GNU Linux-libre 4.14.290-gnu1
[releases.git] / fs / f2fs / data.c
1 /*
2  * fs/f2fs/data.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/writeback.h>
16 #include <linux/backing-dev.h>
17 #include <linux/pagevec.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
21 #include <linux/uio.h>
22 #include <linux/mm.h>
23 #include <linux/memcontrol.h>
24 #include <linux/cleancache.h>
25 #include <linux/sched/signal.h>
26
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "trace.h"
31 #include <trace/events/f2fs.h>
32
33 static bool __is_cp_guaranteed(struct page *page)
34 {
35         struct address_space *mapping = page->mapping;
36         struct inode *inode;
37         struct f2fs_sb_info *sbi;
38
39         if (!mapping)
40                 return false;
41
42         inode = mapping->host;
43         sbi = F2FS_I_SB(inode);
44
45         if (inode->i_ino == F2FS_META_INO(sbi) ||
46                         inode->i_ino ==  F2FS_NODE_INO(sbi) ||
47                         S_ISDIR(inode->i_mode) ||
48                         is_cold_data(page))
49                 return true;
50         return false;
51 }
52
53 static void f2fs_read_end_io(struct bio *bio)
54 {
55         struct bio_vec *bvec;
56         int i;
57
58 #ifdef CONFIG_F2FS_FAULT_INJECTION
59         if (time_to_inject(F2FS_P_SB(bio->bi_io_vec->bv_page), FAULT_IO)) {
60                 f2fs_show_injection_info(FAULT_IO);
61                 bio->bi_status = BLK_STS_IOERR;
62         }
63 #endif
64
65         if (f2fs_bio_encrypted(bio)) {
66                 if (bio->bi_status) {
67                         fscrypt_release_ctx(bio->bi_private);
68                 } else {
69                         fscrypt_decrypt_bio_pages(bio->bi_private, bio);
70                         return;
71                 }
72         }
73
74         bio_for_each_segment_all(bvec, bio, i) {
75                 struct page *page = bvec->bv_page;
76
77                 if (!bio->bi_status) {
78                         if (!PageUptodate(page))
79                                 SetPageUptodate(page);
80                 } else {
81                         ClearPageUptodate(page);
82                         SetPageError(page);
83                 }
84                 unlock_page(page);
85         }
86         bio_put(bio);
87 }
88
89 static void f2fs_write_end_io(struct bio *bio)
90 {
91         struct f2fs_sb_info *sbi = bio->bi_private;
92         struct bio_vec *bvec;
93         int i;
94
95         bio_for_each_segment_all(bvec, bio, i) {
96                 struct page *page = bvec->bv_page;
97                 enum count_type type = WB_DATA_TYPE(page);
98
99                 if (IS_DUMMY_WRITTEN_PAGE(page)) {
100                         set_page_private(page, (unsigned long)NULL);
101                         ClearPagePrivate(page);
102                         unlock_page(page);
103                         mempool_free(page, sbi->write_io_dummy);
104
105                         if (unlikely(bio->bi_status))
106                                 f2fs_stop_checkpoint(sbi, true);
107                         continue;
108                 }
109
110                 fscrypt_pullback_bio_page(&page, true);
111
112                 if (unlikely(bio->bi_status)) {
113                         mapping_set_error(page->mapping, -EIO);
114                         f2fs_stop_checkpoint(sbi, true);
115                 }
116                 dec_page_count(sbi, type);
117                 clear_cold_data(page);
118                 end_page_writeback(page);
119         }
120         if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
121                                 wq_has_sleeper(&sbi->cp_wait))
122                 wake_up(&sbi->cp_wait);
123
124         bio_put(bio);
125 }
126
127 /*
128  * Return true, if pre_bio's bdev is same as its target device.
129  */
130 struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
131                                 block_t blk_addr, struct bio *bio)
132 {
133         struct block_device *bdev = sbi->sb->s_bdev;
134         int i;
135
136         if (f2fs_is_multi_device(sbi)) {
137                 for (i = 0; i < sbi->s_ndevs; i++) {
138                         if (FDEV(i).start_blk <= blk_addr &&
139                             FDEV(i).end_blk >= blk_addr) {
140                                 blk_addr -= FDEV(i).start_blk;
141                                 bdev = FDEV(i).bdev;
142                                 break;
143                         }
144                 }
145         }
146         if (bio) {
147                 bio_set_dev(bio, bdev);
148                 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(blk_addr);
149         }
150         return bdev;
151 }
152
153 int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
154 {
155         int i;
156
157         if (!f2fs_is_multi_device(sbi))
158                 return 0;
159
160         for (i = 0; i < sbi->s_ndevs; i++)
161                 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
162                         return i;
163         return 0;
164 }
165
166 static bool __same_bdev(struct f2fs_sb_info *sbi,
167                                 block_t blk_addr, struct bio *bio)
168 {
169         struct block_device *b = f2fs_target_device(sbi, blk_addr, NULL);
170         return bio->bi_disk == b->bd_disk && bio->bi_partno == b->bd_partno;
171 }
172
173 /*
174  * Low-level block read/write IO operations.
175  */
176 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
177                                 int npages, bool is_read)
178 {
179         struct bio *bio;
180
181         bio = f2fs_bio_alloc(npages);
182
183         f2fs_target_device(sbi, blk_addr, bio);
184         bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
185         bio->bi_private = is_read ? NULL : sbi;
186
187         return bio;
188 }
189
190 static inline void __submit_bio(struct f2fs_sb_info *sbi,
191                                 struct bio *bio, enum page_type type)
192 {
193         if (!is_read_io(bio_op(bio))) {
194                 unsigned int start;
195
196                 if (f2fs_sb_mounted_blkzoned(sbi->sb) &&
197                         current->plug && (type == DATA || type == NODE))
198                         blk_finish_plug(current->plug);
199
200                 if (type != DATA && type != NODE)
201                         goto submit_io;
202
203                 start = bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS;
204                 start %= F2FS_IO_SIZE(sbi);
205
206                 if (start == 0)
207                         goto submit_io;
208
209                 /* fill dummy pages */
210                 for (; start < F2FS_IO_SIZE(sbi); start++) {
211                         struct page *page =
212                                 mempool_alloc(sbi->write_io_dummy,
213                                         GFP_NOIO | __GFP_ZERO | __GFP_NOFAIL);
214                         f2fs_bug_on(sbi, !page);
215
216                         SetPagePrivate(page);
217                         set_page_private(page, (unsigned long)DUMMY_WRITTEN_PAGE);
218                         lock_page(page);
219                         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
220                                 f2fs_bug_on(sbi, 1);
221                 }
222                 /*
223                  * In the NODE case, we lose next block address chain. So, we
224                  * need to do checkpoint in f2fs_sync_file.
225                  */
226                 if (type == NODE)
227                         set_sbi_flag(sbi, SBI_NEED_CP);
228         }
229 submit_io:
230         if (is_read_io(bio_op(bio)))
231                 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
232         else
233                 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
234         submit_bio(bio);
235 }
236
237 static void __submit_merged_bio(struct f2fs_bio_info *io)
238 {
239         struct f2fs_io_info *fio = &io->fio;
240
241         if (!io->bio)
242                 return;
243
244         bio_set_op_attrs(io->bio, fio->op, fio->op_flags);
245
246         if (is_read_io(fio->op))
247                 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
248         else
249                 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
250
251         __submit_bio(io->sbi, io->bio, fio->type);
252         io->bio = NULL;
253 }
254
255 static bool __has_merged_page(struct f2fs_bio_info *io,
256                                 struct inode *inode, nid_t ino, pgoff_t idx)
257 {
258         struct bio_vec *bvec;
259         struct page *target;
260         int i;
261
262         if (!io->bio)
263                 return false;
264
265         if (!inode && !ino)
266                 return true;
267
268         bio_for_each_segment_all(bvec, io->bio, i) {
269
270                 if (bvec->bv_page->mapping)
271                         target = bvec->bv_page;
272                 else
273                         target = fscrypt_control_page(bvec->bv_page);
274
275                 if (idx != target->index)
276                         continue;
277
278                 if (inode && inode == target->mapping->host)
279                         return true;
280                 if (ino && ino == ino_of_node(target))
281                         return true;
282         }
283
284         return false;
285 }
286
287 static bool has_merged_page(struct f2fs_sb_info *sbi, struct inode *inode,
288                                 nid_t ino, pgoff_t idx, enum page_type type)
289 {
290         enum page_type btype = PAGE_TYPE_OF_BIO(type);
291         enum temp_type temp;
292         struct f2fs_bio_info *io;
293         bool ret = false;
294
295         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
296                 io = sbi->write_io[btype] + temp;
297
298                 down_read(&io->io_rwsem);
299                 ret = __has_merged_page(io, inode, ino, idx);
300                 up_read(&io->io_rwsem);
301
302                 /* TODO: use HOT temp only for meta pages now. */
303                 if (ret || btype == META)
304                         break;
305         }
306         return ret;
307 }
308
309 static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
310                                 enum page_type type, enum temp_type temp)
311 {
312         enum page_type btype = PAGE_TYPE_OF_BIO(type);
313         struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
314
315         down_write(&io->io_rwsem);
316
317         /* change META to META_FLUSH in the checkpoint procedure */
318         if (type >= META_FLUSH) {
319                 io->fio.type = META_FLUSH;
320                 io->fio.op = REQ_OP_WRITE;
321                 io->fio.op_flags = REQ_META | REQ_PRIO | REQ_SYNC;
322                 if (!test_opt(sbi, NOBARRIER))
323                         io->fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
324         }
325         __submit_merged_bio(io);
326         up_write(&io->io_rwsem);
327 }
328
329 static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
330                                 struct inode *inode, nid_t ino, pgoff_t idx,
331                                 enum page_type type, bool force)
332 {
333         enum temp_type temp;
334
335         if (!force && !has_merged_page(sbi, inode, ino, idx, type))
336                 return;
337
338         for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
339
340                 __f2fs_submit_merged_write(sbi, type, temp);
341
342                 /* TODO: use HOT temp only for meta pages now. */
343                 if (type >= META)
344                         break;
345         }
346 }
347
348 void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
349 {
350         __submit_merged_write_cond(sbi, NULL, 0, 0, type, true);
351 }
352
353 void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
354                                 struct inode *inode, nid_t ino, pgoff_t idx,
355                                 enum page_type type)
356 {
357         __submit_merged_write_cond(sbi, inode, ino, idx, type, false);
358 }
359
360 void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
361 {
362         f2fs_submit_merged_write(sbi, DATA);
363         f2fs_submit_merged_write(sbi, NODE);
364         f2fs_submit_merged_write(sbi, META);
365 }
366
367 /*
368  * Fill the locked page with data located in the block address.
369  * A caller needs to unlock the page on failure.
370  */
371 int f2fs_submit_page_bio(struct f2fs_io_info *fio)
372 {
373         struct bio *bio;
374         struct page *page = fio->encrypted_page ?
375                         fio->encrypted_page : fio->page;
376
377         if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
378                         __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC))
379                 return -EFSCORRUPTED;
380
381         trace_f2fs_submit_page_bio(page, fio);
382         f2fs_trace_ios(fio, 0);
383
384         /* Allocate a new bio */
385         bio = __bio_alloc(fio->sbi, fio->new_blkaddr, 1, is_read_io(fio->op));
386
387         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
388                 bio_put(bio);
389                 return -EFAULT;
390         }
391         bio_set_op_attrs(bio, fio->op, fio->op_flags);
392
393         if (!is_read_io(fio->op))
394                 inc_page_count(fio->sbi, WB_DATA_TYPE(fio->page));
395
396         __submit_bio(fio->sbi, bio, fio->type);
397         return 0;
398 }
399
400 int f2fs_submit_page_write(struct f2fs_io_info *fio)
401 {
402         struct f2fs_sb_info *sbi = fio->sbi;
403         enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
404         struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
405         struct page *bio_page;
406         int err = 0;
407
408         f2fs_bug_on(sbi, is_read_io(fio->op));
409
410         down_write(&io->io_rwsem);
411 next:
412         if (fio->in_list) {
413                 spin_lock(&io->io_lock);
414                 if (list_empty(&io->io_list)) {
415                         spin_unlock(&io->io_lock);
416                         goto out_fail;
417                 }
418                 fio = list_first_entry(&io->io_list,
419                                                 struct f2fs_io_info, list);
420                 list_del(&fio->list);
421                 spin_unlock(&io->io_lock);
422         }
423
424         if (__is_valid_data_blkaddr(fio->old_blkaddr))
425                 verify_block_addr(fio, fio->old_blkaddr);
426         verify_block_addr(fio, fio->new_blkaddr);
427
428         bio_page = fio->encrypted_page ? fio->encrypted_page : fio->page;
429
430         /* set submitted = 1 as a return value */
431         fio->submitted = 1;
432
433         inc_page_count(sbi, WB_DATA_TYPE(bio_page));
434
435         if (io->bio && (io->last_block_in_bio != fio->new_blkaddr - 1 ||
436             (io->fio.op != fio->op || io->fio.op_flags != fio->op_flags) ||
437                         !__same_bdev(sbi, fio->new_blkaddr, io->bio)))
438                 __submit_merged_bio(io);
439 alloc_new:
440         if (io->bio == NULL) {
441                 if ((fio->type == DATA || fio->type == NODE) &&
442                                 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
443                         err = -EAGAIN;
444                         dec_page_count(sbi, WB_DATA_TYPE(bio_page));
445                         goto out_fail;
446                 }
447                 io->bio = __bio_alloc(sbi, fio->new_blkaddr,
448                                                 BIO_MAX_PAGES, false);
449                 io->fio = *fio;
450         }
451
452         if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
453                 __submit_merged_bio(io);
454                 goto alloc_new;
455         }
456
457         io->last_block_in_bio = fio->new_blkaddr;
458         f2fs_trace_ios(fio, 0);
459
460         trace_f2fs_submit_page_write(fio->page, fio);
461
462         if (fio->in_list)
463                 goto next;
464 out_fail:
465         up_write(&io->io_rwsem);
466         return err;
467 }
468
469 static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
470                                                          unsigned nr_pages)
471 {
472         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
473         struct fscrypt_ctx *ctx = NULL;
474         struct bio *bio;
475
476         if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC))
477                 return ERR_PTR(-EFAULT);
478
479         if (f2fs_encrypted_file(inode)) {
480                 ctx = fscrypt_get_ctx(inode, GFP_NOFS);
481                 if (IS_ERR(ctx))
482                         return ERR_CAST(ctx);
483
484                 /* wait the page to be moved by cleaning */
485                 f2fs_wait_on_block_writeback(sbi, blkaddr);
486         }
487
488         bio = bio_alloc(GFP_KERNEL, min_t(int, nr_pages, BIO_MAX_PAGES));
489         if (!bio) {
490                 if (ctx)
491                         fscrypt_release_ctx(ctx);
492                 return ERR_PTR(-ENOMEM);
493         }
494         f2fs_target_device(sbi, blkaddr, bio);
495         bio->bi_end_io = f2fs_read_end_io;
496         bio->bi_private = ctx;
497         bio_set_op_attrs(bio, REQ_OP_READ, 0);
498
499         return bio;
500 }
501
502 /* This can handle encryption stuffs */
503 static int f2fs_submit_page_read(struct inode *inode, struct page *page,
504                                                         block_t blkaddr)
505 {
506         struct bio *bio = f2fs_grab_read_bio(inode, blkaddr, 1);
507
508         if (IS_ERR(bio))
509                 return PTR_ERR(bio);
510
511         if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
512                 bio_put(bio);
513                 return -EFAULT;
514         }
515         __submit_bio(F2FS_I_SB(inode), bio, DATA);
516         return 0;
517 }
518
519 static void __set_data_blkaddr(struct dnode_of_data *dn)
520 {
521         struct f2fs_node *rn = F2FS_NODE(dn->node_page);
522         __le32 *addr_array;
523         int base = 0;
524
525         if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
526                 base = get_extra_isize(dn->inode);
527
528         /* Get physical address of data block */
529         addr_array = blkaddr_in_node(rn);
530         addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
531 }
532
533 /*
534  * Lock ordering for the change of data block address:
535  * ->data_page
536  *  ->node_page
537  *    update block addresses in the node page
538  */
539 void set_data_blkaddr(struct dnode_of_data *dn)
540 {
541         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
542         __set_data_blkaddr(dn);
543         if (set_page_dirty(dn->node_page))
544                 dn->node_changed = true;
545 }
546
547 void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
548 {
549         dn->data_blkaddr = blkaddr;
550         set_data_blkaddr(dn);
551         f2fs_update_extent_cache(dn);
552 }
553
554 /* dn->ofs_in_node will be returned with up-to-date last block pointer */
555 int reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
556 {
557         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
558         int err;
559
560         if (!count)
561                 return 0;
562
563         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
564                 return -EPERM;
565         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
566                 return err;
567
568         trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
569                                                 dn->ofs_in_node, count);
570
571         f2fs_wait_on_page_writeback(dn->node_page, NODE, true);
572
573         for (; count > 0; dn->ofs_in_node++) {
574                 block_t blkaddr = datablock_addr(dn->inode,
575                                         dn->node_page, dn->ofs_in_node);
576                 if (blkaddr == NULL_ADDR) {
577                         dn->data_blkaddr = NEW_ADDR;
578                         __set_data_blkaddr(dn);
579                         count--;
580                 }
581         }
582
583         if (set_page_dirty(dn->node_page))
584                 dn->node_changed = true;
585         return 0;
586 }
587
588 /* Should keep dn->ofs_in_node unchanged */
589 int reserve_new_block(struct dnode_of_data *dn)
590 {
591         unsigned int ofs_in_node = dn->ofs_in_node;
592         int ret;
593
594         ret = reserve_new_blocks(dn, 1);
595         dn->ofs_in_node = ofs_in_node;
596         return ret;
597 }
598
599 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
600 {
601         bool need_put = dn->inode_page ? false : true;
602         int err;
603
604         err = get_dnode_of_data(dn, index, ALLOC_NODE);
605         if (err)
606                 return err;
607
608         if (dn->data_blkaddr == NULL_ADDR)
609                 err = reserve_new_block(dn);
610         if (err || need_put)
611                 f2fs_put_dnode(dn);
612         return err;
613 }
614
615 int f2fs_get_block(struct dnode_of_data *dn, pgoff_t index)
616 {
617         struct extent_info ei  = {0,0,0};
618         struct inode *inode = dn->inode;
619
620         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
621                 dn->data_blkaddr = ei.blk + index - ei.fofs;
622                 return 0;
623         }
624
625         return f2fs_reserve_block(dn, index);
626 }
627
628 struct page *get_read_data_page(struct inode *inode, pgoff_t index,
629                                                 int op_flags, bool for_write)
630 {
631         struct address_space *mapping = inode->i_mapping;
632         struct dnode_of_data dn;
633         struct page *page;
634         struct extent_info ei = {0,0,0};
635         int err;
636
637         page = f2fs_grab_cache_page(mapping, index, for_write);
638         if (!page)
639                 return ERR_PTR(-ENOMEM);
640
641         if (f2fs_lookup_extent_cache(inode, index, &ei)) {
642                 dn.data_blkaddr = ei.blk + index - ei.fofs;
643                 goto got_it;
644         }
645
646         set_new_dnode(&dn, inode, NULL, NULL, 0);
647         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
648         if (err)
649                 goto put_err;
650         f2fs_put_dnode(&dn);
651
652         if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
653                 err = -ENOENT;
654                 goto put_err;
655         }
656 got_it:
657         if (PageUptodate(page)) {
658                 unlock_page(page);
659                 return page;
660         }
661
662         /*
663          * A new dentry page is allocated but not able to be written, since its
664          * new inode page couldn't be allocated due to -ENOSPC.
665          * In such the case, its blkaddr can be remained as NEW_ADDR.
666          * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
667          */
668         if (dn.data_blkaddr == NEW_ADDR) {
669                 zero_user_segment(page, 0, PAGE_SIZE);
670                 if (!PageUptodate(page))
671                         SetPageUptodate(page);
672                 unlock_page(page);
673                 return page;
674         }
675
676         err = f2fs_submit_page_read(inode, page, dn.data_blkaddr);
677         if (err)
678                 goto put_err;
679         return page;
680
681 put_err:
682         f2fs_put_page(page, 1);
683         return ERR_PTR(err);
684 }
685
686 struct page *find_data_page(struct inode *inode, pgoff_t index)
687 {
688         struct address_space *mapping = inode->i_mapping;
689         struct page *page;
690
691         page = find_get_page(mapping, index);
692         if (page && PageUptodate(page))
693                 return page;
694         f2fs_put_page(page, 0);
695
696         page = get_read_data_page(inode, index, 0, false);
697         if (IS_ERR(page))
698                 return page;
699
700         if (PageUptodate(page))
701                 return page;
702
703         wait_on_page_locked(page);
704         if (unlikely(!PageUptodate(page))) {
705                 f2fs_put_page(page, 0);
706                 return ERR_PTR(-EIO);
707         }
708         return page;
709 }
710
711 /*
712  * If it tries to access a hole, return an error.
713  * Because, the callers, functions in dir.c and GC, should be able to know
714  * whether this page exists or not.
715  */
716 struct page *get_lock_data_page(struct inode *inode, pgoff_t index,
717                                                         bool for_write)
718 {
719         struct address_space *mapping = inode->i_mapping;
720         struct page *page;
721 repeat:
722         page = get_read_data_page(inode, index, 0, for_write);
723         if (IS_ERR(page))
724                 return page;
725
726         /* wait for read completion */
727         lock_page(page);
728         if (unlikely(page->mapping != mapping)) {
729                 f2fs_put_page(page, 1);
730                 goto repeat;
731         }
732         if (unlikely(!PageUptodate(page))) {
733                 f2fs_put_page(page, 1);
734                 return ERR_PTR(-EIO);
735         }
736         return page;
737 }
738
739 /*
740  * Caller ensures that this data page is never allocated.
741  * A new zero-filled data page is allocated in the page cache.
742  *
743  * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
744  * f2fs_unlock_op().
745  * Note that, ipage is set only by make_empty_dir, and if any error occur,
746  * ipage should be released by this function.
747  */
748 struct page *get_new_data_page(struct inode *inode,
749                 struct page *ipage, pgoff_t index, bool new_i_size)
750 {
751         struct address_space *mapping = inode->i_mapping;
752         struct page *page;
753         struct dnode_of_data dn;
754         int err;
755
756         page = f2fs_grab_cache_page(mapping, index, true);
757         if (!page) {
758                 /*
759                  * before exiting, we should make sure ipage will be released
760                  * if any error occur.
761                  */
762                 f2fs_put_page(ipage, 1);
763                 return ERR_PTR(-ENOMEM);
764         }
765
766         set_new_dnode(&dn, inode, ipage, NULL, 0);
767         err = f2fs_reserve_block(&dn, index);
768         if (err) {
769                 f2fs_put_page(page, 1);
770                 return ERR_PTR(err);
771         }
772         if (!ipage)
773                 f2fs_put_dnode(&dn);
774
775         if (PageUptodate(page))
776                 goto got_it;
777
778         if (dn.data_blkaddr == NEW_ADDR) {
779                 zero_user_segment(page, 0, PAGE_SIZE);
780                 if (!PageUptodate(page))
781                         SetPageUptodate(page);
782         } else {
783                 f2fs_put_page(page, 1);
784
785                 /* if ipage exists, blkaddr should be NEW_ADDR */
786                 f2fs_bug_on(F2FS_I_SB(inode), ipage);
787                 page = get_lock_data_page(inode, index, true);
788                 if (IS_ERR(page))
789                         return page;
790         }
791 got_it:
792         if (new_i_size && i_size_read(inode) <
793                                 ((loff_t)(index + 1) << PAGE_SHIFT))
794                 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
795         return page;
796 }
797
798 static int __allocate_data_block(struct dnode_of_data *dn)
799 {
800         struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
801         struct f2fs_summary sum;
802         struct node_info ni;
803         pgoff_t fofs;
804         blkcnt_t count = 1;
805         int err;
806
807         if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
808                 return -EPERM;
809
810         dn->data_blkaddr = datablock_addr(dn->inode,
811                                 dn->node_page, dn->ofs_in_node);
812         if (dn->data_blkaddr == NEW_ADDR)
813                 goto alloc;
814
815         if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
816                 return err;
817
818 alloc:
819         get_node_info(sbi, dn->nid, &ni);
820         set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
821
822         allocate_data_block(sbi, NULL, dn->data_blkaddr, &dn->data_blkaddr,
823                                         &sum, CURSEG_WARM_DATA, NULL, false);
824         set_data_blkaddr(dn);
825
826         /* update i_size */
827         fofs = start_bidx_of_node(ofs_of_node(dn->node_page), dn->inode) +
828                                                         dn->ofs_in_node;
829         if (i_size_read(dn->inode) < ((loff_t)(fofs + 1) << PAGE_SHIFT))
830                 f2fs_i_size_write(dn->inode,
831                                 ((loff_t)(fofs + 1) << PAGE_SHIFT));
832         return 0;
833 }
834
835 static inline bool __force_buffered_io(struct inode *inode, int rw)
836 {
837         return (f2fs_encrypted_file(inode) ||
838                         (rw == WRITE && test_opt(F2FS_I_SB(inode), LFS)) ||
839                         F2FS_I_SB(inode)->s_ndevs);
840 }
841
842 int f2fs_preallocate_blocks(struct kiocb *iocb, struct iov_iter *from)
843 {
844         struct inode *inode = file_inode(iocb->ki_filp);
845         struct f2fs_map_blocks map;
846         int err = 0;
847
848         if (is_inode_flag_set(inode, FI_NO_PREALLOC))
849                 return 0;
850
851         map.m_lblk = F2FS_BLK_ALIGN(iocb->ki_pos);
852         map.m_len = F2FS_BYTES_TO_BLK(iocb->ki_pos + iov_iter_count(from));
853         if (map.m_len > map.m_lblk)
854                 map.m_len -= map.m_lblk;
855         else
856                 map.m_len = 0;
857
858         map.m_next_pgofs = NULL;
859
860         if (iocb->ki_flags & IOCB_DIRECT) {
861                 err = f2fs_convert_inline_inode(inode);
862                 if (err)
863                         return err;
864                 return f2fs_map_blocks(inode, &map, 1,
865                         __force_buffered_io(inode, WRITE) ?
866                                 F2FS_GET_BLOCK_PRE_AIO :
867                                 F2FS_GET_BLOCK_PRE_DIO);
868         }
869         if (iocb->ki_pos + iov_iter_count(from) > MAX_INLINE_DATA(inode)) {
870                 err = f2fs_convert_inline_inode(inode);
871                 if (err)
872                         return err;
873         }
874         if (!f2fs_has_inline_data(inode))
875                 return f2fs_map_blocks(inode, &map, 1, F2FS_GET_BLOCK_PRE_AIO);
876         return err;
877 }
878
879 static inline void __do_map_lock(struct f2fs_sb_info *sbi, int flag, bool lock)
880 {
881         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
882                 if (lock)
883                         down_read(&sbi->node_change);
884                 else
885                         up_read(&sbi->node_change);
886         } else {
887                 if (lock)
888                         f2fs_lock_op(sbi);
889                 else
890                         f2fs_unlock_op(sbi);
891         }
892 }
893
894 /*
895  * f2fs_map_blocks() now supported readahead/bmap/rw direct_IO with
896  * f2fs_map_blocks structure.
897  * If original data blocks are allocated, then give them to blockdev.
898  * Otherwise,
899  *     a. preallocate requested block addresses
900  *     b. do not use extent cache for better performance
901  *     c. give the block addresses to blockdev
902  */
903 int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map,
904                                                 int create, int flag)
905 {
906         unsigned int maxblocks = map->m_len;
907         struct dnode_of_data dn;
908         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
909         int mode = create ? ALLOC_NODE : LOOKUP_NODE;
910         pgoff_t pgofs, end_offset, end;
911         int err = 0, ofs = 1;
912         unsigned int ofs_in_node, last_ofs_in_node;
913         blkcnt_t prealloc;
914         struct extent_info ei = {0,0,0};
915         block_t blkaddr;
916
917         if (!maxblocks)
918                 return 0;
919
920         map->m_len = 0;
921         map->m_flags = 0;
922
923         /* it only supports block size == page size */
924         pgofs = (pgoff_t)map->m_lblk;
925         end = pgofs + maxblocks;
926
927         if (!create && f2fs_lookup_extent_cache(inode, pgofs, &ei)) {
928                 map->m_pblk = ei.blk + pgofs - ei.fofs;
929                 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgofs);
930                 map->m_flags = F2FS_MAP_MAPPED;
931                 goto out;
932         }
933
934 next_dnode:
935         if (create)
936                 __do_map_lock(sbi, flag, true);
937
938         /* When reading holes, we need its node page */
939         set_new_dnode(&dn, inode, NULL, NULL, 0);
940         err = get_dnode_of_data(&dn, pgofs, mode);
941         if (err) {
942                 if (flag == F2FS_GET_BLOCK_BMAP)
943                         map->m_pblk = 0;
944                 if (err == -ENOENT) {
945                         err = 0;
946                         if (map->m_next_pgofs)
947                                 *map->m_next_pgofs =
948                                         get_next_page_offset(&dn, pgofs);
949                 }
950                 goto unlock_out;
951         }
952
953         prealloc = 0;
954         last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
955         end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
956
957 next_block:
958         blkaddr = datablock_addr(dn.inode, dn.node_page, dn.ofs_in_node);
959
960         if (__is_valid_data_blkaddr(blkaddr) &&
961                 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
962                 err = -EFSCORRUPTED;
963                 goto sync_out;
964         }
965
966         if (!is_valid_data_blkaddr(sbi, blkaddr)) {
967                 if (create) {
968                         if (unlikely(f2fs_cp_error(sbi))) {
969                                 err = -EIO;
970                                 goto sync_out;
971                         }
972                         if (flag == F2FS_GET_BLOCK_PRE_AIO) {
973                                 if (blkaddr == NULL_ADDR) {
974                                         prealloc++;
975                                         last_ofs_in_node = dn.ofs_in_node;
976                                 }
977                         } else {
978                                 err = __allocate_data_block(&dn);
979                                 if (!err)
980                                         set_inode_flag(inode, FI_APPEND_WRITE);
981                         }
982                         if (err)
983                                 goto sync_out;
984                         map->m_flags |= F2FS_MAP_NEW;
985                         blkaddr = dn.data_blkaddr;
986                 } else {
987                         if (flag == F2FS_GET_BLOCK_BMAP) {
988                                 map->m_pblk = 0;
989                                 goto sync_out;
990                         }
991                         if (flag == F2FS_GET_BLOCK_FIEMAP &&
992                                                 blkaddr == NULL_ADDR) {
993                                 if (map->m_next_pgofs)
994                                         *map->m_next_pgofs = pgofs + 1;
995                         }
996                         if (flag != F2FS_GET_BLOCK_FIEMAP ||
997                                                 blkaddr != NEW_ADDR)
998                                 goto sync_out;
999                 }
1000         }
1001
1002         if (flag == F2FS_GET_BLOCK_PRE_AIO)
1003                 goto skip;
1004
1005         if (map->m_len == 0) {
1006                 /* preallocated unwritten block should be mapped for fiemap. */
1007                 if (blkaddr == NEW_ADDR)
1008                         map->m_flags |= F2FS_MAP_UNWRITTEN;
1009                 map->m_flags |= F2FS_MAP_MAPPED;
1010
1011                 map->m_pblk = blkaddr;
1012                 map->m_len = 1;
1013         } else if ((map->m_pblk != NEW_ADDR &&
1014                         blkaddr == (map->m_pblk + ofs)) ||
1015                         (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1016                         flag == F2FS_GET_BLOCK_PRE_DIO) {
1017                 ofs++;
1018                 map->m_len++;
1019         } else {
1020                 goto sync_out;
1021         }
1022
1023 skip:
1024         dn.ofs_in_node++;
1025         pgofs++;
1026
1027         /* preallocate blocks in batch for one dnode page */
1028         if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1029                         (pgofs == end || dn.ofs_in_node == end_offset)) {
1030
1031                 dn.ofs_in_node = ofs_in_node;
1032                 err = reserve_new_blocks(&dn, prealloc);
1033                 if (err)
1034                         goto sync_out;
1035
1036                 map->m_len += dn.ofs_in_node - ofs_in_node;
1037                 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1038                         err = -ENOSPC;
1039                         goto sync_out;
1040                 }
1041                 dn.ofs_in_node = end_offset;
1042         }
1043
1044         if (pgofs >= end)
1045                 goto sync_out;
1046         else if (dn.ofs_in_node < end_offset)
1047                 goto next_block;
1048
1049         f2fs_put_dnode(&dn);
1050
1051         if (create) {
1052                 __do_map_lock(sbi, flag, false);
1053                 f2fs_balance_fs(sbi, dn.node_changed);
1054         }
1055         goto next_dnode;
1056
1057 sync_out:
1058         f2fs_put_dnode(&dn);
1059 unlock_out:
1060         if (create) {
1061                 __do_map_lock(sbi, flag, false);
1062                 f2fs_balance_fs(sbi, dn.node_changed);
1063         }
1064 out:
1065         trace_f2fs_map_blocks(inode, map, err);
1066         return err;
1067 }
1068
1069 static int __get_data_block(struct inode *inode, sector_t iblock,
1070                         struct buffer_head *bh, int create, int flag,
1071                         pgoff_t *next_pgofs)
1072 {
1073         struct f2fs_map_blocks map;
1074         int err;
1075
1076         map.m_lblk = iblock;
1077         map.m_len = bh->b_size >> inode->i_blkbits;
1078         map.m_next_pgofs = next_pgofs;
1079
1080         err = f2fs_map_blocks(inode, &map, create, flag);
1081         if (!err) {
1082                 map_bh(bh, inode->i_sb, map.m_pblk);
1083                 bh->b_state = (bh->b_state & ~F2FS_MAP_FLAGS) | map.m_flags;
1084                 bh->b_size = (u64)map.m_len << inode->i_blkbits;
1085         }
1086         return err;
1087 }
1088
1089 static int get_data_block(struct inode *inode, sector_t iblock,
1090                         struct buffer_head *bh_result, int create, int flag,
1091                         pgoff_t *next_pgofs)
1092 {
1093         return __get_data_block(inode, iblock, bh_result, create,
1094                                                         flag, next_pgofs);
1095 }
1096
1097 static int get_data_block_dio(struct inode *inode, sector_t iblock,
1098                         struct buffer_head *bh_result, int create)
1099 {
1100         return __get_data_block(inode, iblock, bh_result, create,
1101                                                 F2FS_GET_BLOCK_DEFAULT, NULL);
1102 }
1103
1104 static int get_data_block_bmap(struct inode *inode, sector_t iblock,
1105                         struct buffer_head *bh_result, int create)
1106 {
1107         /* Block number less than F2FS MAX BLOCKS */
1108         if (unlikely(iblock >= F2FS_I_SB(inode)->max_file_blocks))
1109                 return -EFBIG;
1110
1111         return __get_data_block(inode, iblock, bh_result, create,
1112                                                 F2FS_GET_BLOCK_BMAP, NULL);
1113 }
1114
1115 static inline sector_t logical_to_blk(struct inode *inode, loff_t offset)
1116 {
1117         return (offset >> inode->i_blkbits);
1118 }
1119
1120 static inline loff_t blk_to_logical(struct inode *inode, sector_t blk)
1121 {
1122         return (blk << inode->i_blkbits);
1123 }
1124
1125 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1126                 u64 start, u64 len)
1127 {
1128         struct buffer_head map_bh;
1129         sector_t start_blk, last_blk;
1130         pgoff_t next_pgofs;
1131         u64 logical = 0, phys = 0, size = 0;
1132         u32 flags = 0;
1133         int ret = 0;
1134
1135         ret = fiemap_check_flags(fieinfo, FIEMAP_FLAG_SYNC);
1136         if (ret)
1137                 return ret;
1138
1139         if (f2fs_has_inline_data(inode)) {
1140                 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1141                 if (ret != -EAGAIN)
1142                         return ret;
1143         }
1144
1145         inode_lock(inode);
1146
1147         if (logical_to_blk(inode, len) == 0)
1148                 len = blk_to_logical(inode, 1);
1149
1150         start_blk = logical_to_blk(inode, start);
1151         last_blk = logical_to_blk(inode, start + len - 1);
1152
1153 next:
1154         memset(&map_bh, 0, sizeof(struct buffer_head));
1155         map_bh.b_size = len;
1156
1157         ret = get_data_block(inode, start_blk, &map_bh, 0,
1158                                         F2FS_GET_BLOCK_FIEMAP, &next_pgofs);
1159         if (ret)
1160                 goto out;
1161
1162         /* HOLE */
1163         if (!buffer_mapped(&map_bh)) {
1164                 start_blk = next_pgofs;
1165
1166                 if (blk_to_logical(inode, start_blk) < blk_to_logical(inode,
1167                                         F2FS_I_SB(inode)->max_file_blocks))
1168                         goto prep_next;
1169
1170                 flags |= FIEMAP_EXTENT_LAST;
1171         }
1172
1173         if (size) {
1174                 if (f2fs_encrypted_inode(inode))
1175                         flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
1176
1177                 ret = fiemap_fill_next_extent(fieinfo, logical,
1178                                 phys, size, flags);
1179         }
1180
1181         if (start_blk > last_blk || ret)
1182                 goto out;
1183
1184         logical = blk_to_logical(inode, start_blk);
1185         phys = blk_to_logical(inode, map_bh.b_blocknr);
1186         size = map_bh.b_size;
1187         flags = 0;
1188         if (buffer_unwritten(&map_bh))
1189                 flags = FIEMAP_EXTENT_UNWRITTEN;
1190
1191         start_blk += logical_to_blk(inode, size);
1192
1193 prep_next:
1194         cond_resched();
1195         if (fatal_signal_pending(current))
1196                 ret = -EINTR;
1197         else
1198                 goto next;
1199 out:
1200         if (ret == 1)
1201                 ret = 0;
1202
1203         inode_unlock(inode);
1204         return ret;
1205 }
1206
1207 /*
1208  * This function was originally taken from fs/mpage.c, and customized for f2fs.
1209  * Major change was from block_size == page_size in f2fs by default.
1210  */
1211 static int f2fs_mpage_readpages(struct address_space *mapping,
1212                         struct list_head *pages, struct page *page,
1213                         unsigned nr_pages)
1214 {
1215         struct bio *bio = NULL;
1216         unsigned page_idx;
1217         sector_t last_block_in_bio = 0;
1218         struct inode *inode = mapping->host;
1219         const unsigned blkbits = inode->i_blkbits;
1220         const unsigned blocksize = 1 << blkbits;
1221         sector_t block_in_file;
1222         sector_t last_block;
1223         sector_t last_block_in_file;
1224         sector_t block_nr;
1225         struct f2fs_map_blocks map;
1226
1227         map.m_pblk = 0;
1228         map.m_lblk = 0;
1229         map.m_len = 0;
1230         map.m_flags = 0;
1231         map.m_next_pgofs = NULL;
1232
1233         for (page_idx = 0; nr_pages; page_idx++, nr_pages--) {
1234
1235                 if (pages) {
1236                         page = list_last_entry(pages, struct page, lru);
1237
1238                         prefetchw(&page->flags);
1239                         list_del(&page->lru);
1240                         if (add_to_page_cache_lru(page, mapping,
1241                                                   page->index,
1242                                                   readahead_gfp_mask(mapping)))
1243                                 goto next_page;
1244                 }
1245
1246                 block_in_file = (sector_t)page->index;
1247                 last_block = block_in_file + nr_pages;
1248                 last_block_in_file = (i_size_read(inode) + blocksize - 1) >>
1249                                                                 blkbits;
1250                 if (last_block > last_block_in_file)
1251                         last_block = last_block_in_file;
1252
1253                 /*
1254                  * Map blocks using the previous result first.
1255                  */
1256                 if ((map.m_flags & F2FS_MAP_MAPPED) &&
1257                                 block_in_file > map.m_lblk &&
1258                                 block_in_file < (map.m_lblk + map.m_len))
1259                         goto got_it;
1260
1261                 /*
1262                  * Then do more f2fs_map_blocks() calls until we are
1263                  * done with this page.
1264                  */
1265                 map.m_flags = 0;
1266
1267                 if (block_in_file < last_block) {
1268                         map.m_lblk = block_in_file;
1269                         map.m_len = last_block - block_in_file;
1270
1271                         if (f2fs_map_blocks(inode, &map, 0,
1272                                                 F2FS_GET_BLOCK_DEFAULT))
1273                                 goto set_error_page;
1274                 }
1275 got_it:
1276                 if ((map.m_flags & F2FS_MAP_MAPPED)) {
1277                         block_nr = map.m_pblk + block_in_file - map.m_lblk;
1278                         SetPageMappedToDisk(page);
1279
1280                         if (!PageUptodate(page) && !cleancache_get_page(page)) {
1281                                 SetPageUptodate(page);
1282                                 goto confused;
1283                         }
1284
1285                         if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
1286                                                                 DATA_GENERIC))
1287                                 goto set_error_page;
1288                 } else {
1289                         zero_user_segment(page, 0, PAGE_SIZE);
1290                         if (!PageUptodate(page))
1291                                 SetPageUptodate(page);
1292                         unlock_page(page);
1293                         goto next_page;
1294                 }
1295
1296                 /*
1297                  * This page will go to BIO.  Do we need to send this
1298                  * BIO off first?
1299                  */
1300                 if (bio && (last_block_in_bio != block_nr - 1 ||
1301                         !__same_bdev(F2FS_I_SB(inode), block_nr, bio))) {
1302 submit_and_realloc:
1303                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1304                         bio = NULL;
1305                 }
1306                 if (bio == NULL) {
1307                         bio = f2fs_grab_read_bio(inode, block_nr, nr_pages);
1308                         if (IS_ERR(bio)) {
1309                                 bio = NULL;
1310                                 goto set_error_page;
1311                         }
1312                 }
1313
1314                 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
1315                         goto submit_and_realloc;
1316
1317                 last_block_in_bio = block_nr;
1318                 goto next_page;
1319 set_error_page:
1320                 SetPageError(page);
1321                 zero_user_segment(page, 0, PAGE_SIZE);
1322                 unlock_page(page);
1323                 goto next_page;
1324 confused:
1325                 if (bio) {
1326                         __submit_bio(F2FS_I_SB(inode), bio, DATA);
1327                         bio = NULL;
1328                 }
1329                 unlock_page(page);
1330 next_page:
1331                 if (pages)
1332                         put_page(page);
1333         }
1334         BUG_ON(pages && !list_empty(pages));
1335         if (bio)
1336                 __submit_bio(F2FS_I_SB(inode), bio, DATA);
1337         return 0;
1338 }
1339
1340 static int f2fs_read_data_page(struct file *file, struct page *page)
1341 {
1342         struct inode *inode = page->mapping->host;
1343         int ret = -EAGAIN;
1344
1345         trace_f2fs_readpage(page, DATA);
1346
1347         /* If the file has inline data, try to read it directly */
1348         if (f2fs_has_inline_data(inode))
1349                 ret = f2fs_read_inline_data(inode, page);
1350         if (ret == -EAGAIN)
1351                 ret = f2fs_mpage_readpages(page->mapping, NULL, page, 1);
1352         return ret;
1353 }
1354
1355 static int f2fs_read_data_pages(struct file *file,
1356                         struct address_space *mapping,
1357                         struct list_head *pages, unsigned nr_pages)
1358 {
1359         struct inode *inode = file->f_mapping->host;
1360         struct page *page = list_last_entry(pages, struct page, lru);
1361
1362         trace_f2fs_readpages(inode, page, nr_pages);
1363
1364         /* If the file has inline data, skip readpages */
1365         if (f2fs_has_inline_data(inode))
1366                 return 0;
1367
1368         return f2fs_mpage_readpages(mapping, pages, NULL, nr_pages);
1369 }
1370
1371 static int encrypt_one_page(struct f2fs_io_info *fio)
1372 {
1373         struct inode *inode = fio->page->mapping->host;
1374         gfp_t gfp_flags = GFP_NOFS;
1375
1376         if (!f2fs_encrypted_file(inode))
1377                 return 0;
1378
1379         /* wait for GCed encrypted page writeback */
1380         f2fs_wait_on_block_writeback(fio->sbi, fio->old_blkaddr);
1381
1382 retry_encrypt:
1383         fio->encrypted_page = fscrypt_encrypt_page(inode, fio->page,
1384                         PAGE_SIZE, 0, fio->page->index, gfp_flags);
1385         if (!IS_ERR(fio->encrypted_page))
1386                 return 0;
1387
1388         /* flush pending IOs and wait for a while in the ENOMEM case */
1389         if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
1390                 f2fs_flush_merged_writes(fio->sbi);
1391                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1392                 gfp_flags |= __GFP_NOFAIL;
1393                 goto retry_encrypt;
1394         }
1395         return PTR_ERR(fio->encrypted_page);
1396 }
1397
1398 static inline bool need_inplace_update(struct f2fs_io_info *fio)
1399 {
1400         struct inode *inode = fio->page->mapping->host;
1401
1402         if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
1403                 return false;
1404         if (is_cold_data(fio->page))
1405                 return false;
1406         if (IS_ATOMIC_WRITTEN_PAGE(fio->page))
1407                 return false;
1408
1409         return need_inplace_update_policy(inode, fio);
1410 }
1411
1412 int do_write_data_page(struct f2fs_io_info *fio)
1413 {
1414         struct page *page = fio->page;
1415         struct inode *inode = page->mapping->host;
1416         struct dnode_of_data dn;
1417         struct extent_info ei = {0,0,0};
1418         bool ipu_force = false;
1419         int err = 0;
1420
1421         set_new_dnode(&dn, inode, NULL, NULL, 0);
1422         if (need_inplace_update(fio) &&
1423                         f2fs_lookup_extent_cache(inode, page->index, &ei)) {
1424                 fio->old_blkaddr = ei.blk + page->index - ei.fofs;
1425
1426                 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1427                                                         DATA_GENERIC))
1428                         return -EFSCORRUPTED;
1429
1430                 ipu_force = true;
1431                 fio->need_lock = LOCK_DONE;
1432                 goto got_it;
1433         }
1434
1435         /* Deadlock due to between page->lock and f2fs_lock_op */
1436         if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
1437                 return -EAGAIN;
1438
1439         err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
1440         if (err)
1441                 goto out;
1442
1443         fio->old_blkaddr = dn.data_blkaddr;
1444
1445         /* This page is already truncated */
1446         if (fio->old_blkaddr == NULL_ADDR) {
1447                 ClearPageUptodate(page);
1448                 clear_cold_data(page);
1449                 goto out_writepage;
1450         }
1451 got_it:
1452         if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
1453                 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
1454                                                         DATA_GENERIC)) {
1455                 err = -EFSCORRUPTED;
1456                 goto out_writepage;
1457         }
1458         /*
1459          * If current allocation needs SSR,
1460          * it had better in-place writes for updated data.
1461          */
1462         if (ipu_force || (is_valid_data_blkaddr(fio->sbi, fio->old_blkaddr) &&
1463                                         need_inplace_update(fio))) {
1464                 err = encrypt_one_page(fio);
1465                 if (err)
1466                         goto out_writepage;
1467
1468                 set_page_writeback(page);
1469                 f2fs_put_dnode(&dn);
1470                 if (fio->need_lock == LOCK_REQ)
1471                         f2fs_unlock_op(fio->sbi);
1472                 err = rewrite_data_page(fio);
1473                 trace_f2fs_do_write_data_page(fio->page, IPU);
1474                 set_inode_flag(inode, FI_UPDATE_WRITE);
1475                 return err;
1476         }
1477
1478         if (fio->need_lock == LOCK_RETRY) {
1479                 if (!f2fs_trylock_op(fio->sbi)) {
1480                         err = -EAGAIN;
1481                         goto out_writepage;
1482                 }
1483                 fio->need_lock = LOCK_REQ;
1484         }
1485
1486         err = encrypt_one_page(fio);
1487         if (err)
1488                 goto out_writepage;
1489
1490         set_page_writeback(page);
1491
1492         /* LFS mode write path */
1493         write_data_page(&dn, fio);
1494         trace_f2fs_do_write_data_page(page, OPU);
1495         set_inode_flag(inode, FI_APPEND_WRITE);
1496         if (page->index == 0)
1497                 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
1498 out_writepage:
1499         f2fs_put_dnode(&dn);
1500 out:
1501         if (fio->need_lock == LOCK_REQ)
1502                 f2fs_unlock_op(fio->sbi);
1503         return err;
1504 }
1505
1506 static int __write_data_page(struct page *page, bool *submitted,
1507                                 struct writeback_control *wbc,
1508                                 enum iostat_type io_type)
1509 {
1510         struct inode *inode = page->mapping->host;
1511         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1512         loff_t i_size = i_size_read(inode);
1513         const pgoff_t end_index = ((unsigned long long) i_size)
1514                                                         >> PAGE_SHIFT;
1515         loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
1516         unsigned offset = 0;
1517         bool need_balance_fs = false;
1518         int err = 0;
1519         struct f2fs_io_info fio = {
1520                 .sbi = sbi,
1521                 .type = DATA,
1522                 .op = REQ_OP_WRITE,
1523                 .op_flags = wbc_to_write_flags(wbc),
1524                 .old_blkaddr = NULL_ADDR,
1525                 .page = page,
1526                 .encrypted_page = NULL,
1527                 .submitted = false,
1528                 .need_lock = LOCK_RETRY,
1529                 .io_type = io_type,
1530         };
1531
1532         trace_f2fs_writepage(page, DATA);
1533
1534         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1535                 goto redirty_out;
1536
1537         if (page->index < end_index)
1538                 goto write;
1539
1540         /*
1541          * If the offset is out-of-range of file size,
1542          * this page does not have to be written to disk.
1543          */
1544         offset = i_size & (PAGE_SIZE - 1);
1545         if ((page->index >= end_index + 1) || !offset)
1546                 goto out;
1547
1548         zero_user_segment(page, offset, PAGE_SIZE);
1549 write:
1550         if (f2fs_is_drop_cache(inode))
1551                 goto out;
1552         /* we should not write 0'th page having journal header */
1553         if (f2fs_is_volatile_file(inode) && (!page->index ||
1554                         (!wbc->for_reclaim &&
1555                         available_free_memory(sbi, BASE_CHECK))))
1556                 goto redirty_out;
1557
1558         /* we should bypass data pages to proceed the kworkder jobs */
1559         if (unlikely(f2fs_cp_error(sbi))) {
1560                 mapping_set_error(page->mapping, -EIO);
1561                 goto out;
1562         }
1563
1564         /* Dentry blocks are controlled by checkpoint */
1565         if (S_ISDIR(inode->i_mode)) {
1566                 fio.need_lock = LOCK_DONE;
1567                 err = do_write_data_page(&fio);
1568                 goto done;
1569         }
1570
1571         if (!wbc->for_reclaim)
1572                 need_balance_fs = true;
1573         else if (has_not_enough_free_secs(sbi, 0, 0))
1574                 goto redirty_out;
1575         else
1576                 set_inode_flag(inode, FI_HOT_DATA);
1577
1578         err = -EAGAIN;
1579         if (f2fs_has_inline_data(inode)) {
1580                 err = f2fs_write_inline_data(inode, page);
1581                 if (!err)
1582                         goto out;
1583         }
1584
1585         if (err == -EAGAIN) {
1586                 err = do_write_data_page(&fio);
1587                 if (err == -EAGAIN) {
1588                         fio.need_lock = LOCK_REQ;
1589                         err = do_write_data_page(&fio);
1590                 }
1591         }
1592         if (F2FS_I(inode)->last_disk_size < psize)
1593                 F2FS_I(inode)->last_disk_size = psize;
1594
1595 done:
1596         if (err && err != -ENOENT)
1597                 goto redirty_out;
1598
1599 out:
1600         inode_dec_dirty_pages(inode);
1601         if (err) {
1602                 ClearPageUptodate(page);
1603                 clear_cold_data(page);
1604         }
1605
1606         if (wbc->for_reclaim) {
1607                 f2fs_submit_merged_write_cond(sbi, inode, 0, page->index, DATA);
1608                 clear_inode_flag(inode, FI_HOT_DATA);
1609                 remove_dirty_inode(inode);
1610                 submitted = NULL;
1611         }
1612
1613         unlock_page(page);
1614         if (!S_ISDIR(inode->i_mode))
1615                 f2fs_balance_fs(sbi, need_balance_fs);
1616
1617         if (unlikely(f2fs_cp_error(sbi))) {
1618                 f2fs_submit_merged_write(sbi, DATA);
1619                 submitted = NULL;
1620         }
1621
1622         if (submitted)
1623                 *submitted = fio.submitted;
1624
1625         return 0;
1626
1627 redirty_out:
1628         redirty_page_for_writepage(wbc, page);
1629         /*
1630          * pageout() in MM traslates EAGAIN, so calls handle_write_error()
1631          * -> mapping_set_error() -> set_bit(AS_EIO, ...).
1632          * file_write_and_wait_range() will see EIO error, which is critical
1633          * to return value of fsync() followed by atomic_write failure to user.
1634          */
1635         if (!err || wbc->for_reclaim)
1636                 return AOP_WRITEPAGE_ACTIVATE;
1637         unlock_page(page);
1638         return err;
1639 }
1640
1641 static int f2fs_write_data_page(struct page *page,
1642                                         struct writeback_control *wbc)
1643 {
1644         return __write_data_page(page, NULL, wbc, FS_DATA_IO);
1645 }
1646
1647 /*
1648  * This function was copied from write_cche_pages from mm/page-writeback.c.
1649  * The major change is making write step of cold data page separately from
1650  * warm/hot data page.
1651  */
1652 static int f2fs_write_cache_pages(struct address_space *mapping,
1653                                         struct writeback_control *wbc,
1654                                         enum iostat_type io_type)
1655 {
1656         int ret = 0;
1657         int done = 0;
1658         struct pagevec pvec;
1659         int nr_pages;
1660         pgoff_t uninitialized_var(writeback_index);
1661         pgoff_t index;
1662         pgoff_t end;            /* Inclusive */
1663         pgoff_t done_index;
1664         pgoff_t last_idx = ULONG_MAX;
1665         int cycled;
1666         int range_whole = 0;
1667         int tag;
1668
1669         pagevec_init(&pvec, 0);
1670
1671         if (get_dirty_pages(mapping->host) <=
1672                                 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
1673                 set_inode_flag(mapping->host, FI_HOT_DATA);
1674         else
1675                 clear_inode_flag(mapping->host, FI_HOT_DATA);
1676
1677         if (wbc->range_cyclic) {
1678                 writeback_index = mapping->writeback_index; /* prev offset */
1679                 index = writeback_index;
1680                 if (index == 0)
1681                         cycled = 1;
1682                 else
1683                         cycled = 0;
1684                 end = -1;
1685         } else {
1686                 index = wbc->range_start >> PAGE_SHIFT;
1687                 end = wbc->range_end >> PAGE_SHIFT;
1688                 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1689                         range_whole = 1;
1690                 cycled = 1; /* ignore range_cyclic tests */
1691         }
1692         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1693                 tag = PAGECACHE_TAG_TOWRITE;
1694         else
1695                 tag = PAGECACHE_TAG_DIRTY;
1696 retry:
1697         if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1698                 tag_pages_for_writeback(mapping, index, end);
1699         done_index = index;
1700         while (!done && (index <= end)) {
1701                 int i;
1702
1703                 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1704                               min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1);
1705                 if (nr_pages == 0)
1706                         break;
1707
1708                 for (i = 0; i < nr_pages; i++) {
1709                         struct page *page = pvec.pages[i];
1710                         bool submitted = false;
1711
1712                         if (page->index > end) {
1713                                 done = 1;
1714                                 break;
1715                         }
1716
1717                         done_index = page->index;
1718 retry_write:
1719                         lock_page(page);
1720
1721                         if (unlikely(page->mapping != mapping)) {
1722 continue_unlock:
1723                                 unlock_page(page);
1724                                 continue;
1725                         }
1726
1727                         if (!PageDirty(page)) {
1728                                 /* someone wrote it for us */
1729                                 goto continue_unlock;
1730                         }
1731
1732                         if (PageWriteback(page)) {
1733                                 if (wbc->sync_mode != WB_SYNC_NONE)
1734                                         f2fs_wait_on_page_writeback(page,
1735                                                                 DATA, true);
1736                                 else
1737                                         goto continue_unlock;
1738                         }
1739
1740                         BUG_ON(PageWriteback(page));
1741                         if (!clear_page_dirty_for_io(page))
1742                                 goto continue_unlock;
1743
1744                         ret = __write_data_page(page, &submitted, wbc, io_type);
1745                         if (unlikely(ret)) {
1746                                 /*
1747                                  * keep nr_to_write, since vfs uses this to
1748                                  * get # of written pages.
1749                                  */
1750                                 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1751                                         unlock_page(page);
1752                                         ret = 0;
1753                                         continue;
1754                                 } else if (ret == -EAGAIN) {
1755                                         ret = 0;
1756                                         if (wbc->sync_mode == WB_SYNC_ALL) {
1757                                                 cond_resched();
1758                                                 congestion_wait(BLK_RW_ASYNC,
1759                                                                         HZ/50);
1760                                                 goto retry_write;
1761                                         }
1762                                         continue;
1763                                 }
1764                                 done_index = page->index + 1;
1765                                 done = 1;
1766                                 break;
1767                         } else if (submitted) {
1768                                 last_idx = page->index;
1769                         }
1770
1771                         /* give a priority to WB_SYNC threads */
1772                         if ((atomic_read(&F2FS_M_SB(mapping)->wb_sync_req) ||
1773                                         --wbc->nr_to_write <= 0) &&
1774                                         wbc->sync_mode == WB_SYNC_NONE) {
1775                                 done = 1;
1776                                 break;
1777                         }
1778                 }
1779                 pagevec_release(&pvec);
1780                 cond_resched();
1781         }
1782
1783         if (!cycled && !done) {
1784                 cycled = 1;
1785                 index = 0;
1786                 end = writeback_index - 1;
1787                 goto retry;
1788         }
1789         if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1790                 mapping->writeback_index = done_index;
1791
1792         if (last_idx != ULONG_MAX)
1793                 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
1794                                                 0, last_idx, DATA);
1795
1796         return ret;
1797 }
1798
1799 int __f2fs_write_data_pages(struct address_space *mapping,
1800                                                 struct writeback_control *wbc,
1801                                                 enum iostat_type io_type)
1802 {
1803         struct inode *inode = mapping->host;
1804         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1805         struct blk_plug plug;
1806         int ret;
1807
1808         /* deal with chardevs and other special file */
1809         if (!mapping->a_ops->writepage)
1810                 return 0;
1811
1812         /* skip writing if there is no dirty page in this inode */
1813         if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
1814                 return 0;
1815
1816         /* during POR, we don't need to trigger writepage at all. */
1817         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1818                 goto skip_write;
1819
1820         if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
1821                         get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
1822                         available_free_memory(sbi, DIRTY_DENTS))
1823                 goto skip_write;
1824
1825         /* skip writing during file defragment */
1826         if (is_inode_flag_set(inode, FI_DO_DEFRAG))
1827                 goto skip_write;
1828
1829         trace_f2fs_writepages(mapping->host, wbc, DATA);
1830
1831         /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
1832         if (wbc->sync_mode == WB_SYNC_ALL)
1833                 atomic_inc(&sbi->wb_sync_req);
1834         else if (atomic_read(&sbi->wb_sync_req))
1835                 goto skip_write;
1836
1837         blk_start_plug(&plug);
1838         ret = f2fs_write_cache_pages(mapping, wbc, io_type);
1839         blk_finish_plug(&plug);
1840
1841         if (wbc->sync_mode == WB_SYNC_ALL)
1842                 atomic_dec(&sbi->wb_sync_req);
1843         /*
1844          * if some pages were truncated, we cannot guarantee its mapping->host
1845          * to detect pending bios.
1846          */
1847
1848         remove_dirty_inode(inode);
1849         return ret;
1850
1851 skip_write:
1852         wbc->pages_skipped += get_dirty_pages(inode);
1853         trace_f2fs_writepages(mapping->host, wbc, DATA);
1854         return 0;
1855 }
1856
1857 static int f2fs_write_data_pages(struct address_space *mapping,
1858                             struct writeback_control *wbc)
1859 {
1860         struct inode *inode = mapping->host;
1861
1862         return __f2fs_write_data_pages(mapping, wbc,
1863                         F2FS_I(inode)->cp_task == current ?
1864                         FS_CP_DATA_IO : FS_DATA_IO);
1865 }
1866
1867 static void f2fs_write_failed(struct address_space *mapping, loff_t to)
1868 {
1869         struct inode *inode = mapping->host;
1870         loff_t i_size = i_size_read(inode);
1871
1872         if (to > i_size) {
1873                 down_write(&F2FS_I(inode)->i_mmap_sem);
1874                 truncate_pagecache(inode, i_size);
1875                 truncate_blocks(inode, i_size, true);
1876                 up_write(&F2FS_I(inode)->i_mmap_sem);
1877         }
1878 }
1879
1880 static int prepare_write_begin(struct f2fs_sb_info *sbi,
1881                         struct page *page, loff_t pos, unsigned len,
1882                         block_t *blk_addr, bool *node_changed)
1883 {
1884         struct inode *inode = page->mapping->host;
1885         pgoff_t index = page->index;
1886         struct dnode_of_data dn;
1887         struct page *ipage;
1888         bool locked = false;
1889         struct extent_info ei = {0,0,0};
1890         int err = 0;
1891         int flag;
1892
1893         /*
1894          * we already allocated all the blocks, so we don't need to get
1895          * the block addresses when there is no need to fill the page.
1896          */
1897         if (!f2fs_has_inline_data(inode) && len == PAGE_SIZE &&
1898                         !is_inode_flag_set(inode, FI_NO_PREALLOC))
1899                 return 0;
1900
1901         /* f2fs_lock_op avoids race between write CP and convert_inline_page */
1902         if (f2fs_has_inline_data(inode) && pos + len > MAX_INLINE_DATA(inode))
1903                 flag = F2FS_GET_BLOCK_DEFAULT;
1904         else
1905                 flag = F2FS_GET_BLOCK_PRE_AIO;
1906
1907         if (f2fs_has_inline_data(inode) ||
1908                         (pos & PAGE_MASK) >= i_size_read(inode)) {
1909                 __do_map_lock(sbi, flag, true);
1910                 locked = true;
1911         }
1912 restart:
1913         /* check inline_data */
1914         ipage = get_node_page(sbi, inode->i_ino);
1915         if (IS_ERR(ipage)) {
1916                 err = PTR_ERR(ipage);
1917                 goto unlock_out;
1918         }
1919
1920         set_new_dnode(&dn, inode, ipage, ipage, 0);
1921
1922         if (f2fs_has_inline_data(inode)) {
1923                 if (pos + len <= MAX_INLINE_DATA(inode)) {
1924                         read_inline_data(page, ipage);
1925                         set_inode_flag(inode, FI_DATA_EXIST);
1926                         if (inode->i_nlink)
1927                                 set_inline_node(ipage);
1928                 } else {
1929                         err = f2fs_convert_inline_page(&dn, page);
1930                         if (err)
1931                                 goto out;
1932                         if (dn.data_blkaddr == NULL_ADDR)
1933                                 err = f2fs_get_block(&dn, index);
1934                 }
1935         } else if (locked) {
1936                 err = f2fs_get_block(&dn, index);
1937         } else {
1938                 if (f2fs_lookup_extent_cache(inode, index, &ei)) {
1939                         dn.data_blkaddr = ei.blk + index - ei.fofs;
1940                 } else {
1941                         /* hole case */
1942                         err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
1943                         if (err || dn.data_blkaddr == NULL_ADDR) {
1944                                 f2fs_put_dnode(&dn);
1945                                 __do_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO,
1946                                                                 true);
1947                                 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
1948                                 locked = true;
1949                                 goto restart;
1950                         }
1951                 }
1952         }
1953
1954         /* convert_inline_page can make node_changed */
1955         *blk_addr = dn.data_blkaddr;
1956         *node_changed = dn.node_changed;
1957 out:
1958         f2fs_put_dnode(&dn);
1959 unlock_out:
1960         if (locked)
1961                 __do_map_lock(sbi, flag, false);
1962         return err;
1963 }
1964
1965 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
1966                 loff_t pos, unsigned len, unsigned flags,
1967                 struct page **pagep, void **fsdata)
1968 {
1969         struct inode *inode = mapping->host;
1970         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1971         struct page *page = NULL;
1972         pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
1973         bool need_balance = false;
1974         block_t blkaddr = NULL_ADDR;
1975         int err = 0;
1976
1977         trace_f2fs_write_begin(inode, pos, len, flags);
1978
1979         /*
1980          * We should check this at this moment to avoid deadlock on inode page
1981          * and #0 page. The locking rule for inline_data conversion should be:
1982          * lock_page(page #0) -> lock_page(inode_page)
1983          */
1984         if (index != 0) {
1985                 err = f2fs_convert_inline_inode(inode);
1986                 if (err)
1987                         goto fail;
1988         }
1989 repeat:
1990         /*
1991          * Do not use grab_cache_page_write_begin() to avoid deadlock due to
1992          * wait_for_stable_page. Will wait that below with our IO control.
1993          */
1994         page = pagecache_get_page(mapping, index,
1995                                 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
1996         if (!page) {
1997                 err = -ENOMEM;
1998                 goto fail;
1999         }
2000
2001         *pagep = page;
2002
2003         err = prepare_write_begin(sbi, page, pos, len,
2004                                         &blkaddr, &need_balance);
2005         if (err)
2006                 goto fail;
2007
2008         if (need_balance && has_not_enough_free_secs(sbi, 0, 0)) {
2009                 unlock_page(page);
2010                 f2fs_balance_fs(sbi, true);
2011                 lock_page(page);
2012                 if (page->mapping != mapping) {
2013                         /* The page got truncated from under us */
2014                         f2fs_put_page(page, 1);
2015                         goto repeat;
2016                 }
2017         }
2018
2019         f2fs_wait_on_page_writeback(page, DATA, false);
2020
2021         /* wait for GCed encrypted page writeback */
2022         if (f2fs_encrypted_file(inode))
2023                 f2fs_wait_on_block_writeback(sbi, blkaddr);
2024
2025         if (len == PAGE_SIZE || PageUptodate(page))
2026                 return 0;
2027
2028         if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode)) {
2029                 zero_user_segment(page, len, PAGE_SIZE);
2030                 return 0;
2031         }
2032
2033         if (blkaddr == NEW_ADDR) {
2034                 zero_user_segment(page, 0, PAGE_SIZE);
2035                 SetPageUptodate(page);
2036         } else {
2037                 err = f2fs_submit_page_read(inode, page, blkaddr);
2038                 if (err)
2039                         goto fail;
2040
2041                 lock_page(page);
2042                 if (unlikely(page->mapping != mapping)) {
2043                         f2fs_put_page(page, 1);
2044                         goto repeat;
2045                 }
2046                 if (unlikely(!PageUptodate(page))) {
2047                         err = -EIO;
2048                         goto fail;
2049                 }
2050         }
2051         return 0;
2052
2053 fail:
2054         f2fs_put_page(page, 1);
2055         f2fs_write_failed(mapping, pos + len);
2056         return err;
2057 }
2058
2059 static int f2fs_write_end(struct file *file,
2060                         struct address_space *mapping,
2061                         loff_t pos, unsigned len, unsigned copied,
2062                         struct page *page, void *fsdata)
2063 {
2064         struct inode *inode = page->mapping->host;
2065
2066         trace_f2fs_write_end(inode, pos, len, copied);
2067
2068         /*
2069          * This should be come from len == PAGE_SIZE, and we expect copied
2070          * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
2071          * let generic_perform_write() try to copy data again through copied=0.
2072          */
2073         if (!PageUptodate(page)) {
2074                 if (unlikely(copied != len))
2075                         copied = 0;
2076                 else
2077                         SetPageUptodate(page);
2078         }
2079         if (!copied)
2080                 goto unlock_out;
2081
2082         set_page_dirty(page);
2083
2084         if (pos + copied > i_size_read(inode))
2085                 f2fs_i_size_write(inode, pos + copied);
2086 unlock_out:
2087         f2fs_put_page(page, 1);
2088         f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
2089         return copied;
2090 }
2091
2092 static int check_direct_IO(struct inode *inode, struct iov_iter *iter,
2093                            loff_t offset)
2094 {
2095         unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
2096
2097         if (offset & blocksize_mask)
2098                 return -EINVAL;
2099
2100         if (iov_iter_alignment(iter) & blocksize_mask)
2101                 return -EINVAL;
2102
2103         return 0;
2104 }
2105
2106 static ssize_t f2fs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
2107 {
2108         struct address_space *mapping = iocb->ki_filp->f_mapping;
2109         struct inode *inode = mapping->host;
2110         size_t count = iov_iter_count(iter);
2111         loff_t offset = iocb->ki_pos;
2112         int rw = iov_iter_rw(iter);
2113         int err;
2114
2115         err = check_direct_IO(inode, iter, offset);
2116         if (err)
2117                 return err;
2118
2119         if (__force_buffered_io(inode, rw))
2120                 return 0;
2121
2122         trace_f2fs_direct_IO_enter(inode, offset, count, rw);
2123
2124         down_read(&F2FS_I(inode)->dio_rwsem[rw]);
2125         err = blockdev_direct_IO(iocb, inode, iter, get_data_block_dio);
2126         up_read(&F2FS_I(inode)->dio_rwsem[rw]);
2127
2128         if (rw == WRITE) {
2129                 if (err > 0) {
2130                         f2fs_update_iostat(F2FS_I_SB(inode), APP_DIRECT_IO,
2131                                                                         err);
2132                         set_inode_flag(inode, FI_UPDATE_WRITE);
2133                 } else if (err < 0) {
2134                         f2fs_write_failed(mapping, offset + count);
2135                 }
2136         }
2137
2138         trace_f2fs_direct_IO_exit(inode, offset, count, rw, err);
2139
2140         return err;
2141 }
2142
2143 void f2fs_invalidate_page(struct page *page, unsigned int offset,
2144                                                         unsigned int length)
2145 {
2146         struct inode *inode = page->mapping->host;
2147         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2148
2149         if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
2150                 (offset % PAGE_SIZE || length != PAGE_SIZE))
2151                 return;
2152
2153         if (PageDirty(page)) {
2154                 if (inode->i_ino == F2FS_META_INO(sbi)) {
2155                         dec_page_count(sbi, F2FS_DIRTY_META);
2156                 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
2157                         dec_page_count(sbi, F2FS_DIRTY_NODES);
2158                 } else {
2159                         inode_dec_dirty_pages(inode);
2160                         remove_dirty_inode(inode);
2161                 }
2162         }
2163
2164         clear_cold_data(page);
2165
2166         /* This is atomic written page, keep Private */
2167         if (IS_ATOMIC_WRITTEN_PAGE(page))
2168                 return drop_inmem_page(inode, page);
2169
2170         set_page_private(page, 0);
2171         ClearPagePrivate(page);
2172 }
2173
2174 int f2fs_release_page(struct page *page, gfp_t wait)
2175 {
2176         /* If this is dirty page, keep PagePrivate */
2177         if (PageDirty(page))
2178                 return 0;
2179
2180         /* This is atomic written page, keep Private */
2181         if (IS_ATOMIC_WRITTEN_PAGE(page))
2182                 return 0;
2183
2184         clear_cold_data(page);
2185         set_page_private(page, 0);
2186         ClearPagePrivate(page);
2187         return 1;
2188 }
2189
2190 /*
2191  * This was copied from __set_page_dirty_buffers which gives higher performance
2192  * in very high speed storages. (e.g., pmem)
2193  */
2194 void f2fs_set_page_dirty_nobuffers(struct page *page)
2195 {
2196         struct address_space *mapping = page->mapping;
2197         unsigned long flags;
2198
2199         if (unlikely(!mapping))
2200                 return;
2201
2202         spin_lock(&mapping->private_lock);
2203         lock_page_memcg(page);
2204         SetPageDirty(page);
2205         spin_unlock(&mapping->private_lock);
2206
2207         spin_lock_irqsave(&mapping->tree_lock, flags);
2208         WARN_ON_ONCE(!PageUptodate(page));
2209         account_page_dirtied(page, mapping);
2210         radix_tree_tag_set(&mapping->page_tree,
2211                         page_index(page), PAGECACHE_TAG_DIRTY);
2212         spin_unlock_irqrestore(&mapping->tree_lock, flags);
2213         unlock_page_memcg(page);
2214
2215         __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2216         return;
2217 }
2218
2219 static int f2fs_set_data_page_dirty(struct page *page)
2220 {
2221         struct address_space *mapping = page->mapping;
2222         struct inode *inode = mapping->host;
2223
2224         trace_f2fs_set_page_dirty(page, DATA);
2225
2226         if (!PageUptodate(page))
2227                 SetPageUptodate(page);
2228
2229         if (f2fs_is_atomic_file(inode) && !f2fs_is_commit_atomic_write(inode)) {
2230                 if (!IS_ATOMIC_WRITTEN_PAGE(page)) {
2231                         register_inmem_page(inode, page);
2232                         return 1;
2233                 }
2234                 /*
2235                  * Previously, this page has been registered, we just
2236                  * return here.
2237                  */
2238                 return 0;
2239         }
2240
2241         if (!PageDirty(page)) {
2242                 f2fs_set_page_dirty_nobuffers(page);
2243                 update_dirty_page(inode, page);
2244                 return 1;
2245         }
2246         return 0;
2247 }
2248
2249 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
2250 {
2251         struct inode *inode = mapping->host;
2252
2253         if (f2fs_has_inline_data(inode))
2254                 return 0;
2255
2256         /* make sure allocating whole blocks */
2257         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2258                 filemap_write_and_wait(mapping);
2259
2260         return generic_block_bmap(mapping, block, get_data_block_bmap);
2261 }
2262
2263 #ifdef CONFIG_MIGRATION
2264 #include <linux/migrate.h>
2265
2266 int f2fs_migrate_page(struct address_space *mapping,
2267                 struct page *newpage, struct page *page, enum migrate_mode mode)
2268 {
2269         int rc, extra_count;
2270         struct f2fs_inode_info *fi = F2FS_I(mapping->host);
2271         bool atomic_written = IS_ATOMIC_WRITTEN_PAGE(page);
2272
2273         BUG_ON(PageWriteback(page));
2274
2275         /* migrating an atomic written page is safe with the inmem_lock hold */
2276         if (atomic_written) {
2277                 if (mode != MIGRATE_SYNC)
2278                         return -EBUSY;
2279                 if (!mutex_trylock(&fi->inmem_lock))
2280                         return -EAGAIN;
2281         }
2282
2283         /*
2284          * A reference is expected if PagePrivate set when move mapping,
2285          * however F2FS breaks this for maintaining dirty page counts when
2286          * truncating pages. So here adjusting the 'extra_count' make it work.
2287          */
2288         extra_count = (atomic_written ? 1 : 0) - page_has_private(page);
2289         rc = migrate_page_move_mapping(mapping, newpage,
2290                                 page, NULL, mode, extra_count);
2291         if (rc != MIGRATEPAGE_SUCCESS) {
2292                 if (atomic_written)
2293                         mutex_unlock(&fi->inmem_lock);
2294                 return rc;
2295         }
2296
2297         if (atomic_written) {
2298                 struct inmem_pages *cur;
2299                 list_for_each_entry(cur, &fi->inmem_pages, list)
2300                         if (cur->page == page) {
2301                                 cur->page = newpage;
2302                                 break;
2303                         }
2304                 mutex_unlock(&fi->inmem_lock);
2305                 put_page(page);
2306                 get_page(newpage);
2307         }
2308
2309         if (PagePrivate(page))
2310                 SetPagePrivate(newpage);
2311         set_page_private(newpage, page_private(page));
2312
2313         if (mode != MIGRATE_SYNC_NO_COPY)
2314                 migrate_page_copy(newpage, page);
2315         else
2316                 migrate_page_states(newpage, page);
2317
2318         return MIGRATEPAGE_SUCCESS;
2319 }
2320 #endif
2321
2322 const struct address_space_operations f2fs_dblock_aops = {
2323         .readpage       = f2fs_read_data_page,
2324         .readpages      = f2fs_read_data_pages,
2325         .writepage      = f2fs_write_data_page,
2326         .writepages     = f2fs_write_data_pages,
2327         .write_begin    = f2fs_write_begin,
2328         .write_end      = f2fs_write_end,
2329         .set_page_dirty = f2fs_set_data_page_dirty,
2330         .invalidatepage = f2fs_invalidate_page,
2331         .releasepage    = f2fs_release_page,
2332         .direct_IO      = f2fs_direct_IO,
2333         .bmap           = f2fs_bmap,
2334 #ifdef CONFIG_MIGRATION
2335         .migratepage    = f2fs_migrate_page,
2336 #endif
2337 };