GNU Linux-libre 4.19.286-gnu1
[releases.git] / fs / f2fs / super.c
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39
40 static struct kmem_cache *f2fs_inode_cachep;
41
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43
44 char *f2fs_fault_name[FAULT_MAX] = {
45         [FAULT_KMALLOC]         = "kmalloc",
46         [FAULT_KVMALLOC]        = "kvmalloc",
47         [FAULT_PAGE_ALLOC]      = "page alloc",
48         [FAULT_PAGE_GET]        = "page get",
49         [FAULT_ALLOC_BIO]       = "alloc bio",
50         [FAULT_ALLOC_NID]       = "alloc nid",
51         [FAULT_ORPHAN]          = "orphan",
52         [FAULT_BLOCK]           = "no more block",
53         [FAULT_DIR_DEPTH]       = "too big dir depth",
54         [FAULT_EVICT_INODE]     = "evict_inode fail",
55         [FAULT_TRUNCATE]        = "truncate fail",
56         [FAULT_IO]              = "IO error",
57         [FAULT_CHECKPOINT]      = "checkpoint error",
58         [FAULT_DISCARD]         = "discard error",
59 };
60
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62                                                         unsigned int type)
63 {
64         struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65
66         if (rate) {
67                 atomic_set(&ffi->inject_ops, 0);
68                 ffi->inject_rate = rate;
69         }
70
71         if (type)
72                 ffi->inject_type = type;
73
74         if (!rate && !type)
75                 memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81         .scan_objects = f2fs_shrink_scan,
82         .count_objects = f2fs_shrink_count,
83         .seeks = DEFAULT_SEEKS,
84 };
85
86 enum {
87         Opt_gc_background,
88         Opt_disable_roll_forward,
89         Opt_norecovery,
90         Opt_discard,
91         Opt_nodiscard,
92         Opt_noheap,
93         Opt_heap,
94         Opt_user_xattr,
95         Opt_nouser_xattr,
96         Opt_acl,
97         Opt_noacl,
98         Opt_active_logs,
99         Opt_disable_ext_identify,
100         Opt_inline_xattr,
101         Opt_noinline_xattr,
102         Opt_inline_xattr_size,
103         Opt_inline_data,
104         Opt_inline_dentry,
105         Opt_noinline_dentry,
106         Opt_flush_merge,
107         Opt_noflush_merge,
108         Opt_nobarrier,
109         Opt_fastboot,
110         Opt_extent_cache,
111         Opt_noextent_cache,
112         Opt_noinline_data,
113         Opt_data_flush,
114         Opt_reserve_root,
115         Opt_resgid,
116         Opt_resuid,
117         Opt_mode,
118         Opt_io_size_bits,
119         Opt_fault_injection,
120         Opt_fault_type,
121         Opt_lazytime,
122         Opt_nolazytime,
123         Opt_quota,
124         Opt_noquota,
125         Opt_usrquota,
126         Opt_grpquota,
127         Opt_prjquota,
128         Opt_usrjquota,
129         Opt_grpjquota,
130         Opt_prjjquota,
131         Opt_offusrjquota,
132         Opt_offgrpjquota,
133         Opt_offprjjquota,
134         Opt_jqfmt_vfsold,
135         Opt_jqfmt_vfsv0,
136         Opt_jqfmt_vfsv1,
137         Opt_whint,
138         Opt_alloc,
139         Opt_fsync,
140         Opt_test_dummy_encryption,
141         Opt_err,
142 };
143
144 static match_table_t f2fs_tokens = {
145         {Opt_gc_background, "background_gc=%s"},
146         {Opt_disable_roll_forward, "disable_roll_forward"},
147         {Opt_norecovery, "norecovery"},
148         {Opt_discard, "discard"},
149         {Opt_nodiscard, "nodiscard"},
150         {Opt_noheap, "no_heap"},
151         {Opt_heap, "heap"},
152         {Opt_user_xattr, "user_xattr"},
153         {Opt_nouser_xattr, "nouser_xattr"},
154         {Opt_acl, "acl"},
155         {Opt_noacl, "noacl"},
156         {Opt_active_logs, "active_logs=%u"},
157         {Opt_disable_ext_identify, "disable_ext_identify"},
158         {Opt_inline_xattr, "inline_xattr"},
159         {Opt_noinline_xattr, "noinline_xattr"},
160         {Opt_inline_xattr_size, "inline_xattr_size=%u"},
161         {Opt_inline_data, "inline_data"},
162         {Opt_inline_dentry, "inline_dentry"},
163         {Opt_noinline_dentry, "noinline_dentry"},
164         {Opt_flush_merge, "flush_merge"},
165         {Opt_noflush_merge, "noflush_merge"},
166         {Opt_nobarrier, "nobarrier"},
167         {Opt_fastboot, "fastboot"},
168         {Opt_extent_cache, "extent_cache"},
169         {Opt_noextent_cache, "noextent_cache"},
170         {Opt_noinline_data, "noinline_data"},
171         {Opt_data_flush, "data_flush"},
172         {Opt_reserve_root, "reserve_root=%u"},
173         {Opt_resgid, "resgid=%u"},
174         {Opt_resuid, "resuid=%u"},
175         {Opt_mode, "mode=%s"},
176         {Opt_io_size_bits, "io_bits=%u"},
177         {Opt_fault_injection, "fault_injection=%u"},
178         {Opt_fault_type, "fault_type=%u"},
179         {Opt_lazytime, "lazytime"},
180         {Opt_nolazytime, "nolazytime"},
181         {Opt_quota, "quota"},
182         {Opt_noquota, "noquota"},
183         {Opt_usrquota, "usrquota"},
184         {Opt_grpquota, "grpquota"},
185         {Opt_prjquota, "prjquota"},
186         {Opt_usrjquota, "usrjquota=%s"},
187         {Opt_grpjquota, "grpjquota=%s"},
188         {Opt_prjjquota, "prjjquota=%s"},
189         {Opt_offusrjquota, "usrjquota="},
190         {Opt_offgrpjquota, "grpjquota="},
191         {Opt_offprjjquota, "prjjquota="},
192         {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
193         {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
194         {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
195         {Opt_whint, "whint_mode=%s"},
196         {Opt_alloc, "alloc_mode=%s"},
197         {Opt_fsync, "fsync_mode=%s"},
198         {Opt_test_dummy_encryption, "test_dummy_encryption"},
199         {Opt_err, NULL},
200 };
201
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204         struct va_format vaf;
205         va_list args;
206
207         va_start(args, fmt);
208         vaf.fmt = fmt;
209         vaf.va = &args;
210         printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211         va_end(args);
212 }
213
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216         block_t limit = (sbi->user_block_count << 1) / 1000;
217
218         /* limit is 0.2% */
219         if (test_opt(sbi, RESERVE_ROOT) &&
220                         F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221                 F2FS_OPTION(sbi).root_reserved_blocks = limit;
222                 f2fs_msg(sbi->sb, KERN_INFO,
223                         "Reduce reserved blocks for root = %u",
224                         F2FS_OPTION(sbi).root_reserved_blocks);
225         }
226         if (!test_opt(sbi, RESERVE_ROOT) &&
227                 (!uid_eq(F2FS_OPTION(sbi).s_resuid,
228                                 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229                 !gid_eq(F2FS_OPTION(sbi).s_resgid,
230                                 make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231                 f2fs_msg(sbi->sb, KERN_INFO,
232                         "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233                                 from_kuid_munged(&init_user_ns,
234                                         F2FS_OPTION(sbi).s_resuid),
235                                 from_kgid_munged(&init_user_ns,
236                                         F2FS_OPTION(sbi).s_resgid));
237 }
238
239 static void init_once(void *foo)
240 {
241         struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242
243         inode_init_once(&fi->vfs_inode);
244 }
245
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250                                                         substring_t *args)
251 {
252         struct f2fs_sb_info *sbi = F2FS_SB(sb);
253         char *qname;
254         int ret = -EINVAL;
255
256         if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257                 f2fs_msg(sb, KERN_ERR,
258                         "Cannot change journaled "
259                         "quota options when quota turned on");
260                 return -EINVAL;
261         }
262         if (f2fs_sb_has_quota_ino(sb)) {
263                 f2fs_msg(sb, KERN_INFO,
264                         "QUOTA feature is enabled, so ignore qf_name");
265                 return 0;
266         }
267
268         qname = match_strdup(args);
269         if (!qname) {
270                 f2fs_msg(sb, KERN_ERR,
271                         "Not enough memory for storing quotafile name");
272                 return -EINVAL;
273         }
274         if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275                 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276                         ret = 0;
277                 else
278                         f2fs_msg(sb, KERN_ERR,
279                                  "%s quota file already specified",
280                                  QTYPE2NAME(qtype));
281                 goto errout;
282         }
283         if (strchr(qname, '/')) {
284                 f2fs_msg(sb, KERN_ERR,
285                         "quotafile must be on filesystem root");
286                 goto errout;
287         }
288         F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289         set_opt(sbi, QUOTA);
290         return 0;
291 errout:
292         kfree(qname);
293         return ret;
294 }
295
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298         struct f2fs_sb_info *sbi = F2FS_SB(sb);
299
300         if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301                 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302                         " when quota turned on");
303                 return -EINVAL;
304         }
305         kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306         F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307         return 0;
308 }
309
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312         /*
313          * We do the test below only for project quotas. 'usrquota' and
314          * 'grpquota' mount options are allowed even without quota feature
315          * to support legacy quotas in quota files.
316          */
317         if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
318                 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319                          "Cannot enable project quota enforcement.");
320                 return -1;
321         }
322         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325                 if (test_opt(sbi, USRQUOTA) &&
326                                 F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327                         clear_opt(sbi, USRQUOTA);
328
329                 if (test_opt(sbi, GRPQUOTA) &&
330                                 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331                         clear_opt(sbi, GRPQUOTA);
332
333                 if (test_opt(sbi, PRJQUOTA) &&
334                                 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335                         clear_opt(sbi, PRJQUOTA);
336
337                 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338                                 test_opt(sbi, PRJQUOTA)) {
339                         f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340                                         "format mixing");
341                         return -1;
342                 }
343
344                 if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345                         f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346                                         "not specified");
347                         return -1;
348                 }
349         }
350
351         if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
352                 f2fs_msg(sbi->sb, KERN_INFO,
353                         "QUOTA feature is enabled, so ignore jquota_fmt");
354                 F2FS_OPTION(sbi).s_jquota_fmt = 0;
355         }
356         return 0;
357 }
358 #endif
359
360 static int parse_options(struct super_block *sb, char *options)
361 {
362         struct f2fs_sb_info *sbi = F2FS_SB(sb);
363         substring_t args[MAX_OPT_ARGS];
364         char *p, *name;
365         int arg = 0;
366         kuid_t uid;
367         kgid_t gid;
368 #ifdef CONFIG_QUOTA
369         int ret;
370 #endif
371
372         if (!options)
373                 return 0;
374
375         while ((p = strsep(&options, ",")) != NULL) {
376                 int token;
377                 if (!*p)
378                         continue;
379                 /*
380                  * Initialize args struct so we know whether arg was
381                  * found; some options take optional arguments.
382                  */
383                 args[0].to = args[0].from = NULL;
384                 token = match_token(p, f2fs_tokens, args);
385
386                 switch (token) {
387                 case Opt_gc_background:
388                         name = match_strdup(&args[0]);
389
390                         if (!name)
391                                 return -ENOMEM;
392                         if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393                                 set_opt(sbi, BG_GC);
394                                 clear_opt(sbi, FORCE_FG_GC);
395                         } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396                                 clear_opt(sbi, BG_GC);
397                                 clear_opt(sbi, FORCE_FG_GC);
398                         } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399                                 set_opt(sbi, BG_GC);
400                                 set_opt(sbi, FORCE_FG_GC);
401                         } else {
402                                 kfree(name);
403                                 return -EINVAL;
404                         }
405                         kfree(name);
406                         break;
407                 case Opt_disable_roll_forward:
408                         set_opt(sbi, DISABLE_ROLL_FORWARD);
409                         break;
410                 case Opt_norecovery:
411                         /* this option mounts f2fs with ro */
412                         set_opt(sbi, DISABLE_ROLL_FORWARD);
413                         if (!f2fs_readonly(sb))
414                                 return -EINVAL;
415                         break;
416                 case Opt_discard:
417                         set_opt(sbi, DISCARD);
418                         break;
419                 case Opt_nodiscard:
420                         if (f2fs_sb_has_blkzoned(sb)) {
421                                 f2fs_msg(sb, KERN_WARNING,
422                                         "discard is required for zoned block devices");
423                                 return -EINVAL;
424                         }
425                         clear_opt(sbi, DISCARD);
426                         break;
427                 case Opt_noheap:
428                         set_opt(sbi, NOHEAP);
429                         break;
430                 case Opt_heap:
431                         clear_opt(sbi, NOHEAP);
432                         break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434                 case Opt_user_xattr:
435                         set_opt(sbi, XATTR_USER);
436                         break;
437                 case Opt_nouser_xattr:
438                         clear_opt(sbi, XATTR_USER);
439                         break;
440                 case Opt_inline_xattr:
441                         set_opt(sbi, INLINE_XATTR);
442                         break;
443                 case Opt_noinline_xattr:
444                         clear_opt(sbi, INLINE_XATTR);
445                         break;
446                 case Opt_inline_xattr_size:
447                         if (args->from && match_int(args, &arg))
448                                 return -EINVAL;
449                         set_opt(sbi, INLINE_XATTR_SIZE);
450                         F2FS_OPTION(sbi).inline_xattr_size = arg;
451                         break;
452 #else
453                 case Opt_user_xattr:
454                         f2fs_msg(sb, KERN_INFO,
455                                 "user_xattr options not supported");
456                         break;
457                 case Opt_nouser_xattr:
458                         f2fs_msg(sb, KERN_INFO,
459                                 "nouser_xattr options not supported");
460                         break;
461                 case Opt_inline_xattr:
462                         f2fs_msg(sb, KERN_INFO,
463                                 "inline_xattr options not supported");
464                         break;
465                 case Opt_noinline_xattr:
466                         f2fs_msg(sb, KERN_INFO,
467                                 "noinline_xattr options not supported");
468                         break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471                 case Opt_acl:
472                         set_opt(sbi, POSIX_ACL);
473                         break;
474                 case Opt_noacl:
475                         clear_opt(sbi, POSIX_ACL);
476                         break;
477 #else
478                 case Opt_acl:
479                         f2fs_msg(sb, KERN_INFO, "acl options not supported");
480                         break;
481                 case Opt_noacl:
482                         f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483                         break;
484 #endif
485                 case Opt_active_logs:
486                         if (args->from && match_int(args, &arg))
487                                 return -EINVAL;
488                         if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489                                 return -EINVAL;
490                         F2FS_OPTION(sbi).active_logs = arg;
491                         break;
492                 case Opt_disable_ext_identify:
493                         set_opt(sbi, DISABLE_EXT_IDENTIFY);
494                         break;
495                 case Opt_inline_data:
496                         set_opt(sbi, INLINE_DATA);
497                         break;
498                 case Opt_inline_dentry:
499                         set_opt(sbi, INLINE_DENTRY);
500                         break;
501                 case Opt_noinline_dentry:
502                         clear_opt(sbi, INLINE_DENTRY);
503                         break;
504                 case Opt_flush_merge:
505                         set_opt(sbi, FLUSH_MERGE);
506                         break;
507                 case Opt_noflush_merge:
508                         clear_opt(sbi, FLUSH_MERGE);
509                         break;
510                 case Opt_nobarrier:
511                         set_opt(sbi, NOBARRIER);
512                         break;
513                 case Opt_fastboot:
514                         set_opt(sbi, FASTBOOT);
515                         break;
516                 case Opt_extent_cache:
517                         set_opt(sbi, EXTENT_CACHE);
518                         break;
519                 case Opt_noextent_cache:
520                         clear_opt(sbi, EXTENT_CACHE);
521                         break;
522                 case Opt_noinline_data:
523                         clear_opt(sbi, INLINE_DATA);
524                         break;
525                 case Opt_data_flush:
526                         set_opt(sbi, DATA_FLUSH);
527                         break;
528                 case Opt_reserve_root:
529                         if (args->from && match_int(args, &arg))
530                                 return -EINVAL;
531                         if (test_opt(sbi, RESERVE_ROOT)) {
532                                 f2fs_msg(sb, KERN_INFO,
533                                         "Preserve previous reserve_root=%u",
534                                         F2FS_OPTION(sbi).root_reserved_blocks);
535                         } else {
536                                 F2FS_OPTION(sbi).root_reserved_blocks = arg;
537                                 set_opt(sbi, RESERVE_ROOT);
538                         }
539                         break;
540                 case Opt_resuid:
541                         if (args->from && match_int(args, &arg))
542                                 return -EINVAL;
543                         uid = make_kuid(current_user_ns(), arg);
544                         if (!uid_valid(uid)) {
545                                 f2fs_msg(sb, KERN_ERR,
546                                         "Invalid uid value %d", arg);
547                                 return -EINVAL;
548                         }
549                         F2FS_OPTION(sbi).s_resuid = uid;
550                         break;
551                 case Opt_resgid:
552                         if (args->from && match_int(args, &arg))
553                                 return -EINVAL;
554                         gid = make_kgid(current_user_ns(), arg);
555                         if (!gid_valid(gid)) {
556                                 f2fs_msg(sb, KERN_ERR,
557                                         "Invalid gid value %d", arg);
558                                 return -EINVAL;
559                         }
560                         F2FS_OPTION(sbi).s_resgid = gid;
561                         break;
562                 case Opt_mode:
563                         name = match_strdup(&args[0]);
564
565                         if (!name)
566                                 return -ENOMEM;
567                         if (strlen(name) == 8 &&
568                                         !strncmp(name, "adaptive", 8)) {
569                                 if (f2fs_sb_has_blkzoned(sb)) {
570                                         f2fs_msg(sb, KERN_WARNING,
571                                                  "adaptive mode is not allowed with "
572                                                  "zoned block device feature");
573                                         kfree(name);
574                                         return -EINVAL;
575                                 }
576                                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577                         } else if (strlen(name) == 3 &&
578                                         !strncmp(name, "lfs", 3)) {
579                                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
580                         } else {
581                                 kfree(name);
582                                 return -EINVAL;
583                         }
584                         kfree(name);
585                         break;
586                 case Opt_io_size_bits:
587                         if (args->from && match_int(args, &arg))
588                                 return -EINVAL;
589                         if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
590                                 f2fs_msg(sb, KERN_WARNING,
591                                         "Not support %d, larger than %d",
592                                         1 << arg, BIO_MAX_PAGES);
593                                 return -EINVAL;
594                         }
595                         F2FS_OPTION(sbi).write_io_size_bits = arg;
596                         break;
597                 case Opt_fault_injection:
598                         if (args->from && match_int(args, &arg))
599                                 return -EINVAL;
600 #ifdef CONFIG_F2FS_FAULT_INJECTION
601                         f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602                         set_opt(sbi, FAULT_INJECTION);
603 #else
604                         f2fs_msg(sb, KERN_INFO,
605                                 "FAULT_INJECTION was not selected");
606 #endif
607                         break;
608                 case Opt_fault_type:
609                         if (args->from && match_int(args, &arg))
610                                 return -EINVAL;
611 #ifdef CONFIG_F2FS_FAULT_INJECTION
612                         f2fs_build_fault_attr(sbi, 0, arg);
613                         set_opt(sbi, FAULT_INJECTION);
614 #else
615                         f2fs_msg(sb, KERN_INFO,
616                                 "FAULT_INJECTION was not selected");
617 #endif
618                         break;
619                 case Opt_lazytime:
620                         sb->s_flags |= SB_LAZYTIME;
621                         break;
622                 case Opt_nolazytime:
623                         sb->s_flags &= ~SB_LAZYTIME;
624                         break;
625 #ifdef CONFIG_QUOTA
626                 case Opt_quota:
627                 case Opt_usrquota:
628                         set_opt(sbi, USRQUOTA);
629                         break;
630                 case Opt_grpquota:
631                         set_opt(sbi, GRPQUOTA);
632                         break;
633                 case Opt_prjquota:
634                         set_opt(sbi, PRJQUOTA);
635                         break;
636                 case Opt_usrjquota:
637                         ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
638                         if (ret)
639                                 return ret;
640                         break;
641                 case Opt_grpjquota:
642                         ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
643                         if (ret)
644                                 return ret;
645                         break;
646                 case Opt_prjjquota:
647                         ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
648                         if (ret)
649                                 return ret;
650                         break;
651                 case Opt_offusrjquota:
652                         ret = f2fs_clear_qf_name(sb, USRQUOTA);
653                         if (ret)
654                                 return ret;
655                         break;
656                 case Opt_offgrpjquota:
657                         ret = f2fs_clear_qf_name(sb, GRPQUOTA);
658                         if (ret)
659                                 return ret;
660                         break;
661                 case Opt_offprjjquota:
662                         ret = f2fs_clear_qf_name(sb, PRJQUOTA);
663                         if (ret)
664                                 return ret;
665                         break;
666                 case Opt_jqfmt_vfsold:
667                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
668                         break;
669                 case Opt_jqfmt_vfsv0:
670                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
671                         break;
672                 case Opt_jqfmt_vfsv1:
673                         F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
674                         break;
675                 case Opt_noquota:
676                         clear_opt(sbi, QUOTA);
677                         clear_opt(sbi, USRQUOTA);
678                         clear_opt(sbi, GRPQUOTA);
679                         clear_opt(sbi, PRJQUOTA);
680                         break;
681 #else
682                 case Opt_quota:
683                 case Opt_usrquota:
684                 case Opt_grpquota:
685                 case Opt_prjquota:
686                 case Opt_usrjquota:
687                 case Opt_grpjquota:
688                 case Opt_prjjquota:
689                 case Opt_offusrjquota:
690                 case Opt_offgrpjquota:
691                 case Opt_offprjjquota:
692                 case Opt_jqfmt_vfsold:
693                 case Opt_jqfmt_vfsv0:
694                 case Opt_jqfmt_vfsv1:
695                 case Opt_noquota:
696                         f2fs_msg(sb, KERN_INFO,
697                                         "quota operations not supported");
698                         break;
699 #endif
700                 case Opt_whint:
701                         name = match_strdup(&args[0]);
702                         if (!name)
703                                 return -ENOMEM;
704                         if (strlen(name) == 10 &&
705                                         !strncmp(name, "user-based", 10)) {
706                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
707                         } else if (strlen(name) == 3 &&
708                                         !strncmp(name, "off", 3)) {
709                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
710                         } else if (strlen(name) == 8 &&
711                                         !strncmp(name, "fs-based", 8)) {
712                                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
713                         } else {
714                                 kfree(name);
715                                 return -EINVAL;
716                         }
717                         kfree(name);
718                         break;
719                 case Opt_alloc:
720                         name = match_strdup(&args[0]);
721                         if (!name)
722                                 return -ENOMEM;
723
724                         if (strlen(name) == 7 &&
725                                         !strncmp(name, "default", 7)) {
726                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
727                         } else if (strlen(name) == 5 &&
728                                         !strncmp(name, "reuse", 5)) {
729                                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
730                         } else {
731                                 kfree(name);
732                                 return -EINVAL;
733                         }
734                         kfree(name);
735                         break;
736                 case Opt_fsync:
737                         name = match_strdup(&args[0]);
738                         if (!name)
739                                 return -ENOMEM;
740                         if (strlen(name) == 5 &&
741                                         !strncmp(name, "posix", 5)) {
742                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
743                         } else if (strlen(name) == 6 &&
744                                         !strncmp(name, "strict", 6)) {
745                                 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
746                         } else if (strlen(name) == 9 &&
747                                         !strncmp(name, "nobarrier", 9)) {
748                                 F2FS_OPTION(sbi).fsync_mode =
749                                                         FSYNC_MODE_NOBARRIER;
750                         } else {
751                                 kfree(name);
752                                 return -EINVAL;
753                         }
754                         kfree(name);
755                         break;
756                 case Opt_test_dummy_encryption:
757 #ifdef CONFIG_F2FS_FS_ENCRYPTION
758                         if (!f2fs_sb_has_encrypt(sb)) {
759                                 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
760                                 return -EINVAL;
761                         }
762
763                         F2FS_OPTION(sbi).test_dummy_encryption = true;
764                         f2fs_msg(sb, KERN_INFO,
765                                         "Test dummy encryption mode enabled");
766 #else
767                         f2fs_msg(sb, KERN_INFO,
768                                         "Test dummy encryption mount option ignored");
769 #endif
770                         break;
771                 default:
772                         f2fs_msg(sb, KERN_ERR,
773                                 "Unrecognized mount option \"%s\" or missing value",
774                                 p);
775                         return -EINVAL;
776                 }
777         }
778 #ifdef CONFIG_QUOTA
779         if (f2fs_check_quota_options(sbi))
780                 return -EINVAL;
781 #else
782         if (f2fs_sb_has_quota_ino(sbi->sb) && !f2fs_readonly(sbi->sb)) {
783                 f2fs_msg(sbi->sb, KERN_INFO,
784                          "Filesystem with quota feature cannot be mounted RDWR "
785                          "without CONFIG_QUOTA");
786                 return -EINVAL;
787         }
788         if (f2fs_sb_has_project_quota(sbi->sb) && !f2fs_readonly(sbi->sb)) {
789                 f2fs_msg(sb, KERN_ERR,
790                         "Filesystem with project quota feature cannot be "
791                         "mounted RDWR without CONFIG_QUOTA");
792                 return -EINVAL;
793         }
794 #endif
795
796         if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
797                 f2fs_msg(sb, KERN_ERR,
798                                 "Should set mode=lfs with %uKB-sized IO",
799                                 F2FS_IO_SIZE_KB(sbi));
800                 return -EINVAL;
801         }
802
803         if (test_opt(sbi, INLINE_XATTR_SIZE)) {
804                 if (!f2fs_sb_has_extra_attr(sb) ||
805                         !f2fs_sb_has_flexible_inline_xattr(sb)) {
806                         f2fs_msg(sb, KERN_ERR,
807                                         "extra_attr or flexible_inline_xattr "
808                                         "feature is off");
809                         return -EINVAL;
810                 }
811                 if (!test_opt(sbi, INLINE_XATTR)) {
812                         f2fs_msg(sb, KERN_ERR,
813                                         "inline_xattr_size option should be "
814                                         "set with inline_xattr option");
815                         return -EINVAL;
816                 }
817                 if (F2FS_OPTION(sbi).inline_xattr_size <
818                         sizeof(struct f2fs_xattr_header) / sizeof(__le32) ||
819                         F2FS_OPTION(sbi).inline_xattr_size >
820                         DEF_ADDRS_PER_INODE -
821                         F2FS_TOTAL_EXTRA_ATTR_SIZE / sizeof(__le32) -
822                         DEF_INLINE_RESERVED_SIZE -
823                         MIN_INLINE_DENTRY_SIZE / sizeof(__le32)) {
824                         f2fs_msg(sb, KERN_ERR,
825                                         "inline xattr size is out of range");
826                         return -EINVAL;
827                 }
828         }
829
830         /* Not pass down write hints if the number of active logs is lesser
831          * than NR_CURSEG_TYPE.
832          */
833         if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
834                 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
835         return 0;
836 }
837
838 static struct inode *f2fs_alloc_inode(struct super_block *sb)
839 {
840         struct f2fs_inode_info *fi;
841
842         fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
843         if (!fi)
844                 return NULL;
845
846         init_once((void *) fi);
847
848         /* Initialize f2fs-specific inode info */
849         atomic_set(&fi->dirty_pages, 0);
850         init_rwsem(&fi->i_sem);
851         INIT_LIST_HEAD(&fi->dirty_list);
852         INIT_LIST_HEAD(&fi->gdirty_list);
853         INIT_LIST_HEAD(&fi->inmem_ilist);
854         INIT_LIST_HEAD(&fi->inmem_pages);
855         mutex_init(&fi->inmem_lock);
856         init_rwsem(&fi->i_gc_rwsem[READ]);
857         init_rwsem(&fi->i_gc_rwsem[WRITE]);
858         init_rwsem(&fi->i_mmap_sem);
859         init_rwsem(&fi->i_xattr_sem);
860
861         /* Will be used by directory only */
862         fi->i_dir_level = F2FS_SB(sb)->dir_level;
863
864         return &fi->vfs_inode;
865 }
866
867 static int f2fs_drop_inode(struct inode *inode)
868 {
869         int ret;
870         /*
871          * This is to avoid a deadlock condition like below.
872          * writeback_single_inode(inode)
873          *  - f2fs_write_data_page
874          *    - f2fs_gc -> iput -> evict
875          *       - inode_wait_for_writeback(inode)
876          */
877         if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
878                 if (!inode->i_nlink && !is_bad_inode(inode)) {
879                         /* to avoid evict_inode call simultaneously */
880                         atomic_inc(&inode->i_count);
881                         spin_unlock(&inode->i_lock);
882
883                         /* some remained atomic pages should discarded */
884                         if (f2fs_is_atomic_file(inode))
885                                 f2fs_drop_inmem_pages(inode);
886
887                         /* should remain fi->extent_tree for writepage */
888                         f2fs_destroy_extent_node(inode);
889
890                         sb_start_intwrite(inode->i_sb);
891                         f2fs_i_size_write(inode, 0);
892
893                         if (F2FS_HAS_BLOCKS(inode))
894                                 f2fs_truncate(inode);
895
896                         sb_end_intwrite(inode->i_sb);
897
898                         spin_lock(&inode->i_lock);
899                         atomic_dec(&inode->i_count);
900                 }
901                 trace_f2fs_drop_inode(inode, 0);
902                 return 0;
903         }
904         ret = generic_drop_inode(inode);
905         trace_f2fs_drop_inode(inode, ret);
906         return ret;
907 }
908
909 int f2fs_inode_dirtied(struct inode *inode, bool sync)
910 {
911         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
912         int ret = 0;
913
914         spin_lock(&sbi->inode_lock[DIRTY_META]);
915         if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
916                 ret = 1;
917         } else {
918                 set_inode_flag(inode, FI_DIRTY_INODE);
919                 stat_inc_dirty_inode(sbi, DIRTY_META);
920         }
921         if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
922                 list_add_tail(&F2FS_I(inode)->gdirty_list,
923                                 &sbi->inode_list[DIRTY_META]);
924                 inc_page_count(sbi, F2FS_DIRTY_IMETA);
925         }
926         spin_unlock(&sbi->inode_lock[DIRTY_META]);
927         return ret;
928 }
929
930 void f2fs_inode_synced(struct inode *inode)
931 {
932         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
933
934         spin_lock(&sbi->inode_lock[DIRTY_META]);
935         if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
936                 spin_unlock(&sbi->inode_lock[DIRTY_META]);
937                 return;
938         }
939         if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
940                 list_del_init(&F2FS_I(inode)->gdirty_list);
941                 dec_page_count(sbi, F2FS_DIRTY_IMETA);
942         }
943         clear_inode_flag(inode, FI_DIRTY_INODE);
944         clear_inode_flag(inode, FI_AUTO_RECOVER);
945         stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
946         spin_unlock(&sbi->inode_lock[DIRTY_META]);
947 }
948
949 /*
950  * f2fs_dirty_inode() is called from __mark_inode_dirty()
951  *
952  * We should call set_dirty_inode to write the dirty inode through write_inode.
953  */
954 static void f2fs_dirty_inode(struct inode *inode, int flags)
955 {
956         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
957
958         if (inode->i_ino == F2FS_NODE_INO(sbi) ||
959                         inode->i_ino == F2FS_META_INO(sbi))
960                 return;
961
962         if (flags == I_DIRTY_TIME)
963                 return;
964
965         if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
966                 clear_inode_flag(inode, FI_AUTO_RECOVER);
967
968         f2fs_inode_dirtied(inode, false);
969 }
970
971 static void f2fs_i_callback(struct rcu_head *head)
972 {
973         struct inode *inode = container_of(head, struct inode, i_rcu);
974         kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
975 }
976
977 static void f2fs_destroy_inode(struct inode *inode)
978 {
979         call_rcu(&inode->i_rcu, f2fs_i_callback);
980 }
981
982 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
983 {
984         percpu_counter_destroy(&sbi->alloc_valid_block_count);
985         percpu_counter_destroy(&sbi->total_valid_inode_count);
986 }
987
988 static void destroy_device_list(struct f2fs_sb_info *sbi)
989 {
990         int i;
991
992         for (i = 0; i < sbi->s_ndevs; i++) {
993                 blkdev_put(FDEV(i).bdev, FMODE_EXCL);
994 #ifdef CONFIG_BLK_DEV_ZONED
995                 kfree(FDEV(i).blkz_type);
996 #endif
997         }
998         kfree(sbi->devs);
999 }
1000
1001 static void f2fs_put_super(struct super_block *sb)
1002 {
1003         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1004         int i;
1005         bool dropped;
1006
1007         /* unregister procfs/sysfs entries in advance to avoid race case */
1008         f2fs_unregister_sysfs(sbi);
1009
1010         f2fs_quota_off_umount(sb);
1011
1012         /* prevent remaining shrinker jobs */
1013         mutex_lock(&sbi->umount_mutex);
1014
1015         /*
1016          * We don't need to do checkpoint when superblock is clean.
1017          * But, the previous checkpoint was not done by umount, it needs to do
1018          * clean checkpoint again.
1019          */
1020         if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1021                         !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
1022                 struct cp_control cpc = {
1023                         .reason = CP_UMOUNT,
1024                 };
1025                 f2fs_write_checkpoint(sbi, &cpc);
1026         }
1027
1028         /* be sure to wait for any on-going discard commands */
1029         dropped = f2fs_wait_discard_bios(sbi);
1030
1031         if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1032                                         !sbi->discard_blks && !dropped) {
1033                 struct cp_control cpc = {
1034                         .reason = CP_UMOUNT | CP_TRIMMED,
1035                 };
1036                 f2fs_write_checkpoint(sbi, &cpc);
1037         }
1038
1039         /*
1040          * normally superblock is clean, so we need to release this.
1041          * In addition, EIO will skip do checkpoint, we need this as well.
1042          */
1043         f2fs_release_ino_entry(sbi, true);
1044
1045         f2fs_leave_shrinker(sbi);
1046         mutex_unlock(&sbi->umount_mutex);
1047
1048         /* our cp_error case, we can wait for any writeback page */
1049         f2fs_flush_merged_writes(sbi);
1050
1051         f2fs_wait_on_all_pages_writeback(sbi);
1052
1053         f2fs_bug_on(sbi, sbi->fsync_node_num);
1054
1055         iput(sbi->node_inode);
1056         sbi->node_inode = NULL;
1057
1058         iput(sbi->meta_inode);
1059         sbi->meta_inode = NULL;
1060
1061         /*
1062          * iput() can update stat information, if f2fs_write_checkpoint()
1063          * above failed with error.
1064          */
1065         f2fs_destroy_stats(sbi);
1066
1067         /* destroy f2fs internal modules */
1068         f2fs_destroy_node_manager(sbi);
1069         f2fs_destroy_segment_manager(sbi);
1070
1071         kfree(sbi->ckpt);
1072
1073         sb->s_fs_info = NULL;
1074         if (sbi->s_chksum_driver)
1075                 crypto_free_shash(sbi->s_chksum_driver);
1076         kfree(sbi->raw_super);
1077
1078         destroy_device_list(sbi);
1079         mempool_destroy(sbi->write_io_dummy);
1080 #ifdef CONFIG_QUOTA
1081         for (i = 0; i < MAXQUOTAS; i++)
1082                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1083 #endif
1084         destroy_percpu_info(sbi);
1085         for (i = 0; i < NR_PAGE_TYPE; i++)
1086                 kfree(sbi->write_io[i]);
1087         kfree(sbi);
1088 }
1089
1090 int f2fs_sync_fs(struct super_block *sb, int sync)
1091 {
1092         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1093         int err = 0;
1094
1095         if (unlikely(f2fs_cp_error(sbi)))
1096                 return 0;
1097
1098         trace_f2fs_sync_fs(sb, sync);
1099
1100         if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1101                 return -EAGAIN;
1102
1103         if (sync) {
1104                 struct cp_control cpc;
1105
1106                 cpc.reason = __get_cp_reason(sbi);
1107
1108                 mutex_lock(&sbi->gc_mutex);
1109                 err = f2fs_write_checkpoint(sbi, &cpc);
1110                 mutex_unlock(&sbi->gc_mutex);
1111         }
1112         f2fs_trace_ios(NULL, 1);
1113
1114         return err;
1115 }
1116
1117 static int f2fs_freeze(struct super_block *sb)
1118 {
1119         if (f2fs_readonly(sb))
1120                 return 0;
1121
1122         /* IO error happened before */
1123         if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1124                 return -EIO;
1125
1126         /* must be clean, since sync_filesystem() was already called */
1127         if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1128                 return -EINVAL;
1129         return 0;
1130 }
1131
1132 static int f2fs_unfreeze(struct super_block *sb)
1133 {
1134         return 0;
1135 }
1136
1137 #ifdef CONFIG_QUOTA
1138 static int f2fs_statfs_project(struct super_block *sb,
1139                                 kprojid_t projid, struct kstatfs *buf)
1140 {
1141         struct kqid qid;
1142         struct dquot *dquot;
1143         u64 limit;
1144         u64 curblock;
1145
1146         qid = make_kqid_projid(projid);
1147         dquot = dqget(sb, qid);
1148         if (IS_ERR(dquot))
1149                 return PTR_ERR(dquot);
1150         spin_lock(&dquot->dq_dqb_lock);
1151
1152         limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1153                                         dquot->dq_dqb.dqb_bhardlimit);
1154         if (limit)
1155                 limit >>= sb->s_blocksize_bits;
1156
1157         if (limit && buf->f_blocks > limit) {
1158                 curblock = (dquot->dq_dqb.dqb_curspace +
1159                             dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1160                 buf->f_blocks = limit;
1161                 buf->f_bfree = buf->f_bavail =
1162                         (buf->f_blocks > curblock) ?
1163                          (buf->f_blocks - curblock) : 0;
1164         }
1165
1166         limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1167                                         dquot->dq_dqb.dqb_ihardlimit);
1168
1169         if (limit && buf->f_files > limit) {
1170                 buf->f_files = limit;
1171                 buf->f_ffree =
1172                         (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1173                          (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1174         }
1175
1176         spin_unlock(&dquot->dq_dqb_lock);
1177         dqput(dquot);
1178         return 0;
1179 }
1180 #endif
1181
1182 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1183 {
1184         struct super_block *sb = dentry->d_sb;
1185         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1186         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1187         block_t total_count, user_block_count, start_count;
1188         u64 avail_node_count;
1189
1190         total_count = le64_to_cpu(sbi->raw_super->block_count);
1191         user_block_count = sbi->user_block_count;
1192         start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1193         buf->f_type = F2FS_SUPER_MAGIC;
1194         buf->f_bsize = sbi->blocksize;
1195
1196         buf->f_blocks = total_count - start_count;
1197         buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1198                                                 sbi->current_reserved_blocks;
1199         if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1200                 buf->f_bavail = buf->f_bfree -
1201                                 F2FS_OPTION(sbi).root_reserved_blocks;
1202         else
1203                 buf->f_bavail = 0;
1204
1205         avail_node_count = sbi->total_node_count - sbi->nquota_files -
1206                                                 F2FS_RESERVED_NODE_NUM;
1207
1208         if (avail_node_count > user_block_count) {
1209                 buf->f_files = user_block_count;
1210                 buf->f_ffree = buf->f_bavail;
1211         } else {
1212                 buf->f_files = avail_node_count;
1213                 buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1214                                         buf->f_bavail);
1215         }
1216
1217         buf->f_namelen = F2FS_NAME_LEN;
1218         buf->f_fsid.val[0] = (u32)id;
1219         buf->f_fsid.val[1] = (u32)(id >> 32);
1220
1221 #ifdef CONFIG_QUOTA
1222         if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1223                         sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1224                 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1225         }
1226 #endif
1227         return 0;
1228 }
1229
1230 static inline void f2fs_show_quota_options(struct seq_file *seq,
1231                                            struct super_block *sb)
1232 {
1233 #ifdef CONFIG_QUOTA
1234         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1235
1236         if (F2FS_OPTION(sbi).s_jquota_fmt) {
1237                 char *fmtname = "";
1238
1239                 switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1240                 case QFMT_VFS_OLD:
1241                         fmtname = "vfsold";
1242                         break;
1243                 case QFMT_VFS_V0:
1244                         fmtname = "vfsv0";
1245                         break;
1246                 case QFMT_VFS_V1:
1247                         fmtname = "vfsv1";
1248                         break;
1249                 }
1250                 seq_printf(seq, ",jqfmt=%s", fmtname);
1251         }
1252
1253         if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1254                 seq_show_option(seq, "usrjquota",
1255                         F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1256
1257         if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1258                 seq_show_option(seq, "grpjquota",
1259                         F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1260
1261         if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1262                 seq_show_option(seq, "prjjquota",
1263                         F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1264 #endif
1265 }
1266
1267 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1268 {
1269         struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1270
1271         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1272                 if (test_opt(sbi, FORCE_FG_GC))
1273                         seq_printf(seq, ",background_gc=%s", "sync");
1274                 else
1275                         seq_printf(seq, ",background_gc=%s", "on");
1276         } else {
1277                 seq_printf(seq, ",background_gc=%s", "off");
1278         }
1279         if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1280                 seq_puts(seq, ",disable_roll_forward");
1281         if (test_opt(sbi, DISCARD))
1282                 seq_puts(seq, ",discard");
1283         if (test_opt(sbi, NOHEAP))
1284                 seq_puts(seq, ",no_heap");
1285         else
1286                 seq_puts(seq, ",heap");
1287 #ifdef CONFIG_F2FS_FS_XATTR
1288         if (test_opt(sbi, XATTR_USER))
1289                 seq_puts(seq, ",user_xattr");
1290         else
1291                 seq_puts(seq, ",nouser_xattr");
1292         if (test_opt(sbi, INLINE_XATTR))
1293                 seq_puts(seq, ",inline_xattr");
1294         else
1295                 seq_puts(seq, ",noinline_xattr");
1296         if (test_opt(sbi, INLINE_XATTR_SIZE))
1297                 seq_printf(seq, ",inline_xattr_size=%u",
1298                                         F2FS_OPTION(sbi).inline_xattr_size);
1299 #endif
1300 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1301         if (test_opt(sbi, POSIX_ACL))
1302                 seq_puts(seq, ",acl");
1303         else
1304                 seq_puts(seq, ",noacl");
1305 #endif
1306         if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1307                 seq_puts(seq, ",disable_ext_identify");
1308         if (test_opt(sbi, INLINE_DATA))
1309                 seq_puts(seq, ",inline_data");
1310         else
1311                 seq_puts(seq, ",noinline_data");
1312         if (test_opt(sbi, INLINE_DENTRY))
1313                 seq_puts(seq, ",inline_dentry");
1314         else
1315                 seq_puts(seq, ",noinline_dentry");
1316         if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1317                 seq_puts(seq, ",flush_merge");
1318         if (test_opt(sbi, NOBARRIER))
1319                 seq_puts(seq, ",nobarrier");
1320         if (test_opt(sbi, FASTBOOT))
1321                 seq_puts(seq, ",fastboot");
1322         if (test_opt(sbi, EXTENT_CACHE))
1323                 seq_puts(seq, ",extent_cache");
1324         else
1325                 seq_puts(seq, ",noextent_cache");
1326         if (test_opt(sbi, DATA_FLUSH))
1327                 seq_puts(seq, ",data_flush");
1328
1329         seq_puts(seq, ",mode=");
1330         if (test_opt(sbi, ADAPTIVE))
1331                 seq_puts(seq, "adaptive");
1332         else if (test_opt(sbi, LFS))
1333                 seq_puts(seq, "lfs");
1334         seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1335         if (test_opt(sbi, RESERVE_ROOT))
1336                 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1337                                 F2FS_OPTION(sbi).root_reserved_blocks,
1338                                 from_kuid_munged(&init_user_ns,
1339                                         F2FS_OPTION(sbi).s_resuid),
1340                                 from_kgid_munged(&init_user_ns,
1341                                         F2FS_OPTION(sbi).s_resgid));
1342         if (F2FS_IO_SIZE_BITS(sbi))
1343                 seq_printf(seq, ",io_bits=%u",
1344                                 F2FS_OPTION(sbi).write_io_size_bits);
1345 #ifdef CONFIG_F2FS_FAULT_INJECTION
1346         if (test_opt(sbi, FAULT_INJECTION)) {
1347                 seq_printf(seq, ",fault_injection=%u",
1348                                 F2FS_OPTION(sbi).fault_info.inject_rate);
1349                 seq_printf(seq, ",fault_type=%u",
1350                                 F2FS_OPTION(sbi).fault_info.inject_type);
1351         }
1352 #endif
1353 #ifdef CONFIG_QUOTA
1354         if (test_opt(sbi, QUOTA))
1355                 seq_puts(seq, ",quota");
1356         if (test_opt(sbi, USRQUOTA))
1357                 seq_puts(seq, ",usrquota");
1358         if (test_opt(sbi, GRPQUOTA))
1359                 seq_puts(seq, ",grpquota");
1360         if (test_opt(sbi, PRJQUOTA))
1361                 seq_puts(seq, ",prjquota");
1362 #endif
1363         f2fs_show_quota_options(seq, sbi->sb);
1364         if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1365                 seq_printf(seq, ",whint_mode=%s", "user-based");
1366         else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1367                 seq_printf(seq, ",whint_mode=%s", "fs-based");
1368 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1369         if (F2FS_OPTION(sbi).test_dummy_encryption)
1370                 seq_puts(seq, ",test_dummy_encryption");
1371 #endif
1372
1373         if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1374                 seq_printf(seq, ",alloc_mode=%s", "default");
1375         else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1376                 seq_printf(seq, ",alloc_mode=%s", "reuse");
1377
1378         if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1379                 seq_printf(seq, ",fsync_mode=%s", "posix");
1380         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1381                 seq_printf(seq, ",fsync_mode=%s", "strict");
1382         else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1383                 seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1384         return 0;
1385 }
1386
1387 static void default_options(struct f2fs_sb_info *sbi)
1388 {
1389         /* init some FS parameters */
1390         F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1391         F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1392         F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1393         F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1394         F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1395         F2FS_OPTION(sbi).test_dummy_encryption = false;
1396         F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1397         F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1398
1399         set_opt(sbi, BG_GC);
1400         set_opt(sbi, INLINE_XATTR);
1401         set_opt(sbi, INLINE_DATA);
1402         set_opt(sbi, INLINE_DENTRY);
1403         set_opt(sbi, EXTENT_CACHE);
1404         set_opt(sbi, NOHEAP);
1405         sbi->sb->s_flags |= SB_LAZYTIME;
1406         set_opt(sbi, FLUSH_MERGE);
1407         set_opt(sbi, DISCARD);
1408         if (f2fs_sb_has_blkzoned(sbi->sb))
1409                 set_opt_mode(sbi, F2FS_MOUNT_LFS);
1410         else
1411                 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1412
1413 #ifdef CONFIG_F2FS_FS_XATTR
1414         set_opt(sbi, XATTR_USER);
1415 #endif
1416 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1417         set_opt(sbi, POSIX_ACL);
1418 #endif
1419
1420         f2fs_build_fault_attr(sbi, 0, 0);
1421 }
1422
1423 #ifdef CONFIG_QUOTA
1424 static int f2fs_enable_quotas(struct super_block *sb);
1425 #endif
1426 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1427 {
1428         struct f2fs_sb_info *sbi = F2FS_SB(sb);
1429         struct f2fs_mount_info org_mount_opt;
1430         unsigned long old_sb_flags;
1431         int err;
1432         bool need_restart_gc = false;
1433         bool need_stop_gc = false;
1434         bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1435 #ifdef CONFIG_QUOTA
1436         int i, j;
1437 #endif
1438
1439         /*
1440          * Save the old mount options in case we
1441          * need to restore them.
1442          */
1443         org_mount_opt = sbi->mount_opt;
1444         old_sb_flags = sb->s_flags;
1445
1446 #ifdef CONFIG_QUOTA
1447         org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1448         for (i = 0; i < MAXQUOTAS; i++) {
1449                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1450                         org_mount_opt.s_qf_names[i] =
1451                                 kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1452                                 GFP_KERNEL);
1453                         if (!org_mount_opt.s_qf_names[i]) {
1454                                 for (j = 0; j < i; j++)
1455                                         kfree(org_mount_opt.s_qf_names[j]);
1456                                 return -ENOMEM;
1457                         }
1458                 } else {
1459                         org_mount_opt.s_qf_names[i] = NULL;
1460                 }
1461         }
1462 #endif
1463
1464         /* recover superblocks we couldn't write due to previous RO mount */
1465         if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1466                 err = f2fs_commit_super(sbi, false);
1467                 f2fs_msg(sb, KERN_INFO,
1468                         "Try to recover all the superblocks, ret: %d", err);
1469                 if (!err)
1470                         clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1471         }
1472
1473         default_options(sbi);
1474
1475         /* parse mount options */
1476         err = parse_options(sb, data);
1477         if (err)
1478                 goto restore_opts;
1479
1480         /*
1481          * Previous and new state of filesystem is RO,
1482          * so skip checking GC and FLUSH_MERGE conditions.
1483          */
1484         if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1485                 goto skip;
1486
1487 #ifdef CONFIG_QUOTA
1488         if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1489                 err = dquot_suspend(sb, -1);
1490                 if (err < 0)
1491                         goto restore_opts;
1492         } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1493                 /* dquot_resume needs RW */
1494                 sb->s_flags &= ~SB_RDONLY;
1495                 if (sb_any_quota_suspended(sb)) {
1496                         dquot_resume(sb, -1);
1497                 } else if (f2fs_sb_has_quota_ino(sb)) {
1498                         err = f2fs_enable_quotas(sb);
1499                         if (err)
1500                                 goto restore_opts;
1501                 }
1502         }
1503 #endif
1504         /* disallow enable/disable extent_cache dynamically */
1505         if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1506                 err = -EINVAL;
1507                 f2fs_msg(sbi->sb, KERN_WARNING,
1508                                 "switch extent_cache option is not allowed");
1509                 goto restore_opts;
1510         }
1511
1512         /*
1513          * We stop the GC thread if FS is mounted as RO
1514          * or if background_gc = off is passed in mount
1515          * option. Also sync the filesystem.
1516          */
1517         if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1518                 if (sbi->gc_thread) {
1519                         f2fs_stop_gc_thread(sbi);
1520                         need_restart_gc = true;
1521                 }
1522         } else if (!sbi->gc_thread) {
1523                 err = f2fs_start_gc_thread(sbi);
1524                 if (err)
1525                         goto restore_opts;
1526                 need_stop_gc = true;
1527         }
1528
1529         if (*flags & SB_RDONLY ||
1530                 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1531                 writeback_inodes_sb(sb, WB_REASON_SYNC);
1532                 sync_inodes_sb(sb);
1533
1534                 set_sbi_flag(sbi, SBI_IS_DIRTY);
1535                 set_sbi_flag(sbi, SBI_IS_CLOSE);
1536                 f2fs_sync_fs(sb, 1);
1537                 clear_sbi_flag(sbi, SBI_IS_CLOSE);
1538         }
1539
1540         /*
1541          * We stop issue flush thread if FS is mounted as RO
1542          * or if flush_merge is not passed in mount option.
1543          */
1544         if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1545                 clear_opt(sbi, FLUSH_MERGE);
1546                 f2fs_destroy_flush_cmd_control(sbi, false);
1547         } else {
1548                 err = f2fs_create_flush_cmd_control(sbi);
1549                 if (err)
1550                         goto restore_gc;
1551         }
1552 skip:
1553 #ifdef CONFIG_QUOTA
1554         /* Release old quota file names */
1555         for (i = 0; i < MAXQUOTAS; i++)
1556                 kfree(org_mount_opt.s_qf_names[i]);
1557 #endif
1558         /* Update the POSIXACL Flag */
1559         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1560                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1561
1562         limit_reserve_root(sbi);
1563         *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1564         return 0;
1565 restore_gc:
1566         if (need_restart_gc) {
1567                 if (f2fs_start_gc_thread(sbi))
1568                         f2fs_msg(sbi->sb, KERN_WARNING,
1569                                 "background gc thread has stopped");
1570         } else if (need_stop_gc) {
1571                 f2fs_stop_gc_thread(sbi);
1572         }
1573 restore_opts:
1574 #ifdef CONFIG_QUOTA
1575         F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1576         for (i = 0; i < MAXQUOTAS; i++) {
1577                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1578                 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1579         }
1580 #endif
1581         sbi->mount_opt = org_mount_opt;
1582         sb->s_flags = old_sb_flags;
1583         return err;
1584 }
1585
1586 #ifdef CONFIG_QUOTA
1587 /* Read data from quotafile */
1588 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1589                                size_t len, loff_t off)
1590 {
1591         struct inode *inode = sb_dqopt(sb)->files[type];
1592         struct address_space *mapping = inode->i_mapping;
1593         block_t blkidx = F2FS_BYTES_TO_BLK(off);
1594         int offset = off & (sb->s_blocksize - 1);
1595         int tocopy;
1596         size_t toread;
1597         loff_t i_size = i_size_read(inode);
1598         struct page *page;
1599         char *kaddr;
1600
1601         if (off > i_size)
1602                 return 0;
1603
1604         if (off + len > i_size)
1605                 len = i_size - off;
1606         toread = len;
1607         while (toread > 0) {
1608                 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1609 repeat:
1610                 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1611                 if (IS_ERR(page)) {
1612                         if (PTR_ERR(page) == -ENOMEM) {
1613                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1614                                 goto repeat;
1615                         }
1616                         return PTR_ERR(page);
1617                 }
1618
1619                 lock_page(page);
1620
1621                 if (unlikely(page->mapping != mapping)) {
1622                         f2fs_put_page(page, 1);
1623                         goto repeat;
1624                 }
1625                 if (unlikely(!PageUptodate(page))) {
1626                         f2fs_put_page(page, 1);
1627                         return -EIO;
1628                 }
1629
1630                 kaddr = kmap_atomic(page);
1631                 memcpy(data, kaddr + offset, tocopy);
1632                 kunmap_atomic(kaddr);
1633                 f2fs_put_page(page, 1);
1634
1635                 offset = 0;
1636                 toread -= tocopy;
1637                 data += tocopy;
1638                 blkidx++;
1639         }
1640         return len;
1641 }
1642
1643 /* Write to quotafile */
1644 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1645                                 const char *data, size_t len, loff_t off)
1646 {
1647         struct inode *inode = sb_dqopt(sb)->files[type];
1648         struct address_space *mapping = inode->i_mapping;
1649         const struct address_space_operations *a_ops = mapping->a_ops;
1650         int offset = off & (sb->s_blocksize - 1);
1651         size_t towrite = len;
1652         struct page *page;
1653         void *fsdata = NULL;
1654         char *kaddr;
1655         int err = 0;
1656         int tocopy;
1657
1658         while (towrite > 0) {
1659                 tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1660                                                                 towrite);
1661 retry:
1662                 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1663                                                         &page, &fsdata);
1664                 if (unlikely(err)) {
1665                         if (err == -ENOMEM) {
1666                                 congestion_wait(BLK_RW_ASYNC, HZ/50);
1667                                 goto retry;
1668                         }
1669                         break;
1670                 }
1671
1672                 kaddr = kmap_atomic(page);
1673                 memcpy(kaddr + offset, data, tocopy);
1674                 kunmap_atomic(kaddr);
1675                 flush_dcache_page(page);
1676
1677                 a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1678                                                 page, fsdata);
1679                 offset = 0;
1680                 towrite -= tocopy;
1681                 off += tocopy;
1682                 data += tocopy;
1683                 cond_resched();
1684         }
1685
1686         if (len == towrite)
1687                 return err;
1688         inode->i_mtime = inode->i_ctime = current_time(inode);
1689         f2fs_mark_inode_dirty_sync(inode, false);
1690         return len - towrite;
1691 }
1692
1693 static struct dquot **f2fs_get_dquots(struct inode *inode)
1694 {
1695         return F2FS_I(inode)->i_dquot;
1696 }
1697
1698 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1699 {
1700         return &F2FS_I(inode)->i_reserved_quota;
1701 }
1702
1703 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1704 {
1705         return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1706                                         F2FS_OPTION(sbi).s_jquota_fmt, type);
1707 }
1708
1709 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1710 {
1711         int enabled = 0;
1712         int i, err;
1713
1714         if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1715                 err = f2fs_enable_quotas(sbi->sb);
1716                 if (err) {
1717                         f2fs_msg(sbi->sb, KERN_ERR,
1718                                         "Cannot turn on quota_ino: %d", err);
1719                         return 0;
1720                 }
1721                 return 1;
1722         }
1723
1724         for (i = 0; i < MAXQUOTAS; i++) {
1725                 if (F2FS_OPTION(sbi).s_qf_names[i]) {
1726                         err = f2fs_quota_on_mount(sbi, i);
1727                         if (!err) {
1728                                 enabled = 1;
1729                                 continue;
1730                         }
1731                         f2fs_msg(sbi->sb, KERN_ERR,
1732                                 "Cannot turn on quotas: %d on %d", err, i);
1733                 }
1734         }
1735         return enabled;
1736 }
1737
1738 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1739                              unsigned int flags)
1740 {
1741         struct inode *qf_inode;
1742         unsigned long qf_inum;
1743         int err;
1744
1745         BUG_ON(!f2fs_sb_has_quota_ino(sb));
1746
1747         qf_inum = f2fs_qf_ino(sb, type);
1748         if (!qf_inum)
1749                 return -EPERM;
1750
1751         qf_inode = f2fs_iget(sb, qf_inum);
1752         if (IS_ERR(qf_inode)) {
1753                 f2fs_msg(sb, KERN_ERR,
1754                         "Bad quota inode %u:%lu", type, qf_inum);
1755                 return PTR_ERR(qf_inode);
1756         }
1757
1758         /* Don't account quota for quota files to avoid recursion */
1759         qf_inode->i_flags |= S_NOQUOTA;
1760         err = dquot_enable(qf_inode, type, format_id, flags);
1761         iput(qf_inode);
1762         return err;
1763 }
1764
1765 static int f2fs_enable_quotas(struct super_block *sb)
1766 {
1767         int type, err = 0;
1768         unsigned long qf_inum;
1769         bool quota_mopt[MAXQUOTAS] = {
1770                 test_opt(F2FS_SB(sb), USRQUOTA),
1771                 test_opt(F2FS_SB(sb), GRPQUOTA),
1772                 test_opt(F2FS_SB(sb), PRJQUOTA),
1773         };
1774
1775         sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1776         for (type = 0; type < MAXQUOTAS; type++) {
1777                 qf_inum = f2fs_qf_ino(sb, type);
1778                 if (qf_inum) {
1779                         err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1780                                 DQUOT_USAGE_ENABLED |
1781                                 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1782                         if (err) {
1783                                 f2fs_msg(sb, KERN_ERR,
1784                                         "Failed to enable quota tracking "
1785                                         "(type=%d, err=%d). Please run "
1786                                         "fsck to fix.", type, err);
1787                                 for (type--; type >= 0; type--)
1788                                         dquot_quota_off(sb, type);
1789                                 return err;
1790                         }
1791                 }
1792         }
1793         return 0;
1794 }
1795
1796 static int f2fs_quota_sync(struct super_block *sb, int type)
1797 {
1798         struct quota_info *dqopt = sb_dqopt(sb);
1799         int cnt;
1800         int ret;
1801
1802         ret = dquot_writeback_dquots(sb, type);
1803         if (ret)
1804                 return ret;
1805
1806         /*
1807          * Now when everything is written we can discard the pagecache so
1808          * that userspace sees the changes.
1809          */
1810         for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1811                 if (type != -1 && cnt != type)
1812                         continue;
1813                 if (!sb_has_quota_active(sb, cnt))
1814                         continue;
1815
1816                 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1817                 if (ret)
1818                         return ret;
1819
1820                 inode_lock(dqopt->files[cnt]);
1821                 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1822                 inode_unlock(dqopt->files[cnt]);
1823         }
1824         return 0;
1825 }
1826
1827 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1828                                                         const struct path *path)
1829 {
1830         struct inode *inode;
1831         int err;
1832
1833         err = f2fs_quota_sync(sb, type);
1834         if (err)
1835                 return err;
1836
1837         err = dquot_quota_on(sb, type, format_id, path);
1838         if (err)
1839                 return err;
1840
1841         inode = d_inode(path->dentry);
1842
1843         inode_lock(inode);
1844         F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1845         f2fs_set_inode_flags(inode);
1846         inode_unlock(inode);
1847         f2fs_mark_inode_dirty_sync(inode, false);
1848
1849         return 0;
1850 }
1851
1852 static int f2fs_quota_off(struct super_block *sb, int type)
1853 {
1854         struct inode *inode = sb_dqopt(sb)->files[type];
1855         int err;
1856
1857         if (!inode || !igrab(inode))
1858                 return dquot_quota_off(sb, type);
1859
1860         err = f2fs_quota_sync(sb, type);
1861         if (err)
1862                 goto out_put;
1863
1864         err = dquot_quota_off(sb, type);
1865         if (err || f2fs_sb_has_quota_ino(sb))
1866                 goto out_put;
1867
1868         inode_lock(inode);
1869         F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
1870         f2fs_set_inode_flags(inode);
1871         inode_unlock(inode);
1872         f2fs_mark_inode_dirty_sync(inode, false);
1873 out_put:
1874         iput(inode);
1875         return err;
1876 }
1877
1878 void f2fs_quota_off_umount(struct super_block *sb)
1879 {
1880         int type;
1881         int err;
1882
1883         for (type = 0; type < MAXQUOTAS; type++) {
1884                 err = f2fs_quota_off(sb, type);
1885                 if (err) {
1886                         int ret = dquot_quota_off(sb, type);
1887
1888                         f2fs_msg(sb, KERN_ERR,
1889                                 "Fail to turn off disk quota "
1890                                 "(type: %d, err: %d, ret:%d), Please "
1891                                 "run fsck to fix it.", type, err, ret);
1892                         set_sbi_flag(F2FS_SB(sb), SBI_NEED_FSCK);
1893                 }
1894         }
1895         /*
1896          * In case of checkpoint=disable, we must flush quota blocks.
1897          * This can cause NULL exception for node_inode in end_io, since
1898          * put_super already dropped it.
1899          */
1900         sync_filesystem(sb);
1901 }
1902
1903 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
1904 {
1905         struct quota_info *dqopt = sb_dqopt(sb);
1906         int type;
1907
1908         for (type = 0; type < MAXQUOTAS; type++) {
1909                 if (!dqopt->files[type])
1910                         continue;
1911                 f2fs_inode_synced(dqopt->files[type]);
1912         }
1913 }
1914
1915
1916 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1917 {
1918         *projid = F2FS_I(inode)->i_projid;
1919         return 0;
1920 }
1921
1922 static const struct dquot_operations f2fs_quota_operations = {
1923         .get_reserved_space = f2fs_get_reserved_space,
1924         .write_dquot    = dquot_commit,
1925         .acquire_dquot  = dquot_acquire,
1926         .release_dquot  = dquot_release,
1927         .mark_dirty     = dquot_mark_dquot_dirty,
1928         .write_info     = dquot_commit_info,
1929         .alloc_dquot    = dquot_alloc,
1930         .destroy_dquot  = dquot_destroy,
1931         .get_projid     = f2fs_get_projid,
1932         .get_next_id    = dquot_get_next_id,
1933 };
1934
1935 static const struct quotactl_ops f2fs_quotactl_ops = {
1936         .quota_on       = f2fs_quota_on,
1937         .quota_off      = f2fs_quota_off,
1938         .quota_sync     = f2fs_quota_sync,
1939         .get_state      = dquot_get_state,
1940         .set_info       = dquot_set_dqinfo,
1941         .get_dqblk      = dquot_get_dqblk,
1942         .set_dqblk      = dquot_set_dqblk,
1943         .get_nextdqblk  = dquot_get_next_dqblk,
1944 };
1945 #else
1946 void f2fs_quota_off_umount(struct super_block *sb)
1947 {
1948 }
1949 #endif
1950
1951 static const struct super_operations f2fs_sops = {
1952         .alloc_inode    = f2fs_alloc_inode,
1953         .drop_inode     = f2fs_drop_inode,
1954         .destroy_inode  = f2fs_destroy_inode,
1955         .write_inode    = f2fs_write_inode,
1956         .dirty_inode    = f2fs_dirty_inode,
1957         .show_options   = f2fs_show_options,
1958 #ifdef CONFIG_QUOTA
1959         .quota_read     = f2fs_quota_read,
1960         .quota_write    = f2fs_quota_write,
1961         .get_dquots     = f2fs_get_dquots,
1962 #endif
1963         .evict_inode    = f2fs_evict_inode,
1964         .put_super      = f2fs_put_super,
1965         .sync_fs        = f2fs_sync_fs,
1966         .freeze_fs      = f2fs_freeze,
1967         .unfreeze_fs    = f2fs_unfreeze,
1968         .statfs         = f2fs_statfs,
1969         .remount_fs     = f2fs_remount,
1970 };
1971
1972 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1973 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1974 {
1975         return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1976                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1977                                 ctx, len, NULL);
1978 }
1979
1980 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1981                                                         void *fs_data)
1982 {
1983         struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1984
1985         /*
1986          * Encrypting the root directory is not allowed because fsck
1987          * expects lost+found directory to exist and remain unencrypted
1988          * if LOST_FOUND feature is enabled.
1989          *
1990          */
1991         if (f2fs_sb_has_lost_found(sbi->sb) &&
1992                         inode->i_ino == F2FS_ROOT_INO(sbi))
1993                 return -EPERM;
1994
1995         return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1996                                 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1997                                 ctx, len, fs_data, XATTR_CREATE);
1998 }
1999
2000 static bool f2fs_dummy_context(struct inode *inode)
2001 {
2002         return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2003 }
2004
2005 static const struct fscrypt_operations f2fs_cryptops = {
2006         .key_prefix     = "f2fs:",
2007         .get_context    = f2fs_get_context,
2008         .set_context    = f2fs_set_context,
2009         .dummy_context  = f2fs_dummy_context,
2010         .empty_dir      = f2fs_empty_dir,
2011         .max_namelen    = F2FS_NAME_LEN,
2012 };
2013 #endif
2014
2015 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2016                 u64 ino, u32 generation)
2017 {
2018         struct f2fs_sb_info *sbi = F2FS_SB(sb);
2019         struct inode *inode;
2020
2021         if (f2fs_check_nid_range(sbi, ino))
2022                 return ERR_PTR(-ESTALE);
2023
2024         /*
2025          * f2fs_iget isn't quite right if the inode is currently unallocated!
2026          * However f2fs_iget currently does appropriate checks to handle stale
2027          * inodes so everything is OK.
2028          */
2029         inode = f2fs_iget(sb, ino);
2030         if (IS_ERR(inode))
2031                 return ERR_CAST(inode);
2032         if (unlikely(generation && inode->i_generation != generation)) {
2033                 /* we didn't find the right inode.. */
2034                 iput(inode);
2035                 return ERR_PTR(-ESTALE);
2036         }
2037         return inode;
2038 }
2039
2040 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2041                 int fh_len, int fh_type)
2042 {
2043         return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2044                                     f2fs_nfs_get_inode);
2045 }
2046
2047 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2048                 int fh_len, int fh_type)
2049 {
2050         return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2051                                     f2fs_nfs_get_inode);
2052 }
2053
2054 static const struct export_operations f2fs_export_ops = {
2055         .fh_to_dentry = f2fs_fh_to_dentry,
2056         .fh_to_parent = f2fs_fh_to_parent,
2057         .get_parent = f2fs_get_parent,
2058 };
2059
2060 static loff_t max_file_blocks(void)
2061 {
2062         loff_t result = 0;
2063         loff_t leaf_count = ADDRS_PER_BLOCK;
2064
2065         /*
2066          * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2067          * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2068          * space in inode.i_addr, it will be more safe to reassign
2069          * result as zero.
2070          */
2071
2072         /* two direct node blocks */
2073         result += (leaf_count * 2);
2074
2075         /* two indirect node blocks */
2076         leaf_count *= NIDS_PER_BLOCK;
2077         result += (leaf_count * 2);
2078
2079         /* one double indirect node block */
2080         leaf_count *= NIDS_PER_BLOCK;
2081         result += leaf_count;
2082
2083         return result;
2084 }
2085
2086 static int __f2fs_commit_super(struct buffer_head *bh,
2087                         struct f2fs_super_block *super)
2088 {
2089         lock_buffer(bh);
2090         if (super)
2091                 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2092         set_buffer_dirty(bh);
2093         unlock_buffer(bh);
2094
2095         /* it's rare case, we can do fua all the time */
2096         return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2097 }
2098
2099 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2100                                         struct buffer_head *bh)
2101 {
2102         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2103                                         (bh->b_data + F2FS_SUPER_OFFSET);
2104         struct super_block *sb = sbi->sb;
2105         u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2106         u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2107         u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2108         u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2109         u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2110         u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2111         u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2112         u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2113         u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2114         u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2115         u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2116         u32 segment_count = le32_to_cpu(raw_super->segment_count);
2117         u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2118         u64 main_end_blkaddr = main_blkaddr +
2119                                 (segment_count_main << log_blocks_per_seg);
2120         u64 seg_end_blkaddr = segment0_blkaddr +
2121                                 (segment_count << log_blocks_per_seg);
2122
2123         if (segment0_blkaddr != cp_blkaddr) {
2124                 f2fs_msg(sb, KERN_INFO,
2125                         "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2126                         segment0_blkaddr, cp_blkaddr);
2127                 return true;
2128         }
2129
2130         if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2131                                                         sit_blkaddr) {
2132                 f2fs_msg(sb, KERN_INFO,
2133                         "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2134                         cp_blkaddr, sit_blkaddr,
2135                         segment_count_ckpt << log_blocks_per_seg);
2136                 return true;
2137         }
2138
2139         if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2140                                                         nat_blkaddr) {
2141                 f2fs_msg(sb, KERN_INFO,
2142                         "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2143                         sit_blkaddr, nat_blkaddr,
2144                         segment_count_sit << log_blocks_per_seg);
2145                 return true;
2146         }
2147
2148         if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2149                                                         ssa_blkaddr) {
2150                 f2fs_msg(sb, KERN_INFO,
2151                         "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2152                         nat_blkaddr, ssa_blkaddr,
2153                         segment_count_nat << log_blocks_per_seg);
2154                 return true;
2155         }
2156
2157         if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2158                                                         main_blkaddr) {
2159                 f2fs_msg(sb, KERN_INFO,
2160                         "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2161                         ssa_blkaddr, main_blkaddr,
2162                         segment_count_ssa << log_blocks_per_seg);
2163                 return true;
2164         }
2165
2166         if (main_end_blkaddr > seg_end_blkaddr) {
2167                 f2fs_msg(sb, KERN_INFO,
2168                         "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2169                         main_blkaddr,
2170                         segment0_blkaddr +
2171                                 (segment_count << log_blocks_per_seg),
2172                         segment_count_main << log_blocks_per_seg);
2173                 return true;
2174         } else if (main_end_blkaddr < seg_end_blkaddr) {
2175                 int err = 0;
2176                 char *res;
2177
2178                 /* fix in-memory information all the time */
2179                 raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2180                                 segment0_blkaddr) >> log_blocks_per_seg);
2181
2182                 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2183                         set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2184                         res = "internally";
2185                 } else {
2186                         err = __f2fs_commit_super(bh, NULL);
2187                         res = err ? "failed" : "done";
2188                 }
2189                 f2fs_msg(sb, KERN_INFO,
2190                         "Fix alignment : %s, start(%u) end(%u) block(%u)",
2191                         res, main_blkaddr,
2192                         segment0_blkaddr +
2193                                 (segment_count << log_blocks_per_seg),
2194                         segment_count_main << log_blocks_per_seg);
2195                 if (err)
2196                         return true;
2197         }
2198         return false;
2199 }
2200
2201 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2202                                 struct buffer_head *bh)
2203 {
2204         block_t segment_count, segs_per_sec, secs_per_zone;
2205         block_t total_sections, blocks_per_seg;
2206         struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2207                                         (bh->b_data + F2FS_SUPER_OFFSET);
2208         struct super_block *sb = sbi->sb;
2209         unsigned int blocksize;
2210
2211         if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2212                 f2fs_msg(sb, KERN_INFO,
2213                         "Magic Mismatch, valid(0x%x) - read(0x%x)",
2214                         F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2215                 return -EINVAL;
2216         }
2217
2218         /* Currently, support only 4KB page cache size */
2219         if (F2FS_BLKSIZE != PAGE_SIZE) {
2220                 f2fs_msg(sb, KERN_INFO,
2221                         "Invalid page_cache_size (%lu), supports only 4KB\n",
2222                         PAGE_SIZE);
2223                 return -EFSCORRUPTED;
2224         }
2225
2226         /* Currently, support only 4KB block size */
2227         blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2228         if (blocksize != F2FS_BLKSIZE) {
2229                 f2fs_msg(sb, KERN_INFO,
2230                         "Invalid blocksize (%u), supports only 4KB\n",
2231                         blocksize);
2232                 return -EFSCORRUPTED;
2233         }
2234
2235         /* check log blocks per segment */
2236         if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2237                 f2fs_msg(sb, KERN_INFO,
2238                         "Invalid log blocks per segment (%u)\n",
2239                         le32_to_cpu(raw_super->log_blocks_per_seg));
2240                 return -EFSCORRUPTED;
2241         }
2242
2243         /* Currently, support 512/1024/2048/4096 bytes sector size */
2244         if (le32_to_cpu(raw_super->log_sectorsize) >
2245                                 F2FS_MAX_LOG_SECTOR_SIZE ||
2246                 le32_to_cpu(raw_super->log_sectorsize) <
2247                                 F2FS_MIN_LOG_SECTOR_SIZE) {
2248                 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2249                         le32_to_cpu(raw_super->log_sectorsize));
2250                 return -EFSCORRUPTED;
2251         }
2252         if (le32_to_cpu(raw_super->log_sectors_per_block) +
2253                 le32_to_cpu(raw_super->log_sectorsize) !=
2254                         F2FS_MAX_LOG_SECTOR_SIZE) {
2255                 f2fs_msg(sb, KERN_INFO,
2256                         "Invalid log sectors per block(%u) log sectorsize(%u)",
2257                         le32_to_cpu(raw_super->log_sectors_per_block),
2258                         le32_to_cpu(raw_super->log_sectorsize));
2259                 return -EFSCORRUPTED;
2260         }
2261
2262         segment_count = le32_to_cpu(raw_super->segment_count);
2263         segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2264         secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2265         total_sections = le32_to_cpu(raw_super->section_count);
2266
2267         /* blocks_per_seg should be 512, given the above check */
2268         blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2269
2270         if (segment_count > F2FS_MAX_SEGMENT ||
2271                                 segment_count < F2FS_MIN_SEGMENTS) {
2272                 f2fs_msg(sb, KERN_INFO,
2273                         "Invalid segment count (%u)",
2274                         segment_count);
2275                 return -EFSCORRUPTED;
2276         }
2277
2278         if (total_sections > segment_count ||
2279                         total_sections < F2FS_MIN_SEGMENTS ||
2280                         segs_per_sec > segment_count || !segs_per_sec) {
2281                 f2fs_msg(sb, KERN_INFO,
2282                         "Invalid segment/section count (%u, %u x %u)",
2283                         segment_count, total_sections, segs_per_sec);
2284                 return -EFSCORRUPTED;
2285         }
2286
2287         if ((segment_count / segs_per_sec) < total_sections) {
2288                 f2fs_msg(sb, KERN_INFO,
2289                         "Small segment_count (%u < %u * %u)",
2290                         segment_count, segs_per_sec, total_sections);
2291                 return -EFSCORRUPTED;
2292         }
2293
2294         if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2295                 f2fs_msg(sb, KERN_INFO,
2296                         "Wrong segment_count / block_count (%u > %llu)",
2297                         segment_count, le64_to_cpu(raw_super->block_count));
2298                 return -EFSCORRUPTED;
2299         }
2300
2301         if (secs_per_zone > total_sections || !secs_per_zone) {
2302                 f2fs_msg(sb, KERN_INFO,
2303                         "Wrong secs_per_zone / total_sections (%u, %u)",
2304                         secs_per_zone, total_sections);
2305                 return -EFSCORRUPTED;
2306         }
2307         if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2308                         raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2309                         (le32_to_cpu(raw_super->extension_count) +
2310                         raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2311                 f2fs_msg(sb, KERN_INFO,
2312                         "Corrupted extension count (%u + %u > %u)",
2313                         le32_to_cpu(raw_super->extension_count),
2314                         raw_super->hot_ext_count,
2315                         F2FS_MAX_EXTENSION);
2316                 return -EFSCORRUPTED;
2317         }
2318
2319         if (le32_to_cpu(raw_super->cp_payload) >
2320                                 (blocks_per_seg - F2FS_CP_PACKS)) {
2321                 f2fs_msg(sb, KERN_INFO,
2322                         "Insane cp_payload (%u > %u)",
2323                         le32_to_cpu(raw_super->cp_payload),
2324                         blocks_per_seg - F2FS_CP_PACKS);
2325                 return -EFSCORRUPTED;
2326         }
2327
2328         /* check reserved ino info */
2329         if (le32_to_cpu(raw_super->node_ino) != 1 ||
2330                 le32_to_cpu(raw_super->meta_ino) != 2 ||
2331                 le32_to_cpu(raw_super->root_ino) != 3) {
2332                 f2fs_msg(sb, KERN_INFO,
2333                         "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2334                         le32_to_cpu(raw_super->node_ino),
2335                         le32_to_cpu(raw_super->meta_ino),
2336                         le32_to_cpu(raw_super->root_ino));
2337                 return -EFSCORRUPTED;
2338         }
2339
2340         /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2341         if (sanity_check_area_boundary(sbi, bh))
2342                 return -EFSCORRUPTED;
2343
2344         return 0;
2345 }
2346
2347 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2348 {
2349         unsigned int total, fsmeta;
2350         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2351         struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2352         unsigned int ovp_segments, reserved_segments;
2353         unsigned int main_segs, blocks_per_seg;
2354         unsigned int sit_segs, nat_segs;
2355         unsigned int sit_bitmap_size, nat_bitmap_size;
2356         unsigned int log_blocks_per_seg;
2357         unsigned int segment_count_main;
2358         unsigned int cp_pack_start_sum, cp_payload;
2359         block_t user_block_count;
2360         int i, j;
2361
2362         total = le32_to_cpu(raw_super->segment_count);
2363         fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2364         sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2365         fsmeta += sit_segs;
2366         nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2367         fsmeta += nat_segs;
2368         fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2369         fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2370
2371         if (unlikely(fsmeta >= total))
2372                 return 1;
2373
2374         ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2375         reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2376
2377         if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2378                         ovp_segments == 0 || reserved_segments == 0)) {
2379                 f2fs_msg(sbi->sb, KERN_ERR,
2380                         "Wrong layout: check mkfs.f2fs version");
2381                 return 1;
2382         }
2383
2384         user_block_count = le64_to_cpu(ckpt->user_block_count);
2385         segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2386         log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2387         if (!user_block_count || user_block_count >=
2388                         segment_count_main << log_blocks_per_seg) {
2389                 f2fs_msg(sbi->sb, KERN_ERR,
2390                         "Wrong user_block_count: %u", user_block_count);
2391                 return 1;
2392         }
2393
2394         main_segs = le32_to_cpu(raw_super->segment_count_main);
2395         blocks_per_seg = sbi->blocks_per_seg;
2396
2397         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2398                 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2399                         le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2400                         return 1;
2401                 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2402                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2403                                 le32_to_cpu(ckpt->cur_node_segno[j])) {
2404                                 f2fs_msg(sbi->sb, KERN_ERR,
2405                                         "Node segment (%u, %u) has the same "
2406                                         "segno: %u", i, j,
2407                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2408                                 return 1;
2409                         }
2410                 }
2411         }
2412         for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2413                 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2414                         le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2415                         return 1;
2416                 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2417                         if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2418                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2419                                 f2fs_msg(sbi->sb, KERN_ERR,
2420                                         "Data segment (%u, %u) has the same "
2421                                         "segno: %u", i, j,
2422                                         le32_to_cpu(ckpt->cur_data_segno[i]));
2423                                 return 1;
2424                         }
2425                 }
2426         }
2427         for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2428                 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2429                         if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2430                                 le32_to_cpu(ckpt->cur_data_segno[j])) {
2431                                 f2fs_msg(sbi->sb, KERN_ERR,
2432                                         "Node segment (%u) and Data segment (%u)"
2433                                         " has the same segno: %u", i, j,
2434                                         le32_to_cpu(ckpt->cur_node_segno[i]));
2435                                 return 1;
2436                         }
2437                 }
2438         }
2439
2440         sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2441         nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2442
2443         if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2444                 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2445                 f2fs_msg(sbi->sb, KERN_ERR,
2446                         "Wrong bitmap size: sit: %u, nat:%u",
2447                         sit_bitmap_size, nat_bitmap_size);
2448                 return 1;
2449         }
2450
2451         cp_pack_start_sum = __start_sum_addr(sbi);
2452         cp_payload = __cp_payload(sbi);
2453         if (cp_pack_start_sum < cp_payload + 1 ||
2454                 cp_pack_start_sum > blocks_per_seg - 1 -
2455                         NR_CURSEG_TYPE) {
2456                 f2fs_msg(sbi->sb, KERN_ERR,
2457                         "Wrong cp_pack_start_sum: %u",
2458                         cp_pack_start_sum);
2459                 return 1;
2460         }
2461
2462         if (unlikely(f2fs_cp_error(sbi))) {
2463                 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2464                 return 1;
2465         }
2466         return 0;
2467 }
2468
2469 static void init_sb_info(struct f2fs_sb_info *sbi)
2470 {
2471         struct f2fs_super_block *raw_super = sbi->raw_super;
2472         int i, j;
2473
2474         sbi->log_sectors_per_block =
2475                 le32_to_cpu(raw_super->log_sectors_per_block);
2476         sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2477         sbi->blocksize = 1 << sbi->log_blocksize;
2478         sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2479         sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2480         sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2481         sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2482         sbi->total_sections = le32_to_cpu(raw_super->section_count);
2483         sbi->total_node_count =
2484                 (le32_to_cpu(raw_super->segment_count_nat) / 2)
2485                         * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2486         sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2487         sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2488         sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2489         sbi->cur_victim_sec = NULL_SECNO;
2490         sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2491
2492         sbi->dir_level = DEF_DIR_LEVEL;
2493         sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2494         sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2495         clear_sbi_flag(sbi, SBI_NEED_FSCK);
2496
2497         for (i = 0; i < NR_COUNT_TYPE; i++)
2498                 atomic_set(&sbi->nr_pages[i], 0);
2499
2500         for (i = 0; i < META; i++)
2501                 atomic_set(&sbi->wb_sync_req[i], 0);
2502
2503         INIT_LIST_HEAD(&sbi->s_list);
2504         mutex_init(&sbi->umount_mutex);
2505         for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2506                 for (j = HOT; j < NR_TEMP_TYPE; j++)
2507                         mutex_init(&sbi->wio_mutex[i][j]);
2508         init_rwsem(&sbi->io_order_lock);
2509         spin_lock_init(&sbi->cp_lock);
2510
2511         sbi->dirty_device = 0;
2512         spin_lock_init(&sbi->dev_lock);
2513
2514         init_rwsem(&sbi->sb_lock);
2515 }
2516
2517 static int init_percpu_info(struct f2fs_sb_info *sbi)
2518 {
2519         int err;
2520
2521         err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2522         if (err)
2523                 return err;
2524
2525         err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2526                                                                 GFP_KERNEL);
2527         if (err)
2528                 percpu_counter_destroy(&sbi->alloc_valid_block_count);
2529
2530         return err;
2531 }
2532
2533 #ifdef CONFIG_BLK_DEV_ZONED
2534 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2535 {
2536         struct block_device *bdev = FDEV(devi).bdev;
2537         sector_t nr_sectors = bdev->bd_part->nr_sects;
2538         sector_t sector = 0;
2539         struct blk_zone *zones;
2540         unsigned int i, nr_zones;
2541         unsigned int n = 0;
2542         int err = -EIO;
2543
2544         if (!f2fs_sb_has_blkzoned(sbi->sb))
2545                 return 0;
2546
2547         if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2548                                 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2549                 return -EINVAL;
2550         sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2551         if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2552                                 __ilog2_u32(sbi->blocks_per_blkz))
2553                 return -EINVAL;
2554         sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2555         FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2556                                         sbi->log_blocks_per_blkz;
2557         if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2558                 FDEV(devi).nr_blkz++;
2559
2560         FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2561                                                                 GFP_KERNEL);
2562         if (!FDEV(devi).blkz_type)
2563                 return -ENOMEM;
2564
2565 #define F2FS_REPORT_NR_ZONES   4096
2566
2567         zones = f2fs_kzalloc(sbi,
2568                              array_size(F2FS_REPORT_NR_ZONES,
2569                                         sizeof(struct blk_zone)),
2570                              GFP_KERNEL);
2571         if (!zones)
2572                 return -ENOMEM;
2573
2574         /* Get block zones type */
2575         while (zones && sector < nr_sectors) {
2576
2577                 nr_zones = F2FS_REPORT_NR_ZONES;
2578                 err = blkdev_report_zones(bdev, sector,
2579                                           zones, &nr_zones,
2580                                           GFP_KERNEL);
2581                 if (err)
2582                         break;
2583                 if (!nr_zones) {
2584                         err = -EIO;
2585                         break;
2586                 }
2587
2588                 for (i = 0; i < nr_zones; i++) {
2589                         FDEV(devi).blkz_type[n] = zones[i].type;
2590                         sector += zones[i].len;
2591                         n++;
2592                 }
2593         }
2594
2595         kfree(zones);
2596
2597         return err;
2598 }
2599 #endif
2600
2601 /*
2602  * Read f2fs raw super block.
2603  * Because we have two copies of super block, so read both of them
2604  * to get the first valid one. If any one of them is broken, we pass
2605  * them recovery flag back to the caller.
2606  */
2607 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2608                         struct f2fs_super_block **raw_super,
2609                         int *valid_super_block, int *recovery)
2610 {
2611         struct super_block *sb = sbi->sb;
2612         int block;
2613         struct buffer_head *bh;
2614         struct f2fs_super_block *super;
2615         int err = 0;
2616
2617         super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2618         if (!super)
2619                 return -ENOMEM;
2620
2621         for (block = 0; block < 2; block++) {
2622                 bh = sb_bread(sb, block);
2623                 if (!bh) {
2624                         f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2625                                 block + 1);
2626                         err = -EIO;
2627                         continue;
2628                 }
2629
2630                 /* sanity checking of raw super */
2631                 err = sanity_check_raw_super(sbi, bh);
2632                 if (err) {
2633                         f2fs_msg(sb, KERN_ERR,
2634                                 "Can't find valid F2FS filesystem in %dth superblock",
2635                                 block + 1);
2636                         brelse(bh);
2637                         continue;
2638                 }
2639
2640                 if (!*raw_super) {
2641                         memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2642                                                         sizeof(*super));
2643                         *valid_super_block = block;
2644                         *raw_super = super;
2645                 }
2646                 brelse(bh);
2647         }
2648
2649         /* Fail to read any one of the superblocks*/
2650         if (err < 0)
2651                 *recovery = 1;
2652
2653         /* No valid superblock */
2654         if (!*raw_super)
2655                 kfree(super);
2656         else
2657                 err = 0;
2658
2659         return err;
2660 }
2661
2662 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2663 {
2664         struct buffer_head *bh;
2665         int err;
2666
2667         if ((recover && f2fs_readonly(sbi->sb)) ||
2668                                 bdev_read_only(sbi->sb->s_bdev)) {
2669                 set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2670                 return -EROFS;
2671         }
2672
2673         /* write back-up superblock first */
2674         bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2675         if (!bh)
2676                 return -EIO;
2677         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2678         brelse(bh);
2679
2680         /* if we are in recovery path, skip writing valid superblock */
2681         if (recover || err)
2682                 return err;
2683
2684         /* write current valid superblock */
2685         bh = sb_bread(sbi->sb, sbi->valid_super_block);
2686         if (!bh)
2687                 return -EIO;
2688         err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2689         brelse(bh);
2690         return err;
2691 }
2692
2693 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2694 {
2695         struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2696         unsigned int max_devices = MAX_DEVICES;
2697         int i;
2698
2699         /* Initialize single device information */
2700         if (!RDEV(0).path[0]) {
2701                 if (!bdev_is_zoned(sbi->sb->s_bdev))
2702                         return 0;
2703                 max_devices = 1;
2704         }
2705
2706         /*
2707          * Initialize multiple devices information, or single
2708          * zoned block device information.
2709          */
2710         sbi->devs = f2fs_kzalloc(sbi,
2711                                  array_size(max_devices,
2712                                             sizeof(struct f2fs_dev_info)),
2713                                  GFP_KERNEL);
2714         if (!sbi->devs)
2715                 return -ENOMEM;
2716
2717         for (i = 0; i < max_devices; i++) {
2718
2719                 if (i > 0 && !RDEV(i).path[0])
2720                         break;
2721
2722                 if (max_devices == 1) {
2723                         /* Single zoned block device mount */
2724                         FDEV(0).bdev =
2725                                 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2726                                         sbi->sb->s_mode, sbi->sb->s_type);
2727                 } else {
2728                         /* Multi-device mount */
2729                         memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2730                         FDEV(i).total_segments =
2731                                 le32_to_cpu(RDEV(i).total_segments);
2732                         if (i == 0) {
2733                                 FDEV(i).start_blk = 0;
2734                                 FDEV(i).end_blk = FDEV(i).start_blk +
2735                                     (FDEV(i).total_segments <<
2736                                     sbi->log_blocks_per_seg) - 1 +
2737                                     le32_to_cpu(raw_super->segment0_blkaddr);
2738                         } else {
2739                                 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2740                                 FDEV(i).end_blk = FDEV(i).start_blk +
2741                                         (FDEV(i).total_segments <<
2742                                         sbi->log_blocks_per_seg) - 1;
2743                         }
2744                         FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2745                                         sbi->sb->s_mode, sbi->sb->s_type);
2746                 }
2747                 if (IS_ERR(FDEV(i).bdev))
2748                         return PTR_ERR(FDEV(i).bdev);
2749
2750                 /* to release errored devices */
2751                 sbi->s_ndevs = i + 1;
2752
2753 #ifdef CONFIG_BLK_DEV_ZONED
2754                 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2755                                 !f2fs_sb_has_blkzoned(sbi->sb)) {
2756                         f2fs_msg(sbi->sb, KERN_ERR,
2757                                 "Zoned block device feature not enabled\n");
2758                         return -EINVAL;
2759                 }
2760                 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2761                         if (init_blkz_info(sbi, i)) {
2762                                 f2fs_msg(sbi->sb, KERN_ERR,
2763                                         "Failed to initialize F2FS blkzone information");
2764                                 return -EINVAL;
2765                         }
2766                         if (max_devices == 1)
2767                                 break;
2768                         f2fs_msg(sbi->sb, KERN_INFO,
2769                                 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2770                                 i, FDEV(i).path,
2771                                 FDEV(i).total_segments,
2772                                 FDEV(i).start_blk, FDEV(i).end_blk,
2773                                 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2774                                 "Host-aware" : "Host-managed");
2775                         continue;
2776                 }
2777 #endif
2778                 f2fs_msg(sbi->sb, KERN_INFO,
2779                         "Mount Device [%2d]: %20s, %8u, %8x - %8x",
2780                                 i, FDEV(i).path,
2781                                 FDEV(i).total_segments,
2782                                 FDEV(i).start_blk, FDEV(i).end_blk);
2783         }
2784         f2fs_msg(sbi->sb, KERN_INFO,
2785                         "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2786         return 0;
2787 }
2788
2789 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2790 {
2791         struct f2fs_sm_info *sm_i = SM_I(sbi);
2792
2793         /* adjust parameters according to the volume size */
2794         if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2795                 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2796                 sm_i->dcc_info->discard_granularity = 1;
2797                 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2798         }
2799
2800         sbi->readdir_ra = 1;
2801 }
2802
2803 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2804 {
2805         struct f2fs_sb_info *sbi;
2806         struct f2fs_super_block *raw_super;
2807         struct inode *root;
2808         int err;
2809         bool retry = true, need_fsck = false;
2810         char *options = NULL;
2811         int recovery, i, valid_super_block;
2812         struct curseg_info *seg_i;
2813
2814 try_onemore:
2815         err = -EINVAL;
2816         raw_super = NULL;
2817         valid_super_block = -1;
2818         recovery = 0;
2819
2820         /* allocate memory for f2fs-specific super block info */
2821         sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2822         if (!sbi)
2823                 return -ENOMEM;
2824
2825         sbi->sb = sb;
2826
2827         /* Load the checksum driver */
2828         sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2829         if (IS_ERR(sbi->s_chksum_driver)) {
2830                 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2831                 err = PTR_ERR(sbi->s_chksum_driver);
2832                 sbi->s_chksum_driver = NULL;
2833                 goto free_sbi;
2834         }
2835
2836         /* set a block size */
2837         if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2838                 f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2839                 goto free_sbi;
2840         }
2841
2842         err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2843                                                                 &recovery);
2844         if (err)
2845                 goto free_sbi;
2846
2847         sb->s_fs_info = sbi;
2848         sbi->raw_super = raw_super;
2849
2850         /* precompute checksum seed for metadata */
2851         if (f2fs_sb_has_inode_chksum(sb))
2852                 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2853                                                 sizeof(raw_super->uuid));
2854
2855         /*
2856          * The BLKZONED feature indicates that the drive was formatted with
2857          * zone alignment optimization. This is optional for host-aware
2858          * devices, but mandatory for host-managed zoned block devices.
2859          */
2860 #ifndef CONFIG_BLK_DEV_ZONED
2861         if (f2fs_sb_has_blkzoned(sb)) {
2862                 f2fs_msg(sb, KERN_ERR,
2863                          "Zoned block device support is not enabled\n");
2864                 err = -EOPNOTSUPP;
2865                 goto free_sb_buf;
2866         }
2867 #endif
2868         default_options(sbi);
2869         /* parse mount options */
2870         options = kstrdup((const char *)data, GFP_KERNEL);
2871         if (data && !options) {
2872                 err = -ENOMEM;
2873                 goto free_sb_buf;
2874         }
2875
2876         err = parse_options(sb, options);
2877         if (err)
2878                 goto free_options;
2879
2880         sbi->max_file_blocks = max_file_blocks();
2881         sb->s_maxbytes = sbi->max_file_blocks <<
2882                                 le32_to_cpu(raw_super->log_blocksize);
2883         sb->s_max_links = F2FS_LINK_MAX;
2884         get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2885
2886 #ifdef CONFIG_QUOTA
2887         sb->dq_op = &f2fs_quota_operations;
2888         if (f2fs_sb_has_quota_ino(sb))
2889                 sb->s_qcop = &dquot_quotactl_sysfile_ops;
2890         else
2891                 sb->s_qcop = &f2fs_quotactl_ops;
2892         sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2893
2894         if (f2fs_sb_has_quota_ino(sbi->sb)) {
2895                 for (i = 0; i < MAXQUOTAS; i++) {
2896                         if (f2fs_qf_ino(sbi->sb, i))
2897                                 sbi->nquota_files++;
2898                 }
2899         }
2900 #endif
2901
2902         sb->s_op = &f2fs_sops;
2903 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2904         sb->s_cop = &f2fs_cryptops;
2905 #endif
2906         sb->s_xattr = f2fs_xattr_handlers;
2907         sb->s_export_op = &f2fs_export_ops;
2908         sb->s_magic = F2FS_SUPER_MAGIC;
2909         sb->s_time_gran = 1;
2910         sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2911                 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2912         memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2913         sb->s_iflags |= SB_I_CGROUPWB;
2914
2915         /* init f2fs-specific super block info */
2916         sbi->valid_super_block = valid_super_block;
2917         mutex_init(&sbi->gc_mutex);
2918         mutex_init(&sbi->writepages);
2919         mutex_init(&sbi->cp_mutex);
2920         init_rwsem(&sbi->node_write);
2921         init_rwsem(&sbi->node_change);
2922
2923         /* disallow all the data/node/meta page writes */
2924         set_sbi_flag(sbi, SBI_POR_DOING);
2925         spin_lock_init(&sbi->stat_lock);
2926
2927         /* init iostat info */
2928         spin_lock_init(&sbi->iostat_lock);
2929         sbi->iostat_enable = false;
2930
2931         for (i = 0; i < NR_PAGE_TYPE; i++) {
2932                 int n = (i == META) ? 1: NR_TEMP_TYPE;
2933                 int j;
2934
2935                 sbi->write_io[i] =
2936                         f2fs_kmalloc(sbi,
2937                                      array_size(n,
2938                                                 sizeof(struct f2fs_bio_info)),
2939                                      GFP_KERNEL);
2940                 if (!sbi->write_io[i]) {
2941                         err = -ENOMEM;
2942                         goto free_bio_info;
2943                 }
2944
2945                 for (j = HOT; j < n; j++) {
2946                         init_rwsem(&sbi->write_io[i][j].io_rwsem);
2947                         sbi->write_io[i][j].sbi = sbi;
2948                         sbi->write_io[i][j].bio = NULL;
2949                         spin_lock_init(&sbi->write_io[i][j].io_lock);
2950                         INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2951                 }
2952         }
2953
2954         init_rwsem(&sbi->cp_rwsem);
2955         init_waitqueue_head(&sbi->cp_wait);
2956         init_sb_info(sbi);
2957
2958         err = init_percpu_info(sbi);
2959         if (err)
2960                 goto free_bio_info;
2961
2962         if (F2FS_IO_SIZE(sbi) > 1) {
2963                 sbi->write_io_dummy =
2964                         mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2965                 if (!sbi->write_io_dummy) {
2966                         err = -ENOMEM;
2967                         goto free_percpu;
2968                 }
2969         }
2970
2971         /* get an inode for meta space */
2972         sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2973         if (IS_ERR(sbi->meta_inode)) {
2974                 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2975                 err = PTR_ERR(sbi->meta_inode);
2976                 goto free_io_dummy;
2977         }
2978
2979         err = f2fs_get_valid_checkpoint(sbi);
2980         if (err) {
2981                 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2982                 goto free_meta_inode;
2983         }
2984
2985         /* Initialize device list */
2986         err = f2fs_scan_devices(sbi);
2987         if (err) {
2988                 f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2989                 goto free_devices;
2990         }
2991
2992         sbi->total_valid_node_count =
2993                                 le32_to_cpu(sbi->ckpt->valid_node_count);
2994         percpu_counter_set(&sbi->total_valid_inode_count,
2995                                 le32_to_cpu(sbi->ckpt->valid_inode_count));
2996         sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2997         sbi->total_valid_block_count =
2998                                 le64_to_cpu(sbi->ckpt->valid_block_count);
2999         sbi->last_valid_block_count = sbi->total_valid_block_count;
3000         sbi->reserved_blocks = 0;
3001         sbi->current_reserved_blocks = 0;
3002         limit_reserve_root(sbi);
3003
3004         for (i = 0; i < NR_INODE_TYPE; i++) {
3005                 INIT_LIST_HEAD(&sbi->inode_list[i]);
3006                 spin_lock_init(&sbi->inode_lock[i]);
3007         }
3008
3009         f2fs_init_extent_cache_info(sbi);
3010
3011         f2fs_init_ino_entry_info(sbi);
3012
3013         f2fs_init_fsync_node_info(sbi);
3014
3015         /* setup f2fs internal modules */
3016         err = f2fs_build_segment_manager(sbi);
3017         if (err) {
3018                 f2fs_msg(sb, KERN_ERR,
3019                         "Failed to initialize F2FS segment manager");
3020                 goto free_sm;
3021         }
3022         err = f2fs_build_node_manager(sbi);
3023         if (err) {
3024                 f2fs_msg(sb, KERN_ERR,
3025                         "Failed to initialize F2FS node manager");
3026                 goto free_nm;
3027         }
3028
3029         /* For write statistics */
3030         if (sb->s_bdev->bd_part)
3031                 sbi->sectors_written_start =
3032                         (u64)part_stat_read(sb->s_bdev->bd_part,
3033                                             sectors[STAT_WRITE]);
3034
3035         /* Read accumulated write IO statistics if exists */
3036         seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3037         if (__exist_node_summaries(sbi))
3038                 sbi->kbytes_written =
3039                         le64_to_cpu(seg_i->journal->info.kbytes_written);
3040
3041         f2fs_build_gc_manager(sbi);
3042
3043         err = f2fs_build_stats(sbi);
3044         if (err)
3045                 goto free_nm;
3046
3047         /* get an inode for node space */
3048         sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3049         if (IS_ERR(sbi->node_inode)) {
3050                 f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3051                 err = PTR_ERR(sbi->node_inode);
3052                 goto free_stats;
3053         }
3054
3055         /* read root inode and dentry */
3056         root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3057         if (IS_ERR(root)) {
3058                 f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3059                 err = PTR_ERR(root);
3060                 goto free_node_inode;
3061         }
3062         if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3063                         !root->i_size || !root->i_nlink) {
3064                 iput(root);
3065                 err = -EINVAL;
3066                 goto free_node_inode;
3067         }
3068
3069         sb->s_root = d_make_root(root); /* allocate root dentry */
3070         if (!sb->s_root) {
3071                 err = -ENOMEM;
3072                 goto free_root_inode;
3073         }
3074
3075         err = f2fs_register_sysfs(sbi);
3076         if (err)
3077                 goto free_root_inode;
3078
3079 #ifdef CONFIG_QUOTA
3080         /* Enable quota usage during mount */
3081         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
3082                 err = f2fs_enable_quotas(sb);
3083                 if (err) {
3084                         f2fs_msg(sb, KERN_ERR,
3085                                 "Cannot turn on quotas: error %d", err);
3086                         goto free_sysfs;
3087                 }
3088         }
3089 #endif
3090         /* if there are nt orphan nodes free them */
3091         err = f2fs_recover_orphan_inodes(sbi);
3092         if (err)
3093                 goto free_meta;
3094
3095         /* recover fsynced data */
3096         if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3097                 /*
3098                  * mount should be failed, when device has readonly mode, and
3099                  * previous checkpoint was not done by clean system shutdown.
3100                  */
3101                 if (bdev_read_only(sb->s_bdev) &&
3102                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3103                         err = -EROFS;
3104                         goto free_meta;
3105                 }
3106
3107                 if (need_fsck)
3108                         set_sbi_flag(sbi, SBI_NEED_FSCK);
3109
3110                 if (!retry)
3111                         goto skip_recovery;
3112
3113                 err = f2fs_recover_fsync_data(sbi, false);
3114                 if (err < 0) {
3115                         need_fsck = true;
3116                         f2fs_msg(sb, KERN_ERR,
3117                                 "Cannot recover all fsync data errno=%d", err);
3118                         goto free_meta;
3119                 }
3120         } else {
3121                 err = f2fs_recover_fsync_data(sbi, true);
3122
3123                 if (!f2fs_readonly(sb) && err > 0) {
3124                         err = -EINVAL;
3125                         f2fs_msg(sb, KERN_ERR,
3126                                 "Need to recover fsync data");
3127                         goto free_meta;
3128                 }
3129         }
3130 skip_recovery:
3131         /* f2fs_recover_fsync_data() cleared this already */
3132         clear_sbi_flag(sbi, SBI_POR_DOING);
3133
3134         /*
3135          * If filesystem is not mounted as read-only then
3136          * do start the gc_thread.
3137          */
3138         if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3139                 /* After POR, we can run background GC thread.*/
3140                 err = f2fs_start_gc_thread(sbi);
3141                 if (err)
3142                         goto free_meta;
3143         }
3144         kfree(options);
3145
3146         /* recover broken superblock */
3147         if (recovery) {
3148                 err = f2fs_commit_super(sbi, true);
3149                 f2fs_msg(sb, KERN_INFO,
3150                         "Try to recover %dth superblock, ret: %d",
3151                         sbi->valid_super_block ? 1 : 2, err);
3152         }
3153
3154         f2fs_join_shrinker(sbi);
3155
3156         f2fs_tuning_parameters(sbi);
3157
3158         f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3159                                 cur_cp_version(F2FS_CKPT(sbi)));
3160         f2fs_update_time(sbi, CP_TIME);
3161         f2fs_update_time(sbi, REQ_TIME);
3162         return 0;
3163
3164 free_meta:
3165 #ifdef CONFIG_QUOTA
3166         f2fs_truncate_quota_inode_pages(sb);
3167         if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
3168                 f2fs_quota_off_umount(sbi->sb);
3169 #endif
3170         /*
3171          * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3172          * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3173          * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3174          * falls into an infinite loop in f2fs_sync_meta_pages().
3175          */
3176         truncate_inode_pages_final(META_MAPPING(sbi));
3177 #ifdef CONFIG_QUOTA
3178 free_sysfs:
3179 #endif
3180         f2fs_unregister_sysfs(sbi);
3181 free_root_inode:
3182         dput(sb->s_root);
3183         sb->s_root = NULL;
3184 free_node_inode:
3185         f2fs_release_ino_entry(sbi, true);
3186         truncate_inode_pages_final(NODE_MAPPING(sbi));
3187         iput(sbi->node_inode);
3188         sbi->node_inode = NULL;
3189 free_stats:
3190         f2fs_destroy_stats(sbi);
3191 free_nm:
3192         f2fs_destroy_node_manager(sbi);
3193 free_sm:
3194         f2fs_destroy_segment_manager(sbi);
3195 free_devices:
3196         destroy_device_list(sbi);
3197         kfree(sbi->ckpt);
3198 free_meta_inode:
3199         make_bad_inode(sbi->meta_inode);
3200         iput(sbi->meta_inode);
3201         sbi->meta_inode = NULL;
3202 free_io_dummy:
3203         mempool_destroy(sbi->write_io_dummy);
3204 free_percpu:
3205         destroy_percpu_info(sbi);
3206 free_bio_info:
3207         for (i = 0; i < NR_PAGE_TYPE; i++)
3208                 kfree(sbi->write_io[i]);
3209 free_options:
3210 #ifdef CONFIG_QUOTA
3211         for (i = 0; i < MAXQUOTAS; i++)
3212                 kfree(F2FS_OPTION(sbi).s_qf_names[i]);
3213 #endif
3214         kfree(options);
3215 free_sb_buf:
3216         kfree(raw_super);
3217 free_sbi:
3218         if (sbi->s_chksum_driver)
3219                 crypto_free_shash(sbi->s_chksum_driver);
3220         kfree(sbi);
3221
3222         /* give only one another chance */
3223         if (retry) {
3224                 retry = false;
3225                 shrink_dcache_sb(sb);
3226                 goto try_onemore;
3227         }
3228         return err;
3229 }
3230
3231 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3232                         const char *dev_name, void *data)
3233 {
3234         return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3235 }
3236
3237 static void kill_f2fs_super(struct super_block *sb)
3238 {
3239         if (sb->s_root) {
3240                 struct f2fs_sb_info *sbi = F2FS_SB(sb);
3241
3242                 set_sbi_flag(sbi, SBI_IS_CLOSE);
3243                 f2fs_stop_gc_thread(sbi);
3244                 f2fs_stop_discard_thread(sbi);
3245
3246                 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3247                                 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3248                         struct cp_control cpc = {
3249                                 .reason = CP_UMOUNT,
3250                         };
3251                         f2fs_write_checkpoint(sbi, &cpc);
3252                 }
3253
3254                 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3255                         sb->s_flags &= ~SB_RDONLY;
3256         }
3257         kill_block_super(sb);
3258 }
3259
3260 static struct file_system_type f2fs_fs_type = {
3261         .owner          = THIS_MODULE,
3262         .name           = "f2fs",
3263         .mount          = f2fs_mount,
3264         .kill_sb        = kill_f2fs_super,
3265         .fs_flags       = FS_REQUIRES_DEV,
3266 };
3267 MODULE_ALIAS_FS("f2fs");
3268
3269 static int __init init_inodecache(void)
3270 {
3271         f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3272                         sizeof(struct f2fs_inode_info), 0,
3273                         SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3274         if (!f2fs_inode_cachep)
3275                 return -ENOMEM;
3276         return 0;
3277 }
3278
3279 static void destroy_inodecache(void)
3280 {
3281         /*
3282          * Make sure all delayed rcu free inodes are flushed before we
3283          * destroy cache.
3284          */
3285         rcu_barrier();
3286         kmem_cache_destroy(f2fs_inode_cachep);
3287 }
3288
3289 static int __init init_f2fs_fs(void)
3290 {
3291         int err;
3292
3293         if (PAGE_SIZE != F2FS_BLKSIZE) {
3294                 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3295                                 PAGE_SIZE, F2FS_BLKSIZE);
3296                 return -EINVAL;
3297         }
3298
3299         f2fs_build_trace_ios();
3300
3301         err = init_inodecache();
3302         if (err)
3303                 goto fail;
3304         err = f2fs_create_node_manager_caches();
3305         if (err)
3306                 goto free_inodecache;
3307         err = f2fs_create_segment_manager_caches();
3308         if (err)
3309                 goto free_node_manager_caches;
3310         err = f2fs_create_checkpoint_caches();
3311         if (err)
3312                 goto free_segment_manager_caches;
3313         err = f2fs_create_extent_cache();
3314         if (err)
3315                 goto free_checkpoint_caches;
3316         err = f2fs_init_sysfs();
3317         if (err)
3318                 goto free_extent_cache;
3319         err = register_shrinker(&f2fs_shrinker_info);
3320         if (err)
3321                 goto free_sysfs;
3322         err = register_filesystem(&f2fs_fs_type);
3323         if (err)
3324                 goto free_shrinker;
3325         err = f2fs_create_root_stats();
3326         if (err)
3327                 goto free_filesystem;
3328         err = f2fs_init_post_read_processing();
3329         if (err)
3330                 goto free_root_stats;
3331         return 0;
3332
3333 free_root_stats:
3334         f2fs_destroy_root_stats();
3335 free_filesystem:
3336         unregister_filesystem(&f2fs_fs_type);
3337 free_shrinker:
3338         unregister_shrinker(&f2fs_shrinker_info);
3339 free_sysfs:
3340         f2fs_exit_sysfs();
3341 free_extent_cache:
3342         f2fs_destroy_extent_cache();
3343 free_checkpoint_caches:
3344         f2fs_destroy_checkpoint_caches();
3345 free_segment_manager_caches:
3346         f2fs_destroy_segment_manager_caches();
3347 free_node_manager_caches:
3348         f2fs_destroy_node_manager_caches();
3349 free_inodecache:
3350         destroy_inodecache();
3351 fail:
3352         return err;
3353 }
3354
3355 static void __exit exit_f2fs_fs(void)
3356 {
3357         f2fs_destroy_post_read_processing();
3358         f2fs_destroy_root_stats();
3359         unregister_filesystem(&f2fs_fs_type);
3360         unregister_shrinker(&f2fs_shrinker_info);
3361         f2fs_exit_sysfs();
3362         f2fs_destroy_extent_cache();
3363         f2fs_destroy_checkpoint_caches();
3364         f2fs_destroy_segment_manager_caches();
3365         f2fs_destroy_node_manager_caches();
3366         destroy_inodecache();
3367         f2fs_destroy_trace_ios();
3368 }
3369
3370 module_init(init_f2fs_fs)
3371 module_exit(exit_f2fs_fs)
3372
3373 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3374 MODULE_DESCRIPTION("Flash Friendly File System");
3375 MODULE_LICENSE("GPL");
3376 MODULE_SOFTDEP("pre: crc32");
3377