GNU Linux-libre 4.9.309-gnu1
[releases.git] / fs / ext4 / inode.c
1 /*
2  *  linux/fs/ext4/inode.c
3  *
4  * Copyright (C) 1992, 1993, 1994, 1995
5  * Remy Card (card@masi.ibp.fr)
6  * Laboratoire MASI - Institut Blaise Pascal
7  * Universite Pierre et Marie Curie (Paris VI)
8  *
9  *  from
10  *
11  *  linux/fs/minix/inode.c
12  *
13  *  Copyright (C) 1991, 1992  Linus Torvalds
14  *
15  *  64-bit file support on 64-bit platforms by Jakub Jelinek
16  *      (jj@sunsite.ms.mff.cuni.cz)
17  *
18  *  Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
19  */
20
21 #include <linux/fs.h>
22 #include <linux/time.h>
23 #include <linux/highuid.h>
24 #include <linux/pagemap.h>
25 #include <linux/dax.h>
26 #include <linux/quotaops.h>
27 #include <linux/string.h>
28 #include <linux/buffer_head.h>
29 #include <linux/writeback.h>
30 #include <linux/pagevec.h>
31 #include <linux/mpage.h>
32 #include <linux/namei.h>
33 #include <linux/uio.h>
34 #include <linux/bio.h>
35 #include <linux/workqueue.h>
36 #include <linux/kernel.h>
37 #include <linux/printk.h>
38 #include <linux/slab.h>
39 #include <linux/bitops.h>
40
41 #include "ext4_jbd2.h"
42 #include "xattr.h"
43 #include "acl.h"
44 #include "truncate.h"
45
46 #include <trace/events/ext4.h>
47
48 #define MPAGE_DA_EXTENT_TAIL 0x01
49
50 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
51                               struct ext4_inode_info *ei)
52 {
53         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
54         __u32 csum;
55         __u16 dummy_csum = 0;
56         int offset = offsetof(struct ext4_inode, i_checksum_lo);
57         unsigned int csum_size = sizeof(dummy_csum);
58
59         csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
60         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
61         offset += csum_size;
62         csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
63                            EXT4_GOOD_OLD_INODE_SIZE - offset);
64
65         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
66                 offset = offsetof(struct ext4_inode, i_checksum_hi);
67                 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
68                                    EXT4_GOOD_OLD_INODE_SIZE,
69                                    offset - EXT4_GOOD_OLD_INODE_SIZE);
70                 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
71                         csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
72                                            csum_size);
73                         offset += csum_size;
74                 }
75                 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
76                                    EXT4_INODE_SIZE(inode->i_sb) - offset);
77         }
78
79         return csum;
80 }
81
82 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
83                                   struct ext4_inode_info *ei)
84 {
85         __u32 provided, calculated;
86
87         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
88             cpu_to_le32(EXT4_OS_LINUX) ||
89             !ext4_has_metadata_csum(inode->i_sb))
90                 return 1;
91
92         provided = le16_to_cpu(raw->i_checksum_lo);
93         calculated = ext4_inode_csum(inode, raw, ei);
94         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
95             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
96                 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
97         else
98                 calculated &= 0xFFFF;
99
100         return provided == calculated;
101 }
102
103 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
104                                 struct ext4_inode_info *ei)
105 {
106         __u32 csum;
107
108         if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
109             cpu_to_le32(EXT4_OS_LINUX) ||
110             !ext4_has_metadata_csum(inode->i_sb))
111                 return;
112
113         csum = ext4_inode_csum(inode, raw, ei);
114         raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
115         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
116             EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
117                 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
118 }
119
120 static inline int ext4_begin_ordered_truncate(struct inode *inode,
121                                               loff_t new_size)
122 {
123         trace_ext4_begin_ordered_truncate(inode, new_size);
124         /*
125          * If jinode is zero, then we never opened the file for
126          * writing, so there's no need to call
127          * jbd2_journal_begin_ordered_truncate() since there's no
128          * outstanding writes we need to flush.
129          */
130         if (!EXT4_I(inode)->jinode)
131                 return 0;
132         return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
133                                                    EXT4_I(inode)->jinode,
134                                                    new_size);
135 }
136
137 static void ext4_invalidatepage(struct page *page, unsigned int offset,
138                                 unsigned int length);
139 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
140 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
141 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
142                                   int pextents);
143
144 /*
145  * Test whether an inode is a fast symlink.
146  */
147 int ext4_inode_is_fast_symlink(struct inode *inode)
148 {
149         int ea_blocks = EXT4_I(inode)->i_file_acl ?
150                 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
151
152         if (ext4_has_inline_data(inode))
153                 return 0;
154
155         return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
156 }
157
158 /*
159  * Restart the transaction associated with *handle.  This does a commit,
160  * so before we call here everything must be consistently dirtied against
161  * this transaction.
162  */
163 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
164                                  int nblocks)
165 {
166         int ret;
167
168         /*
169          * Drop i_data_sem to avoid deadlock with ext4_map_blocks.  At this
170          * moment, get_block can be called only for blocks inside i_size since
171          * page cache has been already dropped and writes are blocked by
172          * i_mutex. So we can safely drop the i_data_sem here.
173          */
174         BUG_ON(EXT4_JOURNAL(inode) == NULL);
175         jbd_debug(2, "restarting handle %p\n", handle);
176         up_write(&EXT4_I(inode)->i_data_sem);
177         ret = ext4_journal_restart(handle, nblocks);
178         down_write(&EXT4_I(inode)->i_data_sem);
179         ext4_discard_preallocations(inode);
180
181         return ret;
182 }
183
184 /*
185  * Called at the last iput() if i_nlink is zero.
186  */
187 void ext4_evict_inode(struct inode *inode)
188 {
189         handle_t *handle;
190         int err;
191
192         trace_ext4_evict_inode(inode);
193
194         if (inode->i_nlink) {
195                 /*
196                  * When journalling data dirty buffers are tracked only in the
197                  * journal. So although mm thinks everything is clean and
198                  * ready for reaping the inode might still have some pages to
199                  * write in the running transaction or waiting to be
200                  * checkpointed. Thus calling jbd2_journal_invalidatepage()
201                  * (via truncate_inode_pages()) to discard these buffers can
202                  * cause data loss. Also even if we did not discard these
203                  * buffers, we would have no way to find them after the inode
204                  * is reaped and thus user could see stale data if he tries to
205                  * read them before the transaction is checkpointed. So be
206                  * careful and force everything to disk here... We use
207                  * ei->i_datasync_tid to store the newest transaction
208                  * containing inode's data.
209                  *
210                  * Note that directories do not have this problem because they
211                  * don't use page cache.
212                  */
213                 if (inode->i_ino != EXT4_JOURNAL_INO &&
214                     ext4_should_journal_data(inode) &&
215                     (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
216                         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
217                         tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
218
219                         jbd2_complete_transaction(journal, commit_tid);
220                         filemap_write_and_wait(&inode->i_data);
221                 }
222                 truncate_inode_pages_final(&inode->i_data);
223
224                 goto no_delete;
225         }
226
227         if (is_bad_inode(inode))
228                 goto no_delete;
229         dquot_initialize(inode);
230
231         if (ext4_should_order_data(inode))
232                 ext4_begin_ordered_truncate(inode, 0);
233         truncate_inode_pages_final(&inode->i_data);
234
235         /*
236          * Protect us against freezing - iput() caller didn't have to have any
237          * protection against it
238          */
239         sb_start_intwrite(inode->i_sb);
240         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
241                                     ext4_blocks_for_truncate(inode)+3);
242         if (IS_ERR(handle)) {
243                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
244                 /*
245                  * If we're going to skip the normal cleanup, we still need to
246                  * make sure that the in-core orphan linked list is properly
247                  * cleaned up.
248                  */
249                 ext4_orphan_del(NULL, inode);
250                 sb_end_intwrite(inode->i_sb);
251                 goto no_delete;
252         }
253
254         if (IS_SYNC(inode))
255                 ext4_handle_sync(handle);
256         inode->i_size = 0;
257         err = ext4_mark_inode_dirty(handle, inode);
258         if (err) {
259                 ext4_warning(inode->i_sb,
260                              "couldn't mark inode dirty (err %d)", err);
261                 goto stop_handle;
262         }
263         if (inode->i_blocks)
264                 ext4_truncate(inode);
265
266         /*
267          * ext4_ext_truncate() doesn't reserve any slop when it
268          * restarts journal transactions; therefore there may not be
269          * enough credits left in the handle to remove the inode from
270          * the orphan list and set the dtime field.
271          */
272         if (!ext4_handle_has_enough_credits(handle, 3)) {
273                 err = ext4_journal_extend(handle, 3);
274                 if (err > 0)
275                         err = ext4_journal_restart(handle, 3);
276                 if (err != 0) {
277                         ext4_warning(inode->i_sb,
278                                      "couldn't extend journal (err %d)", err);
279                 stop_handle:
280                         ext4_journal_stop(handle);
281                         ext4_orphan_del(NULL, inode);
282                         sb_end_intwrite(inode->i_sb);
283                         goto no_delete;
284                 }
285         }
286
287         /*
288          * Kill off the orphan record which ext4_truncate created.
289          * AKPM: I think this can be inside the above `if'.
290          * Note that ext4_orphan_del() has to be able to cope with the
291          * deletion of a non-existent orphan - this is because we don't
292          * know if ext4_truncate() actually created an orphan record.
293          * (Well, we could do this if we need to, but heck - it works)
294          */
295         ext4_orphan_del(handle, inode);
296         EXT4_I(inode)->i_dtime  = get_seconds();
297
298         /*
299          * One subtle ordering requirement: if anything has gone wrong
300          * (transaction abort, IO errors, whatever), then we can still
301          * do these next steps (the fs will already have been marked as
302          * having errors), but we can't free the inode if the mark_dirty
303          * fails.
304          */
305         if (ext4_mark_inode_dirty(handle, inode))
306                 /* If that failed, just do the required in-core inode clear. */
307                 ext4_clear_inode(inode);
308         else
309                 ext4_free_inode(handle, inode);
310         ext4_journal_stop(handle);
311         sb_end_intwrite(inode->i_sb);
312         return;
313 no_delete:
314         ext4_clear_inode(inode);        /* We must guarantee clearing of inode... */
315 }
316
317 #ifdef CONFIG_QUOTA
318 qsize_t *ext4_get_reserved_space(struct inode *inode)
319 {
320         return &EXT4_I(inode)->i_reserved_quota;
321 }
322 #endif
323
324 /*
325  * Called with i_data_sem down, which is important since we can call
326  * ext4_discard_preallocations() from here.
327  */
328 void ext4_da_update_reserve_space(struct inode *inode,
329                                         int used, int quota_claim)
330 {
331         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
332         struct ext4_inode_info *ei = EXT4_I(inode);
333
334         spin_lock(&ei->i_block_reservation_lock);
335         trace_ext4_da_update_reserve_space(inode, used, quota_claim);
336         if (unlikely(used > ei->i_reserved_data_blocks)) {
337                 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
338                          "with only %d reserved data blocks",
339                          __func__, inode->i_ino, used,
340                          ei->i_reserved_data_blocks);
341                 WARN_ON(1);
342                 used = ei->i_reserved_data_blocks;
343         }
344
345         /* Update per-inode reservations */
346         ei->i_reserved_data_blocks -= used;
347         percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
348
349         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
350
351         /* Update quota subsystem for data blocks */
352         if (quota_claim)
353                 dquot_claim_block(inode, EXT4_C2B(sbi, used));
354         else {
355                 /*
356                  * We did fallocate with an offset that is already delayed
357                  * allocated. So on delayed allocated writeback we should
358                  * not re-claim the quota for fallocated blocks.
359                  */
360                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
361         }
362
363         /*
364          * If we have done all the pending block allocations and if
365          * there aren't any writers on the inode, we can discard the
366          * inode's preallocations.
367          */
368         if ((ei->i_reserved_data_blocks == 0) &&
369             (atomic_read(&inode->i_writecount) == 0))
370                 ext4_discard_preallocations(inode);
371 }
372
373 static int __check_block_validity(struct inode *inode, const char *func,
374                                 unsigned int line,
375                                 struct ext4_map_blocks *map)
376 {
377         if (ext4_has_feature_journal(inode->i_sb) &&
378             (inode->i_ino ==
379              le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
380                 return 0;
381         if (!ext4_inode_block_valid(inode, map->m_pblk, map->m_len)) {
382                 ext4_error_inode(inode, func, line, map->m_pblk,
383                                  "lblock %lu mapped to illegal pblock %llu "
384                                  "(length %d)", (unsigned long) map->m_lblk,
385                                  map->m_pblk, map->m_len);
386                 return -EFSCORRUPTED;
387         }
388         return 0;
389 }
390
391 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
392                        ext4_lblk_t len)
393 {
394         int ret;
395
396         if (ext4_encrypted_inode(inode))
397                 return fscrypt_zeroout_range(inode, lblk, pblk, len);
398
399         ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
400         if (ret > 0)
401                 ret = 0;
402
403         return ret;
404 }
405
406 #define check_block_validity(inode, map)        \
407         __check_block_validity((inode), __func__, __LINE__, (map))
408
409 #ifdef ES_AGGRESSIVE_TEST
410 static void ext4_map_blocks_es_recheck(handle_t *handle,
411                                        struct inode *inode,
412                                        struct ext4_map_blocks *es_map,
413                                        struct ext4_map_blocks *map,
414                                        int flags)
415 {
416         int retval;
417
418         map->m_flags = 0;
419         /*
420          * There is a race window that the result is not the same.
421          * e.g. xfstests #223 when dioread_nolock enables.  The reason
422          * is that we lookup a block mapping in extent status tree with
423          * out taking i_data_sem.  So at the time the unwritten extent
424          * could be converted.
425          */
426         down_read(&EXT4_I(inode)->i_data_sem);
427         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
428                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
429                                              EXT4_GET_BLOCKS_KEEP_SIZE);
430         } else {
431                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
432                                              EXT4_GET_BLOCKS_KEEP_SIZE);
433         }
434         up_read((&EXT4_I(inode)->i_data_sem));
435
436         /*
437          * We don't check m_len because extent will be collpased in status
438          * tree.  So the m_len might not equal.
439          */
440         if (es_map->m_lblk != map->m_lblk ||
441             es_map->m_flags != map->m_flags ||
442             es_map->m_pblk != map->m_pblk) {
443                 printk("ES cache assertion failed for inode: %lu "
444                        "es_cached ex [%d/%d/%llu/%x] != "
445                        "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
446                        inode->i_ino, es_map->m_lblk, es_map->m_len,
447                        es_map->m_pblk, es_map->m_flags, map->m_lblk,
448                        map->m_len, map->m_pblk, map->m_flags,
449                        retval, flags);
450         }
451 }
452 #endif /* ES_AGGRESSIVE_TEST */
453
454 /*
455  * The ext4_map_blocks() function tries to look up the requested blocks,
456  * and returns if the blocks are already mapped.
457  *
458  * Otherwise it takes the write lock of the i_data_sem and allocate blocks
459  * and store the allocated blocks in the result buffer head and mark it
460  * mapped.
461  *
462  * If file type is extents based, it will call ext4_ext_map_blocks(),
463  * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
464  * based files
465  *
466  * On success, it returns the number of blocks being mapped or allocated.  if
467  * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
468  * is marked as unwritten. If the create == 1, it will mark @map as mapped.
469  *
470  * It returns 0 if plain look up failed (blocks have not been allocated), in
471  * that case, @map is returned as unmapped but we still do fill map->m_len to
472  * indicate the length of a hole starting at map->m_lblk.
473  *
474  * It returns the error in case of allocation failure.
475  */
476 int ext4_map_blocks(handle_t *handle, struct inode *inode,
477                     struct ext4_map_blocks *map, int flags)
478 {
479         struct extent_status es;
480         int retval;
481         int ret = 0;
482 #ifdef ES_AGGRESSIVE_TEST
483         struct ext4_map_blocks orig_map;
484
485         memcpy(&orig_map, map, sizeof(*map));
486 #endif
487
488         map->m_flags = 0;
489         ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
490                   "logical block %lu\n", inode->i_ino, flags, map->m_len,
491                   (unsigned long) map->m_lblk);
492
493         /*
494          * ext4_map_blocks returns an int, and m_len is an unsigned int
495          */
496         if (unlikely(map->m_len > INT_MAX))
497                 map->m_len = INT_MAX;
498
499         /* We can handle the block number less than EXT_MAX_BLOCKS */
500         if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
501                 return -EFSCORRUPTED;
502
503         /* Lookup extent status tree firstly */
504         if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
505                 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
506                         map->m_pblk = ext4_es_pblock(&es) +
507                                         map->m_lblk - es.es_lblk;
508                         map->m_flags |= ext4_es_is_written(&es) ?
509                                         EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
510                         retval = es.es_len - (map->m_lblk - es.es_lblk);
511                         if (retval > map->m_len)
512                                 retval = map->m_len;
513                         map->m_len = retval;
514                 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
515                         map->m_pblk = 0;
516                         retval = es.es_len - (map->m_lblk - es.es_lblk);
517                         if (retval > map->m_len)
518                                 retval = map->m_len;
519                         map->m_len = retval;
520                         retval = 0;
521                 } else {
522                         BUG_ON(1);
523                 }
524 #ifdef ES_AGGRESSIVE_TEST
525                 ext4_map_blocks_es_recheck(handle, inode, map,
526                                            &orig_map, flags);
527 #endif
528                 goto found;
529         }
530
531         /*
532          * Try to see if we can get the block without requesting a new
533          * file system block.
534          */
535         down_read(&EXT4_I(inode)->i_data_sem);
536         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
537                 retval = ext4_ext_map_blocks(handle, inode, map, flags &
538                                              EXT4_GET_BLOCKS_KEEP_SIZE);
539         } else {
540                 retval = ext4_ind_map_blocks(handle, inode, map, flags &
541                                              EXT4_GET_BLOCKS_KEEP_SIZE);
542         }
543         if (retval > 0) {
544                 unsigned int status;
545
546                 if (unlikely(retval != map->m_len)) {
547                         ext4_warning(inode->i_sb,
548                                      "ES len assertion failed for inode "
549                                      "%lu: retval %d != map->m_len %d",
550                                      inode->i_ino, retval, map->m_len);
551                         WARN_ON(1);
552                 }
553
554                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
555                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
556                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
557                     !(status & EXTENT_STATUS_WRITTEN) &&
558                     ext4_find_delalloc_range(inode, map->m_lblk,
559                                              map->m_lblk + map->m_len - 1))
560                         status |= EXTENT_STATUS_DELAYED;
561                 ret = ext4_es_insert_extent(inode, map->m_lblk,
562                                             map->m_len, map->m_pblk, status);
563                 if (ret < 0)
564                         retval = ret;
565         }
566         up_read((&EXT4_I(inode)->i_data_sem));
567
568 found:
569         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
570                 ret = check_block_validity(inode, map);
571                 if (ret != 0)
572                         return ret;
573         }
574
575         /* If it is only a block(s) look up */
576         if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
577                 return retval;
578
579         /*
580          * Returns if the blocks have already allocated
581          *
582          * Note that if blocks have been preallocated
583          * ext4_ext_get_block() returns the create = 0
584          * with buffer head unmapped.
585          */
586         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
587                 /*
588                  * If we need to convert extent to unwritten
589                  * we continue and do the actual work in
590                  * ext4_ext_map_blocks()
591                  */
592                 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
593                         return retval;
594
595         /*
596          * Here we clear m_flags because after allocating an new extent,
597          * it will be set again.
598          */
599         map->m_flags &= ~EXT4_MAP_FLAGS;
600
601         /*
602          * New blocks allocate and/or writing to unwritten extent
603          * will possibly result in updating i_data, so we take
604          * the write lock of i_data_sem, and call get_block()
605          * with create == 1 flag.
606          */
607         down_write(&EXT4_I(inode)->i_data_sem);
608
609         /*
610          * We need to check for EXT4 here because migrate
611          * could have changed the inode type in between
612          */
613         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
614                 retval = ext4_ext_map_blocks(handle, inode, map, flags);
615         } else {
616                 retval = ext4_ind_map_blocks(handle, inode, map, flags);
617
618                 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
619                         /*
620                          * We allocated new blocks which will result in
621                          * i_data's format changing.  Force the migrate
622                          * to fail by clearing migrate flags
623                          */
624                         ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
625                 }
626
627                 /*
628                  * Update reserved blocks/metadata blocks after successful
629                  * block allocation which had been deferred till now. We don't
630                  * support fallocate for non extent files. So we can update
631                  * reserve space here.
632                  */
633                 if ((retval > 0) &&
634                         (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
635                         ext4_da_update_reserve_space(inode, retval, 1);
636         }
637
638         if (retval > 0) {
639                 unsigned int status;
640
641                 if (unlikely(retval != map->m_len)) {
642                         ext4_warning(inode->i_sb,
643                                      "ES len assertion failed for inode "
644                                      "%lu: retval %d != map->m_len %d",
645                                      inode->i_ino, retval, map->m_len);
646                         WARN_ON(1);
647                 }
648
649                 /*
650                  * We have to zeroout blocks before inserting them into extent
651                  * status tree. Otherwise someone could look them up there and
652                  * use them before they are really zeroed. We also have to
653                  * unmap metadata before zeroing as otherwise writeback can
654                  * overwrite zeros with stale data from block device.
655                  */
656                 if (flags & EXT4_GET_BLOCKS_ZERO &&
657                     map->m_flags & EXT4_MAP_MAPPED &&
658                     map->m_flags & EXT4_MAP_NEW) {
659                         ext4_lblk_t i;
660
661                         for (i = 0; i < map->m_len; i++) {
662                                 unmap_underlying_metadata(inode->i_sb->s_bdev,
663                                                           map->m_pblk + i);
664                         }
665                         ret = ext4_issue_zeroout(inode, map->m_lblk,
666                                                  map->m_pblk, map->m_len);
667                         if (ret) {
668                                 retval = ret;
669                                 goto out_sem;
670                         }
671                 }
672
673                 /*
674                  * If the extent has been zeroed out, we don't need to update
675                  * extent status tree.
676                  */
677                 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
678                     ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
679                         if (ext4_es_is_written(&es))
680                                 goto out_sem;
681                 }
682                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
683                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
684                 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
685                     !(status & EXTENT_STATUS_WRITTEN) &&
686                     ext4_find_delalloc_range(inode, map->m_lblk,
687                                              map->m_lblk + map->m_len - 1))
688                         status |= EXTENT_STATUS_DELAYED;
689                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
690                                             map->m_pblk, status);
691                 if (ret < 0) {
692                         retval = ret;
693                         goto out_sem;
694                 }
695         }
696
697 out_sem:
698         up_write((&EXT4_I(inode)->i_data_sem));
699         if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
700                 ret = check_block_validity(inode, map);
701                 if (ret != 0)
702                         return ret;
703
704                 /*
705                  * Inodes with freshly allocated blocks where contents will be
706                  * visible after transaction commit must be on transaction's
707                  * ordered data list.
708                  */
709                 if (map->m_flags & EXT4_MAP_NEW &&
710                     !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
711                     !(flags & EXT4_GET_BLOCKS_ZERO) &&
712                     !IS_NOQUOTA(inode) &&
713                     ext4_should_order_data(inode)) {
714                         if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
715                                 ret = ext4_jbd2_inode_add_wait(handle, inode);
716                         else
717                                 ret = ext4_jbd2_inode_add_write(handle, inode);
718                         if (ret)
719                                 return ret;
720                 }
721         }
722         return retval;
723 }
724
725 /*
726  * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
727  * we have to be careful as someone else may be manipulating b_state as well.
728  */
729 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
730 {
731         unsigned long old_state;
732         unsigned long new_state;
733
734         flags &= EXT4_MAP_FLAGS;
735
736         /* Dummy buffer_head? Set non-atomically. */
737         if (!bh->b_page) {
738                 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
739                 return;
740         }
741         /*
742          * Someone else may be modifying b_state. Be careful! This is ugly but
743          * once we get rid of using bh as a container for mapping information
744          * to pass to / from get_block functions, this can go away.
745          */
746         do {
747                 old_state = READ_ONCE(bh->b_state);
748                 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
749         } while (unlikely(
750                  cmpxchg(&bh->b_state, old_state, new_state) != old_state));
751 }
752
753 static int _ext4_get_block(struct inode *inode, sector_t iblock,
754                            struct buffer_head *bh, int flags)
755 {
756         struct ext4_map_blocks map;
757         int ret = 0;
758
759         if (ext4_has_inline_data(inode))
760                 return -ERANGE;
761
762         map.m_lblk = iblock;
763         map.m_len = bh->b_size >> inode->i_blkbits;
764
765         ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
766                               flags);
767         if (ret > 0) {
768                 map_bh(bh, inode->i_sb, map.m_pblk);
769                 ext4_update_bh_state(bh, map.m_flags);
770                 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
771                 ret = 0;
772         }
773         return ret;
774 }
775
776 int ext4_get_block(struct inode *inode, sector_t iblock,
777                    struct buffer_head *bh, int create)
778 {
779         return _ext4_get_block(inode, iblock, bh,
780                                create ? EXT4_GET_BLOCKS_CREATE : 0);
781 }
782
783 /*
784  * Get block function used when preparing for buffered write if we require
785  * creating an unwritten extent if blocks haven't been allocated.  The extent
786  * will be converted to written after the IO is complete.
787  */
788 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
789                              struct buffer_head *bh_result, int create)
790 {
791         ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
792                    inode->i_ino, create);
793         return _ext4_get_block(inode, iblock, bh_result,
794                                EXT4_GET_BLOCKS_IO_CREATE_EXT);
795 }
796
797 /* Maximum number of blocks we map for direct IO at once. */
798 #define DIO_MAX_BLOCKS 4096
799
800 /*
801  * Get blocks function for the cases that need to start a transaction -
802  * generally difference cases of direct IO and DAX IO. It also handles retries
803  * in case of ENOSPC.
804  */
805 static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
806                                 struct buffer_head *bh_result, int flags)
807 {
808         int dio_credits;
809         handle_t *handle;
810         int retries = 0;
811         int ret;
812
813         /* Trim mapping request to maximum we can map at once for DIO */
814         if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
815                 bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
816         dio_credits = ext4_chunk_trans_blocks(inode,
817                                       bh_result->b_size >> inode->i_blkbits);
818 retry:
819         handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
820         if (IS_ERR(handle))
821                 return PTR_ERR(handle);
822
823         ret = _ext4_get_block(inode, iblock, bh_result, flags);
824         ext4_journal_stop(handle);
825
826         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
827                 goto retry;
828         return ret;
829 }
830
831 /* Get block function for DIO reads and writes to inodes without extents */
832 int ext4_dio_get_block(struct inode *inode, sector_t iblock,
833                        struct buffer_head *bh, int create)
834 {
835         /* We don't expect handle for direct IO */
836         WARN_ON_ONCE(ext4_journal_current_handle());
837
838         if (!create)
839                 return _ext4_get_block(inode, iblock, bh, 0);
840         return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
841 }
842
843 /*
844  * Get block function for AIO DIO writes when we create unwritten extent if
845  * blocks are not allocated yet. The extent will be converted to written
846  * after IO is complete.
847  */
848 static int ext4_dio_get_block_unwritten_async(struct inode *inode,
849                 sector_t iblock, struct buffer_head *bh_result, int create)
850 {
851         int ret;
852
853         /* We don't expect handle for direct IO */
854         WARN_ON_ONCE(ext4_journal_current_handle());
855
856         ret = ext4_get_block_trans(inode, iblock, bh_result,
857                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
858
859         /*
860          * When doing DIO using unwritten extents, we need io_end to convert
861          * unwritten extents to written on IO completion. We allocate io_end
862          * once we spot unwritten extent and store it in b_private. Generic
863          * DIO code keeps b_private set and furthermore passes the value to
864          * our completion callback in 'private' argument.
865          */
866         if (!ret && buffer_unwritten(bh_result)) {
867                 if (!bh_result->b_private) {
868                         ext4_io_end_t *io_end;
869
870                         io_end = ext4_init_io_end(inode, GFP_KERNEL);
871                         if (!io_end)
872                                 return -ENOMEM;
873                         bh_result->b_private = io_end;
874                         ext4_set_io_unwritten_flag(inode, io_end);
875                 }
876                 set_buffer_defer_completion(bh_result);
877         }
878
879         return ret;
880 }
881
882 /*
883  * Get block function for non-AIO DIO writes when we create unwritten extent if
884  * blocks are not allocated yet. The extent will be converted to written
885  * after IO is complete from ext4_ext_direct_IO() function.
886  */
887 static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
888                 sector_t iblock, struct buffer_head *bh_result, int create)
889 {
890         int ret;
891
892         /* We don't expect handle for direct IO */
893         WARN_ON_ONCE(ext4_journal_current_handle());
894
895         ret = ext4_get_block_trans(inode, iblock, bh_result,
896                                    EXT4_GET_BLOCKS_IO_CREATE_EXT);
897
898         /*
899          * Mark inode as having pending DIO writes to unwritten extents.
900          * ext4_ext_direct_IO() checks this flag and converts extents to
901          * written.
902          */
903         if (!ret && buffer_unwritten(bh_result))
904                 ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
905
906         return ret;
907 }
908
909 static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
910                    struct buffer_head *bh_result, int create)
911 {
912         int ret;
913
914         ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
915                    inode->i_ino, create);
916         /* We don't expect handle for direct IO */
917         WARN_ON_ONCE(ext4_journal_current_handle());
918
919         ret = _ext4_get_block(inode, iblock, bh_result, 0);
920         /*
921          * Blocks should have been preallocated! ext4_file_write_iter() checks
922          * that.
923          */
924         WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
925
926         return ret;
927 }
928
929
930 /*
931  * `handle' can be NULL if create is zero
932  */
933 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
934                                 ext4_lblk_t block, int map_flags)
935 {
936         struct ext4_map_blocks map;
937         struct buffer_head *bh;
938         int create = map_flags & EXT4_GET_BLOCKS_CREATE;
939         int err;
940
941         J_ASSERT(handle != NULL || create == 0);
942
943         map.m_lblk = block;
944         map.m_len = 1;
945         err = ext4_map_blocks(handle, inode, &map, map_flags);
946
947         if (err == 0)
948                 return create ? ERR_PTR(-ENOSPC) : NULL;
949         if (err < 0)
950                 return ERR_PTR(err);
951
952         bh = sb_getblk(inode->i_sb, map.m_pblk);
953         if (unlikely(!bh))
954                 return ERR_PTR(-ENOMEM);
955         if (map.m_flags & EXT4_MAP_NEW) {
956                 J_ASSERT(create != 0);
957                 J_ASSERT(handle != NULL);
958
959                 /*
960                  * Now that we do not always journal data, we should
961                  * keep in mind whether this should always journal the
962                  * new buffer as metadata.  For now, regular file
963                  * writes use ext4_get_block instead, so it's not a
964                  * problem.
965                  */
966                 lock_buffer(bh);
967                 BUFFER_TRACE(bh, "call get_create_access");
968                 err = ext4_journal_get_create_access(handle, bh);
969                 if (unlikely(err)) {
970                         unlock_buffer(bh);
971                         goto errout;
972                 }
973                 if (!buffer_uptodate(bh)) {
974                         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
975                         set_buffer_uptodate(bh);
976                 }
977                 unlock_buffer(bh);
978                 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
979                 err = ext4_handle_dirty_metadata(handle, inode, bh);
980                 if (unlikely(err))
981                         goto errout;
982         } else
983                 BUFFER_TRACE(bh, "not a new buffer");
984         return bh;
985 errout:
986         brelse(bh);
987         return ERR_PTR(err);
988 }
989
990 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
991                                ext4_lblk_t block, int map_flags)
992 {
993         struct buffer_head *bh;
994
995         bh = ext4_getblk(handle, inode, block, map_flags);
996         if (IS_ERR(bh))
997                 return bh;
998         if (!bh || buffer_uptodate(bh))
999                 return bh;
1000         ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
1001         wait_on_buffer(bh);
1002         if (buffer_uptodate(bh))
1003                 return bh;
1004         put_bh(bh);
1005         return ERR_PTR(-EIO);
1006 }
1007
1008 int ext4_walk_page_buffers(handle_t *handle,
1009                            struct buffer_head *head,
1010                            unsigned from,
1011                            unsigned to,
1012                            int *partial,
1013                            int (*fn)(handle_t *handle,
1014                                      struct buffer_head *bh))
1015 {
1016         struct buffer_head *bh;
1017         unsigned block_start, block_end;
1018         unsigned blocksize = head->b_size;
1019         int err, ret = 0;
1020         struct buffer_head *next;
1021
1022         for (bh = head, block_start = 0;
1023              ret == 0 && (bh != head || !block_start);
1024              block_start = block_end, bh = next) {
1025                 next = bh->b_this_page;
1026                 block_end = block_start + blocksize;
1027                 if (block_end <= from || block_start >= to) {
1028                         if (partial && !buffer_uptodate(bh))
1029                                 *partial = 1;
1030                         continue;
1031                 }
1032                 err = (*fn)(handle, bh);
1033                 if (!ret)
1034                         ret = err;
1035         }
1036         return ret;
1037 }
1038
1039 /*
1040  * To preserve ordering, it is essential that the hole instantiation and
1041  * the data write be encapsulated in a single transaction.  We cannot
1042  * close off a transaction and start a new one between the ext4_get_block()
1043  * and the commit_write().  So doing the jbd2_journal_start at the start of
1044  * prepare_write() is the right place.
1045  *
1046  * Also, this function can nest inside ext4_writepage().  In that case, we
1047  * *know* that ext4_writepage() has generated enough buffer credits to do the
1048  * whole page.  So we won't block on the journal in that case, which is good,
1049  * because the caller may be PF_MEMALLOC.
1050  *
1051  * By accident, ext4 can be reentered when a transaction is open via
1052  * quota file writes.  If we were to commit the transaction while thus
1053  * reentered, there can be a deadlock - we would be holding a quota
1054  * lock, and the commit would never complete if another thread had a
1055  * transaction open and was blocking on the quota lock - a ranking
1056  * violation.
1057  *
1058  * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1059  * will _not_ run commit under these circumstances because handle->h_ref
1060  * is elevated.  We'll still have enough credits for the tiny quotafile
1061  * write.
1062  */
1063 int do_journal_get_write_access(handle_t *handle,
1064                                 struct buffer_head *bh)
1065 {
1066         int dirty = buffer_dirty(bh);
1067         int ret;
1068
1069         if (!buffer_mapped(bh) || buffer_freed(bh))
1070                 return 0;
1071         /*
1072          * __block_write_begin() could have dirtied some buffers. Clean
1073          * the dirty bit as jbd2_journal_get_write_access() could complain
1074          * otherwise about fs integrity issues. Setting of the dirty bit
1075          * by __block_write_begin() isn't a real problem here as we clear
1076          * the bit before releasing a page lock and thus writeback cannot
1077          * ever write the buffer.
1078          */
1079         if (dirty)
1080                 clear_buffer_dirty(bh);
1081         BUFFER_TRACE(bh, "get write access");
1082         ret = ext4_journal_get_write_access(handle, bh);
1083         if (!ret && dirty)
1084                 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1085         return ret;
1086 }
1087
1088 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1089 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1090                                   get_block_t *get_block)
1091 {
1092         unsigned from = pos & (PAGE_SIZE - 1);
1093         unsigned to = from + len;
1094         struct inode *inode = page->mapping->host;
1095         unsigned block_start, block_end;
1096         sector_t block;
1097         int err = 0;
1098         unsigned blocksize = inode->i_sb->s_blocksize;
1099         unsigned bbits;
1100         struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
1101         bool decrypt = false;
1102
1103         BUG_ON(!PageLocked(page));
1104         BUG_ON(from > PAGE_SIZE);
1105         BUG_ON(to > PAGE_SIZE);
1106         BUG_ON(from > to);
1107
1108         if (!page_has_buffers(page))
1109                 create_empty_buffers(page, blocksize, 0);
1110         head = page_buffers(page);
1111         bbits = ilog2(blocksize);
1112         block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1113
1114         for (bh = head, block_start = 0; bh != head || !block_start;
1115             block++, block_start = block_end, bh = bh->b_this_page) {
1116                 block_end = block_start + blocksize;
1117                 if (block_end <= from || block_start >= to) {
1118                         if (PageUptodate(page)) {
1119                                 if (!buffer_uptodate(bh))
1120                                         set_buffer_uptodate(bh);
1121                         }
1122                         continue;
1123                 }
1124                 if (buffer_new(bh))
1125                         clear_buffer_new(bh);
1126                 if (!buffer_mapped(bh)) {
1127                         WARN_ON(bh->b_size != blocksize);
1128                         err = get_block(inode, block, bh, 1);
1129                         if (err)
1130                                 break;
1131                         if (buffer_new(bh)) {
1132                                 unmap_underlying_metadata(bh->b_bdev,
1133                                                           bh->b_blocknr);
1134                                 if (PageUptodate(page)) {
1135                                         clear_buffer_new(bh);
1136                                         set_buffer_uptodate(bh);
1137                                         mark_buffer_dirty(bh);
1138                                         continue;
1139                                 }
1140                                 if (block_end > to || block_start < from)
1141                                         zero_user_segments(page, to, block_end,
1142                                                            block_start, from);
1143                                 continue;
1144                         }
1145                 }
1146                 if (PageUptodate(page)) {
1147                         if (!buffer_uptodate(bh))
1148                                 set_buffer_uptodate(bh);
1149                         continue;
1150                 }
1151                 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1152                     !buffer_unwritten(bh) &&
1153                     (block_start < from || block_end > to)) {
1154                         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1155                         *wait_bh++ = bh;
1156                         decrypt = ext4_encrypted_inode(inode) &&
1157                                 S_ISREG(inode->i_mode);
1158                 }
1159         }
1160         /*
1161          * If we issued read requests, let them complete.
1162          */
1163         while (wait_bh > wait) {
1164                 wait_on_buffer(*--wait_bh);
1165                 if (!buffer_uptodate(*wait_bh))
1166                         err = -EIO;
1167         }
1168         if (unlikely(err))
1169                 page_zero_new_buffers(page, from, to);
1170         else if (decrypt)
1171                 err = fscrypt_decrypt_page(page);
1172         return err;
1173 }
1174 #endif
1175
1176 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1177                             loff_t pos, unsigned len, unsigned flags,
1178                             struct page **pagep, void **fsdata)
1179 {
1180         struct inode *inode = mapping->host;
1181         int ret, needed_blocks;
1182         handle_t *handle;
1183         int retries = 0;
1184         struct page *page;
1185         pgoff_t index;
1186         unsigned from, to;
1187
1188         trace_ext4_write_begin(inode, pos, len, flags);
1189         /*
1190          * Reserve one block more for addition to orphan list in case
1191          * we allocate blocks but write fails for some reason
1192          */
1193         needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1194         index = pos >> PAGE_SHIFT;
1195         from = pos & (PAGE_SIZE - 1);
1196         to = from + len;
1197
1198         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1199                 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1200                                                     flags, pagep);
1201                 if (ret < 0)
1202                         return ret;
1203                 if (ret == 1)
1204                         return 0;
1205         }
1206
1207         /*
1208          * grab_cache_page_write_begin() can take a long time if the
1209          * system is thrashing due to memory pressure, or if the page
1210          * is being written back.  So grab it first before we start
1211          * the transaction handle.  This also allows us to allocate
1212          * the page (if needed) without using GFP_NOFS.
1213          */
1214 retry_grab:
1215         page = grab_cache_page_write_begin(mapping, index, flags);
1216         if (!page)
1217                 return -ENOMEM;
1218         unlock_page(page);
1219
1220 retry_journal:
1221         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1222         if (IS_ERR(handle)) {
1223                 put_page(page);
1224                 return PTR_ERR(handle);
1225         }
1226
1227         lock_page(page);
1228         if (page->mapping != mapping) {
1229                 /* The page got truncated from under us */
1230                 unlock_page(page);
1231                 put_page(page);
1232                 ext4_journal_stop(handle);
1233                 goto retry_grab;
1234         }
1235         /* In case writeback began while the page was unlocked */
1236         wait_for_stable_page(page);
1237
1238 #ifdef CONFIG_EXT4_FS_ENCRYPTION
1239         if (ext4_should_dioread_nolock(inode))
1240                 ret = ext4_block_write_begin(page, pos, len,
1241                                              ext4_get_block_unwritten);
1242         else
1243                 ret = ext4_block_write_begin(page, pos, len,
1244                                              ext4_get_block);
1245 #else
1246         if (ext4_should_dioread_nolock(inode))
1247                 ret = __block_write_begin(page, pos, len,
1248                                           ext4_get_block_unwritten);
1249         else
1250                 ret = __block_write_begin(page, pos, len, ext4_get_block);
1251 #endif
1252         if (!ret && ext4_should_journal_data(inode)) {
1253                 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1254                                              from, to, NULL,
1255                                              do_journal_get_write_access);
1256         }
1257
1258         if (ret) {
1259                 unlock_page(page);
1260                 /*
1261                  * __block_write_begin may have instantiated a few blocks
1262                  * outside i_size.  Trim these off again. Don't need
1263                  * i_size_read because we hold i_mutex.
1264                  *
1265                  * Add inode to orphan list in case we crash before
1266                  * truncate finishes
1267                  */
1268                 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1269                         ext4_orphan_add(handle, inode);
1270
1271                 ext4_journal_stop(handle);
1272                 if (pos + len > inode->i_size) {
1273                         ext4_truncate_failed_write(inode);
1274                         /*
1275                          * If truncate failed early the inode might
1276                          * still be on the orphan list; we need to
1277                          * make sure the inode is removed from the
1278                          * orphan list in that case.
1279                          */
1280                         if (inode->i_nlink)
1281                                 ext4_orphan_del(NULL, inode);
1282                 }
1283
1284                 if (ret == -ENOSPC &&
1285                     ext4_should_retry_alloc(inode->i_sb, &retries))
1286                         goto retry_journal;
1287                 put_page(page);
1288                 return ret;
1289         }
1290         *pagep = page;
1291         return ret;
1292 }
1293
1294 /* For write_end() in data=journal mode */
1295 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1296 {
1297         int ret;
1298         if (!buffer_mapped(bh) || buffer_freed(bh))
1299                 return 0;
1300         set_buffer_uptodate(bh);
1301         ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1302         clear_buffer_meta(bh);
1303         clear_buffer_prio(bh);
1304         return ret;
1305 }
1306
1307 /*
1308  * We need to pick up the new inode size which generic_commit_write gave us
1309  * `file' can be NULL - eg, when called from page_symlink().
1310  *
1311  * ext4 never places buffers on inode->i_mapping->private_list.  metadata
1312  * buffers are managed internally.
1313  */
1314 static int ext4_write_end(struct file *file,
1315                           struct address_space *mapping,
1316                           loff_t pos, unsigned len, unsigned copied,
1317                           struct page *page, void *fsdata)
1318 {
1319         handle_t *handle = ext4_journal_current_handle();
1320         struct inode *inode = mapping->host;
1321         loff_t old_size = inode->i_size;
1322         int ret = 0, ret2;
1323         int i_size_changed = 0;
1324         int inline_data = ext4_has_inline_data(inode);
1325
1326         trace_ext4_write_end(inode, pos, len, copied);
1327         if (inline_data) {
1328                 ret = ext4_write_inline_data_end(inode, pos, len,
1329                                                  copied, page);
1330                 if (ret < 0) {
1331                         unlock_page(page);
1332                         put_page(page);
1333                         goto errout;
1334                 }
1335                 copied = ret;
1336         } else
1337                 copied = block_write_end(file, mapping, pos,
1338                                          len, copied, page, fsdata);
1339         /*
1340          * it's important to update i_size while still holding page lock:
1341          * page writeout could otherwise come in and zero beyond i_size.
1342          */
1343         i_size_changed = ext4_update_inode_size(inode, pos + copied);
1344         unlock_page(page);
1345         put_page(page);
1346
1347         if (old_size < pos)
1348                 pagecache_isize_extended(inode, old_size, pos);
1349         /*
1350          * Don't mark the inode dirty under page lock. First, it unnecessarily
1351          * makes the holding time of page lock longer. Second, it forces lock
1352          * ordering of page lock and transaction start for journaling
1353          * filesystems.
1354          */
1355         if (i_size_changed || inline_data)
1356                 ext4_mark_inode_dirty(handle, inode);
1357
1358         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1359                 /* if we have allocated more blocks and copied
1360                  * less. We will have blocks allocated outside
1361                  * inode->i_size. So truncate them
1362                  */
1363                 ext4_orphan_add(handle, inode);
1364 errout:
1365         ret2 = ext4_journal_stop(handle);
1366         if (!ret)
1367                 ret = ret2;
1368
1369         if (pos + len > inode->i_size) {
1370                 ext4_truncate_failed_write(inode);
1371                 /*
1372                  * If truncate failed early the inode might still be
1373                  * on the orphan list; we need to make sure the inode
1374                  * is removed from the orphan list in that case.
1375                  */
1376                 if (inode->i_nlink)
1377                         ext4_orphan_del(NULL, inode);
1378         }
1379
1380         return ret ? ret : copied;
1381 }
1382
1383 /*
1384  * This is a private version of page_zero_new_buffers() which doesn't
1385  * set the buffer to be dirty, since in data=journalled mode we need
1386  * to call ext4_handle_dirty_metadata() instead.
1387  */
1388 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1389                                             struct page *page,
1390                                             unsigned from, unsigned to)
1391 {
1392         unsigned int block_start = 0, block_end;
1393         struct buffer_head *head, *bh;
1394
1395         bh = head = page_buffers(page);
1396         do {
1397                 block_end = block_start + bh->b_size;
1398                 if (buffer_new(bh)) {
1399                         if (block_end > from && block_start < to) {
1400                                 if (!PageUptodate(page)) {
1401                                         unsigned start, size;
1402
1403                                         start = max(from, block_start);
1404                                         size = min(to, block_end) - start;
1405
1406                                         zero_user(page, start, size);
1407                                         write_end_fn(handle, bh);
1408                                 }
1409                                 clear_buffer_new(bh);
1410                         }
1411                 }
1412                 block_start = block_end;
1413                 bh = bh->b_this_page;
1414         } while (bh != head);
1415 }
1416
1417 static int ext4_journalled_write_end(struct file *file,
1418                                      struct address_space *mapping,
1419                                      loff_t pos, unsigned len, unsigned copied,
1420                                      struct page *page, void *fsdata)
1421 {
1422         handle_t *handle = ext4_journal_current_handle();
1423         struct inode *inode = mapping->host;
1424         loff_t old_size = inode->i_size;
1425         int ret = 0, ret2;
1426         int partial = 0;
1427         unsigned from, to;
1428         int size_changed = 0;
1429         int inline_data = ext4_has_inline_data(inode);
1430
1431         trace_ext4_journalled_write_end(inode, pos, len, copied);
1432         from = pos & (PAGE_SIZE - 1);
1433         to = from + len;
1434
1435         BUG_ON(!ext4_handle_valid(handle));
1436
1437         if (inline_data) {
1438                 ret = ext4_write_inline_data_end(inode, pos, len,
1439                                                  copied, page);
1440                 if (ret < 0) {
1441                         unlock_page(page);
1442                         put_page(page);
1443                         goto errout;
1444                 }
1445                 copied = ret;
1446         } else if (unlikely(copied < len) && !PageUptodate(page)) {
1447                 copied = 0;
1448                 ext4_journalled_zero_new_buffers(handle, page, from, to);
1449         } else {
1450                 if (unlikely(copied < len))
1451                         ext4_journalled_zero_new_buffers(handle, page,
1452                                                          from + copied, to);
1453                 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1454                                              from + copied, &partial,
1455                                              write_end_fn);
1456                 if (!partial)
1457                         SetPageUptodate(page);
1458         }
1459         size_changed = ext4_update_inode_size(inode, pos + copied);
1460         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1461         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1462         unlock_page(page);
1463         put_page(page);
1464
1465         if (old_size < pos)
1466                 pagecache_isize_extended(inode, old_size, pos);
1467
1468         if (size_changed || inline_data) {
1469                 ret2 = ext4_mark_inode_dirty(handle, inode);
1470                 if (!ret)
1471                         ret = ret2;
1472         }
1473
1474         if (pos + len > inode->i_size && ext4_can_truncate(inode))
1475                 /* if we have allocated more blocks and copied
1476                  * less. We will have blocks allocated outside
1477                  * inode->i_size. So truncate them
1478                  */
1479                 ext4_orphan_add(handle, inode);
1480
1481 errout:
1482         ret2 = ext4_journal_stop(handle);
1483         if (!ret)
1484                 ret = ret2;
1485         if (pos + len > inode->i_size) {
1486                 ext4_truncate_failed_write(inode);
1487                 /*
1488                  * If truncate failed early the inode might still be
1489                  * on the orphan list; we need to make sure the inode
1490                  * is removed from the orphan list in that case.
1491                  */
1492                 if (inode->i_nlink)
1493                         ext4_orphan_del(NULL, inode);
1494         }
1495
1496         return ret ? ret : copied;
1497 }
1498
1499 /*
1500  * Reserve space for a single cluster
1501  */
1502 static int ext4_da_reserve_space(struct inode *inode)
1503 {
1504         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1505         struct ext4_inode_info *ei = EXT4_I(inode);
1506         int ret;
1507
1508         /*
1509          * We will charge metadata quota at writeout time; this saves
1510          * us from metadata over-estimation, though we may go over by
1511          * a small amount in the end.  Here we just reserve for data.
1512          */
1513         ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1514         if (ret)
1515                 return ret;
1516
1517         spin_lock(&ei->i_block_reservation_lock);
1518         if (ext4_claim_free_clusters(sbi, 1, 0)) {
1519                 spin_unlock(&ei->i_block_reservation_lock);
1520                 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1521                 return -ENOSPC;
1522         }
1523         ei->i_reserved_data_blocks++;
1524         trace_ext4_da_reserve_space(inode);
1525         spin_unlock(&ei->i_block_reservation_lock);
1526
1527         return 0;       /* success */
1528 }
1529
1530 static void ext4_da_release_space(struct inode *inode, int to_free)
1531 {
1532         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1533         struct ext4_inode_info *ei = EXT4_I(inode);
1534
1535         if (!to_free)
1536                 return;         /* Nothing to release, exit */
1537
1538         spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1539
1540         trace_ext4_da_release_space(inode, to_free);
1541         if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1542                 /*
1543                  * if there aren't enough reserved blocks, then the
1544                  * counter is messed up somewhere.  Since this
1545                  * function is called from invalidate page, it's
1546                  * harmless to return without any action.
1547                  */
1548                 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1549                          "ino %lu, to_free %d with only %d reserved "
1550                          "data blocks", inode->i_ino, to_free,
1551                          ei->i_reserved_data_blocks);
1552                 WARN_ON(1);
1553                 to_free = ei->i_reserved_data_blocks;
1554         }
1555         ei->i_reserved_data_blocks -= to_free;
1556
1557         /* update fs dirty data blocks counter */
1558         percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1559
1560         spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1561
1562         dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1563 }
1564
1565 static void ext4_da_page_release_reservation(struct page *page,
1566                                              unsigned int offset,
1567                                              unsigned int length)
1568 {
1569         int to_release = 0, contiguous_blks = 0;
1570         struct buffer_head *head, *bh;
1571         unsigned int curr_off = 0;
1572         struct inode *inode = page->mapping->host;
1573         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1574         unsigned int stop = offset + length;
1575         int num_clusters;
1576         ext4_fsblk_t lblk;
1577
1578         BUG_ON(stop > PAGE_SIZE || stop < length);
1579
1580         head = page_buffers(page);
1581         bh = head;
1582         do {
1583                 unsigned int next_off = curr_off + bh->b_size;
1584
1585                 if (next_off > stop)
1586                         break;
1587
1588                 if ((offset <= curr_off) && (buffer_delay(bh))) {
1589                         to_release++;
1590                         contiguous_blks++;
1591                         clear_buffer_delay(bh);
1592                 } else if (contiguous_blks) {
1593                         lblk = page->index <<
1594                                (PAGE_SHIFT - inode->i_blkbits);
1595                         lblk += (curr_off >> inode->i_blkbits) -
1596                                 contiguous_blks;
1597                         ext4_es_remove_extent(inode, lblk, contiguous_blks);
1598                         contiguous_blks = 0;
1599                 }
1600                 curr_off = next_off;
1601         } while ((bh = bh->b_this_page) != head);
1602
1603         if (contiguous_blks) {
1604                 lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
1605                 lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
1606                 ext4_es_remove_extent(inode, lblk, contiguous_blks);
1607         }
1608
1609         /* If we have released all the blocks belonging to a cluster, then we
1610          * need to release the reserved space for that cluster. */
1611         num_clusters = EXT4_NUM_B2C(sbi, to_release);
1612         while (num_clusters > 0) {
1613                 lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
1614                         ((num_clusters - 1) << sbi->s_cluster_bits);
1615                 if (sbi->s_cluster_ratio == 1 ||
1616                     !ext4_find_delalloc_cluster(inode, lblk))
1617                         ext4_da_release_space(inode, 1);
1618
1619                 num_clusters--;
1620         }
1621 }
1622
1623 /*
1624  * Delayed allocation stuff
1625  */
1626
1627 struct mpage_da_data {
1628         struct inode *inode;
1629         struct writeback_control *wbc;
1630
1631         pgoff_t first_page;     /* The first page to write */
1632         pgoff_t next_page;      /* Current page to examine */
1633         pgoff_t last_page;      /* Last page to examine */
1634         /*
1635          * Extent to map - this can be after first_page because that can be
1636          * fully mapped. We somewhat abuse m_flags to store whether the extent
1637          * is delalloc or unwritten.
1638          */
1639         struct ext4_map_blocks map;
1640         struct ext4_io_submit io_submit;        /* IO submission data */
1641 };
1642
1643 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1644                                        bool invalidate)
1645 {
1646         int nr_pages, i;
1647         pgoff_t index, end;
1648         struct pagevec pvec;
1649         struct inode *inode = mpd->inode;
1650         struct address_space *mapping = inode->i_mapping;
1651
1652         /* This is necessary when next_page == 0. */
1653         if (mpd->first_page >= mpd->next_page)
1654                 return;
1655
1656         index = mpd->first_page;
1657         end   = mpd->next_page - 1;
1658         if (invalidate) {
1659                 ext4_lblk_t start, last;
1660                 start = index << (PAGE_SHIFT - inode->i_blkbits);
1661                 last = end << (PAGE_SHIFT - inode->i_blkbits);
1662                 ext4_es_remove_extent(inode, start, last - start + 1);
1663         }
1664
1665         pagevec_init(&pvec, 0);
1666         while (index <= end) {
1667                 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
1668                 if (nr_pages == 0)
1669                         break;
1670                 for (i = 0; i < nr_pages; i++) {
1671                         struct page *page = pvec.pages[i];
1672                         if (page->index > end)
1673                                 break;
1674                         BUG_ON(!PageLocked(page));
1675                         BUG_ON(PageWriteback(page));
1676                         if (invalidate) {
1677                                 if (page_mapped(page))
1678                                         clear_page_dirty_for_io(page);
1679                                 block_invalidatepage(page, 0, PAGE_SIZE);
1680                                 ClearPageUptodate(page);
1681                         }
1682                         unlock_page(page);
1683                 }
1684                 index = pvec.pages[nr_pages - 1]->index + 1;
1685                 pagevec_release(&pvec);
1686         }
1687 }
1688
1689 static void ext4_print_free_blocks(struct inode *inode)
1690 {
1691         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1692         struct super_block *sb = inode->i_sb;
1693         struct ext4_inode_info *ei = EXT4_I(inode);
1694
1695         ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1696                EXT4_C2B(EXT4_SB(inode->i_sb),
1697                         ext4_count_free_clusters(sb)));
1698         ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1699         ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1700                (long long) EXT4_C2B(EXT4_SB(sb),
1701                 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1702         ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1703                (long long) EXT4_C2B(EXT4_SB(sb),
1704                 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1705         ext4_msg(sb, KERN_CRIT, "Block reservation details");
1706         ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1707                  ei->i_reserved_data_blocks);
1708         return;
1709 }
1710
1711 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1712 {
1713         return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1714 }
1715
1716 /*
1717  * This function is grabs code from the very beginning of
1718  * ext4_map_blocks, but assumes that the caller is from delayed write
1719  * time. This function looks up the requested blocks and sets the
1720  * buffer delay bit under the protection of i_data_sem.
1721  */
1722 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1723                               struct ext4_map_blocks *map,
1724                               struct buffer_head *bh)
1725 {
1726         struct extent_status es;
1727         int retval;
1728         sector_t invalid_block = ~((sector_t) 0xffff);
1729 #ifdef ES_AGGRESSIVE_TEST
1730         struct ext4_map_blocks orig_map;
1731
1732         memcpy(&orig_map, map, sizeof(*map));
1733 #endif
1734
1735         if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1736                 invalid_block = ~0;
1737
1738         map->m_flags = 0;
1739         ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1740                   "logical block %lu\n", inode->i_ino, map->m_len,
1741                   (unsigned long) map->m_lblk);
1742
1743         /* Lookup extent status tree firstly */
1744         if (ext4_es_lookup_extent(inode, iblock, &es)) {
1745                 if (ext4_es_is_hole(&es)) {
1746                         retval = 0;
1747                         down_read(&EXT4_I(inode)->i_data_sem);
1748                         goto add_delayed;
1749                 }
1750
1751                 /*
1752                  * Delayed extent could be allocated by fallocate.
1753                  * So we need to check it.
1754                  */
1755                 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1756                         map_bh(bh, inode->i_sb, invalid_block);
1757                         set_buffer_new(bh);
1758                         set_buffer_delay(bh);
1759                         return 0;
1760                 }
1761
1762                 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1763                 retval = es.es_len - (iblock - es.es_lblk);
1764                 if (retval > map->m_len)
1765                         retval = map->m_len;
1766                 map->m_len = retval;
1767                 if (ext4_es_is_written(&es))
1768                         map->m_flags |= EXT4_MAP_MAPPED;
1769                 else if (ext4_es_is_unwritten(&es))
1770                         map->m_flags |= EXT4_MAP_UNWRITTEN;
1771                 else
1772                         BUG_ON(1);
1773
1774 #ifdef ES_AGGRESSIVE_TEST
1775                 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1776 #endif
1777                 return retval;
1778         }
1779
1780         /*
1781          * Try to see if we can get the block without requesting a new
1782          * file system block.
1783          */
1784         down_read(&EXT4_I(inode)->i_data_sem);
1785         if (ext4_has_inline_data(inode))
1786                 retval = 0;
1787         else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1788                 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1789         else
1790                 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1791
1792 add_delayed:
1793         if (retval == 0) {
1794                 int ret;
1795                 /*
1796                  * XXX: __block_prepare_write() unmaps passed block,
1797                  * is it OK?
1798                  */
1799                 /*
1800                  * If the block was allocated from previously allocated cluster,
1801                  * then we don't need to reserve it again. However we still need
1802                  * to reserve metadata for every block we're going to write.
1803                  */
1804                 if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
1805                     !ext4_find_delalloc_cluster(inode, map->m_lblk)) {
1806                         ret = ext4_da_reserve_space(inode);
1807                         if (ret) {
1808                                 /* not enough space to reserve */
1809                                 retval = ret;
1810                                 goto out_unlock;
1811                         }
1812                 }
1813
1814                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1815                                             ~0, EXTENT_STATUS_DELAYED);
1816                 if (ret) {
1817                         retval = ret;
1818                         goto out_unlock;
1819                 }
1820
1821                 map_bh(bh, inode->i_sb, invalid_block);
1822                 set_buffer_new(bh);
1823                 set_buffer_delay(bh);
1824         } else if (retval > 0) {
1825                 int ret;
1826                 unsigned int status;
1827
1828                 if (unlikely(retval != map->m_len)) {
1829                         ext4_warning(inode->i_sb,
1830                                      "ES len assertion failed for inode "
1831                                      "%lu: retval %d != map->m_len %d",
1832                                      inode->i_ino, retval, map->m_len);
1833                         WARN_ON(1);
1834                 }
1835
1836                 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1837                                 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1838                 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1839                                             map->m_pblk, status);
1840                 if (ret != 0)
1841                         retval = ret;
1842         }
1843
1844 out_unlock:
1845         up_read((&EXT4_I(inode)->i_data_sem));
1846
1847         return retval;
1848 }
1849
1850 /*
1851  * This is a special get_block_t callback which is used by
1852  * ext4_da_write_begin().  It will either return mapped block or
1853  * reserve space for a single block.
1854  *
1855  * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1856  * We also have b_blocknr = -1 and b_bdev initialized properly
1857  *
1858  * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1859  * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1860  * initialized properly.
1861  */
1862 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1863                            struct buffer_head *bh, int create)
1864 {
1865         struct ext4_map_blocks map;
1866         int ret = 0;
1867
1868         BUG_ON(create == 0);
1869         BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1870
1871         map.m_lblk = iblock;
1872         map.m_len = 1;
1873
1874         /*
1875          * first, we need to know whether the block is allocated already
1876          * preallocated blocks are unmapped but should treated
1877          * the same as allocated blocks.
1878          */
1879         ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1880         if (ret <= 0)
1881                 return ret;
1882
1883         map_bh(bh, inode->i_sb, map.m_pblk);
1884         ext4_update_bh_state(bh, map.m_flags);
1885
1886         if (buffer_unwritten(bh)) {
1887                 /* A delayed write to unwritten bh should be marked
1888                  * new and mapped.  Mapped ensures that we don't do
1889                  * get_block multiple times when we write to the same
1890                  * offset and new ensures that we do proper zero out
1891                  * for partial write.
1892                  */
1893                 set_buffer_new(bh);
1894                 set_buffer_mapped(bh);
1895         }
1896         return 0;
1897 }
1898
1899 static int bget_one(handle_t *handle, struct buffer_head *bh)
1900 {
1901         get_bh(bh);
1902         return 0;
1903 }
1904
1905 static int bput_one(handle_t *handle, struct buffer_head *bh)
1906 {
1907         put_bh(bh);
1908         return 0;
1909 }
1910
1911 static int __ext4_journalled_writepage(struct page *page,
1912                                        unsigned int len)
1913 {
1914         struct address_space *mapping = page->mapping;
1915         struct inode *inode = mapping->host;
1916         struct buffer_head *page_bufs = NULL;
1917         handle_t *handle = NULL;
1918         int ret = 0, err = 0;
1919         int inline_data = ext4_has_inline_data(inode);
1920         struct buffer_head *inode_bh = NULL;
1921
1922         ClearPageChecked(page);
1923
1924         if (inline_data) {
1925                 BUG_ON(page->index != 0);
1926                 BUG_ON(len > ext4_get_max_inline_size(inode));
1927                 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1928                 if (inode_bh == NULL)
1929                         goto out;
1930         } else {
1931                 page_bufs = page_buffers(page);
1932                 if (!page_bufs) {
1933                         BUG();
1934                         goto out;
1935                 }
1936                 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1937                                        NULL, bget_one);
1938         }
1939         /*
1940          * We need to release the page lock before we start the
1941          * journal, so grab a reference so the page won't disappear
1942          * out from under us.
1943          */
1944         get_page(page);
1945         unlock_page(page);
1946
1947         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1948                                     ext4_writepage_trans_blocks(inode));
1949         if (IS_ERR(handle)) {
1950                 ret = PTR_ERR(handle);
1951                 put_page(page);
1952                 goto out_no_pagelock;
1953         }
1954         BUG_ON(!ext4_handle_valid(handle));
1955
1956         lock_page(page);
1957         put_page(page);
1958         if (page->mapping != mapping) {
1959                 /* The page got truncated from under us */
1960                 ext4_journal_stop(handle);
1961                 ret = 0;
1962                 goto out;
1963         }
1964
1965         if (inline_data) {
1966                 ret = ext4_mark_inode_dirty(handle, inode);
1967         } else {
1968                 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1969                                              do_journal_get_write_access);
1970
1971                 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1972                                              write_end_fn);
1973         }
1974         if (ret == 0)
1975                 ret = err;
1976         EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1977         err = ext4_journal_stop(handle);
1978         if (!ret)
1979                 ret = err;
1980
1981         ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1982 out:
1983         unlock_page(page);
1984 out_no_pagelock:
1985         if (!inline_data && page_bufs)
1986                 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1987                                        NULL, bput_one);
1988         brelse(inode_bh);
1989         return ret;
1990 }
1991
1992 /*
1993  * Note that we don't need to start a transaction unless we're journaling data
1994  * because we should have holes filled from ext4_page_mkwrite(). We even don't
1995  * need to file the inode to the transaction's list in ordered mode because if
1996  * we are writing back data added by write(), the inode is already there and if
1997  * we are writing back data modified via mmap(), no one guarantees in which
1998  * transaction the data will hit the disk. In case we are journaling data, we
1999  * cannot start transaction directly because transaction start ranks above page
2000  * lock so we have to do some magic.
2001  *
2002  * This function can get called via...
2003  *   - ext4_writepages after taking page lock (have journal handle)
2004  *   - journal_submit_inode_data_buffers (no journal handle)
2005  *   - shrink_page_list via the kswapd/direct reclaim (no journal handle)
2006  *   - grab_page_cache when doing write_begin (have journal handle)
2007  *
2008  * We don't do any block allocation in this function. If we have page with
2009  * multiple blocks we need to write those buffer_heads that are mapped. This
2010  * is important for mmaped based write. So if we do with blocksize 1K
2011  * truncate(f, 1024);
2012  * a = mmap(f, 0, 4096);
2013  * a[0] = 'a';
2014  * truncate(f, 4096);
2015  * we have in the page first buffer_head mapped via page_mkwrite call back
2016  * but other buffer_heads would be unmapped but dirty (dirty done via the
2017  * do_wp_page). So writepage should write the first block. If we modify
2018  * the mmap area beyond 1024 we will again get a page_fault and the
2019  * page_mkwrite callback will do the block allocation and mark the
2020  * buffer_heads mapped.
2021  *
2022  * We redirty the page if we have any buffer_heads that is either delay or
2023  * unwritten in the page.
2024  *
2025  * We can get recursively called as show below.
2026  *
2027  *      ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2028  *              ext4_writepage()
2029  *
2030  * But since we don't do any block allocation we should not deadlock.
2031  * Page also have the dirty flag cleared so we don't get recurive page_lock.
2032  */
2033 static int ext4_writepage(struct page *page,
2034                           struct writeback_control *wbc)
2035 {
2036         int ret = 0;
2037         loff_t size;
2038         unsigned int len;
2039         struct buffer_head *page_bufs = NULL;
2040         struct inode *inode = page->mapping->host;
2041         struct ext4_io_submit io_submit;
2042         bool keep_towrite = false;
2043
2044         trace_ext4_writepage(page);
2045         size = i_size_read(inode);
2046         if (page->index == size >> PAGE_SHIFT)
2047                 len = size & ~PAGE_MASK;
2048         else
2049                 len = PAGE_SIZE;
2050
2051         page_bufs = page_buffers(page);
2052         /*
2053          * We cannot do block allocation or other extent handling in this
2054          * function. If there are buffers needing that, we have to redirty
2055          * the page. But we may reach here when we do a journal commit via
2056          * journal_submit_inode_data_buffers() and in that case we must write
2057          * allocated buffers to achieve data=ordered mode guarantees.
2058          *
2059          * Also, if there is only one buffer per page (the fs block
2060          * size == the page size), if one buffer needs block
2061          * allocation or needs to modify the extent tree to clear the
2062          * unwritten flag, we know that the page can't be written at
2063          * all, so we might as well refuse the write immediately.
2064          * Unfortunately if the block size != page size, we can't as
2065          * easily detect this case using ext4_walk_page_buffers(), but
2066          * for the extremely common case, this is an optimization that
2067          * skips a useless round trip through ext4_bio_write_page().
2068          */
2069         if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2070                                    ext4_bh_delay_or_unwritten)) {
2071                 redirty_page_for_writepage(wbc, page);
2072                 if ((current->flags & PF_MEMALLOC) ||
2073                     (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2074                         /*
2075                          * For memory cleaning there's no point in writing only
2076                          * some buffers. So just bail out. Warn if we came here
2077                          * from direct reclaim.
2078                          */
2079                         WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2080                                                         == PF_MEMALLOC);
2081                         unlock_page(page);
2082                         return 0;
2083                 }
2084                 keep_towrite = true;
2085         }
2086
2087         if (PageChecked(page) && ext4_should_journal_data(inode))
2088                 /*
2089                  * It's mmapped pagecache.  Add buffers and journal it.  There
2090                  * doesn't seem much point in redirtying the page here.
2091                  */
2092                 return __ext4_journalled_writepage(page, len);
2093
2094         ext4_io_submit_init(&io_submit, wbc);
2095         io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2096         if (!io_submit.io_end) {
2097                 redirty_page_for_writepage(wbc, page);
2098                 unlock_page(page);
2099                 return -ENOMEM;
2100         }
2101         ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2102         ext4_io_submit(&io_submit);
2103         /* Drop io_end reference we got from init */
2104         ext4_put_io_end_defer(io_submit.io_end);
2105         return ret;
2106 }
2107
2108 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2109 {
2110         int len;
2111         loff_t size;
2112         int err;
2113
2114         BUG_ON(page->index != mpd->first_page);
2115         clear_page_dirty_for_io(page);
2116         /*
2117          * We have to be very careful here!  Nothing protects writeback path
2118          * against i_size changes and the page can be writeably mapped into
2119          * page tables. So an application can be growing i_size and writing
2120          * data through mmap while writeback runs. clear_page_dirty_for_io()
2121          * write-protects our page in page tables and the page cannot get
2122          * written to again until we release page lock. So only after
2123          * clear_page_dirty_for_io() we are safe to sample i_size for
2124          * ext4_bio_write_page() to zero-out tail of the written page. We rely
2125          * on the barrier provided by TestClearPageDirty in
2126          * clear_page_dirty_for_io() to make sure i_size is really sampled only
2127          * after page tables are updated.
2128          */
2129         size = i_size_read(mpd->inode);
2130         if (page->index == size >> PAGE_SHIFT)
2131                 len = size & ~PAGE_MASK;
2132         else
2133                 len = PAGE_SIZE;
2134         err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2135         if (!err)
2136                 mpd->wbc->nr_to_write--;
2137         mpd->first_page++;
2138
2139         return err;
2140 }
2141
2142 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2143
2144 /*
2145  * mballoc gives us at most this number of blocks...
2146  * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2147  * The rest of mballoc seems to handle chunks up to full group size.
2148  */
2149 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2150
2151 /*
2152  * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2153  *
2154  * @mpd - extent of blocks
2155  * @lblk - logical number of the block in the file
2156  * @bh - buffer head we want to add to the extent
2157  *
2158  * The function is used to collect contig. blocks in the same state. If the
2159  * buffer doesn't require mapping for writeback and we haven't started the
2160  * extent of buffers to map yet, the function returns 'true' immediately - the
2161  * caller can write the buffer right away. Otherwise the function returns true
2162  * if the block has been added to the extent, false if the block couldn't be
2163  * added.
2164  */
2165 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2166                                    struct buffer_head *bh)
2167 {
2168         struct ext4_map_blocks *map = &mpd->map;
2169
2170         /* Buffer that doesn't need mapping for writeback? */
2171         if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2172             (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2173                 /* So far no extent to map => we write the buffer right away */
2174                 if (map->m_len == 0)
2175                         return true;
2176                 return false;
2177         }
2178
2179         /* First block in the extent? */
2180         if (map->m_len == 0) {
2181                 map->m_lblk = lblk;
2182                 map->m_len = 1;
2183                 map->m_flags = bh->b_state & BH_FLAGS;
2184                 return true;
2185         }
2186
2187         /* Don't go larger than mballoc is willing to allocate */
2188         if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2189                 return false;
2190
2191         /* Can we merge the block to our big extent? */
2192         if (lblk == map->m_lblk + map->m_len &&
2193             (bh->b_state & BH_FLAGS) == map->m_flags) {
2194                 map->m_len++;
2195                 return true;
2196         }
2197         return false;
2198 }
2199
2200 /*
2201  * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2202  *
2203  * @mpd - extent of blocks for mapping
2204  * @head - the first buffer in the page
2205  * @bh - buffer we should start processing from
2206  * @lblk - logical number of the block in the file corresponding to @bh
2207  *
2208  * Walk through page buffers from @bh upto @head (exclusive) and either submit
2209  * the page for IO if all buffers in this page were mapped and there's no
2210  * accumulated extent of buffers to map or add buffers in the page to the
2211  * extent of buffers to map. The function returns 1 if the caller can continue
2212  * by processing the next page, 0 if it should stop adding buffers to the
2213  * extent to map because we cannot extend it anymore. It can also return value
2214  * < 0 in case of error during IO submission.
2215  */
2216 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2217                                    struct buffer_head *head,
2218                                    struct buffer_head *bh,
2219                                    ext4_lblk_t lblk)
2220 {
2221         struct inode *inode = mpd->inode;
2222         int err;
2223         ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2224                                                         >> inode->i_blkbits;
2225
2226         do {
2227                 BUG_ON(buffer_locked(bh));
2228
2229                 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2230                         /* Found extent to map? */
2231                         if (mpd->map.m_len)
2232                                 return 0;
2233                         /* Everything mapped so far and we hit EOF */
2234                         break;
2235                 }
2236         } while (lblk++, (bh = bh->b_this_page) != head);
2237         /* So far everything mapped? Submit the page for IO. */
2238         if (mpd->map.m_len == 0) {
2239                 err = mpage_submit_page(mpd, head->b_page);
2240                 if (err < 0)
2241                         return err;
2242         }
2243         return lblk < blocks;
2244 }
2245
2246 /*
2247  * mpage_map_buffers - update buffers corresponding to changed extent and
2248  *                     submit fully mapped pages for IO
2249  *
2250  * @mpd - description of extent to map, on return next extent to map
2251  *
2252  * Scan buffers corresponding to changed extent (we expect corresponding pages
2253  * to be already locked) and update buffer state according to new extent state.
2254  * We map delalloc buffers to their physical location, clear unwritten bits,
2255  * and mark buffers as uninit when we perform writes to unwritten extents
2256  * and do extent conversion after IO is finished. If the last page is not fully
2257  * mapped, we update @map to the next extent in the last page that needs
2258  * mapping. Otherwise we submit the page for IO.
2259  */
2260 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2261 {
2262         struct pagevec pvec;
2263         int nr_pages, i;
2264         struct inode *inode = mpd->inode;
2265         struct buffer_head *head, *bh;
2266         int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2267         pgoff_t start, end;
2268         ext4_lblk_t lblk;
2269         sector_t pblock;
2270         int err;
2271
2272         start = mpd->map.m_lblk >> bpp_bits;
2273         end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2274         lblk = start << bpp_bits;
2275         pblock = mpd->map.m_pblk;
2276
2277         pagevec_init(&pvec, 0);
2278         while (start <= end) {
2279                 nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
2280                                           PAGEVEC_SIZE);
2281                 if (nr_pages == 0)
2282                         break;
2283                 for (i = 0; i < nr_pages; i++) {
2284                         struct page *page = pvec.pages[i];
2285
2286                         if (page->index > end)
2287                                 break;
2288                         /* Up to 'end' pages must be contiguous */
2289                         BUG_ON(page->index != start);
2290                         bh = head = page_buffers(page);
2291                         do {
2292                                 if (lblk < mpd->map.m_lblk)
2293                                         continue;
2294                                 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2295                                         /*
2296                                          * Buffer after end of mapped extent.
2297                                          * Find next buffer in the page to map.
2298                                          */
2299                                         mpd->map.m_len = 0;
2300                                         mpd->map.m_flags = 0;
2301                                         /*
2302                                          * FIXME: If dioread_nolock supports
2303                                          * blocksize < pagesize, we need to make
2304                                          * sure we add size mapped so far to
2305                                          * io_end->size as the following call
2306                                          * can submit the page for IO.
2307                                          */
2308                                         err = mpage_process_page_bufs(mpd, head,
2309                                                                       bh, lblk);
2310                                         pagevec_release(&pvec);
2311                                         if (err > 0)
2312                                                 err = 0;
2313                                         return err;
2314                                 }
2315                                 if (buffer_delay(bh)) {
2316                                         clear_buffer_delay(bh);
2317                                         bh->b_blocknr = pblock++;
2318                                 }
2319                                 clear_buffer_unwritten(bh);
2320                         } while (lblk++, (bh = bh->b_this_page) != head);
2321
2322                         /*
2323                          * FIXME: This is going to break if dioread_nolock
2324                          * supports blocksize < pagesize as we will try to
2325                          * convert potentially unmapped parts of inode.
2326                          */
2327                         mpd->io_submit.io_end->size += PAGE_SIZE;
2328                         /* Page fully mapped - let IO run! */
2329                         err = mpage_submit_page(mpd, page);
2330                         if (err < 0) {
2331                                 pagevec_release(&pvec);
2332                                 return err;
2333                         }
2334                         start++;
2335                 }
2336                 pagevec_release(&pvec);
2337         }
2338         /* Extent fully mapped and matches with page boundary. We are done. */
2339         mpd->map.m_len = 0;
2340         mpd->map.m_flags = 0;
2341         return 0;
2342 }
2343
2344 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2345 {
2346         struct inode *inode = mpd->inode;
2347         struct ext4_map_blocks *map = &mpd->map;
2348         int get_blocks_flags;
2349         int err, dioread_nolock;
2350
2351         trace_ext4_da_write_pages_extent(inode, map);
2352         /*
2353          * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2354          * to convert an unwritten extent to be initialized (in the case
2355          * where we have written into one or more preallocated blocks).  It is
2356          * possible that we're going to need more metadata blocks than
2357          * previously reserved. However we must not fail because we're in
2358          * writeback and there is nothing we can do about it so it might result
2359          * in data loss.  So use reserved blocks to allocate metadata if
2360          * possible.
2361          *
2362          * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2363          * the blocks in question are delalloc blocks.  This indicates
2364          * that the blocks and quotas has already been checked when
2365          * the data was copied into the page cache.
2366          */
2367         get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2368                            EXT4_GET_BLOCKS_METADATA_NOFAIL |
2369                            EXT4_GET_BLOCKS_IO_SUBMIT;
2370         dioread_nolock = ext4_should_dioread_nolock(inode);
2371         if (dioread_nolock)
2372                 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2373         if (map->m_flags & (1 << BH_Delay))
2374                 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2375
2376         err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2377         if (err < 0)
2378                 return err;
2379         if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2380                 if (!mpd->io_submit.io_end->handle &&
2381                     ext4_handle_valid(handle)) {
2382                         mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2383                         handle->h_rsv_handle = NULL;
2384                 }
2385                 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2386         }
2387
2388         BUG_ON(map->m_len == 0);
2389         if (map->m_flags & EXT4_MAP_NEW) {
2390                 struct block_device *bdev = inode->i_sb->s_bdev;
2391                 int i;
2392
2393                 for (i = 0; i < map->m_len; i++)
2394                         unmap_underlying_metadata(bdev, map->m_pblk + i);
2395         }
2396         return 0;
2397 }
2398
2399 /*
2400  * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2401  *                               mpd->len and submit pages underlying it for IO
2402  *
2403  * @handle - handle for journal operations
2404  * @mpd - extent to map
2405  * @give_up_on_write - we set this to true iff there is a fatal error and there
2406  *                     is no hope of writing the data. The caller should discard
2407  *                     dirty pages to avoid infinite loops.
2408  *
2409  * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2410  * delayed, blocks are allocated, if it is unwritten, we may need to convert
2411  * them to initialized or split the described range from larger unwritten
2412  * extent. Note that we need not map all the described range since allocation
2413  * can return less blocks or the range is covered by more unwritten extents. We
2414  * cannot map more because we are limited by reserved transaction credits. On
2415  * the other hand we always make sure that the last touched page is fully
2416  * mapped so that it can be written out (and thus forward progress is
2417  * guaranteed). After mapping we submit all mapped pages for IO.
2418  */
2419 static int mpage_map_and_submit_extent(handle_t *handle,
2420                                        struct mpage_da_data *mpd,
2421                                        bool *give_up_on_write)
2422 {
2423         struct inode *inode = mpd->inode;
2424         struct ext4_map_blocks *map = &mpd->map;
2425         int err;
2426         loff_t disksize;
2427         int progress = 0;
2428
2429         mpd->io_submit.io_end->offset =
2430                                 ((loff_t)map->m_lblk) << inode->i_blkbits;
2431         do {
2432                 err = mpage_map_one_extent(handle, mpd);
2433                 if (err < 0) {
2434                         struct super_block *sb = inode->i_sb;
2435
2436                         if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2437                                 goto invalidate_dirty_pages;
2438                         /*
2439                          * Let the uper layers retry transient errors.
2440                          * In the case of ENOSPC, if ext4_count_free_blocks()
2441                          * is non-zero, a commit should free up blocks.
2442                          */
2443                         if ((err == -ENOMEM) ||
2444                             (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2445                                 if (progress)
2446                                         goto update_disksize;
2447                                 return err;
2448                         }
2449                         ext4_msg(sb, KERN_CRIT,
2450                                  "Delayed block allocation failed for "
2451                                  "inode %lu at logical offset %llu with"
2452                                  " max blocks %u with error %d",
2453                                  inode->i_ino,
2454                                  (unsigned long long)map->m_lblk,
2455                                  (unsigned)map->m_len, -err);
2456                         ext4_msg(sb, KERN_CRIT,
2457                                  "This should not happen!! Data will "
2458                                  "be lost\n");
2459                         if (err == -ENOSPC)
2460                                 ext4_print_free_blocks(inode);
2461                 invalidate_dirty_pages:
2462                         *give_up_on_write = true;
2463                         return err;
2464                 }
2465                 progress = 1;
2466                 /*
2467                  * Update buffer state, submit mapped pages, and get us new
2468                  * extent to map
2469                  */
2470                 err = mpage_map_and_submit_buffers(mpd);
2471                 if (err < 0)
2472                         goto update_disksize;
2473         } while (map->m_len);
2474
2475 update_disksize:
2476         /*
2477          * Update on-disk size after IO is submitted.  Races with
2478          * truncate are avoided by checking i_size under i_data_sem.
2479          */
2480         disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2481         if (disksize > READ_ONCE(EXT4_I(inode)->i_disksize)) {
2482                 int err2;
2483                 loff_t i_size;
2484
2485                 down_write(&EXT4_I(inode)->i_data_sem);
2486                 i_size = i_size_read(inode);
2487                 if (disksize > i_size)
2488                         disksize = i_size;
2489                 if (disksize > EXT4_I(inode)->i_disksize)
2490                         EXT4_I(inode)->i_disksize = disksize;
2491                 err2 = ext4_mark_inode_dirty(handle, inode);
2492                 up_write(&EXT4_I(inode)->i_data_sem);
2493                 if (err2)
2494                         ext4_error(inode->i_sb,
2495                                    "Failed to mark inode %lu dirty",
2496                                    inode->i_ino);
2497                 if (!err)
2498                         err = err2;
2499         }
2500         return err;
2501 }
2502
2503 /*
2504  * Calculate the total number of credits to reserve for one writepages
2505  * iteration. This is called from ext4_writepages(). We map an extent of
2506  * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2507  * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2508  * bpp - 1 blocks in bpp different extents.
2509  */
2510 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2511 {
2512         int bpp = ext4_journal_blocks_per_page(inode);
2513
2514         return ext4_meta_trans_blocks(inode,
2515                                 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2516 }
2517
2518 /*
2519  * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2520  *                               and underlying extent to map
2521  *
2522  * @mpd - where to look for pages
2523  *
2524  * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2525  * IO immediately. When we find a page which isn't mapped we start accumulating
2526  * extent of buffers underlying these pages that needs mapping (formed by
2527  * either delayed or unwritten buffers). We also lock the pages containing
2528  * these buffers. The extent found is returned in @mpd structure (starting at
2529  * mpd->lblk with length mpd->len blocks).
2530  *
2531  * Note that this function can attach bios to one io_end structure which are
2532  * neither logically nor physically contiguous. Although it may seem as an
2533  * unnecessary complication, it is actually inevitable in blocksize < pagesize
2534  * case as we need to track IO to all buffers underlying a page in one io_end.
2535  */
2536 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2537 {
2538         struct address_space *mapping = mpd->inode->i_mapping;
2539         struct pagevec pvec;
2540         unsigned int nr_pages;
2541         long left = mpd->wbc->nr_to_write;
2542         pgoff_t index = mpd->first_page;
2543         pgoff_t end = mpd->last_page;
2544         int tag;
2545         int i, err = 0;
2546         int blkbits = mpd->inode->i_blkbits;
2547         ext4_lblk_t lblk;
2548         struct buffer_head *head;
2549
2550         if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2551                 tag = PAGECACHE_TAG_TOWRITE;
2552         else
2553                 tag = PAGECACHE_TAG_DIRTY;
2554
2555         pagevec_init(&pvec, 0);
2556         mpd->map.m_len = 0;
2557         mpd->next_page = index;
2558         while (index <= end) {
2559                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2560                               min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2561                 if (nr_pages == 0)
2562                         goto out;
2563
2564                 for (i = 0; i < nr_pages; i++) {
2565                         struct page *page = pvec.pages[i];
2566
2567                         /*
2568                          * At this point, the page may be truncated or
2569                          * invalidated (changing page->mapping to NULL), or
2570                          * even swizzled back from swapper_space to tmpfs file
2571                          * mapping. However, page->index will not change
2572                          * because we have a reference on the page.
2573                          */
2574                         if (page->index > end)
2575                                 goto out;
2576
2577                         /*
2578                          * Accumulated enough dirty pages? This doesn't apply
2579                          * to WB_SYNC_ALL mode. For integrity sync we have to
2580                          * keep going because someone may be concurrently
2581                          * dirtying pages, and we might have synced a lot of
2582                          * newly appeared dirty pages, but have not synced all
2583                          * of the old dirty pages.
2584                          */
2585                         if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2586                                 goto out;
2587
2588                         /* If we can't merge this page, we are done. */
2589                         if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2590                                 goto out;
2591
2592                         lock_page(page);
2593                         /*
2594                          * If the page is no longer dirty, or its mapping no
2595                          * longer corresponds to inode we are writing (which
2596                          * means it has been truncated or invalidated), or the
2597                          * page is already under writeback and we are not doing
2598                          * a data integrity writeback, skip the page
2599                          */
2600                         if (!PageDirty(page) ||
2601                             (PageWriteback(page) &&
2602                              (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2603                             unlikely(page->mapping != mapping)) {
2604                                 unlock_page(page);
2605                                 continue;
2606                         }
2607
2608                         wait_on_page_writeback(page);
2609                         BUG_ON(PageWriteback(page));
2610
2611                         if (mpd->map.m_len == 0)
2612                                 mpd->first_page = page->index;
2613                         mpd->next_page = page->index + 1;
2614                         /* Add all dirty buffers to mpd */
2615                         lblk = ((ext4_lblk_t)page->index) <<
2616                                 (PAGE_SHIFT - blkbits);
2617                         head = page_buffers(page);
2618                         err = mpage_process_page_bufs(mpd, head, head, lblk);
2619                         if (err <= 0)
2620                                 goto out;
2621                         err = 0;
2622                         left--;
2623                 }
2624                 pagevec_release(&pvec);
2625                 cond_resched();
2626         }
2627         return 0;
2628 out:
2629         pagevec_release(&pvec);
2630         return err;
2631 }
2632
2633 static int __writepage(struct page *page, struct writeback_control *wbc,
2634                        void *data)
2635 {
2636         struct address_space *mapping = data;
2637         int ret = ext4_writepage(page, wbc);
2638         mapping_set_error(mapping, ret);
2639         return ret;
2640 }
2641
2642 static int ext4_writepages(struct address_space *mapping,
2643                            struct writeback_control *wbc)
2644 {
2645         pgoff_t writeback_index = 0;
2646         long nr_to_write = wbc->nr_to_write;
2647         int range_whole = 0;
2648         int cycled = 1;
2649         handle_t *handle = NULL;
2650         struct mpage_da_data mpd;
2651         struct inode *inode = mapping->host;
2652         int needed_blocks, rsv_blocks = 0, ret = 0;
2653         struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2654         bool done;
2655         struct blk_plug plug;
2656         bool give_up_on_write = false;
2657
2658         percpu_down_read(&sbi->s_writepages_rwsem);
2659         trace_ext4_writepages(inode, wbc);
2660
2661         if (dax_mapping(mapping)) {
2662                 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
2663                                                   wbc);
2664                 goto out_writepages;
2665         }
2666
2667         /*
2668          * No pages to write? This is mainly a kludge to avoid starting
2669          * a transaction for special inodes like journal inode on last iput()
2670          * because that could violate lock ordering on umount
2671          */
2672         if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2673                 goto out_writepages;
2674
2675         if (ext4_should_journal_data(inode)) {
2676                 struct blk_plug plug;
2677
2678                 blk_start_plug(&plug);
2679                 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2680                 blk_finish_plug(&plug);
2681                 goto out_writepages;
2682         }
2683
2684         /*
2685          * If the filesystem has aborted, it is read-only, so return
2686          * right away instead of dumping stack traces later on that
2687          * will obscure the real source of the problem.  We test
2688          * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2689          * the latter could be true if the filesystem is mounted
2690          * read-only, and in that case, ext4_writepages should
2691          * *never* be called, so if that ever happens, we would want
2692          * the stack trace.
2693          */
2694         if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2695                 ret = -EROFS;
2696                 goto out_writepages;
2697         }
2698
2699         if (ext4_should_dioread_nolock(inode)) {
2700                 /*
2701                  * We may need to convert up to one extent per block in
2702                  * the page and we may dirty the inode.
2703                  */
2704                 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2705                                                 PAGE_SIZE >> inode->i_blkbits);
2706         }
2707
2708         /*
2709          * If we have inline data and arrive here, it means that
2710          * we will soon create the block for the 1st page, so
2711          * we'd better clear the inline data here.
2712          */
2713         if (ext4_has_inline_data(inode)) {
2714                 /* Just inode will be modified... */
2715                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2716                 if (IS_ERR(handle)) {
2717                         ret = PTR_ERR(handle);
2718                         goto out_writepages;
2719                 }
2720                 BUG_ON(ext4_test_inode_state(inode,
2721                                 EXT4_STATE_MAY_INLINE_DATA));
2722                 ext4_destroy_inline_data(handle, inode);
2723                 ext4_journal_stop(handle);
2724         }
2725
2726         if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2727                 range_whole = 1;
2728
2729         if (wbc->range_cyclic) {
2730                 writeback_index = mapping->writeback_index;
2731                 if (writeback_index)
2732                         cycled = 0;
2733                 mpd.first_page = writeback_index;
2734                 mpd.last_page = -1;
2735         } else {
2736                 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2737                 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2738         }
2739
2740         mpd.inode = inode;
2741         mpd.wbc = wbc;
2742         ext4_io_submit_init(&mpd.io_submit, wbc);
2743 retry:
2744         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2745                 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2746         done = false;
2747         blk_start_plug(&plug);
2748         while (!done && mpd.first_page <= mpd.last_page) {
2749                 /* For each extent of pages we use new io_end */
2750                 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2751                 if (!mpd.io_submit.io_end) {
2752                         ret = -ENOMEM;
2753                         break;
2754                 }
2755
2756                 /*
2757                  * We have two constraints: We find one extent to map and we
2758                  * must always write out whole page (makes a difference when
2759                  * blocksize < pagesize) so that we don't block on IO when we
2760                  * try to write out the rest of the page. Journalled mode is
2761                  * not supported by delalloc.
2762                  */
2763                 BUG_ON(ext4_should_journal_data(inode));
2764                 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2765
2766                 /* start a new transaction */
2767                 handle = ext4_journal_start_with_reserve(inode,
2768                                 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2769                 if (IS_ERR(handle)) {
2770                         ret = PTR_ERR(handle);
2771                         ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2772                                "%ld pages, ino %lu; err %d", __func__,
2773                                 wbc->nr_to_write, inode->i_ino, ret);
2774                         /* Release allocated io_end */
2775                         ext4_put_io_end(mpd.io_submit.io_end);
2776                         break;
2777                 }
2778
2779                 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2780                 ret = mpage_prepare_extent_to_map(&mpd);
2781                 if (!ret) {
2782                         if (mpd.map.m_len)
2783                                 ret = mpage_map_and_submit_extent(handle, &mpd,
2784                                         &give_up_on_write);
2785                         else {
2786                                 /*
2787                                  * We scanned the whole range (or exhausted
2788                                  * nr_to_write), submitted what was mapped and
2789                                  * didn't find anything needing mapping. We are
2790                                  * done.
2791                                  */
2792                                 done = true;
2793                         }
2794                 }
2795                 /*
2796                  * Caution: If the handle is synchronous,
2797                  * ext4_journal_stop() can wait for transaction commit
2798                  * to finish which may depend on writeback of pages to
2799                  * complete or on page lock to be released.  In that
2800                  * case, we have to wait until after after we have
2801                  * submitted all the IO, released page locks we hold,
2802                  * and dropped io_end reference (for extent conversion
2803                  * to be able to complete) before stopping the handle.
2804                  */
2805                 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2806                         ext4_journal_stop(handle);
2807                         handle = NULL;
2808                 }
2809                 /* Submit prepared bio */
2810                 ext4_io_submit(&mpd.io_submit);
2811                 /* Unlock pages we didn't use */
2812                 mpage_release_unused_pages(&mpd, give_up_on_write);
2813                 /*
2814                  * Drop our io_end reference we got from init. We have
2815                  * to be careful and use deferred io_end finishing if
2816                  * we are still holding the transaction as we can
2817                  * release the last reference to io_end which may end
2818                  * up doing unwritten extent conversion.
2819                  */
2820                 if (handle) {
2821                         ext4_put_io_end_defer(mpd.io_submit.io_end);
2822                         ext4_journal_stop(handle);
2823                 } else
2824                         ext4_put_io_end(mpd.io_submit.io_end);
2825
2826                 if (ret == -ENOSPC && sbi->s_journal) {
2827                         /*
2828                          * Commit the transaction which would
2829                          * free blocks released in the transaction
2830                          * and try again
2831                          */
2832                         jbd2_journal_force_commit_nested(sbi->s_journal);
2833                         ret = 0;
2834                         continue;
2835                 }
2836                 /* Fatal error - ENOMEM, EIO... */
2837                 if (ret)
2838                         break;
2839         }
2840         blk_finish_plug(&plug);
2841         if (!ret && !cycled && wbc->nr_to_write > 0) {
2842                 cycled = 1;
2843                 mpd.last_page = writeback_index - 1;
2844                 mpd.first_page = 0;
2845                 goto retry;
2846         }
2847
2848         /* Update index */
2849         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2850                 /*
2851                  * Set the writeback_index so that range_cyclic
2852                  * mode will write it back later
2853                  */
2854                 mapping->writeback_index = mpd.first_page;
2855
2856 out_writepages:
2857         trace_ext4_writepages_result(inode, wbc, ret,
2858                                      nr_to_write - wbc->nr_to_write);
2859         percpu_up_read(&sbi->s_writepages_rwsem);
2860         return ret;
2861 }
2862
2863 static int ext4_nonda_switch(struct super_block *sb)
2864 {
2865         s64 free_clusters, dirty_clusters;
2866         struct ext4_sb_info *sbi = EXT4_SB(sb);
2867
2868         /*
2869          * switch to non delalloc mode if we are running low
2870          * on free block. The free block accounting via percpu
2871          * counters can get slightly wrong with percpu_counter_batch getting
2872          * accumulated on each CPU without updating global counters
2873          * Delalloc need an accurate free block accounting. So switch
2874          * to non delalloc when we are near to error range.
2875          */
2876         free_clusters =
2877                 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2878         dirty_clusters =
2879                 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2880         /*
2881          * Start pushing delalloc when 1/2 of free blocks are dirty.
2882          */
2883         if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2884                 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2885
2886         if (2 * free_clusters < 3 * dirty_clusters ||
2887             free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2888                 /*
2889                  * free block count is less than 150% of dirty blocks
2890                  * or free blocks is less than watermark
2891                  */
2892                 return 1;
2893         }
2894         return 0;
2895 }
2896
2897 /* We always reserve for an inode update; the superblock could be there too */
2898 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2899 {
2900         if (likely(ext4_has_feature_large_file(inode->i_sb)))
2901                 return 1;
2902
2903         if (pos + len <= 0x7fffffffULL)
2904                 return 1;
2905
2906         /* We might need to update the superblock to set LARGE_FILE */
2907         return 2;
2908 }
2909
2910 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2911                                loff_t pos, unsigned len, unsigned flags,
2912                                struct page **pagep, void **fsdata)
2913 {
2914         int ret, retries = 0;
2915         struct page *page;
2916         pgoff_t index;
2917         struct inode *inode = mapping->host;
2918         handle_t *handle;
2919
2920         index = pos >> PAGE_SHIFT;
2921
2922         if (ext4_nonda_switch(inode->i_sb)) {
2923                 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2924                 return ext4_write_begin(file, mapping, pos,
2925                                         len, flags, pagep, fsdata);
2926         }
2927         *fsdata = (void *)0;
2928         trace_ext4_da_write_begin(inode, pos, len, flags);
2929
2930         if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2931                 ret = ext4_da_write_inline_data_begin(mapping, inode,
2932                                                       pos, len, flags,
2933                                                       pagep, fsdata);
2934                 if (ret < 0)
2935                         return ret;
2936                 if (ret == 1)
2937                         return 0;
2938         }
2939
2940         /*
2941          * grab_cache_page_write_begin() can take a long time if the
2942          * system is thrashing due to memory pressure, or if the page
2943          * is being written back.  So grab it first before we start
2944          * the transaction handle.  This also allows us to allocate
2945          * the page (if needed) without using GFP_NOFS.
2946          */
2947 retry_grab:
2948         page = grab_cache_page_write_begin(mapping, index, flags);
2949         if (!page)
2950                 return -ENOMEM;
2951         unlock_page(page);
2952
2953         /*
2954          * With delayed allocation, we don't log the i_disksize update
2955          * if there is delayed block allocation. But we still need
2956          * to journalling the i_disksize update if writes to the end
2957          * of file which has an already mapped buffer.
2958          */
2959 retry_journal:
2960         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2961                                 ext4_da_write_credits(inode, pos, len));
2962         if (IS_ERR(handle)) {
2963                 put_page(page);
2964                 return PTR_ERR(handle);
2965         }
2966
2967         lock_page(page);
2968         if (page->mapping != mapping) {
2969                 /* The page got truncated from under us */
2970                 unlock_page(page);
2971                 put_page(page);
2972                 ext4_journal_stop(handle);
2973                 goto retry_grab;
2974         }
2975         /* In case writeback began while the page was unlocked */
2976         wait_for_stable_page(page);
2977
2978 #ifdef CONFIG_EXT4_FS_ENCRYPTION
2979         ret = ext4_block_write_begin(page, pos, len,
2980                                      ext4_da_get_block_prep);
2981 #else
2982         ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
2983 #endif
2984         if (ret < 0) {
2985                 unlock_page(page);
2986                 ext4_journal_stop(handle);
2987                 /*
2988                  * block_write_begin may have instantiated a few blocks
2989                  * outside i_size.  Trim these off again. Don't need
2990                  * i_size_read because we hold i_mutex.
2991                  */
2992                 if (pos + len > inode->i_size)
2993                         ext4_truncate_failed_write(inode);
2994
2995                 if (ret == -ENOSPC &&
2996                     ext4_should_retry_alloc(inode->i_sb, &retries))
2997                         goto retry_journal;
2998
2999                 put_page(page);
3000                 return ret;
3001         }
3002
3003         *pagep = page;
3004         return ret;
3005 }
3006
3007 /*
3008  * Check if we should update i_disksize
3009  * when write to the end of file but not require block allocation
3010  */
3011 static int ext4_da_should_update_i_disksize(struct page *page,
3012                                             unsigned long offset)
3013 {
3014         struct buffer_head *bh;
3015         struct inode *inode = page->mapping->host;
3016         unsigned int idx;
3017         int i;
3018
3019         bh = page_buffers(page);
3020         idx = offset >> inode->i_blkbits;
3021
3022         for (i = 0; i < idx; i++)
3023                 bh = bh->b_this_page;
3024
3025         if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3026                 return 0;
3027         return 1;
3028 }
3029
3030 static int ext4_da_write_end(struct file *file,
3031                              struct address_space *mapping,
3032                              loff_t pos, unsigned len, unsigned copied,
3033                              struct page *page, void *fsdata)
3034 {
3035         struct inode *inode = mapping->host;
3036         int ret = 0, ret2;
3037         handle_t *handle = ext4_journal_current_handle();
3038         loff_t new_i_size;
3039         unsigned long start, end;
3040         int write_mode = (int)(unsigned long)fsdata;
3041
3042         if (write_mode == FALL_BACK_TO_NONDELALLOC)
3043                 return ext4_write_end(file, mapping, pos,
3044                                       len, copied, page, fsdata);
3045
3046         trace_ext4_da_write_end(inode, pos, len, copied);
3047         start = pos & (PAGE_SIZE - 1);
3048         end = start + copied - 1;
3049
3050         /*
3051          * generic_write_end() will run mark_inode_dirty() if i_size
3052          * changes.  So let's piggyback the i_disksize mark_inode_dirty
3053          * into that.
3054          */
3055         new_i_size = pos + copied;
3056         if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3057                 if (ext4_has_inline_data(inode) ||
3058                     ext4_da_should_update_i_disksize(page, end)) {
3059                         ext4_update_i_disksize(inode, new_i_size);
3060                         /* We need to mark inode dirty even if
3061                          * new_i_size is less that inode->i_size
3062                          * bu greater than i_disksize.(hint delalloc)
3063                          */
3064                         ext4_mark_inode_dirty(handle, inode);
3065                 }
3066         }
3067
3068         if (write_mode != CONVERT_INLINE_DATA &&
3069             ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3070             ext4_has_inline_data(inode))
3071                 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3072                                                      page);
3073         else
3074                 ret2 = generic_write_end(file, mapping, pos, len, copied,
3075                                                         page, fsdata);
3076
3077         copied = ret2;
3078         if (ret2 < 0)
3079                 ret = ret2;
3080         ret2 = ext4_journal_stop(handle);
3081         if (!ret)
3082                 ret = ret2;
3083
3084         return ret ? ret : copied;
3085 }
3086
3087 static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
3088                                    unsigned int length)
3089 {
3090         /*
3091          * Drop reserved blocks
3092          */
3093         BUG_ON(!PageLocked(page));
3094         if (!page_has_buffers(page))
3095                 goto out;
3096
3097         ext4_da_page_release_reservation(page, offset, length);
3098
3099 out:
3100         ext4_invalidatepage(page, offset, length);
3101
3102         return;
3103 }
3104
3105 /*
3106  * Force all delayed allocation blocks to be allocated for a given inode.
3107  */
3108 int ext4_alloc_da_blocks(struct inode *inode)
3109 {
3110         trace_ext4_alloc_da_blocks(inode);
3111
3112         if (!EXT4_I(inode)->i_reserved_data_blocks)
3113                 return 0;
3114
3115         /*
3116          * We do something simple for now.  The filemap_flush() will
3117          * also start triggering a write of the data blocks, which is
3118          * not strictly speaking necessary (and for users of
3119          * laptop_mode, not even desirable).  However, to do otherwise
3120          * would require replicating code paths in:
3121          *
3122          * ext4_writepages() ->
3123          *    write_cache_pages() ---> (via passed in callback function)
3124          *        __mpage_da_writepage() -->
3125          *           mpage_add_bh_to_extent()
3126          *           mpage_da_map_blocks()
3127          *
3128          * The problem is that write_cache_pages(), located in
3129          * mm/page-writeback.c, marks pages clean in preparation for
3130          * doing I/O, which is not desirable if we're not planning on
3131          * doing I/O at all.
3132          *
3133          * We could call write_cache_pages(), and then redirty all of
3134          * the pages by calling redirty_page_for_writepage() but that
3135          * would be ugly in the extreme.  So instead we would need to
3136          * replicate parts of the code in the above functions,
3137          * simplifying them because we wouldn't actually intend to
3138          * write out the pages, but rather only collect contiguous
3139          * logical block extents, call the multi-block allocator, and
3140          * then update the buffer heads with the block allocations.
3141          *
3142          * For now, though, we'll cheat by calling filemap_flush(),
3143          * which will map the blocks, and start the I/O, but not
3144          * actually wait for the I/O to complete.
3145          */
3146         return filemap_flush(inode->i_mapping);
3147 }
3148
3149 /*
3150  * bmap() is special.  It gets used by applications such as lilo and by
3151  * the swapper to find the on-disk block of a specific piece of data.
3152  *
3153  * Naturally, this is dangerous if the block concerned is still in the
3154  * journal.  If somebody makes a swapfile on an ext4 data-journaling
3155  * filesystem and enables swap, then they may get a nasty shock when the
3156  * data getting swapped to that swapfile suddenly gets overwritten by
3157  * the original zero's written out previously to the journal and
3158  * awaiting writeback in the kernel's buffer cache.
3159  *
3160  * So, if we see any bmap calls here on a modified, data-journaled file,
3161  * take extra steps to flush any blocks which might be in the cache.
3162  */
3163 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3164 {
3165         struct inode *inode = mapping->host;
3166         journal_t *journal;
3167         int err;
3168
3169         /*
3170          * We can get here for an inline file via the FIBMAP ioctl
3171          */
3172         if (ext4_has_inline_data(inode))
3173                 return 0;
3174
3175         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3176                         test_opt(inode->i_sb, DELALLOC)) {
3177                 /*
3178                  * With delalloc we want to sync the file
3179                  * so that we can make sure we allocate
3180                  * blocks for file
3181                  */
3182                 filemap_write_and_wait(mapping);
3183         }
3184
3185         if (EXT4_JOURNAL(inode) &&
3186             ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3187                 /*
3188                  * This is a REALLY heavyweight approach, but the use of
3189                  * bmap on dirty files is expected to be extremely rare:
3190                  * only if we run lilo or swapon on a freshly made file
3191                  * do we expect this to happen.
3192                  *
3193                  * (bmap requires CAP_SYS_RAWIO so this does not
3194                  * represent an unprivileged user DOS attack --- we'd be
3195                  * in trouble if mortal users could trigger this path at
3196                  * will.)
3197                  *
3198                  * NB. EXT4_STATE_JDATA is not set on files other than
3199                  * regular files.  If somebody wants to bmap a directory
3200                  * or symlink and gets confused because the buffer
3201                  * hasn't yet been flushed to disk, they deserve
3202                  * everything they get.
3203                  */
3204
3205                 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3206                 journal = EXT4_JOURNAL(inode);
3207                 jbd2_journal_lock_updates(journal);
3208                 err = jbd2_journal_flush(journal);
3209                 jbd2_journal_unlock_updates(journal);
3210
3211                 if (err)
3212                         return 0;
3213         }
3214
3215         return generic_block_bmap(mapping, block, ext4_get_block);
3216 }
3217
3218 static int ext4_readpage(struct file *file, struct page *page)
3219 {
3220         int ret = -EAGAIN;
3221         struct inode *inode = page->mapping->host;
3222
3223         trace_ext4_readpage(page);
3224
3225         if (ext4_has_inline_data(inode))
3226                 ret = ext4_readpage_inline(inode, page);
3227
3228         if (ret == -EAGAIN)
3229                 return ext4_mpage_readpages(page->mapping, NULL, page, 1);
3230
3231         return ret;
3232 }
3233
3234 static int
3235 ext4_readpages(struct file *file, struct address_space *mapping,
3236                 struct list_head *pages, unsigned nr_pages)
3237 {
3238         struct inode *inode = mapping->host;
3239
3240         /* If the file has inline data, no need to do readpages. */
3241         if (ext4_has_inline_data(inode))
3242                 return 0;
3243
3244         return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
3245 }
3246
3247 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3248                                 unsigned int length)
3249 {
3250         trace_ext4_invalidatepage(page, offset, length);
3251
3252         /* No journalling happens on data buffers when this function is used */
3253         WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3254
3255         block_invalidatepage(page, offset, length);
3256 }
3257
3258 static int __ext4_journalled_invalidatepage(struct page *page,
3259                                             unsigned int offset,
3260                                             unsigned int length)
3261 {
3262         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3263
3264         trace_ext4_journalled_invalidatepage(page, offset, length);
3265
3266         /*
3267          * If it's a full truncate we just forget about the pending dirtying
3268          */
3269         if (offset == 0 && length == PAGE_SIZE)
3270                 ClearPageChecked(page);
3271
3272         return jbd2_journal_invalidatepage(journal, page, offset, length);
3273 }
3274
3275 /* Wrapper for aops... */
3276 static void ext4_journalled_invalidatepage(struct page *page,
3277                                            unsigned int offset,
3278                                            unsigned int length)
3279 {
3280         WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3281 }
3282
3283 static int ext4_releasepage(struct page *page, gfp_t wait)
3284 {
3285         journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3286
3287         trace_ext4_releasepage(page);
3288
3289         /* Page has dirty journalled data -> cannot release */
3290         if (PageChecked(page))
3291                 return 0;
3292         if (journal)
3293                 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3294         else
3295                 return try_to_free_buffers(page);
3296 }
3297
3298 #ifdef CONFIG_FS_DAX
3299 /*
3300  * Get block function for DAX IO and mmap faults. It takes care of converting
3301  * unwritten extents to written ones and initializes new / converted blocks
3302  * to zeros.
3303  */
3304 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3305                        struct buffer_head *bh_result, int create)
3306 {
3307         int ret;
3308
3309         ext4_debug("inode %lu, create flag %d\n", inode->i_ino, create);
3310         if (!create)
3311                 return _ext4_get_block(inode, iblock, bh_result, 0);
3312
3313         ret = ext4_get_block_trans(inode, iblock, bh_result,
3314                                    EXT4_GET_BLOCKS_PRE_IO |
3315                                    EXT4_GET_BLOCKS_CREATE_ZERO);
3316         if (ret < 0)
3317                 return ret;
3318
3319         if (buffer_unwritten(bh_result)) {
3320                 /*
3321                  * We are protected by i_mmap_sem or i_mutex so we know block
3322                  * cannot go away from under us even though we dropped
3323                  * i_data_sem. Convert extent to written and write zeros there.
3324                  */
3325                 ret = ext4_get_block_trans(inode, iblock, bh_result,
3326                                            EXT4_GET_BLOCKS_CONVERT |
3327                                            EXT4_GET_BLOCKS_CREATE_ZERO);
3328                 if (ret < 0)
3329                         return ret;
3330         }
3331         /*
3332          * At least for now we have to clear BH_New so that DAX code
3333          * doesn't attempt to zero blocks again in a racy way.
3334          */
3335         clear_buffer_new(bh_result);
3336         return 0;
3337 }
3338 #else
3339 /* Just define empty function, it will never get called. */
3340 int ext4_dax_get_block(struct inode *inode, sector_t iblock,
3341                        struct buffer_head *bh_result, int create)
3342 {
3343         BUG();
3344         return 0;
3345 }
3346 #endif
3347
3348 static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3349                             ssize_t size, void *private)
3350 {
3351         ext4_io_end_t *io_end = private;
3352
3353         /* if not async direct IO just return */
3354         if (!io_end)
3355                 return 0;
3356
3357         ext_debug("ext4_end_io_dio(): io_end 0x%p "
3358                   "for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
3359                   io_end, io_end->inode->i_ino, iocb, offset, size);
3360
3361         /*
3362          * Error during AIO DIO. We cannot convert unwritten extents as the
3363          * data was not written. Just clear the unwritten flag and drop io_end.
3364          */
3365         if (size <= 0) {
3366                 ext4_clear_io_unwritten_flag(io_end);
3367                 size = 0;
3368         }
3369         io_end->offset = offset;
3370         io_end->size = size;
3371         ext4_put_io_end(io_end);
3372
3373         return 0;
3374 }
3375
3376 /*
3377  * Handling of direct IO writes.
3378  *
3379  * For ext4 extent files, ext4 will do direct-io write even to holes,
3380  * preallocated extents, and those write extend the file, no need to
3381  * fall back to buffered IO.
3382  *
3383  * For holes, we fallocate those blocks, mark them as unwritten
3384  * If those blocks were preallocated, we mark sure they are split, but
3385  * still keep the range to write as unwritten.
3386  *
3387  * The unwritten extents will be converted to written when DIO is completed.
3388  * For async direct IO, since the IO may still pending when return, we
3389  * set up an end_io call back function, which will do the conversion
3390  * when async direct IO completed.
3391  *
3392  * If the O_DIRECT write will extend the file then add this inode to the
3393  * orphan list.  So recovery will truncate it back to the original size
3394  * if the machine crashes during the write.
3395  *
3396  */
3397 static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
3398 {
3399         struct file *file = iocb->ki_filp;
3400         struct inode *inode = file->f_mapping->host;
3401         ssize_t ret;
3402         loff_t offset = iocb->ki_pos;
3403         size_t count = iov_iter_count(iter);
3404         int overwrite = 0;
3405         get_block_t *get_block_func = NULL;
3406         int dio_flags = 0;
3407         loff_t final_size = offset + count;
3408         int orphan = 0;
3409         handle_t *handle;
3410
3411         if (final_size > inode->i_size) {
3412                 /* Credits for sb + inode write */
3413                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3414                 if (IS_ERR(handle)) {
3415                         ret = PTR_ERR(handle);
3416                         goto out;
3417                 }
3418                 ret = ext4_orphan_add(handle, inode);
3419                 if (ret) {
3420                         ext4_journal_stop(handle);
3421                         goto out;
3422                 }
3423                 orphan = 1;
3424                 ext4_update_i_disksize(inode, inode->i_size);
3425                 ext4_journal_stop(handle);
3426         }
3427
3428         BUG_ON(iocb->private == NULL);
3429
3430         /*
3431          * Make all waiters for direct IO properly wait also for extent
3432          * conversion. This also disallows race between truncate() and
3433          * overwrite DIO as i_dio_count needs to be incremented under i_mutex.
3434          */
3435         inode_dio_begin(inode);
3436
3437         /* If we do a overwrite dio, i_mutex locking can be released */
3438         overwrite = *((int *)iocb->private);
3439
3440         if (overwrite)
3441                 inode_unlock(inode);
3442
3443         /*
3444          * For extent mapped files we could direct write to holes and fallocate.
3445          *
3446          * Allocated blocks to fill the hole are marked as unwritten to prevent
3447          * parallel buffered read to expose the stale data before DIO complete
3448          * the data IO.
3449          *
3450          * As to previously fallocated extents, ext4 get_block will just simply
3451          * mark the buffer mapped but still keep the extents unwritten.
3452          *
3453          * For non AIO case, we will convert those unwritten extents to written
3454          * after return back from blockdev_direct_IO. That way we save us from
3455          * allocating io_end structure and also the overhead of offloading
3456          * the extent convertion to a workqueue.
3457          *
3458          * For async DIO, the conversion needs to be deferred when the
3459          * IO is completed. The ext4 end_io callback function will be
3460          * called to take care of the conversion work.  Here for async
3461          * case, we allocate an io_end structure to hook to the iocb.
3462          */
3463         iocb->private = NULL;
3464         if (overwrite)
3465                 get_block_func = ext4_dio_get_block_overwrite;
3466         else if (IS_DAX(inode)) {
3467                 /*
3468                  * We can avoid zeroing for aligned DAX writes beyond EOF. Other
3469                  * writes need zeroing either because they can race with page
3470                  * faults or because they use partial blocks.
3471                  */
3472                 if (round_down(offset, i_blocksize(inode)) >= inode->i_size &&
3473                     ext4_aligned_io(inode, offset, count))
3474                         get_block_func = ext4_dio_get_block;
3475                 else
3476                         get_block_func = ext4_dax_get_block;
3477                 dio_flags = DIO_LOCKING;
3478         } else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
3479                    round_down(offset, i_blocksize(inode)) >= inode->i_size) {
3480                 get_block_func = ext4_dio_get_block;
3481                 dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
3482         } else if (is_sync_kiocb(iocb)) {
3483                 get_block_func = ext4_dio_get_block_unwritten_sync;
3484                 dio_flags = DIO_LOCKING;
3485         } else {
3486                 get_block_func = ext4_dio_get_block_unwritten_async;
3487                 dio_flags = DIO_LOCKING;
3488         }
3489 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3490         BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
3491 #endif
3492         if (IS_DAX(inode)) {
3493                 ret = dax_do_io(iocb, inode, iter, get_block_func,
3494                                 ext4_end_io_dio, dio_flags);
3495         } else
3496                 ret = __blockdev_direct_IO(iocb, inode,
3497                                            inode->i_sb->s_bdev, iter,
3498                                            get_block_func,
3499                                            ext4_end_io_dio, NULL, dio_flags);
3500
3501         if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
3502                                                 EXT4_STATE_DIO_UNWRITTEN)) {
3503                 int err;
3504                 /*
3505                  * for non AIO case, since the IO is already
3506                  * completed, we could do the conversion right here
3507                  */
3508                 err = ext4_convert_unwritten_extents(NULL, inode,
3509                                                      offset, ret);
3510                 if (err < 0)
3511                         ret = err;
3512                 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3513         }
3514
3515         inode_dio_end(inode);
3516         /* take i_mutex locking again if we do a ovewrite dio */
3517         if (overwrite)
3518                 inode_lock(inode);
3519
3520         if (ret < 0 && final_size > inode->i_size)
3521                 ext4_truncate_failed_write(inode);
3522
3523         /* Handle extending of i_size after direct IO write */
3524         if (orphan) {
3525                 int err;
3526
3527                 /* Credits for sb + inode write */
3528                 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
3529                 if (IS_ERR(handle)) {
3530                         /*
3531                          * We wrote the data but cannot extend
3532                          * i_size. Bail out. In async io case, we do
3533                          * not return error here because we have
3534                          * already submmitted the corresponding
3535                          * bio. Returning error here makes the caller
3536                          * think that this IO is done and failed
3537                          * resulting in race with bio's completion
3538                          * handler.
3539                          */
3540                         if (!ret)
3541                                 ret = PTR_ERR(handle);
3542                         if (inode->i_nlink)
3543                                 ext4_orphan_del(NULL, inode);
3544
3545                         goto out;
3546                 }
3547                 if (inode->i_nlink)
3548                         ext4_orphan_del(handle, inode);
3549                 if (ret > 0) {
3550                         loff_t end = offset + ret;
3551                         if (end > inode->i_size) {
3552                                 ext4_update_i_disksize(inode, end);
3553                                 i_size_write(inode, end);
3554                                 /*
3555                                  * We're going to return a positive `ret'
3556                                  * here due to non-zero-length I/O, so there's
3557                                  * no way of reporting error returns from
3558                                  * ext4_mark_inode_dirty() to userspace.  So
3559                                  * ignore it.
3560                                  */
3561                                 ext4_mark_inode_dirty(handle, inode);
3562                         }
3563                 }
3564                 err = ext4_journal_stop(handle);
3565                 if (ret == 0)
3566                         ret = err;
3567         }
3568 out:
3569         return ret;
3570 }
3571
3572 static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
3573 {
3574         struct address_space *mapping = iocb->ki_filp->f_mapping;
3575         struct inode *inode = mapping->host;
3576         ssize_t ret;
3577         loff_t offset = iocb->ki_pos;
3578         loff_t size = i_size_read(inode);
3579
3580         if (offset >= size)
3581                 return 0;
3582
3583         /*
3584          * Shared inode_lock is enough for us - it protects against concurrent
3585          * writes & truncates and since we take care of writing back page cache,
3586          * we are protected against page writeback as well.
3587          */
3588         inode_lock_shared(inode);
3589         if (IS_DAX(inode)) {
3590                 ret = dax_do_io(iocb, inode, iter, ext4_dio_get_block, NULL, 0);
3591         } else {
3592                 size_t count = iov_iter_count(iter);
3593
3594                 ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
3595                                                    iocb->ki_pos + count);
3596                 if (ret)
3597                         goto out_unlock;
3598                 ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
3599                                            iter, ext4_dio_get_block,
3600                                            NULL, NULL, 0);
3601         }
3602 out_unlock:
3603         inode_unlock_shared(inode);
3604         return ret;
3605 }
3606
3607 static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
3608 {
3609         struct file *file = iocb->ki_filp;
3610         struct inode *inode = file->f_mapping->host;
3611         size_t count = iov_iter_count(iter);
3612         loff_t offset = iocb->ki_pos;
3613         ssize_t ret;
3614
3615 #ifdef CONFIG_EXT4_FS_ENCRYPTION
3616         if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
3617                 return 0;
3618 #endif
3619
3620         /*
3621          * If we are doing data journalling we don't support O_DIRECT
3622          */
3623         if (ext4_should_journal_data(inode))
3624                 return 0;
3625
3626         /* Let buffer I/O handle the inline data case. */
3627         if (ext4_has_inline_data(inode))
3628                 return 0;
3629
3630         trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
3631         if (iov_iter_rw(iter) == READ)
3632                 ret = ext4_direct_IO_read(iocb, iter);
3633         else
3634                 ret = ext4_direct_IO_write(iocb, iter);
3635         trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
3636         return ret;
3637 }
3638
3639 /*
3640  * Pages can be marked dirty completely asynchronously from ext4's journalling
3641  * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
3642  * much here because ->set_page_dirty is called under VFS locks.  The page is
3643  * not necessarily locked.
3644  *
3645  * We cannot just dirty the page and leave attached buffers clean, because the
3646  * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
3647  * or jbddirty because all the journalling code will explode.
3648  *
3649  * So what we do is to mark the page "pending dirty" and next time writepage
3650  * is called, propagate that into the buffers appropriately.
3651  */
3652 static int ext4_journalled_set_page_dirty(struct page *page)
3653 {
3654         SetPageChecked(page);
3655         return __set_page_dirty_nobuffers(page);
3656 }
3657
3658 static const struct address_space_operations ext4_aops = {
3659         .readpage               = ext4_readpage,
3660         .readpages              = ext4_readpages,
3661         .writepage              = ext4_writepage,
3662         .writepages             = ext4_writepages,
3663         .write_begin            = ext4_write_begin,
3664         .write_end              = ext4_write_end,
3665         .bmap                   = ext4_bmap,
3666         .invalidatepage         = ext4_invalidatepage,
3667         .releasepage            = ext4_releasepage,
3668         .direct_IO              = ext4_direct_IO,
3669         .migratepage            = buffer_migrate_page,
3670         .is_partially_uptodate  = block_is_partially_uptodate,
3671         .error_remove_page      = generic_error_remove_page,
3672 };
3673
3674 static const struct address_space_operations ext4_journalled_aops = {
3675         .readpage               = ext4_readpage,
3676         .readpages              = ext4_readpages,
3677         .writepage              = ext4_writepage,
3678         .writepages             = ext4_writepages,
3679         .write_begin            = ext4_write_begin,
3680         .write_end              = ext4_journalled_write_end,
3681         .set_page_dirty         = ext4_journalled_set_page_dirty,
3682         .bmap                   = ext4_bmap,
3683         .invalidatepage         = ext4_journalled_invalidatepage,
3684         .releasepage            = ext4_releasepage,
3685         .direct_IO              = ext4_direct_IO,
3686         .is_partially_uptodate  = block_is_partially_uptodate,
3687         .error_remove_page      = generic_error_remove_page,
3688 };
3689
3690 static const struct address_space_operations ext4_da_aops = {
3691         .readpage               = ext4_readpage,
3692         .readpages              = ext4_readpages,
3693         .writepage              = ext4_writepage,
3694         .writepages             = ext4_writepages,
3695         .write_begin            = ext4_da_write_begin,
3696         .write_end              = ext4_da_write_end,
3697         .bmap                   = ext4_bmap,
3698         .invalidatepage         = ext4_da_invalidatepage,
3699         .releasepage            = ext4_releasepage,
3700         .direct_IO              = ext4_direct_IO,
3701         .migratepage            = buffer_migrate_page,
3702         .is_partially_uptodate  = block_is_partially_uptodate,
3703         .error_remove_page      = generic_error_remove_page,
3704 };
3705
3706 void ext4_set_aops(struct inode *inode)
3707 {
3708         switch (ext4_inode_journal_mode(inode)) {
3709         case EXT4_INODE_ORDERED_DATA_MODE:
3710         case EXT4_INODE_WRITEBACK_DATA_MODE:
3711                 break;
3712         case EXT4_INODE_JOURNAL_DATA_MODE:
3713                 inode->i_mapping->a_ops = &ext4_journalled_aops;
3714                 return;
3715         default:
3716                 BUG();
3717         }
3718         if (test_opt(inode->i_sb, DELALLOC))
3719                 inode->i_mapping->a_ops = &ext4_da_aops;
3720         else
3721                 inode->i_mapping->a_ops = &ext4_aops;
3722 }
3723
3724 static int __ext4_block_zero_page_range(handle_t *handle,
3725                 struct address_space *mapping, loff_t from, loff_t length)
3726 {
3727         ext4_fsblk_t index = from >> PAGE_SHIFT;
3728         unsigned offset = from & (PAGE_SIZE-1);
3729         unsigned blocksize, pos;
3730         ext4_lblk_t iblock;
3731         struct inode *inode = mapping->host;
3732         struct buffer_head *bh;
3733         struct page *page;
3734         int err = 0;
3735
3736         page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3737                                    mapping_gfp_constraint(mapping, ~__GFP_FS));
3738         if (!page)
3739                 return -ENOMEM;
3740
3741         blocksize = inode->i_sb->s_blocksize;
3742
3743         iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3744
3745         if (!page_has_buffers(page))
3746                 create_empty_buffers(page, blocksize, 0);
3747
3748         /* Find the buffer that contains "offset" */
3749         bh = page_buffers(page);
3750         pos = blocksize;
3751         while (offset >= pos) {
3752                 bh = bh->b_this_page;
3753                 iblock++;
3754                 pos += blocksize;
3755         }
3756         if (buffer_freed(bh)) {
3757                 BUFFER_TRACE(bh, "freed: skip");
3758                 goto unlock;
3759         }
3760         if (!buffer_mapped(bh)) {
3761                 BUFFER_TRACE(bh, "unmapped");
3762                 ext4_get_block(inode, iblock, bh, 0);
3763                 /* unmapped? It's a hole - nothing to do */
3764                 if (!buffer_mapped(bh)) {
3765                         BUFFER_TRACE(bh, "still unmapped");
3766                         goto unlock;
3767                 }
3768         }
3769
3770         /* Ok, it's mapped. Make sure it's up-to-date */
3771         if (PageUptodate(page))
3772                 set_buffer_uptodate(bh);
3773
3774         if (!buffer_uptodate(bh)) {
3775                 err = -EIO;
3776                 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3777                 wait_on_buffer(bh);
3778                 /* Uhhuh. Read error. Complain and punt. */
3779                 if (!buffer_uptodate(bh))
3780                         goto unlock;
3781                 if (S_ISREG(inode->i_mode) &&
3782                     ext4_encrypted_inode(inode)) {
3783                         /* We expect the key to be set. */
3784                         BUG_ON(!fscrypt_has_encryption_key(inode));
3785                         BUG_ON(blocksize != PAGE_SIZE);
3786                         WARN_ON_ONCE(fscrypt_decrypt_page(page));
3787                 }
3788         }
3789         if (ext4_should_journal_data(inode)) {
3790                 BUFFER_TRACE(bh, "get write access");
3791                 err = ext4_journal_get_write_access(handle, bh);
3792                 if (err)
3793                         goto unlock;
3794         }
3795         zero_user(page, offset, length);
3796         BUFFER_TRACE(bh, "zeroed end of block");
3797
3798         if (ext4_should_journal_data(inode)) {
3799                 err = ext4_handle_dirty_metadata(handle, inode, bh);
3800         } else {
3801                 err = 0;
3802                 mark_buffer_dirty(bh);
3803                 if (ext4_should_order_data(inode))
3804                         err = ext4_jbd2_inode_add_write(handle, inode);
3805         }
3806
3807 unlock:
3808         unlock_page(page);
3809         put_page(page);
3810         return err;
3811 }
3812
3813 /*
3814  * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3815  * starting from file offset 'from'.  The range to be zero'd must
3816  * be contained with in one block.  If the specified range exceeds
3817  * the end of the block it will be shortened to end of the block
3818  * that cooresponds to 'from'
3819  */
3820 static int ext4_block_zero_page_range(handle_t *handle,
3821                 struct address_space *mapping, loff_t from, loff_t length)
3822 {
3823         struct inode *inode = mapping->host;
3824         unsigned offset = from & (PAGE_SIZE-1);
3825         unsigned blocksize = inode->i_sb->s_blocksize;
3826         unsigned max = blocksize - (offset & (blocksize - 1));
3827
3828         /*
3829          * correct length if it does not fall between
3830          * 'from' and the end of the block
3831          */
3832         if (length > max || length < 0)
3833                 length = max;
3834
3835         if (IS_DAX(inode))
3836                 return dax_zero_page_range(inode, from, length, ext4_get_block);
3837         return __ext4_block_zero_page_range(handle, mapping, from, length);
3838 }
3839
3840 /*
3841  * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3842  * up to the end of the block which corresponds to `from'.
3843  * This required during truncate. We need to physically zero the tail end
3844  * of that block so it doesn't yield old data if the file is later grown.
3845  */
3846 static int ext4_block_truncate_page(handle_t *handle,
3847                 struct address_space *mapping, loff_t from)
3848 {
3849         unsigned offset = from & (PAGE_SIZE-1);
3850         unsigned length;
3851         unsigned blocksize;
3852         struct inode *inode = mapping->host;
3853
3854         /* If we are processing an encrypted inode during orphan list handling */
3855         if (ext4_encrypted_inode(inode) && !fscrypt_has_encryption_key(inode))
3856                 return 0;
3857
3858         blocksize = inode->i_sb->s_blocksize;
3859         length = blocksize - (offset & (blocksize - 1));
3860
3861         return ext4_block_zero_page_range(handle, mapping, from, length);
3862 }
3863
3864 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3865                              loff_t lstart, loff_t length)
3866 {
3867         struct super_block *sb = inode->i_sb;
3868         struct address_space *mapping = inode->i_mapping;
3869         unsigned partial_start, partial_end;
3870         ext4_fsblk_t start, end;
3871         loff_t byte_end = (lstart + length - 1);
3872         int err = 0;
3873
3874         partial_start = lstart & (sb->s_blocksize - 1);
3875         partial_end = byte_end & (sb->s_blocksize - 1);
3876
3877         start = lstart >> sb->s_blocksize_bits;
3878         end = byte_end >> sb->s_blocksize_bits;
3879
3880         /* Handle partial zero within the single block */
3881         if (start == end &&
3882             (partial_start || (partial_end != sb->s_blocksize - 1))) {
3883                 err = ext4_block_zero_page_range(handle, mapping,
3884                                                  lstart, length);
3885                 return err;
3886         }
3887         /* Handle partial zero out on the start of the range */
3888         if (partial_start) {
3889                 err = ext4_block_zero_page_range(handle, mapping,
3890                                                  lstart, sb->s_blocksize);
3891                 if (err)
3892                         return err;
3893         }
3894         /* Handle partial zero out on the end of the range */
3895         if (partial_end != sb->s_blocksize - 1)
3896                 err = ext4_block_zero_page_range(handle, mapping,
3897                                                  byte_end - partial_end,
3898                                                  partial_end + 1);
3899         return err;
3900 }
3901
3902 int ext4_can_truncate(struct inode *inode)
3903 {
3904         if (S_ISREG(inode->i_mode))
3905                 return 1;
3906         if (S_ISDIR(inode->i_mode))
3907                 return 1;
3908         if (S_ISLNK(inode->i_mode))
3909                 return !ext4_inode_is_fast_symlink(inode);
3910         return 0;
3911 }
3912
3913 /*
3914  * We have to make sure i_disksize gets properly updated before we truncate
3915  * page cache due to hole punching or zero range. Otherwise i_disksize update
3916  * can get lost as it may have been postponed to submission of writeback but
3917  * that will never happen after we truncate page cache.
3918  */
3919 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3920                                       loff_t len)
3921 {
3922         handle_t *handle;
3923         loff_t size = i_size_read(inode);
3924
3925         WARN_ON(!inode_is_locked(inode));
3926         if (offset > size || offset + len < size)
3927                 return 0;
3928
3929         if (EXT4_I(inode)->i_disksize >= size)
3930                 return 0;
3931
3932         handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3933         if (IS_ERR(handle))
3934                 return PTR_ERR(handle);
3935         ext4_update_i_disksize(inode, size);
3936         ext4_mark_inode_dirty(handle, inode);
3937         ext4_journal_stop(handle);
3938
3939         return 0;
3940 }
3941
3942 /*
3943  * ext4_punch_hole: punches a hole in a file by releasing the blocks
3944  * associated with the given offset and length
3945  *
3946  * @inode:  File inode
3947  * @offset: The offset where the hole will begin
3948  * @len:    The length of the hole
3949  *
3950  * Returns: 0 on success or negative on failure
3951  */
3952
3953 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3954 {
3955         struct super_block *sb = inode->i_sb;
3956         ext4_lblk_t first_block, stop_block;
3957         struct address_space *mapping = inode->i_mapping;
3958         loff_t first_block_offset, last_block_offset;
3959         handle_t *handle;
3960         unsigned int credits;
3961         int ret = 0;
3962
3963         if (!S_ISREG(inode->i_mode))
3964                 return -EOPNOTSUPP;
3965
3966         trace_ext4_punch_hole(inode, offset, length, 0);
3967
3968         ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3969         if (ext4_has_inline_data(inode)) {
3970                 down_write(&EXT4_I(inode)->i_mmap_sem);
3971                 ret = ext4_convert_inline_data(inode);
3972                 up_write(&EXT4_I(inode)->i_mmap_sem);
3973                 if (ret)
3974                         return ret;
3975         }
3976
3977         /*
3978          * Write out all dirty pages to avoid race conditions
3979          * Then release them.
3980          */
3981         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3982                 ret = filemap_write_and_wait_range(mapping, offset,
3983                                                    offset + length - 1);
3984                 if (ret)
3985                         return ret;
3986         }
3987
3988         inode_lock(inode);
3989
3990         /* No need to punch hole beyond i_size */
3991         if (offset >= inode->i_size)
3992                 goto out_mutex;
3993
3994         /*
3995          * If the hole extends beyond i_size, set the hole
3996          * to end after the page that contains i_size
3997          */
3998         if (offset + length > inode->i_size) {
3999                 length = inode->i_size +
4000                    PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
4001                    offset;
4002         }
4003
4004         if (offset & (sb->s_blocksize - 1) ||
4005             (offset + length) & (sb->s_blocksize - 1)) {
4006                 /*
4007                  * Attach jinode to inode for jbd2 if we do any zeroing of
4008                  * partial block
4009                  */
4010                 ret = ext4_inode_attach_jinode(inode);
4011                 if (ret < 0)
4012                         goto out_mutex;
4013
4014         }
4015
4016         /* Wait all existing dio workers, newcomers will block on i_mutex */
4017         ext4_inode_block_unlocked_dio(inode);
4018         inode_dio_wait(inode);
4019
4020         /*
4021          * Prevent page faults from reinstantiating pages we have released from
4022          * page cache.
4023          */
4024         down_write(&EXT4_I(inode)->i_mmap_sem);
4025         first_block_offset = round_up(offset, sb->s_blocksize);
4026         last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4027
4028         /* Now release the pages and zero block aligned part of pages*/
4029         if (last_block_offset > first_block_offset) {
4030                 ret = ext4_update_disksize_before_punch(inode, offset, length);
4031                 if (ret)
4032                         goto out_dio;
4033                 truncate_pagecache_range(inode, first_block_offset,
4034                                          last_block_offset);
4035         }
4036
4037         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4038                 credits = ext4_writepage_trans_blocks(inode);
4039         else
4040                 credits = ext4_blocks_for_truncate(inode);
4041         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4042         if (IS_ERR(handle)) {
4043                 ret = PTR_ERR(handle);
4044                 ext4_std_error(sb, ret);
4045                 goto out_dio;
4046         }
4047
4048         ret = ext4_zero_partial_blocks(handle, inode, offset,
4049                                        length);
4050         if (ret)
4051                 goto out_stop;
4052
4053         first_block = (offset + sb->s_blocksize - 1) >>
4054                 EXT4_BLOCK_SIZE_BITS(sb);
4055         stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4056
4057         /* If there are blocks to remove, do it */
4058         if (stop_block > first_block) {
4059
4060                 down_write(&EXT4_I(inode)->i_data_sem);
4061                 ext4_discard_preallocations(inode);
4062
4063                 ret = ext4_es_remove_extent(inode, first_block,
4064                                             stop_block - first_block);
4065                 if (ret) {
4066                         up_write(&EXT4_I(inode)->i_data_sem);
4067                         goto out_stop;
4068                 }
4069
4070                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4071                         ret = ext4_ext_remove_space(inode, first_block,
4072                                                     stop_block - 1);
4073                 else
4074                         ret = ext4_ind_remove_space(handle, inode, first_block,
4075                                                     stop_block);
4076
4077                 up_write(&EXT4_I(inode)->i_data_sem);
4078         }
4079         if (IS_SYNC(inode))
4080                 ext4_handle_sync(handle);
4081
4082         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4083         ext4_mark_inode_dirty(handle, inode);
4084         if (ret >= 0)
4085                 ext4_update_inode_fsync_trans(handle, inode, 1);
4086 out_stop:
4087         ext4_journal_stop(handle);
4088 out_dio:
4089         up_write(&EXT4_I(inode)->i_mmap_sem);
4090         ext4_inode_resume_unlocked_dio(inode);
4091 out_mutex:
4092         inode_unlock(inode);
4093         return ret;
4094 }
4095
4096 int ext4_inode_attach_jinode(struct inode *inode)
4097 {
4098         struct ext4_inode_info *ei = EXT4_I(inode);
4099         struct jbd2_inode *jinode;
4100
4101         if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4102                 return 0;
4103
4104         jinode = jbd2_alloc_inode(GFP_KERNEL);
4105         spin_lock(&inode->i_lock);
4106         if (!ei->jinode) {
4107                 if (!jinode) {
4108                         spin_unlock(&inode->i_lock);
4109                         return -ENOMEM;
4110                 }
4111                 ei->jinode = jinode;
4112                 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4113                 jinode = NULL;
4114         }
4115         spin_unlock(&inode->i_lock);
4116         if (unlikely(jinode != NULL))
4117                 jbd2_free_inode(jinode);
4118         return 0;
4119 }
4120
4121 /*
4122  * ext4_truncate()
4123  *
4124  * We block out ext4_get_block() block instantiations across the entire
4125  * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4126  * simultaneously on behalf of the same inode.
4127  *
4128  * As we work through the truncate and commit bits of it to the journal there
4129  * is one core, guiding principle: the file's tree must always be consistent on
4130  * disk.  We must be able to restart the truncate after a crash.
4131  *
4132  * The file's tree may be transiently inconsistent in memory (although it
4133  * probably isn't), but whenever we close off and commit a journal transaction,
4134  * the contents of (the filesystem + the journal) must be consistent and
4135  * restartable.  It's pretty simple, really: bottom up, right to left (although
4136  * left-to-right works OK too).
4137  *
4138  * Note that at recovery time, journal replay occurs *before* the restart of
4139  * truncate against the orphan inode list.
4140  *
4141  * The committed inode has the new, desired i_size (which is the same as
4142  * i_disksize in this case).  After a crash, ext4_orphan_cleanup() will see
4143  * that this inode's truncate did not complete and it will again call
4144  * ext4_truncate() to have another go.  So there will be instantiated blocks
4145  * to the right of the truncation point in a crashed ext4 filesystem.  But
4146  * that's fine - as long as they are linked from the inode, the post-crash
4147  * ext4_truncate() run will find them and release them.
4148  */
4149 void ext4_truncate(struct inode *inode)
4150 {
4151         struct ext4_inode_info *ei = EXT4_I(inode);
4152         unsigned int credits;
4153         handle_t *handle;
4154         struct address_space *mapping = inode->i_mapping;
4155
4156         /*
4157          * There is a possibility that we're either freeing the inode
4158          * or it's a completely new inode. In those cases we might not
4159          * have i_mutex locked because it's not necessary.
4160          */
4161         if (!(inode->i_state & (I_NEW|I_FREEING)))
4162                 WARN_ON(!inode_is_locked(inode));
4163         trace_ext4_truncate_enter(inode);
4164
4165         if (!ext4_can_truncate(inode))
4166                 return;
4167
4168         ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4169
4170         if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4171                 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4172
4173         if (ext4_has_inline_data(inode)) {
4174                 int has_inline = 1;
4175
4176                 ext4_inline_data_truncate(inode, &has_inline);
4177                 if (has_inline)
4178                         return;
4179         }
4180
4181         /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4182         if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4183                 if (ext4_inode_attach_jinode(inode) < 0)
4184                         return;
4185         }
4186
4187         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4188                 credits = ext4_writepage_trans_blocks(inode);
4189         else
4190                 credits = ext4_blocks_for_truncate(inode);
4191
4192         handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4193         if (IS_ERR(handle)) {
4194                 ext4_std_error(inode->i_sb, PTR_ERR(handle));
4195                 return;
4196         }
4197
4198         if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4199                 ext4_block_truncate_page(handle, mapping, inode->i_size);
4200
4201         /*
4202          * We add the inode to the orphan list, so that if this
4203          * truncate spans multiple transactions, and we crash, we will
4204          * resume the truncate when the filesystem recovers.  It also
4205          * marks the inode dirty, to catch the new size.
4206          *
4207          * Implication: the file must always be in a sane, consistent
4208          * truncatable state while each transaction commits.
4209          */
4210         if (ext4_orphan_add(handle, inode))
4211                 goto out_stop;
4212
4213         down_write(&EXT4_I(inode)->i_data_sem);
4214
4215         ext4_discard_preallocations(inode);
4216
4217         if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4218                 ext4_ext_truncate(handle, inode);
4219         else
4220                 ext4_ind_truncate(handle, inode);
4221
4222         up_write(&ei->i_data_sem);
4223
4224         if (IS_SYNC(inode))
4225                 ext4_handle_sync(handle);
4226
4227 out_stop:
4228         /*
4229          * If this was a simple ftruncate() and the file will remain alive,
4230          * then we need to clear up the orphan record which we created above.
4231          * However, if this was a real unlink then we were called by
4232          * ext4_evict_inode(), and we allow that function to clean up the
4233          * orphan info for us.
4234          */
4235         if (inode->i_nlink)
4236                 ext4_orphan_del(handle, inode);
4237
4238         inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4239         ext4_mark_inode_dirty(handle, inode);
4240         ext4_journal_stop(handle);
4241
4242         trace_ext4_truncate_exit(inode);
4243 }
4244
4245 /*
4246  * ext4_get_inode_loc returns with an extra refcount against the inode's
4247  * underlying buffer_head on success. If 'in_mem' is true, we have all
4248  * data in memory that is needed to recreate the on-disk version of this
4249  * inode.
4250  */
4251 static int __ext4_get_inode_loc(struct inode *inode,
4252                                 struct ext4_iloc *iloc, int in_mem)
4253 {
4254         struct ext4_group_desc  *gdp;
4255         struct buffer_head      *bh;
4256         struct super_block      *sb = inode->i_sb;
4257         ext4_fsblk_t            block;
4258         int                     inodes_per_block, inode_offset;
4259
4260         iloc->bh = NULL;
4261         if (inode->i_ino < EXT4_ROOT_INO ||
4262             inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4263                 return -EFSCORRUPTED;
4264
4265         iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4266         gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4267         if (!gdp)
4268                 return -EIO;
4269
4270         /*
4271          * Figure out the offset within the block group inode table
4272          */
4273         inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4274         inode_offset = ((inode->i_ino - 1) %
4275                         EXT4_INODES_PER_GROUP(sb));
4276         block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4277         iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4278
4279         bh = sb_getblk(sb, block);
4280         if (unlikely(!bh))
4281                 return -ENOMEM;
4282         if (!buffer_uptodate(bh)) {
4283                 lock_buffer(bh);
4284
4285                 /*
4286                  * If the buffer has the write error flag, we have failed
4287                  * to write out another inode in the same block.  In this
4288                  * case, we don't have to read the block because we may
4289                  * read the old inode data successfully.
4290                  */
4291                 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4292                         set_buffer_uptodate(bh);
4293
4294                 if (buffer_uptodate(bh)) {
4295                         /* someone brought it uptodate while we waited */
4296                         unlock_buffer(bh);
4297                         goto has_buffer;
4298                 }
4299
4300                 /*
4301                  * If we have all information of the inode in memory and this
4302                  * is the only valid inode in the block, we need not read the
4303                  * block.
4304                  */
4305                 if (in_mem) {
4306                         struct buffer_head *bitmap_bh;
4307                         int i, start;
4308
4309                         start = inode_offset & ~(inodes_per_block - 1);
4310
4311                         /* Is the inode bitmap in cache? */
4312                         bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4313                         if (unlikely(!bitmap_bh))
4314                                 goto make_io;
4315
4316                         /*
4317                          * If the inode bitmap isn't in cache then the
4318                          * optimisation may end up performing two reads instead
4319                          * of one, so skip it.
4320                          */
4321                         if (!buffer_uptodate(bitmap_bh)) {
4322                                 brelse(bitmap_bh);
4323                                 goto make_io;
4324                         }
4325                         for (i = start; i < start + inodes_per_block; i++) {
4326                                 if (i == inode_offset)
4327                                         continue;
4328                                 if (ext4_test_bit(i, bitmap_bh->b_data))
4329                                         break;
4330                         }
4331                         brelse(bitmap_bh);
4332                         if (i == start + inodes_per_block) {
4333                                 /* all other inodes are free, so skip I/O */
4334                                 memset(bh->b_data, 0, bh->b_size);
4335                                 set_buffer_uptodate(bh);
4336                                 unlock_buffer(bh);
4337                                 goto has_buffer;
4338                         }
4339                 }
4340
4341 make_io:
4342                 /*
4343                  * If we need to do any I/O, try to pre-readahead extra
4344                  * blocks from the inode table.
4345                  */
4346                 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4347                         ext4_fsblk_t b, end, table;
4348                         unsigned num;
4349                         __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4350
4351                         table = ext4_inode_table(sb, gdp);
4352                         /* s_inode_readahead_blks is always a power of 2 */
4353                         b = block & ~((ext4_fsblk_t) ra_blks - 1);
4354                         if (table > b)
4355                                 b = table;
4356                         end = b + ra_blks;
4357                         num = EXT4_INODES_PER_GROUP(sb);
4358                         if (ext4_has_group_desc_csum(sb))
4359                                 num -= ext4_itable_unused_count(sb, gdp);
4360                         table += num / inodes_per_block;
4361                         if (end > table)
4362                                 end = table;
4363                         while (b <= end)
4364                                 sb_breadahead(sb, b++);
4365                 }
4366
4367                 /*
4368                  * There are other valid inodes in the buffer, this inode
4369                  * has in-inode xattrs, or we don't have this inode in memory.
4370                  * Read the block from disk.
4371                  */
4372                 trace_ext4_load_inode(inode);
4373                 get_bh(bh);
4374                 bh->b_end_io = end_buffer_read_sync;
4375                 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4376                 wait_on_buffer(bh);
4377                 if (!buffer_uptodate(bh)) {
4378                         EXT4_ERROR_INODE_BLOCK(inode, block,
4379                                                "unable to read itable block");
4380                         brelse(bh);
4381                         return -EIO;
4382                 }
4383         }
4384 has_buffer:
4385         iloc->bh = bh;
4386         return 0;
4387 }
4388
4389 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4390 {
4391         /* We have all inode data except xattrs in memory here. */
4392         return __ext4_get_inode_loc(inode, iloc,
4393                 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4394 }
4395
4396 void ext4_set_inode_flags(struct inode *inode)
4397 {
4398         unsigned int flags = EXT4_I(inode)->i_flags;
4399         unsigned int new_fl = 0;
4400
4401         if (flags & EXT4_SYNC_FL)
4402                 new_fl |= S_SYNC;
4403         if (flags & EXT4_APPEND_FL)
4404                 new_fl |= S_APPEND;
4405         if (flags & EXT4_IMMUTABLE_FL)
4406                 new_fl |= S_IMMUTABLE;
4407         if (flags & EXT4_NOATIME_FL)
4408                 new_fl |= S_NOATIME;
4409         if (flags & EXT4_DIRSYNC_FL)
4410                 new_fl |= S_DIRSYNC;
4411         if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode))
4412                 new_fl |= S_DAX;
4413         inode_set_flags(inode, new_fl,
4414                         S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
4415 }
4416
4417 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4418 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4419 {
4420         unsigned int vfs_fl;
4421         unsigned long old_fl, new_fl;
4422
4423         do {
4424                 vfs_fl = ei->vfs_inode.i_flags;
4425                 old_fl = ei->i_flags;
4426                 new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4427                                 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
4428                                 EXT4_DIRSYNC_FL);
4429                 if (vfs_fl & S_SYNC)
4430                         new_fl |= EXT4_SYNC_FL;
4431                 if (vfs_fl & S_APPEND)
4432                         new_fl |= EXT4_APPEND_FL;
4433                 if (vfs_fl & S_IMMUTABLE)
4434                         new_fl |= EXT4_IMMUTABLE_FL;
4435                 if (vfs_fl & S_NOATIME)
4436                         new_fl |= EXT4_NOATIME_FL;
4437                 if (vfs_fl & S_DIRSYNC)
4438                         new_fl |= EXT4_DIRSYNC_FL;
4439         } while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
4440 }
4441
4442 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4443                                   struct ext4_inode_info *ei)
4444 {
4445         blkcnt_t i_blocks ;
4446         struct inode *inode = &(ei->vfs_inode);
4447         struct super_block *sb = inode->i_sb;
4448
4449         if (ext4_has_feature_huge_file(sb)) {
4450                 /* we are using combined 48 bit field */
4451                 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4452                                         le32_to_cpu(raw_inode->i_blocks_lo);
4453                 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4454                         /* i_blocks represent file system block size */
4455                         return i_blocks  << (inode->i_blkbits - 9);
4456                 } else {
4457                         return i_blocks;
4458                 }
4459         } else {
4460                 return le32_to_cpu(raw_inode->i_blocks_lo);
4461         }
4462 }
4463
4464 static inline void ext4_iget_extra_inode(struct inode *inode,
4465                                          struct ext4_inode *raw_inode,
4466                                          struct ext4_inode_info *ei)
4467 {
4468         __le32 *magic = (void *)raw_inode +
4469                         EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4470         if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4471                 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4472                 ext4_find_inline_data_nolock(inode);
4473         } else
4474                 EXT4_I(inode)->i_inline_off = 0;
4475 }
4476
4477 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4478 {
4479         if (!ext4_has_feature_project(inode->i_sb))
4480                 return -EOPNOTSUPP;
4481         *projid = EXT4_I(inode)->i_projid;
4482         return 0;
4483 }
4484
4485 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4486                           ext4_iget_flags flags, const char *function,
4487                           unsigned int line)
4488 {
4489         struct ext4_iloc iloc;
4490         struct ext4_inode *raw_inode;
4491         struct ext4_inode_info *ei;
4492         struct inode *inode;
4493         journal_t *journal = EXT4_SB(sb)->s_journal;
4494         long ret;
4495         loff_t size;
4496         int block;
4497         uid_t i_uid;
4498         gid_t i_gid;
4499         projid_t i_projid;
4500
4501         if ((!(flags & EXT4_IGET_SPECIAL) &&
4502              (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4503             (ino < EXT4_ROOT_INO) ||
4504             (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4505                 if (flags & EXT4_IGET_HANDLE)
4506                         return ERR_PTR(-ESTALE);
4507                 __ext4_error(sb, function, line,
4508                              "inode #%lu: comm %s: iget: illegal inode #",
4509                              ino, current->comm);
4510                 return ERR_PTR(-EFSCORRUPTED);
4511         }
4512
4513         inode = iget_locked(sb, ino);
4514         if (!inode)
4515                 return ERR_PTR(-ENOMEM);
4516         if (!(inode->i_state & I_NEW))
4517                 return inode;
4518
4519         ei = EXT4_I(inode);
4520         iloc.bh = NULL;
4521
4522         ret = __ext4_get_inode_loc(inode, &iloc, 0);
4523         if (ret < 0)
4524                 goto bad_inode;
4525         raw_inode = ext4_raw_inode(&iloc);
4526
4527         if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4528                 ext4_error_inode(inode, function, line, 0,
4529                                  "iget: root inode unallocated");
4530                 ret = -EFSCORRUPTED;
4531                 goto bad_inode;
4532         }
4533
4534         if ((flags & EXT4_IGET_HANDLE) &&
4535             (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4536                 ret = -ESTALE;
4537                 goto bad_inode;
4538         }
4539
4540         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4541                 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4542                 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4543                     EXT4_INODE_SIZE(inode->i_sb)) {
4544                         EXT4_ERROR_INODE(inode, "bad extra_isize (%u != %u)",
4545                                 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize,
4546                                 EXT4_INODE_SIZE(inode->i_sb));
4547                         ret = -EFSCORRUPTED;
4548                         goto bad_inode;
4549                 }
4550         } else
4551                 ei->i_extra_isize = 0;
4552
4553         /* Precompute checksum seed for inode metadata */
4554         if (ext4_has_metadata_csum(sb)) {
4555                 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4556                 __u32 csum;
4557                 __le32 inum = cpu_to_le32(inode->i_ino);
4558                 __le32 gen = raw_inode->i_generation;
4559                 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4560                                    sizeof(inum));
4561                 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4562                                               sizeof(gen));
4563         }
4564
4565         if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
4566                 ext4_error_inode(inode, function, line, 0,
4567                                  "iget: checksum invalid");
4568                 ret = -EFSBADCRC;
4569                 goto bad_inode;
4570         }
4571
4572         inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4573         i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4574         i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4575         if (ext4_has_feature_project(sb) &&
4576             EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4577             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4578                 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4579         else
4580                 i_projid = EXT4_DEF_PROJID;
4581
4582         if (!(test_opt(inode->i_sb, NO_UID32))) {
4583                 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4584                 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4585         }
4586         i_uid_write(inode, i_uid);
4587         i_gid_write(inode, i_gid);
4588         ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4589         set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4590
4591         ext4_clear_state_flags(ei);     /* Only relevant on 32-bit archs */
4592         ei->i_inline_off = 0;
4593         ei->i_dir_start_lookup = 0;
4594         ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4595         /* We now have enough fields to check if the inode was active or not.
4596          * This is needed because nfsd might try to access dead inodes
4597          * the test is that same one that e2fsck uses
4598          * NeilBrown 1999oct15
4599          */
4600         if (inode->i_nlink == 0) {
4601                 if ((inode->i_mode == 0 ||
4602                      !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4603                     ino != EXT4_BOOT_LOADER_INO) {
4604                         /* this inode is deleted */
4605                         ret = -ESTALE;
4606                         goto bad_inode;
4607                 }
4608                 /* The only unlinked inodes we let through here have
4609                  * valid i_mode and are being read by the orphan
4610                  * recovery code: that's fine, we're about to complete
4611                  * the process of deleting those.
4612                  * OR it is the EXT4_BOOT_LOADER_INO which is
4613                  * not initialized on a new filesystem. */
4614         }
4615         ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4616         inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4617         ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4618         if (ext4_has_feature_64bit(sb))
4619                 ei->i_file_acl |=
4620                         ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4621         inode->i_size = ext4_isize(raw_inode);
4622         if ((size = i_size_read(inode)) < 0) {
4623                 ext4_error_inode(inode, function, line, 0,
4624                                  "iget: bad i_size value: %lld", size);
4625                 ret = -EFSCORRUPTED;
4626                 goto bad_inode;
4627         }
4628         /*
4629          * If dir_index is not enabled but there's dir with INDEX flag set,
4630          * we'd normally treat htree data as empty space. But with metadata
4631          * checksumming that corrupts checksums so forbid that.
4632          */
4633         if (!ext4_has_feature_dir_index(sb) && ext4_has_metadata_csum(sb) &&
4634             ext4_test_inode_flag(inode, EXT4_INODE_INDEX)) {
4635                 EXT4_ERROR_INODE(inode,
4636                                  "iget: Dir with htree data on filesystem without dir_index feature.");
4637                 ret = -EFSCORRUPTED;
4638                 goto bad_inode;
4639         }
4640         ei->i_disksize = inode->i_size;
4641 #ifdef CONFIG_QUOTA
4642         ei->i_reserved_quota = 0;
4643 #endif
4644         inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4645         ei->i_block_group = iloc.block_group;
4646         ei->i_last_alloc_group = ~0;
4647         /*
4648          * NOTE! The in-memory inode i_data array is in little-endian order
4649          * even on big-endian machines: we do NOT byteswap the block numbers!
4650          */
4651         for (block = 0; block < EXT4_N_BLOCKS; block++)
4652                 ei->i_data[block] = raw_inode->i_block[block];
4653         INIT_LIST_HEAD(&ei->i_orphan);
4654
4655         /*
4656          * Set transaction id's of transactions that have to be committed
4657          * to finish f[data]sync. We set them to currently running transaction
4658          * as we cannot be sure that the inode or some of its metadata isn't
4659          * part of the transaction - the inode could have been reclaimed and
4660          * now it is reread from disk.
4661          */
4662         if (journal) {
4663                 transaction_t *transaction;
4664                 tid_t tid;
4665
4666                 read_lock(&journal->j_state_lock);
4667                 if (journal->j_running_transaction)
4668                         transaction = journal->j_running_transaction;
4669                 else
4670                         transaction = journal->j_committing_transaction;
4671                 if (transaction)
4672                         tid = transaction->t_tid;
4673                 else
4674                         tid = journal->j_commit_sequence;
4675                 read_unlock(&journal->j_state_lock);
4676                 ei->i_sync_tid = tid;
4677                 ei->i_datasync_tid = tid;
4678         }
4679
4680         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4681                 if (ei->i_extra_isize == 0) {
4682                         /* The extra space is currently unused. Use it. */
4683                         ei->i_extra_isize = sizeof(struct ext4_inode) -
4684                                             EXT4_GOOD_OLD_INODE_SIZE;
4685                 } else {
4686                         ext4_iget_extra_inode(inode, raw_inode, ei);
4687                 }
4688         }
4689
4690         EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4691         EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4692         EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4693         EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4694
4695         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4696                 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
4697                 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4698                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4699                                 inode->i_version |=
4700                     (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4701                 }
4702         }
4703
4704         ret = 0;
4705         if (ei->i_file_acl &&
4706             !ext4_inode_block_valid(inode, ei->i_file_acl, 1)) {
4707                 ext4_error_inode(inode, function, line, 0,
4708                                  "iget: bad extended attribute block %llu",
4709                                  ei->i_file_acl);
4710                 ret = -EFSCORRUPTED;
4711                 goto bad_inode;
4712         } else if (!ext4_has_inline_data(inode)) {
4713                 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
4714                         if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4715                             (S_ISLNK(inode->i_mode) &&
4716                              !ext4_inode_is_fast_symlink(inode))))
4717                                 /* Validate extent which is part of inode */
4718                                 ret = ext4_ext_check_inode(inode);
4719                 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4720                            (S_ISLNK(inode->i_mode) &&
4721                             !ext4_inode_is_fast_symlink(inode))) {
4722                         /* Validate block references which are part of inode */
4723                         ret = ext4_ind_check_inode(inode);
4724                 }
4725         }
4726         if (ret)
4727                 goto bad_inode;
4728
4729         if (S_ISREG(inode->i_mode)) {
4730                 inode->i_op = &ext4_file_inode_operations;
4731                 inode->i_fop = &ext4_file_operations;
4732                 ext4_set_aops(inode);
4733         } else if (S_ISDIR(inode->i_mode)) {
4734                 inode->i_op = &ext4_dir_inode_operations;
4735                 inode->i_fop = &ext4_dir_operations;
4736         } else if (S_ISLNK(inode->i_mode)) {
4737                 if (ext4_encrypted_inode(inode)) {
4738                         inode->i_op = &ext4_encrypted_symlink_inode_operations;
4739                         ext4_set_aops(inode);
4740                 } else if (ext4_inode_is_fast_symlink(inode)) {
4741                         inode->i_link = (char *)ei->i_data;
4742                         inode->i_op = &ext4_fast_symlink_inode_operations;
4743                         nd_terminate_link(ei->i_data, inode->i_size,
4744                                 sizeof(ei->i_data) - 1);
4745                 } else {
4746                         inode->i_op = &ext4_symlink_inode_operations;
4747                         ext4_set_aops(inode);
4748                 }
4749                 inode_nohighmem(inode);
4750         } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4751               S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4752                 inode->i_op = &ext4_special_inode_operations;
4753                 if (raw_inode->i_block[0])
4754                         init_special_inode(inode, inode->i_mode,
4755                            old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4756                 else
4757                         init_special_inode(inode, inode->i_mode,
4758                            new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4759         } else if (ino == EXT4_BOOT_LOADER_INO) {
4760                 make_bad_inode(inode);
4761         } else {
4762                 ret = -EFSCORRUPTED;
4763                 ext4_error_inode(inode, function, line, 0,
4764                                  "iget: bogus i_mode (%o)", inode->i_mode);
4765                 goto bad_inode;
4766         }
4767         brelse(iloc.bh);
4768         ext4_set_inode_flags(inode);
4769         unlock_new_inode(inode);
4770         return inode;
4771
4772 bad_inode:
4773         brelse(iloc.bh);
4774         iget_failed(inode);
4775         return ERR_PTR(ret);
4776 }
4777
4778 static int ext4_inode_blocks_set(handle_t *handle,
4779                                 struct ext4_inode *raw_inode,
4780                                 struct ext4_inode_info *ei)
4781 {
4782         struct inode *inode = &(ei->vfs_inode);
4783         u64 i_blocks = READ_ONCE(inode->i_blocks);
4784         struct super_block *sb = inode->i_sb;
4785
4786         if (i_blocks <= ~0U) {
4787                 /*
4788                  * i_blocks can be represented in a 32 bit variable
4789                  * as multiple of 512 bytes
4790                  */
4791                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4792                 raw_inode->i_blocks_high = 0;
4793                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4794                 return 0;
4795         }
4796         if (!ext4_has_feature_huge_file(sb))
4797                 return -EFBIG;
4798
4799         if (i_blocks <= 0xffffffffffffULL) {
4800                 /*
4801                  * i_blocks can be represented in a 48 bit variable
4802                  * as multiple of 512 bytes
4803                  */
4804                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4805                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4806                 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4807         } else {
4808                 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4809                 /* i_block is stored in file system block size */
4810                 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4811                 raw_inode->i_blocks_lo   = cpu_to_le32(i_blocks);
4812                 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4813         }
4814         return 0;
4815 }
4816
4817 struct other_inode {
4818         unsigned long           orig_ino;
4819         struct ext4_inode       *raw_inode;
4820 };
4821
4822 static int other_inode_match(struct inode * inode, unsigned long ino,
4823                              void *data)
4824 {
4825         struct other_inode *oi = (struct other_inode *) data;
4826
4827         if ((inode->i_ino != ino) ||
4828             (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4829                                I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
4830             ((inode->i_state & I_DIRTY_TIME) == 0))
4831                 return 0;
4832         spin_lock(&inode->i_lock);
4833         if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4834                                 I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
4835             (inode->i_state & I_DIRTY_TIME)) {
4836                 struct ext4_inode_info  *ei = EXT4_I(inode);
4837
4838                 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4839                 spin_unlock(&inode->i_lock);
4840
4841                 spin_lock(&ei->i_raw_lock);
4842                 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4843                 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4844                 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4845                 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4846                 spin_unlock(&ei->i_raw_lock);
4847                 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4848                 return -1;
4849         }
4850         spin_unlock(&inode->i_lock);
4851         return -1;
4852 }
4853
4854 /*
4855  * Opportunistically update the other time fields for other inodes in
4856  * the same inode table block.
4857  */
4858 static void ext4_update_other_inodes_time(struct super_block *sb,
4859                                           unsigned long orig_ino, char *buf)
4860 {
4861         struct other_inode oi;
4862         unsigned long ino;
4863         int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4864         int inode_size = EXT4_INODE_SIZE(sb);
4865
4866         oi.orig_ino = orig_ino;
4867         /*
4868          * Calculate the first inode in the inode table block.  Inode
4869          * numbers are one-based.  That is, the first inode in a block
4870          * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4871          */
4872         ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4873         for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4874                 if (ino == orig_ino)
4875                         continue;
4876                 oi.raw_inode = (struct ext4_inode *) buf;
4877                 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4878         }
4879 }
4880
4881 /*
4882  * Post the struct inode info into an on-disk inode location in the
4883  * buffer-cache.  This gobbles the caller's reference to the
4884  * buffer_head in the inode location struct.
4885  *
4886  * The caller must have write access to iloc->bh.
4887  */
4888 static int ext4_do_update_inode(handle_t *handle,
4889                                 struct inode *inode,
4890                                 struct ext4_iloc *iloc)
4891 {
4892         struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4893         struct ext4_inode_info *ei = EXT4_I(inode);
4894         struct buffer_head *bh = iloc->bh;
4895         struct super_block *sb = inode->i_sb;
4896         int err = 0, block;
4897         int need_datasync = 0, set_large_file = 0;
4898         uid_t i_uid;
4899         gid_t i_gid;
4900         projid_t i_projid;
4901
4902         spin_lock(&ei->i_raw_lock);
4903
4904         /* For fields not tracked in the in-memory inode,
4905          * initialise them to zero for new inodes. */
4906         if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4907                 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4908
4909         ext4_get_inode_flags(ei);
4910         raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4911         i_uid = i_uid_read(inode);
4912         i_gid = i_gid_read(inode);
4913         i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4914         if (!(test_opt(inode->i_sb, NO_UID32))) {
4915                 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4916                 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4917 /*
4918  * Fix up interoperability with old kernels. Otherwise, old inodes get
4919  * re-used with the upper 16 bits of the uid/gid intact
4920  */
4921                 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4922                         raw_inode->i_uid_high = 0;
4923                         raw_inode->i_gid_high = 0;
4924                 } else {
4925                         raw_inode->i_uid_high =
4926                                 cpu_to_le16(high_16_bits(i_uid));
4927                         raw_inode->i_gid_high =
4928                                 cpu_to_le16(high_16_bits(i_gid));
4929                 }
4930         } else {
4931                 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4932                 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4933                 raw_inode->i_uid_high = 0;
4934                 raw_inode->i_gid_high = 0;
4935         }
4936         raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4937
4938         EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4939         EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4940         EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4941         EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4942
4943         err = ext4_inode_blocks_set(handle, raw_inode, ei);
4944         if (err) {
4945                 spin_unlock(&ei->i_raw_lock);
4946                 goto out_brelse;
4947         }
4948         raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4949         raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4950         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4951                 raw_inode->i_file_acl_high =
4952                         cpu_to_le16(ei->i_file_acl >> 32);
4953         raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4954         if (ei->i_disksize != ext4_isize(raw_inode)) {
4955                 ext4_isize_set(raw_inode, ei->i_disksize);
4956                 need_datasync = 1;
4957         }
4958         if (ei->i_disksize > 0x7fffffffULL) {
4959                 if (!ext4_has_feature_large_file(sb) ||
4960                                 EXT4_SB(sb)->s_es->s_rev_level ==
4961                     cpu_to_le32(EXT4_GOOD_OLD_REV))
4962                         set_large_file = 1;
4963         }
4964         raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4965         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4966                 if (old_valid_dev(inode->i_rdev)) {
4967                         raw_inode->i_block[0] =
4968                                 cpu_to_le32(old_encode_dev(inode->i_rdev));
4969                         raw_inode->i_block[1] = 0;
4970                 } else {
4971                         raw_inode->i_block[0] = 0;
4972                         raw_inode->i_block[1] =
4973                                 cpu_to_le32(new_encode_dev(inode->i_rdev));
4974                         raw_inode->i_block[2] = 0;
4975                 }
4976         } else if (!ext4_has_inline_data(inode)) {
4977                 for (block = 0; block < EXT4_N_BLOCKS; block++)
4978                         raw_inode->i_block[block] = ei->i_data[block];
4979         }
4980
4981         if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4982                 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
4983                 if (ei->i_extra_isize) {
4984                         if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4985                                 raw_inode->i_version_hi =
4986                                         cpu_to_le32(inode->i_version >> 32);
4987                         raw_inode->i_extra_isize =
4988                                 cpu_to_le16(ei->i_extra_isize);
4989                 }
4990         }
4991
4992         BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
4993                i_projid != EXT4_DEF_PROJID);
4994
4995         if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4996             EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4997                 raw_inode->i_projid = cpu_to_le32(i_projid);
4998
4999         ext4_inode_csum_set(inode, raw_inode, ei);
5000         spin_unlock(&ei->i_raw_lock);
5001         if (inode->i_sb->s_flags & MS_LAZYTIME)
5002                 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5003                                               bh->b_data);
5004
5005         BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5006         err = ext4_handle_dirty_metadata(handle, NULL, bh);
5007         if (err)
5008                 goto out_brelse;
5009         ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5010         if (set_large_file) {
5011                 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5012                 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5013                 if (err)
5014                         goto out_brelse;
5015                 ext4_update_dynamic_rev(sb);
5016                 ext4_set_feature_large_file(sb);
5017                 ext4_handle_sync(handle);
5018                 err = ext4_handle_dirty_super(handle, sb);
5019         }
5020         ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5021 out_brelse:
5022         brelse(bh);
5023         ext4_std_error(inode->i_sb, err);
5024         return err;
5025 }
5026
5027 /*
5028  * ext4_write_inode()
5029  *
5030  * We are called from a few places:
5031  *
5032  * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5033  *   Here, there will be no transaction running. We wait for any running
5034  *   transaction to commit.
5035  *
5036  * - Within flush work (sys_sync(), kupdate and such).
5037  *   We wait on commit, if told to.
5038  *
5039  * - Within iput_final() -> write_inode_now()
5040  *   We wait on commit, if told to.
5041  *
5042  * In all cases it is actually safe for us to return without doing anything,
5043  * because the inode has been copied into a raw inode buffer in
5044  * ext4_mark_inode_dirty().  This is a correctness thing for WB_SYNC_ALL
5045  * writeback.
5046  *
5047  * Note that we are absolutely dependent upon all inode dirtiers doing the
5048  * right thing: they *must* call mark_inode_dirty() after dirtying info in
5049  * which we are interested.
5050  *
5051  * It would be a bug for them to not do this.  The code:
5052  *
5053  *      mark_inode_dirty(inode)
5054  *      stuff();
5055  *      inode->i_size = expr;
5056  *
5057  * is in error because write_inode() could occur while `stuff()' is running,
5058  * and the new i_size will be lost.  Plus the inode will no longer be on the
5059  * superblock's dirty inode list.
5060  */
5061 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5062 {
5063         int err;
5064
5065         if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
5066                 return 0;
5067
5068         if (EXT4_SB(inode->i_sb)->s_journal) {
5069                 if (ext4_journal_current_handle()) {
5070                         jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5071                         dump_stack();
5072                         return -EIO;
5073                 }
5074
5075                 /*
5076                  * No need to force transaction in WB_SYNC_NONE mode. Also
5077                  * ext4_sync_fs() will force the commit after everything is
5078                  * written.
5079                  */
5080                 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5081                         return 0;
5082
5083                 err = ext4_force_commit(inode->i_sb);
5084         } else {
5085                 struct ext4_iloc iloc;
5086
5087                 err = __ext4_get_inode_loc(inode, &iloc, 0);
5088                 if (err)
5089                         return err;
5090                 /*
5091                  * sync(2) will flush the whole buffer cache. No need to do
5092                  * it here separately for each inode.
5093                  */
5094                 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5095                         sync_dirty_buffer(iloc.bh);
5096                 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5097                         EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5098                                          "IO error syncing inode");
5099                         err = -EIO;
5100                 }
5101                 brelse(iloc.bh);
5102         }
5103         return err;
5104 }
5105
5106 /*
5107  * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5108  * buffers that are attached to a page stradding i_size and are undergoing
5109  * commit. In that case we have to wait for commit to finish and try again.
5110  */
5111 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5112 {
5113         struct page *page;
5114         unsigned offset;
5115         journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5116         tid_t commit_tid = 0;
5117         int ret;
5118
5119         offset = inode->i_size & (PAGE_SIZE - 1);
5120         /*
5121          * If the page is fully truncated, we don't need to wait for any commit
5122          * (and we even should not as __ext4_journalled_invalidatepage() may
5123          * strip all buffers from the page but keep the page dirty which can then
5124          * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5125          * buffers). Also we don't need to wait for any commit if all buffers in
5126          * the page remain valid. This is most beneficial for the common case of
5127          * blocksize == PAGESIZE.
5128          */
5129         if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5130                 return;
5131         while (1) {
5132                 page = find_lock_page(inode->i_mapping,
5133                                       inode->i_size >> PAGE_SHIFT);
5134                 if (!page)
5135                         return;
5136                 ret = __ext4_journalled_invalidatepage(page, offset,
5137                                                 PAGE_SIZE - offset);
5138                 unlock_page(page);
5139                 put_page(page);
5140                 if (ret != -EBUSY)
5141                         return;
5142                 commit_tid = 0;
5143                 read_lock(&journal->j_state_lock);
5144                 if (journal->j_committing_transaction)
5145                         commit_tid = journal->j_committing_transaction->t_tid;
5146                 read_unlock(&journal->j_state_lock);
5147                 if (commit_tid)
5148                         jbd2_log_wait_commit(journal, commit_tid);
5149         }
5150 }
5151
5152 /*
5153  * ext4_setattr()
5154  *
5155  * Called from notify_change.
5156  *
5157  * We want to trap VFS attempts to truncate the file as soon as
5158  * possible.  In particular, we want to make sure that when the VFS
5159  * shrinks i_size, we put the inode on the orphan list and modify
5160  * i_disksize immediately, so that during the subsequent flushing of
5161  * dirty pages and freeing of disk blocks, we can guarantee that any
5162  * commit will leave the blocks being flushed in an unused state on
5163  * disk.  (On recovery, the inode will get truncated and the blocks will
5164  * be freed, so we have a strong guarantee that no future commit will
5165  * leave these blocks visible to the user.)
5166  *
5167  * Another thing we have to assure is that if we are in ordered mode
5168  * and inode is still attached to the committing transaction, we must
5169  * we start writeout of all the dirty pages which are being truncated.
5170  * This way we are sure that all the data written in the previous
5171  * transaction are already on disk (truncate waits for pages under
5172  * writeback).
5173  *
5174  * Called with inode->i_mutex down.
5175  */
5176 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5177 {
5178         struct inode *inode = d_inode(dentry);
5179         int error, rc = 0;
5180         int orphan = 0;
5181         const unsigned int ia_valid = attr->ia_valid;
5182
5183         error = setattr_prepare(dentry, attr);
5184         if (error)
5185                 return error;
5186
5187         if (is_quota_modification(inode, attr)) {
5188                 error = dquot_initialize(inode);
5189                 if (error)
5190                         return error;
5191         }
5192         if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5193             (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5194                 handle_t *handle;
5195
5196                 /* (user+group)*(old+new) structure, inode write (sb,
5197                  * inode block, ? - but truncate inode update has it) */
5198                 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5199                         (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5200                          EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5201                 if (IS_ERR(handle)) {
5202                         error = PTR_ERR(handle);
5203                         goto err_out;
5204                 }
5205                 error = dquot_transfer(inode, attr);
5206                 if (error) {
5207                         ext4_journal_stop(handle);
5208                         return error;
5209                 }
5210                 /* Update corresponding info in inode so that everything is in
5211                  * one transaction */
5212                 if (attr->ia_valid & ATTR_UID)
5213                         inode->i_uid = attr->ia_uid;
5214                 if (attr->ia_valid & ATTR_GID)
5215                         inode->i_gid = attr->ia_gid;
5216                 error = ext4_mark_inode_dirty(handle, inode);
5217                 ext4_journal_stop(handle);
5218         }
5219
5220         if (attr->ia_valid & ATTR_SIZE) {
5221                 handle_t *handle;
5222                 loff_t oldsize = inode->i_size;
5223                 int shrink = (attr->ia_size <= inode->i_size);
5224
5225                 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5226                         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5227
5228                         if (attr->ia_size > sbi->s_bitmap_maxbytes)
5229                                 return -EFBIG;
5230                 }
5231                 if (!S_ISREG(inode->i_mode))
5232                         return -EINVAL;
5233
5234                 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5235                         inode_inc_iversion(inode);
5236
5237                 if (ext4_should_order_data(inode) &&
5238                     (attr->ia_size < inode->i_size)) {
5239                         error = ext4_begin_ordered_truncate(inode,
5240                                                             attr->ia_size);
5241                         if (error)
5242                                 goto err_out;
5243                 }
5244                 if (attr->ia_size != inode->i_size) {
5245                         handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5246                         if (IS_ERR(handle)) {
5247                                 error = PTR_ERR(handle);
5248                                 goto err_out;
5249                         }
5250                         if (ext4_handle_valid(handle) && shrink) {
5251                                 error = ext4_orphan_add(handle, inode);
5252                                 orphan = 1;
5253                         }
5254                         /*
5255                          * Update c/mtime on truncate up, ext4_truncate() will
5256                          * update c/mtime in shrink case below
5257                          */
5258                         if (!shrink) {
5259                                 inode->i_mtime = ext4_current_time(inode);
5260                                 inode->i_ctime = inode->i_mtime;
5261                         }
5262                         down_write(&EXT4_I(inode)->i_data_sem);
5263                         EXT4_I(inode)->i_disksize = attr->ia_size;
5264                         rc = ext4_mark_inode_dirty(handle, inode);
5265                         if (!error)
5266                                 error = rc;
5267                         /*
5268                          * We have to update i_size under i_data_sem together
5269                          * with i_disksize to avoid races with writeback code
5270                          * running ext4_wb_update_i_disksize().
5271                          */
5272                         if (!error)
5273                                 i_size_write(inode, attr->ia_size);
5274                         up_write(&EXT4_I(inode)->i_data_sem);
5275                         ext4_journal_stop(handle);
5276                         if (error) {
5277                                 if (orphan && inode->i_nlink)
5278                                         ext4_orphan_del(NULL, inode);
5279                                 goto err_out;
5280                         }
5281                 }
5282                 if (!shrink)
5283                         pagecache_isize_extended(inode, oldsize, inode->i_size);
5284
5285                 /*
5286                  * Blocks are going to be removed from the inode. Wait
5287                  * for dio in flight.  Temporarily disable
5288                  * dioread_nolock to prevent livelock.
5289                  */
5290                 if (orphan) {
5291                         if (!ext4_should_journal_data(inode)) {
5292                                 ext4_inode_block_unlocked_dio(inode);
5293                                 inode_dio_wait(inode);
5294                                 ext4_inode_resume_unlocked_dio(inode);
5295                         } else
5296                                 ext4_wait_for_tail_page_commit(inode);
5297                 }
5298                 down_write(&EXT4_I(inode)->i_mmap_sem);
5299                 /*
5300                  * Truncate pagecache after we've waited for commit
5301                  * in data=journal mode to make pages freeable.
5302                  */
5303                 truncate_pagecache(inode, inode->i_size);
5304                 if (shrink)
5305                         ext4_truncate(inode);
5306                 up_write(&EXT4_I(inode)->i_mmap_sem);
5307         }
5308
5309         if (!rc) {
5310                 setattr_copy(inode, attr);
5311                 mark_inode_dirty(inode);
5312         }
5313
5314         /*
5315          * If the call to ext4_truncate failed to get a transaction handle at
5316          * all, we need to clean up the in-core orphan list manually.
5317          */
5318         if (orphan && inode->i_nlink)
5319                 ext4_orphan_del(NULL, inode);
5320
5321         if (!rc && (ia_valid & ATTR_MODE))
5322                 rc = posix_acl_chmod(inode, inode->i_mode);
5323
5324 err_out:
5325         ext4_std_error(inode->i_sb, error);
5326         if (!error)
5327                 error = rc;
5328         return error;
5329 }
5330
5331 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5332                  struct kstat *stat)
5333 {
5334         struct inode *inode;
5335         unsigned long long delalloc_blocks;
5336
5337         inode = d_inode(dentry);
5338         generic_fillattr(inode, stat);
5339
5340         /*
5341          * If there is inline data in the inode, the inode will normally not
5342          * have data blocks allocated (it may have an external xattr block).
5343          * Report at least one sector for such files, so tools like tar, rsync,
5344          * others doen't incorrectly think the file is completely sparse.
5345          */
5346         if (unlikely(ext4_has_inline_data(inode)))
5347                 stat->blocks += (stat->size + 511) >> 9;
5348
5349         /*
5350          * We can't update i_blocks if the block allocation is delayed
5351          * otherwise in the case of system crash before the real block
5352          * allocation is done, we will have i_blocks inconsistent with
5353          * on-disk file blocks.
5354          * We always keep i_blocks updated together with real
5355          * allocation. But to not confuse with user, stat
5356          * will return the blocks that include the delayed allocation
5357          * blocks for this file.
5358          */
5359         delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5360                                    EXT4_I(inode)->i_reserved_data_blocks);
5361         stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5362         return 0;
5363 }
5364
5365 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5366                                    int pextents)
5367 {
5368         if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5369                 return ext4_ind_trans_blocks(inode, lblocks);
5370         return ext4_ext_index_trans_blocks(inode, pextents);
5371 }
5372
5373 /*
5374  * Account for index blocks, block groups bitmaps and block group
5375  * descriptor blocks if modify datablocks and index blocks
5376  * worse case, the indexs blocks spread over different block groups
5377  *
5378  * If datablocks are discontiguous, they are possible to spread over
5379  * different block groups too. If they are contiguous, with flexbg,
5380  * they could still across block group boundary.
5381  *
5382  * Also account for superblock, inode, quota and xattr blocks
5383  */
5384 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5385                                   int pextents)
5386 {
5387         ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5388         int gdpblocks;
5389         int idxblocks;
5390         int ret = 0;
5391
5392         /*
5393          * How many index blocks need to touch to map @lblocks logical blocks
5394          * to @pextents physical extents?
5395          */
5396         idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5397
5398         ret = idxblocks;
5399
5400         /*
5401          * Now let's see how many group bitmaps and group descriptors need
5402          * to account
5403          */
5404         groups = idxblocks + pextents;
5405         gdpblocks = groups;
5406         if (groups > ngroups)
5407                 groups = ngroups;
5408         if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5409                 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5410
5411         /* bitmaps and block group descriptor blocks */
5412         ret += groups + gdpblocks;
5413
5414         /* Blocks for super block, inode, quota and xattr blocks */
5415         ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5416
5417         return ret;
5418 }
5419
5420 /*
5421  * Calculate the total number of credits to reserve to fit
5422  * the modification of a single pages into a single transaction,
5423  * which may include multiple chunks of block allocations.
5424  *
5425  * This could be called via ext4_write_begin()
5426  *
5427  * We need to consider the worse case, when
5428  * one new block per extent.
5429  */
5430 int ext4_writepage_trans_blocks(struct inode *inode)
5431 {
5432         int bpp = ext4_journal_blocks_per_page(inode);
5433         int ret;
5434
5435         ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5436
5437         /* Account for data blocks for journalled mode */
5438         if (ext4_should_journal_data(inode))
5439                 ret += bpp;
5440         return ret;
5441 }
5442
5443 /*
5444  * Calculate the journal credits for a chunk of data modification.
5445  *
5446  * This is called from DIO, fallocate or whoever calling
5447  * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5448  *
5449  * journal buffers for data blocks are not included here, as DIO
5450  * and fallocate do no need to journal data buffers.
5451  */
5452 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5453 {
5454         return ext4_meta_trans_blocks(inode, nrblocks, 1);
5455 }
5456
5457 /*
5458  * The caller must have previously called ext4_reserve_inode_write().
5459  * Give this, we know that the caller already has write access to iloc->bh.
5460  */
5461 int ext4_mark_iloc_dirty(handle_t *handle,
5462                          struct inode *inode, struct ext4_iloc *iloc)
5463 {
5464         int err = 0;
5465
5466         if (IS_I_VERSION(inode))
5467                 inode_inc_iversion(inode);
5468
5469         /* the do_update_inode consumes one bh->b_count */
5470         get_bh(iloc->bh);
5471
5472         /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5473         err = ext4_do_update_inode(handle, inode, iloc);
5474         put_bh(iloc->bh);
5475         return err;
5476 }
5477
5478 /*
5479  * On success, We end up with an outstanding reference count against
5480  * iloc->bh.  This _must_ be cleaned up later.
5481  */
5482
5483 int
5484 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5485                          struct ext4_iloc *iloc)
5486 {
5487         int err;
5488
5489         err = ext4_get_inode_loc(inode, iloc);
5490         if (!err) {
5491                 BUFFER_TRACE(iloc->bh, "get_write_access");
5492                 err = ext4_journal_get_write_access(handle, iloc->bh);
5493                 if (err) {
5494                         brelse(iloc->bh);
5495                         iloc->bh = NULL;
5496                 }
5497         }
5498         ext4_std_error(inode->i_sb, err);
5499         return err;
5500 }
5501
5502 /*
5503  * Expand an inode by new_extra_isize bytes.
5504  * Returns 0 on success or negative error number on failure.
5505  */
5506 static int ext4_expand_extra_isize(struct inode *inode,
5507                                    unsigned int new_extra_isize,
5508                                    struct ext4_iloc iloc,
5509                                    handle_t *handle)
5510 {
5511         struct ext4_inode *raw_inode;
5512         struct ext4_xattr_ibody_header *header;
5513         unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5514         struct ext4_inode_info *ei = EXT4_I(inode);
5515
5516         if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5517                 return 0;
5518
5519         /* this was checked at iget time, but double check for good measure */
5520         if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5521             (ei->i_extra_isize & 3)) {
5522                 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5523                                  ei->i_extra_isize,
5524                                  EXT4_INODE_SIZE(inode->i_sb));
5525                 return -EFSCORRUPTED;
5526         }
5527         if ((new_extra_isize < ei->i_extra_isize) ||
5528             (new_extra_isize < 4) ||
5529             (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5530                 return -EINVAL; /* Should never happen */
5531
5532         raw_inode = ext4_raw_inode(&iloc);
5533
5534         header = IHDR(inode, raw_inode);
5535
5536         /* No extended attributes present */
5537         if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5538             header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5539                 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5540                        EXT4_I(inode)->i_extra_isize, 0,
5541                        new_extra_isize - EXT4_I(inode)->i_extra_isize);
5542                 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5543                 return 0;
5544         }
5545
5546         /* try to expand with EAs present */
5547         return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5548                                           raw_inode, handle);
5549 }
5550
5551 /*
5552  * What we do here is to mark the in-core inode as clean with respect to inode
5553  * dirtiness (it may still be data-dirty).
5554  * This means that the in-core inode may be reaped by prune_icache
5555  * without having to perform any I/O.  This is a very good thing,
5556  * because *any* task may call prune_icache - even ones which
5557  * have a transaction open against a different journal.
5558  *
5559  * Is this cheating?  Not really.  Sure, we haven't written the
5560  * inode out, but prune_icache isn't a user-visible syncing function.
5561  * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5562  * we start and wait on commits.
5563  */
5564 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5565 {
5566         struct ext4_iloc iloc;
5567         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5568         static unsigned int mnt_count;
5569         int err, ret;
5570
5571         might_sleep();
5572         trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5573         err = ext4_reserve_inode_write(handle, inode, &iloc);
5574         if (err)
5575                 return err;
5576         if (ext4_handle_valid(handle) &&
5577             EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5578             !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5579                 /*
5580                  * We need extra buffer credits since we may write into EA block
5581                  * with this same handle. If journal_extend fails, then it will
5582                  * only result in a minor loss of functionality for that inode.
5583                  * If this is felt to be critical, then e2fsck should be run to
5584                  * force a large enough s_min_extra_isize.
5585                  */
5586                 if ((jbd2_journal_extend(handle,
5587                              EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5588                         ret = ext4_expand_extra_isize(inode,
5589                                                       sbi->s_want_extra_isize,
5590                                                       iloc, handle);
5591                         if (ret) {
5592                                 if (mnt_count !=
5593                                         le16_to_cpu(sbi->s_es->s_mnt_count)) {
5594                                         ext4_warning(inode->i_sb,
5595                                         "Unable to expand inode %lu. Delete"
5596                                         " some EAs or run e2fsck.",
5597                                         inode->i_ino);
5598                                         mnt_count =
5599                                           le16_to_cpu(sbi->s_es->s_mnt_count);
5600                                 }
5601                         }
5602                 }
5603         }
5604         return ext4_mark_iloc_dirty(handle, inode, &iloc);
5605 }
5606
5607 /*
5608  * ext4_dirty_inode() is called from __mark_inode_dirty()
5609  *
5610  * We're really interested in the case where a file is being extended.
5611  * i_size has been changed by generic_commit_write() and we thus need
5612  * to include the updated inode in the current transaction.
5613  *
5614  * Also, dquot_alloc_block() will always dirty the inode when blocks
5615  * are allocated to the file.
5616  *
5617  * If the inode is marked synchronous, we don't honour that here - doing
5618  * so would cause a commit on atime updates, which we don't bother doing.
5619  * We handle synchronous inodes at the highest possible level.
5620  *
5621  * If only the I_DIRTY_TIME flag is set, we can skip everything.  If
5622  * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5623  * to copy into the on-disk inode structure are the timestamp files.
5624  */
5625 void ext4_dirty_inode(struct inode *inode, int flags)
5626 {
5627         handle_t *handle;
5628
5629         if (flags == I_DIRTY_TIME)
5630                 return;
5631         handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5632         if (IS_ERR(handle))
5633                 goto out;
5634
5635         ext4_mark_inode_dirty(handle, inode);
5636
5637         ext4_journal_stop(handle);
5638 out:
5639         return;
5640 }
5641
5642 #if 0
5643 /*
5644  * Bind an inode's backing buffer_head into this transaction, to prevent
5645  * it from being flushed to disk early.  Unlike
5646  * ext4_reserve_inode_write, this leaves behind no bh reference and
5647  * returns no iloc structure, so the caller needs to repeat the iloc
5648  * lookup to mark the inode dirty later.
5649  */
5650 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5651 {
5652         struct ext4_iloc iloc;
5653
5654         int err = 0;
5655         if (handle) {
5656                 err = ext4_get_inode_loc(inode, &iloc);
5657                 if (!err) {
5658                         BUFFER_TRACE(iloc.bh, "get_write_access");
5659                         err = jbd2_journal_get_write_access(handle, iloc.bh);
5660                         if (!err)
5661                                 err = ext4_handle_dirty_metadata(handle,
5662                                                                  NULL,
5663                                                                  iloc.bh);
5664                         brelse(iloc.bh);
5665                 }
5666         }
5667         ext4_std_error(inode->i_sb, err);
5668         return err;
5669 }
5670 #endif
5671
5672 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5673 {
5674         journal_t *journal;
5675         handle_t *handle;
5676         int err;
5677         struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5678
5679         /*
5680          * We have to be very careful here: changing a data block's
5681          * journaling status dynamically is dangerous.  If we write a
5682          * data block to the journal, change the status and then delete
5683          * that block, we risk forgetting to revoke the old log record
5684          * from the journal and so a subsequent replay can corrupt data.
5685          * So, first we make sure that the journal is empty and that
5686          * nobody is changing anything.
5687          */
5688
5689         journal = EXT4_JOURNAL(inode);
5690         if (!journal)
5691                 return 0;
5692         if (is_journal_aborted(journal))
5693                 return -EROFS;
5694
5695         /* Wait for all existing dio workers */
5696         ext4_inode_block_unlocked_dio(inode);
5697         inode_dio_wait(inode);
5698
5699         /*
5700          * Before flushing the journal and switching inode's aops, we have
5701          * to flush all dirty data the inode has. There can be outstanding
5702          * delayed allocations, there can be unwritten extents created by
5703          * fallocate or buffered writes in dioread_nolock mode covered by
5704          * dirty data which can be converted only after flushing the dirty
5705          * data (and journalled aops don't know how to handle these cases).
5706          */
5707         if (val) {
5708                 down_write(&EXT4_I(inode)->i_mmap_sem);
5709                 err = filemap_write_and_wait(inode->i_mapping);
5710                 if (err < 0) {
5711                         up_write(&EXT4_I(inode)->i_mmap_sem);
5712                         ext4_inode_resume_unlocked_dio(inode);
5713                         return err;
5714                 }
5715         }
5716
5717         percpu_down_write(&sbi->s_writepages_rwsem);
5718         jbd2_journal_lock_updates(journal);
5719
5720         /*
5721          * OK, there are no updates running now, and all cached data is
5722          * synced to disk.  We are now in a completely consistent state
5723          * which doesn't have anything in the journal, and we know that
5724          * no filesystem updates are running, so it is safe to modify
5725          * the inode's in-core data-journaling state flag now.
5726          */
5727
5728         if (val)
5729                 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5730         else {
5731                 err = jbd2_journal_flush(journal);
5732                 if (err < 0) {
5733                         jbd2_journal_unlock_updates(journal);
5734                         percpu_up_write(&sbi->s_writepages_rwsem);
5735                         ext4_inode_resume_unlocked_dio(inode);
5736                         return err;
5737                 }
5738                 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5739         }
5740         ext4_set_aops(inode);
5741
5742         jbd2_journal_unlock_updates(journal);
5743         percpu_up_write(&sbi->s_writepages_rwsem);
5744
5745         if (val)
5746                 up_write(&EXT4_I(inode)->i_mmap_sem);
5747         ext4_inode_resume_unlocked_dio(inode);
5748
5749         /* Finally we can mark the inode as dirty. */
5750
5751         handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5752         if (IS_ERR(handle))
5753                 return PTR_ERR(handle);
5754
5755         err = ext4_mark_inode_dirty(handle, inode);
5756         ext4_handle_sync(handle);
5757         ext4_journal_stop(handle);
5758         ext4_std_error(inode->i_sb, err);
5759
5760         return err;
5761 }
5762
5763 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5764 {
5765         return !buffer_mapped(bh);
5766 }
5767
5768 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5769 {
5770         struct page *page = vmf->page;
5771         loff_t size;
5772         unsigned long len;
5773         int ret;
5774         struct file *file = vma->vm_file;
5775         struct inode *inode = file_inode(file);
5776         struct address_space *mapping = inode->i_mapping;
5777         handle_t *handle;
5778         get_block_t *get_block;
5779         int retries = 0;
5780
5781         sb_start_pagefault(inode->i_sb);
5782         file_update_time(vma->vm_file);
5783
5784         down_read(&EXT4_I(inode)->i_mmap_sem);
5785
5786         ret = ext4_convert_inline_data(inode);
5787         if (ret)
5788                 goto out_ret;
5789
5790         /* Delalloc case is easy... */
5791         if (test_opt(inode->i_sb, DELALLOC) &&
5792             !ext4_should_journal_data(inode) &&
5793             !ext4_nonda_switch(inode->i_sb)) {
5794                 do {
5795                         ret = block_page_mkwrite(vma, vmf,
5796                                                    ext4_da_get_block_prep);
5797                 } while (ret == -ENOSPC &&
5798                        ext4_should_retry_alloc(inode->i_sb, &retries));
5799                 goto out_ret;
5800         }
5801
5802         lock_page(page);
5803         size = i_size_read(inode);
5804         /* Page got truncated from under us? */
5805         if (page->mapping != mapping || page_offset(page) > size) {
5806                 unlock_page(page);
5807                 ret = VM_FAULT_NOPAGE;
5808                 goto out;
5809         }
5810
5811         if (page->index == size >> PAGE_SHIFT)
5812                 len = size & ~PAGE_MASK;
5813         else
5814                 len = PAGE_SIZE;
5815         /*
5816          * Return if we have all the buffers mapped. This avoids the need to do
5817          * journal_start/journal_stop which can block and take a long time
5818          */
5819         if (page_has_buffers(page)) {
5820                 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5821                                             0, len, NULL,
5822                                             ext4_bh_unmapped)) {
5823                         /* Wait so that we don't change page under IO */
5824                         wait_for_stable_page(page);
5825                         ret = VM_FAULT_LOCKED;
5826                         goto out;
5827                 }
5828         }
5829         unlock_page(page);
5830         /* OK, we need to fill the hole... */
5831         if (ext4_should_dioread_nolock(inode))
5832                 get_block = ext4_get_block_unwritten;
5833         else
5834                 get_block = ext4_get_block;
5835 retry_alloc:
5836         handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5837                                     ext4_writepage_trans_blocks(inode));
5838         if (IS_ERR(handle)) {
5839                 ret = VM_FAULT_SIGBUS;
5840                 goto out;
5841         }
5842         ret = block_page_mkwrite(vma, vmf, get_block);
5843         if (!ret && ext4_should_journal_data(inode)) {
5844                 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5845                           PAGE_SIZE, NULL, do_journal_get_write_access)) {
5846                         unlock_page(page);
5847                         ret = VM_FAULT_SIGBUS;
5848                         ext4_journal_stop(handle);
5849                         goto out;
5850                 }
5851                 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5852         }
5853         ext4_journal_stop(handle);
5854         if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5855                 goto retry_alloc;
5856 out_ret:
5857         ret = block_page_mkwrite_return(ret);
5858 out:
5859         up_read(&EXT4_I(inode)->i_mmap_sem);
5860         sb_end_pagefault(inode->i_sb);
5861         return ret;
5862 }
5863
5864 int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
5865 {
5866         struct inode *inode = file_inode(vma->vm_file);
5867         int err;
5868
5869         down_read(&EXT4_I(inode)->i_mmap_sem);
5870         err = filemap_fault(vma, vmf);
5871         up_read(&EXT4_I(inode)->i_mmap_sem);
5872
5873         return err;
5874 }
5875
5876 /*
5877  * Find the first extent at or after @lblk in an inode that is not a hole.
5878  * Search for @map_len blocks at most. The extent is returned in @result.
5879  *
5880  * The function returns 1 if we found an extent. The function returns 0 in
5881  * case there is no extent at or after @lblk and in that case also sets
5882  * @result->es_len to 0. In case of error, the error code is returned.
5883  */
5884 int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
5885                          unsigned int map_len, struct extent_status *result)
5886 {
5887         struct ext4_map_blocks map;
5888         struct extent_status es = {};
5889         int ret;
5890
5891         map.m_lblk = lblk;
5892         map.m_len = map_len;
5893
5894         /*
5895          * For non-extent based files this loop may iterate several times since
5896          * we do not determine full hole size.
5897          */
5898         while (map.m_len > 0) {
5899                 ret = ext4_map_blocks(NULL, inode, &map, 0);
5900                 if (ret < 0)
5901                         return ret;
5902                 /* There's extent covering m_lblk? Just return it. */
5903                 if (ret > 0) {
5904                         int status;
5905
5906                         ext4_es_store_pblock(result, map.m_pblk);
5907                         result->es_lblk = map.m_lblk;
5908                         result->es_len = map.m_len;
5909                         if (map.m_flags & EXT4_MAP_UNWRITTEN)
5910                                 status = EXTENT_STATUS_UNWRITTEN;
5911                         else
5912                                 status = EXTENT_STATUS_WRITTEN;
5913                         ext4_es_store_status(result, status);
5914                         return 1;
5915                 }
5916                 ext4_es_find_delayed_extent_range(inode, map.m_lblk,
5917                                                   map.m_lblk + map.m_len - 1,
5918                                                   &es);
5919                 /* Is delalloc data before next block in extent tree? */
5920                 if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
5921                         ext4_lblk_t offset = 0;
5922
5923                         if (es.es_lblk < lblk)
5924                                 offset = lblk - es.es_lblk;
5925                         result->es_lblk = es.es_lblk + offset;
5926                         ext4_es_store_pblock(result,
5927                                              ext4_es_pblock(&es) + offset);
5928                         result->es_len = es.es_len - offset;
5929                         ext4_es_store_status(result, ext4_es_status(&es));
5930
5931                         return 1;
5932                 }
5933                 /* There's a hole at m_lblk, advance us after it */
5934                 map.m_lblk += map.m_len;
5935                 map_len -= map.m_len;
5936                 map.m_len = map_len;
5937                 cond_resched();
5938         }
5939         result->es_len = 0;
5940         return 0;
5941 }