GNU Linux-libre 4.14.290-gnu1
[releases.git] / fs / hugetlbfs / inode.c
1 /*
2  * hugetlbpage-backed filesystem.  Based on ramfs.
3  *
4  * Nadia Yvette Chambers, 2002
5  *
6  * Copyright (C) 2002 Linus Torvalds.
7  * License: GPL
8  */
9
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11
12 #include <linux/thread_info.h>
13 #include <asm/current.h>
14 #include <linux/sched/signal.h>         /* remove ASAP */
15 #include <linux/falloc.h>
16 #include <linux/fs.h>
17 #include <linux/mount.h>
18 #include <linux/file.h>
19 #include <linux/kernel.h>
20 #include <linux/writeback.h>
21 #include <linux/pagemap.h>
22 #include <linux/highmem.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/capability.h>
26 #include <linux/ctype.h>
27 #include <linux/backing-dev.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagevec.h>
30 #include <linux/parser.h>
31 #include <linux/mman.h>
32 #include <linux/slab.h>
33 #include <linux/dnotify.h>
34 #include <linux/statfs.h>
35 #include <linux/security.h>
36 #include <linux/magic.h>
37 #include <linux/migrate.h>
38 #include <linux/uio.h>
39
40 #include <linux/uaccess.h>
41
42 static const struct super_operations hugetlbfs_ops;
43 static const struct address_space_operations hugetlbfs_aops;
44 const struct file_operations hugetlbfs_file_operations;
45 static const struct inode_operations hugetlbfs_dir_inode_operations;
46 static const struct inode_operations hugetlbfs_inode_operations;
47
48 struct hugetlbfs_config {
49         struct hstate           *hstate;
50         long                    max_hpages;
51         long                    nr_inodes;
52         long                    min_hpages;
53         kuid_t                  uid;
54         kgid_t                  gid;
55         umode_t                 mode;
56 };
57
58 struct hugetlbfs_inode_info {
59         struct shared_policy policy;
60         struct inode vfs_inode;
61 };
62
63 static inline struct hugetlbfs_inode_info *HUGETLBFS_I(struct inode *inode)
64 {
65         return container_of(inode, struct hugetlbfs_inode_info, vfs_inode);
66 }
67
68 int sysctl_hugetlb_shm_group;
69
70 enum {
71         Opt_size, Opt_nr_inodes,
72         Opt_mode, Opt_uid, Opt_gid,
73         Opt_pagesize, Opt_min_size,
74         Opt_err,
75 };
76
77 static const match_table_t tokens = {
78         {Opt_size,      "size=%s"},
79         {Opt_nr_inodes, "nr_inodes=%s"},
80         {Opt_mode,      "mode=%o"},
81         {Opt_uid,       "uid=%u"},
82         {Opt_gid,       "gid=%u"},
83         {Opt_pagesize,  "pagesize=%s"},
84         {Opt_min_size,  "min_size=%s"},
85         {Opt_err,       NULL},
86 };
87
88 #ifdef CONFIG_NUMA
89 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
90                                         struct inode *inode, pgoff_t index)
91 {
92         vma->vm_policy = mpol_shared_policy_lookup(&HUGETLBFS_I(inode)->policy,
93                                                         index);
94 }
95
96 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
97 {
98         mpol_cond_put(vma->vm_policy);
99 }
100 #else
101 static inline void hugetlb_set_vma_policy(struct vm_area_struct *vma,
102                                         struct inode *inode, pgoff_t index)
103 {
104 }
105
106 static inline void hugetlb_drop_vma_policy(struct vm_area_struct *vma)
107 {
108 }
109 #endif
110
111 static void huge_pagevec_release(struct pagevec *pvec)
112 {
113         int i;
114
115         for (i = 0; i < pagevec_count(pvec); ++i)
116                 put_page(pvec->pages[i]);
117
118         pagevec_reinit(pvec);
119 }
120
121 /*
122  * Mask used when checking the page offset value passed in via system
123  * calls.  This value will be converted to a loff_t which is signed.
124  * Therefore, we want to check the upper PAGE_SHIFT + 1 bits of the
125  * value.  The extra bit (- 1 in the shift value) is to take the sign
126  * bit into account.
127  */
128 #define PGOFF_LOFFT_MAX \
129         (((1UL << (PAGE_SHIFT + 1)) - 1) <<  (BITS_PER_LONG - (PAGE_SHIFT + 1)))
130
131 static int hugetlbfs_file_mmap(struct file *file, struct vm_area_struct *vma)
132 {
133         struct inode *inode = file_inode(file);
134         loff_t len, vma_len;
135         int ret;
136         struct hstate *h = hstate_file(file);
137
138         /*
139          * vma address alignment (but not the pgoff alignment) has
140          * already been checked by prepare_hugepage_range.  If you add
141          * any error returns here, do so after setting VM_HUGETLB, so
142          * is_vm_hugetlb_page tests below unmap_region go the right
143          * way when do_mmap_pgoff unwinds (may be important on powerpc
144          * and ia64).
145          */
146         vma->vm_flags |= VM_HUGETLB | VM_DONTEXPAND;
147         vma->vm_ops = &hugetlb_vm_ops;
148
149         /*
150          * page based offset in vm_pgoff could be sufficiently large to
151          * overflow a loff_t when converted to byte offset.  This can
152          * only happen on architectures where sizeof(loff_t) ==
153          * sizeof(unsigned long).  So, only check in those instances.
154          */
155         if (sizeof(unsigned long) == sizeof(loff_t)) {
156                 if (vma->vm_pgoff & PGOFF_LOFFT_MAX)
157                         return -EINVAL;
158         }
159
160         /* must be huge page aligned */
161         if (vma->vm_pgoff & (~huge_page_mask(h) >> PAGE_SHIFT))
162                 return -EINVAL;
163
164         vma_len = (loff_t)(vma->vm_end - vma->vm_start);
165         len = vma_len + ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
166         /* check for overflow */
167         if (len < vma_len)
168                 return -EINVAL;
169
170         inode_lock(inode);
171         file_accessed(file);
172
173         ret = -ENOMEM;
174         if (hugetlb_reserve_pages(inode,
175                                 vma->vm_pgoff >> huge_page_order(h),
176                                 len >> huge_page_shift(h), vma,
177                                 vma->vm_flags))
178                 goto out;
179
180         ret = 0;
181         if (vma->vm_flags & VM_WRITE && inode->i_size < len)
182                 i_size_write(inode, len);
183 out:
184         inode_unlock(inode);
185
186         return ret;
187 }
188
189 /*
190  * Called under down_write(mmap_sem).
191  */
192
193 #ifndef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
194 static unsigned long
195 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
196                 unsigned long len, unsigned long pgoff, unsigned long flags)
197 {
198         struct mm_struct *mm = current->mm;
199         struct vm_area_struct *vma;
200         struct hstate *h = hstate_file(file);
201         struct vm_unmapped_area_info info;
202
203         if (len & ~huge_page_mask(h))
204                 return -EINVAL;
205         if (len > TASK_SIZE)
206                 return -ENOMEM;
207
208         if (flags & MAP_FIXED) {
209                 if (prepare_hugepage_range(file, addr, len))
210                         return -EINVAL;
211                 return addr;
212         }
213
214         if (addr) {
215                 addr = ALIGN(addr, huge_page_size(h));
216                 vma = find_vma(mm, addr);
217                 if (TASK_SIZE - len >= addr &&
218                     (!vma || addr + len <= vm_start_gap(vma)))
219                         return addr;
220         }
221
222         info.flags = 0;
223         info.length = len;
224         info.low_limit = TASK_UNMAPPED_BASE;
225         info.high_limit = TASK_SIZE;
226         info.align_mask = PAGE_MASK & ~huge_page_mask(h);
227         info.align_offset = 0;
228         return vm_unmapped_area(&info);
229 }
230 #endif
231
232 static size_t
233 hugetlbfs_read_actor(struct page *page, unsigned long offset,
234                         struct iov_iter *to, unsigned long size)
235 {
236         size_t copied = 0;
237         int i, chunksize;
238
239         /* Find which 4k chunk and offset with in that chunk */
240         i = offset >> PAGE_SHIFT;
241         offset = offset & ~PAGE_MASK;
242
243         while (size) {
244                 size_t n;
245                 chunksize = PAGE_SIZE;
246                 if (offset)
247                         chunksize -= offset;
248                 if (chunksize > size)
249                         chunksize = size;
250                 n = copy_page_to_iter(&page[i], offset, chunksize, to);
251                 copied += n;
252                 if (n != chunksize)
253                         return copied;
254                 offset = 0;
255                 size -= chunksize;
256                 i++;
257         }
258         return copied;
259 }
260
261 /*
262  * Support for read() - Find the page attached to f_mapping and copy out the
263  * data. Its *very* similar to do_generic_mapping_read(), we can't use that
264  * since it has PAGE_SIZE assumptions.
265  */
266 static ssize_t hugetlbfs_read_iter(struct kiocb *iocb, struct iov_iter *to)
267 {
268         struct file *file = iocb->ki_filp;
269         struct hstate *h = hstate_file(file);
270         struct address_space *mapping = file->f_mapping;
271         struct inode *inode = mapping->host;
272         unsigned long index = iocb->ki_pos >> huge_page_shift(h);
273         unsigned long offset = iocb->ki_pos & ~huge_page_mask(h);
274         unsigned long end_index;
275         loff_t isize;
276         ssize_t retval = 0;
277
278         while (iov_iter_count(to)) {
279                 struct page *page;
280                 size_t nr, copied;
281
282                 /* nr is the maximum number of bytes to copy from this page */
283                 nr = huge_page_size(h);
284                 isize = i_size_read(inode);
285                 if (!isize)
286                         break;
287                 end_index = (isize - 1) >> huge_page_shift(h);
288                 if (index > end_index)
289                         break;
290                 if (index == end_index) {
291                         nr = ((isize - 1) & ~huge_page_mask(h)) + 1;
292                         if (nr <= offset)
293                                 break;
294                 }
295                 nr = nr - offset;
296
297                 /* Find the page */
298                 page = find_lock_page(mapping, index);
299                 if (unlikely(page == NULL)) {
300                         /*
301                          * We have a HOLE, zero out the user-buffer for the
302                          * length of the hole or request.
303                          */
304                         copied = iov_iter_zero(nr, to);
305                 } else {
306                         unlock_page(page);
307
308                         /*
309                          * We have the page, copy it to user space buffer.
310                          */
311                         copied = hugetlbfs_read_actor(page, offset, to, nr);
312                         put_page(page);
313                 }
314                 offset += copied;
315                 retval += copied;
316                 if (copied != nr && iov_iter_count(to)) {
317                         if (!retval)
318                                 retval = -EFAULT;
319                         break;
320                 }
321                 index += offset >> huge_page_shift(h);
322                 offset &= ~huge_page_mask(h);
323         }
324         iocb->ki_pos = ((loff_t)index << huge_page_shift(h)) + offset;
325         return retval;
326 }
327
328 static int hugetlbfs_write_begin(struct file *file,
329                         struct address_space *mapping,
330                         loff_t pos, unsigned len, unsigned flags,
331                         struct page **pagep, void **fsdata)
332 {
333         return -EINVAL;
334 }
335
336 static int hugetlbfs_write_end(struct file *file, struct address_space *mapping,
337                         loff_t pos, unsigned len, unsigned copied,
338                         struct page *page, void *fsdata)
339 {
340         BUG();
341         return -EINVAL;
342 }
343
344 static void remove_huge_page(struct page *page)
345 {
346         ClearPageDirty(page);
347         ClearPageUptodate(page);
348         delete_from_page_cache(page);
349 }
350
351 static void
352 hugetlb_vmdelete_list(struct rb_root_cached *root, pgoff_t start, pgoff_t end)
353 {
354         struct vm_area_struct *vma;
355
356         /*
357          * end == 0 indicates that the entire range after
358          * start should be unmapped.
359          */
360         vma_interval_tree_foreach(vma, root, start, end ? end : ULONG_MAX) {
361                 unsigned long v_offset;
362                 unsigned long v_end;
363
364                 /*
365                  * Can the expression below overflow on 32-bit arches?
366                  * No, because the interval tree returns us only those vmas
367                  * which overlap the truncated area starting at pgoff,
368                  * and no vma on a 32-bit arch can span beyond the 4GB.
369                  */
370                 if (vma->vm_pgoff < start)
371                         v_offset = (start - vma->vm_pgoff) << PAGE_SHIFT;
372                 else
373                         v_offset = 0;
374
375                 if (!end)
376                         v_end = vma->vm_end;
377                 else {
378                         v_end = ((end - vma->vm_pgoff) << PAGE_SHIFT)
379                                                         + vma->vm_start;
380                         if (v_end > vma->vm_end)
381                                 v_end = vma->vm_end;
382                 }
383
384                 unmap_hugepage_range(vma, vma->vm_start + v_offset, v_end,
385                                                                         NULL);
386         }
387 }
388
389 /*
390  * remove_inode_hugepages handles two distinct cases: truncation and hole
391  * punch.  There are subtle differences in operation for each case.
392  *
393  * truncation is indicated by end of range being LLONG_MAX
394  *      In this case, we first scan the range and release found pages.
395  *      After releasing pages, hugetlb_unreserve_pages cleans up region/reserv
396  *      maps and global counts.  Page faults can not race with truncation
397  *      in this routine.  hugetlb_no_page() prevents page faults in the
398  *      truncated range.  It checks i_size before allocation, and again after
399  *      with the page table lock for the page held.  The same lock must be
400  *      acquired to unmap a page.
401  * hole punch is indicated if end is not LLONG_MAX
402  *      In the hole punch case we scan the range and release found pages.
403  *      Only when releasing a page is the associated region/reserv map
404  *      deleted.  The region/reserv map for ranges without associated
405  *      pages are not modified.  Page faults can race with hole punch.
406  *      This is indicated if we find a mapped page.
407  * Note: If the passed end of range value is beyond the end of file, but
408  * not LLONG_MAX this routine still performs a hole punch operation.
409  */
410 static void remove_inode_hugepages(struct inode *inode, loff_t lstart,
411                                    loff_t lend)
412 {
413         struct hstate *h = hstate_inode(inode);
414         struct address_space *mapping = &inode->i_data;
415         const pgoff_t start = lstart >> huge_page_shift(h);
416         const pgoff_t end = lend >> huge_page_shift(h);
417         struct vm_area_struct pseudo_vma;
418         struct pagevec pvec;
419         pgoff_t next, index;
420         int i, freed = 0;
421         bool truncate_op = (lend == LLONG_MAX);
422
423         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
424         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
425         pagevec_init(&pvec, 0);
426         next = start;
427         while (next < end) {
428                 /*
429                  * When no more pages are found, we are done.
430                  */
431                 if (!pagevec_lookup_range(&pvec, mapping, &next, end - 1))
432                         break;
433
434                 for (i = 0; i < pagevec_count(&pvec); ++i) {
435                         struct page *page = pvec.pages[i];
436                         u32 hash;
437
438                         index = page->index;
439                         hash = hugetlb_fault_mutex_hash(h, mapping, index);
440                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
441
442                         /*
443                          * If page is mapped, it was faulted in after being
444                          * unmapped in caller.  Unmap (again) now after taking
445                          * the fault mutex.  The mutex will prevent faults
446                          * until we finish removing the page.
447                          *
448                          * This race can only happen in the hole punch case.
449                          * Getting here in a truncate operation is a bug.
450                          */
451                         if (unlikely(page_mapped(page))) {
452                                 BUG_ON(truncate_op);
453
454                                 i_mmap_lock_write(mapping);
455                                 hugetlb_vmdelete_list(&mapping->i_mmap,
456                                         index * pages_per_huge_page(h),
457                                         (index + 1) * pages_per_huge_page(h));
458                                 i_mmap_unlock_write(mapping);
459                         }
460
461                         lock_page(page);
462                         /*
463                          * We must free the huge page and remove from page
464                          * cache (remove_huge_page) BEFORE removing the
465                          * region/reserve map (hugetlb_unreserve_pages).  In
466                          * rare out of memory conditions, removal of the
467                          * region/reserve map could fail. Correspondingly,
468                          * the subpool and global reserve usage count can need
469                          * to be adjusted.
470                          */
471                         VM_BUG_ON(PagePrivate(page));
472                         remove_huge_page(page);
473                         freed++;
474                         if (!truncate_op) {
475                                 if (unlikely(hugetlb_unreserve_pages(inode,
476                                                         index, index + 1, 1)))
477                                         hugetlb_fix_reserve_counts(inode);
478                         }
479
480                         unlock_page(page);
481                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
482                 }
483                 huge_pagevec_release(&pvec);
484                 cond_resched();
485         }
486
487         if (truncate_op)
488                 (void)hugetlb_unreserve_pages(inode, start, LONG_MAX, freed);
489 }
490
491 static void hugetlbfs_evict_inode(struct inode *inode)
492 {
493         struct resv_map *resv_map;
494
495         remove_inode_hugepages(inode, 0, LLONG_MAX);
496         resv_map = (struct resv_map *)inode->i_mapping->private_data;
497         /* root inode doesn't have the resv_map, so we should check it */
498         if (resv_map)
499                 resv_map_release(&resv_map->refs);
500         clear_inode(inode);
501 }
502
503 static int hugetlb_vmtruncate(struct inode *inode, loff_t offset)
504 {
505         pgoff_t pgoff;
506         struct address_space *mapping = inode->i_mapping;
507         struct hstate *h = hstate_inode(inode);
508
509         BUG_ON(offset & ~huge_page_mask(h));
510         pgoff = offset >> PAGE_SHIFT;
511
512         i_size_write(inode, offset);
513         i_mmap_lock_write(mapping);
514         if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
515                 hugetlb_vmdelete_list(&mapping->i_mmap, pgoff, 0);
516         i_mmap_unlock_write(mapping);
517         remove_inode_hugepages(inode, offset, LLONG_MAX);
518         return 0;
519 }
520
521 static long hugetlbfs_punch_hole(struct inode *inode, loff_t offset, loff_t len)
522 {
523         struct hstate *h = hstate_inode(inode);
524         loff_t hpage_size = huge_page_size(h);
525         loff_t hole_start, hole_end;
526
527         /*
528          * For hole punch round up the beginning offset of the hole and
529          * round down the end.
530          */
531         hole_start = round_up(offset, hpage_size);
532         hole_end = round_down(offset + len, hpage_size);
533
534         if (hole_end > hole_start) {
535                 struct address_space *mapping = inode->i_mapping;
536
537                 inode_lock(inode);
538                 i_mmap_lock_write(mapping);
539                 if (!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root))
540                         hugetlb_vmdelete_list(&mapping->i_mmap,
541                                                 hole_start >> PAGE_SHIFT,
542                                                 hole_end  >> PAGE_SHIFT);
543                 i_mmap_unlock_write(mapping);
544                 remove_inode_hugepages(inode, hole_start, hole_end);
545                 inode_unlock(inode);
546         }
547
548         return 0;
549 }
550
551 static long hugetlbfs_fallocate(struct file *file, int mode, loff_t offset,
552                                 loff_t len)
553 {
554         struct inode *inode = file_inode(file);
555         struct address_space *mapping = inode->i_mapping;
556         struct hstate *h = hstate_inode(inode);
557         struct vm_area_struct pseudo_vma;
558         loff_t hpage_size = huge_page_size(h);
559         unsigned long hpage_shift = huge_page_shift(h);
560         pgoff_t start, index, end;
561         int error;
562         u32 hash;
563
564         if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
565                 return -EOPNOTSUPP;
566
567         if (mode & FALLOC_FL_PUNCH_HOLE)
568                 return hugetlbfs_punch_hole(inode, offset, len);
569
570         /*
571          * Default preallocate case.
572          * For this range, start is rounded down and end is rounded up
573          * as well as being converted to page offsets.
574          */
575         start = offset >> hpage_shift;
576         end = (offset + len + hpage_size - 1) >> hpage_shift;
577
578         inode_lock(inode);
579
580         /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
581         error = inode_newsize_ok(inode, offset + len);
582         if (error)
583                 goto out;
584
585         /*
586          * Initialize a pseudo vma as this is required by the huge page
587          * allocation routines.  If NUMA is configured, use page index
588          * as input to create an allocation policy.
589          */
590         memset(&pseudo_vma, 0, sizeof(struct vm_area_struct));
591         pseudo_vma.vm_flags = (VM_HUGETLB | VM_MAYSHARE | VM_SHARED);
592         pseudo_vma.vm_file = file;
593
594         for (index = start; index < end; index++) {
595                 /*
596                  * This is supposed to be the vaddr where the page is being
597                  * faulted in, but we have no vaddr here.
598                  */
599                 struct page *page;
600                 unsigned long addr;
601                 int avoid_reserve = 0;
602
603                 cond_resched();
604
605                 /*
606                  * fallocate(2) manpage permits EINTR; we may have been
607                  * interrupted because we are using up too much memory.
608                  */
609                 if (signal_pending(current)) {
610                         error = -EINTR;
611                         break;
612                 }
613
614                 /* Set numa allocation policy based on index */
615                 hugetlb_set_vma_policy(&pseudo_vma, inode, index);
616
617                 /* addr is the offset within the file (zero based) */
618                 addr = index * hpage_size;
619
620                 /* mutex taken here, fault path and hole punch */
621                 hash = hugetlb_fault_mutex_hash(h, mapping, index);
622                 mutex_lock(&hugetlb_fault_mutex_table[hash]);
623
624                 /* See if already present in mapping to avoid alloc/free */
625                 page = find_get_page(mapping, index);
626                 if (page) {
627                         put_page(page);
628                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
629                         hugetlb_drop_vma_policy(&pseudo_vma);
630                         continue;
631                 }
632
633                 /* Allocate page and add to page cache */
634                 page = alloc_huge_page(&pseudo_vma, addr, avoid_reserve);
635                 hugetlb_drop_vma_policy(&pseudo_vma);
636                 if (IS_ERR(page)) {
637                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
638                         error = PTR_ERR(page);
639                         goto out;
640                 }
641                 clear_huge_page(page, addr, pages_per_huge_page(h));
642                 __SetPageUptodate(page);
643                 error = huge_add_to_page_cache(page, mapping, index);
644                 if (unlikely(error)) {
645                         put_page(page);
646                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
647                         goto out;
648                 }
649
650                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
651
652                 set_page_huge_active(page);
653                 /*
654                  * put_page() due to reference from alloc_huge_page()
655                  * unlock_page because locked by add_to_page_cache()
656                  */
657                 put_page(page);
658                 unlock_page(page);
659         }
660
661         if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
662                 i_size_write(inode, offset + len);
663         inode->i_ctime = current_time(inode);
664 out:
665         inode_unlock(inode);
666         return error;
667 }
668
669 static int hugetlbfs_setattr(struct dentry *dentry, struct iattr *attr)
670 {
671         struct inode *inode = d_inode(dentry);
672         struct hstate *h = hstate_inode(inode);
673         int error;
674         unsigned int ia_valid = attr->ia_valid;
675
676         BUG_ON(!inode);
677
678         error = setattr_prepare(dentry, attr);
679         if (error)
680                 return error;
681
682         if (ia_valid & ATTR_SIZE) {
683                 error = -EINVAL;
684                 if (attr->ia_size & ~huge_page_mask(h))
685                         return -EINVAL;
686                 error = hugetlb_vmtruncate(inode, attr->ia_size);
687                 if (error)
688                         return error;
689         }
690
691         setattr_copy(inode, attr);
692         mark_inode_dirty(inode);
693         return 0;
694 }
695
696 static struct inode *hugetlbfs_get_root(struct super_block *sb,
697                                         struct hugetlbfs_config *config)
698 {
699         struct inode *inode;
700
701         inode = new_inode(sb);
702         if (inode) {
703                 inode->i_ino = get_next_ino();
704                 inode->i_mode = S_IFDIR | config->mode;
705                 inode->i_uid = config->uid;
706                 inode->i_gid = config->gid;
707                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
708                 inode->i_op = &hugetlbfs_dir_inode_operations;
709                 inode->i_fop = &simple_dir_operations;
710                 /* directory inodes start off with i_nlink == 2 (for "." entry) */
711                 inc_nlink(inode);
712                 lockdep_annotate_inode_mutex_key(inode);
713         }
714         return inode;
715 }
716
717 /*
718  * Hugetlbfs is not reclaimable; therefore its i_mmap_rwsem will never
719  * be taken from reclaim -- unlike regular filesystems. This needs an
720  * annotation because huge_pmd_share() does an allocation under hugetlb's
721  * i_mmap_rwsem.
722  */
723 static struct lock_class_key hugetlbfs_i_mmap_rwsem_key;
724
725 static struct inode *hugetlbfs_get_inode(struct super_block *sb,
726                                         struct inode *dir,
727                                         umode_t mode, dev_t dev)
728 {
729         struct inode *inode;
730         struct resv_map *resv_map = NULL;
731
732         /*
733          * Reserve maps are only needed for inodes that can have associated
734          * page allocations.
735          */
736         if (S_ISREG(mode) || S_ISLNK(mode)) {
737                 resv_map = resv_map_alloc();
738                 if (!resv_map)
739                         return NULL;
740         }
741
742         inode = new_inode(sb);
743         if (inode) {
744                 inode->i_ino = get_next_ino();
745                 inode_init_owner(inode, dir, mode);
746                 lockdep_set_class(&inode->i_mapping->i_mmap_rwsem,
747                                 &hugetlbfs_i_mmap_rwsem_key);
748                 inode->i_mapping->a_ops = &hugetlbfs_aops;
749                 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
750                 inode->i_mapping->private_data = resv_map;
751                 switch (mode & S_IFMT) {
752                 default:
753                         init_special_inode(inode, mode, dev);
754                         break;
755                 case S_IFREG:
756                         inode->i_op = &hugetlbfs_inode_operations;
757                         inode->i_fop = &hugetlbfs_file_operations;
758                         break;
759                 case S_IFDIR:
760                         inode->i_op = &hugetlbfs_dir_inode_operations;
761                         inode->i_fop = &simple_dir_operations;
762
763                         /* directory inodes start off with i_nlink == 2 (for "." entry) */
764                         inc_nlink(inode);
765                         break;
766                 case S_IFLNK:
767                         inode->i_op = &page_symlink_inode_operations;
768                         inode_nohighmem(inode);
769                         break;
770                 }
771                 lockdep_annotate_inode_mutex_key(inode);
772         } else {
773                 if (resv_map)
774                         kref_put(&resv_map->refs, resv_map_release);
775         }
776
777         return inode;
778 }
779
780 /*
781  * File creation. Allocate an inode, and we're done..
782  */
783 static int hugetlbfs_mknod(struct inode *dir,
784                         struct dentry *dentry, umode_t mode, dev_t dev)
785 {
786         struct inode *inode;
787         int error = -ENOSPC;
788
789         inode = hugetlbfs_get_inode(dir->i_sb, dir, mode, dev);
790         if (inode) {
791                 dir->i_ctime = dir->i_mtime = current_time(dir);
792                 d_instantiate(dentry, inode);
793                 dget(dentry);   /* Extra count - pin the dentry in core */
794                 error = 0;
795         }
796         return error;
797 }
798
799 static int hugetlbfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
800 {
801         int retval = hugetlbfs_mknod(dir, dentry, mode | S_IFDIR, 0);
802         if (!retval)
803                 inc_nlink(dir);
804         return retval;
805 }
806
807 static int hugetlbfs_create(struct inode *dir, struct dentry *dentry, umode_t mode, bool excl)
808 {
809         return hugetlbfs_mknod(dir, dentry, mode | S_IFREG, 0);
810 }
811
812 static int hugetlbfs_symlink(struct inode *dir,
813                         struct dentry *dentry, const char *symname)
814 {
815         struct inode *inode;
816         int error = -ENOSPC;
817
818         inode = hugetlbfs_get_inode(dir->i_sb, dir, S_IFLNK|S_IRWXUGO, 0);
819         if (inode) {
820                 int l = strlen(symname)+1;
821                 error = page_symlink(inode, symname, l);
822                 if (!error) {
823                         d_instantiate(dentry, inode);
824                         dget(dentry);
825                 } else
826                         iput(inode);
827         }
828         dir->i_ctime = dir->i_mtime = current_time(dir);
829
830         return error;
831 }
832
833 /*
834  * mark the head page dirty
835  */
836 static int hugetlbfs_set_page_dirty(struct page *page)
837 {
838         struct page *head = compound_head(page);
839
840         SetPageDirty(head);
841         return 0;
842 }
843
844 static int hugetlbfs_migrate_page(struct address_space *mapping,
845                                 struct page *newpage, struct page *page,
846                                 enum migrate_mode mode)
847 {
848         int rc;
849
850         rc = migrate_huge_page_move_mapping(mapping, newpage, page);
851         if (rc != MIGRATEPAGE_SUCCESS)
852                 return rc;
853
854         /*
855          * page_private is subpool pointer in hugetlb pages.  Transfer to
856          * new page.  PagePrivate is not associated with page_private for
857          * hugetlb pages and can not be set here as only page_huge_active
858          * pages can be migrated.
859          */
860         if (page_private(page)) {
861                 set_page_private(newpage, page_private(page));
862                 set_page_private(page, 0);
863         }
864
865         if (mode != MIGRATE_SYNC_NO_COPY)
866                 migrate_page_copy(newpage, page);
867         else
868                 migrate_page_states(newpage, page);
869
870         return MIGRATEPAGE_SUCCESS;
871 }
872
873 static int hugetlbfs_error_remove_page(struct address_space *mapping,
874                                 struct page *page)
875 {
876         struct inode *inode = mapping->host;
877         pgoff_t index = page->index;
878
879         remove_huge_page(page);
880         if (unlikely(hugetlb_unreserve_pages(inode, index, index + 1, 1)))
881                 hugetlb_fix_reserve_counts(inode);
882
883         return 0;
884 }
885
886 /*
887  * Display the mount options in /proc/mounts.
888  */
889 static int hugetlbfs_show_options(struct seq_file *m, struct dentry *root)
890 {
891         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(root->d_sb);
892         struct hugepage_subpool *spool = sbinfo->spool;
893         unsigned long hpage_size = huge_page_size(sbinfo->hstate);
894         unsigned hpage_shift = huge_page_shift(sbinfo->hstate);
895         char mod;
896
897         if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
898                 seq_printf(m, ",uid=%u",
899                            from_kuid_munged(&init_user_ns, sbinfo->uid));
900         if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
901                 seq_printf(m, ",gid=%u",
902                            from_kgid_munged(&init_user_ns, sbinfo->gid));
903         if (sbinfo->mode != 0755)
904                 seq_printf(m, ",mode=%o", sbinfo->mode);
905         if (sbinfo->max_inodes != -1)
906                 seq_printf(m, ",nr_inodes=%lu", sbinfo->max_inodes);
907
908         hpage_size /= 1024;
909         mod = 'K';
910         if (hpage_size >= 1024) {
911                 hpage_size /= 1024;
912                 mod = 'M';
913         }
914         seq_printf(m, ",pagesize=%lu%c", hpage_size, mod);
915         if (spool) {
916                 if (spool->max_hpages != -1)
917                         seq_printf(m, ",size=%llu",
918                                    (unsigned long long)spool->max_hpages << hpage_shift);
919                 if (spool->min_hpages != -1)
920                         seq_printf(m, ",min_size=%llu",
921                                    (unsigned long long)spool->min_hpages << hpage_shift);
922         }
923         return 0;
924 }
925
926 static int hugetlbfs_statfs(struct dentry *dentry, struct kstatfs *buf)
927 {
928         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(dentry->d_sb);
929         struct hstate *h = hstate_inode(d_inode(dentry));
930
931         buf->f_type = HUGETLBFS_MAGIC;
932         buf->f_bsize = huge_page_size(h);
933         if (sbinfo) {
934                 spin_lock(&sbinfo->stat_lock);
935                 /* If no limits set, just report 0 for max/free/used
936                  * blocks, like simple_statfs() */
937                 if (sbinfo->spool) {
938                         long free_pages;
939
940                         spin_lock(&sbinfo->spool->lock);
941                         buf->f_blocks = sbinfo->spool->max_hpages;
942                         free_pages = sbinfo->spool->max_hpages
943                                 - sbinfo->spool->used_hpages;
944                         buf->f_bavail = buf->f_bfree = free_pages;
945                         spin_unlock(&sbinfo->spool->lock);
946                         buf->f_files = sbinfo->max_inodes;
947                         buf->f_ffree = sbinfo->free_inodes;
948                 }
949                 spin_unlock(&sbinfo->stat_lock);
950         }
951         buf->f_namelen = NAME_MAX;
952         return 0;
953 }
954
955 static void hugetlbfs_put_super(struct super_block *sb)
956 {
957         struct hugetlbfs_sb_info *sbi = HUGETLBFS_SB(sb);
958
959         if (sbi) {
960                 sb->s_fs_info = NULL;
961
962                 if (sbi->spool)
963                         hugepage_put_subpool(sbi->spool);
964
965                 kfree(sbi);
966         }
967 }
968
969 static inline int hugetlbfs_dec_free_inodes(struct hugetlbfs_sb_info *sbinfo)
970 {
971         if (sbinfo->free_inodes >= 0) {
972                 spin_lock(&sbinfo->stat_lock);
973                 if (unlikely(!sbinfo->free_inodes)) {
974                         spin_unlock(&sbinfo->stat_lock);
975                         return 0;
976                 }
977                 sbinfo->free_inodes--;
978                 spin_unlock(&sbinfo->stat_lock);
979         }
980
981         return 1;
982 }
983
984 static void hugetlbfs_inc_free_inodes(struct hugetlbfs_sb_info *sbinfo)
985 {
986         if (sbinfo->free_inodes >= 0) {
987                 spin_lock(&sbinfo->stat_lock);
988                 sbinfo->free_inodes++;
989                 spin_unlock(&sbinfo->stat_lock);
990         }
991 }
992
993
994 static struct kmem_cache *hugetlbfs_inode_cachep;
995
996 static struct inode *hugetlbfs_alloc_inode(struct super_block *sb)
997 {
998         struct hugetlbfs_sb_info *sbinfo = HUGETLBFS_SB(sb);
999         struct hugetlbfs_inode_info *p;
1000
1001         if (unlikely(!hugetlbfs_dec_free_inodes(sbinfo)))
1002                 return NULL;
1003         p = kmem_cache_alloc(hugetlbfs_inode_cachep, GFP_KERNEL);
1004         if (unlikely(!p)) {
1005                 hugetlbfs_inc_free_inodes(sbinfo);
1006                 return NULL;
1007         }
1008
1009         /*
1010          * Any time after allocation, hugetlbfs_destroy_inode can be called
1011          * for the inode.  mpol_free_shared_policy is unconditionally called
1012          * as part of hugetlbfs_destroy_inode.  So, initialize policy here
1013          * in case of a quick call to destroy.
1014          *
1015          * Note that the policy is initialized even if we are creating a
1016          * private inode.  This simplifies hugetlbfs_destroy_inode.
1017          */
1018         mpol_shared_policy_init(&p->policy, NULL);
1019
1020         return &p->vfs_inode;
1021 }
1022
1023 static void hugetlbfs_i_callback(struct rcu_head *head)
1024 {
1025         struct inode *inode = container_of(head, struct inode, i_rcu);
1026         kmem_cache_free(hugetlbfs_inode_cachep, HUGETLBFS_I(inode));
1027 }
1028
1029 static void hugetlbfs_destroy_inode(struct inode *inode)
1030 {
1031         hugetlbfs_inc_free_inodes(HUGETLBFS_SB(inode->i_sb));
1032         mpol_free_shared_policy(&HUGETLBFS_I(inode)->policy);
1033         call_rcu(&inode->i_rcu, hugetlbfs_i_callback);
1034 }
1035
1036 static const struct address_space_operations hugetlbfs_aops = {
1037         .write_begin    = hugetlbfs_write_begin,
1038         .write_end      = hugetlbfs_write_end,
1039         .set_page_dirty = hugetlbfs_set_page_dirty,
1040         .migratepage    = hugetlbfs_migrate_page,
1041         .error_remove_page      = hugetlbfs_error_remove_page,
1042 };
1043
1044
1045 static void init_once(void *foo)
1046 {
1047         struct hugetlbfs_inode_info *ei = (struct hugetlbfs_inode_info *)foo;
1048
1049         inode_init_once(&ei->vfs_inode);
1050 }
1051
1052 const struct file_operations hugetlbfs_file_operations = {
1053         .read_iter              = hugetlbfs_read_iter,
1054         .mmap                   = hugetlbfs_file_mmap,
1055         .fsync                  = noop_fsync,
1056         .get_unmapped_area      = hugetlb_get_unmapped_area,
1057         .llseek                 = default_llseek,
1058         .fallocate              = hugetlbfs_fallocate,
1059 };
1060
1061 static const struct inode_operations hugetlbfs_dir_inode_operations = {
1062         .create         = hugetlbfs_create,
1063         .lookup         = simple_lookup,
1064         .link           = simple_link,
1065         .unlink         = simple_unlink,
1066         .symlink        = hugetlbfs_symlink,
1067         .mkdir          = hugetlbfs_mkdir,
1068         .rmdir          = simple_rmdir,
1069         .mknod          = hugetlbfs_mknod,
1070         .rename         = simple_rename,
1071         .setattr        = hugetlbfs_setattr,
1072 };
1073
1074 static const struct inode_operations hugetlbfs_inode_operations = {
1075         .setattr        = hugetlbfs_setattr,
1076 };
1077
1078 static const struct super_operations hugetlbfs_ops = {
1079         .alloc_inode    = hugetlbfs_alloc_inode,
1080         .destroy_inode  = hugetlbfs_destroy_inode,
1081         .evict_inode    = hugetlbfs_evict_inode,
1082         .statfs         = hugetlbfs_statfs,
1083         .put_super      = hugetlbfs_put_super,
1084         .show_options   = hugetlbfs_show_options,
1085 };
1086
1087 enum hugetlbfs_size_type { NO_SIZE, SIZE_STD, SIZE_PERCENT };
1088
1089 /*
1090  * Convert size option passed from command line to number of huge pages
1091  * in the pool specified by hstate.  Size option could be in bytes
1092  * (val_type == SIZE_STD) or percentage of the pool (val_type == SIZE_PERCENT).
1093  */
1094 static long
1095 hugetlbfs_size_to_hpages(struct hstate *h, unsigned long long size_opt,
1096                          enum hugetlbfs_size_type val_type)
1097 {
1098         if (val_type == NO_SIZE)
1099                 return -1;
1100
1101         if (val_type == SIZE_PERCENT) {
1102                 size_opt <<= huge_page_shift(h);
1103                 size_opt *= h->max_huge_pages;
1104                 do_div(size_opt, 100);
1105         }
1106
1107         size_opt >>= huge_page_shift(h);
1108         return size_opt;
1109 }
1110
1111 static int
1112 hugetlbfs_parse_options(char *options, struct hugetlbfs_config *pconfig)
1113 {
1114         char *p, *rest;
1115         substring_t args[MAX_OPT_ARGS];
1116         int option;
1117         unsigned long long max_size_opt = 0, min_size_opt = 0;
1118         enum hugetlbfs_size_type max_val_type = NO_SIZE, min_val_type = NO_SIZE;
1119
1120         if (!options)
1121                 return 0;
1122
1123         while ((p = strsep(&options, ",")) != NULL) {
1124                 int token;
1125                 if (!*p)
1126                         continue;
1127
1128                 token = match_token(p, tokens, args);
1129                 switch (token) {
1130                 case Opt_uid:
1131                         if (match_int(&args[0], &option))
1132                                 goto bad_val;
1133                         pconfig->uid = make_kuid(current_user_ns(), option);
1134                         if (!uid_valid(pconfig->uid))
1135                                 goto bad_val;
1136                         break;
1137
1138                 case Opt_gid:
1139                         if (match_int(&args[0], &option))
1140                                 goto bad_val;
1141                         pconfig->gid = make_kgid(current_user_ns(), option);
1142                         if (!gid_valid(pconfig->gid))
1143                                 goto bad_val;
1144                         break;
1145
1146                 case Opt_mode:
1147                         if (match_octal(&args[0], &option))
1148                                 goto bad_val;
1149                         pconfig->mode = option & 01777U;
1150                         break;
1151
1152                 case Opt_size: {
1153                         /* memparse() will accept a K/M/G without a digit */
1154                         if (!isdigit(*args[0].from))
1155                                 goto bad_val;
1156                         max_size_opt = memparse(args[0].from, &rest);
1157                         max_val_type = SIZE_STD;
1158                         if (*rest == '%')
1159                                 max_val_type = SIZE_PERCENT;
1160                         break;
1161                 }
1162
1163                 case Opt_nr_inodes:
1164                         /* memparse() will accept a K/M/G without a digit */
1165                         if (!isdigit(*args[0].from))
1166                                 goto bad_val;
1167                         pconfig->nr_inodes = memparse(args[0].from, &rest);
1168                         break;
1169
1170                 case Opt_pagesize: {
1171                         unsigned long ps;
1172                         ps = memparse(args[0].from, &rest);
1173                         pconfig->hstate = size_to_hstate(ps);
1174                         if (!pconfig->hstate) {
1175                                 pr_err("Unsupported page size %lu MB\n",
1176                                         ps >> 20);
1177                                 return -EINVAL;
1178                         }
1179                         break;
1180                 }
1181
1182                 case Opt_min_size: {
1183                         /* memparse() will accept a K/M/G without a digit */
1184                         if (!isdigit(*args[0].from))
1185                                 goto bad_val;
1186                         min_size_opt = memparse(args[0].from, &rest);
1187                         min_val_type = SIZE_STD;
1188                         if (*rest == '%')
1189                                 min_val_type = SIZE_PERCENT;
1190                         break;
1191                 }
1192
1193                 default:
1194                         pr_err("Bad mount option: \"%s\"\n", p);
1195                         return -EINVAL;
1196                         break;
1197                 }
1198         }
1199
1200         /*
1201          * Use huge page pool size (in hstate) to convert the size
1202          * options to number of huge pages.  If NO_SIZE, -1 is returned.
1203          */
1204         pconfig->max_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1205                                                 max_size_opt, max_val_type);
1206         pconfig->min_hpages = hugetlbfs_size_to_hpages(pconfig->hstate,
1207                                                 min_size_opt, min_val_type);
1208
1209         /*
1210          * If max_size was specified, then min_size must be smaller
1211          */
1212         if (max_val_type > NO_SIZE &&
1213             pconfig->min_hpages > pconfig->max_hpages) {
1214                 pr_err("minimum size can not be greater than maximum size\n");
1215                 return -EINVAL;
1216         }
1217
1218         return 0;
1219
1220 bad_val:
1221         pr_err("Bad value '%s' for mount option '%s'\n", args[0].from, p);
1222         return -EINVAL;
1223 }
1224
1225 static int
1226 hugetlbfs_fill_super(struct super_block *sb, void *data, int silent)
1227 {
1228         int ret;
1229         struct hugetlbfs_config config;
1230         struct hugetlbfs_sb_info *sbinfo;
1231
1232         config.max_hpages = -1; /* No limit on size by default */
1233         config.nr_inodes = -1; /* No limit on number of inodes by default */
1234         config.uid = current_fsuid();
1235         config.gid = current_fsgid();
1236         config.mode = 0755;
1237         config.hstate = &default_hstate;
1238         config.min_hpages = -1; /* No default minimum size */
1239         ret = hugetlbfs_parse_options(data, &config);
1240         if (ret)
1241                 return ret;
1242
1243         sbinfo = kmalloc(sizeof(struct hugetlbfs_sb_info), GFP_KERNEL);
1244         if (!sbinfo)
1245                 return -ENOMEM;
1246         sb->s_fs_info = sbinfo;
1247         sbinfo->hstate = config.hstate;
1248         spin_lock_init(&sbinfo->stat_lock);
1249         sbinfo->max_inodes = config.nr_inodes;
1250         sbinfo->free_inodes = config.nr_inodes;
1251         sbinfo->spool = NULL;
1252         sbinfo->uid = config.uid;
1253         sbinfo->gid = config.gid;
1254         sbinfo->mode = config.mode;
1255
1256         /*
1257          * Allocate and initialize subpool if maximum or minimum size is
1258          * specified.  Any needed reservations (for minimim size) are taken
1259          * taken when the subpool is created.
1260          */
1261         if (config.max_hpages != -1 || config.min_hpages != -1) {
1262                 sbinfo->spool = hugepage_new_subpool(config.hstate,
1263                                                         config.max_hpages,
1264                                                         config.min_hpages);
1265                 if (!sbinfo->spool)
1266                         goto out_free;
1267         }
1268         sb->s_maxbytes = MAX_LFS_FILESIZE;
1269         sb->s_blocksize = huge_page_size(config.hstate);
1270         sb->s_blocksize_bits = huge_page_shift(config.hstate);
1271         sb->s_magic = HUGETLBFS_MAGIC;
1272         sb->s_op = &hugetlbfs_ops;
1273         sb->s_time_gran = 1;
1274         sb->s_root = d_make_root(hugetlbfs_get_root(sb, &config));
1275         if (!sb->s_root)
1276                 goto out_free;
1277         return 0;
1278 out_free:
1279         kfree(sbinfo->spool);
1280         kfree(sbinfo);
1281         return -ENOMEM;
1282 }
1283
1284 static struct dentry *hugetlbfs_mount(struct file_system_type *fs_type,
1285         int flags, const char *dev_name, void *data)
1286 {
1287         return mount_nodev(fs_type, flags, data, hugetlbfs_fill_super);
1288 }
1289
1290 static struct file_system_type hugetlbfs_fs_type = {
1291         .name           = "hugetlbfs",
1292         .mount          = hugetlbfs_mount,
1293         .kill_sb        = kill_litter_super,
1294 };
1295
1296 static struct vfsmount *hugetlbfs_vfsmount[HUGE_MAX_HSTATE];
1297
1298 static int can_do_hugetlb_shm(void)
1299 {
1300         kgid_t shm_group;
1301         shm_group = make_kgid(&init_user_ns, sysctl_hugetlb_shm_group);
1302         return capable(CAP_IPC_LOCK) || in_group_p(shm_group);
1303 }
1304
1305 static int get_hstate_idx(int page_size_log)
1306 {
1307         struct hstate *h = hstate_sizelog(page_size_log);
1308
1309         if (!h)
1310                 return -1;
1311         return h - hstates;
1312 }
1313
1314 static const struct dentry_operations anon_ops = {
1315         .d_dname = simple_dname
1316 };
1317
1318 /*
1319  * Note that size should be aligned to proper hugepage size in caller side,
1320  * otherwise hugetlb_reserve_pages reserves one less hugepages than intended.
1321  */
1322 struct file *hugetlb_file_setup(const char *name, size_t size,
1323                                 vm_flags_t acctflag, struct user_struct **user,
1324                                 int creat_flags, int page_size_log)
1325 {
1326         struct file *file = ERR_PTR(-ENOMEM);
1327         struct inode *inode;
1328         struct path path;
1329         struct super_block *sb;
1330         struct qstr quick_string;
1331         int hstate_idx;
1332
1333         hstate_idx = get_hstate_idx(page_size_log);
1334         if (hstate_idx < 0)
1335                 return ERR_PTR(-ENODEV);
1336
1337         *user = NULL;
1338         if (!hugetlbfs_vfsmount[hstate_idx])
1339                 return ERR_PTR(-ENOENT);
1340
1341         if (creat_flags == HUGETLB_SHMFS_INODE && !can_do_hugetlb_shm()) {
1342                 *user = current_user();
1343                 if (user_shm_lock(size, *user)) {
1344                         task_lock(current);
1345                         pr_warn_once("%s (%d): Using mlock ulimits for SHM_HUGETLB is deprecated\n",
1346                                 current->comm, current->pid);
1347                         task_unlock(current);
1348                 } else {
1349                         *user = NULL;
1350                         return ERR_PTR(-EPERM);
1351                 }
1352         }
1353
1354         sb = hugetlbfs_vfsmount[hstate_idx]->mnt_sb;
1355         quick_string.name = name;
1356         quick_string.len = strlen(quick_string.name);
1357         quick_string.hash = 0;
1358         path.dentry = d_alloc_pseudo(sb, &quick_string);
1359         if (!path.dentry)
1360                 goto out_shm_unlock;
1361
1362         d_set_d_op(path.dentry, &anon_ops);
1363         path.mnt = mntget(hugetlbfs_vfsmount[hstate_idx]);
1364         file = ERR_PTR(-ENOSPC);
1365         inode = hugetlbfs_get_inode(sb, NULL, S_IFREG | S_IRWXUGO, 0);
1366         if (!inode)
1367                 goto out_dentry;
1368         if (creat_flags == HUGETLB_SHMFS_INODE)
1369                 inode->i_flags |= S_PRIVATE;
1370
1371         file = ERR_PTR(-ENOMEM);
1372         if (hugetlb_reserve_pages(inode, 0,
1373                         size >> huge_page_shift(hstate_inode(inode)), NULL,
1374                         acctflag))
1375                 goto out_inode;
1376
1377         d_instantiate(path.dentry, inode);
1378         inode->i_size = size;
1379         clear_nlink(inode);
1380
1381         file = alloc_file(&path, FMODE_WRITE | FMODE_READ,
1382                         &hugetlbfs_file_operations);
1383         if (IS_ERR(file))
1384                 goto out_dentry; /* inode is already attached */
1385
1386         return file;
1387
1388 out_inode:
1389         iput(inode);
1390 out_dentry:
1391         path_put(&path);
1392 out_shm_unlock:
1393         if (*user) {
1394                 user_shm_unlock(size, *user);
1395                 *user = NULL;
1396         }
1397         return file;
1398 }
1399
1400 static int __init init_hugetlbfs_fs(void)
1401 {
1402         struct hstate *h;
1403         int error;
1404         int i;
1405
1406         if (!hugepages_supported()) {
1407                 pr_info("disabling because there are no supported hugepage sizes\n");
1408                 return -ENOTSUPP;
1409         }
1410
1411         error = -ENOMEM;
1412         hugetlbfs_inode_cachep = kmem_cache_create("hugetlbfs_inode_cache",
1413                                         sizeof(struct hugetlbfs_inode_info),
1414                                         0, SLAB_ACCOUNT, init_once);
1415         if (hugetlbfs_inode_cachep == NULL)
1416                 goto out2;
1417
1418         error = register_filesystem(&hugetlbfs_fs_type);
1419         if (error)
1420                 goto out;
1421
1422         i = 0;
1423         for_each_hstate(h) {
1424                 char buf[50];
1425                 unsigned ps_kb = 1U << (h->order + PAGE_SHIFT - 10);
1426
1427                 snprintf(buf, sizeof(buf), "pagesize=%uK", ps_kb);
1428                 hugetlbfs_vfsmount[i] = kern_mount_data(&hugetlbfs_fs_type,
1429                                                         buf);
1430
1431                 if (IS_ERR(hugetlbfs_vfsmount[i])) {
1432                         pr_err("Cannot mount internal hugetlbfs for "
1433                                 "page size %uK", ps_kb);
1434                         error = PTR_ERR(hugetlbfs_vfsmount[i]);
1435                         hugetlbfs_vfsmount[i] = NULL;
1436                 }
1437                 i++;
1438         }
1439         /* Non default hstates are optional */
1440         if (!IS_ERR_OR_NULL(hugetlbfs_vfsmount[default_hstate_idx]))
1441                 return 0;
1442
1443  out:
1444         kmem_cache_destroy(hugetlbfs_inode_cachep);
1445  out2:
1446         return error;
1447 }
1448 fs_initcall(init_hugetlbfs_fs)