GNU Linux-libre 4.19.286-gnu1
[releases.git] / fs / f2fs / checkpoint.c
1 /*
2  * fs/f2fs/checkpoint.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/bio.h>
13 #include <linux/mpage.h>
14 #include <linux/writeback.h>
15 #include <linux/blkdev.h>
16 #include <linux/f2fs_fs.h>
17 #include <linux/pagevec.h>
18 #include <linux/swap.h>
19
20 #include "f2fs.h"
21 #include "node.h"
22 #include "segment.h"
23 #include "trace.h"
24 #include <trace/events/f2fs.h>
25
26 static struct kmem_cache *ino_entry_slab;
27 struct kmem_cache *f2fs_inode_entry_slab;
28
29 void f2fs_stop_checkpoint(struct f2fs_sb_info *sbi, bool end_io)
30 {
31         f2fs_build_fault_attr(sbi, 0, 0);
32         set_ckpt_flags(sbi, CP_ERROR_FLAG);
33         if (!end_io)
34                 f2fs_flush_merged_writes(sbi);
35 }
36
37 /*
38  * We guarantee no failure on the returned page.
39  */
40 struct page *f2fs_grab_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
41 {
42         struct address_space *mapping = META_MAPPING(sbi);
43         struct page *page = NULL;
44 repeat:
45         page = f2fs_grab_cache_page(mapping, index, false);
46         if (!page) {
47                 cond_resched();
48                 goto repeat;
49         }
50         f2fs_wait_on_page_writeback(page, META, true);
51         if (!PageUptodate(page))
52                 SetPageUptodate(page);
53         return page;
54 }
55
56 /*
57  * We guarantee no failure on the returned page.
58  */
59 static struct page *__get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index,
60                                                         bool is_meta)
61 {
62         struct address_space *mapping = META_MAPPING(sbi);
63         struct page *page;
64         struct f2fs_io_info fio = {
65                 .sbi = sbi,
66                 .type = META,
67                 .op = REQ_OP_READ,
68                 .op_flags = REQ_META | REQ_PRIO,
69                 .old_blkaddr = index,
70                 .new_blkaddr = index,
71                 .encrypted_page = NULL,
72                 .is_meta = is_meta,
73         };
74         int err;
75
76         if (unlikely(!is_meta))
77                 fio.op_flags &= ~REQ_META;
78 repeat:
79         page = f2fs_grab_cache_page(mapping, index, false);
80         if (!page) {
81                 cond_resched();
82                 goto repeat;
83         }
84         if (PageUptodate(page))
85                 goto out;
86
87         fio.page = page;
88
89         err = f2fs_submit_page_bio(&fio);
90         if (err) {
91                 f2fs_put_page(page, 1);
92                 return ERR_PTR(err);
93         }
94
95         lock_page(page);
96         if (unlikely(page->mapping != mapping)) {
97                 f2fs_put_page(page, 1);
98                 goto repeat;
99         }
100
101         if (unlikely(!PageUptodate(page))) {
102                 f2fs_put_page(page, 1);
103                 return ERR_PTR(-EIO);
104         }
105 out:
106         return page;
107 }
108
109 struct page *f2fs_get_meta_page(struct f2fs_sb_info *sbi, pgoff_t index)
110 {
111         return __get_meta_page(sbi, index, true);
112 }
113
114 struct page *f2fs_get_meta_page_nofail(struct f2fs_sb_info *sbi, pgoff_t index)
115 {
116         struct page *page;
117         int count = 0;
118
119 retry:
120         page = __get_meta_page(sbi, index, true);
121         if (IS_ERR(page)) {
122                 if (PTR_ERR(page) == -EIO &&
123                                 ++count <= DEFAULT_RETRY_IO_COUNT)
124                         goto retry;
125
126                 f2fs_stop_checkpoint(sbi, false);
127                 f2fs_bug_on(sbi, 1);
128         }
129
130         return page;
131 }
132
133 /* for POR only */
134 struct page *f2fs_get_tmp_page(struct f2fs_sb_info *sbi, pgoff_t index)
135 {
136         return __get_meta_page(sbi, index, false);
137 }
138
139 bool f2fs_is_valid_blkaddr(struct f2fs_sb_info *sbi,
140                                         block_t blkaddr, int type)
141 {
142         switch (type) {
143         case META_NAT:
144                 break;
145         case META_SIT:
146                 if (unlikely(blkaddr >= SIT_BLK_CNT(sbi)))
147                         return false;
148                 break;
149         case META_SSA:
150                 if (unlikely(blkaddr >= MAIN_BLKADDR(sbi) ||
151                         blkaddr < SM_I(sbi)->ssa_blkaddr))
152                         return false;
153                 break;
154         case META_CP:
155                 if (unlikely(blkaddr >= SIT_I(sbi)->sit_base_addr ||
156                         blkaddr < __start_cp_addr(sbi)))
157                         return false;
158                 break;
159         case META_POR:
160         case DATA_GENERIC:
161                 if (unlikely(blkaddr >= MAX_BLKADDR(sbi) ||
162                         blkaddr < MAIN_BLKADDR(sbi))) {
163                         if (type == DATA_GENERIC) {
164                                 f2fs_msg(sbi->sb, KERN_WARNING,
165                                         "access invalid blkaddr:%u", blkaddr);
166                                 WARN_ON(1);
167                         }
168                         return false;
169                 }
170                 break;
171         case META_GENERIC:
172                 if (unlikely(blkaddr < SEG0_BLKADDR(sbi) ||
173                         blkaddr >= MAIN_BLKADDR(sbi)))
174                         return false;
175                 break;
176         default:
177                 BUG();
178         }
179
180         return true;
181 }
182
183 /*
184  * Readahead CP/NAT/SIT/SSA pages
185  */
186 int f2fs_ra_meta_pages(struct f2fs_sb_info *sbi, block_t start, int nrpages,
187                                                         int type, bool sync)
188 {
189         struct page *page;
190         block_t blkno = start;
191         struct f2fs_io_info fio = {
192                 .sbi = sbi,
193                 .type = META,
194                 .op = REQ_OP_READ,
195                 .op_flags = sync ? (REQ_META | REQ_PRIO) : REQ_RAHEAD,
196                 .encrypted_page = NULL,
197                 .in_list = false,
198                 .is_meta = (type != META_POR),
199         };
200         struct blk_plug plug;
201
202         if (unlikely(type == META_POR))
203                 fio.op_flags &= ~REQ_META;
204
205         blk_start_plug(&plug);
206         for (; nrpages-- > 0; blkno++) {
207
208                 if (!f2fs_is_valid_blkaddr(sbi, blkno, type))
209                         goto out;
210
211                 switch (type) {
212                 case META_NAT:
213                         if (unlikely(blkno >=
214                                         NAT_BLOCK_OFFSET(NM_I(sbi)->max_nid)))
215                                 blkno = 0;
216                         /* get nat block addr */
217                         fio.new_blkaddr = current_nat_addr(sbi,
218                                         blkno * NAT_ENTRY_PER_BLOCK);
219                         break;
220                 case META_SIT:
221                         if (unlikely(blkno >= TOTAL_SEGS(sbi)))
222                                 goto out;
223                         /* get sit block addr */
224                         fio.new_blkaddr = current_sit_addr(sbi,
225                                         blkno * SIT_ENTRY_PER_BLOCK);
226                         break;
227                 case META_SSA:
228                 case META_CP:
229                 case META_POR:
230                         fio.new_blkaddr = blkno;
231                         break;
232                 default:
233                         BUG();
234                 }
235
236                 page = f2fs_grab_cache_page(META_MAPPING(sbi),
237                                                 fio.new_blkaddr, false);
238                 if (!page)
239                         continue;
240                 if (PageUptodate(page)) {
241                         f2fs_put_page(page, 1);
242                         continue;
243                 }
244
245                 fio.page = page;
246                 f2fs_submit_page_bio(&fio);
247                 f2fs_put_page(page, 0);
248         }
249 out:
250         blk_finish_plug(&plug);
251         return blkno - start;
252 }
253
254 void f2fs_ra_meta_pages_cond(struct f2fs_sb_info *sbi, pgoff_t index)
255 {
256         struct page *page;
257         bool readahead = false;
258
259         page = find_get_page(META_MAPPING(sbi), index);
260         if (!page || !PageUptodate(page))
261                 readahead = true;
262         f2fs_put_page(page, 0);
263
264         if (readahead)
265                 f2fs_ra_meta_pages(sbi, index, BIO_MAX_PAGES, META_POR, true);
266 }
267
268 static int __f2fs_write_meta_page(struct page *page,
269                                 struct writeback_control *wbc,
270                                 enum iostat_type io_type)
271 {
272         struct f2fs_sb_info *sbi = F2FS_P_SB(page);
273
274         trace_f2fs_writepage(page, META);
275
276         if (unlikely(f2fs_cp_error(sbi))) {
277                 if (is_sbi_flag_set(sbi, SBI_IS_CLOSE)) {
278                         ClearPageUptodate(page);
279                         dec_page_count(sbi, F2FS_DIRTY_META);
280                         unlock_page(page);
281                         return 0;
282                 }
283                 goto redirty_out;
284         }
285         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
286                 goto redirty_out;
287         if (wbc->for_reclaim && page->index < GET_SUM_BLOCK(sbi, 0))
288                 goto redirty_out;
289
290         f2fs_do_write_meta_page(sbi, page, io_type);
291         dec_page_count(sbi, F2FS_DIRTY_META);
292
293         if (wbc->for_reclaim)
294                 f2fs_submit_merged_write_cond(sbi, page->mapping->host,
295                                                 0, page->index, META);
296
297         unlock_page(page);
298
299         if (unlikely(f2fs_cp_error(sbi)))
300                 f2fs_submit_merged_write(sbi, META);
301
302         return 0;
303
304 redirty_out:
305         redirty_page_for_writepage(wbc, page);
306         return AOP_WRITEPAGE_ACTIVATE;
307 }
308
309 static int f2fs_write_meta_page(struct page *page,
310                                 struct writeback_control *wbc)
311 {
312         return __f2fs_write_meta_page(page, wbc, FS_META_IO);
313 }
314
315 static int f2fs_write_meta_pages(struct address_space *mapping,
316                                 struct writeback_control *wbc)
317 {
318         struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
319         long diff, written;
320
321         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
322                 goto skip_write;
323
324         /* collect a number of dirty meta pages and write together */
325         if (wbc->for_kupdate ||
326                 get_pages(sbi, F2FS_DIRTY_META) < nr_pages_to_skip(sbi, META))
327                 goto skip_write;
328
329         /* if locked failed, cp will flush dirty pages instead */
330         if (!mutex_trylock(&sbi->cp_mutex))
331                 goto skip_write;
332
333         trace_f2fs_writepages(mapping->host, wbc, META);
334         diff = nr_pages_to_write(sbi, META, wbc);
335         written = f2fs_sync_meta_pages(sbi, META, wbc->nr_to_write, FS_META_IO);
336         mutex_unlock(&sbi->cp_mutex);
337         wbc->nr_to_write = max((long)0, wbc->nr_to_write - written - diff);
338         return 0;
339
340 skip_write:
341         wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_META);
342         trace_f2fs_writepages(mapping->host, wbc, META);
343         return 0;
344 }
345
346 long f2fs_sync_meta_pages(struct f2fs_sb_info *sbi, enum page_type type,
347                                 long nr_to_write, enum iostat_type io_type)
348 {
349         struct address_space *mapping = META_MAPPING(sbi);
350         pgoff_t index = 0, prev = ULONG_MAX;
351         struct pagevec pvec;
352         long nwritten = 0;
353         int nr_pages;
354         struct writeback_control wbc = {
355                 .for_reclaim = 0,
356         };
357         struct blk_plug plug;
358
359         pagevec_init(&pvec);
360
361         blk_start_plug(&plug);
362
363         while ((nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
364                                 PAGECACHE_TAG_DIRTY))) {
365                 int i;
366
367                 for (i = 0; i < nr_pages; i++) {
368                         struct page *page = pvec.pages[i];
369
370                         if (prev == ULONG_MAX)
371                                 prev = page->index - 1;
372                         if (nr_to_write != LONG_MAX && page->index != prev + 1) {
373                                 pagevec_release(&pvec);
374                                 goto stop;
375                         }
376
377                         lock_page(page);
378
379                         if (unlikely(page->mapping != mapping)) {
380 continue_unlock:
381                                 unlock_page(page);
382                                 continue;
383                         }
384                         if (!PageDirty(page)) {
385                                 /* someone wrote it for us */
386                                 goto continue_unlock;
387                         }
388
389                         f2fs_wait_on_page_writeback(page, META, true);
390
391                         BUG_ON(PageWriteback(page));
392                         if (!clear_page_dirty_for_io(page))
393                                 goto continue_unlock;
394
395                         if (__f2fs_write_meta_page(page, &wbc, io_type)) {
396                                 unlock_page(page);
397                                 break;
398                         }
399                         nwritten++;
400                         prev = page->index;
401                         if (unlikely(nwritten >= nr_to_write))
402                                 break;
403                 }
404                 pagevec_release(&pvec);
405                 cond_resched();
406         }
407 stop:
408         if (nwritten)
409                 f2fs_submit_merged_write(sbi, type);
410
411         blk_finish_plug(&plug);
412
413         return nwritten;
414 }
415
416 static int f2fs_set_meta_page_dirty(struct page *page)
417 {
418         trace_f2fs_set_page_dirty(page, META);
419
420         if (!PageUptodate(page))
421                 SetPageUptodate(page);
422         if (!PageDirty(page)) {
423                 __set_page_dirty_nobuffers(page);
424                 inc_page_count(F2FS_P_SB(page), F2FS_DIRTY_META);
425                 SetPagePrivate(page);
426                 f2fs_trace_pid(page);
427                 return 1;
428         }
429         return 0;
430 }
431
432 const struct address_space_operations f2fs_meta_aops = {
433         .writepage      = f2fs_write_meta_page,
434         .writepages     = f2fs_write_meta_pages,
435         .set_page_dirty = f2fs_set_meta_page_dirty,
436         .invalidatepage = f2fs_invalidate_page,
437         .releasepage    = f2fs_release_page,
438 #ifdef CONFIG_MIGRATION
439         .migratepage    = f2fs_migrate_page,
440 #endif
441 };
442
443 static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino,
444                                                 unsigned int devidx, int type)
445 {
446         struct inode_management *im = &sbi->im[type];
447         struct ino_entry *e, *tmp;
448
449         tmp = f2fs_kmem_cache_alloc(ino_entry_slab, GFP_NOFS);
450
451         radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
452
453         spin_lock(&im->ino_lock);
454         e = radix_tree_lookup(&im->ino_root, ino);
455         if (!e) {
456                 e = tmp;
457                 if (unlikely(radix_tree_insert(&im->ino_root, ino, e)))
458                         f2fs_bug_on(sbi, 1);
459
460                 memset(e, 0, sizeof(struct ino_entry));
461                 e->ino = ino;
462
463                 list_add_tail(&e->list, &im->ino_list);
464                 if (type != ORPHAN_INO)
465                         im->ino_num++;
466         }
467
468         if (type == FLUSH_INO)
469                 f2fs_set_bit(devidx, (char *)&e->dirty_device);
470
471         spin_unlock(&im->ino_lock);
472         radix_tree_preload_end();
473
474         if (e != tmp)
475                 kmem_cache_free(ino_entry_slab, tmp);
476 }
477
478 static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
479 {
480         struct inode_management *im = &sbi->im[type];
481         struct ino_entry *e;
482
483         spin_lock(&im->ino_lock);
484         e = radix_tree_lookup(&im->ino_root, ino);
485         if (e) {
486                 list_del(&e->list);
487                 radix_tree_delete(&im->ino_root, ino);
488                 im->ino_num--;
489                 spin_unlock(&im->ino_lock);
490                 kmem_cache_free(ino_entry_slab, e);
491                 return;
492         }
493         spin_unlock(&im->ino_lock);
494 }
495
496 void f2fs_add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
497 {
498         /* add new dirty ino entry into list */
499         __add_ino_entry(sbi, ino, 0, type);
500 }
501
502 void f2fs_remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
503 {
504         /* remove dirty ino entry from list */
505         __remove_ino_entry(sbi, ino, type);
506 }
507
508 /* mode should be APPEND_INO or UPDATE_INO */
509 bool f2fs_exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
510 {
511         struct inode_management *im = &sbi->im[mode];
512         struct ino_entry *e;
513
514         spin_lock(&im->ino_lock);
515         e = radix_tree_lookup(&im->ino_root, ino);
516         spin_unlock(&im->ino_lock);
517         return e ? true : false;
518 }
519
520 void f2fs_release_ino_entry(struct f2fs_sb_info *sbi, bool all)
521 {
522         struct ino_entry *e, *tmp;
523         int i;
524
525         for (i = all ? ORPHAN_INO : APPEND_INO; i < MAX_INO_ENTRY; i++) {
526                 struct inode_management *im = &sbi->im[i];
527
528                 spin_lock(&im->ino_lock);
529                 list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
530                         list_del(&e->list);
531                         radix_tree_delete(&im->ino_root, e->ino);
532                         kmem_cache_free(ino_entry_slab, e);
533                         im->ino_num--;
534                 }
535                 spin_unlock(&im->ino_lock);
536         }
537 }
538
539 void f2fs_set_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
540                                         unsigned int devidx, int type)
541 {
542         __add_ino_entry(sbi, ino, devidx, type);
543 }
544
545 bool f2fs_is_dirty_device(struct f2fs_sb_info *sbi, nid_t ino,
546                                         unsigned int devidx, int type)
547 {
548         struct inode_management *im = &sbi->im[type];
549         struct ino_entry *e;
550         bool is_dirty = false;
551
552         spin_lock(&im->ino_lock);
553         e = radix_tree_lookup(&im->ino_root, ino);
554         if (e && f2fs_test_bit(devidx, (char *)&e->dirty_device))
555                 is_dirty = true;
556         spin_unlock(&im->ino_lock);
557         return is_dirty;
558 }
559
560 int f2fs_acquire_orphan_inode(struct f2fs_sb_info *sbi)
561 {
562         struct inode_management *im = &sbi->im[ORPHAN_INO];
563         int err = 0;
564
565         spin_lock(&im->ino_lock);
566
567         if (time_to_inject(sbi, FAULT_ORPHAN)) {
568                 spin_unlock(&im->ino_lock);
569                 f2fs_show_injection_info(FAULT_ORPHAN);
570                 return -ENOSPC;
571         }
572
573         if (unlikely(im->ino_num >= sbi->max_orphans))
574                 err = -ENOSPC;
575         else
576                 im->ino_num++;
577         spin_unlock(&im->ino_lock);
578
579         return err;
580 }
581
582 void f2fs_release_orphan_inode(struct f2fs_sb_info *sbi)
583 {
584         struct inode_management *im = &sbi->im[ORPHAN_INO];
585
586         spin_lock(&im->ino_lock);
587         f2fs_bug_on(sbi, im->ino_num == 0);
588         im->ino_num--;
589         spin_unlock(&im->ino_lock);
590 }
591
592 void f2fs_add_orphan_inode(struct inode *inode)
593 {
594         /* add new orphan ino entry into list */
595         __add_ino_entry(F2FS_I_SB(inode), inode->i_ino, 0, ORPHAN_INO);
596         f2fs_update_inode_page(inode);
597 }
598
599 void f2fs_remove_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
600 {
601         /* remove orphan entry from orphan list */
602         __remove_ino_entry(sbi, ino, ORPHAN_INO);
603 }
604
605 static int recover_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
606 {
607         struct inode *inode;
608         struct node_info ni;
609         int err;
610
611         inode = f2fs_iget_retry(sbi->sb, ino);
612         if (IS_ERR(inode)) {
613                 /*
614                  * there should be a bug that we can't find the entry
615                  * to orphan inode.
616                  */
617                 f2fs_bug_on(sbi, PTR_ERR(inode) == -ENOENT);
618                 return PTR_ERR(inode);
619         }
620
621         err = dquot_initialize(inode);
622         if (err) {
623                 iput(inode);
624                 goto err_out;
625         }
626
627         clear_nlink(inode);
628
629         /* truncate all the data during iput */
630         iput(inode);
631
632         err = f2fs_get_node_info(sbi, ino, &ni);
633         if (err)
634                 goto err_out;
635
636         /* ENOMEM was fully retried in f2fs_evict_inode. */
637         if (ni.blk_addr != NULL_ADDR) {
638                 err = -EIO;
639                 goto err_out;
640         }
641         return 0;
642
643 err_out:
644         set_sbi_flag(sbi, SBI_NEED_FSCK);
645         f2fs_msg(sbi->sb, KERN_WARNING,
646                         "%s: orphan failed (ino=%x), run fsck to fix.",
647                         __func__, ino);
648         return err;
649 }
650
651 int f2fs_recover_orphan_inodes(struct f2fs_sb_info *sbi)
652 {
653         block_t start_blk, orphan_blocks, i, j;
654         unsigned int s_flags = sbi->sb->s_flags;
655         int err = 0;
656 #ifdef CONFIG_QUOTA
657         int quota_enabled;
658 #endif
659
660         if (!is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG))
661                 return 0;
662
663         if (s_flags & SB_RDONLY) {
664                 f2fs_msg(sbi->sb, KERN_INFO, "orphan cleanup on readonly fs");
665                 sbi->sb->s_flags &= ~SB_RDONLY;
666         }
667
668 #ifdef CONFIG_QUOTA
669         /* Needed for iput() to work correctly and not trash data */
670         sbi->sb->s_flags |= SB_ACTIVE;
671
672         /*
673          * Turn on quotas which were not enabled for read-only mounts if
674          * filesystem has quota feature, so that they are updated correctly.
675          */
676         quota_enabled = f2fs_enable_quota_files(sbi, s_flags & SB_RDONLY);
677 #endif
678
679         start_blk = __start_cp_addr(sbi) + 1 + __cp_payload(sbi);
680         orphan_blocks = __start_sum_addr(sbi) - 1 - __cp_payload(sbi);
681
682         f2fs_ra_meta_pages(sbi, start_blk, orphan_blocks, META_CP, true);
683
684         for (i = 0; i < orphan_blocks; i++) {
685                 struct page *page;
686                 struct f2fs_orphan_block *orphan_blk;
687
688                 page = f2fs_get_meta_page(sbi, start_blk + i);
689                 if (IS_ERR(page)) {
690                         err = PTR_ERR(page);
691                         goto out;
692                 }
693
694                 orphan_blk = (struct f2fs_orphan_block *)page_address(page);
695                 for (j = 0; j < le32_to_cpu(orphan_blk->entry_count); j++) {
696                         nid_t ino = le32_to_cpu(orphan_blk->ino[j]);
697                         err = recover_orphan_inode(sbi, ino);
698                         if (err) {
699                                 f2fs_put_page(page, 1);
700                                 goto out;
701                         }
702                 }
703                 f2fs_put_page(page, 1);
704         }
705         /* clear Orphan Flag */
706         clear_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG);
707 out:
708         set_sbi_flag(sbi, SBI_IS_RECOVERED);
709
710 #ifdef CONFIG_QUOTA
711         /* Turn quotas off */
712         if (quota_enabled)
713                 f2fs_quota_off_umount(sbi->sb);
714 #endif
715         sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */
716
717         return err;
718 }
719
720 static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
721 {
722         struct list_head *head;
723         struct f2fs_orphan_block *orphan_blk = NULL;
724         unsigned int nentries = 0;
725         unsigned short index = 1;
726         unsigned short orphan_blocks;
727         struct page *page = NULL;
728         struct ino_entry *orphan = NULL;
729         struct inode_management *im = &sbi->im[ORPHAN_INO];
730
731         orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
732
733         /*
734          * we don't need to do spin_lock(&im->ino_lock) here, since all the
735          * orphan inode operations are covered under f2fs_lock_op().
736          * And, spin_lock should be avoided due to page operations below.
737          */
738         head = &im->ino_list;
739
740         /* loop for each orphan inode entry and write them in Jornal block */
741         list_for_each_entry(orphan, head, list) {
742                 if (!page) {
743                         page = f2fs_grab_meta_page(sbi, start_blk++);
744                         orphan_blk =
745                                 (struct f2fs_orphan_block *)page_address(page);
746                         memset(orphan_blk, 0, sizeof(*orphan_blk));
747                 }
748
749                 orphan_blk->ino[nentries++] = cpu_to_le32(orphan->ino);
750
751                 if (nentries == F2FS_ORPHANS_PER_BLOCK) {
752                         /*
753                          * an orphan block is full of 1020 entries,
754                          * then we need to flush current orphan blocks
755                          * and bring another one in memory
756                          */
757                         orphan_blk->blk_addr = cpu_to_le16(index);
758                         orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
759                         orphan_blk->entry_count = cpu_to_le32(nentries);
760                         set_page_dirty(page);
761                         f2fs_put_page(page, 1);
762                         index++;
763                         nentries = 0;
764                         page = NULL;
765                 }
766         }
767
768         if (page) {
769                 orphan_blk->blk_addr = cpu_to_le16(index);
770                 orphan_blk->blk_count = cpu_to_le16(orphan_blocks);
771                 orphan_blk->entry_count = cpu_to_le32(nentries);
772                 set_page_dirty(page);
773                 f2fs_put_page(page, 1);
774         }
775 }
776
777 static int get_checkpoint_version(struct f2fs_sb_info *sbi, block_t cp_addr,
778                 struct f2fs_checkpoint **cp_block, struct page **cp_page,
779                 unsigned long long *version)
780 {
781         unsigned long blk_size = sbi->blocksize;
782         size_t crc_offset = 0;
783         __u32 crc = 0;
784
785         *cp_page = f2fs_get_meta_page(sbi, cp_addr);
786         if (IS_ERR(*cp_page))
787                 return PTR_ERR(*cp_page);
788
789         *cp_block = (struct f2fs_checkpoint *)page_address(*cp_page);
790
791         crc_offset = le32_to_cpu((*cp_block)->checksum_offset);
792         if (crc_offset > (blk_size - sizeof(__le32))) {
793                 f2fs_put_page(*cp_page, 1);
794                 f2fs_msg(sbi->sb, KERN_WARNING,
795                         "invalid crc_offset: %zu", crc_offset);
796                 return -EINVAL;
797         }
798
799         crc = cur_cp_crc(*cp_block);
800         if (!f2fs_crc_valid(sbi, crc, *cp_block, crc_offset)) {
801                 f2fs_put_page(*cp_page, 1);
802                 f2fs_msg(sbi->sb, KERN_WARNING, "invalid crc value");
803                 return -EINVAL;
804         }
805
806         *version = cur_cp_version(*cp_block);
807         return 0;
808 }
809
810 static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
811                                 block_t cp_addr, unsigned long long *version)
812 {
813         struct page *cp_page_1 = NULL, *cp_page_2 = NULL;
814         struct f2fs_checkpoint *cp_block = NULL;
815         unsigned long long cur_version = 0, pre_version = 0;
816         int err;
817
818         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
819                                         &cp_page_1, version);
820         if (err)
821                 return NULL;
822
823         if (le32_to_cpu(cp_block->cp_pack_total_block_count) >
824                                         sbi->blocks_per_seg) {
825                 f2fs_msg(sbi->sb, KERN_WARNING,
826                         "invalid cp_pack_total_block_count:%u",
827                         le32_to_cpu(cp_block->cp_pack_total_block_count));
828                 goto invalid_cp;
829         }
830         pre_version = *version;
831
832         cp_addr += le32_to_cpu(cp_block->cp_pack_total_block_count) - 1;
833         err = get_checkpoint_version(sbi, cp_addr, &cp_block,
834                                         &cp_page_2, version);
835         if (err)
836                 goto invalid_cp;
837         cur_version = *version;
838
839         if (cur_version == pre_version) {
840                 *version = cur_version;
841                 f2fs_put_page(cp_page_2, 1);
842                 return cp_page_1;
843         }
844         f2fs_put_page(cp_page_2, 1);
845 invalid_cp:
846         f2fs_put_page(cp_page_1, 1);
847         return NULL;
848 }
849
850 int f2fs_get_valid_checkpoint(struct f2fs_sb_info *sbi)
851 {
852         struct f2fs_checkpoint *cp_block;
853         struct f2fs_super_block *fsb = sbi->raw_super;
854         struct page *cp1, *cp2, *cur_page;
855         unsigned long blk_size = sbi->blocksize;
856         unsigned long long cp1_version = 0, cp2_version = 0;
857         unsigned long long cp_start_blk_no;
858         unsigned int cp_blks = 1 + __cp_payload(sbi);
859         block_t cp_blk_no;
860         int i;
861         int err;
862
863         sbi->ckpt = f2fs_kzalloc(sbi, array_size(blk_size, cp_blks),
864                                  GFP_KERNEL);
865         if (!sbi->ckpt)
866                 return -ENOMEM;
867         /*
868          * Finding out valid cp block involves read both
869          * sets( cp pack1 and cp pack 2)
870          */
871         cp_start_blk_no = le32_to_cpu(fsb->cp_blkaddr);
872         cp1 = validate_checkpoint(sbi, cp_start_blk_no, &cp1_version);
873
874         /* The second checkpoint pack should start at the next segment */
875         cp_start_blk_no += ((unsigned long long)1) <<
876                                 le32_to_cpu(fsb->log_blocks_per_seg);
877         cp2 = validate_checkpoint(sbi, cp_start_blk_no, &cp2_version);
878
879         if (cp1 && cp2) {
880                 if (ver_after(cp2_version, cp1_version))
881                         cur_page = cp2;
882                 else
883                         cur_page = cp1;
884         } else if (cp1) {
885                 cur_page = cp1;
886         } else if (cp2) {
887                 cur_page = cp2;
888         } else {
889                 err = -EFSCORRUPTED;
890                 goto fail_no_cp;
891         }
892
893         cp_block = (struct f2fs_checkpoint *)page_address(cur_page);
894         memcpy(sbi->ckpt, cp_block, blk_size);
895
896         if (cur_page == cp1)
897                 sbi->cur_cp_pack = 1;
898         else
899                 sbi->cur_cp_pack = 2;
900
901         /* Sanity checking of checkpoint */
902         if (f2fs_sanity_check_ckpt(sbi)) {
903                 err = -EFSCORRUPTED;
904                 goto free_fail_no_cp;
905         }
906
907         if (cp_blks <= 1)
908                 goto done;
909
910         cp_blk_no = le32_to_cpu(fsb->cp_blkaddr);
911         if (cur_page == cp2)
912                 cp_blk_no += 1 << le32_to_cpu(fsb->log_blocks_per_seg);
913
914         for (i = 1; i < cp_blks; i++) {
915                 void *sit_bitmap_ptr;
916                 unsigned char *ckpt = (unsigned char *)sbi->ckpt;
917
918                 cur_page = f2fs_get_meta_page(sbi, cp_blk_no + i);
919                 if (IS_ERR(cur_page)) {
920                         err = PTR_ERR(cur_page);
921                         goto free_fail_no_cp;
922                 }
923                 sit_bitmap_ptr = page_address(cur_page);
924                 memcpy(ckpt + i * blk_size, sit_bitmap_ptr, blk_size);
925                 f2fs_put_page(cur_page, 1);
926         }
927 done:
928         f2fs_put_page(cp1, 1);
929         f2fs_put_page(cp2, 1);
930         return 0;
931
932 free_fail_no_cp:
933         f2fs_put_page(cp1, 1);
934         f2fs_put_page(cp2, 1);
935 fail_no_cp:
936         kfree(sbi->ckpt);
937         return err;
938 }
939
940 static void __add_dirty_inode(struct inode *inode, enum inode_type type)
941 {
942         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
943         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
944
945         if (is_inode_flag_set(inode, flag))
946                 return;
947
948         set_inode_flag(inode, flag);
949         if (!f2fs_is_volatile_file(inode))
950                 list_add_tail(&F2FS_I(inode)->dirty_list,
951                                                 &sbi->inode_list[type]);
952         stat_inc_dirty_inode(sbi, type);
953 }
954
955 static void __remove_dirty_inode(struct inode *inode, enum inode_type type)
956 {
957         int flag = (type == DIR_INODE) ? FI_DIRTY_DIR : FI_DIRTY_FILE;
958
959         if (get_dirty_pages(inode) || !is_inode_flag_set(inode, flag))
960                 return;
961
962         list_del_init(&F2FS_I(inode)->dirty_list);
963         clear_inode_flag(inode, flag);
964         stat_dec_dirty_inode(F2FS_I_SB(inode), type);
965 }
966
967 void f2fs_update_dirty_page(struct inode *inode, struct page *page)
968 {
969         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
970         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
971
972         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
973                         !S_ISLNK(inode->i_mode))
974                 return;
975
976         spin_lock(&sbi->inode_lock[type]);
977         if (type != FILE_INODE || test_opt(sbi, DATA_FLUSH))
978                 __add_dirty_inode(inode, type);
979         inode_inc_dirty_pages(inode);
980         spin_unlock(&sbi->inode_lock[type]);
981
982         SetPagePrivate(page);
983         f2fs_trace_pid(page);
984 }
985
986 void f2fs_remove_dirty_inode(struct inode *inode)
987 {
988         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989         enum inode_type type = S_ISDIR(inode->i_mode) ? DIR_INODE : FILE_INODE;
990
991         if (!S_ISDIR(inode->i_mode) && !S_ISREG(inode->i_mode) &&
992                         !S_ISLNK(inode->i_mode))
993                 return;
994
995         if (type == FILE_INODE && !test_opt(sbi, DATA_FLUSH))
996                 return;
997
998         spin_lock(&sbi->inode_lock[type]);
999         __remove_dirty_inode(inode, type);
1000         spin_unlock(&sbi->inode_lock[type]);
1001 }
1002
1003 int f2fs_sync_dirty_inodes(struct f2fs_sb_info *sbi, enum inode_type type)
1004 {
1005         struct list_head *head;
1006         struct inode *inode;
1007         struct f2fs_inode_info *fi;
1008         bool is_dir = (type == DIR_INODE);
1009         unsigned long ino = 0;
1010
1011         trace_f2fs_sync_dirty_inodes_enter(sbi->sb, is_dir,
1012                                 get_pages(sbi, is_dir ?
1013                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1014 retry:
1015         if (unlikely(f2fs_cp_error(sbi))) {
1016                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1017                                 get_pages(sbi, is_dir ?
1018                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1019                 return -EIO;
1020         }
1021
1022         spin_lock(&sbi->inode_lock[type]);
1023
1024         head = &sbi->inode_list[type];
1025         if (list_empty(head)) {
1026                 spin_unlock(&sbi->inode_lock[type]);
1027                 trace_f2fs_sync_dirty_inodes_exit(sbi->sb, is_dir,
1028                                 get_pages(sbi, is_dir ?
1029                                 F2FS_DIRTY_DENTS : F2FS_DIRTY_DATA));
1030                 return 0;
1031         }
1032         fi = list_first_entry(head, struct f2fs_inode_info, dirty_list);
1033         inode = igrab(&fi->vfs_inode);
1034         spin_unlock(&sbi->inode_lock[type]);
1035         if (inode) {
1036                 unsigned long cur_ino = inode->i_ino;
1037
1038                 if (is_dir)
1039                         F2FS_I(inode)->cp_task = current;
1040
1041                 filemap_fdatawrite(inode->i_mapping);
1042
1043                 if (is_dir)
1044                         F2FS_I(inode)->cp_task = NULL;
1045
1046                 iput(inode);
1047                 /* We need to give cpu to another writers. */
1048                 if (ino == cur_ino)
1049                         cond_resched();
1050                 else
1051                         ino = cur_ino;
1052         } else {
1053                 /*
1054                  * We should submit bio, since it exists several
1055                  * wribacking dentry pages in the freeing inode.
1056                  */
1057                 f2fs_submit_merged_write(sbi, DATA);
1058                 cond_resched();
1059         }
1060         goto retry;
1061 }
1062
1063 int f2fs_sync_inode_meta(struct f2fs_sb_info *sbi)
1064 {
1065         struct list_head *head = &sbi->inode_list[DIRTY_META];
1066         struct inode *inode;
1067         struct f2fs_inode_info *fi;
1068         s64 total = get_pages(sbi, F2FS_DIRTY_IMETA);
1069
1070         while (total--) {
1071                 if (unlikely(f2fs_cp_error(sbi)))
1072                         return -EIO;
1073
1074                 spin_lock(&sbi->inode_lock[DIRTY_META]);
1075                 if (list_empty(head)) {
1076                         spin_unlock(&sbi->inode_lock[DIRTY_META]);
1077                         return 0;
1078                 }
1079                 fi = list_first_entry(head, struct f2fs_inode_info,
1080                                                         gdirty_list);
1081                 inode = igrab(&fi->vfs_inode);
1082                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1083                 if (inode) {
1084                         sync_inode_metadata(inode, 0);
1085
1086                         /* it's on eviction */
1087                         if (is_inode_flag_set(inode, FI_DIRTY_INODE))
1088                                 f2fs_update_inode_page(inode);
1089                         iput(inode);
1090                 }
1091         }
1092         return 0;
1093 }
1094
1095 static void __prepare_cp_block(struct f2fs_sb_info *sbi)
1096 {
1097         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1098         struct f2fs_nm_info *nm_i = NM_I(sbi);
1099         nid_t last_nid = nm_i->next_scan_nid;
1100
1101         next_free_nid(sbi, &last_nid);
1102         ckpt->valid_block_count = cpu_to_le64(valid_user_blocks(sbi));
1103         ckpt->valid_node_count = cpu_to_le32(valid_node_count(sbi));
1104         ckpt->valid_inode_count = cpu_to_le32(valid_inode_count(sbi));
1105         ckpt->next_free_nid = cpu_to_le32(last_nid);
1106 }
1107
1108 /*
1109  * Freeze all the FS-operations for checkpoint.
1110  */
1111 static int block_operations(struct f2fs_sb_info *sbi)
1112 {
1113         struct writeback_control wbc = {
1114                 .sync_mode = WB_SYNC_ALL,
1115                 .nr_to_write = LONG_MAX,
1116                 .for_reclaim = 0,
1117         };
1118         struct blk_plug plug;
1119         int err = 0;
1120
1121         blk_start_plug(&plug);
1122
1123 retry_flush_dents:
1124         f2fs_lock_all(sbi);
1125         /* write all the dirty dentry pages */
1126         if (get_pages(sbi, F2FS_DIRTY_DENTS)) {
1127                 f2fs_unlock_all(sbi);
1128                 err = f2fs_sync_dirty_inodes(sbi, DIR_INODE);
1129                 if (err)
1130                         goto out;
1131                 cond_resched();
1132                 goto retry_flush_dents;
1133         }
1134
1135         /*
1136          * POR: we should ensure that there are no dirty node pages
1137          * until finishing nat/sit flush. inode->i_blocks can be updated.
1138          */
1139         down_write(&sbi->node_change);
1140
1141         if (get_pages(sbi, F2FS_DIRTY_IMETA)) {
1142                 up_write(&sbi->node_change);
1143                 f2fs_unlock_all(sbi);
1144                 err = f2fs_sync_inode_meta(sbi);
1145                 if (err)
1146                         goto out;
1147                 cond_resched();
1148                 goto retry_flush_dents;
1149         }
1150
1151 retry_flush_nodes:
1152         down_write(&sbi->node_write);
1153
1154         if (get_pages(sbi, F2FS_DIRTY_NODES)) {
1155                 up_write(&sbi->node_write);
1156                 atomic_inc(&sbi->wb_sync_req[NODE]);
1157                 err = f2fs_sync_node_pages(sbi, &wbc, false, FS_CP_NODE_IO);
1158                 atomic_dec(&sbi->wb_sync_req[NODE]);
1159                 if (err) {
1160                         up_write(&sbi->node_change);
1161                         f2fs_unlock_all(sbi);
1162                         goto out;
1163                 }
1164                 cond_resched();
1165                 goto retry_flush_nodes;
1166         }
1167
1168         /*
1169          * sbi->node_change is used only for AIO write_begin path which produces
1170          * dirty node blocks and some checkpoint values by block allocation.
1171          */
1172         __prepare_cp_block(sbi);
1173         up_write(&sbi->node_change);
1174 out:
1175         blk_finish_plug(&plug);
1176         return err;
1177 }
1178
1179 static void unblock_operations(struct f2fs_sb_info *sbi)
1180 {
1181         up_write(&sbi->node_write);
1182         f2fs_unlock_all(sbi);
1183 }
1184
1185 void f2fs_wait_on_all_pages_writeback(struct f2fs_sb_info *sbi)
1186 {
1187         DEFINE_WAIT(wait);
1188
1189         for (;;) {
1190                 prepare_to_wait(&sbi->cp_wait, &wait, TASK_UNINTERRUPTIBLE);
1191
1192                 if (!get_pages(sbi, F2FS_WB_CP_DATA))
1193                         break;
1194
1195                 if (unlikely(f2fs_cp_error(sbi) &&
1196                         !is_sbi_flag_set(sbi, SBI_IS_CLOSE)))
1197                         break;
1198
1199                 io_schedule_timeout(5*HZ);
1200         }
1201         finish_wait(&sbi->cp_wait, &wait);
1202 }
1203
1204 static void update_ckpt_flags(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1205 {
1206         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
1207         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1208         unsigned long flags;
1209
1210         spin_lock_irqsave(&sbi->cp_lock, flags);
1211
1212         if ((cpc->reason & CP_UMOUNT) &&
1213                         le32_to_cpu(ckpt->cp_pack_total_block_count) >
1214                         sbi->blocks_per_seg - NM_I(sbi)->nat_bits_blocks)
1215                 disable_nat_bits(sbi, false);
1216
1217         if (cpc->reason & CP_TRIMMED)
1218                 __set_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1219         else
1220                 __clear_ckpt_flags(ckpt, CP_TRIMMED_FLAG);
1221
1222         if (cpc->reason & CP_UMOUNT)
1223                 __set_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1224         else
1225                 __clear_ckpt_flags(ckpt, CP_UMOUNT_FLAG);
1226
1227         if (cpc->reason & CP_FASTBOOT)
1228                 __set_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1229         else
1230                 __clear_ckpt_flags(ckpt, CP_FASTBOOT_FLAG);
1231
1232         if (orphan_num)
1233                 __set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1234         else
1235                 __clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
1236
1237         if (is_sbi_flag_set(sbi, SBI_NEED_FSCK))
1238                 __set_ckpt_flags(ckpt, CP_FSCK_FLAG);
1239
1240         /* set this flag to activate crc|cp_ver for recovery */
1241         __set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG);
1242         __clear_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG);
1243
1244         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1245 }
1246
1247 static void commit_checkpoint(struct f2fs_sb_info *sbi,
1248         void *src, block_t blk_addr)
1249 {
1250         struct writeback_control wbc = {
1251                 .for_reclaim = 0,
1252         };
1253
1254         /*
1255          * pagevec_lookup_tag and lock_page again will take
1256          * some extra time. Therefore, f2fs_update_meta_pages and
1257          * f2fs_sync_meta_pages are combined in this function.
1258          */
1259         struct page *page = f2fs_grab_meta_page(sbi, blk_addr);
1260         int err;
1261
1262         memcpy(page_address(page), src, PAGE_SIZE);
1263         set_page_dirty(page);
1264
1265         f2fs_wait_on_page_writeback(page, META, true);
1266         f2fs_bug_on(sbi, PageWriteback(page));
1267         if (unlikely(!clear_page_dirty_for_io(page)))
1268                 f2fs_bug_on(sbi, 1);
1269
1270         /* writeout cp pack 2 page */
1271         err = __f2fs_write_meta_page(page, &wbc, FS_CP_META_IO);
1272         if (unlikely(err && f2fs_cp_error(sbi))) {
1273                 f2fs_put_page(page, 1);
1274                 return;
1275         }
1276
1277         f2fs_bug_on(sbi, err);
1278         f2fs_put_page(page, 0);
1279
1280         /* submit checkpoint (with barrier if NOBARRIER is not set) */
1281         f2fs_submit_merged_write(sbi, META_FLUSH);
1282 }
1283
1284 static int do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1285 {
1286         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1287         struct f2fs_nm_info *nm_i = NM_I(sbi);
1288         unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num, flags;
1289         block_t start_blk;
1290         unsigned int data_sum_blocks, orphan_blocks;
1291         __u32 crc32 = 0;
1292         int i;
1293         int cp_payload_blks = __cp_payload(sbi);
1294         struct super_block *sb = sbi->sb;
1295         struct curseg_info *seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1296         u64 kbytes_written;
1297         int err;
1298
1299         /* Flush all the NAT/SIT pages */
1300         while (get_pages(sbi, F2FS_DIRTY_META)) {
1301                 f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1302                 if (unlikely(f2fs_cp_error(sbi)))
1303                         break;
1304         }
1305
1306         /*
1307          * modify checkpoint
1308          * version number is already updated
1309          */
1310         ckpt->elapsed_time = cpu_to_le64(get_mtime(sbi, true));
1311         ckpt->free_segment_count = cpu_to_le32(free_segments(sbi));
1312         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1313                 ckpt->cur_node_segno[i] =
1314                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_NODE));
1315                 ckpt->cur_node_blkoff[i] =
1316                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_NODE));
1317                 ckpt->alloc_type[i + CURSEG_HOT_NODE] =
1318                                 curseg_alloc_type(sbi, i + CURSEG_HOT_NODE);
1319         }
1320         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1321                 ckpt->cur_data_segno[i] =
1322                         cpu_to_le32(curseg_segno(sbi, i + CURSEG_HOT_DATA));
1323                 ckpt->cur_data_blkoff[i] =
1324                         cpu_to_le16(curseg_blkoff(sbi, i + CURSEG_HOT_DATA));
1325                 ckpt->alloc_type[i + CURSEG_HOT_DATA] =
1326                                 curseg_alloc_type(sbi, i + CURSEG_HOT_DATA);
1327         }
1328
1329         /* 2 cp  + n data seg summary + orphan inode blocks */
1330         data_sum_blocks = f2fs_npages_for_summary_flush(sbi, false);
1331         spin_lock_irqsave(&sbi->cp_lock, flags);
1332         if (data_sum_blocks < NR_CURSEG_DATA_TYPE)
1333                 __set_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1334         else
1335                 __clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
1336         spin_unlock_irqrestore(&sbi->cp_lock, flags);
1337
1338         orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
1339         ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
1340                         orphan_blocks);
1341
1342         if (__remain_node_summaries(cpc->reason))
1343                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS+
1344                                 cp_payload_blks + data_sum_blocks +
1345                                 orphan_blocks + NR_CURSEG_NODE_TYPE);
1346         else
1347                 ckpt->cp_pack_total_block_count = cpu_to_le32(F2FS_CP_PACKS +
1348                                 cp_payload_blks + data_sum_blocks +
1349                                 orphan_blocks);
1350
1351         /* update ckpt flag for checkpoint */
1352         update_ckpt_flags(sbi, cpc);
1353
1354         /* update SIT/NAT bitmap */
1355         get_sit_bitmap(sbi, __bitmap_ptr(sbi, SIT_BITMAP));
1356         get_nat_bitmap(sbi, __bitmap_ptr(sbi, NAT_BITMAP));
1357
1358         crc32 = f2fs_crc32(sbi, ckpt, le32_to_cpu(ckpt->checksum_offset));
1359         *((__le32 *)((unsigned char *)ckpt +
1360                                 le32_to_cpu(ckpt->checksum_offset)))
1361                                 = cpu_to_le32(crc32);
1362
1363         start_blk = __start_cp_next_addr(sbi);
1364
1365         /* write nat bits */
1366         if (enabled_nat_bits(sbi, cpc)) {
1367                 __u64 cp_ver = cur_cp_version(ckpt);
1368                 block_t blk;
1369
1370                 cp_ver |= ((__u64)crc32 << 32);
1371                 *(__le64 *)nm_i->nat_bits = cpu_to_le64(cp_ver);
1372
1373                 blk = start_blk + sbi->blocks_per_seg - nm_i->nat_bits_blocks;
1374                 for (i = 0; i < nm_i->nat_bits_blocks; i++)
1375                         f2fs_update_meta_page(sbi, nm_i->nat_bits +
1376                                         (i << F2FS_BLKSIZE_BITS), blk + i);
1377
1378                 /* Flush all the NAT BITS pages */
1379                 while (get_pages(sbi, F2FS_DIRTY_META)) {
1380                         f2fs_sync_meta_pages(sbi, META, LONG_MAX,
1381                                                         FS_CP_META_IO);
1382                         if (unlikely(f2fs_cp_error(sbi)))
1383                                 break;
1384                 }
1385         }
1386
1387         /* write out checkpoint buffer at block 0 */
1388         f2fs_update_meta_page(sbi, ckpt, start_blk++);
1389
1390         for (i = 1; i < 1 + cp_payload_blks; i++)
1391                 f2fs_update_meta_page(sbi, (char *)ckpt + i * F2FS_BLKSIZE,
1392                                                         start_blk++);
1393
1394         if (orphan_num) {
1395                 write_orphan_inodes(sbi, start_blk);
1396                 start_blk += orphan_blocks;
1397         }
1398
1399         f2fs_write_data_summaries(sbi, start_blk);
1400         start_blk += data_sum_blocks;
1401
1402         /* Record write statistics in the hot node summary */
1403         kbytes_written = sbi->kbytes_written;
1404         if (sb->s_bdev->bd_part)
1405                 kbytes_written += BD_PART_WRITTEN(sbi);
1406
1407         seg_i->journal->info.kbytes_written = cpu_to_le64(kbytes_written);
1408
1409         if (__remain_node_summaries(cpc->reason)) {
1410                 f2fs_write_node_summaries(sbi, start_blk);
1411                 start_blk += NR_CURSEG_NODE_TYPE;
1412         }
1413
1414         /* update user_block_counts */
1415         sbi->last_valid_block_count = sbi->total_valid_block_count;
1416         percpu_counter_set(&sbi->alloc_valid_block_count, 0);
1417
1418         /* Here, we have one bio having CP pack except cp pack 2 page */
1419         f2fs_sync_meta_pages(sbi, META, LONG_MAX, FS_CP_META_IO);
1420
1421         /* wait for previous submitted meta pages writeback */
1422         f2fs_wait_on_all_pages_writeback(sbi);
1423
1424         /* flush all device cache */
1425         err = f2fs_flush_device_cache(sbi);
1426         if (err)
1427                 return err;
1428
1429         /* barrier and flush checkpoint cp pack 2 page if it can */
1430         commit_checkpoint(sbi, ckpt, start_blk);
1431         f2fs_wait_on_all_pages_writeback(sbi);
1432
1433         /*
1434          * invalidate intermediate page cache borrowed from meta inode
1435          * which are used for migration of encrypted inode's blocks.
1436          */
1437         if (f2fs_sb_has_encrypt(sbi->sb))
1438                 invalidate_mapping_pages(META_MAPPING(sbi),
1439                                 MAIN_BLKADDR(sbi), MAX_BLKADDR(sbi) - 1);
1440
1441         f2fs_release_ino_entry(sbi, false);
1442
1443         f2fs_reset_fsync_node_info(sbi);
1444
1445         clear_sbi_flag(sbi, SBI_IS_DIRTY);
1446         clear_sbi_flag(sbi, SBI_NEED_CP);
1447         __set_cp_next_pack(sbi);
1448
1449         /*
1450          * redirty superblock if metadata like node page or inode cache is
1451          * updated during writing checkpoint.
1452          */
1453         if (get_pages(sbi, F2FS_DIRTY_NODES) ||
1454                         get_pages(sbi, F2FS_DIRTY_IMETA))
1455                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1456
1457         f2fs_bug_on(sbi, get_pages(sbi, F2FS_DIRTY_DENTS));
1458
1459         return unlikely(f2fs_cp_error(sbi)) ? -EIO : 0;
1460 }
1461
1462 /*
1463  * We guarantee that this checkpoint procedure will not fail.
1464  */
1465 int f2fs_write_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
1466 {
1467         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1468         unsigned long long ckpt_ver;
1469         int err = 0;
1470
1471         mutex_lock(&sbi->cp_mutex);
1472
1473         if (!is_sbi_flag_set(sbi, SBI_IS_DIRTY) &&
1474                 ((cpc->reason & CP_FASTBOOT) || (cpc->reason & CP_SYNC) ||
1475                 ((cpc->reason & CP_DISCARD) && !sbi->discard_blks)))
1476                 goto out;
1477         if (unlikely(f2fs_cp_error(sbi))) {
1478                 err = -EIO;
1479                 goto out;
1480         }
1481         if (f2fs_readonly(sbi->sb)) {
1482                 err = -EROFS;
1483                 goto out;
1484         }
1485
1486         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "start block_ops");
1487
1488         err = block_operations(sbi);
1489         if (err)
1490                 goto out;
1491
1492         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish block_ops");
1493
1494         f2fs_flush_merged_writes(sbi);
1495
1496         /* this is the case of multiple fstrims without any changes */
1497         if (cpc->reason & CP_DISCARD) {
1498                 if (!f2fs_exist_trim_candidates(sbi, cpc)) {
1499                         unblock_operations(sbi);
1500                         goto out;
1501                 }
1502
1503                 if (NM_I(sbi)->dirty_nat_cnt == 0 &&
1504                                 SIT_I(sbi)->dirty_sentries == 0 &&
1505                                 prefree_segments(sbi) == 0) {
1506                         f2fs_flush_sit_entries(sbi, cpc);
1507                         f2fs_clear_prefree_segments(sbi, cpc);
1508                         unblock_operations(sbi);
1509                         goto out;
1510                 }
1511         }
1512
1513         /*
1514          * update checkpoint pack index
1515          * Increase the version number so that
1516          * SIT entries and seg summaries are written at correct place
1517          */
1518         ckpt_ver = cur_cp_version(ckpt);
1519         ckpt->checkpoint_ver = cpu_to_le64(++ckpt_ver);
1520
1521         /* write cached NAT/SIT entries to NAT/SIT area */
1522         f2fs_flush_nat_entries(sbi, cpc);
1523         f2fs_flush_sit_entries(sbi, cpc);
1524
1525         /* unlock all the fs_lock[] in do_checkpoint() */
1526         err = do_checkpoint(sbi, cpc);
1527         if (err)
1528                 f2fs_release_discard_addrs(sbi);
1529         else
1530                 f2fs_clear_prefree_segments(sbi, cpc);
1531
1532         unblock_operations(sbi);
1533         stat_inc_cp_count(sbi->stat_info);
1534
1535         if (cpc->reason & CP_RECOVERY)
1536                 f2fs_msg(sbi->sb, KERN_NOTICE,
1537                         "checkpoint: version = %llx", ckpt_ver);
1538
1539         /* do checkpoint periodically */
1540         f2fs_update_time(sbi, CP_TIME);
1541         trace_f2fs_write_checkpoint(sbi->sb, cpc->reason, "finish checkpoint");
1542 out:
1543         mutex_unlock(&sbi->cp_mutex);
1544         return err;
1545 }
1546
1547 void f2fs_init_ino_entry_info(struct f2fs_sb_info *sbi)
1548 {
1549         int i;
1550
1551         for (i = 0; i < MAX_INO_ENTRY; i++) {
1552                 struct inode_management *im = &sbi->im[i];
1553
1554                 INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
1555                 spin_lock_init(&im->ino_lock);
1556                 INIT_LIST_HEAD(&im->ino_list);
1557                 im->ino_num = 0;
1558         }
1559
1560         sbi->max_orphans = (sbi->blocks_per_seg - F2FS_CP_PACKS -
1561                         NR_CURSEG_TYPE - __cp_payload(sbi)) *
1562                                 F2FS_ORPHANS_PER_BLOCK;
1563 }
1564
1565 int __init f2fs_create_checkpoint_caches(void)
1566 {
1567         ino_entry_slab = f2fs_kmem_cache_create("f2fs_ino_entry",
1568                         sizeof(struct ino_entry));
1569         if (!ino_entry_slab)
1570                 return -ENOMEM;
1571         f2fs_inode_entry_slab = f2fs_kmem_cache_create("f2fs_inode_entry",
1572                         sizeof(struct inode_entry));
1573         if (!f2fs_inode_entry_slab) {
1574                 kmem_cache_destroy(ino_entry_slab);
1575                 return -ENOMEM;
1576         }
1577         return 0;
1578 }
1579
1580 void f2fs_destroy_checkpoint_caches(void)
1581 {
1582         kmem_cache_destroy(ino_entry_slab);
1583         kmem_cache_destroy(f2fs_inode_entry_slab);
1584 }