GNU Linux-libre 4.4.284-gnu1
[releases.git] / fs / fs-writeback.c
1 /*
2  * fs/fs-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains all the functions related to writing back and waiting
7  * upon dirty inodes against superblocks, and writing back dirty
8  * pages against inodes.  ie: data writeback.  Writeout of the
9  * inode itself is not handled here.
10  *
11  * 10Apr2002    Andrew Morton
12  *              Split out of fs/inode.c
13  *              Additions for address_space-based writeback
14  */
15
16 #include <linux/kernel.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/pagemap.h>
24 #include <linux/kthread.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/tracepoint.h>
29 #include <linux/device.h>
30 #include <linux/memcontrol.h>
31 #include "internal.h"
32
33 /*
34  * 4MB minimal write chunk size
35  */
36 #define MIN_WRITEBACK_PAGES     (4096UL >> (PAGE_CACHE_SHIFT - 10))
37
38 struct wb_completion {
39         atomic_t                cnt;
40 };
41
42 /*
43  * Passed into wb_writeback(), essentially a subset of writeback_control
44  */
45 struct wb_writeback_work {
46         long nr_pages;
47         struct super_block *sb;
48         enum writeback_sync_modes sync_mode;
49         unsigned int tagged_writepages:1;
50         unsigned int for_kupdate:1;
51         unsigned int range_cyclic:1;
52         unsigned int for_background:1;
53         unsigned int for_sync:1;        /* sync(2) WB_SYNC_ALL writeback */
54         unsigned int auto_free:1;       /* free on completion */
55         enum wb_reason reason;          /* why was writeback initiated? */
56
57         struct list_head list;          /* pending work list */
58         struct wb_completion *done;     /* set if the caller waits */
59 };
60
61 /*
62  * If one wants to wait for one or more wb_writeback_works, each work's
63  * ->done should be set to a wb_completion defined using the following
64  * macro.  Once all work items are issued with wb_queue_work(), the caller
65  * can wait for the completion of all using wb_wait_for_completion().  Work
66  * items which are waited upon aren't freed automatically on completion.
67  */
68 #define DEFINE_WB_COMPLETION_ONSTACK(cmpl)                              \
69         struct wb_completion cmpl = {                                   \
70                 .cnt            = ATOMIC_INIT(1),                       \
71         }
72
73
74 /*
75  * If an inode is constantly having its pages dirtied, but then the
76  * updates stop dirtytime_expire_interval seconds in the past, it's
77  * possible for the worst case time between when an inode has its
78  * timestamps updated and when they finally get written out to be two
79  * dirtytime_expire_intervals.  We set the default to 12 hours (in
80  * seconds), which means most of the time inodes will have their
81  * timestamps written to disk after 12 hours, but in the worst case a
82  * few inodes might not their timestamps updated for 24 hours.
83  */
84 unsigned int dirtytime_expire_interval = 12 * 60 * 60;
85
86 static inline struct inode *wb_inode(struct list_head *head)
87 {
88         return list_entry(head, struct inode, i_io_list);
89 }
90
91 /*
92  * Include the creation of the trace points after defining the
93  * wb_writeback_work structure and inline functions so that the definition
94  * remains local to this file.
95  */
96 #define CREATE_TRACE_POINTS
97 #include <trace/events/writeback.h>
98
99 EXPORT_TRACEPOINT_SYMBOL_GPL(wbc_writepage);
100
101 static bool wb_io_lists_populated(struct bdi_writeback *wb)
102 {
103         if (wb_has_dirty_io(wb)) {
104                 return false;
105         } else {
106                 set_bit(WB_has_dirty_io, &wb->state);
107                 WARN_ON_ONCE(!wb->avg_write_bandwidth);
108                 atomic_long_add(wb->avg_write_bandwidth,
109                                 &wb->bdi->tot_write_bandwidth);
110                 return true;
111         }
112 }
113
114 static void wb_io_lists_depopulated(struct bdi_writeback *wb)
115 {
116         if (wb_has_dirty_io(wb) && list_empty(&wb->b_dirty) &&
117             list_empty(&wb->b_io) && list_empty(&wb->b_more_io)) {
118                 clear_bit(WB_has_dirty_io, &wb->state);
119                 WARN_ON_ONCE(atomic_long_sub_return(wb->avg_write_bandwidth,
120                                         &wb->bdi->tot_write_bandwidth) < 0);
121         }
122 }
123
124 /**
125  * inode_io_list_move_locked - move an inode onto a bdi_writeback IO list
126  * @inode: inode to be moved
127  * @wb: target bdi_writeback
128  * @head: one of @wb->b_{dirty|io|more_io}
129  *
130  * Move @inode->i_io_list to @list of @wb and set %WB_has_dirty_io.
131  * Returns %true if @inode is the first occupant of the !dirty_time IO
132  * lists; otherwise, %false.
133  */
134 static bool inode_io_list_move_locked(struct inode *inode,
135                                       struct bdi_writeback *wb,
136                                       struct list_head *head)
137 {
138         assert_spin_locked(&wb->list_lock);
139
140         list_move(&inode->i_io_list, head);
141
142         /* dirty_time doesn't count as dirty_io until expiration */
143         if (head != &wb->b_dirty_time)
144                 return wb_io_lists_populated(wb);
145
146         wb_io_lists_depopulated(wb);
147         return false;
148 }
149
150 /**
151  * inode_io_list_del_locked - remove an inode from its bdi_writeback IO list
152  * @inode: inode to be removed
153  * @wb: bdi_writeback @inode is being removed from
154  *
155  * Remove @inode which may be on one of @wb->b_{dirty|io|more_io} lists and
156  * clear %WB_has_dirty_io if all are empty afterwards.
157  */
158 static void inode_io_list_del_locked(struct inode *inode,
159                                      struct bdi_writeback *wb)
160 {
161         assert_spin_locked(&wb->list_lock);
162         assert_spin_locked(&inode->i_lock);
163
164         inode->i_state &= ~I_SYNC_QUEUED;
165         list_del_init(&inode->i_io_list);
166         wb_io_lists_depopulated(wb);
167 }
168
169 static void wb_wakeup(struct bdi_writeback *wb)
170 {
171         spin_lock_bh(&wb->work_lock);
172         if (test_bit(WB_registered, &wb->state))
173                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
174         spin_unlock_bh(&wb->work_lock);
175 }
176
177 static void finish_writeback_work(struct bdi_writeback *wb,
178                                   struct wb_writeback_work *work)
179 {
180         struct wb_completion *done = work->done;
181
182         if (work->auto_free)
183                 kfree(work);
184         if (done && atomic_dec_and_test(&done->cnt))
185                 wake_up_all(&wb->bdi->wb_waitq);
186 }
187
188 static void wb_queue_work(struct bdi_writeback *wb,
189                           struct wb_writeback_work *work)
190 {
191         trace_writeback_queue(wb, work);
192
193         if (work->done)
194                 atomic_inc(&work->done->cnt);
195
196         spin_lock_bh(&wb->work_lock);
197
198         if (test_bit(WB_registered, &wb->state)) {
199                 list_add_tail(&work->list, &wb->work_list);
200                 mod_delayed_work(bdi_wq, &wb->dwork, 0);
201         } else
202                 finish_writeback_work(wb, work);
203
204         spin_unlock_bh(&wb->work_lock);
205 }
206
207 /**
208  * wb_wait_for_completion - wait for completion of bdi_writeback_works
209  * @bdi: bdi work items were issued to
210  * @done: target wb_completion
211  *
212  * Wait for one or more work items issued to @bdi with their ->done field
213  * set to @done, which should have been defined with
214  * DEFINE_WB_COMPLETION_ONSTACK().  This function returns after all such
215  * work items are completed.  Work items which are waited upon aren't freed
216  * automatically on completion.
217  */
218 static void wb_wait_for_completion(struct backing_dev_info *bdi,
219                                    struct wb_completion *done)
220 {
221         atomic_dec(&done->cnt);         /* put down the initial count */
222         wait_event(bdi->wb_waitq, !atomic_read(&done->cnt));
223 }
224
225 #ifdef CONFIG_CGROUP_WRITEBACK
226
227 /* parameters for foreign inode detection, see wb_detach_inode() */
228 #define WB_FRN_TIME_SHIFT       13      /* 1s = 2^13, upto 8 secs w/ 16bit */
229 #define WB_FRN_TIME_AVG_SHIFT   3       /* avg = avg * 7/8 + new * 1/8 */
230 #define WB_FRN_TIME_CUT_DIV     2       /* ignore rounds < avg / 2 */
231 #define WB_FRN_TIME_PERIOD      (2 * (1 << WB_FRN_TIME_SHIFT))  /* 2s */
232
233 #define WB_FRN_HIST_SLOTS       16      /* inode->i_wb_frn_history is 16bit */
234 #define WB_FRN_HIST_UNIT        (WB_FRN_TIME_PERIOD / WB_FRN_HIST_SLOTS)
235                                         /* each slot's duration is 2s / 16 */
236 #define WB_FRN_HIST_THR_SLOTS   (WB_FRN_HIST_SLOTS / 2)
237                                         /* if foreign slots >= 8, switch */
238 #define WB_FRN_HIST_MAX_SLOTS   (WB_FRN_HIST_THR_SLOTS / 2 + 1)
239                                         /* one round can affect upto 5 slots */
240
241 static atomic_t isw_nr_in_flight = ATOMIC_INIT(0);
242 static struct workqueue_struct *isw_wq;
243
244 void __inode_attach_wb(struct inode *inode, struct page *page)
245 {
246         struct backing_dev_info *bdi = inode_to_bdi(inode);
247         struct bdi_writeback *wb = NULL;
248
249         if (inode_cgwb_enabled(inode)) {
250                 struct cgroup_subsys_state *memcg_css;
251
252                 if (page) {
253                         memcg_css = mem_cgroup_css_from_page(page);
254                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
255                 } else {
256                         /* must pin memcg_css, see wb_get_create() */
257                         memcg_css = task_get_css(current, memory_cgrp_id);
258                         wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
259                         css_put(memcg_css);
260                 }
261         }
262
263         if (!wb)
264                 wb = &bdi->wb;
265
266         /*
267          * There may be multiple instances of this function racing to
268          * update the same inode.  Use cmpxchg() to tell the winner.
269          */
270         if (unlikely(cmpxchg(&inode->i_wb, NULL, wb)))
271                 wb_put(wb);
272 }
273 EXPORT_SYMBOL_GPL(__inode_attach_wb);
274
275 /**
276  * locked_inode_to_wb_and_lock_list - determine a locked inode's wb and lock it
277  * @inode: inode of interest with i_lock held
278  *
279  * Returns @inode's wb with its list_lock held.  @inode->i_lock must be
280  * held on entry and is released on return.  The returned wb is guaranteed
281  * to stay @inode's associated wb until its list_lock is released.
282  */
283 static struct bdi_writeback *
284 locked_inode_to_wb_and_lock_list(struct inode *inode)
285         __releases(&inode->i_lock)
286         __acquires(&wb->list_lock)
287 {
288         while (true) {
289                 struct bdi_writeback *wb = inode_to_wb(inode);
290
291                 /*
292                  * inode_to_wb() association is protected by both
293                  * @inode->i_lock and @wb->list_lock but list_lock nests
294                  * outside i_lock.  Drop i_lock and verify that the
295                  * association hasn't changed after acquiring list_lock.
296                  */
297                 wb_get(wb);
298                 spin_unlock(&inode->i_lock);
299                 spin_lock(&wb->list_lock);
300
301                 /* i_wb may have changed inbetween, can't use inode_to_wb() */
302                 if (likely(wb == inode->i_wb)) {
303                         wb_put(wb);     /* @inode already has ref */
304                         return wb;
305                 }
306
307                 spin_unlock(&wb->list_lock);
308                 wb_put(wb);
309                 cpu_relax();
310                 spin_lock(&inode->i_lock);
311         }
312 }
313
314 /**
315  * inode_to_wb_and_lock_list - determine an inode's wb and lock it
316  * @inode: inode of interest
317  *
318  * Same as locked_inode_to_wb_and_lock_list() but @inode->i_lock isn't held
319  * on entry.
320  */
321 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
322         __acquires(&wb->list_lock)
323 {
324         spin_lock(&inode->i_lock);
325         return locked_inode_to_wb_and_lock_list(inode);
326 }
327
328 struct inode_switch_wbs_context {
329         struct inode            *inode;
330         struct bdi_writeback    *new_wb;
331
332         struct rcu_head         rcu_head;
333         struct work_struct      work;
334 };
335
336 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi)
337 {
338         down_write(&bdi->wb_switch_rwsem);
339 }
340
341 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi)
342 {
343         up_write(&bdi->wb_switch_rwsem);
344 }
345
346 static void inode_switch_wbs_work_fn(struct work_struct *work)
347 {
348         struct inode_switch_wbs_context *isw =
349                 container_of(work, struct inode_switch_wbs_context, work);
350         struct inode *inode = isw->inode;
351         struct backing_dev_info *bdi = inode_to_bdi(inode);
352         struct address_space *mapping = inode->i_mapping;
353         struct bdi_writeback *old_wb = inode->i_wb;
354         struct bdi_writeback *new_wb = isw->new_wb;
355         struct radix_tree_iter iter;
356         bool switched = false;
357         void **slot;
358
359         /*
360          * If @inode switches cgwb membership while sync_inodes_sb() is
361          * being issued, sync_inodes_sb() might miss it.  Synchronize.
362          */
363         down_read(&bdi->wb_switch_rwsem);
364
365         /*
366          * By the time control reaches here, RCU grace period has passed
367          * since I_WB_SWITCH assertion and all wb stat update transactions
368          * between unlocked_inode_to_wb_begin/end() are guaranteed to be
369          * synchronizing against mapping->tree_lock.
370          *
371          * Grabbing old_wb->list_lock, inode->i_lock and mapping->tree_lock
372          * gives us exclusion against all wb related operations on @inode
373          * including IO list manipulations and stat updates.
374          */
375         if (old_wb < new_wb) {
376                 spin_lock(&old_wb->list_lock);
377                 spin_lock_nested(&new_wb->list_lock, SINGLE_DEPTH_NESTING);
378         } else {
379                 spin_lock(&new_wb->list_lock);
380                 spin_lock_nested(&old_wb->list_lock, SINGLE_DEPTH_NESTING);
381         }
382         spin_lock(&inode->i_lock);
383         spin_lock_irq(&mapping->tree_lock);
384
385         /*
386          * Once I_FREEING is visible under i_lock, the eviction path owns
387          * the inode and we shouldn't modify ->i_io_list.
388          */
389         if (unlikely(inode->i_state & I_FREEING))
390                 goto skip_switch;
391
392         /*
393          * Count and transfer stats.  Note that PAGECACHE_TAG_DIRTY points
394          * to possibly dirty pages while PAGECACHE_TAG_WRITEBACK points to
395          * pages actually under underwriteback.
396          */
397         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
398                                    PAGECACHE_TAG_DIRTY) {
399                 struct page *page = radix_tree_deref_slot_protected(slot,
400                                                         &mapping->tree_lock);
401                 if (likely(page) && PageDirty(page)) {
402                         __dec_wb_stat(old_wb, WB_RECLAIMABLE);
403                         __inc_wb_stat(new_wb, WB_RECLAIMABLE);
404                 }
405         }
406
407         radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, 0,
408                                    PAGECACHE_TAG_WRITEBACK) {
409                 struct page *page = radix_tree_deref_slot_protected(slot,
410                                                         &mapping->tree_lock);
411                 if (likely(page)) {
412                         WARN_ON_ONCE(!PageWriteback(page));
413                         __dec_wb_stat(old_wb, WB_WRITEBACK);
414                         __inc_wb_stat(new_wb, WB_WRITEBACK);
415                 }
416         }
417
418         wb_get(new_wb);
419
420         /*
421          * Transfer to @new_wb's IO list if necessary.  The specific list
422          * @inode was on is ignored and the inode is put on ->b_dirty which
423          * is always correct including from ->b_dirty_time.  The transfer
424          * preserves @inode->dirtied_when ordering.
425          */
426         if (!list_empty(&inode->i_io_list)) {
427                 struct inode *pos;
428
429                 inode_io_list_del_locked(inode, old_wb);
430                 inode->i_wb = new_wb;
431                 list_for_each_entry(pos, &new_wb->b_dirty, i_io_list)
432                         if (time_after_eq(inode->dirtied_when,
433                                           pos->dirtied_when))
434                                 break;
435                 inode_io_list_move_locked(inode, new_wb, pos->i_io_list.prev);
436         } else {
437                 inode->i_wb = new_wb;
438         }
439
440         /* ->i_wb_frn updates may race wbc_detach_inode() but doesn't matter */
441         inode->i_wb_frn_winner = 0;
442         inode->i_wb_frn_avg_time = 0;
443         inode->i_wb_frn_history = 0;
444         switched = true;
445 skip_switch:
446         /*
447          * Paired with load_acquire in unlocked_inode_to_wb_begin() and
448          * ensures that the new wb is visible if they see !I_WB_SWITCH.
449          */
450         smp_store_release(&inode->i_state, inode->i_state & ~I_WB_SWITCH);
451
452         spin_unlock_irq(&mapping->tree_lock);
453         spin_unlock(&inode->i_lock);
454         spin_unlock(&new_wb->list_lock);
455         spin_unlock(&old_wb->list_lock);
456
457         up_read(&bdi->wb_switch_rwsem);
458
459         if (switched) {
460                 wb_wakeup(new_wb);
461                 wb_put(old_wb);
462         }
463         wb_put(new_wb);
464
465         iput(inode);
466         kfree(isw);
467
468         atomic_dec(&isw_nr_in_flight);
469 }
470
471 static void inode_switch_wbs_rcu_fn(struct rcu_head *rcu_head)
472 {
473         struct inode_switch_wbs_context *isw = container_of(rcu_head,
474                                 struct inode_switch_wbs_context, rcu_head);
475
476         /* needs to grab bh-unsafe locks, bounce to work item */
477         INIT_WORK(&isw->work, inode_switch_wbs_work_fn);
478         queue_work(isw_wq, &isw->work);
479 }
480
481 /**
482  * inode_switch_wbs - change the wb association of an inode
483  * @inode: target inode
484  * @new_wb_id: ID of the new wb
485  *
486  * Switch @inode's wb association to the wb identified by @new_wb_id.  The
487  * switching is performed asynchronously and may fail silently.
488  */
489 static void inode_switch_wbs(struct inode *inode, int new_wb_id)
490 {
491         struct backing_dev_info *bdi = inode_to_bdi(inode);
492         struct cgroup_subsys_state *memcg_css;
493         struct inode_switch_wbs_context *isw;
494
495         /* noop if seems to be already in progress */
496         if (inode->i_state & I_WB_SWITCH)
497                 return;
498
499         /*
500          * Avoid starting new switches while sync_inodes_sb() is in
501          * progress.  Otherwise, if the down_write protected issue path
502          * blocks heavily, we might end up starting a large number of
503          * switches which will block on the rwsem.
504          */
505         if (!down_read_trylock(&bdi->wb_switch_rwsem))
506                 return;
507
508         isw = kzalloc(sizeof(*isw), GFP_ATOMIC);
509         if (!isw)
510                 goto out_unlock;
511
512         /* find and pin the new wb */
513         rcu_read_lock();
514         memcg_css = css_from_id(new_wb_id, &memory_cgrp_subsys);
515         if (memcg_css && !css_tryget(memcg_css))
516                 memcg_css = NULL;
517         rcu_read_unlock();
518         if (!memcg_css)
519                 goto out_free;
520
521         isw->new_wb = wb_get_create(bdi, memcg_css, GFP_ATOMIC);
522         css_put(memcg_css);
523         if (!isw->new_wb)
524                 goto out_free;
525
526         /* while holding I_WB_SWITCH, no one else can update the association */
527         spin_lock(&inode->i_lock);
528         if (!(inode->i_sb->s_flags & MS_ACTIVE) ||
529             inode->i_state & (I_WB_SWITCH | I_FREEING) ||
530             inode_to_wb(inode) == isw->new_wb) {
531                 spin_unlock(&inode->i_lock);
532                 goto out_free;
533         }
534         inode->i_state |= I_WB_SWITCH;
535         spin_unlock(&inode->i_lock);
536
537         ihold(inode);
538         isw->inode = inode;
539
540         /*
541          * In addition to synchronizing among switchers, I_WB_SWITCH tells
542          * the RCU protected stat update paths to grab the mapping's
543          * tree_lock so that stat transfer can synchronize against them.
544          * Let's continue after I_WB_SWITCH is guaranteed to be visible.
545          */
546         call_rcu(&isw->rcu_head, inode_switch_wbs_rcu_fn);
547
548         atomic_inc(&isw_nr_in_flight);
549
550         goto out_unlock;
551
552 out_free:
553         if (isw->new_wb)
554                 wb_put(isw->new_wb);
555         kfree(isw);
556 out_unlock:
557         up_read(&bdi->wb_switch_rwsem);
558 }
559
560 /**
561  * wbc_attach_and_unlock_inode - associate wbc with target inode and unlock it
562  * @wbc: writeback_control of interest
563  * @inode: target inode
564  *
565  * @inode is locked and about to be written back under the control of @wbc.
566  * Record @inode's writeback context into @wbc and unlock the i_lock.  On
567  * writeback completion, wbc_detach_inode() should be called.  This is used
568  * to track the cgroup writeback context.
569  */
570 void wbc_attach_and_unlock_inode(struct writeback_control *wbc,
571                                  struct inode *inode)
572 {
573         if (!inode_cgwb_enabled(inode)) {
574                 spin_unlock(&inode->i_lock);
575                 return;
576         }
577
578         wbc->wb = inode_to_wb(inode);
579         wbc->inode = inode;
580
581         wbc->wb_id = wbc->wb->memcg_css->id;
582         wbc->wb_lcand_id = inode->i_wb_frn_winner;
583         wbc->wb_tcand_id = 0;
584         wbc->wb_bytes = 0;
585         wbc->wb_lcand_bytes = 0;
586         wbc->wb_tcand_bytes = 0;
587
588         wb_get(wbc->wb);
589         spin_unlock(&inode->i_lock);
590
591         /*
592          * A dying wb indicates that either the blkcg associated with the
593          * memcg changed or the associated memcg is dying.  In the first
594          * case, a replacement wb should already be available and we should
595          * refresh the wb immediately.  In the second case, trying to
596          * refresh will keep failing.
597          */
598         if (unlikely(wb_dying(wbc->wb) && !css_is_dying(wbc->wb->memcg_css)))
599                 inode_switch_wbs(inode, wbc->wb_id);
600 }
601
602 /**
603  * wbc_detach_inode - disassociate wbc from inode and perform foreign detection
604  * @wbc: writeback_control of the just finished writeback
605  *
606  * To be called after a writeback attempt of an inode finishes and undoes
607  * wbc_attach_and_unlock_inode().  Can be called under any context.
608  *
609  * As concurrent write sharing of an inode is expected to be very rare and
610  * memcg only tracks page ownership on first-use basis severely confining
611  * the usefulness of such sharing, cgroup writeback tracks ownership
612  * per-inode.  While the support for concurrent write sharing of an inode
613  * is deemed unnecessary, an inode being written to by different cgroups at
614  * different points in time is a lot more common, and, more importantly,
615  * charging only by first-use can too readily lead to grossly incorrect
616  * behaviors (single foreign page can lead to gigabytes of writeback to be
617  * incorrectly attributed).
618  *
619  * To resolve this issue, cgroup writeback detects the majority dirtier of
620  * an inode and transfers the ownership to it.  To avoid unnnecessary
621  * oscillation, the detection mechanism keeps track of history and gives
622  * out the switch verdict only if the foreign usage pattern is stable over
623  * a certain amount of time and/or writeback attempts.
624  *
625  * On each writeback attempt, @wbc tries to detect the majority writer
626  * using Boyer-Moore majority vote algorithm.  In addition to the byte
627  * count from the majority voting, it also counts the bytes written for the
628  * current wb and the last round's winner wb (max of last round's current
629  * wb, the winner from two rounds ago, and the last round's majority
630  * candidate).  Keeping track of the historical winner helps the algorithm
631  * to semi-reliably detect the most active writer even when it's not the
632  * absolute majority.
633  *
634  * Once the winner of the round is determined, whether the winner is
635  * foreign or not and how much IO time the round consumed is recorded in
636  * inode->i_wb_frn_history.  If the amount of recorded foreign IO time is
637  * over a certain threshold, the switch verdict is given.
638  */
639 void wbc_detach_inode(struct writeback_control *wbc)
640 {
641         struct bdi_writeback *wb = wbc->wb;
642         struct inode *inode = wbc->inode;
643         unsigned long avg_time, max_bytes, max_time;
644         u16 history;
645         int max_id;
646
647         if (!wb)
648                 return;
649
650         history = inode->i_wb_frn_history;
651         avg_time = inode->i_wb_frn_avg_time;
652
653         /* pick the winner of this round */
654         if (wbc->wb_bytes >= wbc->wb_lcand_bytes &&
655             wbc->wb_bytes >= wbc->wb_tcand_bytes) {
656                 max_id = wbc->wb_id;
657                 max_bytes = wbc->wb_bytes;
658         } else if (wbc->wb_lcand_bytes >= wbc->wb_tcand_bytes) {
659                 max_id = wbc->wb_lcand_id;
660                 max_bytes = wbc->wb_lcand_bytes;
661         } else {
662                 max_id = wbc->wb_tcand_id;
663                 max_bytes = wbc->wb_tcand_bytes;
664         }
665
666         /*
667          * Calculate the amount of IO time the winner consumed and fold it
668          * into the running average kept per inode.  If the consumed IO
669          * time is lower than avag / WB_FRN_TIME_CUT_DIV, ignore it for
670          * deciding whether to switch or not.  This is to prevent one-off
671          * small dirtiers from skewing the verdict.
672          */
673         max_time = DIV_ROUND_UP((max_bytes >> PAGE_SHIFT) << WB_FRN_TIME_SHIFT,
674                                 wb->avg_write_bandwidth);
675         if (avg_time)
676                 avg_time += (max_time >> WB_FRN_TIME_AVG_SHIFT) -
677                             (avg_time >> WB_FRN_TIME_AVG_SHIFT);
678         else
679                 avg_time = max_time;    /* immediate catch up on first run */
680
681         if (max_time >= avg_time / WB_FRN_TIME_CUT_DIV) {
682                 int slots;
683
684                 /*
685                  * The switch verdict is reached if foreign wb's consume
686                  * more than a certain proportion of IO time in a
687                  * WB_FRN_TIME_PERIOD.  This is loosely tracked by 16 slot
688                  * history mask where each bit represents one sixteenth of
689                  * the period.  Determine the number of slots to shift into
690                  * history from @max_time.
691                  */
692                 slots = min(DIV_ROUND_UP(max_time, WB_FRN_HIST_UNIT),
693                             (unsigned long)WB_FRN_HIST_MAX_SLOTS);
694                 history <<= slots;
695                 if (wbc->wb_id != max_id)
696                         history |= (1U << slots) - 1;
697
698                 /*
699                  * Switch if the current wb isn't the consistent winner.
700                  * If there are multiple closely competing dirtiers, the
701                  * inode may switch across them repeatedly over time, which
702                  * is okay.  The main goal is avoiding keeping an inode on
703                  * the wrong wb for an extended period of time.
704                  */
705                 if (hweight32(history) > WB_FRN_HIST_THR_SLOTS)
706                         inode_switch_wbs(inode, max_id);
707         }
708
709         /*
710          * Multiple instances of this function may race to update the
711          * following fields but we don't mind occassional inaccuracies.
712          */
713         inode->i_wb_frn_winner = max_id;
714         inode->i_wb_frn_avg_time = min(avg_time, (unsigned long)U16_MAX);
715         inode->i_wb_frn_history = history;
716
717         wb_put(wbc->wb);
718         wbc->wb = NULL;
719 }
720
721 /**
722  * wbc_account_io - account IO issued during writeback
723  * @wbc: writeback_control of the writeback in progress
724  * @page: page being written out
725  * @bytes: number of bytes being written out
726  *
727  * @bytes from @page are about to written out during the writeback
728  * controlled by @wbc.  Keep the book for foreign inode detection.  See
729  * wbc_detach_inode().
730  */
731 void wbc_account_io(struct writeback_control *wbc, struct page *page,
732                     size_t bytes)
733 {
734         int id;
735
736         /*
737          * pageout() path doesn't attach @wbc to the inode being written
738          * out.  This is intentional as we don't want the function to block
739          * behind a slow cgroup.  Ultimately, we want pageout() to kick off
740          * regular writeback instead of writing things out itself.
741          */
742         if (!wbc->wb)
743                 return;
744
745         rcu_read_lock();
746         id = mem_cgroup_css_from_page(page)->id;
747         rcu_read_unlock();
748
749         if (id == wbc->wb_id) {
750                 wbc->wb_bytes += bytes;
751                 return;
752         }
753
754         if (id == wbc->wb_lcand_id)
755                 wbc->wb_lcand_bytes += bytes;
756
757         /* Boyer-Moore majority vote algorithm */
758         if (!wbc->wb_tcand_bytes)
759                 wbc->wb_tcand_id = id;
760         if (id == wbc->wb_tcand_id)
761                 wbc->wb_tcand_bytes += bytes;
762         else
763                 wbc->wb_tcand_bytes -= min(bytes, wbc->wb_tcand_bytes);
764 }
765 EXPORT_SYMBOL_GPL(wbc_account_io);
766
767 /**
768  * inode_congested - test whether an inode is congested
769  * @inode: inode to test for congestion (may be NULL)
770  * @cong_bits: mask of WB_[a]sync_congested bits to test
771  *
772  * Tests whether @inode is congested.  @cong_bits is the mask of congestion
773  * bits to test and the return value is the mask of set bits.
774  *
775  * If cgroup writeback is enabled for @inode, the congestion state is
776  * determined by whether the cgwb (cgroup bdi_writeback) for the blkcg
777  * associated with @inode is congested; otherwise, the root wb's congestion
778  * state is used.
779  *
780  * @inode is allowed to be NULL as this function is often called on
781  * mapping->host which is NULL for the swapper space.
782  */
783 int inode_congested(struct inode *inode, int cong_bits)
784 {
785         /*
786          * Once set, ->i_wb never becomes NULL while the inode is alive.
787          * Start transaction iff ->i_wb is visible.
788          */
789         if (inode && inode_to_wb_is_valid(inode)) {
790                 struct bdi_writeback *wb;
791                 struct wb_lock_cookie lock_cookie = {};
792                 bool congested;
793
794                 wb = unlocked_inode_to_wb_begin(inode, &lock_cookie);
795                 congested = wb_congested(wb, cong_bits);
796                 unlocked_inode_to_wb_end(inode, &lock_cookie);
797                 return congested;
798         }
799
800         return wb_congested(&inode_to_bdi(inode)->wb, cong_bits);
801 }
802 EXPORT_SYMBOL_GPL(inode_congested);
803
804 /**
805  * wb_split_bdi_pages - split nr_pages to write according to bandwidth
806  * @wb: target bdi_writeback to split @nr_pages to
807  * @nr_pages: number of pages to write for the whole bdi
808  *
809  * Split @wb's portion of @nr_pages according to @wb's write bandwidth in
810  * relation to the total write bandwidth of all wb's w/ dirty inodes on
811  * @wb->bdi.
812  */
813 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
814 {
815         unsigned long this_bw = wb->avg_write_bandwidth;
816         unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
817
818         if (nr_pages == LONG_MAX)
819                 return LONG_MAX;
820
821         /*
822          * This may be called on clean wb's and proportional distribution
823          * may not make sense, just use the original @nr_pages in those
824          * cases.  In general, we wanna err on the side of writing more.
825          */
826         if (!tot_bw || this_bw >= tot_bw)
827                 return nr_pages;
828         else
829                 return DIV_ROUND_UP_ULL((u64)nr_pages * this_bw, tot_bw);
830 }
831
832 /**
833  * bdi_split_work_to_wbs - split a wb_writeback_work to all wb's of a bdi
834  * @bdi: target backing_dev_info
835  * @base_work: wb_writeback_work to issue
836  * @skip_if_busy: skip wb's which already have writeback in progress
837  *
838  * Split and issue @base_work to all wb's (bdi_writeback's) of @bdi which
839  * have dirty inodes.  If @base_work->nr_page isn't %LONG_MAX, it's
840  * distributed to the busy wbs according to each wb's proportion in the
841  * total active write bandwidth of @bdi.
842  */
843 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
844                                   struct wb_writeback_work *base_work,
845                                   bool skip_if_busy)
846 {
847         struct bdi_writeback *last_wb = NULL;
848         struct bdi_writeback *wb = list_entry(&bdi->wb_list,
849                                               struct bdi_writeback, bdi_node);
850
851         might_sleep();
852 restart:
853         rcu_read_lock();
854         list_for_each_entry_continue_rcu(wb, &bdi->wb_list, bdi_node) {
855                 DEFINE_WB_COMPLETION_ONSTACK(fallback_work_done);
856                 struct wb_writeback_work fallback_work;
857                 struct wb_writeback_work *work;
858                 long nr_pages;
859
860                 if (last_wb) {
861                         wb_put(last_wb);
862                         last_wb = NULL;
863                 }
864
865                 /* SYNC_ALL writes out I_DIRTY_TIME too */
866                 if (!wb_has_dirty_io(wb) &&
867                     (base_work->sync_mode == WB_SYNC_NONE ||
868                      list_empty(&wb->b_dirty_time)))
869                         continue;
870                 if (skip_if_busy && writeback_in_progress(wb))
871                         continue;
872
873                 nr_pages = wb_split_bdi_pages(wb, base_work->nr_pages);
874
875                 work = kmalloc(sizeof(*work), GFP_ATOMIC);
876                 if (work) {
877                         *work = *base_work;
878                         work->nr_pages = nr_pages;
879                         work->auto_free = 1;
880                         wb_queue_work(wb, work);
881                         continue;
882                 }
883
884                 /* alloc failed, execute synchronously using on-stack fallback */
885                 work = &fallback_work;
886                 *work = *base_work;
887                 work->nr_pages = nr_pages;
888                 work->auto_free = 0;
889                 work->done = &fallback_work_done;
890
891                 wb_queue_work(wb, work);
892
893                 /*
894                  * Pin @wb so that it stays on @bdi->wb_list.  This allows
895                  * continuing iteration from @wb after dropping and
896                  * regrabbing rcu read lock.
897                  */
898                 wb_get(wb);
899                 last_wb = wb;
900
901                 rcu_read_unlock();
902                 wb_wait_for_completion(bdi, &fallback_work_done);
903                 goto restart;
904         }
905         rcu_read_unlock();
906
907         if (last_wb)
908                 wb_put(last_wb);
909 }
910
911 /**
912  * cgroup_writeback_umount - flush inode wb switches for umount
913  *
914  * This function is called when a super_block is about to be destroyed and
915  * flushes in-flight inode wb switches.  An inode wb switch goes through
916  * RCU and then workqueue, so the two need to be flushed in order to ensure
917  * that all previously scheduled switches are finished.  As wb switches are
918  * rare occurrences and synchronize_rcu() can take a while, perform
919  * flushing iff wb switches are in flight.
920  */
921 void cgroup_writeback_umount(void)
922 {
923         if (atomic_read(&isw_nr_in_flight)) {
924                 /*
925                  * Use rcu_barrier() to wait for all pending callbacks to
926                  * ensure that all in-flight wb switches are in the workqueue.
927                  */
928                 rcu_barrier();
929                 flush_workqueue(isw_wq);
930         }
931 }
932
933 static int __init cgroup_writeback_init(void)
934 {
935         isw_wq = alloc_workqueue("inode_switch_wbs", 0, 0);
936         if (!isw_wq)
937                 return -ENOMEM;
938         return 0;
939 }
940 fs_initcall(cgroup_writeback_init);
941
942 #else   /* CONFIG_CGROUP_WRITEBACK */
943
944 static void bdi_down_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
945 static void bdi_up_write_wb_switch_rwsem(struct backing_dev_info *bdi) { }
946
947 static struct bdi_writeback *
948 locked_inode_to_wb_and_lock_list(struct inode *inode)
949         __releases(&inode->i_lock)
950         __acquires(&wb->list_lock)
951 {
952         struct bdi_writeback *wb = inode_to_wb(inode);
953
954         spin_unlock(&inode->i_lock);
955         spin_lock(&wb->list_lock);
956         return wb;
957 }
958
959 static struct bdi_writeback *inode_to_wb_and_lock_list(struct inode *inode)
960         __acquires(&wb->list_lock)
961 {
962         struct bdi_writeback *wb = inode_to_wb(inode);
963
964         spin_lock(&wb->list_lock);
965         return wb;
966 }
967
968 static long wb_split_bdi_pages(struct bdi_writeback *wb, long nr_pages)
969 {
970         return nr_pages;
971 }
972
973 static void bdi_split_work_to_wbs(struct backing_dev_info *bdi,
974                                   struct wb_writeback_work *base_work,
975                                   bool skip_if_busy)
976 {
977         might_sleep();
978
979         if (!skip_if_busy || !writeback_in_progress(&bdi->wb)) {
980                 base_work->auto_free = 0;
981                 wb_queue_work(&bdi->wb, base_work);
982         }
983 }
984
985 #endif  /* CONFIG_CGROUP_WRITEBACK */
986
987 void wb_start_writeback(struct bdi_writeback *wb, long nr_pages,
988                         bool range_cyclic, enum wb_reason reason)
989 {
990         struct wb_writeback_work *work;
991
992         if (!wb_has_dirty_io(wb))
993                 return;
994
995         /*
996          * This is WB_SYNC_NONE writeback, so if allocation fails just
997          * wakeup the thread for old dirty data writeback
998          */
999         work = kzalloc(sizeof(*work), GFP_ATOMIC);
1000         if (!work) {
1001                 trace_writeback_nowork(wb);
1002                 wb_wakeup(wb);
1003                 return;
1004         }
1005
1006         work->sync_mode = WB_SYNC_NONE;
1007         work->nr_pages  = nr_pages;
1008         work->range_cyclic = range_cyclic;
1009         work->reason    = reason;
1010         work->auto_free = 1;
1011
1012         wb_queue_work(wb, work);
1013 }
1014
1015 /**
1016  * wb_start_background_writeback - start background writeback
1017  * @wb: bdi_writback to write from
1018  *
1019  * Description:
1020  *   This makes sure WB_SYNC_NONE background writeback happens. When
1021  *   this function returns, it is only guaranteed that for given wb
1022  *   some IO is happening if we are over background dirty threshold.
1023  *   Caller need not hold sb s_umount semaphore.
1024  */
1025 void wb_start_background_writeback(struct bdi_writeback *wb)
1026 {
1027         /*
1028          * We just wake up the flusher thread. It will perform background
1029          * writeback as soon as there is no other work to do.
1030          */
1031         trace_writeback_wake_background(wb);
1032         wb_wakeup(wb);
1033 }
1034
1035 /*
1036  * Remove the inode from the writeback list it is on.
1037  */
1038 void inode_io_list_del(struct inode *inode)
1039 {
1040         struct bdi_writeback *wb;
1041
1042         wb = inode_to_wb_and_lock_list(inode);
1043         spin_lock(&inode->i_lock);
1044         inode_io_list_del_locked(inode, wb);
1045         spin_unlock(&inode->i_lock);
1046         spin_unlock(&wb->list_lock);
1047 }
1048
1049 /*
1050  * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
1051  * furthest end of its superblock's dirty-inode list.
1052  *
1053  * Before stamping the inode's ->dirtied_when, we check to see whether it is
1054  * already the most-recently-dirtied inode on the b_dirty list.  If that is
1055  * the case then the inode must have been redirtied while it was being written
1056  * out and we don't reset its dirtied_when.
1057  */
1058 static void redirty_tail_locked(struct inode *inode, struct bdi_writeback *wb)
1059 {
1060         assert_spin_locked(&inode->i_lock);
1061
1062         if (!list_empty(&wb->b_dirty)) {
1063                 struct inode *tail;
1064
1065                 tail = wb_inode(wb->b_dirty.next);
1066                 if (time_before(inode->dirtied_when, tail->dirtied_when))
1067                         inode->dirtied_when = jiffies;
1068         }
1069         inode_io_list_move_locked(inode, wb, &wb->b_dirty);
1070         inode->i_state &= ~I_SYNC_QUEUED;
1071 }
1072
1073 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
1074 {
1075         spin_lock(&inode->i_lock);
1076         redirty_tail_locked(inode, wb);
1077         spin_unlock(&inode->i_lock);
1078 }
1079
1080 /*
1081  * requeue inode for re-scanning after bdi->b_io list is exhausted.
1082  */
1083 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
1084 {
1085         inode_io_list_move_locked(inode, wb, &wb->b_more_io);
1086 }
1087
1088 static void inode_sync_complete(struct inode *inode)
1089 {
1090         inode->i_state &= ~I_SYNC;
1091         /* If inode is clean an unused, put it into LRU now... */
1092         inode_add_lru(inode);
1093         /* Waiters must see I_SYNC cleared before being woken up */
1094         smp_mb();
1095         wake_up_bit(&inode->i_state, __I_SYNC);
1096 }
1097
1098 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
1099 {
1100         bool ret = time_after(inode->dirtied_when, t);
1101 #ifndef CONFIG_64BIT
1102         /*
1103          * For inodes being constantly redirtied, dirtied_when can get stuck.
1104          * It _appears_ to be in the future, but is actually in distant past.
1105          * This test is necessary to prevent such wrapped-around relative times
1106          * from permanently stopping the whole bdi writeback.
1107          */
1108         ret = ret && time_before_eq(inode->dirtied_when, jiffies);
1109 #endif
1110         return ret;
1111 }
1112
1113 #define EXPIRE_DIRTY_ATIME 0x0001
1114
1115 /*
1116  * Move expired (dirtied before dirtied_before) dirty inodes from
1117  * @delaying_queue to @dispatch_queue.
1118  */
1119 static int move_expired_inodes(struct list_head *delaying_queue,
1120                                struct list_head *dispatch_queue,
1121                                int flags, unsigned long dirtied_before)
1122 {
1123         LIST_HEAD(tmp);
1124         struct list_head *pos, *node;
1125         struct super_block *sb = NULL;
1126         struct inode *inode;
1127         int do_sb_sort = 0;
1128         int moved = 0;
1129
1130         while (!list_empty(delaying_queue)) {
1131                 inode = wb_inode(delaying_queue->prev);
1132                 if (inode_dirtied_after(inode, dirtied_before))
1133                         break;
1134                 list_move(&inode->i_io_list, &tmp);
1135                 moved++;
1136                 spin_lock(&inode->i_lock);
1137                 if (flags & EXPIRE_DIRTY_ATIME)
1138                         inode->i_state |= I_DIRTY_TIME_EXPIRED;
1139                 inode->i_state |= I_SYNC_QUEUED;
1140                 spin_unlock(&inode->i_lock);
1141                 if (sb_is_blkdev_sb(inode->i_sb))
1142                         continue;
1143                 if (sb && sb != inode->i_sb)
1144                         do_sb_sort = 1;
1145                 sb = inode->i_sb;
1146         }
1147
1148         /* just one sb in list, splice to dispatch_queue and we're done */
1149         if (!do_sb_sort) {
1150                 list_splice(&tmp, dispatch_queue);
1151                 goto out;
1152         }
1153
1154         /* Move inodes from one superblock together */
1155         while (!list_empty(&tmp)) {
1156                 sb = wb_inode(tmp.prev)->i_sb;
1157                 list_for_each_prev_safe(pos, node, &tmp) {
1158                         inode = wb_inode(pos);
1159                         if (inode->i_sb == sb)
1160                                 list_move(&inode->i_io_list, dispatch_queue);
1161                 }
1162         }
1163 out:
1164         return moved;
1165 }
1166
1167 /*
1168  * Queue all expired dirty inodes for io, eldest first.
1169  * Before
1170  *         newly dirtied     b_dirty    b_io    b_more_io
1171  *         =============>    gf         edc     BA
1172  * After
1173  *         newly dirtied     b_dirty    b_io    b_more_io
1174  *         =============>    g          fBAedc
1175  *                                           |
1176  *                                           +--> dequeue for IO
1177  */
1178 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work,
1179                      unsigned long dirtied_before)
1180 {
1181         int moved;
1182         unsigned long time_expire_jif = dirtied_before;
1183
1184         assert_spin_locked(&wb->list_lock);
1185         list_splice_init(&wb->b_more_io, &wb->b_io);
1186         moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, 0, dirtied_before);
1187         if (!work->for_sync)
1188                 time_expire_jif = jiffies - dirtytime_expire_interval * HZ;
1189         moved += move_expired_inodes(&wb->b_dirty_time, &wb->b_io,
1190                                      EXPIRE_DIRTY_ATIME, time_expire_jif);
1191         if (moved)
1192                 wb_io_lists_populated(wb);
1193         trace_writeback_queue_io(wb, work, dirtied_before, moved);
1194 }
1195
1196 static int write_inode(struct inode *inode, struct writeback_control *wbc)
1197 {
1198         int ret;
1199
1200         if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode)) {
1201                 trace_writeback_write_inode_start(inode, wbc);
1202                 ret = inode->i_sb->s_op->write_inode(inode, wbc);
1203                 trace_writeback_write_inode(inode, wbc);
1204                 return ret;
1205         }
1206         return 0;
1207 }
1208
1209 /*
1210  * Wait for writeback on an inode to complete. Called with i_lock held.
1211  * Caller must make sure inode cannot go away when we drop i_lock.
1212  */
1213 static void __inode_wait_for_writeback(struct inode *inode)
1214         __releases(inode->i_lock)
1215         __acquires(inode->i_lock)
1216 {
1217         DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
1218         wait_queue_head_t *wqh;
1219
1220         wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1221         while (inode->i_state & I_SYNC) {
1222                 spin_unlock(&inode->i_lock);
1223                 __wait_on_bit(wqh, &wq, bit_wait,
1224                               TASK_UNINTERRUPTIBLE);
1225                 spin_lock(&inode->i_lock);
1226         }
1227 }
1228
1229 /*
1230  * Wait for writeback on an inode to complete. Caller must have inode pinned.
1231  */
1232 void inode_wait_for_writeback(struct inode *inode)
1233 {
1234         spin_lock(&inode->i_lock);
1235         __inode_wait_for_writeback(inode);
1236         spin_unlock(&inode->i_lock);
1237 }
1238
1239 /*
1240  * Sleep until I_SYNC is cleared. This function must be called with i_lock
1241  * held and drops it. It is aimed for callers not holding any inode reference
1242  * so once i_lock is dropped, inode can go away.
1243  */
1244 static void inode_sleep_on_writeback(struct inode *inode)
1245         __releases(inode->i_lock)
1246 {
1247         DEFINE_WAIT(wait);
1248         wait_queue_head_t *wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
1249         int sleep;
1250
1251         prepare_to_wait(wqh, &wait, TASK_UNINTERRUPTIBLE);
1252         sleep = inode->i_state & I_SYNC;
1253         spin_unlock(&inode->i_lock);
1254         if (sleep)
1255                 schedule();
1256         finish_wait(wqh, &wait);
1257 }
1258
1259 /*
1260  * Find proper writeback list for the inode depending on its current state and
1261  * possibly also change of its state while we were doing writeback.  Here we
1262  * handle things such as livelock prevention or fairness of writeback among
1263  * inodes. This function can be called only by flusher thread - noone else
1264  * processes all inodes in writeback lists and requeueing inodes behind flusher
1265  * thread's back can have unexpected consequences.
1266  */
1267 static void requeue_inode(struct inode *inode, struct bdi_writeback *wb,
1268                           struct writeback_control *wbc)
1269 {
1270         if (inode->i_state & I_FREEING)
1271                 return;
1272
1273         /*
1274          * Sync livelock prevention. Each inode is tagged and synced in one
1275          * shot. If still dirty, it will be redirty_tail()'ed below.  Update
1276          * the dirty time to prevent enqueue and sync it again.
1277          */
1278         if ((inode->i_state & I_DIRTY) &&
1279             (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
1280                 inode->dirtied_when = jiffies;
1281
1282         if (wbc->pages_skipped) {
1283                 /*
1284                  * writeback is not making progress due to locked
1285                  * buffers. Skip this inode for now.
1286                  */
1287                 redirty_tail_locked(inode, wb);
1288                 return;
1289         }
1290
1291         if (mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
1292                 /*
1293                  * We didn't write back all the pages.  nfs_writepages()
1294                  * sometimes bales out without doing anything.
1295                  */
1296                 if (wbc->nr_to_write <= 0) {
1297                         /* Slice used up. Queue for next turn. */
1298                         requeue_io(inode, wb);
1299                 } else {
1300                         /*
1301                          * Writeback blocked by something other than
1302                          * congestion. Delay the inode for some time to
1303                          * avoid spinning on the CPU (100% iowait)
1304                          * retrying writeback of the dirty page/inode
1305                          * that cannot be performed immediately.
1306                          */
1307                         redirty_tail_locked(inode, wb);
1308                 }
1309         } else if (inode->i_state & I_DIRTY) {
1310                 /*
1311                  * Filesystems can dirty the inode during writeback operations,
1312                  * such as delayed allocation during submission or metadata
1313                  * updates after data IO completion.
1314                  */
1315                 redirty_tail_locked(inode, wb);
1316         } else if (inode->i_state & I_DIRTY_TIME) {
1317                 inode->dirtied_when = jiffies;
1318                 inode_io_list_move_locked(inode, wb, &wb->b_dirty_time);
1319                 inode->i_state &= ~I_SYNC_QUEUED;
1320         } else {
1321                 /* The inode is clean. Remove from writeback lists. */
1322                 inode_io_list_del_locked(inode, wb);
1323         }
1324 }
1325
1326 /*
1327  * Write out an inode and its dirty pages. Do not update the writeback list
1328  * linkage. That is left to the caller. The caller is also responsible for
1329  * setting I_SYNC flag and calling inode_sync_complete() to clear it.
1330  */
1331 static int
1332 __writeback_single_inode(struct inode *inode, struct writeback_control *wbc)
1333 {
1334         struct address_space *mapping = inode->i_mapping;
1335         long nr_to_write = wbc->nr_to_write;
1336         unsigned dirty;
1337         int ret;
1338
1339         WARN_ON(!(inode->i_state & I_SYNC));
1340
1341         trace_writeback_single_inode_start(inode, wbc, nr_to_write);
1342
1343         ret = do_writepages(mapping, wbc);
1344
1345         /*
1346          * Make sure to wait on the data before writing out the metadata.
1347          * This is important for filesystems that modify metadata on data
1348          * I/O completion. We don't do it for sync(2) writeback because it has a
1349          * separate, external IO completion path and ->sync_fs for guaranteeing
1350          * inode metadata is written back correctly.
1351          */
1352         if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync) {
1353                 int err = filemap_fdatawait(mapping);
1354                 if (ret == 0)
1355                         ret = err;
1356         }
1357
1358         /*
1359          * Some filesystems may redirty the inode during the writeback
1360          * due to delalloc, clear dirty metadata flags right before
1361          * write_inode()
1362          */
1363         spin_lock(&inode->i_lock);
1364
1365         dirty = inode->i_state & I_DIRTY;
1366         if (inode->i_state & I_DIRTY_TIME) {
1367                 if ((dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
1368                     unlikely(inode->i_state & I_DIRTY_TIME_EXPIRED) ||
1369                     unlikely(time_after(jiffies,
1370                                         (inode->dirtied_time_when +
1371                                          dirtytime_expire_interval * HZ)))) {
1372                         dirty |= I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED;
1373                         trace_writeback_lazytime(inode);
1374                 }
1375         } else
1376                 inode->i_state &= ~I_DIRTY_TIME_EXPIRED;
1377         inode->i_state &= ~dirty;
1378
1379         /*
1380          * Paired with smp_mb() in __mark_inode_dirty().  This allows
1381          * __mark_inode_dirty() to test i_state without grabbing i_lock -
1382          * either they see the I_DIRTY bits cleared or we see the dirtied
1383          * inode.
1384          *
1385          * I_DIRTY_PAGES is always cleared together above even if @mapping
1386          * still has dirty pages.  The flag is reinstated after smp_mb() if
1387          * necessary.  This guarantees that either __mark_inode_dirty()
1388          * sees clear I_DIRTY_PAGES or we see PAGECACHE_TAG_DIRTY.
1389          */
1390         smp_mb();
1391
1392         if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1393                 inode->i_state |= I_DIRTY_PAGES;
1394
1395         spin_unlock(&inode->i_lock);
1396
1397         if (dirty & I_DIRTY_TIME)
1398                 mark_inode_dirty_sync(inode);
1399         /* Don't write the inode if only I_DIRTY_PAGES was set */
1400         if (dirty & ~I_DIRTY_PAGES) {
1401                 int err = write_inode(inode, wbc);
1402                 if (ret == 0)
1403                         ret = err;
1404         }
1405         trace_writeback_single_inode(inode, wbc, nr_to_write);
1406         return ret;
1407 }
1408
1409 /*
1410  * Write out an inode's dirty pages. Either the caller has an active reference
1411  * on the inode or the inode has I_WILL_FREE set.
1412  *
1413  * This function is designed to be called for writing back one inode which
1414  * we go e.g. from filesystem. Flusher thread uses __writeback_single_inode()
1415  * and does more profound writeback list handling in writeback_sb_inodes().
1416  */
1417 static int writeback_single_inode(struct inode *inode,
1418                                   struct writeback_control *wbc)
1419 {
1420         struct bdi_writeback *wb;
1421         int ret = 0;
1422
1423         spin_lock(&inode->i_lock);
1424         if (!atomic_read(&inode->i_count))
1425                 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
1426         else
1427                 WARN_ON(inode->i_state & I_WILL_FREE);
1428
1429         if (inode->i_state & I_SYNC) {
1430                 if (wbc->sync_mode != WB_SYNC_ALL)
1431                         goto out;
1432                 /*
1433                  * It's a data-integrity sync. We must wait. Since callers hold
1434                  * inode reference or inode has I_WILL_FREE set, it cannot go
1435                  * away under us.
1436                  */
1437                 __inode_wait_for_writeback(inode);
1438         }
1439         WARN_ON(inode->i_state & I_SYNC);
1440         /*
1441          * Skip inode if it is clean and we have no outstanding writeback in
1442          * WB_SYNC_ALL mode. We don't want to mess with writeback lists in this
1443          * function since flusher thread may be doing for example sync in
1444          * parallel and if we move the inode, it could get skipped. So here we
1445          * make sure inode is on some writeback list and leave it there unless
1446          * we have completely cleaned the inode.
1447          */
1448         if (!(inode->i_state & I_DIRTY_ALL) &&
1449             (wbc->sync_mode != WB_SYNC_ALL ||
1450              !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_WRITEBACK)))
1451                 goto out;
1452         inode->i_state |= I_SYNC;
1453         wbc_attach_and_unlock_inode(wbc, inode);
1454
1455         ret = __writeback_single_inode(inode, wbc);
1456
1457         wbc_detach_inode(wbc);
1458
1459         wb = inode_to_wb_and_lock_list(inode);
1460         spin_lock(&inode->i_lock);
1461         /*
1462          * If inode is clean, remove it from writeback lists. Otherwise don't
1463          * touch it. See comment above for explanation.
1464          */
1465         if (!(inode->i_state & I_DIRTY_ALL))
1466                 inode_io_list_del_locked(inode, wb);
1467         spin_unlock(&wb->list_lock);
1468         inode_sync_complete(inode);
1469 out:
1470         spin_unlock(&inode->i_lock);
1471         return ret;
1472 }
1473
1474 static long writeback_chunk_size(struct bdi_writeback *wb,
1475                                  struct wb_writeback_work *work)
1476 {
1477         long pages;
1478
1479         /*
1480          * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
1481          * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
1482          * here avoids calling into writeback_inodes_wb() more than once.
1483          *
1484          * The intended call sequence for WB_SYNC_ALL writeback is:
1485          *
1486          *      wb_writeback()
1487          *          writeback_sb_inodes()       <== called only once
1488          *              write_cache_pages()     <== called once for each inode
1489          *                   (quickly) tag currently dirty pages
1490          *                   (maybe slowly) sync all tagged pages
1491          */
1492         if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
1493                 pages = LONG_MAX;
1494         else {
1495                 pages = min(wb->avg_write_bandwidth / 2,
1496                             global_wb_domain.dirty_limit / DIRTY_SCOPE);
1497                 pages = min(pages, work->nr_pages);
1498                 pages = round_down(pages + MIN_WRITEBACK_PAGES,
1499                                    MIN_WRITEBACK_PAGES);
1500         }
1501
1502         return pages;
1503 }
1504
1505 /*
1506  * Write a portion of b_io inodes which belong to @sb.
1507  *
1508  * Return the number of pages and/or inodes written.
1509  *
1510  * NOTE! This is called with wb->list_lock held, and will
1511  * unlock and relock that for each inode it ends up doing
1512  * IO for.
1513  */
1514 static long writeback_sb_inodes(struct super_block *sb,
1515                                 struct bdi_writeback *wb,
1516                                 struct wb_writeback_work *work)
1517 {
1518         struct writeback_control wbc = {
1519                 .sync_mode              = work->sync_mode,
1520                 .tagged_writepages      = work->tagged_writepages,
1521                 .for_kupdate            = work->for_kupdate,
1522                 .for_background         = work->for_background,
1523                 .for_sync               = work->for_sync,
1524                 .range_cyclic           = work->range_cyclic,
1525                 .range_start            = 0,
1526                 .range_end              = LLONG_MAX,
1527         };
1528         unsigned long start_time = jiffies;
1529         long write_chunk;
1530         long wrote = 0;  /* count both pages and inodes */
1531
1532         while (!list_empty(&wb->b_io)) {
1533                 struct inode *inode = wb_inode(wb->b_io.prev);
1534                 struct bdi_writeback *tmp_wb;
1535
1536                 if (inode->i_sb != sb) {
1537                         if (work->sb) {
1538                                 /*
1539                                  * We only want to write back data for this
1540                                  * superblock, move all inodes not belonging
1541                                  * to it back onto the dirty list.
1542                                  */
1543                                 redirty_tail(inode, wb);
1544                                 continue;
1545                         }
1546
1547                         /*
1548                          * The inode belongs to a different superblock.
1549                          * Bounce back to the caller to unpin this and
1550                          * pin the next superblock.
1551                          */
1552                         break;
1553                 }
1554
1555                 /*
1556                  * Don't bother with new inodes or inodes being freed, first
1557                  * kind does not need periodic writeout yet, and for the latter
1558                  * kind writeout is handled by the freer.
1559                  */
1560                 spin_lock(&inode->i_lock);
1561                 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
1562                         redirty_tail_locked(inode, wb);
1563                         spin_unlock(&inode->i_lock);
1564                         continue;
1565                 }
1566                 if ((inode->i_state & I_SYNC) && wbc.sync_mode != WB_SYNC_ALL) {
1567                         /*
1568                          * If this inode is locked for writeback and we are not
1569                          * doing writeback-for-data-integrity, move it to
1570                          * b_more_io so that writeback can proceed with the
1571                          * other inodes on s_io.
1572                          *
1573                          * We'll have another go at writing back this inode
1574                          * when we completed a full scan of b_io.
1575                          */
1576                         spin_unlock(&inode->i_lock);
1577                         requeue_io(inode, wb);
1578                         trace_writeback_sb_inodes_requeue(inode);
1579                         continue;
1580                 }
1581                 spin_unlock(&wb->list_lock);
1582
1583                 /*
1584                  * We already requeued the inode if it had I_SYNC set and we
1585                  * are doing WB_SYNC_NONE writeback. So this catches only the
1586                  * WB_SYNC_ALL case.
1587                  */
1588                 if (inode->i_state & I_SYNC) {
1589                         /* Wait for I_SYNC. This function drops i_lock... */
1590                         inode_sleep_on_writeback(inode);
1591                         /* Inode may be gone, start again */
1592                         spin_lock(&wb->list_lock);
1593                         continue;
1594                 }
1595                 inode->i_state |= I_SYNC;
1596                 wbc_attach_and_unlock_inode(&wbc, inode);
1597
1598                 write_chunk = writeback_chunk_size(wb, work);
1599                 wbc.nr_to_write = write_chunk;
1600                 wbc.pages_skipped = 0;
1601
1602                 /*
1603                  * We use I_SYNC to pin the inode in memory. While it is set
1604                  * evict_inode() will wait so the inode cannot be freed.
1605                  */
1606                 __writeback_single_inode(inode, &wbc);
1607
1608                 wbc_detach_inode(&wbc);
1609                 work->nr_pages -= write_chunk - wbc.nr_to_write;
1610                 wrote += write_chunk - wbc.nr_to_write;
1611
1612                 if (need_resched()) {
1613                         /*
1614                          * We're trying to balance between building up a nice
1615                          * long list of IOs to improve our merge rate, and
1616                          * getting those IOs out quickly for anyone throttling
1617                          * in balance_dirty_pages().  cond_resched() doesn't
1618                          * unplug, so get our IOs out the door before we
1619                          * give up the CPU.
1620                          */
1621                         blk_flush_plug(current);
1622                         cond_resched();
1623                 }
1624
1625                 /*
1626                  * Requeue @inode if still dirty.  Be careful as @inode may
1627                  * have been switched to another wb in the meantime.
1628                  */
1629                 tmp_wb = inode_to_wb_and_lock_list(inode);
1630                 spin_lock(&inode->i_lock);
1631                 if (!(inode->i_state & I_DIRTY_ALL))
1632                         wrote++;
1633                 requeue_inode(inode, tmp_wb, &wbc);
1634                 inode_sync_complete(inode);
1635                 spin_unlock(&inode->i_lock);
1636
1637                 if (unlikely(tmp_wb != wb)) {
1638                         spin_unlock(&tmp_wb->list_lock);
1639                         spin_lock(&wb->list_lock);
1640                 }
1641
1642                 /*
1643                  * bail out to wb_writeback() often enough to check
1644                  * background threshold and other termination conditions.
1645                  */
1646                 if (wrote) {
1647                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1648                                 break;
1649                         if (work->nr_pages <= 0)
1650                                 break;
1651                 }
1652         }
1653         return wrote;
1654 }
1655
1656 static long __writeback_inodes_wb(struct bdi_writeback *wb,
1657                                   struct wb_writeback_work *work)
1658 {
1659         unsigned long start_time = jiffies;
1660         long wrote = 0;
1661
1662         while (!list_empty(&wb->b_io)) {
1663                 struct inode *inode = wb_inode(wb->b_io.prev);
1664                 struct super_block *sb = inode->i_sb;
1665
1666                 if (!trylock_super(sb)) {
1667                         /*
1668                          * trylock_super() may fail consistently due to
1669                          * s_umount being grabbed by someone else. Don't use
1670                          * requeue_io() to avoid busy retrying the inode/sb.
1671                          */
1672                         redirty_tail(inode, wb);
1673                         continue;
1674                 }
1675                 wrote += writeback_sb_inodes(sb, wb, work);
1676                 up_read(&sb->s_umount);
1677
1678                 /* refer to the same tests at the end of writeback_sb_inodes */
1679                 if (wrote) {
1680                         if (time_is_before_jiffies(start_time + HZ / 10UL))
1681                                 break;
1682                         if (work->nr_pages <= 0)
1683                                 break;
1684                 }
1685         }
1686         /* Leave any unwritten inodes on b_io */
1687         return wrote;
1688 }
1689
1690 static long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
1691                                 enum wb_reason reason)
1692 {
1693         struct wb_writeback_work work = {
1694                 .nr_pages       = nr_pages,
1695                 .sync_mode      = WB_SYNC_NONE,
1696                 .range_cyclic   = 1,
1697                 .reason         = reason,
1698         };
1699         struct blk_plug plug;
1700
1701         blk_start_plug(&plug);
1702         spin_lock(&wb->list_lock);
1703         if (list_empty(&wb->b_io))
1704                 queue_io(wb, &work, jiffies);
1705         __writeback_inodes_wb(wb, &work);
1706         spin_unlock(&wb->list_lock);
1707         blk_finish_plug(&plug);
1708
1709         return nr_pages - work.nr_pages;
1710 }
1711
1712 /*
1713  * Explicit flushing or periodic writeback of "old" data.
1714  *
1715  * Define "old": the first time one of an inode's pages is dirtied, we mark the
1716  * dirtying-time in the inode's address_space.  So this periodic writeback code
1717  * just walks the superblock inode list, writing back any inodes which are
1718  * older than a specific point in time.
1719  *
1720  * Try to run once per dirty_writeback_interval.  But if a writeback event
1721  * takes longer than a dirty_writeback_interval interval, then leave a
1722  * one-second gap.
1723  *
1724  * dirtied_before takes precedence over nr_to_write.  So we'll only write back
1725  * all dirty pages if they are all attached to "old" mappings.
1726  */
1727 static long wb_writeback(struct bdi_writeback *wb,
1728                          struct wb_writeback_work *work)
1729 {
1730         unsigned long wb_start = jiffies;
1731         long nr_pages = work->nr_pages;
1732         unsigned long dirtied_before = jiffies;
1733         struct inode *inode;
1734         long progress;
1735         struct blk_plug plug;
1736
1737         blk_start_plug(&plug);
1738         spin_lock(&wb->list_lock);
1739         for (;;) {
1740                 /*
1741                  * Stop writeback when nr_pages has been consumed
1742                  */
1743                 if (work->nr_pages <= 0)
1744                         break;
1745
1746                 /*
1747                  * Background writeout and kupdate-style writeback may
1748                  * run forever. Stop them if there is other work to do
1749                  * so that e.g. sync can proceed. They'll be restarted
1750                  * after the other works are all done.
1751                  */
1752                 if ((work->for_background || work->for_kupdate) &&
1753                     !list_empty(&wb->work_list))
1754                         break;
1755
1756                 /*
1757                  * For background writeout, stop when we are below the
1758                  * background dirty threshold
1759                  */
1760                 if (work->for_background && !wb_over_bg_thresh(wb))
1761                         break;
1762
1763                 /*
1764                  * Kupdate and background works are special and we want to
1765                  * include all inodes that need writing. Livelock avoidance is
1766                  * handled by these works yielding to any other work so we are
1767                  * safe.
1768                  */
1769                 if (work->for_kupdate) {
1770                         dirtied_before = jiffies -
1771                                 msecs_to_jiffies(dirty_expire_interval * 10);
1772                 } else if (work->for_background)
1773                         dirtied_before = jiffies;
1774
1775                 trace_writeback_start(wb, work);
1776                 if (list_empty(&wb->b_io))
1777                         queue_io(wb, work, dirtied_before);
1778                 if (work->sb)
1779                         progress = writeback_sb_inodes(work->sb, wb, work);
1780                 else
1781                         progress = __writeback_inodes_wb(wb, work);
1782                 trace_writeback_written(wb, work);
1783
1784                 wb_update_bandwidth(wb, wb_start);
1785
1786                 /*
1787                  * Did we write something? Try for more
1788                  *
1789                  * Dirty inodes are moved to b_io for writeback in batches.
1790                  * The completion of the current batch does not necessarily
1791                  * mean the overall work is done. So we keep looping as long
1792                  * as made some progress on cleaning pages or inodes.
1793                  */
1794                 if (progress)
1795                         continue;
1796                 /*
1797                  * No more inodes for IO, bail
1798                  */
1799                 if (list_empty(&wb->b_more_io))
1800                         break;
1801                 /*
1802                  * Nothing written. Wait for some inode to
1803                  * become available for writeback. Otherwise
1804                  * we'll just busyloop.
1805                  */
1806                 if (!list_empty(&wb->b_more_io))  {
1807                         trace_writeback_wait(wb, work);
1808                         inode = wb_inode(wb->b_more_io.prev);
1809                         spin_lock(&inode->i_lock);
1810                         spin_unlock(&wb->list_lock);
1811                         /* This function drops i_lock... */
1812                         inode_sleep_on_writeback(inode);
1813                         spin_lock(&wb->list_lock);
1814                 }
1815         }
1816         spin_unlock(&wb->list_lock);
1817         blk_finish_plug(&plug);
1818
1819         return nr_pages - work->nr_pages;
1820 }
1821
1822 /*
1823  * Return the next wb_writeback_work struct that hasn't been processed yet.
1824  */
1825 static struct wb_writeback_work *get_next_work_item(struct bdi_writeback *wb)
1826 {
1827         struct wb_writeback_work *work = NULL;
1828
1829         spin_lock_bh(&wb->work_lock);
1830         if (!list_empty(&wb->work_list)) {
1831                 work = list_entry(wb->work_list.next,
1832                                   struct wb_writeback_work, list);
1833                 list_del_init(&work->list);
1834         }
1835         spin_unlock_bh(&wb->work_lock);
1836         return work;
1837 }
1838
1839 /*
1840  * Add in the number of potentially dirty inodes, because each inode
1841  * write can dirty pagecache in the underlying blockdev.
1842  */
1843 static unsigned long get_nr_dirty_pages(void)
1844 {
1845         return global_page_state(NR_FILE_DIRTY) +
1846                 global_page_state(NR_UNSTABLE_NFS) +
1847                 get_nr_dirty_inodes();
1848 }
1849
1850 static long wb_check_background_flush(struct bdi_writeback *wb)
1851 {
1852         if (wb_over_bg_thresh(wb)) {
1853
1854                 struct wb_writeback_work work = {
1855                         .nr_pages       = LONG_MAX,
1856                         .sync_mode      = WB_SYNC_NONE,
1857                         .for_background = 1,
1858                         .range_cyclic   = 1,
1859                         .reason         = WB_REASON_BACKGROUND,
1860                 };
1861
1862                 return wb_writeback(wb, &work);
1863         }
1864
1865         return 0;
1866 }
1867
1868 static long wb_check_old_data_flush(struct bdi_writeback *wb)
1869 {
1870         unsigned long expired;
1871         long nr_pages;
1872
1873         /*
1874          * When set to zero, disable periodic writeback
1875          */
1876         if (!dirty_writeback_interval)
1877                 return 0;
1878
1879         expired = wb->last_old_flush +
1880                         msecs_to_jiffies(dirty_writeback_interval * 10);
1881         if (time_before(jiffies, expired))
1882                 return 0;
1883
1884         wb->last_old_flush = jiffies;
1885         nr_pages = get_nr_dirty_pages();
1886
1887         if (nr_pages) {
1888                 struct wb_writeback_work work = {
1889                         .nr_pages       = nr_pages,
1890                         .sync_mode      = WB_SYNC_NONE,
1891                         .for_kupdate    = 1,
1892                         .range_cyclic   = 1,
1893                         .reason         = WB_REASON_PERIODIC,
1894                 };
1895
1896                 return wb_writeback(wb, &work);
1897         }
1898
1899         return 0;
1900 }
1901
1902 /*
1903  * Retrieve work items and do the writeback they describe
1904  */
1905 static long wb_do_writeback(struct bdi_writeback *wb)
1906 {
1907         struct wb_writeback_work *work;
1908         long wrote = 0;
1909
1910         set_bit(WB_writeback_running, &wb->state);
1911         while ((work = get_next_work_item(wb)) != NULL) {
1912                 trace_writeback_exec(wb, work);
1913                 wrote += wb_writeback(wb, work);
1914                 finish_writeback_work(wb, work);
1915         }
1916
1917         /*
1918          * Check for periodic writeback, kupdated() style
1919          */
1920         wrote += wb_check_old_data_flush(wb);
1921         wrote += wb_check_background_flush(wb);
1922         clear_bit(WB_writeback_running, &wb->state);
1923
1924         return wrote;
1925 }
1926
1927 /*
1928  * Handle writeback of dirty data for the device backed by this bdi. Also
1929  * reschedules periodically and does kupdated style flushing.
1930  */
1931 void wb_workfn(struct work_struct *work)
1932 {
1933         struct bdi_writeback *wb = container_of(to_delayed_work(work),
1934                                                 struct bdi_writeback, dwork);
1935         long pages_written;
1936
1937         set_worker_desc("flush-%s", bdi_dev_name(wb->bdi));
1938         current->flags |= PF_SWAPWRITE;
1939
1940         if (likely(!current_is_workqueue_rescuer() ||
1941                    !test_bit(WB_registered, &wb->state))) {
1942                 /*
1943                  * The normal path.  Keep writing back @wb until its
1944                  * work_list is empty.  Note that this path is also taken
1945                  * if @wb is shutting down even when we're running off the
1946                  * rescuer as work_list needs to be drained.
1947                  */
1948                 do {
1949                         pages_written = wb_do_writeback(wb);
1950                         trace_writeback_pages_written(pages_written);
1951                 } while (!list_empty(&wb->work_list));
1952         } else {
1953                 /*
1954                  * bdi_wq can't get enough workers and we're running off
1955                  * the emergency worker.  Don't hog it.  Hopefully, 1024 is
1956                  * enough for efficient IO.
1957                  */
1958                 pages_written = writeback_inodes_wb(wb, 1024,
1959                                                     WB_REASON_FORKER_THREAD);
1960                 trace_writeback_pages_written(pages_written);
1961         }
1962
1963         if (!list_empty(&wb->work_list))
1964                 wb_wakeup(wb);
1965         else if (wb_has_dirty_io(wb) && dirty_writeback_interval)
1966                 wb_wakeup_delayed(wb);
1967
1968         current->flags &= ~PF_SWAPWRITE;
1969 }
1970
1971 /*
1972  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
1973  * the whole world.
1974  */
1975 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
1976 {
1977         struct backing_dev_info *bdi;
1978
1979         if (!nr_pages)
1980                 nr_pages = get_nr_dirty_pages();
1981
1982         rcu_read_lock();
1983         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
1984                 struct bdi_writeback *wb;
1985
1986                 if (!bdi_has_dirty_io(bdi))
1987                         continue;
1988
1989                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
1990                         wb_start_writeback(wb, wb_split_bdi_pages(wb, nr_pages),
1991                                            false, reason);
1992         }
1993         rcu_read_unlock();
1994 }
1995
1996 /*
1997  * Wake up bdi's periodically to make sure dirtytime inodes gets
1998  * written back periodically.  We deliberately do *not* check the
1999  * b_dirtytime list in wb_has_dirty_io(), since this would cause the
2000  * kernel to be constantly waking up once there are any dirtytime
2001  * inodes on the system.  So instead we define a separate delayed work
2002  * function which gets called much more rarely.  (By default, only
2003  * once every 12 hours.)
2004  *
2005  * If there is any other write activity going on in the file system,
2006  * this function won't be necessary.  But if the only thing that has
2007  * happened on the file system is a dirtytime inode caused by an atime
2008  * update, we need this infrastructure below to make sure that inode
2009  * eventually gets pushed out to disk.
2010  */
2011 static void wakeup_dirtytime_writeback(struct work_struct *w);
2012 static DECLARE_DELAYED_WORK(dirtytime_work, wakeup_dirtytime_writeback);
2013
2014 static void wakeup_dirtytime_writeback(struct work_struct *w)
2015 {
2016         struct backing_dev_info *bdi;
2017
2018         rcu_read_lock();
2019         list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
2020                 struct bdi_writeback *wb;
2021
2022                 list_for_each_entry_rcu(wb, &bdi->wb_list, bdi_node)
2023                         if (!list_empty(&wb->b_dirty_time))
2024                                 wb_wakeup(wb);
2025         }
2026         rcu_read_unlock();
2027         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2028 }
2029
2030 static int __init start_dirtytime_writeback(void)
2031 {
2032         schedule_delayed_work(&dirtytime_work, dirtytime_expire_interval * HZ);
2033         return 0;
2034 }
2035 __initcall(start_dirtytime_writeback);
2036
2037 int dirtytime_interval_handler(struct ctl_table *table, int write,
2038                                void __user *buffer, size_t *lenp, loff_t *ppos)
2039 {
2040         int ret;
2041
2042         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2043         if (ret == 0 && write)
2044                 mod_delayed_work(system_wq, &dirtytime_work, 0);
2045         return ret;
2046 }
2047
2048 /**
2049  *      __mark_inode_dirty -    internal function
2050  *      @inode: inode to mark
2051  *      @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
2052  *      Mark an inode as dirty. Callers should use mark_inode_dirty or
2053  *      mark_inode_dirty_sync.
2054  *
2055  * Put the inode on the super block's dirty list.
2056  *
2057  * CAREFUL! We mark it dirty unconditionally, but move it onto the
2058  * dirty list only if it is hashed or if it refers to a blockdev.
2059  * If it was not hashed, it will never be added to the dirty list
2060  * even if it is later hashed, as it will have been marked dirty already.
2061  *
2062  * In short, make sure you hash any inodes _before_ you start marking
2063  * them dirty.
2064  *
2065  * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
2066  * the block-special inode (/dev/hda1) itself.  And the ->dirtied_when field of
2067  * the kernel-internal blockdev inode represents the dirtying time of the
2068  * blockdev's pages.  This is why for I_DIRTY_PAGES we always use
2069  * page->mapping->host, so the page-dirtying time is recorded in the internal
2070  * blockdev inode.
2071  */
2072 void __mark_inode_dirty(struct inode *inode, int flags)
2073 {
2074 #define I_DIRTY_INODE (I_DIRTY_SYNC | I_DIRTY_DATASYNC)
2075         struct super_block *sb = inode->i_sb;
2076         int dirtytime;
2077
2078         trace_writeback_mark_inode_dirty(inode, flags);
2079
2080         /*
2081          * Don't do this for I_DIRTY_PAGES - that doesn't actually
2082          * dirty the inode itself
2083          */
2084         if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC | I_DIRTY_TIME)) {
2085                 trace_writeback_dirty_inode_start(inode, flags);
2086
2087                 if (sb->s_op->dirty_inode)
2088                         sb->s_op->dirty_inode(inode, flags);
2089
2090                 trace_writeback_dirty_inode(inode, flags);
2091         }
2092         if (flags & I_DIRTY_INODE)
2093                 flags &= ~I_DIRTY_TIME;
2094         dirtytime = flags & I_DIRTY_TIME;
2095
2096         /*
2097          * Paired with smp_mb() in __writeback_single_inode() for the
2098          * following lockless i_state test.  See there for details.
2099          */
2100         smp_mb();
2101
2102         if (((inode->i_state & flags) == flags) ||
2103             (dirtytime && (inode->i_state & I_DIRTY_INODE)))
2104                 return;
2105
2106         spin_lock(&inode->i_lock);
2107         if (dirtytime && (inode->i_state & I_DIRTY_INODE))
2108                 goto out_unlock_inode;
2109         if ((inode->i_state & flags) != flags) {
2110                 const int was_dirty = inode->i_state & I_DIRTY;
2111
2112                 inode_attach_wb(inode, NULL);
2113
2114                 if (flags & I_DIRTY_INODE)
2115                         inode->i_state &= ~I_DIRTY_TIME;
2116                 inode->i_state |= flags;
2117
2118                 /*
2119                  * If the inode is queued for writeback by flush worker, just
2120                  * update its dirty state. Once the flush worker is done with
2121                  * the inode it will place it on the appropriate superblock
2122                  * list, based upon its state.
2123                  */
2124                 if (inode->i_state & I_SYNC_QUEUED)
2125                         goto out_unlock_inode;
2126
2127                 /*
2128                  * Only add valid (hashed) inodes to the superblock's
2129                  * dirty list.  Add blockdev inodes as well.
2130                  */
2131                 if (!S_ISBLK(inode->i_mode)) {
2132                         if (inode_unhashed(inode))
2133                                 goto out_unlock_inode;
2134                 }
2135                 if (inode->i_state & I_FREEING)
2136                         goto out_unlock_inode;
2137
2138                 /*
2139                  * If the inode was already on b_dirty/b_io/b_more_io, don't
2140                  * reposition it (that would break b_dirty time-ordering).
2141                  */
2142                 if (!was_dirty) {
2143                         struct bdi_writeback *wb;
2144                         struct list_head *dirty_list;
2145                         bool wakeup_bdi = false;
2146
2147                         wb = locked_inode_to_wb_and_lock_list(inode);
2148
2149                         WARN(bdi_cap_writeback_dirty(wb->bdi) &&
2150                              !test_bit(WB_registered, &wb->state),
2151                              "bdi-%s not registered\n", wb->bdi->name);
2152
2153                         inode->dirtied_when = jiffies;
2154                         if (dirtytime)
2155                                 inode->dirtied_time_when = jiffies;
2156
2157                         if (inode->i_state & (I_DIRTY_INODE | I_DIRTY_PAGES))
2158                                 dirty_list = &wb->b_dirty;
2159                         else
2160                                 dirty_list = &wb->b_dirty_time;
2161
2162                         wakeup_bdi = inode_io_list_move_locked(inode, wb,
2163                                                                dirty_list);
2164
2165                         spin_unlock(&wb->list_lock);
2166                         trace_writeback_dirty_inode_enqueue(inode);
2167
2168                         /*
2169                          * If this is the first dirty inode for this bdi,
2170                          * we have to wake-up the corresponding bdi thread
2171                          * to make sure background write-back happens
2172                          * later.
2173                          */
2174                         if (bdi_cap_writeback_dirty(wb->bdi) && wakeup_bdi)
2175                                 wb_wakeup_delayed(wb);
2176                         return;
2177                 }
2178         }
2179 out_unlock_inode:
2180         spin_unlock(&inode->i_lock);
2181
2182 #undef I_DIRTY_INODE
2183 }
2184 EXPORT_SYMBOL(__mark_inode_dirty);
2185
2186 /*
2187  * The @s_sync_lock is used to serialise concurrent sync operations
2188  * to avoid lock contention problems with concurrent wait_sb_inodes() calls.
2189  * Concurrent callers will block on the s_sync_lock rather than doing contending
2190  * walks. The queueing maintains sync(2) required behaviour as all the IO that
2191  * has been issued up to the time this function is enter is guaranteed to be
2192  * completed by the time we have gained the lock and waited for all IO that is
2193  * in progress regardless of the order callers are granted the lock.
2194  */
2195 static void wait_sb_inodes(struct super_block *sb)
2196 {
2197         struct inode *inode, *old_inode = NULL;
2198
2199         /*
2200          * We need to be protected against the filesystem going from
2201          * r/o to r/w or vice versa.
2202          */
2203         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2204
2205         mutex_lock(&sb->s_sync_lock);
2206         spin_lock(&sb->s_inode_list_lock);
2207
2208         /*
2209          * Data integrity sync. Must wait for all pages under writeback,
2210          * because there may have been pages dirtied before our sync
2211          * call, but which had writeout started before we write it out.
2212          * In which case, the inode may not be on the dirty list, but
2213          * we still have to wait for that writeout.
2214          */
2215         list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
2216                 struct address_space *mapping = inode->i_mapping;
2217
2218                 spin_lock(&inode->i_lock);
2219                 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
2220                     (mapping->nrpages == 0)) {
2221                         spin_unlock(&inode->i_lock);
2222                         continue;
2223                 }
2224                 __iget(inode);
2225                 spin_unlock(&inode->i_lock);
2226                 spin_unlock(&sb->s_inode_list_lock);
2227
2228                 /*
2229                  * We hold a reference to 'inode' so it couldn't have been
2230                  * removed from s_inodes list while we dropped the
2231                  * s_inode_list_lock.  We cannot iput the inode now as we can
2232                  * be holding the last reference and we cannot iput it under
2233                  * s_inode_list_lock. So we keep the reference and iput it
2234                  * later.
2235                  */
2236                 iput(old_inode);
2237                 old_inode = inode;
2238
2239                 /*
2240                  * We keep the error status of individual mapping so that
2241                  * applications can catch the writeback error using fsync(2).
2242                  * See filemap_fdatawait_keep_errors() for details.
2243                  */
2244                 filemap_fdatawait_keep_errors(mapping);
2245
2246                 cond_resched();
2247
2248                 spin_lock(&sb->s_inode_list_lock);
2249         }
2250         spin_unlock(&sb->s_inode_list_lock);
2251         iput(old_inode);
2252         mutex_unlock(&sb->s_sync_lock);
2253 }
2254
2255 static void __writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2256                                      enum wb_reason reason, bool skip_if_busy)
2257 {
2258         DEFINE_WB_COMPLETION_ONSTACK(done);
2259         struct wb_writeback_work work = {
2260                 .sb                     = sb,
2261                 .sync_mode              = WB_SYNC_NONE,
2262                 .tagged_writepages      = 1,
2263                 .done                   = &done,
2264                 .nr_pages               = nr,
2265                 .reason                 = reason,
2266         };
2267         struct backing_dev_info *bdi = sb->s_bdi;
2268
2269         if (!bdi_has_dirty_io(bdi) || bdi == &noop_backing_dev_info)
2270                 return;
2271         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2272
2273         bdi_split_work_to_wbs(sb->s_bdi, &work, skip_if_busy);
2274         wb_wait_for_completion(bdi, &done);
2275 }
2276
2277 /**
2278  * writeback_inodes_sb_nr -     writeback dirty inodes from given super_block
2279  * @sb: the superblock
2280  * @nr: the number of pages to write
2281  * @reason: reason why some writeback work initiated
2282  *
2283  * Start writeback on some inodes on this super_block. No guarantees are made
2284  * on how many (if any) will be written, and this function does not wait
2285  * for IO completion of submitted IO.
2286  */
2287 void writeback_inodes_sb_nr(struct super_block *sb,
2288                             unsigned long nr,
2289                             enum wb_reason reason)
2290 {
2291         __writeback_inodes_sb_nr(sb, nr, reason, false);
2292 }
2293 EXPORT_SYMBOL(writeback_inodes_sb_nr);
2294
2295 /**
2296  * writeback_inodes_sb  -       writeback dirty inodes from given super_block
2297  * @sb: the superblock
2298  * @reason: reason why some writeback work was initiated
2299  *
2300  * Start writeback on some inodes on this super_block. No guarantees are made
2301  * on how many (if any) will be written, and this function does not wait
2302  * for IO completion of submitted IO.
2303  */
2304 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2305 {
2306         return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2307 }
2308 EXPORT_SYMBOL(writeback_inodes_sb);
2309
2310 /**
2311  * try_to_writeback_inodes_sb_nr - try to start writeback if none underway
2312  * @sb: the superblock
2313  * @nr: the number of pages to write
2314  * @reason: the reason of writeback
2315  *
2316  * Invoke writeback_inodes_sb_nr if no writeback is currently underway.
2317  * Returns 1 if writeback was started, 0 if not.
2318  */
2319 bool try_to_writeback_inodes_sb_nr(struct super_block *sb, unsigned long nr,
2320                                    enum wb_reason reason)
2321 {
2322         if (!down_read_trylock(&sb->s_umount))
2323                 return false;
2324
2325         __writeback_inodes_sb_nr(sb, nr, reason, true);
2326         up_read(&sb->s_umount);
2327         return true;
2328 }
2329 EXPORT_SYMBOL(try_to_writeback_inodes_sb_nr);
2330
2331 /**
2332  * try_to_writeback_inodes_sb - try to start writeback if none underway
2333  * @sb: the superblock
2334  * @reason: reason why some writeback work was initiated
2335  *
2336  * Implement by try_to_writeback_inodes_sb_nr()
2337  * Returns 1 if writeback was started, 0 if not.
2338  */
2339 bool try_to_writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
2340 {
2341         return try_to_writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
2342 }
2343 EXPORT_SYMBOL(try_to_writeback_inodes_sb);
2344
2345 /**
2346  * sync_inodes_sb       -       sync sb inode pages
2347  * @sb: the superblock
2348  *
2349  * This function writes and waits on any dirty inode belonging to this
2350  * super_block.
2351  */
2352 void sync_inodes_sb(struct super_block *sb)
2353 {
2354         DEFINE_WB_COMPLETION_ONSTACK(done);
2355         struct wb_writeback_work work = {
2356                 .sb             = sb,
2357                 .sync_mode      = WB_SYNC_ALL,
2358                 .nr_pages       = LONG_MAX,
2359                 .range_cyclic   = 0,
2360                 .done           = &done,
2361                 .reason         = WB_REASON_SYNC,
2362                 .for_sync       = 1,
2363         };
2364         struct backing_dev_info *bdi = sb->s_bdi;
2365
2366         /*
2367          * Can't skip on !bdi_has_dirty() because we should wait for !dirty
2368          * inodes under writeback and I_DIRTY_TIME inodes ignored by
2369          * bdi_has_dirty() need to be written out too.
2370          */
2371         if (bdi == &noop_backing_dev_info)
2372                 return;
2373         WARN_ON(!rwsem_is_locked(&sb->s_umount));
2374
2375         /* protect against inode wb switch, see inode_switch_wbs_work_fn() */
2376         bdi_down_write_wb_switch_rwsem(bdi);
2377         bdi_split_work_to_wbs(bdi, &work, false);
2378         wb_wait_for_completion(bdi, &done);
2379         bdi_up_write_wb_switch_rwsem(bdi);
2380
2381         wait_sb_inodes(sb);
2382 }
2383 EXPORT_SYMBOL(sync_inodes_sb);
2384
2385 /**
2386  * write_inode_now      -       write an inode to disk
2387  * @inode: inode to write to disk
2388  * @sync: whether the write should be synchronous or not
2389  *
2390  * This function commits an inode to disk immediately if it is dirty. This is
2391  * primarily needed by knfsd.
2392  *
2393  * The caller must either have a ref on the inode or must have set I_WILL_FREE.
2394  */
2395 int write_inode_now(struct inode *inode, int sync)
2396 {
2397         struct writeback_control wbc = {
2398                 .nr_to_write = LONG_MAX,
2399                 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
2400                 .range_start = 0,
2401                 .range_end = LLONG_MAX,
2402         };
2403
2404         if (!mapping_cap_writeback_dirty(inode->i_mapping))
2405                 wbc.nr_to_write = 0;
2406
2407         might_sleep();
2408         return writeback_single_inode(inode, &wbc);
2409 }
2410 EXPORT_SYMBOL(write_inode_now);
2411
2412 /**
2413  * sync_inode - write an inode and its pages to disk.
2414  * @inode: the inode to sync
2415  * @wbc: controls the writeback mode
2416  *
2417  * sync_inode() will write an inode and its pages to disk.  It will also
2418  * correctly update the inode on its superblock's dirty inode lists and will
2419  * update inode->i_state.
2420  *
2421  * The caller must have a ref on the inode.
2422  */
2423 int sync_inode(struct inode *inode, struct writeback_control *wbc)
2424 {
2425         return writeback_single_inode(inode, wbc);
2426 }
2427 EXPORT_SYMBOL(sync_inode);
2428
2429 /**
2430  * sync_inode_metadata - write an inode to disk
2431  * @inode: the inode to sync
2432  * @wait: wait for I/O to complete.
2433  *
2434  * Write an inode to disk and adjust its dirty state after completion.
2435  *
2436  * Note: only writes the actual inode, no associated data or other metadata.
2437  */
2438 int sync_inode_metadata(struct inode *inode, int wait)
2439 {
2440         struct writeback_control wbc = {
2441                 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
2442                 .nr_to_write = 0, /* metadata-only */
2443         };
2444
2445         return sync_inode(inode, &wbc);
2446 }
2447 EXPORT_SYMBOL(sync_inode_metadata);