GNU Linux-libre 4.4.288-gnu1
[releases.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *inode_entry_slab;
28
29 /*
30  * We guarantee no failure on the returned page.
31  */
32 struct page *grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
33 {
34         struct address_space *mapping = META_MAPPING(sbi);
35         struct page *page = NULL;
36 repeat:
37         page = grab_cache_page(mapping, index);
38         if (!page) {
39                 cond_resched();
40                 goto repeat;
41         }
42         f2fs_wait_on_page_writeback(page, META);
43         SetPageUptodate(page);
44         return page;
45 }
46
47 /*
48  * We guarantee no failure on the returned page.
49  */
50 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
51                                                         bool is_meta)
52 {
53         struct address_space *mapping = META_MAPPING(sbi);
54         struct page *page;
55         struct f2fs_io_info fio = {
56                 .sbi = sbi,
57                 .type = META,
58                 .rw = READ_SYNC | REQ_META | REQ_PRIO,
59                 .blk_addr = index,
60                 .encrypted_page = NULL,
61                 .is_meta = is_meta,
62         };
63
64         if (unlikely(!is_meta))
65                 fio.rw &= ~REQ_META;
66 repeat:
67         page = grab_cache_page(mapping, index);
68         if (!page) {
69                 cond_resched();
70                 goto repeat;
71         }
72         if (PageUptodate(page))
73                 goto out;
74
75         fio.page = page;
76
77         if (f2fs_submit_page_bio(&fio)) {
78                 memset(page_address(page), 0, PAGE_SIZE);
79                 f2fs_stop_checkpoint(sbi);
80                 f2fs_bug_on(sbi, 1);
81                 return page;
82         }
83
84         lock_page(page);
85         if (unlikely(page->mapping != mapping)) {
86                 f2fs_put_page(page, 1);
87                 goto repeat;
88         }
89
90         /*
91          * if there is any IO error when accessing device, make our filesystem
92          * readonly and make sure do not write checkpoint with non-uptodate
93          * meta page.
94          */
95         if (unlikely(!PageUptodate(page)))
96                 f2fs_stop_checkpoint(sbi);
97 out:
98         return page;
99 }
100
101 struct page *get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
102 {
103         return __get_meta_page(sbi, index, true);
104 }
105
106 /* for POR only */
107 struct page *get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
108 {
109         return __get_meta_page(sbi, index, false);
110 }
111
112 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
113                                         block_t blkaddr, int type)
114 {
115         switch (type) {
116         case META_NAT:
117                 break;
118         case META_SIT:
119                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
120                         return false;
121                 break;
122         case META_SSA:
123                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
124                         blkaddr < SM_I(sbi)->ssa_blkaddr))
125                         return false;
126                 break;
127         case META_CP:
128                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
129                         blkaddr < __start_cp_addr(sbi)))
130                         return false;
131                 break;
132         case META_POR:
133         case DATA_GENERIC:
134                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
135                         blkaddr < MAIN_BLKADDR(sbi))) {
136                         if (type == DATA_GENERIC) {
137                                 f2fs_msg(sbi->sb, KERN_WARNING,
138                                         "access invalid blkaddr:%u", blkaddr);
139                                 WARN_ON(1);
140                         }
141                         return false;
142                 }
143                 break;
144         case META_GENERIC:
145                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
146                         blkaddr >= MAIN_BLKADDR(sbi)))
147                         return false;
148                 break;
149         default:
150                 BUG();
151         }
152
153         return true;
154 }
155
156 /*
157  * Readahead CP/NAT/SIT/SSA pages
158  */
159 int ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
160                                                         int type, bool sync)
161 {
162         block_t prev_blk_addr = 0;
163         struct page *page;
164         block_t blkno = start;
165         struct f2fs_io_info fio = {
166                 .sbi = sbi,
167                 .type = META,
168                 .rw = sync ? (READ_SYNC | REQ_META | REQ_PRIO) : READA,
169                 .encrypted_page = NULL,
170                 .is_meta = (type != META_POR),
171         };
172
173         if (unlikely(type == META_POR))
174                 fio.rw &= ~REQ_META;
175
176         for (; nrpages-- > 0; blkno++) {
177
178                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
179                         goto out;
180
181                 switch (type) {
182                 case META_NAT:
183                         if (unlikely(blkno >=
184                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
185                                 blkno = 0;
186                         /* get nat block addr */
187                         fio.blk_addr = current_nat_addr(sbi,
188                                         blkno * NAT_ENTRY_PER_BLOCK);
189                         break;
190                 case META_SIT:
191                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
192                                 goto out;
193                         /* get sit block addr */
194                         fio.blk_addr = current_sit_addr(sbi,
195                                         blkno * SIT_ENTRY_PER_BLOCK);
196                         if (blkno != start && prev_blk_addr + 1 != fio.blk_addr)
197                                 goto out;
198                         prev_blk_addr = fio.blk_addr;
199                         break;
200                 case META_SSA:
201                 case META_CP:
202                 case META_POR:
203                         fio.blk_addr = blkno;
204                         break;
205                 default:
206                         BUG();
207                 }
208
209                 page = grab_cache_page(META_MAPPING(sbi), fio.blk_addr);
210                 if (!page)
211                         continue;
212                 if (PageUptodate(page)) {
213                         f2fs_put_page(page, 1);
214                         continue;
215                 }
216
217                 fio.page = page;
218                 f2fs_submit_page_mbio(&fio);
219                 f2fs_put_page(page, 0);
220         }
221 out:
222         f2fs_submit_merged_bio(sbi, META, READ);
223         return blkno - start;
224 }
225
226 void ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
227 {
228         struct page *page;
229         bool readahead = false;
230
231         page = find_get_page(META_MAPPING(sbi), index);
232         if (!page || (page && !PageUptodate(page)))
233                 readahead = true;
234         f2fs_put_page(page, 0);
235
236         if (readahead)
237                 ra_meta_pages(sbi, index, MAX_BIO_BLOCKS(sbi), META_POR, true);
238 }
239
240 static int f2fs_write_meta_page(struct page *page,
241                                 struct writeback_control *wbc)
242 {
243         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
244
245         trace_f2fs_writepage(page, META);
246
247         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
248                 goto redirty_out;
249         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
250                 goto redirty_out;
251         if (unlikely(f2fs_cp_error(sbi)))
252                 goto redirty_out;
253
254         f2fs_wait_on_page_writeback(page, META);
255         write_meta_page(sbi, page);
256         dec_page_count(sbi, F2FS_DIRTY_META);
257         unlock_page(page);
258
259         if (wbc->for_reclaim)
260                 f2fs_submit_merged_bio(sbi, META, WRITE);
261         return 0;
262
263 redirty_out:
264         redirty_page_for_writepage(wbc, page);
265         return AOP_WRITEPAGE_ACTIVATE;
266 }
267
268 static int f2fs_write_meta_pages(struct address_space *mapping,
269                                 struct writeback_control *wbc)
270 {
271         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
272         long diff, written;
273
274         trace_f2fs_writepages(mapping->host, wbc, META);
275
276         /* collect a number of dirty meta pages and write together */
277         if (wbc->for_kupdate ||
278                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
279                 goto skip_write;
280
281         /* if mounting is failed, skip writing node pages */
282         mutex_lock(&sbi->cp_mutex);
283         diff = nr_pages_to_write(sbi, META, wbc);
284         written = sync_meta_pages(sbi, META, wbc->nr_to_write);
285         mutex_unlock(&sbi->cp_mutex);
286         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
287         return 0;
288
289 skip_write:
290         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
291         return 0;
292 }
293
294 long sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
295                                                 long nr_to_write)
296 {
297         struct address_space *mapping = META_MAPPING(sbi);
298         pgoff_t index = 0, end = LONG_MAX, prev = LONG_MAX;
299         struct pagevec pvec;
300         long nwritten = 0;
301         struct writeback_control wbc = {
302                 .for_reclaim = 0,
303         };
304
305         pagevec_init(&pvec, 0);
306
307         while (index <= end) {
308                 int i, nr_pages;
309                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
310                                 PAGECACHE_TAG_DIRTY,
311                                 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
312                 if (unlikely(nr_pages == 0))
313                         break;
314
315                 for (i = 0; i < nr_pages; i++) {
316                         struct page *page = pvec.pages[i];
317
318                         if (prev == LONG_MAX)
319                                 prev = page->index - 1;
320                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
321                                 pagevec_release(&pvec);
322                                 goto stop;
323                         }
324
325                         lock_page(page);
326
327                         if (unlikely(page->mapping != mapping)) {
328 continue_unlock:
329                                 unlock_page(page);
330                                 continue;
331                         }
332                         if (!PageDirty(page)) {
333                                 /* someone wrote it for us */
334                                 goto continue_unlock;
335                         }
336
337                         if (!clear_page_dirty_for_io(page))
338                                 goto continue_unlock;
339
340                         if (mapping->a_ops->writepage(page, &wbc)) {
341                                 unlock_page(page);
342                                 break;
343                         }
344                         nwritten++;
345                         prev = page->index;
346                         if (unlikely(nwritten >= nr_to_write))
347                                 break;
348                 }
349                 pagevec_release(&pvec);
350                 cond_resched();
351         }
352 stop:
353         if (nwritten)
354                 f2fs_submit_merged_bio(sbi, type, WRITE);
355
356         return nwritten;
357 }
358
359 static int f2fs_set_meta_page_dirty(struct page *page)
360 {
361         trace_f2fs_set_page_dirty(page, META);
362
363         SetPageUptodate(page);
364         if (!PageDirty(page)) {
365                 __set_page_dirty_nobuffers(page);
366                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
367                 SetPagePrivate(page);
368                 f2fs_trace_pid(page);
369                 return 1;
370         }
371         return 0;
372 }
373
374 const struct address_space_operations f2fs_meta_aops = {
375         .writepage      = f2fs_write_meta_page,
376         .writepages     = f2fs_write_meta_pages,
377         .set_page_dirty = f2fs_set_meta_page_dirty,
378         .invalidatepage = f2fs_invalidate_page,
379         .releasepage    = f2fs_release_page,
380 };
381
382 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
383 {
384         struct inode_management *im = &sbi->im[type];
385         struct ino_entry *e, *tmp;
386
387         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
388 retry:
389         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
390
391         spin_lock(&im->ino_lock);
392         e = radix_tree_lookup(&im->ino_root, ino);
393         if (!e) {
394                 e = tmp;
395                 if (radix_tree_insert(&im->ino_root, ino, e)) {
396                         spin_unlock(&im->ino_lock);
397                         radix_tree_preload_end();
398                         goto retry;
399                 }
400                 memset(e, 0, sizeof(struct ino_entry));
401                 e->ino = ino;
402
403                 list_add_tail(&e->list, &im->ino_list);
404                 if (type != ORPHAN_INO)
405                         im->ino_num++;
406         }
407         spin_unlock(&im->ino_lock);
408         radix_tree_preload_end();
409
410         if (e != tmp)
411                 kmem_cache_free(ino_entry_slab, tmp);
412 }
413
414 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
415 {
416         struct inode_management *im = &sbi->im[type];
417         struct ino_entry *e;
418
419         spin_lock(&im->ino_lock);
420         e = radix_tree_lookup(&im->ino_root, ino);
421         if (e) {
422                 list_del(&e->list);
423                 radix_tree_delete(&im->ino_root, ino);
424                 im->ino_num--;
425                 spin_unlock(&im->ino_lock);
426                 kmem_cache_free(ino_entry_slab, e);
427                 return;
428         }
429         spin_unlock(&im->ino_lock);
430 }
431
432 void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
433 {
434         /* add new dirty ino entry into list */
435         __add_ino_entry(sbi, ino, type);
436 }
437
438 void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
439 {
440         /* remove dirty ino entry from list */
441         __remove_ino_entry(sbi, ino, type);
442 }
443
444 /* mode should be APPEND_INO or UPDATE_INO */
445 bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
446 {
447         struct inode_management *im = &sbi->im[mode];
448         struct ino_entry *e;
449
450         spin_lock(&im->ino_lock);
451         e = radix_tree_lookup(&im->ino_root, ino);
452         spin_unlock(&im->ino_lock);
453         return e ? true : false;
454 }
455
456 void release_dirty_inode(struct f2fs_sb_info *sbi)
457 {
458         struct ino_entry *e, *tmp;
459         int i;
460
461         for (i = APPEND_INO; i <= UPDATE_INO; i++) {
462                 struct inode_management *im = &sbi->im[i];
463
464                 spin_lock(&im->ino_lock);
465                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
466                         list_del(&e->list);
467                         radix_tree_delete(&im->ino_root, e->ino);
468                         kmem_cache_free(ino_entry_slab, e);
469                         im->ino_num--;
470                 }
471                 spin_unlock(&im->ino_lock);
472         }
473 }
474
475 int acquire_orphan_inode(struct f2fs_sb_info *sbi)
476 {
477         struct inode_management *im = &sbi->im[ORPHAN_INO];
478         int err = 0;
479
480         spin_lock(&im->ino_lock);
481         if (unlikely(im->ino_num >= sbi->max_orphans))
482                 err = -ENOSPC;
483         else
484                 im->ino_num++;
485         spin_unlock(&im->ino_lock);
486
487         return err;
488 }
489
490 void release_orphan_inode(struct f2fs_sb_info *sbi)
491 {
492         struct inode_management *im = &sbi->im[ORPHAN_INO];
493
494         spin_lock(&im->ino_lock);
495         f2fs_bug_on(sbi, im->ino_num == 0);
496         im->ino_num--;
497         spin_unlock(&im->ino_lock);
498 }
499
500 void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
501 {
502         /* add new orphan ino entry into list */
503         __add_ino_entry(sbi, ino, ORPHAN_INO);
504 }
505
506 void remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
507 {
508         /* remove orphan entry from orphan list */
509         __remove_ino_entry(sbi, ino, ORPHAN_INO);
510 }
511
512 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
513 {
514         struct inode *inode;
515
516         inode = f2fs_iget(sbi->sb, ino);
517         if (IS_ERR(inode)) {
518                 /*
519                  * there should be a bug that we can't find the entry
520                  * to orphan inode.
521                  */
522                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
523                 return PTR_ERR(inode);
524         }
525
526         clear_nlink(inode);
527
528         /* truncate all the data during iput */
529         iput(inode);
530         return 0;
531 }
532
533 int recover_orphan_inodes(struct f2fs_sb_info *sbi)
534 {
535         block_t start_blk, orphan_blocks, i, j;
536         int err;
537
538         if (!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG))
539                 return 0;
540
541         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
542         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
543
544         ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
545
546         for (i = 0; i < orphan_blocks; i++) {
547                 struct page *page = get_meta_page(sbi, start_blk + i);
548                 struct f2fs_orphan_block *orphan_blk;
549
550                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
551                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
552                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
553                         err = recover_orphan_inode(sbi, ino);
554                         if (err) {
555                                 f2fs_put_page(page, 1);
556                                 return err;
557                         }
558                 }
559                 f2fs_put_page(page, 1);
560         }
561         /* clear Orphan Flag */
562         clear_ckpt_flags(F2FS_CKPT(sbi), CP_ORPHAN_PRESENT_FLAG);
563         return 0;
564 }
565
566 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
567 {
568         struct list_head *head;
569         struct f2fs_orphan_block *orphan_blk = NULL;
570         unsigned int nentries = 0;
571         unsigned short index = 1;
572         unsigned short orphan_blocks;
573         struct page *page = NULL;
574         struct ino_entry *orphan = NULL;
575         struct inode_management *im = &sbi->im[ORPHAN_INO];
576
577         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
578
579         /*
580          * we don't need to do spin_lock(&im->ino_lock) here, since all the
581          * orphan inode operations are covered under f2fs_lock_op().
582          * And, spin_lock should be avoided due to page operations below.
583          */
584         head = &im->ino_list;
585
586         /* loop for each orphan inode entry and write them in Jornal block */
587         list_for_each_entry(orphan, head, list) {
588                 if (!page) {
589                         page = grab_meta_page(sbi, start_blk++);
590                         orphan_blk =
591                                 (struct f2fs_orphan_block *)page_address(page);
592                         memset(orphan_blk, 0, sizeof(*orphan_blk));
593                 }
594
595                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
596
597                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
598                         /*
599                          * an orphan block is full of 1020 entries,
600                          * then we need to flush current orphan blocks
601                          * and bring another one in memory
602                          */
603                         orphan_blk->blk_addr = cpu_to_le16(index);
604                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
605                         orphan_blk->entry_count = cpu_to_le32(nentries);
606                         set_page_dirty(page);
607                         f2fs_put_page(page, 1);
608                         index++;
609                         nentries = 0;
610                         page = NULL;
611                 }
612         }
613
614         if (page) {
615                 orphan_blk->blk_addr = cpu_to_le16(index);
616                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
617                 orphan_blk->entry_count = cpu_to_le32(nentries);
618                 set_page_dirty(page);
619                 f2fs_put_page(page, 1);
620         }
621 }
622
623 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
624                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
625                 unsigned long long *version)
626 {
627         unsigned long blk_size = sbi->blocksize;
628         size_t crc_offset = 0;
629         __u32 crc = 0;
630
631         *cp_page = get_meta_page(sbi, cp_addr);
632         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
633
634         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
635         if (crc_offset >= blk_size) {
636                 f2fs_put_page(*cp_page, 1);
637                 f2fs_msg(sbi->sb, KERN_WARNING,
638                         "invalid crc_offset: %zu", crc_offset);
639                 return -EINVAL;
640         }
641
642         crc = le32_to_cpu(*((__le32 *)((unsigned char *)*cp_block
643                                                         + crc_offset)));
644         if (!f2fs_crc_valid(crc, *cp_block, crc_offset)) {
645                 f2fs_put_page(*cp_page, 1);
646                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
647                 return -EINVAL;
648         }
649
650         *version = cur_cp_version(*cp_block);
651         return 0;
652 }
653
654 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
655                                 block_t cp_addr, unsigned long long *version)
656 {
657         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
658         struct f2fs_checkpoint *cp_block = NULL;
659         unsigned long long cur_version = 0, pre_version = 0;
660         int err;
661
662         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
663                                         &cp_page_1, version);
664         if (err)
665                 return NULL;
666
667         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
668                                         sbi->blocks_per_seg) {
669                 f2fs_msg(sbi->sb, KERN_WARNING,
670                         "invalid cp_pack_total_block_count:%u",
671                         le32_to_cpu(cp_block->cp_pack_total_block_count));
672                 goto invalid_cp;
673         }
674         pre_version = *version;
675
676         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
677         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
678                                         &cp_page_2, version);
679         if (err)
680                 goto invalid_cp;
681         cur_version = *version;
682
683         if (cur_version == pre_version) {
684                 *version = cur_version;
685                 f2fs_put_page(cp_page_2, 1);
686                 return cp_page_1;
687         }
688         f2fs_put_page(cp_page_2, 1);
689 invalid_cp:
690         f2fs_put_page(cp_page_1, 1);
691         return NULL;
692 }
693
694 int get_valid_checkpoint(struct f2fs_sb_info *sbi)
695 {
696         struct f2fs_checkpoint *cp_block;
697         struct f2fs_super_block *fsb = sbi->raw_super;
698         struct page *cp1, *cp2, *cur_page;
699         unsigned long blk_size = sbi->blocksize;
700         unsigned long long cp1_version = 0, cp2_version = 0;
701         unsigned long long cp_start_blk_no;
702         unsigned int cp_blks = 1 + __cp_payload(sbi);
703         block_t cp_blk_no;
704         int i;
705
706         sbi->ckpt = kzalloc(cp_blks * blk_size, GFP_KERNEL);
707         if (!sbi->ckpt)
708                 return -ENOMEM;
709         /*
710          * Finding out valid cp block involves read both
711          * sets( cp pack1 and cp pack 2)
712          */
713         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
714         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
715
716         /* The second checkpoint pack should start at the next segment */
717         cp_start_blk_no += ((unsigned long long)1) <<
718                                 le32_to_cpu(fsb->log_blocks_per_seg);
719         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
720
721         if (cp1 && cp2) {
722                 if (ver_after(cp2_version, cp1_version))
723                         cur_page = cp2;
724                 else
725                         cur_page = cp1;
726         } else if (cp1) {
727                 cur_page = cp1;
728         } else if (cp2) {
729                 cur_page = cp2;
730         } else {
731                 goto fail_no_cp;
732         }
733
734         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
735         memcpy(sbi->ckpt, cp_block, blk_size);
736
737         if (cur_page == cp1)
738                 sbi->cur_cp_pack = 1;
739         else
740                 sbi->cur_cp_pack = 2;
741
742         /* Sanity checking of checkpoint */
743         if (sanity_check_ckpt(sbi))
744                 goto free_fail_no_cp;
745
746         if (cp_blks <= 1)
747                 goto done;
748
749         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
750         if (cur_page == cp2)
751                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
752
753         for (i = 1; i < cp_blks; i++) {
754                 void *sit_bitmap_ptr;
755                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
756
757                 cur_page = get_meta_page(sbi, cp_blk_no + i);
758                 sit_bitmap_ptr = page_address(cur_page);
759                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
760                 f2fs_put_page(cur_page, 1);
761         }
762 done:
763         f2fs_put_page(cp1, 1);
764         f2fs_put_page(cp2, 1);
765         return 0;
766
767 free_fail_no_cp:
768         f2fs_put_page(cp1, 1);
769         f2fs_put_page(cp2, 1);
770 fail_no_cp:
771         kfree(sbi->ckpt);
772         return -EINVAL;
773 }
774
775 static int __add_dirty_inode(struct inode *inode, struct inode_entry *new)
776 {
777         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
778
779         if (is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR))
780                 return -EEXIST;
781
782         set_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
783         F2FS_I(inode)->dirty_dir = new;
784         list_add_tail(&new->list, &sbi->dir_inode_list);
785         stat_inc_dirty_dir(sbi);
786         return 0;
787 }
788
789 void update_dirty_page(struct inode *inode, struct page *page)
790 {
791         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
792         struct inode_entry *new;
793         int ret = 0;
794
795         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
796                         !S_ISLNK(inode->i_mode))
797                 return;
798
799         if (!S_ISDIR(inode->i_mode)) {
800                 inode_inc_dirty_pages(inode);
801                 goto out;
802         }
803
804         new = f2fs_kmem_cache_alloc(inode_entry_slab, GFP_NOFS);
805         new->inode = inode;
806         INIT_LIST_HEAD(&new->list);
807
808         spin_lock(&sbi->dir_inode_lock);
809         ret = __add_dirty_inode(inode, new);
810         inode_inc_dirty_pages(inode);
811         spin_unlock(&sbi->dir_inode_lock);
812
813         if (ret)
814                 kmem_cache_free(inode_entry_slab, new);
815 out:
816         SetPagePrivate(page);
817         f2fs_trace_pid(page);
818 }
819
820 void remove_dirty_dir_inode(struct inode *inode)
821 {
822         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
823         struct inode_entry *entry;
824
825         if (!S_ISDIR(inode->i_mode))
826                 return;
827
828         spin_lock(&sbi->dir_inode_lock);
829         if (get_dirty_pages(inode) ||
830                         !is_inode_flag_set(F2FS_I(inode), FI_DIRTY_DIR)) {
831                 spin_unlock(&sbi->dir_inode_lock);
832                 return;
833         }
834
835         entry = F2FS_I(inode)->dirty_dir;
836         list_del(&entry->list);
837         F2FS_I(inode)->dirty_dir = NULL;
838         clear_inode_flag(F2FS_I(inode), FI_DIRTY_DIR);
839         stat_dec_dirty_dir(sbi);
840         spin_unlock(&sbi->dir_inode_lock);
841         kmem_cache_free(inode_entry_slab, entry);
842 }
843
844 void sync_dirty_dir_inodes(struct f2fs_sb_info *sbi)
845 {
846         struct list_head *head;
847         struct inode_entry *entry;
848         struct inode *inode;
849 retry:
850         if (unlikely(f2fs_cp_error(sbi)))
851                 return;
852
853         spin_lock(&sbi->dir_inode_lock);
854
855         head = &sbi->dir_inode_list;
856         if (list_empty(head)) {
857                 spin_unlock(&sbi->dir_inode_lock);
858                 return;
859         }
860         entry = list_entry(head->next, struct inode_entry, list);
861         inode = igrab(entry->inode);
862         spin_unlock(&sbi->dir_inode_lock);
863         if (inode) {
864                 filemap_fdatawrite(inode->i_mapping);
865                 iput(inode);
866         } else {
867                 /*
868                  * We should submit bio, since it exists several
869                  * wribacking dentry pages in the freeing inode.
870                  */
871                 f2fs_submit_merged_bio(sbi, DATA, WRITE);
872                 cond_resched();
873         }
874         goto retry;
875 }
876
877 /*
878  * Freeze all the FS-operations for checkpoint.
879  */
880 static int block_operations(struct f2fs_sb_info *sbi)
881 {
882         struct writeback_control wbc = {
883                 .sync_mode = WB_SYNC_ALL,
884                 .nr_to_write = LONG_MAX,
885                 .for_reclaim = 0,
886         };
887         struct blk_plug plug;
888         int err = 0;
889
890         blk_start_plug(&plug);
891
892 retry_flush_dents:
893         f2fs_lock_all(sbi);
894         /* write all the dirty dentry pages */
895         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
896                 f2fs_unlock_all(sbi);
897                 sync_dirty_dir_inodes(sbi);
898                 if (unlikely(f2fs_cp_error(sbi))) {
899                         err = -EIO;
900                         goto out;
901                 }
902                 goto retry_flush_dents;
903         }
904
905         /*
906          * POR: we should ensure that there are no dirty node pages
907          * until finishing nat/sit flush.
908          */
909 retry_flush_nodes:
910         down_write(&sbi->node_write);
911
912         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
913                 up_write(&sbi->node_write);
914                 sync_node_pages(sbi, 0, &wbc);
915                 if (unlikely(f2fs_cp_error(sbi))) {
916                         f2fs_unlock_all(sbi);
917                         err = -EIO;
918                         goto out;
919                 }
920                 goto retry_flush_nodes;
921         }
922 out:
923         blk_finish_plug(&plug);
924         return err;
925 }
926
927 static void unblock_operations(struct f2fs_sb_info *sbi)
928 {
929         up_write(&sbi->node_write);
930         f2fs_unlock_all(sbi);
931 }
932
933 static void wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
934 {
935         DEFINE_WAIT(wait);
936
937         for (;;) {
938                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
939
940                 if (!get_pages(sbi, F2FS_WRITEBACK))
941                         break;
942
943                 io_schedule();
944         }
945         finish_wait(&sbi->cp_wait, &wait);
946 }
947
948 static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
949 {
950         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
951         struct f2fs_nm_info *nm_i = NM_I(sbi);
952         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
953         nid_t last_nid = nm_i->next_scan_nid;
954         block_t start_blk;
955         unsigned int data_sum_blocks, orphan_blocks;
956         __u32 crc32 = 0;
957         int i;
958         int cp_payload_blks = __cp_payload(sbi);
959
960         /* Flush all the NAT/SIT pages */
961         while (get_pages(sbi, F2FS_DIRTY_META)) {
962                 sync_meta_pages(sbi, META, LONG_MAX);
963                 if (unlikely(f2fs_cp_error(sbi)))
964                         return;
965         }
966
967         next_free_nid(sbi, &last_nid);
968
969         /*
970          * modify checkpoint
971          * version number is already updated
972          */
973         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi));
974         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
975         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
976         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
977                 ckpt->cur_node_segno[i] =
978                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
979                 ckpt->cur_node_blkoff[i] =
980                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
981                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
982                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
983         }
984         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
985                 ckpt->cur_data_segno[i] =
986                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
987                 ckpt->cur_data_blkoff[i] =
988                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
989                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
990                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
991         }
992
993         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
994         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
995         ckpt->next_free_nid = cpu_to_le32(last_nid);
996
997         /* 2 cp  + n data seg summary + orphan inode blocks */
998         data_sum_blocks = npages_for_summary_flush(sbi, false);
999         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1000                 set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1001         else
1002                 clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1003
1004         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1005         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1006                         orphan_blocks);
1007
1008         if (__remain_node_summaries(cpc->reason))
1009                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1010                                 cp_payload_blks + data_sum_blocks +
1011                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1012         else
1013                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1014                                 cp_payload_blks + data_sum_blocks +
1015                                 orphan_blocks);
1016
1017         if (cpc->reason == CP_UMOUNT)
1018                 set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1019         else
1020                 clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1021
1022         if (cpc->reason == CP_FASTBOOT)
1023                 set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1024         else
1025                 clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1026
1027         if (orphan_num)
1028                 set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1029         else
1030                 clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1031
1032         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1033                 set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1034
1035         /* set this flag to activate crc|cp_ver for recovery */
1036         set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1037
1038         /* update SIT/NAT bitmap */
1039         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1040         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1041
1042         crc32 = f2fs_crc32(ckpt, le32_to_cpu(ckpt->checksum_offset));
1043         *((__le32 *)((unsigned char *)ckpt +
1044                                 le32_to_cpu(ckpt->checksum_offset)))
1045                                 = cpu_to_le32(crc32);
1046
1047         start_blk = __start_cp_next_addr(sbi);
1048
1049         /* need to wait for end_io results */
1050         wait_on_all_pages_writeback(sbi);
1051         if (unlikely(f2fs_cp_error(sbi)))
1052                 return;
1053
1054         /* write out checkpoint buffer at block 0 */
1055         update_meta_page(sbi, ckpt, start_blk++);
1056
1057         for (i = 1; i < 1 + cp_payload_blks; i++)
1058                 update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1059                                                         start_blk++);
1060
1061         if (orphan_num) {
1062                 write_orphan_inodes(sbi, start_blk);
1063                 start_blk += orphan_blocks;
1064         }
1065
1066         write_data_summaries(sbi, start_blk);
1067         start_blk += data_sum_blocks;
1068         if (__remain_node_summaries(cpc->reason)) {
1069                 write_node_summaries(sbi, start_blk);
1070                 start_blk += NR_CURSEG_NODE_TYPE;
1071         }
1072
1073         /* writeout checkpoint block */
1074         update_meta_page(sbi, ckpt, start_blk);
1075
1076         /* wait for previous submitted node/meta pages writeback */
1077         wait_on_all_pages_writeback(sbi);
1078
1079         if (unlikely(f2fs_cp_error(sbi)))
1080                 return;
1081
1082         filemap_fdatawait_range(NODE_MAPPING(sbi), 0, LONG_MAX);
1083         filemap_fdatawait_range(META_MAPPING(sbi), 0, LONG_MAX);
1084
1085         /* update user_block_counts */
1086         sbi->last_valid_block_count = sbi->total_valid_block_count;
1087         sbi->alloc_valid_block_count = 0;
1088
1089         /* Here, we only have one bio having CP pack */
1090         sync_meta_pages(sbi, META_FLUSH, LONG_MAX);
1091
1092         /* wait for previous submitted meta pages writeback */
1093         wait_on_all_pages_writeback(sbi);
1094
1095         release_dirty_inode(sbi);
1096
1097         if (unlikely(f2fs_cp_error(sbi)))
1098                 return;
1099
1100         clear_prefree_segments(sbi, cpc);
1101         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1102         __set_cp_next_pack(sbi);
1103 }
1104
1105 /*
1106  * We guarantee that this checkpoint procedure will not fail.
1107  */
1108 void write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1109 {
1110         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1111         unsigned long long ckpt_ver;
1112
1113         mutex_lock(&sbi->cp_mutex);
1114
1115         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1116                 (cpc->reason == CP_FASTBOOT || cpc->reason == CP_SYNC ||
1117                 (cpc->reason == CP_DISCARD && !sbi->discard_blks)))
1118                 goto out;
1119         if (unlikely(f2fs_cp_error(sbi)))
1120                 goto out;
1121         if (f2fs_readonly(sbi->sb))
1122                 goto out;
1123
1124         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1125
1126         if (block_operations(sbi))
1127                 goto out;
1128
1129         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1130
1131         f2fs_submit_merged_bio(sbi, DATA, WRITE);
1132         f2fs_submit_merged_bio(sbi, NODE, WRITE);
1133         f2fs_submit_merged_bio(sbi, META, WRITE);
1134
1135         /*
1136          * update checkpoint pack index
1137          * Increase the version number so that
1138          * SIT entries and seg summaries are written at correct place
1139          */
1140         ckpt_ver = cur_cp_version(ckpt);
1141         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1142
1143         /* write cached NAT/SIT entries to NAT/SIT area */
1144         flush_nat_entries(sbi);
1145         flush_sit_entries(sbi, cpc);
1146
1147         /* unlock all the fs_lock[] in do_checkpoint() */
1148         do_checkpoint(sbi, cpc);
1149
1150         unblock_operations(sbi);
1151         stat_inc_cp_count(sbi->stat_info);
1152
1153         if (cpc->reason == CP_RECOVERY)
1154                 f2fs_msg(sbi->sb, KERN_NOTICE,
1155                         "checkpoint: version = %llx", ckpt_ver);
1156
1157         /* do checkpoint periodically */
1158         sbi->cp_expires = round_jiffies_up(jiffies + HZ * sbi->cp_interval);
1159 out:
1160         mutex_unlock(&sbi->cp_mutex);
1161         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1162 }
1163
1164 void init_ino_entry_info(struct f2fs_sb_info *sbi)
1165 {
1166         int i;
1167
1168         for (i = 0; i < MAX_INO_ENTRY; i++) {
1169                 struct inode_management *im = &sbi->im[i];
1170
1171                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1172                 spin_lock_init(&im->ino_lock);
1173                 INIT_LIST_HEAD(&im->ino_list);
1174                 im->ino_num = 0;
1175         }
1176
1177         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1178                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1179                                 F2FS_ORPHANS_PER_BLOCK;
1180 }
1181
1182 int __init create_checkpoint_caches(void)
1183 {
1184         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1185                         sizeof(struct ino_entry));
1186         if (!ino_entry_slab)
1187                 return -ENOMEM;
1188         inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1189                         sizeof(struct inode_entry));
1190         if (!inode_entry_slab) {
1191                 kmem_cache_destroy(ino_entry_slab);
1192                 return -ENOMEM;
1193         }
1194         return 0;
1195 }
1196
1197 void destroy_checkpoint_caches(void)
1198 {
1199         kmem_cache_destroy(ino_entry_slab);
1200         kmem_cache_destroy(inode_entry_slab);
1201 }