init_crypt_ctx(struct ecryptfs_crypt_stat *crypt_stat)
586 {
587         char *full_alg_name;
588         int rc = -EINVAL;
589
590         ecryptfs_printk(KERN_DEBUG,
591                         "Initializing cipher [%s]; strlen = [%d]; "
592                         "key_size_bits = [%zd]\n",
593                         crypt_stat->cipher, (int)strlen(crypt_stat->cipher),
594                         crypt_stat->key_size << 3);
595         mutex_lock(&crypt_stat->cs_tfm_mutex);
596         if (crypt_stat->tfm) {
597                 rc = 0;
598                 goto out_unlock;
599         }
600         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name,
601                                                     crypt_stat->cipher, "cbc");
602         if (rc)
603                 goto out_unlock;
604         crypt_stat->tfm = crypto_alloc_skcipher(full_alg_name, 0, 0);
605         if (IS_ERR(crypt_stat->tfm)) {
606                 rc = PTR_ERR(crypt_stat->tfm);
607                 crypt_stat->tfm = NULL;
608                 ecryptfs_printk(KERN_ERR, "cryptfs: init_crypt_ctx(): "
609                                 "Error initializing cipher [%s]\n",
610                                 full_alg_name);
611                 goto out_free;
612         }
613         crypto_skcipher_set_flags(crypt_stat->tfm, CRYPTO_TFM_REQ_WEAK_KEY);
614         rc = 0;
615 out_free:
616         kfree(full_alg_name);
617 out_unlock:
618         mutex_unlock(&crypt_stat->cs_tfm_mutex);
619         return rc;
620 }
621
622 static void set_extent_mask_and_shift(struct ecryptfs_crypt_stat *crypt_stat)
623 {
624         int extent_size_tmp;
625
626         crypt_stat->extent_mask = 0xFFFFFFFF;
627         crypt_stat->extent_shift = 0;
628         if (crypt_stat->extent_size == 0)
629                 return;
630         extent_size_tmp = crypt_stat->extent_size;
631         while ((extent_size_tmp & 0x01) == 0) {
632                 extent_size_tmp >>= 1;
633                 crypt_stat->extent_mask <<= 1;
634                 crypt_stat->extent_shift++;
635         }
636 }
637
638 void ecryptfs_set_default_sizes(struct ecryptfs_crypt_stat *crypt_stat)
639 {
640         /* Default values; may be overwritten as we are parsing the
641          * packets. */
642         crypt_stat->extent_size = ECRYPTFS_DEFAULT_EXTENT_SIZE;
643         set_extent_mask_and_shift(crypt_stat);
644         crypt_stat->iv_bytes = ECRYPTFS_DEFAULT_IV_BYTES;
645         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
646                 crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
647         else {
648                 if (PAGE_SIZE <= ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)
649                         crypt_stat->metadata_size =
650                                 ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
651                 else
652                         crypt_stat->metadata_size = PAGE_SIZE;
653         }
654 }
655
656 /**
657  * ecryptfs_compute_root_iv
658  * @crypt_stats
659  *
660  * On error, sets the root IV to all 0's.
661  */
662 int ecryptfs_compute_root_iv(struct ecryptfs_crypt_stat *crypt_stat)
663 {
664         int rc = 0;
665         char dst[MD5_DIGEST_SIZE];
666
667         BUG_ON(crypt_stat->iv_bytes > MD5_DIGEST_SIZE);
668         BUG_ON(crypt_stat->iv_bytes <= 0);
669         if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
670                 rc = -EINVAL;
671                 ecryptfs_printk(KERN_WARNING, "Session key not valid; "
672                                 "cannot generate root IV\n");
673                 goto out;
674         }
675         rc = ecryptfs_calculate_md5(dst, crypt_stat, crypt_stat->key,
676                                     crypt_stat->key_size);
677         if (rc) {
678                 ecryptfs_printk(KERN_WARNING, "Error attempting to compute "
679                                 "MD5 while generating root IV\n");
680                 goto out;
681         }
682         memcpy(crypt_stat->root_iv, dst, crypt_stat->iv_bytes);
683 out:
684         if (rc) {
685                 memset(crypt_stat->root_iv, 0, crypt_stat->iv_bytes);
686                 crypt_stat->flags |= ECRYPTFS_SECURITY_WARNING;
687         }
688         return rc;
689 }
690
691 static void ecryptfs_generate_new_key(struct ecryptfs_crypt_stat *crypt_stat)
692 {
693         get_random_bytes(crypt_stat->key, crypt_stat->key_size);
694         crypt_stat->flags |= ECRYPTFS_KEY_VALID;
695         ecryptfs_compute_root_iv(crypt_stat);
696         if (unlikely(ecryptfs_verbosity > 0)) {
697                 ecryptfs_printk(KERN_DEBUG, "Generated new session key:\n");
698                 ecryptfs_dump_hex(crypt_stat->key,
699                                   crypt_stat->key_size);
700         }
701 }
702
703 /**
704  * ecryptfs_copy_mount_wide_flags_to_inode_flags
705  * @crypt_stat: The inode's cryptographic context
706  * @mount_crypt_stat: The mount point's cryptographic context
707  *
708  * This function propagates the mount-wide flags to individual inode
709  * flags.
710  */
711 static void ecryptfs_copy_mount_wide_flags_to_inode_flags(
712         struct ecryptfs_crypt_stat *crypt_stat,
713         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
714 {
715         if (mount_crypt_stat->flags & ECRYPTFS_XATTR_METADATA_ENABLED)
716                 crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
717         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)
718                 crypt_stat->flags |= ECRYPTFS_VIEW_AS_ENCRYPTED;
719         if (mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) {
720                 crypt_stat->flags |= ECRYPTFS_ENCRYPT_FILENAMES;
721                 if (mount_crypt_stat->flags
722                     & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)
723                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_MOUNT_FNEK;
724                 else if (mount_crypt_stat->flags
725                          & ECRYPTFS_GLOBAL_ENCFN_USE_FEK)
726                         crypt_stat->flags |= ECRYPTFS_ENCFN_USE_FEK;
727         }
728 }
729
730 static int ecryptfs_copy_mount_wide_sigs_to_inode_sigs(
731         struct ecryptfs_crypt_stat *crypt_stat,
732         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
733 {
734         struct ecryptfs_global_auth_tok *global_auth_tok;
735         int rc = 0;
736
737         mutex_lock(&crypt_stat->keysig_list_mutex);
738         mutex_lock(&mount_crypt_stat->global_auth_tok_list_mutex);
739
740         list_for_each_entry(global_auth_tok,
741                             &mount_crypt_stat->global_auth_tok_list,
742                             mount_crypt_stat_list) {
743                 if (global_auth_tok->flags & ECRYPTFS_AUTH_TOK_FNEK)
744                         continue;
745                 rc = ecryptfs_add_keysig(crypt_stat, global_auth_tok->sig);
746                 if (rc) {
747                         printk(KERN_ERR "Error adding keysig; rc = [%d]\n", rc);
748                         goto out;
749                 }
750         }
751
752 out:
753         mutex_unlock(&mount_crypt_stat->global_auth_tok_list_mutex);
754         mutex_unlock(&crypt_stat->keysig_list_mutex);
755         return rc;
756 }
757
758 /**
759  * ecryptfs_set_default_crypt_stat_vals
760  * @crypt_stat: The inode's cryptographic context
761  * @mount_crypt_stat: The mount point's cryptographic context
762  *
763  * Default values in the event that policy does not override them.
764  */
765 static void ecryptfs_set_default_crypt_stat_vals(
766         struct ecryptfs_crypt_stat *crypt_stat,
767         struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
768 {
769         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
770                                                       mount_crypt_stat);
771         ecryptfs_set_default_sizes(crypt_stat);
772         strcpy(crypt_stat->cipher, ECRYPTFS_DEFAULT_CIPHER);
773         crypt_stat->key_size = ECRYPTFS_DEFAULT_KEY_BYTES;
774         crypt_stat->flags &= ~(ECRYPTFS_KEY_VALID);
775         crypt_stat->file_version = ECRYPTFS_FILE_VERSION;
776         crypt_stat->mount_crypt_stat = mount_crypt_stat;
777 }
778
779 /**
780  * ecryptfs_new_file_context
781  * @ecryptfs_inode: The eCryptfs inode
782  *
783  * If the crypto context for the file has not yet been established,
784  * this is where we do that.  Establishing a new crypto context
785  * involves the following decisions:
786  *  - What cipher to use?
787  *  - What set of authentication tokens to use?
788  * Here we just worry about getting enough information into the
789  * authentication tokens so that we know that they are available.
790  * We associate the available authentication tokens with the new file
791  * via the set of signatures in the crypt_stat struct.  Later, when
792  * the headers are actually written out, we may again defer to
793  * userspace to perform the encryption of the session key; for the
794  * foreseeable future, this will be the case with public key packets.
795  *
796  * Returns zero on success; non-zero otherwise
797  */
798 int ecryptfs_new_file_context(struct inode *ecryptfs_inode)
799 {
800         struct ecryptfs_crypt_stat *crypt_stat =
801             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
802         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
803             &ecryptfs_superblock_to_private(
804                     ecryptfs_inode->i_sb)->mount_crypt_stat;
805         int cipher_name_len;
806         int rc = 0;
807
808         ecryptfs_set_default_crypt_stat_vals(crypt_stat, mount_crypt_stat);
809         crypt_stat->flags |= (ECRYPTFS_ENCRYPTED | ECRYPTFS_KEY_VALID);
810         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
811                                                       mount_crypt_stat);
812         rc = ecryptfs_copy_mount_wide_sigs_to_inode_sigs(crypt_stat,
813                                                          mount_crypt_stat);
814         if (rc) {
815                 printk(KERN_ERR "Error attempting to copy mount-wide key sigs "
816                        "to the inode key sigs; rc = [%d]\n", rc);
817                 goto out;
818         }
819         cipher_name_len =
820                 strlen(mount_crypt_stat->global_default_cipher_name);
821         memcpy(crypt_stat->cipher,
822                mount_crypt_stat->global_default_cipher_name,
823                cipher_name_len);
824         crypt_stat->cipher[cipher_name_len] = '\0';
825         crypt_stat->key_size =
826                 mount_crypt_stat->global_default_cipher_key_size;
827         ecryptfs_generate_new_key(crypt_stat);
828         rc = ecryptfs_init_crypt_ctx(crypt_stat);
829         if (rc)
830                 ecryptfs_printk(KERN_ERR, "Error initializing cryptographic "
831                                 "context for cipher [%s]: rc = [%d]\n",
832                                 crypt_stat->cipher, rc);
833 out:
834         return rc;
835 }
836
837 /**
838  * ecryptfs_validate_marker - check for the ecryptfs marker
839  * @data: The data block in which to check
840  *
841  * Returns zero if marker found; -EINVAL if not found
842  */
843 static int ecryptfs_validate_marker(char *data)
844 {
845         u32 m_1, m_2;
846
847         m_1 = get_unaligned_be32(data);
848         m_2 = get_unaligned_be32(data + 4);
849         if ((m_1 ^ MAGIC_ECRYPTFS_MARKER) == m_2)
850                 return 0;
851         ecryptfs_printk(KERN_DEBUG, "m_1 = [0x%.8x]; m_2 = [0x%.8x]; "
852                         "MAGIC_ECRYPTFS_MARKER = [0x%.8x]\n", m_1, m_2,
853                         MAGIC_ECRYPTFS_MARKER);
854         ecryptfs_printk(KERN_DEBUG, "(m_1 ^ MAGIC_ECRYPTFS_MARKER) = "
855                         "[0x%.8x]\n", (m_1 ^ MAGIC_ECRYPTFS_MARKER));
856         return -EINVAL;
857 }
858
859 struct ecryptfs_flag_map_elem {
860         u32 file_flag;
861         u32 local_flag;
862 };
863
864 /* Add support for additional flags by adding elements here. */
865 static struct ecryptfs_flag_map_elem ecryptfs_flag_map[] = {
866         {0x00000001, ECRYPTFS_ENABLE_HMAC},
867         {0x00000002, ECRYPTFS_ENCRYPTED},
868         {0x00000004, ECRYPTFS_METADATA_IN_XATTR},
869         {0x00000008, ECRYPTFS_ENCRYPT_FILENAMES}
870 };
871
872 /**
873  * ecryptfs_process_flags
874  * @crypt_stat: The cryptographic context
875  * @page_virt: Source data to be parsed
876  * @bytes_read: Updated with the number of bytes read
877  *
878  * Returns zero on success; non-zero if the flag set is invalid
879  */
880 static int ecryptfs_process_flags(struct ecryptfs_crypt_stat *crypt_stat,
881                                   char *page_virt, int *bytes_read)
882 {
883         int rc = 0;
884         int i;
885         u32 flags;
886
887         flags = get_unaligned_be32(page_virt);
888         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
889                 if (flags & ecryptfs_flag_map[i].file_flag) {
890                         crypt_stat->flags |= ecryptfs_flag_map[i].local_flag;
891                 } else
892                         crypt_stat->flags &= ~(ecryptfs_flag_map[i].local_flag);
893         /* Version is in top 8 bits of the 32-bit flag vector */
894         crypt_stat->file_version = ((flags >> 24) & 0xFF);
895         (*bytes_read) = 4;
896         return rc;
897 }
898
899 /**
900  * write_ecryptfs_marker
901  * @page_virt: The pointer to in a page to begin writing the marker
902  * @written: Number of bytes written
903  *
904  * Marker = 0x3c81b7f5
905  */
906 static void write_ecryptfs_marker(char *page_virt, size_t *written)
907 {
908         u32 m_1, m_2;
909
910         get_random_bytes(&m_1, (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2));
911         m_2 = (m_1 ^ MAGIC_ECRYPTFS_MARKER);
912         put_unaligned_be32(m_1, page_virt);
913         page_virt += (MAGIC_ECRYPTFS_MARKER_SIZE_BYTES / 2);
914         put_unaligned_be32(m_2, page_virt);
915         (*written) = MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
916 }
917
918 void ecryptfs_write_crypt_stat_flags(char *page_virt,
919                                      struct ecryptfs_crypt_stat *crypt_stat,
920                                      size_t *written)
921 {
922         u32 flags = 0;
923         int i;
924
925         for (i = 0; i < ARRAY_SIZE(ecryptfs_flag_map); i++)
926                 if (crypt_stat->flags & ecryptfs_flag_map[i].local_flag)
927                         flags |= ecryptfs_flag_map[i].file_flag;
928         /* Version is in top 8 bits of the 32-bit flag vector */
929         flags |= ((((u8)crypt_stat->file_version) << 24) & 0xFF000000);
930         put_unaligned_be32(flags, page_virt);
931         (*written) = 4;
932 }
933
934 struct ecryptfs_cipher_code_str_map_elem {
935         char cipher_str[16];
936         u8 cipher_code;
937 };
938
939 /* Add support for additional ciphers by adding elements here. The
940  * cipher_code is whatever OpenPGP applications use to identify the
941  * ciphers. List in order of probability. */
942 static struct ecryptfs_cipher_code_str_map_elem
943 ecryptfs_cipher_code_str_map[] = {
944         {"aes",RFC2440_CIPHER_AES_128 },
945         {"blowfish", RFC2440_CIPHER_BLOWFISH},
946         {"des3_ede", RFC2440_CIPHER_DES3_EDE},
947         {"cast5", RFC2440_CIPHER_CAST_5},
948         {"twofish", RFC2440_CIPHER_TWOFISH},
949         {"cast6", RFC2440_CIPHER_CAST_6},
950         {"aes", RFC2440_CIPHER_AES_192},
951         {"aes", RFC2440_CIPHER_AES_256}
952 };
953
954 /**
955  * ecryptfs_code_for_cipher_string
956  * @cipher_name: The string alias for the cipher
957  * @key_bytes: Length of key in bytes; used for AES code selection
958  *
959  * Returns zero on no match, or the cipher code on match
960  */
961 u8 ecryptfs_code_for_cipher_string(char *cipher_name, size_t key_bytes)
962 {
963         int i;
964         u8 code = 0;
965         struct ecryptfs_cipher_code_str_map_elem *map =
966                 ecryptfs_cipher_code_str_map;
967
968         if (strcmp(cipher_name, "aes") == 0) {
969                 switch (key_bytes) {
970                 case 16:
971                         code = RFC2440_CIPHER_AES_128;
972                         break;
973                 case 24:
974                         code = RFC2440_CIPHER_AES_192;
975                         break;
976                 case 32:
977                         code = RFC2440_CIPHER_AES_256;
978                 }
979         } else {
980                 for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
981                         if (strcmp(cipher_name, map[i].cipher_str) == 0) {
982                                 code = map[i].cipher_code;
983                                 break;
984                         }
985         }
986         return code;
987 }
988
989 /**
990  * ecryptfs_cipher_code_to_string
991  * @str: Destination to write out the cipher name
992  * @cipher_code: The code to convert to cipher name string
993  *
994  * Returns zero on success
995  */
996 int ecryptfs_cipher_code_to_string(char *str, u8 cipher_code)
997 {
998         int rc = 0;
999         int i;
1000
1001         str[0] = '\0';
1002         for (i = 0; i < ARRAY_SIZE(ecryptfs_cipher_code_str_map); i++)
1003                 if (cipher_code == ecryptfs_cipher_code_str_map[i].cipher_code)
1004                         strcpy(str, ecryptfs_cipher_code_str_map[i].cipher_str);
1005         if (str[0] == '\0') {
1006                 ecryptfs_printk(KERN_WARNING, "Cipher code not recognized: "
1007                                 "[%d]\n", cipher_code);
1008                 rc = -EINVAL;
1009         }
1010         return rc;
1011 }
1012
1013 int ecryptfs_read_and_validate_header_region(struct inode *inode)
1014 {
1015         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1016         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1017         int rc;
1018
1019         rc = ecryptfs_read_lower(file_size, 0, ECRYPTFS_SIZE_AND_MARKER_BYTES,
1020                                  inode);
1021         if (rc < 0)
1022                 return rc;
1023         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1024                 return -EINVAL;
1025         rc = ecryptfs_validate_marker(marker);
1026         if (!rc)
1027                 ecryptfs_i_size_init(file_size, inode);
1028         return rc;
1029 }
1030
1031 void
1032 ecryptfs_write_header_metadata(char *virt,
1033                                struct ecryptfs_crypt_stat *crypt_stat,
1034                                size_t *written)
1035 {
1036         u32 header_extent_size;
1037         u16 num_header_extents_at_front;
1038
1039         header_extent_size = (u32)crypt_stat->extent_size;
1040         num_header_extents_at_front =
1041                 (u16)(crypt_stat->metadata_size / crypt_stat->extent_size);
1042         put_unaligned_be32(header_extent_size, virt);
1043         virt += 4;
1044         put_unaligned_be16(num_header_extents_at_front, virt);
1045         (*written) = 6;
1046 }
1047
1048 struct kmem_cache *ecryptfs_header_cache;
1049
1050 /**
1051  * ecryptfs_write_headers_virt
1052  * @page_virt: The virtual address to write the headers to
1053  * @max: The size of memory allocated at page_virt
1054  * @size: Set to the number of bytes written by this function
1055  * @crypt_stat: The cryptographic context
1056  * @ecryptfs_dentry: The eCryptfs dentry
1057  *
1058  * Format version: 1
1059  *
1060  *   Header Extent:
1061  *     Octets 0-7:        Unencrypted file size (big-endian)
1062  *     Octets 8-15:       eCryptfs special marker
1063  *     Octets 16-19:      Flags
1064  *      Octet 16:         File format version number (between 0 and 255)
1065  *      Octets 17-18:     Reserved
1066  *      Octet 19:         Bit 1 (lsb): Reserved
1067  *                        Bit 2: Encrypted?
1068  *                        Bits 3-8: Reserved
1069  *     Octets 20-23:      Header extent size (big-endian)
1070  *     Octets 24-25:      Number of header extents at front of file
1071  *                        (big-endian)
1072  *     Octet  26:         Begin RFC 2440 authentication token packet set
1073  *   Data Extent 0:
1074  *     Lower data (CBC encrypted)
1075  *   Data Extent 1:
1076  *     Lower data (CBC encrypted)
1077  *   ...
1078  *
1079  * Returns zero on success
1080  */
1081 static int ecryptfs_write_headers_virt(char *page_virt, size_t max,
1082                                        size_t *size,
1083                                        struct ecryptfs_crypt_stat *crypt_stat,
1084                                        struct dentry *ecryptfs_dentry)
1085 {
1086         int rc;
1087         size_t written;
1088         size_t offset;
1089
1090         offset = ECRYPTFS_FILE_SIZE_BYTES;
1091         write_ecryptfs_marker((page_virt + offset), &written);
1092         offset += written;
1093         ecryptfs_write_crypt_stat_flags((page_virt + offset), crypt_stat,
1094                                         &written);
1095         offset += written;
1096         ecryptfs_write_header_metadata((page_virt + offset), crypt_stat,
1097                                        &written);
1098         offset += written;
1099         rc = ecryptfs_generate_key_packet_set((page_virt + offset), crypt_stat,
1100                                               ecryptfs_dentry, &written,
1101                                               max - offset);
1102         if (rc)
1103                 ecryptfs_printk(KERN_WARNING, "Error generating key packet "
1104                                 "set; rc = [%d]\n", rc);
1105         if (size) {
1106                 offset += written;
1107                 *size = offset;
1108         }
1109         return rc;
1110 }
1111
1112 static int
1113 ecryptfs_write_metadata_to_contents(struct inode *ecryptfs_inode,
1114                                     char *virt, size_t virt_len)
1115 {
1116         int rc;
1117
1118         rc = ecryptfs_write_lower(ecryptfs_inode, virt,
1119                                   0, virt_len);
1120         if (rc < 0)
1121                 printk(KERN_ERR "%s: Error attempting to write header "
1122                        "information to lower file; rc = [%d]\n", __func__, rc);
1123         else
1124                 rc = 0;
1125         return rc;
1126 }
1127
1128 static int
1129 ecryptfs_write_metadata_to_xattr(struct dentry *ecryptfs_dentry,
1130                                  struct inode *ecryptfs_inode,
1131                                  char *page_virt, size_t size)
1132 {
1133         int rc;
1134
1135         rc = ecryptfs_setxattr(ecryptfs_dentry, ecryptfs_inode,
1136                                ECRYPTFS_XATTR_NAME, page_virt, size, 0);
1137         return rc;
1138 }
1139
1140 static unsigned long ecryptfs_get_zeroed_pages(gfp_t gfp_mask,
1141                                                unsigned int order)
1142 {
1143         struct page *page;
1144
1145         page = alloc_pages(gfp_mask | __GFP_ZERO, order);
1146         if (page)
1147                 return (unsigned long) page_address(page);
1148         return 0;
1149 }
1150
1151 /**
1152  * ecryptfs_write_metadata
1153  * @ecryptfs_dentry: The eCryptfs dentry, which should be negative
1154  * @ecryptfs_inode: The newly created eCryptfs inode
1155  *
1156  * Write the file headers out.  This will likely involve a userspace
1157  * callout, in which the session key is encrypted with one or more
1158  * public keys and/or the passphrase necessary to do the encryption is
1159  * retrieved via a prompt.  Exactly what happens at this point should
1160  * be policy-dependent.
1161  *
1162  * Returns zero on success; non-zero on error
1163  */
1164 int ecryptfs_write_metadata(struct dentry *ecryptfs_dentry,
1165                             struct inode *ecryptfs_inode)
1166 {
1167         struct ecryptfs_crypt_stat *crypt_stat =
1168                 &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1169         unsigned int order;
1170         char *virt;
1171         size_t virt_len;
1172         size_t size = 0;
1173         int rc = 0;
1174
1175         if (likely(crypt_stat->flags & ECRYPTFS_ENCRYPTED)) {
1176                 if (!(crypt_stat->flags & ECRYPTFS_KEY_VALID)) {
1177                         printk(KERN_ERR "Key is invalid; bailing out\n");
1178                         rc = -EINVAL;
1179                         goto out;
1180                 }
1181         } else {
1182                 printk(KERN_WARNING "%s: Encrypted flag not set\n",
1183                        __func__);
1184                 rc = -EINVAL;
1185                 goto out;
1186         }
1187         virt_len = crypt_stat->metadata_size;
1188         order = get_order(virt_len);
1189         /* Released in this function */
1190         virt = (char *)ecryptfs_get_zeroed_pages(GFP_KERNEL, order);
1191         if (!virt) {
1192                 printk(KERN_ERR "%s: Out of memory\n", __func__);
1193                 rc = -ENOMEM;
1194                 goto out;
1195         }
1196         /* Zeroed page ensures the in-header unencrypted i_size is set to 0 */
1197         rc = ecryptfs_write_headers_virt(virt, virt_len, &size, crypt_stat,
1198                                          ecryptfs_dentry);
1199         if (unlikely(rc)) {
1200                 printk(KERN_ERR "%s: Error whilst writing headers; rc = [%d]\n",
1201                        __func__, rc);
1202                 goto out_free;
1203         }
1204         if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1205                 rc = ecryptfs_write_metadata_to_xattr(ecryptfs_dentry, ecryptfs_inode,
1206                                                       virt, size);
1207         else
1208                 rc = ecryptfs_write_metadata_to_contents(ecryptfs_inode, virt,
1209                                                          virt_len);
1210         if (rc) {
1211                 printk(KERN_ERR "%s: Error writing metadata out to lower file; "
1212                        "rc = [%d]\n", __func__, rc);
1213                 goto out_free;
1214         }
1215 out_free:
1216         free_pages((unsigned long)virt, order);
1217 out:
1218         return rc;
1219 }
1220
1221 #define ECRYPTFS_DONT_VALIDATE_HEADER_SIZE 0
1222 #define ECRYPTFS_VALIDATE_HEADER_SIZE 1
1223 static int parse_header_metadata(struct ecryptfs_crypt_stat *crypt_stat,
1224                                  char *virt, int *bytes_read,
1225                                  int validate_header_size)
1226 {
1227         int rc = 0;
1228         u32 header_extent_size;
1229         u16 num_header_extents_at_front;
1230
1231         header_extent_size = get_unaligned_be32(virt);
1232         virt += sizeof(__be32);
1233         num_header_extents_at_front = get_unaligned_be16(virt);
1234         crypt_stat->metadata_size = (((size_t)num_header_extents_at_front
1235                                      * (size_t)header_extent_size));
1236         (*bytes_read) = (sizeof(__be32) + sizeof(__be16));
1237         if ((validate_header_size == ECRYPTFS_VALIDATE_HEADER_SIZE)
1238             && (crypt_stat->metadata_size
1239                 < ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE)) {
1240                 rc = -EINVAL;
1241                 printk(KERN_WARNING "Invalid header size: [%zd]\n",
1242                        crypt_stat->metadata_size);
1243         }
1244         return rc;
1245 }
1246
1247 /**
1248  * set_default_header_data
1249  * @crypt_stat: The cryptographic context
1250  *
1251  * For version 0 file format; this function is only for backwards
1252  * compatibility for files created with the prior versions of
1253  * eCryptfs.
1254  */
1255 static void set_default_header_data(struct ecryptfs_crypt_stat *crypt_stat)
1256 {
1257         crypt_stat->metadata_size = ECRYPTFS_MINIMUM_HEADER_EXTENT_SIZE;
1258 }
1259
1260 void ecryptfs_i_size_init(const char *page_virt, struct inode *inode)
1261 {
1262         struct ecryptfs_mount_crypt_stat *mount_crypt_stat;
1263         struct ecryptfs_crypt_stat *crypt_stat;
1264         u64 file_size;
1265
1266         crypt_stat = &ecryptfs_inode_to_private(inode)->crypt_stat;
1267         mount_crypt_stat =
1268                 &ecryptfs_superblock_to_private(inode->i_sb)->mount_crypt_stat;
1269         if (mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED) {
1270                 file_size = i_size_read(ecryptfs_inode_to_lower(inode));
1271                 if (crypt_stat->flags & ECRYPTFS_METADATA_IN_XATTR)
1272                         file_size += crypt_stat->metadata_size;
1273         } else
1274                 file_size = get_unaligned_be64(page_virt);
1275         i_size_write(inode, (loff_t)file_size);
1276         crypt_stat->flags |= ECRYPTFS_I_SIZE_INITIALIZED;
1277 }
1278
1279 /**
1280  * ecryptfs_read_headers_virt
1281  * @page_virt: The virtual address into which to read the headers
1282  * @crypt_stat: The cryptographic context
1283  * @ecryptfs_dentry: The eCryptfs dentry
1284  * @validate_header_size: Whether to validate the header size while reading
1285  *
1286  * Read/parse the header data. The header format is detailed in the
1287  * comment block for the ecryptfs_write_headers_virt() function.
1288  *
1289  * Returns zero on success
1290  */
1291 static int ecryptfs_read_headers_virt(char *page_virt,
1292                                       struct ecryptfs_crypt_stat *crypt_stat,
1293                                       struct dentry *ecryptfs_dentry,
1294                                       int validate_header_size)
1295 {
1296         int rc = 0;
1297         int offset;
1298         int bytes_read;
1299
1300         ecryptfs_set_default_sizes(crypt_stat);
1301         crypt_stat->mount_crypt_stat = &ecryptfs_superblock_to_private(
1302                 ecryptfs_dentry->d_sb)->mount_crypt_stat;
1303         offset = ECRYPTFS_FILE_SIZE_BYTES;
1304         rc = ecryptfs_validate_marker(page_virt + offset);
1305         if (rc)
1306                 goto out;
1307         if (!(crypt_stat->flags & ECRYPTFS_I_SIZE_INITIALIZED))
1308                 ecryptfs_i_size_init(page_virt, d_inode(ecryptfs_dentry));
1309         offset += MAGIC_ECRYPTFS_MARKER_SIZE_BYTES;
1310         rc = ecryptfs_process_flags(crypt_stat, (page_virt + offset),
1311                                     &bytes_read);
1312         if (rc) {
1313                 ecryptfs_printk(KERN_WARNING, "Error processing flags\n");
1314                 goto out;
1315         }
1316         if (crypt_stat->file_version > ECRYPTFS_SUPPORTED_FILE_VERSION) {
1317                 ecryptfs_printk(KERN_WARNING, "File version is [%d]; only "
1318                                 "file version [%d] is supported by this "
1319                                 "version of eCryptfs\n",
1320                                 crypt_stat->file_version,
1321                                 ECRYPTFS_SUPPORTED_FILE_VERSION);
1322                 rc = -EINVAL;
1323                 goto out;
1324         }
1325         offset += bytes_read;
1326         if (crypt_stat->file_version >= 1) {
1327                 rc = parse_header_metadata(crypt_stat, (page_virt + offset),
1328                                            &bytes_read, validate_header_size);
1329                 if (rc) {
1330                         ecryptfs_printk(KERN_WARNING, "Error reading header "
1331                                         "metadata; rc = [%d]\n", rc);
1332                 }
1333                 offset += bytes_read;
1334         } else
1335                 set_default_header_data(crypt_stat);
1336         rc = ecryptfs_parse_packet_set(crypt_stat, (page_virt + offset),
1337                                        ecryptfs_dentry);
1338 out:
1339         return rc;
1340 }
1341
1342 /**
1343  * ecryptfs_read_xattr_region
1344  * @page_virt: The vitual address into which to read the xattr data
1345  * @ecryptfs_inode: The eCryptfs inode
1346  *
1347  * Attempts to read the crypto metadata from the extended attribute
1348  * region of the lower file.
1349  *
1350  * Returns zero on success; non-zero on error
1351  */
1352 int ecryptfs_read_xattr_region(char *page_virt, struct inode *ecryptfs_inode)
1353 {
1354         struct dentry *lower_dentry =
1355                 ecryptfs_inode_to_private(ecryptfs_inode)->lower_file->f_path.dentry;
1356         ssize_t size;
1357         int rc = 0;
1358
1359         size = ecryptfs_getxattr_lower(lower_dentry,
1360                                        ecryptfs_inode_to_lower(ecryptfs_inode),
1361                                        ECRYPTFS_XATTR_NAME,
1362                                        page_virt, ECRYPTFS_DEFAULT_EXTENT_SIZE);
1363         if (size < 0) {
1364                 if (unlikely(ecryptfs_verbosity > 0))
1365                         printk(KERN_INFO "Error attempting to read the [%s] "
1366                                "xattr from the lower file; return value = "
1367                                "[%zd]\n", ECRYPTFS_XATTR_NAME, size);
1368                 rc = -EINVAL;
1369                 goto out;
1370         }
1371 out:
1372         return rc;
1373 }
1374
1375 int ecryptfs_read_and_validate_xattr_region(struct dentry *dentry,
1376                                             struct inode *inode)
1377 {
1378         u8 file_size[ECRYPTFS_SIZE_AND_MARKER_BYTES];
1379         u8 *marker = file_size + ECRYPTFS_FILE_SIZE_BYTES;
1380         int rc;
1381
1382         rc = ecryptfs_getxattr_lower(ecryptfs_dentry_to_lower(dentry),
1383                                      ecryptfs_inode_to_lower(inode),
1384                                      ECRYPTFS_XATTR_NAME, file_size,
1385                                      ECRYPTFS_SIZE_AND_MARKER_BYTES);
1386         if (rc < 0)
1387                 return rc;
1388         else if (rc < ECRYPTFS_SIZE_AND_MARKER_BYTES)
1389                 return -EINVAL;
1390         rc = ecryptfs_validate_marker(marker);
1391         if (!rc)
1392                 ecryptfs_i_size_init(file_size, inode);
1393         return rc;
1394 }
1395
1396 /**
1397  * ecryptfs_read_metadata
1398  *
1399  * Common entry point for reading file metadata. From here, we could
1400  * retrieve the header information from the header region of the file,
1401  * the xattr region of the file, or some other repository that is
1402  * stored separately from the file itself. The current implementation
1403  * supports retrieving the metadata information from the file contents
1404  * and from the xattr region.
1405  *
1406  * Returns zero if valid headers found and parsed; non-zero otherwise
1407  */
1408 int ecryptfs_read_metadata(struct dentry *ecryptfs_dentry)
1409 {
1410         int rc;
1411         char *page_virt;
1412         struct inode *ecryptfs_inode = d_inode(ecryptfs_dentry);
1413         struct ecryptfs_crypt_stat *crypt_stat =
1414             &ecryptfs_inode_to_private(ecryptfs_inode)->crypt_stat;
1415         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
1416                 &ecryptfs_superblock_to_private(
1417                         ecryptfs_dentry->d_sb)->mount_crypt_stat;
1418
1419         ecryptfs_copy_mount_wide_flags_to_inode_flags(crypt_stat,
1420                                                       mount_crypt_stat);
1421         /* Read the first page from the underlying file */
1422         page_virt = kmem_cache_alloc(ecryptfs_header_cache, GFP_USER);
1423         if (!page_virt) {
1424                 rc = -ENOMEM;
1425                 goto out;
1426         }
1427         rc = ecryptfs_read_lower(page_virt, 0, crypt_stat->extent_size,
1428                                  ecryptfs_inode);
1429         if (rc >= 0)
1430                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1431                                                 ecryptfs_dentry,
1432                                                 ECRYPTFS_VALIDATE_HEADER_SIZE);
1433         if (rc) {
1434                 /* metadata is not in the file header, so try xattrs */
1435                 memset(page_virt, 0, PAGE_SIZE);
1436                 rc = ecryptfs_read_xattr_region(page_virt, ecryptfs_inode);
1437                 if (rc) {
1438                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1439                                "file header region or xattr region, inode %lu\n",
1440                                 ecryptfs_inode->i_ino);
1441                         rc = -EINVAL;
1442                         goto out;
1443                 }
1444                 rc = ecryptfs_read_headers_virt(page_virt, crypt_stat,
1445                                                 ecryptfs_dentry,
1446                                                 ECRYPTFS_DONT_VALIDATE_HEADER_SIZE);
1447                 if (rc) {
1448                         printk(KERN_DEBUG "Valid eCryptfs headers not found in "
1449                                "file xattr region either, inode %lu\n",
1450                                 ecryptfs_inode->i_ino);
1451                         rc = -EINVAL;
1452                 }
1453                 if (crypt_stat->mount_crypt_stat->flags
1454                     & ECRYPTFS_XATTR_METADATA_ENABLED) {
1455                         crypt_stat->flags |= ECRYPTFS_METADATA_IN_XATTR;
1456                 } else {
1457                         printk(KERN_WARNING "Attempt to access file with "
1458                                "crypto metadata only in the extended attribute "
1459                                "region, but eCryptfs was mounted without "
1460                                "xattr support enabled. eCryptfs will not treat "
1461                                "this like an encrypted file, inode %lu\n",
1462                                 ecryptfs_inode->i_ino);
1463                         rc = -EINVAL;
1464                 }
1465         }
1466 out:
1467         if (page_virt) {
1468                 memset(page_virt, 0, PAGE_SIZE);
1469                 kmem_cache_free(ecryptfs_header_cache, page_virt);
1470         }
1471         return rc;
1472 }
1473
1474 /**
1475  * ecryptfs_encrypt_filename - encrypt filename
1476  *
1477  * CBC-encrypts the filename. We do not want to encrypt the same
1478  * filename with the same key and IV, which may happen with hard
1479  * links, so we prepend random bits to each filename.
1480  *
1481  * Returns zero on success; non-zero otherwise
1482  */
1483 static int
1484 ecryptfs_encrypt_filename(struct ecryptfs_filename *filename,
1485                           struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
1486 {
1487         int rc = 0;
1488
1489         filename->encrypted_filename = NULL;
1490         filename->encrypted_filename_size = 0;
1491         if (mount_crypt_stat && (mount_crypt_stat->flags
1492                                      & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1493                 size_t packet_size;
1494                 size_t remaining_bytes;
1495
1496                 rc = ecryptfs_write_tag_70_packet(
1497                         NULL, NULL,
1498                         &filename->encrypted_filename_size,
1499                         mount_crypt_stat, NULL,
1500                         filename->filename_size);
1501                 if (rc) {
1502                         printk(KERN_ERR "%s: Error attempting to get packet "
1503                                "size for tag 72; rc = [%d]\n", __func__,
1504                                rc);
1505                         filename->encrypted_filename_size = 0;
1506                         goto out;
1507                 }
1508                 filename->encrypted_filename =
1509                         kmalloc(filename->encrypted_filename_size, GFP_KERNEL);
1510                 if (!filename->encrypted_filename) {
1511                         rc = -ENOMEM;
1512                         goto out;
1513                 }
1514                 remaining_bytes = filename->encrypted_filename_size;
1515                 rc = ecryptfs_write_tag_70_packet(filename->encrypted_filename,
1516                                                   &remaining_bytes,
1517                                                   &packet_size,
1518                                                   mount_crypt_stat,
1519                                                   filename->filename,
1520                                                   filename->filename_size);
1521                 if (rc) {
1522                         printk(KERN_ERR "%s: Error attempting to generate "
1523                                "tag 70 packet; rc = [%d]\n", __func__,
1524                                rc);
1525                         kfree(filename->encrypted_filename);
1526                         filename->encrypted_filename = NULL;
1527                         filename->encrypted_filename_size = 0;
1528                         goto out;
1529                 }
1530                 filename->encrypted_filename_size = packet_size;
1531         } else {
1532                 printk(KERN_ERR "%s: No support for requested filename "
1533                        "encryption method in this release\n", __func__);
1534                 rc = -EOPNOTSUPP;
1535                 goto out;
1536         }
1537 out:
1538         return rc;
1539 }
1540
1541 static int ecryptfs_copy_filename(char **copied_name, size_t *copied_name_size,
1542                                   const char *name, size_t name_size)
1543 {
1544         int rc = 0;
1545
1546         (*copied_name) = kmalloc((name_size + 1), GFP_KERNEL);
1547         if (!(*copied_name)) {
1548                 rc = -ENOMEM;
1549                 goto out;
1550         }
1551         memcpy((void *)(*copied_name), (void *)name, name_size);
1552         (*copied_name)[(name_size)] = '\0';     /* Only for convenience
1553                                                  * in printing out the
1554                                                  * string in debug
1555                                                  * messages */
1556         (*copied_name_size) = name_size;
1557 out:
1558         return rc;
1559 }
1560
1561 /**
1562  * ecryptfs_process_key_cipher - Perform key cipher initialization.
1563  * @key_tfm: Crypto context for key material, set by this function
1564  * @cipher_name: Name of the cipher
1565  * @key_size: Size of the key in bytes
1566  *
1567  * Returns zero on success. Any crypto_tfm structs allocated here
1568  * should be released by other functions, such as on a superblock put
1569  * event, regardless of whether this function succeeds for fails.
1570  */
1571 static int
1572 ecryptfs_process_key_cipher(struct crypto_skcipher **key_tfm,
1573                             char *cipher_name, size_t *key_size)
1574 {
1575         char dummy_key[ECRYPTFS_MAX_KEY_BYTES];
1576         char *full_alg_name = NULL;
1577         int rc;
1578
1579         *key_tfm = NULL;
1580         if (*key_size > ECRYPTFS_MAX_KEY_BYTES) {
1581                 rc = -EINVAL;
1582                 printk(KERN_ERR "Requested key size is [%zd] bytes; maximum "
1583                       "allowable is [%d]\n", *key_size, ECRYPTFS_MAX_KEY_BYTES);
1584                 goto out;
1585         }
1586         rc = ecryptfs_crypto_api_algify_cipher_name(&full_alg_name, cipher_name,
1587                                                     "ecb");
1588         if (rc)
1589                 goto out;
1590         *key_tfm = crypto_alloc_skcipher(full_alg_name, 0, CRYPTO_ALG_ASYNC);
1591         if (IS_ERR(*key_tfm)) {
1592                 rc = PTR_ERR(*key_tfm);
1593                 printk(KERN_ERR "Unable to allocate crypto cipher with name "
1594                        "[%s]; rc = [%d]\n", full_alg_name, rc);
1595                 goto out;
1596         }
1597         crypto_skcipher_set_flags(*key_tfm, CRYPTO_TFM_REQ_WEAK_KEY);
1598         if (*key_size == 0)
1599                 *key_size = crypto_skcipher_default_keysize(*key_tfm);
1600         get_random_bytes(dummy_key, *key_size);
1601         rc = crypto_skcipher_setkey(*key_tfm, dummy_key, *key_size);
1602         if (rc) {
1603                 printk(KERN_ERR "Error attempting to set key of size [%zd] for "
1604                        "cipher [%s]; rc = [%d]\n", *key_size, full_alg_name,
1605                        rc);
1606                 rc = -EINVAL;
1607                 goto out;
1608         }
1609 out:
1610         kfree(full_alg_name);
1611         return rc;
1612 }
1613
1614 struct kmem_cache *ecryptfs_key_tfm_cache;
1615 static struct list_head key_tfm_list;
1616 struct mutex key_tfm_list_mutex;
1617
1618 int __init ecryptfs_init_crypto(void)
1619 {
1620         mutex_init(&key_tfm_list_mutex);
1621         INIT_LIST_HEAD(&key_tfm_list);
1622         return 0;
1623 }
1624
1625 /**
1626  * ecryptfs_destroy_crypto - free all cached key_tfms on key_tfm_list
1627  *
1628  * Called only at module unload time
1629  */
1630 int ecryptfs_destroy_crypto(void)
1631 {
1632         struct ecryptfs_key_tfm *key_tfm, *key_tfm_tmp;
1633
1634         mutex_lock(&key_tfm_list_mutex);
1635         list_for_each_entry_safe(key_tfm, key_tfm_tmp, &key_tfm_list,
1636                                  key_tfm_list) {
1637                 list_del(&key_tfm->key_tfm_list);
1638                 crypto_free_skcipher(key_tfm->key_tfm);
1639                 kmem_cache_free(ecryptfs_key_tfm_cache, key_tfm);
1640         }
1641         mutex_unlock(&key_tfm_list_mutex);
1642         return 0;
1643 }
1644
1645 int
1646 ecryptfs_add_new_key_tfm(struct ecryptfs_key_tfm **key_tfm, char *cipher_name,
1647                          size_t key_size)
1648 {
1649         struct ecryptfs_key_tfm *tmp_tfm;
1650         int rc = 0;
1651
1652         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1653
1654         tmp_tfm = kmem_cache_alloc(ecryptfs_key_tfm_cache, GFP_KERNEL);
1655         if (key_tfm)
1656                 (*key_tfm) = tmp_tfm;
1657         if (!tmp_tfm) {
1658                 rc = -ENOMEM;
1659                 goto out;
1660         }
1661         mutex_init(&tmp_tfm->key_tfm_mutex);
1662         strncpy(tmp_tfm->cipher_name, cipher_name,
1663                 ECRYPTFS_MAX_CIPHER_NAME_SIZE);
1664         tmp_tfm->cipher_name[ECRYPTFS_MAX_CIPHER_NAME_SIZE] = '\0';
1665         tmp_tfm->key_size = key_size;
1666         rc = ecryptfs_process_key_cipher(&tmp_tfm->key_tfm,
1667                                          tmp_tfm->cipher_name,
1668                                          &tmp_tfm->key_size);
1669         if (rc) {
1670                 printk(KERN_ERR "Error attempting to initialize key TFM "
1671                        "cipher with name = [%s]; rc = [%d]\n",
1672                        tmp_tfm->cipher_name, rc);
1673                 kmem_cache_free(ecryptfs_key_tfm_cache, tmp_tfm);
1674                 if (key_tfm)
1675                         (*key_tfm) = NULL;
1676                 goto out;
1677         }
1678         list_add(&tmp_tfm->key_tfm_list, &key_tfm_list);
1679 out:
1680         return rc;
1681 }
1682
1683 /**
1684  * ecryptfs_tfm_exists - Search for existing tfm for cipher_name.
1685  * @cipher_name: the name of the cipher to search for
1686  * @key_tfm: set to corresponding tfm if found
1687  *
1688  * Searches for cached key_tfm matching @cipher_name
1689  * Must be called with &key_tfm_list_mutex held
1690  * Returns 1 if found, with @key_tfm set
1691  * Returns 0 if not found, with @key_tfm set to NULL
1692  */
1693 int ecryptfs_tfm_exists(char *cipher_name, struct ecryptfs_key_tfm **key_tfm)
1694 {
1695         struct ecryptfs_key_tfm *tmp_key_tfm;
1696
1697         BUG_ON(!mutex_is_locked(&key_tfm_list_mutex));
1698
1699         list_for_each_entry(tmp_key_tfm, &key_tfm_list, key_tfm_list) {
1700                 if (strcmp(tmp_key_tfm->cipher_name, cipher_name) == 0) {
1701                         if (key_tfm)
1702                                 (*key_tfm) = tmp_key_tfm;
1703                         return 1;
1704                 }
1705         }
1706         if (key_tfm)
1707                 (*key_tfm) = NULL;
1708         return 0;
1709 }
1710
1711 /**
1712  * ecryptfs_get_tfm_and_mutex_for_cipher_name
1713  *
1714  * @tfm: set to cached tfm found, or new tfm created
1715  * @tfm_mutex: set to mutex for cached tfm found, or new tfm created
1716  * @cipher_name: the name of the cipher to search for and/or add
1717  *
1718  * Sets pointers to @tfm & @tfm_mutex matching @cipher_name.
1719  * Searches for cached item first, and creates new if not found.
1720  * Returns 0 on success, non-zero if adding new cipher failed
1721  */
1722 int ecryptfs_get_tfm_and_mutex_for_cipher_name(struct crypto_skcipher **tfm,
1723                                                struct mutex **tfm_mutex,
1724                                                char *cipher_name)
1725 {
1726         struct ecryptfs_key_tfm *key_tfm;
1727         int rc = 0;
1728
1729         (*tfm) = NULL;
1730         (*tfm_mutex) = NULL;
1731
1732         mutex_lock(&key_tfm_list_mutex);
1733         if (!ecryptfs_tfm_exists(cipher_name, &key_tfm)) {
1734                 rc = ecryptfs_add_new_key_tfm(&key_tfm, cipher_name, 0);
1735                 if (rc) {
1736                         printk(KERN_ERR "Error adding new key_tfm to list; "
1737                                         "rc = [%d]\n", rc);
1738                         goto out;
1739                 }
1740         }
1741         (*tfm) = key_tfm->key_tfm;
1742         (*tfm_mutex) = &key_tfm->key_tfm_mutex;
1743 out:
1744         mutex_unlock(&key_tfm_list_mutex);
1745         return rc;
1746 }
1747
1748 /* 64 characters forming a 6-bit target field */
1749 static unsigned char *portable_filename_chars = ("-.0123456789ABCD"
1750                                                  "EFGHIJKLMNOPQRST"
1751                                                  "UVWXYZabcdefghij"
1752                                                  "klmnopqrstuvwxyz");
1753
1754 /* We could either offset on every reverse map or just pad some 0x00's
1755  * at the front here */
1756 static const unsigned char filename_rev_map[256] = {
1757         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 7 */
1758         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 15 */
1759         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 23 */
1760         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 31 */
1761         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 39 */
1762         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01, 0x00, /* 47 */
1763         0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, /* 55 */
1764         0x0A, 0x0B, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, /* 63 */
1765         0x00, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, /* 71 */
1766         0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, /* 79 */
1767         0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0x21, 0x22, /* 87 */
1768         0x23, 0x24, 0x25, 0x00, 0x00, 0x00, 0x00, 0x00, /* 95 */
1769         0x00, 0x26, 0x27, 0x28, 0x29, 0x2A, 0x2B, 0x2C, /* 103 */
1770         0x2D, 0x2E, 0x2F, 0x30, 0x31, 0x32, 0x33, 0x34, /* 111 */
1771         0x35, 0x36, 0x37, 0x38, 0x39, 0x3A, 0x3B, 0x3C, /* 119 */
1772         0x3D, 0x3E, 0x3F /* 123 - 255 initialized to 0x00 */
1773 };
1774
1775 /**
1776  * ecryptfs_encode_for_filename
1777  * @dst: Destination location for encoded filename
1778  * @dst_size: Size of the encoded filename in bytes
1779  * @src: Source location for the filename to encode
1780  * @src_size: Size of the source in bytes
1781  */
1782 static void ecryptfs_encode_for_filename(unsigned char *dst, size_t *dst_size,
1783                                   unsigned char *src, size_t src_size)
1784 {
1785         size_t num_blocks;
1786         size_t block_num = 0;
1787         size_t dst_offset = 0;
1788         unsigned char last_block[3];
1789
1790         if (src_size == 0) {
1791                 (*dst_size) = 0;
1792                 goto out;
1793         }
1794         num_blocks = (src_size / 3);
1795         if ((src_size % 3) == 0) {
1796                 memcpy(last_block, (&src[src_size - 3]), 3);
1797         } else {
1798                 num_blocks++;
1799                 last_block[2] = 0x00;
1800                 switch (src_size % 3) {
1801                 case 1:
1802                         last_block[0] = src[src_size - 1];
1803                         last_block[1] = 0x00;
1804                         break;
1805                 case 2:
1806                         last_block[0] = src[src_size - 2];
1807                         last_block[1] = src[src_size - 1];
1808                 }
1809         }
1810         (*dst_size) = (num_blocks * 4);
1811         if (!dst)
1812                 goto out;
1813         while (block_num < num_blocks) {
1814                 unsigned char *src_block;
1815                 unsigned char dst_block[4];
1816
1817                 if (block_num == (num_blocks - 1))
1818                         src_block = last_block;
1819                 else
1820                         src_block = &src[block_num * 3];
1821                 dst_block[0] = ((src_block[0] >> 2) & 0x3F);
1822                 dst_block[1] = (((src_block[0] << 4) & 0x30)
1823                                 | ((src_block[1] >> 4) & 0x0F));
1824                 dst_block[2] = (((src_block[1] << 2) & 0x3C)
1825                                 | ((src_block[2] >> 6) & 0x03));
1826                 dst_block[3] = (src_block[2] & 0x3F);
1827                 dst[dst_offset++] = portable_filename_chars[dst_block[0]];
1828                 dst[dst_offset++] = portable_filename_chars[dst_block[1]];
1829                 dst[dst_offset++] = portable_filename_chars[dst_block[2]];
1830                 dst[dst_offset++] = portable_filename_chars[dst_block[3]];
1831                 block_num++;
1832         }
1833 out:
1834         return;
1835 }
1836
1837 static size_t ecryptfs_max_decoded_size(size_t encoded_size)
1838 {
1839         /* Not exact; conservatively long. Every block of 4
1840          * encoded characters decodes into a block of 3
1841          * decoded characters. This segment of code provides
1842          * the caller with the maximum amount of allocated
1843          * space that @dst will need to point to in a
1844          * subsequent call. */
1845         return ((encoded_size + 1) * 3) / 4;
1846 }
1847
1848 /**
1849  * ecryptfs_decode_from_filename
1850  * @dst: If NULL, this function only sets @dst_size and returns. If
1851  *       non-NULL, this function decodes the encoded octets in @src
1852  *       into the memory that @dst points to.
1853  * @dst_size: Set to the size of the decoded string.
1854  * @src: The encoded set of octets to decode.
1855  * @src_size: The size of the encoded set of octets to decode.
1856  */
1857 static void
1858 ecryptfs_decode_from_filename(unsigned char *dst, size_t *dst_size,
1859                               const unsigned char *src, size_t src_size)
1860 {
1861         u8 current_bit_offset = 0;
1862         size_t src_byte_offset = 0;
1863         size_t dst_byte_offset = 0;
1864
1865         if (!dst) {
1866                 (*dst_size) = ecryptfs_max_decoded_size(src_size);
1867                 goto out;
1868         }
1869         while (src_byte_offset < src_size) {
1870                 unsigned char src_byte =
1871                                 filename_rev_map[(int)src[src_byte_offset]];
1872
1873                 switch (current_bit_offset) {
1874                 case 0:
1875                         dst[dst_byte_offset] = (src_byte << 2);
1876                         current_bit_offset = 6;
1877                         break;
1878                 case 6:
1879                         dst[dst_byte_offset++] |= (src_byte >> 4);
1880                         dst[dst_byte_offset] = ((src_byte & 0xF)
1881                                                  << 4);
1882                         current_bit_offset = 4;
1883                         break;
1884                 case 4:
1885                         dst[dst_byte_offset++] |= (src_byte >> 2);
1886                         dst[dst_byte_offset] = (src_byte << 6);
1887                         current_bit_offset = 2;
1888                         break;
1889                 case 2:
1890                         dst[dst_byte_offset++] |= (src_byte);
1891                         current_bit_offset = 0;
1892                         break;
1893                 }
1894                 src_byte_offset++;
1895         }
1896         (*dst_size) = dst_byte_offset;
1897 out:
1898         return;
1899 }
1900
1901 /**
1902  * ecryptfs_encrypt_and_encode_filename - converts a plaintext file name to cipher text
1903  * @crypt_stat: The crypt_stat struct associated with the file anem to encode
1904  * @name: The plaintext name
1905  * @length: The length of the plaintext
1906  * @encoded_name: The encypted name
1907  *
1908  * Encrypts and encodes a filename into something that constitutes a
1909  * valid filename for a filesystem, with printable characters.
1910  *
1911  * We assume that we have a properly initialized crypto context,
1912  * pointed to by crypt_stat->tfm.
1913  *
1914  * Returns zero on success; non-zero on otherwise
1915  */
1916 int ecryptfs_encrypt_and_encode_filename(
1917         char **encoded_name,
1918         size_t *encoded_name_size,
1919         struct ecryptfs_mount_crypt_stat *mount_crypt_stat,
1920         const char *name, size_t name_size)
1921 {
1922         size_t encoded_name_no_prefix_size;
1923         int rc = 0;
1924
1925         (*encoded_name) = NULL;
1926         (*encoded_name_size) = 0;
1927         if (mount_crypt_stat && (mount_crypt_stat->flags
1928                                      & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
1929                 struct ecryptfs_filename *filename;
1930
1931                 filename = kzalloc(sizeof(*filename), GFP_KERNEL);
1932                 if (!filename) {
1933                         rc = -ENOMEM;
1934                         goto out;
1935                 }
1936                 filename->filename = (char *)name;
1937                 filename->filename_size = name_size;
1938                 rc = ecryptfs_encrypt_filename(filename, mount_crypt_stat);
1939                 if (rc) {
1940                         printk(KERN_ERR "%s: Error attempting to encrypt "
1941                                "filename; rc = [%d]\n", __func__, rc);
1942                         kfree(filename);
1943                         goto out;
1944                 }
1945                 ecryptfs_encode_for_filename(
1946                         NULL, &encoded_name_no_prefix_size,
1947                         filename->encrypted_filename,
1948                         filename->encrypted_filename_size);
1949                 if (mount_crypt_stat
1950                         && (mount_crypt_stat->flags
1951                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK))
1952                         (*encoded_name_size) =
1953                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1954                                  + encoded_name_no_prefix_size);
1955                 else
1956                         (*encoded_name_size) =
1957                                 (ECRYPTFS_FEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1958                                  + encoded_name_no_prefix_size);
1959                 (*encoded_name) = kmalloc((*encoded_name_size) + 1, GFP_KERNEL);
1960                 if (!(*encoded_name)) {
1961                         rc = -ENOMEM;
1962                         kfree(filename->encrypted_filename);
1963                         kfree(filename);
1964                         goto out;
1965                 }
1966                 if (mount_crypt_stat
1967                         && (mount_crypt_stat->flags
1968                             & ECRYPTFS_GLOBAL_ENCFN_USE_MOUNT_FNEK)) {
1969                         memcpy((*encoded_name),
1970                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
1971                                ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE);
1972                         ecryptfs_encode_for_filename(
1973                             ((*encoded_name)
1974                              + ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE),
1975                             &encoded_name_no_prefix_size,
1976                             filename->encrypted_filename,
1977                             filename->encrypted_filename_size);
1978                         (*encoded_name_size) =
1979                                 (ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE
1980                                  + encoded_name_no_prefix_size);
1981                         (*encoded_name)[(*encoded_name_size)] = '\0';
1982                 } else {
1983                         rc = -EOPNOTSUPP;
1984                 }
1985                 if (rc) {
1986                         printk(KERN_ERR "%s: Error attempting to encode "
1987                                "encrypted filename; rc = [%d]\n", __func__,
1988                                rc);
1989                         kfree((*encoded_name));
1990                         (*encoded_name) = NULL;
1991                         (*encoded_name_size) = 0;
1992                 }
1993                 kfree(filename->encrypted_filename);
1994                 kfree(filename);
1995         } else {
1996                 rc = ecryptfs_copy_filename(encoded_name,
1997                                             encoded_name_size,
1998                                             name, name_size);
1999         }
2000 out:
2001         return rc;
2002 }
2003
2004 static bool is_dot_dotdot(const char *name, size_t name_size)
2005 {
2006         if (name_size == 1 && name[0] == '.')
2007                 return true;
2008         else if (name_size == 2 && name[0] == '.' && name[1] == '.')
2009                 return true;
2010
2011         return false;
2012 }
2013
2014 /**
2015  * ecryptfs_decode_and_decrypt_filename - converts the encoded cipher text name to decoded plaintext
2016  * @plaintext_name: The plaintext name
2017  * @plaintext_name_size: The plaintext name size
2018  * @ecryptfs_dir_dentry: eCryptfs directory dentry
2019  * @name: The filename in cipher text
2020  * @name_size: The cipher text name size
2021  *
2022  * Decrypts and decodes the filename.
2023  *
2024  * Returns zero on error; non-zero otherwise
2025  */
2026 int ecryptfs_decode_and_decrypt_filename(char **plaintext_name,
2027                                          size_t *plaintext_name_size,
2028                                          struct super_block *sb,
2029                                          const char *name, size_t name_size)
2030 {
2031         struct ecryptfs_mount_crypt_stat *mount_crypt_stat =
2032                 &ecryptfs_superblock_to_private(sb)->mount_crypt_stat;
2033         char *decoded_name;
2034         size_t decoded_name_size;
2035         size_t packet_size;
2036         int rc = 0;
2037
2038         if ((mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES) &&
2039             !(mount_crypt_stat->flags & ECRYPTFS_ENCRYPTED_VIEW_ENABLED)) {
2040                 if (is_dot_dotdot(name, name_size)) {
2041                         rc = ecryptfs_copy_filename(plaintext_name,
2042                                                     plaintext_name_size,
2043                                                     name, name_size);
2044                         goto out;
2045                 }
2046
2047                 if (name_size <= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE ||
2048                     strncmp(name, ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX,
2049                             ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE)) {
2050                         rc = -EINVAL;
2051                         goto out;
2052                 }
2053
2054                 name += ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2055                 name_size -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2056                 ecryptfs_decode_from_filename(NULL, &decoded_name_size,
2057                                               name, name_size);
2058                 decoded_name = kmalloc(decoded_name_size, GFP_KERNEL);
2059                 if (!decoded_name) {
2060                         rc = -ENOMEM;
2061                         goto out;
2062                 }
2063                 ecryptfs_decode_from_filename(decoded_name, &decoded_name_size,
2064                                               name, name_size);
2065                 rc = ecryptfs_parse_tag_70_packet(plaintext_name,
2066                                                   plaintext_name_size,
2067                                                   &packet_size,
2068                                                   mount_crypt_stat,
2069                                                   decoded_name,
2070                                                   decoded_name_size);
2071                 if (rc) {
2072                         ecryptfs_printk(KERN_DEBUG,
2073                                         "%s: Could not parse tag 70 packet from filename\n",
2074                                         __func__);
2075                         goto out_free;
2076                 }
2077         } else {
2078                 rc = ecryptfs_copy_filename(plaintext_name,
2079                                             plaintext_name_size,
2080                                             name, name_size);
2081                 goto out;
2082         }
2083 out_free:
2084         kfree(decoded_name);
2085 out:
2086         return rc;
2087 }
2088
2089 #define ENC_NAME_MAX_BLOCKLEN_8_OR_16   143
2090
2091 int ecryptfs_set_f_namelen(long *namelen, long lower_namelen,
2092                            struct ecryptfs_mount_crypt_stat *mount_crypt_stat)
2093 {
2094         struct crypto_skcipher *tfm;
2095         struct mutex *tfm_mutex;
2096         size_t cipher_blocksize;
2097         int rc;
2098
2099         if (!(mount_crypt_stat->flags & ECRYPTFS_GLOBAL_ENCRYPT_FILENAMES)) {
2100                 (*namelen) = lower_namelen;
2101                 return 0;
2102         }
2103
2104         rc = ecryptfs_get_tfm_and_mutex_for_cipher_name(&tfm, &tfm_mutex,
2105                         mount_crypt_stat->global_default_fn_cipher_name);
2106         if (unlikely(rc)) {
2107                 (*namelen) = 0;
2108                 return rc;
2109         }
2110
2111         mutex_lock(tfm_mutex);
2112         cipher_blocksize = crypto_skcipher_blocksize(tfm);
2113         mutex_unlock(tfm_mutex);
2114
2115         /* Return an exact amount for the common cases */
2116         if (lower_namelen == NAME_MAX
2117             && (cipher_blocksize == 8 || cipher_blocksize == 16)) {
2118                 (*namelen) = ENC_NAME_MAX_BLOCKLEN_8_OR_16;
2119                 return 0;
2120         }
2121
2122         /* Return a safe estimate for the uncommon cases */
2123         (*namelen) = lower_namelen;
2124         (*namelen) -= ECRYPTFS_FNEK_ENCRYPTED_FILENAME_PREFIX_SIZE;
2125         /* Since this is the max decoded size, subtract 1 "decoded block" len */
2126         (*namelen) = ecryptfs_max_decoded_size(*namelen) - 3;
2127         (*namelen) -= ECRYPTFS_TAG_70_MAX_METADATA_SIZE;
2128         (*namelen) -= ECRYPTFS_FILENAME_MIN_RANDOM_PREPEND_BYTES;
2129         /* Worst case is that the filename is padded nearly a full block size */
2130         (*namelen) -= cipher_blocksize - 1;
2131
2132         if ((*namelen) < 0)
2133                 (*namelen) = 0;
2134
2135         return 0;
2136 }