GNU Linux-libre 4.14.290-gnu1
[releases.git] / fs / jbd2 / transaction.c
1 /*
2  * linux/fs/jbd2/transaction.c
3  *
4  * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
5  *
6  * Copyright 1998 Red Hat corp --- All Rights Reserved
7  *
8  * This file is part of the Linux kernel and is made available under
9  * the terms of the GNU General Public License, version 2, or at your
10  * option, any later version, incorporated herein by reference.
11  *
12  * Generic filesystem transaction handling code; part of the ext2fs
13  * journaling system.
14  *
15  * This file manages transactions (compound commits managed by the
16  * journaling code) and handles (individual atomic operations by the
17  * filesystem).
18  */
19
20 #include <linux/time.h>
21 #include <linux/fs.h>
22 #include <linux/jbd2.h>
23 #include <linux/errno.h>
24 #include <linux/slab.h>
25 #include <linux/timer.h>
26 #include <linux/mm.h>
27 #include <linux/highmem.h>
28 #include <linux/hrtimer.h>
29 #include <linux/backing-dev.h>
30 #include <linux/bug.h>
31 #include <linux/module.h>
32 #include <linux/sched/mm.h>
33
34 #include <trace/events/jbd2.h>
35
36 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
37 static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
38
39 static struct kmem_cache *transaction_cache;
40 int __init jbd2_journal_init_transaction_cache(void)
41 {
42         J_ASSERT(!transaction_cache);
43         transaction_cache = kmem_cache_create("jbd2_transaction_s",
44                                         sizeof(transaction_t),
45                                         0,
46                                         SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
47                                         NULL);
48         if (transaction_cache)
49                 return 0;
50         return -ENOMEM;
51 }
52
53 void jbd2_journal_destroy_transaction_cache(void)
54 {
55         if (transaction_cache) {
56                 kmem_cache_destroy(transaction_cache);
57                 transaction_cache = NULL;
58         }
59 }
60
61 void jbd2_journal_free_transaction(transaction_t *transaction)
62 {
63         if (unlikely(ZERO_OR_NULL_PTR(transaction)))
64                 return;
65         kmem_cache_free(transaction_cache, transaction);
66 }
67
68 /*
69  * jbd2_get_transaction: obtain a new transaction_t object.
70  *
71  * Simply allocate and initialise a new transaction.  Create it in
72  * RUNNING state and add it to the current journal (which should not
73  * have an existing running transaction: we only make a new transaction
74  * once we have started to commit the old one).
75  *
76  * Preconditions:
77  *      The journal MUST be locked.  We don't perform atomic mallocs on the
78  *      new transaction and we can't block without protecting against other
79  *      processes trying to touch the journal while it is in transition.
80  *
81  */
82
83 static transaction_t *
84 jbd2_get_transaction(journal_t *journal, transaction_t *transaction)
85 {
86         transaction->t_journal = journal;
87         transaction->t_state = T_RUNNING;
88         transaction->t_start_time = ktime_get();
89         transaction->t_tid = journal->j_transaction_sequence++;
90         transaction->t_expires = jiffies + journal->j_commit_interval;
91         spin_lock_init(&transaction->t_handle_lock);
92         atomic_set(&transaction->t_updates, 0);
93         atomic_set(&transaction->t_outstanding_credits,
94                    atomic_read(&journal->j_reserved_credits));
95         atomic_set(&transaction->t_handle_count, 0);
96         INIT_LIST_HEAD(&transaction->t_inode_list);
97         INIT_LIST_HEAD(&transaction->t_private_list);
98
99         /* Set up the commit timer for the new transaction. */
100         journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
101         add_timer(&journal->j_commit_timer);
102
103         J_ASSERT(journal->j_running_transaction == NULL);
104         journal->j_running_transaction = transaction;
105         transaction->t_max_wait = 0;
106         transaction->t_start = jiffies;
107         transaction->t_requested = 0;
108
109         return transaction;
110 }
111
112 /*
113  * Handle management.
114  *
115  * A handle_t is an object which represents a single atomic update to a
116  * filesystem, and which tracks all of the modifications which form part
117  * of that one update.
118  */
119
120 /*
121  * Update transaction's maximum wait time, if debugging is enabled.
122  *
123  * In order for t_max_wait to be reliable, it must be protected by a
124  * lock.  But doing so will mean that start_this_handle() can not be
125  * run in parallel on SMP systems, which limits our scalability.  So
126  * unless debugging is enabled, we no longer update t_max_wait, which
127  * means that maximum wait time reported by the jbd2_run_stats
128  * tracepoint will always be zero.
129  */
130 static inline void update_t_max_wait(transaction_t *transaction,
131                                      unsigned long ts)
132 {
133 #ifdef CONFIG_JBD2_DEBUG
134         if (jbd2_journal_enable_debug &&
135             time_after(transaction->t_start, ts)) {
136                 ts = jbd2_time_diff(ts, transaction->t_start);
137                 spin_lock(&transaction->t_handle_lock);
138                 if (ts > transaction->t_max_wait)
139                         transaction->t_max_wait = ts;
140                 spin_unlock(&transaction->t_handle_lock);
141         }
142 #endif
143 }
144
145 /*
146  * Wait until running transaction passes T_LOCKED state. Also starts the commit
147  * if needed. The function expects running transaction to exist and releases
148  * j_state_lock.
149  */
150 static void wait_transaction_locked(journal_t *journal)
151         __releases(journal->j_state_lock)
152 {
153         DEFINE_WAIT(wait);
154         int need_to_start;
155         tid_t tid = journal->j_running_transaction->t_tid;
156
157         prepare_to_wait(&journal->j_wait_transaction_locked, &wait,
158                         TASK_UNINTERRUPTIBLE);
159         need_to_start = !tid_geq(journal->j_commit_request, tid);
160         read_unlock(&journal->j_state_lock);
161         if (need_to_start)
162                 jbd2_log_start_commit(journal, tid);
163         jbd2_might_wait_for_commit(journal);
164         schedule();
165         finish_wait(&journal->j_wait_transaction_locked, &wait);
166 }
167
168 static void sub_reserved_credits(journal_t *journal, int blocks)
169 {
170         atomic_sub(blocks, &journal->j_reserved_credits);
171         wake_up(&journal->j_wait_reserved);
172 }
173
174 /*
175  * Wait until we can add credits for handle to the running transaction.  Called
176  * with j_state_lock held for reading. Returns 0 if handle joined the running
177  * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
178  * caller must retry.
179  */
180 static int add_transaction_credits(journal_t *journal, int blocks,
181                                    int rsv_blocks)
182 {
183         transaction_t *t = journal->j_running_transaction;
184         int needed;
185         int total = blocks + rsv_blocks;
186
187         /*
188          * If the current transaction is locked down for commit, wait
189          * for the lock to be released.
190          */
191         if (t->t_state == T_LOCKED) {
192                 wait_transaction_locked(journal);
193                 return 1;
194         }
195
196         /*
197          * If there is not enough space left in the log to write all
198          * potential buffers requested by this operation, we need to
199          * stall pending a log checkpoint to free some more log space.
200          */
201         needed = atomic_add_return(total, &t->t_outstanding_credits);
202         if (needed > journal->j_max_transaction_buffers) {
203                 /*
204                  * If the current transaction is already too large,
205                  * then start to commit it: we can then go back and
206                  * attach this handle to a new transaction.
207                  */
208                 atomic_sub(total, &t->t_outstanding_credits);
209
210                 /*
211                  * Is the number of reserved credits in the current transaction too
212                  * big to fit this handle? Wait until reserved credits are freed.
213                  */
214                 if (atomic_read(&journal->j_reserved_credits) + total >
215                     journal->j_max_transaction_buffers) {
216                         read_unlock(&journal->j_state_lock);
217                         jbd2_might_wait_for_commit(journal);
218                         wait_event(journal->j_wait_reserved,
219                                    atomic_read(&journal->j_reserved_credits) + total <=
220                                    journal->j_max_transaction_buffers);
221                         return 1;
222                 }
223
224                 wait_transaction_locked(journal);
225                 return 1;
226         }
227
228         /*
229          * The commit code assumes that it can get enough log space
230          * without forcing a checkpoint.  This is *critical* for
231          * correctness: a checkpoint of a buffer which is also
232          * associated with a committing transaction creates a deadlock,
233          * so commit simply cannot force through checkpoints.
234          *
235          * We must therefore ensure the necessary space in the journal
236          * *before* starting to dirty potentially checkpointed buffers
237          * in the new transaction.
238          */
239         if (jbd2_log_space_left(journal) < jbd2_space_needed(journal)) {
240                 atomic_sub(total, &t->t_outstanding_credits);
241                 read_unlock(&journal->j_state_lock);
242                 jbd2_might_wait_for_commit(journal);
243                 write_lock(&journal->j_state_lock);
244                 if (jbd2_log_space_left(journal) < jbd2_space_needed(journal))
245                         __jbd2_log_wait_for_space(journal);
246                 write_unlock(&journal->j_state_lock);
247                 return 1;
248         }
249
250         /* No reservation? We are done... */
251         if (!rsv_blocks)
252                 return 0;
253
254         needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
255         /* We allow at most half of a transaction to be reserved */
256         if (needed > journal->j_max_transaction_buffers / 2) {
257                 sub_reserved_credits(journal, rsv_blocks);
258                 atomic_sub(total, &t->t_outstanding_credits);
259                 read_unlock(&journal->j_state_lock);
260                 jbd2_might_wait_for_commit(journal);
261                 wait_event(journal->j_wait_reserved,
262                          atomic_read(&journal->j_reserved_credits) + rsv_blocks
263                          <= journal->j_max_transaction_buffers / 2);
264                 return 1;
265         }
266         return 0;
267 }
268
269 /*
270  * start_this_handle: Given a handle, deal with any locking or stalling
271  * needed to make sure that there is enough journal space for the handle
272  * to begin.  Attach the handle to a transaction and set up the
273  * transaction's buffer credits.
274  */
275
276 static int start_this_handle(journal_t *journal, handle_t *handle,
277                              gfp_t gfp_mask)
278 {
279         transaction_t   *transaction, *new_transaction = NULL;
280         int             blocks = handle->h_buffer_credits;
281         int             rsv_blocks = 0;
282         unsigned long ts = jiffies;
283
284         if (handle->h_rsv_handle)
285                 rsv_blocks = handle->h_rsv_handle->h_buffer_credits;
286
287         /*
288          * Limit the number of reserved credits to 1/2 of maximum transaction
289          * size and limit the number of total credits to not exceed maximum
290          * transaction size per operation.
291          */
292         if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
293             (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
294                 printk(KERN_ERR "JBD2: %s wants too many credits "
295                        "credits:%d rsv_credits:%d max:%d\n",
296                        current->comm, blocks, rsv_blocks,
297                        journal->j_max_transaction_buffers);
298                 WARN_ON(1);
299                 return -ENOSPC;
300         }
301
302 alloc_transaction:
303         if (!journal->j_running_transaction) {
304                 /*
305                  * If __GFP_FS is not present, then we may be being called from
306                  * inside the fs writeback layer, so we MUST NOT fail.
307                  */
308                 if ((gfp_mask & __GFP_FS) == 0)
309                         gfp_mask |= __GFP_NOFAIL;
310                 new_transaction = kmem_cache_zalloc(transaction_cache,
311                                                     gfp_mask);
312                 if (!new_transaction)
313                         return -ENOMEM;
314         }
315
316         jbd_debug(3, "New handle %p going live.\n", handle);
317
318         /*
319          * We need to hold j_state_lock until t_updates has been incremented,
320          * for proper journal barrier handling
321          */
322 repeat:
323         read_lock(&journal->j_state_lock);
324         BUG_ON(journal->j_flags & JBD2_UNMOUNT);
325         if (is_journal_aborted(journal) ||
326             (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
327                 read_unlock(&journal->j_state_lock);
328                 jbd2_journal_free_transaction(new_transaction);
329                 return -EROFS;
330         }
331
332         /*
333          * Wait on the journal's transaction barrier if necessary. Specifically
334          * we allow reserved handles to proceed because otherwise commit could
335          * deadlock on page writeback not being able to complete.
336          */
337         if (!handle->h_reserved && journal->j_barrier_count) {
338                 read_unlock(&journal->j_state_lock);
339                 wait_event(journal->j_wait_transaction_locked,
340                                 journal->j_barrier_count == 0);
341                 goto repeat;
342         }
343
344         if (!journal->j_running_transaction) {
345                 read_unlock(&journal->j_state_lock);
346                 if (!new_transaction)
347                         goto alloc_transaction;
348                 write_lock(&journal->j_state_lock);
349                 if (!journal->j_running_transaction &&
350                     (handle->h_reserved || !journal->j_barrier_count)) {
351                         jbd2_get_transaction(journal, new_transaction);
352                         new_transaction = NULL;
353                 }
354                 write_unlock(&journal->j_state_lock);
355                 goto repeat;
356         }
357
358         transaction = journal->j_running_transaction;
359
360         if (!handle->h_reserved) {
361                 /* We may have dropped j_state_lock - restart in that case */
362                 if (add_transaction_credits(journal, blocks, rsv_blocks))
363                         goto repeat;
364         } else {
365                 /*
366                  * We have handle reserved so we are allowed to join T_LOCKED
367                  * transaction and we don't have to check for transaction size
368                  * and journal space.
369                  */
370                 sub_reserved_credits(journal, blocks);
371                 handle->h_reserved = 0;
372         }
373
374         /* OK, account for the buffers that this operation expects to
375          * use and add the handle to the running transaction. 
376          */
377         update_t_max_wait(transaction, ts);
378         handle->h_transaction = transaction;
379         handle->h_requested_credits = blocks;
380         handle->h_start_jiffies = jiffies;
381         atomic_inc(&transaction->t_updates);
382         atomic_inc(&transaction->t_handle_count);
383         jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
384                   handle, blocks,
385                   atomic_read(&transaction->t_outstanding_credits),
386                   jbd2_log_space_left(journal));
387         read_unlock(&journal->j_state_lock);
388         current->journal_info = handle;
389
390         rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
391         jbd2_journal_free_transaction(new_transaction);
392         /*
393          * Ensure that no allocations done while the transaction is open are
394          * going to recurse back to the fs layer.
395          */
396         handle->saved_alloc_context = memalloc_nofs_save();
397         return 0;
398 }
399
400 /* Allocate a new handle.  This should probably be in a slab... */
401 static handle_t *new_handle(int nblocks)
402 {
403         handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
404         if (!handle)
405                 return NULL;
406         handle->h_buffer_credits = nblocks;
407         handle->h_ref = 1;
408
409         return handle;
410 }
411
412 handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
413                               gfp_t gfp_mask, unsigned int type,
414                               unsigned int line_no)
415 {
416         handle_t *handle = journal_current_handle();
417         int err;
418
419         if (!journal)
420                 return ERR_PTR(-EROFS);
421
422         if (handle) {
423                 J_ASSERT(handle->h_transaction->t_journal == journal);
424                 handle->h_ref++;
425                 return handle;
426         }
427
428         handle = new_handle(nblocks);
429         if (!handle)
430                 return ERR_PTR(-ENOMEM);
431         if (rsv_blocks) {
432                 handle_t *rsv_handle;
433
434                 rsv_handle = new_handle(rsv_blocks);
435                 if (!rsv_handle) {
436                         jbd2_free_handle(handle);
437                         return ERR_PTR(-ENOMEM);
438                 }
439                 rsv_handle->h_reserved = 1;
440                 rsv_handle->h_journal = journal;
441                 handle->h_rsv_handle = rsv_handle;
442         }
443
444         err = start_this_handle(journal, handle, gfp_mask);
445         if (err < 0) {
446                 if (handle->h_rsv_handle)
447                         jbd2_free_handle(handle->h_rsv_handle);
448                 jbd2_free_handle(handle);
449                 return ERR_PTR(err);
450         }
451         handle->h_type = type;
452         handle->h_line_no = line_no;
453         trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
454                                 handle->h_transaction->t_tid, type,
455                                 line_no, nblocks);
456
457         return handle;
458 }
459 EXPORT_SYMBOL(jbd2__journal_start);
460
461
462 /**
463  * handle_t *jbd2_journal_start() - Obtain a new handle.
464  * @journal: Journal to start transaction on.
465  * @nblocks: number of block buffer we might modify
466  *
467  * We make sure that the transaction can guarantee at least nblocks of
468  * modified buffers in the log.  We block until the log can guarantee
469  * that much space. Additionally, if rsv_blocks > 0, we also create another
470  * handle with rsv_blocks reserved blocks in the journal. This handle is
471  * is stored in h_rsv_handle. It is not attached to any particular transaction
472  * and thus doesn't block transaction commit. If the caller uses this reserved
473  * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
474  * on the parent handle will dispose the reserved one. Reserved handle has to
475  * be converted to a normal handle using jbd2_journal_start_reserved() before
476  * it can be used.
477  *
478  * Return a pointer to a newly allocated handle, or an ERR_PTR() value
479  * on failure.
480  */
481 handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
482 {
483         return jbd2__journal_start(journal, nblocks, 0, GFP_NOFS, 0, 0);
484 }
485 EXPORT_SYMBOL(jbd2_journal_start);
486
487 void jbd2_journal_free_reserved(handle_t *handle)
488 {
489         journal_t *journal = handle->h_journal;
490
491         WARN_ON(!handle->h_reserved);
492         sub_reserved_credits(journal, handle->h_buffer_credits);
493         jbd2_free_handle(handle);
494 }
495 EXPORT_SYMBOL(jbd2_journal_free_reserved);
496
497 /**
498  * int jbd2_journal_start_reserved() - start reserved handle
499  * @handle: handle to start
500  * @type: for handle statistics
501  * @line_no: for handle statistics
502  *
503  * Start handle that has been previously reserved with jbd2_journal_reserve().
504  * This attaches @handle to the running transaction (or creates one if there's
505  * not transaction running). Unlike jbd2_journal_start() this function cannot
506  * block on journal commit, checkpointing, or similar stuff. It can block on
507  * memory allocation or frozen journal though.
508  *
509  * Return 0 on success, non-zero on error - handle is freed in that case.
510  */
511 int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
512                                 unsigned int line_no)
513 {
514         journal_t *journal = handle->h_journal;
515         int ret = -EIO;
516
517         if (WARN_ON(!handle->h_reserved)) {
518                 /* Someone passed in normal handle? Just stop it. */
519                 jbd2_journal_stop(handle);
520                 return ret;
521         }
522         /*
523          * Usefulness of mixing of reserved and unreserved handles is
524          * questionable. So far nobody seems to need it so just error out.
525          */
526         if (WARN_ON(current->journal_info)) {
527                 jbd2_journal_free_reserved(handle);
528                 return ret;
529         }
530
531         handle->h_journal = NULL;
532         /*
533          * GFP_NOFS is here because callers are likely from writeback or
534          * similarly constrained call sites
535          */
536         ret = start_this_handle(journal, handle, GFP_NOFS);
537         if (ret < 0) {
538                 handle->h_journal = journal;
539                 jbd2_journal_free_reserved(handle);
540                 return ret;
541         }
542         handle->h_type = type;
543         handle->h_line_no = line_no;
544         return 0;
545 }
546 EXPORT_SYMBOL(jbd2_journal_start_reserved);
547
548 /**
549  * int jbd2_journal_extend() - extend buffer credits.
550  * @handle:  handle to 'extend'
551  * @nblocks: nr blocks to try to extend by.
552  *
553  * Some transactions, such as large extends and truncates, can be done
554  * atomically all at once or in several stages.  The operation requests
555  * a credit for a number of buffer modifications in advance, but can
556  * extend its credit if it needs more.
557  *
558  * jbd2_journal_extend tries to give the running handle more buffer credits.
559  * It does not guarantee that allocation - this is a best-effort only.
560  * The calling process MUST be able to deal cleanly with a failure to
561  * extend here.
562  *
563  * Return 0 on success, non-zero on failure.
564  *
565  * return code < 0 implies an error
566  * return code > 0 implies normal transaction-full status.
567  */
568 int jbd2_journal_extend(handle_t *handle, int nblocks)
569 {
570         transaction_t *transaction = handle->h_transaction;
571         journal_t *journal;
572         int result;
573         int wanted;
574
575         if (is_handle_aborted(handle))
576                 return -EROFS;
577         journal = transaction->t_journal;
578
579         result = 1;
580
581         read_lock(&journal->j_state_lock);
582
583         /* Don't extend a locked-down transaction! */
584         if (transaction->t_state != T_RUNNING) {
585                 jbd_debug(3, "denied handle %p %d blocks: "
586                           "transaction not running\n", handle, nblocks);
587                 goto error_out;
588         }
589
590         spin_lock(&transaction->t_handle_lock);
591         wanted = atomic_add_return(nblocks,
592                                    &transaction->t_outstanding_credits);
593
594         if (wanted > journal->j_max_transaction_buffers) {
595                 jbd_debug(3, "denied handle %p %d blocks: "
596                           "transaction too large\n", handle, nblocks);
597                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
598                 goto unlock;
599         }
600
601         if (wanted + (wanted >> JBD2_CONTROL_BLOCKS_SHIFT) >
602             jbd2_log_space_left(journal)) {
603                 jbd_debug(3, "denied handle %p %d blocks: "
604                           "insufficient log space\n", handle, nblocks);
605                 atomic_sub(nblocks, &transaction->t_outstanding_credits);
606                 goto unlock;
607         }
608
609         trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
610                                  transaction->t_tid,
611                                  handle->h_type, handle->h_line_no,
612                                  handle->h_buffer_credits,
613                                  nblocks);
614
615         handle->h_buffer_credits += nblocks;
616         handle->h_requested_credits += nblocks;
617         result = 0;
618
619         jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
620 unlock:
621         spin_unlock(&transaction->t_handle_lock);
622 error_out:
623         read_unlock(&journal->j_state_lock);
624         return result;
625 }
626
627
628 /**
629  * int jbd2_journal_restart() - restart a handle .
630  * @handle:  handle to restart
631  * @nblocks: nr credits requested
632  * @gfp_mask: memory allocation flags (for start_this_handle)
633  *
634  * Restart a handle for a multi-transaction filesystem
635  * operation.
636  *
637  * If the jbd2_journal_extend() call above fails to grant new buffer credits
638  * to a running handle, a call to jbd2_journal_restart will commit the
639  * handle's transaction so far and reattach the handle to a new
640  * transaction capable of guaranteeing the requested number of
641  * credits. We preserve reserved handle if there's any attached to the
642  * passed in handle.
643  */
644 int jbd2__journal_restart(handle_t *handle, int nblocks, gfp_t gfp_mask)
645 {
646         transaction_t *transaction = handle->h_transaction;
647         journal_t *journal;
648         tid_t           tid;
649         int             need_to_start, ret;
650
651         /* If we've had an abort of any type, don't even think about
652          * actually doing the restart! */
653         if (is_handle_aborted(handle))
654                 return 0;
655         journal = transaction->t_journal;
656
657         /*
658          * First unlink the handle from its current transaction, and start the
659          * commit on that.
660          */
661         J_ASSERT(atomic_read(&transaction->t_updates) > 0);
662         J_ASSERT(journal_current_handle() == handle);
663
664         read_lock(&journal->j_state_lock);
665         spin_lock(&transaction->t_handle_lock);
666         atomic_sub(handle->h_buffer_credits,
667                    &transaction->t_outstanding_credits);
668         if (handle->h_rsv_handle) {
669                 sub_reserved_credits(journal,
670                                      handle->h_rsv_handle->h_buffer_credits);
671         }
672         if (atomic_dec_and_test(&transaction->t_updates))
673                 wake_up(&journal->j_wait_updates);
674         tid = transaction->t_tid;
675         spin_unlock(&transaction->t_handle_lock);
676         handle->h_transaction = NULL;
677         current->journal_info = NULL;
678
679         jbd_debug(2, "restarting handle %p\n", handle);
680         need_to_start = !tid_geq(journal->j_commit_request, tid);
681         read_unlock(&journal->j_state_lock);
682         if (need_to_start)
683                 jbd2_log_start_commit(journal, tid);
684
685         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
686         handle->h_buffer_credits = nblocks;
687         /*
688          * Restore the original nofs context because the journal restart
689          * is basically the same thing as journal stop and start.
690          * start_this_handle will start a new nofs context.
691          */
692         memalloc_nofs_restore(handle->saved_alloc_context);
693         ret = start_this_handle(journal, handle, gfp_mask);
694         return ret;
695 }
696 EXPORT_SYMBOL(jbd2__journal_restart);
697
698
699 int jbd2_journal_restart(handle_t *handle, int nblocks)
700 {
701         return jbd2__journal_restart(handle, nblocks, GFP_NOFS);
702 }
703 EXPORT_SYMBOL(jbd2_journal_restart);
704
705 /**
706  * void jbd2_journal_lock_updates () - establish a transaction barrier.
707  * @journal:  Journal to establish a barrier on.
708  *
709  * This locks out any further updates from being started, and blocks
710  * until all existing updates have completed, returning only once the
711  * journal is in a quiescent state with no updates running.
712  *
713  * The journal lock should not be held on entry.
714  */
715 void jbd2_journal_lock_updates(journal_t *journal)
716 {
717         DEFINE_WAIT(wait);
718
719         jbd2_might_wait_for_commit(journal);
720
721         write_lock(&journal->j_state_lock);
722         ++journal->j_barrier_count;
723
724         /* Wait until there are no reserved handles */
725         if (atomic_read(&journal->j_reserved_credits)) {
726                 write_unlock(&journal->j_state_lock);
727                 wait_event(journal->j_wait_reserved,
728                            atomic_read(&journal->j_reserved_credits) == 0);
729                 write_lock(&journal->j_state_lock);
730         }
731
732         /* Wait until there are no running updates */
733         while (1) {
734                 transaction_t *transaction = journal->j_running_transaction;
735
736                 if (!transaction)
737                         break;
738
739                 spin_lock(&transaction->t_handle_lock);
740                 prepare_to_wait(&journal->j_wait_updates, &wait,
741                                 TASK_UNINTERRUPTIBLE);
742                 if (!atomic_read(&transaction->t_updates)) {
743                         spin_unlock(&transaction->t_handle_lock);
744                         finish_wait(&journal->j_wait_updates, &wait);
745                         break;
746                 }
747                 spin_unlock(&transaction->t_handle_lock);
748                 write_unlock(&journal->j_state_lock);
749                 schedule();
750                 finish_wait(&journal->j_wait_updates, &wait);
751                 write_lock(&journal->j_state_lock);
752         }
753         write_unlock(&journal->j_state_lock);
754
755         /*
756          * We have now established a barrier against other normal updates, but
757          * we also need to barrier against other jbd2_journal_lock_updates() calls
758          * to make sure that we serialise special journal-locked operations
759          * too.
760          */
761         mutex_lock(&journal->j_barrier);
762 }
763
764 /**
765  * void jbd2_journal_unlock_updates (journal_t* journal) - release barrier
766  * @journal:  Journal to release the barrier on.
767  *
768  * Release a transaction barrier obtained with jbd2_journal_lock_updates().
769  *
770  * Should be called without the journal lock held.
771  */
772 void jbd2_journal_unlock_updates (journal_t *journal)
773 {
774         J_ASSERT(journal->j_barrier_count != 0);
775
776         mutex_unlock(&journal->j_barrier);
777         write_lock(&journal->j_state_lock);
778         --journal->j_barrier_count;
779         write_unlock(&journal->j_state_lock);
780         wake_up(&journal->j_wait_transaction_locked);
781 }
782
783 static void warn_dirty_buffer(struct buffer_head *bh)
784 {
785         printk(KERN_WARNING
786                "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
787                "There's a risk of filesystem corruption in case of system "
788                "crash.\n",
789                bh->b_bdev, (unsigned long long)bh->b_blocknr);
790 }
791
792 /* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
793 static void jbd2_freeze_jh_data(struct journal_head *jh)
794 {
795         struct page *page;
796         int offset;
797         char *source;
798         struct buffer_head *bh = jh2bh(jh);
799
800         J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
801         page = bh->b_page;
802         offset = offset_in_page(bh->b_data);
803         source = kmap_atomic(page);
804         /* Fire data frozen trigger just before we copy the data */
805         jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
806         memcpy(jh->b_frozen_data, source + offset, bh->b_size);
807         kunmap_atomic(source);
808
809         /*
810          * Now that the frozen data is saved off, we need to store any matching
811          * triggers.
812          */
813         jh->b_frozen_triggers = jh->b_triggers;
814 }
815
816 /*
817  * If the buffer is already part of the current transaction, then there
818  * is nothing we need to do.  If it is already part of a prior
819  * transaction which we are still committing to disk, then we need to
820  * make sure that we do not overwrite the old copy: we do copy-out to
821  * preserve the copy going to disk.  We also account the buffer against
822  * the handle's metadata buffer credits (unless the buffer is already
823  * part of the transaction, that is).
824  *
825  */
826 static int
827 do_get_write_access(handle_t *handle, struct journal_head *jh,
828                         int force_copy)
829 {
830         struct buffer_head *bh;
831         transaction_t *transaction = handle->h_transaction;
832         journal_t *journal;
833         int error;
834         char *frozen_buffer = NULL;
835         unsigned long start_lock, time_lock;
836
837         if (is_handle_aborted(handle))
838                 return -EROFS;
839         journal = transaction->t_journal;
840
841         jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
842
843         JBUFFER_TRACE(jh, "entry");
844 repeat:
845         bh = jh2bh(jh);
846
847         /* @@@ Need to check for errors here at some point. */
848
849         start_lock = jiffies;
850         lock_buffer(bh);
851         jbd_lock_bh_state(bh);
852
853         /* If it takes too long to lock the buffer, trace it */
854         time_lock = jbd2_time_diff(start_lock, jiffies);
855         if (time_lock > HZ/10)
856                 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
857                         jiffies_to_msecs(time_lock));
858
859         /* We now hold the buffer lock so it is safe to query the buffer
860          * state.  Is the buffer dirty?
861          *
862          * If so, there are two possibilities.  The buffer may be
863          * non-journaled, and undergoing a quite legitimate writeback.
864          * Otherwise, it is journaled, and we don't expect dirty buffers
865          * in that state (the buffers should be marked JBD_Dirty
866          * instead.)  So either the IO is being done under our own
867          * control and this is a bug, or it's a third party IO such as
868          * dump(8) (which may leave the buffer scheduled for read ---
869          * ie. locked but not dirty) or tune2fs (which may actually have
870          * the buffer dirtied, ugh.)  */
871
872         if (buffer_dirty(bh)) {
873                 /*
874                  * First question: is this buffer already part of the current
875                  * transaction or the existing committing transaction?
876                  */
877                 if (jh->b_transaction) {
878                         J_ASSERT_JH(jh,
879                                 jh->b_transaction == transaction ||
880                                 jh->b_transaction ==
881                                         journal->j_committing_transaction);
882                         if (jh->b_next_transaction)
883                                 J_ASSERT_JH(jh, jh->b_next_transaction ==
884                                                         transaction);
885                         warn_dirty_buffer(bh);
886                 }
887                 /*
888                  * In any case we need to clean the dirty flag and we must
889                  * do it under the buffer lock to be sure we don't race
890                  * with running write-out.
891                  */
892                 JBUFFER_TRACE(jh, "Journalling dirty buffer");
893                 clear_buffer_dirty(bh);
894                 set_buffer_jbddirty(bh);
895         }
896
897         unlock_buffer(bh);
898
899         error = -EROFS;
900         if (is_handle_aborted(handle)) {
901                 jbd_unlock_bh_state(bh);
902                 goto out;
903         }
904         error = 0;
905
906         /*
907          * The buffer is already part of this transaction if b_transaction or
908          * b_next_transaction points to it
909          */
910         if (jh->b_transaction == transaction ||
911             jh->b_next_transaction == transaction)
912                 goto done;
913
914         /*
915          * this is the first time this transaction is touching this buffer,
916          * reset the modified flag
917          */
918        jh->b_modified = 0;
919
920         /*
921          * If the buffer is not journaled right now, we need to make sure it
922          * doesn't get written to disk before the caller actually commits the
923          * new data
924          */
925         if (!jh->b_transaction) {
926                 JBUFFER_TRACE(jh, "no transaction");
927                 J_ASSERT_JH(jh, !jh->b_next_transaction);
928                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
929                 /*
930                  * Make sure all stores to jh (b_modified, b_frozen_data) are
931                  * visible before attaching it to the running transaction.
932                  * Paired with barrier in jbd2_write_access_granted()
933                  */
934                 smp_wmb();
935                 spin_lock(&journal->j_list_lock);
936                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
937                 spin_unlock(&journal->j_list_lock);
938                 goto done;
939         }
940         /*
941          * If there is already a copy-out version of this buffer, then we don't
942          * need to make another one
943          */
944         if (jh->b_frozen_data) {
945                 JBUFFER_TRACE(jh, "has frozen data");
946                 J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
947                 goto attach_next;
948         }
949
950         JBUFFER_TRACE(jh, "owned by older transaction");
951         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
952         J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
953
954         /*
955          * There is one case we have to be very careful about.  If the
956          * committing transaction is currently writing this buffer out to disk
957          * and has NOT made a copy-out, then we cannot modify the buffer
958          * contents at all right now.  The essence of copy-out is that it is
959          * the extra copy, not the primary copy, which gets journaled.  If the
960          * primary copy is already going to disk then we cannot do copy-out
961          * here.
962          */
963         if (buffer_shadow(bh)) {
964                 JBUFFER_TRACE(jh, "on shadow: sleep");
965                 jbd_unlock_bh_state(bh);
966                 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
967                 goto repeat;
968         }
969
970         /*
971          * Only do the copy if the currently-owning transaction still needs it.
972          * If buffer isn't on BJ_Metadata list, the committing transaction is
973          * past that stage (here we use the fact that BH_Shadow is set under
974          * bh_state lock together with refiling to BJ_Shadow list and at this
975          * point we know the buffer doesn't have BH_Shadow set).
976          *
977          * Subtle point, though: if this is a get_undo_access, then we will be
978          * relying on the frozen_data to contain the new value of the
979          * committed_data record after the transaction, so we HAVE to force the
980          * frozen_data copy in that case.
981          */
982         if (jh->b_jlist == BJ_Metadata || force_copy) {
983                 JBUFFER_TRACE(jh, "generate frozen data");
984                 if (!frozen_buffer) {
985                         JBUFFER_TRACE(jh, "allocate memory for buffer");
986                         jbd_unlock_bh_state(bh);
987                         frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
988                                                    GFP_NOFS | __GFP_NOFAIL);
989                         goto repeat;
990                 }
991                 jh->b_frozen_data = frozen_buffer;
992                 frozen_buffer = NULL;
993                 jbd2_freeze_jh_data(jh);
994         }
995 attach_next:
996         /*
997          * Make sure all stores to jh (b_modified, b_frozen_data) are visible
998          * before attaching it to the running transaction. Paired with barrier
999          * in jbd2_write_access_granted()
1000          */
1001         smp_wmb();
1002         jh->b_next_transaction = transaction;
1003
1004 done:
1005         jbd_unlock_bh_state(bh);
1006
1007         /*
1008          * If we are about to journal a buffer, then any revoke pending on it is
1009          * no longer valid
1010          */
1011         jbd2_journal_cancel_revoke(handle, jh);
1012
1013 out:
1014         if (unlikely(frozen_buffer))    /* It's usually NULL */
1015                 jbd2_free(frozen_buffer, bh->b_size);
1016
1017         JBUFFER_TRACE(jh, "exit");
1018         return error;
1019 }
1020
1021 /* Fast check whether buffer is already attached to the required transaction */
1022 static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1023                                                         bool undo)
1024 {
1025         struct journal_head *jh;
1026         bool ret = false;
1027
1028         /* Dirty buffers require special handling... */
1029         if (buffer_dirty(bh))
1030                 return false;
1031
1032         /*
1033          * RCU protects us from dereferencing freed pages. So the checks we do
1034          * are guaranteed not to oops. However the jh slab object can get freed
1035          * & reallocated while we work with it. So we have to be careful. When
1036          * we see jh attached to the running transaction, we know it must stay
1037          * so until the transaction is committed. Thus jh won't be freed and
1038          * will be attached to the same bh while we run.  However it can
1039          * happen jh gets freed, reallocated, and attached to the transaction
1040          * just after we get pointer to it from bh. So we have to be careful
1041          * and recheck jh still belongs to our bh before we return success.
1042          */
1043         rcu_read_lock();
1044         if (!buffer_jbd(bh))
1045                 goto out;
1046         /* This should be bh2jh() but that doesn't work with inline functions */
1047         jh = READ_ONCE(bh->b_private);
1048         if (!jh)
1049                 goto out;
1050         /* For undo access buffer must have data copied */
1051         if (undo && !jh->b_committed_data)
1052                 goto out;
1053         if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1054             READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1055                 goto out;
1056         /*
1057          * There are two reasons for the barrier here:
1058          * 1) Make sure to fetch b_bh after we did previous checks so that we
1059          * detect when jh went through free, realloc, attach to transaction
1060          * while we were checking. Paired with implicit barrier in that path.
1061          * 2) So that access to bh done after jbd2_write_access_granted()
1062          * doesn't get reordered and see inconsistent state of concurrent
1063          * do_get_write_access().
1064          */
1065         smp_mb();
1066         if (unlikely(jh->b_bh != bh))
1067                 goto out;
1068         ret = true;
1069 out:
1070         rcu_read_unlock();
1071         return ret;
1072 }
1073
1074 /**
1075  * int jbd2_journal_get_write_access() - notify intent to modify a buffer for metadata (not data) update.
1076  * @handle: transaction to add buffer modifications to
1077  * @bh:     bh to be used for metadata writes
1078  *
1079  * Returns: error code or 0 on success.
1080  *
1081  * In full data journalling mode the buffer may be of type BJ_AsyncData,
1082  * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1083  */
1084
1085 int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1086 {
1087         struct journal_head *jh;
1088         int rc;
1089
1090         if (jbd2_write_access_granted(handle, bh, false))
1091                 return 0;
1092
1093         jh = jbd2_journal_add_journal_head(bh);
1094         /* We do not want to get caught playing with fields which the
1095          * log thread also manipulates.  Make sure that the buffer
1096          * completes any outstanding IO before proceeding. */
1097         rc = do_get_write_access(handle, jh, 0);
1098         jbd2_journal_put_journal_head(jh);
1099         return rc;
1100 }
1101
1102
1103 /*
1104  * When the user wants to journal a newly created buffer_head
1105  * (ie. getblk() returned a new buffer and we are going to populate it
1106  * manually rather than reading off disk), then we need to keep the
1107  * buffer_head locked until it has been completely filled with new
1108  * data.  In this case, we should be able to make the assertion that
1109  * the bh is not already part of an existing transaction.
1110  *
1111  * The buffer should already be locked by the caller by this point.
1112  * There is no lock ranking violation: it was a newly created,
1113  * unlocked buffer beforehand. */
1114
1115 /**
1116  * int jbd2_journal_get_create_access () - notify intent to use newly created bh
1117  * @handle: transaction to new buffer to
1118  * @bh: new buffer.
1119  *
1120  * Call this if you create a new bh.
1121  */
1122 int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1123 {
1124         transaction_t *transaction = handle->h_transaction;
1125         journal_t *journal;
1126         struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1127         int err;
1128
1129         jbd_debug(5, "journal_head %p\n", jh);
1130         err = -EROFS;
1131         if (is_handle_aborted(handle))
1132                 goto out;
1133         journal = transaction->t_journal;
1134         err = 0;
1135
1136         JBUFFER_TRACE(jh, "entry");
1137         /*
1138          * The buffer may already belong to this transaction due to pre-zeroing
1139          * in the filesystem's new_block code.  It may also be on the previous,
1140          * committing transaction's lists, but it HAS to be in Forget state in
1141          * that case: the transaction must have deleted the buffer for it to be
1142          * reused here.
1143          */
1144         jbd_lock_bh_state(bh);
1145         J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1146                 jh->b_transaction == NULL ||
1147                 (jh->b_transaction == journal->j_committing_transaction &&
1148                           jh->b_jlist == BJ_Forget)));
1149
1150         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1151         J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1152
1153         if (jh->b_transaction == NULL) {
1154                 /*
1155                  * Previous jbd2_journal_forget() could have left the buffer
1156                  * with jbddirty bit set because it was being committed. When
1157                  * the commit finished, we've filed the buffer for
1158                  * checkpointing and marked it dirty. Now we are reallocating
1159                  * the buffer so the transaction freeing it must have
1160                  * committed and so it's safe to clear the dirty bit.
1161                  */
1162                 clear_buffer_dirty(jh2bh(jh));
1163                 /* first access by this transaction */
1164                 jh->b_modified = 0;
1165
1166                 JBUFFER_TRACE(jh, "file as BJ_Reserved");
1167                 spin_lock(&journal->j_list_lock);
1168                 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1169                 spin_unlock(&journal->j_list_lock);
1170         } else if (jh->b_transaction == journal->j_committing_transaction) {
1171                 /* first access by this transaction */
1172                 jh->b_modified = 0;
1173
1174                 JBUFFER_TRACE(jh, "set next transaction");
1175                 spin_lock(&journal->j_list_lock);
1176                 jh->b_next_transaction = transaction;
1177                 spin_unlock(&journal->j_list_lock);
1178         }
1179         jbd_unlock_bh_state(bh);
1180
1181         /*
1182          * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1183          * blocks which contain freed but then revoked metadata.  We need
1184          * to cancel the revoke in case we end up freeing it yet again
1185          * and the reallocating as data - this would cause a second revoke,
1186          * which hits an assertion error.
1187          */
1188         JBUFFER_TRACE(jh, "cancelling revoke");
1189         jbd2_journal_cancel_revoke(handle, jh);
1190 out:
1191         jbd2_journal_put_journal_head(jh);
1192         return err;
1193 }
1194
1195 /**
1196  * int jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1197  *     non-rewindable consequences
1198  * @handle: transaction
1199  * @bh: buffer to undo
1200  *
1201  * Sometimes there is a need to distinguish between metadata which has
1202  * been committed to disk and that which has not.  The ext3fs code uses
1203  * this for freeing and allocating space, we have to make sure that we
1204  * do not reuse freed space until the deallocation has been committed,
1205  * since if we overwrote that space we would make the delete
1206  * un-rewindable in case of a crash.
1207  *
1208  * To deal with that, jbd2_journal_get_undo_access requests write access to a
1209  * buffer for parts of non-rewindable operations such as delete
1210  * operations on the bitmaps.  The journaling code must keep a copy of
1211  * the buffer's contents prior to the undo_access call until such time
1212  * as we know that the buffer has definitely been committed to disk.
1213  *
1214  * We never need to know which transaction the committed data is part
1215  * of, buffers touched here are guaranteed to be dirtied later and so
1216  * will be committed to a new transaction in due course, at which point
1217  * we can discard the old committed data pointer.
1218  *
1219  * Returns error number or 0 on success.
1220  */
1221 int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1222 {
1223         int err;
1224         struct journal_head *jh;
1225         char *committed_data = NULL;
1226
1227         if (jbd2_write_access_granted(handle, bh, true))
1228                 return 0;
1229
1230         jh = jbd2_journal_add_journal_head(bh);
1231         JBUFFER_TRACE(jh, "entry");
1232
1233         /*
1234          * Do this first --- it can drop the journal lock, so we want to
1235          * make sure that obtaining the committed_data is done
1236          * atomically wrt. completion of any outstanding commits.
1237          */
1238         err = do_get_write_access(handle, jh, 1);
1239         if (err)
1240                 goto out;
1241
1242 repeat:
1243         if (!jh->b_committed_data)
1244                 committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1245                                             GFP_NOFS|__GFP_NOFAIL);
1246
1247         jbd_lock_bh_state(bh);
1248         if (!jh->b_committed_data) {
1249                 /* Copy out the current buffer contents into the
1250                  * preserved, committed copy. */
1251                 JBUFFER_TRACE(jh, "generate b_committed data");
1252                 if (!committed_data) {
1253                         jbd_unlock_bh_state(bh);
1254                         goto repeat;
1255                 }
1256
1257                 jh->b_committed_data = committed_data;
1258                 committed_data = NULL;
1259                 memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1260         }
1261         jbd_unlock_bh_state(bh);
1262 out:
1263         jbd2_journal_put_journal_head(jh);
1264         if (unlikely(committed_data))
1265                 jbd2_free(committed_data, bh->b_size);
1266         return err;
1267 }
1268
1269 /**
1270  * void jbd2_journal_set_triggers() - Add triggers for commit writeout
1271  * @bh: buffer to trigger on
1272  * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1273  *
1274  * Set any triggers on this journal_head.  This is always safe, because
1275  * triggers for a committing buffer will be saved off, and triggers for
1276  * a running transaction will match the buffer in that transaction.
1277  *
1278  * Call with NULL to clear the triggers.
1279  */
1280 void jbd2_journal_set_triggers(struct buffer_head *bh,
1281                                struct jbd2_buffer_trigger_type *type)
1282 {
1283         struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1284
1285         if (WARN_ON(!jh))
1286                 return;
1287         jh->b_triggers = type;
1288         jbd2_journal_put_journal_head(jh);
1289 }
1290
1291 void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1292                                 struct jbd2_buffer_trigger_type *triggers)
1293 {
1294         struct buffer_head *bh = jh2bh(jh);
1295
1296         if (!triggers || !triggers->t_frozen)
1297                 return;
1298
1299         triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1300 }
1301
1302 void jbd2_buffer_abort_trigger(struct journal_head *jh,
1303                                struct jbd2_buffer_trigger_type *triggers)
1304 {
1305         if (!triggers || !triggers->t_abort)
1306                 return;
1307
1308         triggers->t_abort(triggers, jh2bh(jh));
1309 }
1310
1311 /**
1312  * int jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1313  * @handle: transaction to add buffer to.
1314  * @bh: buffer to mark
1315  *
1316  * mark dirty metadata which needs to be journaled as part of the current
1317  * transaction.
1318  *
1319  * The buffer must have previously had jbd2_journal_get_write_access()
1320  * called so that it has a valid journal_head attached to the buffer
1321  * head.
1322  *
1323  * The buffer is placed on the transaction's metadata list and is marked
1324  * as belonging to the transaction.
1325  *
1326  * Returns error number or 0 on success.
1327  *
1328  * Special care needs to be taken if the buffer already belongs to the
1329  * current committing transaction (in which case we should have frozen
1330  * data present for that commit).  In that case, we don't relink the
1331  * buffer: that only gets done when the old transaction finally
1332  * completes its commit.
1333  */
1334 int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1335 {
1336         transaction_t *transaction = handle->h_transaction;
1337         journal_t *journal;
1338         struct journal_head *jh;
1339         int ret = 0;
1340
1341         if (is_handle_aborted(handle))
1342                 return -EROFS;
1343         if (!buffer_jbd(bh))
1344                 return -EUCLEAN;
1345
1346         /*
1347          * We don't grab jh reference here since the buffer must be part
1348          * of the running transaction.
1349          */
1350         jh = bh2jh(bh);
1351         jbd_debug(5, "journal_head %p\n", jh);
1352         JBUFFER_TRACE(jh, "entry");
1353
1354         /*
1355          * This and the following assertions are unreliable since we may see jh
1356          * in inconsistent state unless we grab bh_state lock. But this is
1357          * crucial to catch bugs so let's do a reliable check until the
1358          * lockless handling is fully proven.
1359          */
1360         if (jh->b_transaction != transaction &&
1361             jh->b_next_transaction != transaction) {
1362                 jbd_lock_bh_state(bh);
1363                 J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1364                                 jh->b_next_transaction == transaction);
1365                 jbd_unlock_bh_state(bh);
1366         }
1367         if (jh->b_modified == 1) {
1368                 /* If it's in our transaction it must be in BJ_Metadata list. */
1369                 if (jh->b_transaction == transaction &&
1370                     jh->b_jlist != BJ_Metadata) {
1371                         jbd_lock_bh_state(bh);
1372                         if (jh->b_transaction == transaction &&
1373                             jh->b_jlist != BJ_Metadata)
1374                                 pr_err("JBD2: assertion failure: h_type=%u "
1375                                        "h_line_no=%u block_no=%llu jlist=%u\n",
1376                                        handle->h_type, handle->h_line_no,
1377                                        (unsigned long long) bh->b_blocknr,
1378                                        jh->b_jlist);
1379                         J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1380                                         jh->b_jlist == BJ_Metadata);
1381                         jbd_unlock_bh_state(bh);
1382                 }
1383                 goto out;
1384         }
1385
1386         journal = transaction->t_journal;
1387         jbd_lock_bh_state(bh);
1388
1389         if (jh->b_modified == 0) {
1390                 /*
1391                  * This buffer's got modified and becoming part
1392                  * of the transaction. This needs to be done
1393                  * once a transaction -bzzz
1394                  */
1395                 if (handle->h_buffer_credits <= 0) {
1396                         ret = -ENOSPC;
1397                         goto out_unlock_bh;
1398                 }
1399                 jh->b_modified = 1;
1400                 handle->h_buffer_credits--;
1401         }
1402
1403         /*
1404          * fastpath, to avoid expensive locking.  If this buffer is already
1405          * on the running transaction's metadata list there is nothing to do.
1406          * Nobody can take it off again because there is a handle open.
1407          * I _think_ we're OK here with SMP barriers - a mistaken decision will
1408          * result in this test being false, so we go in and take the locks.
1409          */
1410         if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1411                 JBUFFER_TRACE(jh, "fastpath");
1412                 if (unlikely(jh->b_transaction !=
1413                              journal->j_running_transaction)) {
1414                         printk(KERN_ERR "JBD2: %s: "
1415                                "jh->b_transaction (%llu, %p, %u) != "
1416                                "journal->j_running_transaction (%p, %u)\n",
1417                                journal->j_devname,
1418                                (unsigned long long) bh->b_blocknr,
1419                                jh->b_transaction,
1420                                jh->b_transaction ? jh->b_transaction->t_tid : 0,
1421                                journal->j_running_transaction,
1422                                journal->j_running_transaction ?
1423                                journal->j_running_transaction->t_tid : 0);
1424                         ret = -EINVAL;
1425                 }
1426                 goto out_unlock_bh;
1427         }
1428
1429         set_buffer_jbddirty(bh);
1430
1431         /*
1432          * Metadata already on the current transaction list doesn't
1433          * need to be filed.  Metadata on another transaction's list must
1434          * be committing, and will be refiled once the commit completes:
1435          * leave it alone for now.
1436          */
1437         if (jh->b_transaction != transaction) {
1438                 JBUFFER_TRACE(jh, "already on other transaction");
1439                 if (unlikely(((jh->b_transaction !=
1440                                journal->j_committing_transaction)) ||
1441                              (jh->b_next_transaction != transaction))) {
1442                         printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1443                                "bad jh for block %llu: "
1444                                "transaction (%p, %u), "
1445                                "jh->b_transaction (%p, %u), "
1446                                "jh->b_next_transaction (%p, %u), jlist %u\n",
1447                                journal->j_devname,
1448                                (unsigned long long) bh->b_blocknr,
1449                                transaction, transaction->t_tid,
1450                                jh->b_transaction,
1451                                jh->b_transaction ?
1452                                jh->b_transaction->t_tid : 0,
1453                                jh->b_next_transaction,
1454                                jh->b_next_transaction ?
1455                                jh->b_next_transaction->t_tid : 0,
1456                                jh->b_jlist);
1457                         WARN_ON(1);
1458                         ret = -EINVAL;
1459                 }
1460                 /* And this case is illegal: we can't reuse another
1461                  * transaction's data buffer, ever. */
1462                 goto out_unlock_bh;
1463         }
1464
1465         /* That test should have eliminated the following case: */
1466         J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1467
1468         JBUFFER_TRACE(jh, "file as BJ_Metadata");
1469         spin_lock(&journal->j_list_lock);
1470         __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1471         spin_unlock(&journal->j_list_lock);
1472 out_unlock_bh:
1473         jbd_unlock_bh_state(bh);
1474 out:
1475         JBUFFER_TRACE(jh, "exit");
1476         return ret;
1477 }
1478
1479 /**
1480  * void jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1481  * @handle: transaction handle
1482  * @bh:     bh to 'forget'
1483  *
1484  * We can only do the bforget if there are no commits pending against the
1485  * buffer.  If the buffer is dirty in the current running transaction we
1486  * can safely unlink it.
1487  *
1488  * bh may not be a journalled buffer at all - it may be a non-JBD
1489  * buffer which came off the hashtable.  Check for this.
1490  *
1491  * Decrements bh->b_count by one.
1492  *
1493  * Allow this call even if the handle has aborted --- it may be part of
1494  * the caller's cleanup after an abort.
1495  */
1496 int jbd2_journal_forget (handle_t *handle, struct buffer_head *bh)
1497 {
1498         transaction_t *transaction = handle->h_transaction;
1499         journal_t *journal;
1500         struct journal_head *jh;
1501         int drop_reserve = 0;
1502         int err = 0;
1503         int was_modified = 0;
1504
1505         if (is_handle_aborted(handle))
1506                 return -EROFS;
1507         journal = transaction->t_journal;
1508
1509         BUFFER_TRACE(bh, "entry");
1510
1511         jbd_lock_bh_state(bh);
1512
1513         if (!buffer_jbd(bh))
1514                 goto not_jbd;
1515         jh = bh2jh(bh);
1516
1517         /* Critical error: attempting to delete a bitmap buffer, maybe?
1518          * Don't do any jbd operations, and return an error. */
1519         if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1520                          "inconsistent data on disk")) {
1521                 err = -EIO;
1522                 goto not_jbd;
1523         }
1524
1525         /* keep track of whether or not this transaction modified us */
1526         was_modified = jh->b_modified;
1527
1528         /*
1529          * The buffer's going from the transaction, we must drop
1530          * all references -bzzz
1531          */
1532         jh->b_modified = 0;
1533
1534         if (jh->b_transaction == transaction) {
1535                 J_ASSERT_JH(jh, !jh->b_frozen_data);
1536
1537                 /* If we are forgetting a buffer which is already part
1538                  * of this transaction, then we can just drop it from
1539                  * the transaction immediately. */
1540                 clear_buffer_dirty(bh);
1541                 clear_buffer_jbddirty(bh);
1542
1543                 JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1544
1545                 /*
1546                  * we only want to drop a reference if this transaction
1547                  * modified the buffer
1548                  */
1549                 if (was_modified)
1550                         drop_reserve = 1;
1551
1552                 /*
1553                  * We are no longer going to journal this buffer.
1554                  * However, the commit of this transaction is still
1555                  * important to the buffer: the delete that we are now
1556                  * processing might obsolete an old log entry, so by
1557                  * committing, we can satisfy the buffer's checkpoint.
1558                  *
1559                  * So, if we have a checkpoint on the buffer, we should
1560                  * now refile the buffer on our BJ_Forget list so that
1561                  * we know to remove the checkpoint after we commit.
1562                  */
1563
1564                 spin_lock(&journal->j_list_lock);
1565                 if (jh->b_cp_transaction) {
1566                         __jbd2_journal_temp_unlink_buffer(jh);
1567                         __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1568                 } else {
1569                         __jbd2_journal_unfile_buffer(jh);
1570                         if (!buffer_jbd(bh)) {
1571                                 spin_unlock(&journal->j_list_lock);
1572                                 jbd_unlock_bh_state(bh);
1573                                 __bforget(bh);
1574                                 goto drop;
1575                         }
1576                 }
1577                 spin_unlock(&journal->j_list_lock);
1578         } else if (jh->b_transaction) {
1579                 J_ASSERT_JH(jh, (jh->b_transaction ==
1580                                  journal->j_committing_transaction));
1581                 /* However, if the buffer is still owned by a prior
1582                  * (committing) transaction, we can't drop it yet... */
1583                 JBUFFER_TRACE(jh, "belongs to older transaction");
1584                 /* ... but we CAN drop it from the new transaction through
1585                  * marking the buffer as freed and set j_next_transaction to
1586                  * the new transaction, so that not only the commit code
1587                  * knows it should clear dirty bits when it is done with the
1588                  * buffer, but also the buffer can be checkpointed only
1589                  * after the new transaction commits. */
1590
1591                 set_buffer_freed(bh);
1592
1593                 if (!jh->b_next_transaction) {
1594                         spin_lock(&journal->j_list_lock);
1595                         jh->b_next_transaction = transaction;
1596                         spin_unlock(&journal->j_list_lock);
1597                 } else {
1598                         J_ASSERT(jh->b_next_transaction == transaction);
1599
1600                         /*
1601                          * only drop a reference if this transaction modified
1602                          * the buffer
1603                          */
1604                         if (was_modified)
1605                                 drop_reserve = 1;
1606                 }
1607         }
1608
1609 not_jbd:
1610         jbd_unlock_bh_state(bh);
1611         __brelse(bh);
1612 drop:
1613         if (drop_reserve) {
1614                 /* no need to reserve log space for this block -bzzz */
1615                 handle->h_buffer_credits++;
1616         }
1617         return err;
1618 }
1619
1620 /**
1621  * int jbd2_journal_stop() - complete a transaction
1622  * @handle: transaction to complete.
1623  *
1624  * All done for a particular handle.
1625  *
1626  * There is not much action needed here.  We just return any remaining
1627  * buffer credits to the transaction and remove the handle.  The only
1628  * complication is that we need to start a commit operation if the
1629  * filesystem is marked for synchronous update.
1630  *
1631  * jbd2_journal_stop itself will not usually return an error, but it may
1632  * do so in unusual circumstances.  In particular, expect it to
1633  * return -EIO if a jbd2_journal_abort has been executed since the
1634  * transaction began.
1635  */
1636 int jbd2_journal_stop(handle_t *handle)
1637 {
1638         transaction_t *transaction = handle->h_transaction;
1639         journal_t *journal;
1640         int err = 0, wait_for_commit = 0;
1641         tid_t tid;
1642         pid_t pid;
1643
1644         if (!transaction) {
1645                 /*
1646                  * Handle is already detached from the transaction so
1647                  * there is nothing to do other than decrease a refcount,
1648                  * or free the handle if refcount drops to zero
1649                  */
1650                 if (--handle->h_ref > 0) {
1651                         jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1652                                                          handle->h_ref);
1653                         return err;
1654                 } else {
1655                         if (handle->h_rsv_handle)
1656                                 jbd2_free_handle(handle->h_rsv_handle);
1657                         goto free_and_exit;
1658                 }
1659         }
1660         journal = transaction->t_journal;
1661
1662         J_ASSERT(journal_current_handle() == handle);
1663
1664         if (is_handle_aborted(handle))
1665                 err = -EIO;
1666         else
1667                 J_ASSERT(atomic_read(&transaction->t_updates) > 0);
1668
1669         if (--handle->h_ref > 0) {
1670                 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1671                           handle->h_ref);
1672                 return err;
1673         }
1674
1675         jbd_debug(4, "Handle %p going down\n", handle);
1676         trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1677                                 transaction->t_tid,
1678                                 handle->h_type, handle->h_line_no,
1679                                 jiffies - handle->h_start_jiffies,
1680                                 handle->h_sync, handle->h_requested_credits,
1681                                 (handle->h_requested_credits -
1682                                  handle->h_buffer_credits));
1683
1684         /*
1685          * Implement synchronous transaction batching.  If the handle
1686          * was synchronous, don't force a commit immediately.  Let's
1687          * yield and let another thread piggyback onto this
1688          * transaction.  Keep doing that while new threads continue to
1689          * arrive.  It doesn't cost much - we're about to run a commit
1690          * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1691          * operations by 30x or more...
1692          *
1693          * We try and optimize the sleep time against what the
1694          * underlying disk can do, instead of having a static sleep
1695          * time.  This is useful for the case where our storage is so
1696          * fast that it is more optimal to go ahead and force a flush
1697          * and wait for the transaction to be committed than it is to
1698          * wait for an arbitrary amount of time for new writers to
1699          * join the transaction.  We achieve this by measuring how
1700          * long it takes to commit a transaction, and compare it with
1701          * how long this transaction has been running, and if run time
1702          * < commit time then we sleep for the delta and commit.  This
1703          * greatly helps super fast disks that would see slowdowns as
1704          * more threads started doing fsyncs.
1705          *
1706          * But don't do this if this process was the most recent one
1707          * to perform a synchronous write.  We do this to detect the
1708          * case where a single process is doing a stream of sync
1709          * writes.  No point in waiting for joiners in that case.
1710          *
1711          * Setting max_batch_time to 0 disables this completely.
1712          */
1713         pid = current->pid;
1714         if (handle->h_sync && journal->j_last_sync_writer != pid &&
1715             journal->j_max_batch_time) {
1716                 u64 commit_time, trans_time;
1717
1718                 journal->j_last_sync_writer = pid;
1719
1720                 read_lock(&journal->j_state_lock);
1721                 commit_time = journal->j_average_commit_time;
1722                 read_unlock(&journal->j_state_lock);
1723
1724                 trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1725                                                    transaction->t_start_time));
1726
1727                 commit_time = max_t(u64, commit_time,
1728                                     1000*journal->j_min_batch_time);
1729                 commit_time = min_t(u64, commit_time,
1730                                     1000*journal->j_max_batch_time);
1731
1732                 if (trans_time < commit_time) {
1733                         ktime_t expires = ktime_add_ns(ktime_get(),
1734                                                        commit_time);
1735                         set_current_state(TASK_UNINTERRUPTIBLE);
1736                         schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1737                 }
1738         }
1739
1740         if (handle->h_sync)
1741                 transaction->t_synchronous_commit = 1;
1742         current->journal_info = NULL;
1743         atomic_sub(handle->h_buffer_credits,
1744                    &transaction->t_outstanding_credits);
1745
1746         /*
1747          * If the handle is marked SYNC, we need to set another commit
1748          * going!  We also want to force a commit if the current
1749          * transaction is occupying too much of the log, or if the
1750          * transaction is too old now.
1751          */
1752         if (handle->h_sync ||
1753             (atomic_read(&transaction->t_outstanding_credits) >
1754              journal->j_max_transaction_buffers) ||
1755             time_after_eq(jiffies, transaction->t_expires)) {
1756                 /* Do this even for aborted journals: an abort still
1757                  * completes the commit thread, it just doesn't write
1758                  * anything to disk. */
1759
1760                 jbd_debug(2, "transaction too old, requesting commit for "
1761                                         "handle %p\n", handle);
1762                 /* This is non-blocking */
1763                 jbd2_log_start_commit(journal, transaction->t_tid);
1764
1765                 /*
1766                  * Special case: JBD2_SYNC synchronous updates require us
1767                  * to wait for the commit to complete.
1768                  */
1769                 if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1770                         wait_for_commit = 1;
1771         }
1772
1773         /*
1774          * Once we drop t_updates, if it goes to zero the transaction
1775          * could start committing on us and eventually disappear.  So
1776          * once we do this, we must not dereference transaction
1777          * pointer again.
1778          */
1779         tid = transaction->t_tid;
1780         if (atomic_dec_and_test(&transaction->t_updates)) {
1781                 wake_up(&journal->j_wait_updates);
1782                 if (journal->j_barrier_count)
1783                         wake_up(&journal->j_wait_transaction_locked);
1784         }
1785
1786         rwsem_release(&journal->j_trans_commit_map, 1, _THIS_IP_);
1787
1788         if (wait_for_commit)
1789                 err = jbd2_log_wait_commit(journal, tid);
1790
1791         if (handle->h_rsv_handle)
1792                 jbd2_journal_free_reserved(handle->h_rsv_handle);
1793 free_and_exit:
1794         /*
1795          * Scope of the GFP_NOFS context is over here and so we can restore the
1796          * original alloc context.
1797          */
1798         memalloc_nofs_restore(handle->saved_alloc_context);
1799         jbd2_free_handle(handle);
1800         return err;
1801 }
1802
1803 /*
1804  *
1805  * List management code snippets: various functions for manipulating the
1806  * transaction buffer lists.
1807  *
1808  */
1809
1810 /*
1811  * Append a buffer to a transaction list, given the transaction's list head
1812  * pointer.
1813  *
1814  * j_list_lock is held.
1815  *
1816  * jbd_lock_bh_state(jh2bh(jh)) is held.
1817  */
1818
1819 static inline void
1820 __blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1821 {
1822         if (!*list) {
1823                 jh->b_tnext = jh->b_tprev = jh;
1824                 *list = jh;
1825         } else {
1826                 /* Insert at the tail of the list to preserve order */
1827                 struct journal_head *first = *list, *last = first->b_tprev;
1828                 jh->b_tprev = last;
1829                 jh->b_tnext = first;
1830                 last->b_tnext = first->b_tprev = jh;
1831         }
1832 }
1833
1834 /*
1835  * Remove a buffer from a transaction list, given the transaction's list
1836  * head pointer.
1837  *
1838  * Called with j_list_lock held, and the journal may not be locked.
1839  *
1840  * jbd_lock_bh_state(jh2bh(jh)) is held.
1841  */
1842
1843 static inline void
1844 __blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1845 {
1846         if (*list == jh) {
1847                 *list = jh->b_tnext;
1848                 if (*list == jh)
1849                         *list = NULL;
1850         }
1851         jh->b_tprev->b_tnext = jh->b_tnext;
1852         jh->b_tnext->b_tprev = jh->b_tprev;
1853 }
1854
1855 /*
1856  * Remove a buffer from the appropriate transaction list.
1857  *
1858  * Note that this function can *change* the value of
1859  * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1860  * t_reserved_list.  If the caller is holding onto a copy of one of these
1861  * pointers, it could go bad.  Generally the caller needs to re-read the
1862  * pointer from the transaction_t.
1863  *
1864  * Called under j_list_lock.
1865  */
1866 static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
1867 {
1868         struct journal_head **list = NULL;
1869         transaction_t *transaction;
1870         struct buffer_head *bh = jh2bh(jh);
1871
1872         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
1873         transaction = jh->b_transaction;
1874         if (transaction)
1875                 assert_spin_locked(&transaction->t_journal->j_list_lock);
1876
1877         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
1878         if (jh->b_jlist != BJ_None)
1879                 J_ASSERT_JH(jh, transaction != NULL);
1880
1881         switch (jh->b_jlist) {
1882         case BJ_None:
1883                 return;
1884         case BJ_Metadata:
1885                 transaction->t_nr_buffers--;
1886                 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
1887                 list = &transaction->t_buffers;
1888                 break;
1889         case BJ_Forget:
1890                 list = &transaction->t_forget;
1891                 break;
1892         case BJ_Shadow:
1893                 list = &transaction->t_shadow_list;
1894                 break;
1895         case BJ_Reserved:
1896                 list = &transaction->t_reserved_list;
1897                 break;
1898         }
1899
1900         __blist_del_buffer(list, jh);
1901         jh->b_jlist = BJ_None;
1902         if (transaction && is_journal_aborted(transaction->t_journal))
1903                 clear_buffer_jbddirty(bh);
1904         else if (test_clear_buffer_jbddirty(bh))
1905                 mark_buffer_dirty(bh);  /* Expose it to the VM */
1906 }
1907
1908 /*
1909  * Remove buffer from all transactions.
1910  *
1911  * Called with bh_state lock and j_list_lock
1912  *
1913  * jh and bh may be already freed when this function returns.
1914  */
1915 static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
1916 {
1917         J_ASSERT_JH(jh, jh->b_transaction != NULL);
1918         J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1919
1920         __jbd2_journal_temp_unlink_buffer(jh);
1921         jh->b_transaction = NULL;
1922         jbd2_journal_put_journal_head(jh);
1923 }
1924
1925 void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
1926 {
1927         struct buffer_head *bh = jh2bh(jh);
1928
1929         /* Get reference so that buffer cannot be freed before we unlock it */
1930         get_bh(bh);
1931         jbd_lock_bh_state(bh);
1932         spin_lock(&journal->j_list_lock);
1933         __jbd2_journal_unfile_buffer(jh);
1934         spin_unlock(&journal->j_list_lock);
1935         jbd_unlock_bh_state(bh);
1936         __brelse(bh);
1937 }
1938
1939 /*
1940  * Called from jbd2_journal_try_to_free_buffers().
1941  *
1942  * Called under jbd_lock_bh_state(bh)
1943  */
1944 static void
1945 __journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
1946 {
1947         struct journal_head *jh;
1948
1949         jh = bh2jh(bh);
1950
1951         if (buffer_locked(bh) || buffer_dirty(bh))
1952                 goto out;
1953
1954         if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
1955                 goto out;
1956
1957         spin_lock(&journal->j_list_lock);
1958         if (jh->b_cp_transaction != NULL) {
1959                 /* written-back checkpointed metadata buffer */
1960                 JBUFFER_TRACE(jh, "remove from checkpoint list");
1961                 __jbd2_journal_remove_checkpoint(jh);
1962         }
1963         spin_unlock(&journal->j_list_lock);
1964 out:
1965         return;
1966 }
1967
1968 /**
1969  * int jbd2_journal_try_to_free_buffers() - try to free page buffers.
1970  * @journal: journal for operation
1971  * @page: to try and free
1972  * @gfp_mask: we use the mask to detect how hard should we try to release
1973  * buffers. If __GFP_DIRECT_RECLAIM and __GFP_FS is set, we wait for commit
1974  * code to release the buffers.
1975  *
1976  *
1977  * For all the buffers on this page,
1978  * if they are fully written out ordered data, move them onto BUF_CLEAN
1979  * so try_to_free_buffers() can reap them.
1980  *
1981  * This function returns non-zero if we wish try_to_free_buffers()
1982  * to be called. We do this if the page is releasable by try_to_free_buffers().
1983  * We also do it if the page has locked or dirty buffers and the caller wants
1984  * us to perform sync or async writeout.
1985  *
1986  * This complicates JBD locking somewhat.  We aren't protected by the
1987  * BKL here.  We wish to remove the buffer from its committing or
1988  * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
1989  *
1990  * This may *change* the value of transaction_t->t_datalist, so anyone
1991  * who looks at t_datalist needs to lock against this function.
1992  *
1993  * Even worse, someone may be doing a jbd2_journal_dirty_data on this
1994  * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
1995  * will come out of the lock with the buffer dirty, which makes it
1996  * ineligible for release here.
1997  *
1998  * Who else is affected by this?  hmm...  Really the only contender
1999  * is do_get_write_access() - it could be looking at the buffer while
2000  * journal_try_to_free_buffer() is changing its state.  But that
2001  * cannot happen because we never reallocate freed data as metadata
2002  * while the data is part of a transaction.  Yes?
2003  *
2004  * Return 0 on failure, 1 on success
2005  */
2006 int jbd2_journal_try_to_free_buffers(journal_t *journal,
2007                                 struct page *page, gfp_t gfp_mask)
2008 {
2009         struct buffer_head *head;
2010         struct buffer_head *bh;
2011         bool has_write_io_error = false;
2012         int ret = 0;
2013
2014         J_ASSERT(PageLocked(page));
2015
2016         head = page_buffers(page);
2017         bh = head;
2018         do {
2019                 struct journal_head *jh;
2020
2021                 /*
2022                  * We take our own ref against the journal_head here to avoid
2023                  * having to add tons of locking around each instance of
2024                  * jbd2_journal_put_journal_head().
2025                  */
2026                 jh = jbd2_journal_grab_journal_head(bh);
2027                 if (!jh)
2028                         continue;
2029
2030                 jbd_lock_bh_state(bh);
2031                 __journal_try_to_free_buffer(journal, bh);
2032                 jbd2_journal_put_journal_head(jh);
2033                 jbd_unlock_bh_state(bh);
2034                 if (buffer_jbd(bh))
2035                         goto busy;
2036
2037                 /*
2038                  * If we free a metadata buffer which has been failed to
2039                  * write out, the jbd2 checkpoint procedure will not detect
2040                  * this failure and may lead to filesystem inconsistency
2041                  * after cleanup journal tail.
2042                  */
2043                 if (buffer_write_io_error(bh)) {
2044                         pr_err("JBD2: Error while async write back metadata bh %llu.",
2045                                (unsigned long long)bh->b_blocknr);
2046                         has_write_io_error = true;
2047                 }
2048         } while ((bh = bh->b_this_page) != head);
2049
2050         ret = try_to_free_buffers(page);
2051
2052 busy:
2053         if (has_write_io_error)
2054                 jbd2_journal_abort(journal, -EIO);
2055
2056         return ret;
2057 }
2058
2059 /*
2060  * This buffer is no longer needed.  If it is on an older transaction's
2061  * checkpoint list we need to record it on this transaction's forget list
2062  * to pin this buffer (and hence its checkpointing transaction) down until
2063  * this transaction commits.  If the buffer isn't on a checkpoint list, we
2064  * release it.
2065  * Returns non-zero if JBD no longer has an interest in the buffer.
2066  *
2067  * Called under j_list_lock.
2068  *
2069  * Called under jbd_lock_bh_state(bh).
2070  */
2071 static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2072 {
2073         int may_free = 1;
2074         struct buffer_head *bh = jh2bh(jh);
2075
2076         if (jh->b_cp_transaction) {
2077                 JBUFFER_TRACE(jh, "on running+cp transaction");
2078                 __jbd2_journal_temp_unlink_buffer(jh);
2079                 /*
2080                  * We don't want to write the buffer anymore, clear the
2081                  * bit so that we don't confuse checks in
2082                  * __journal_file_buffer
2083                  */
2084                 clear_buffer_dirty(bh);
2085                 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2086                 may_free = 0;
2087         } else {
2088                 JBUFFER_TRACE(jh, "on running transaction");
2089                 __jbd2_journal_unfile_buffer(jh);
2090         }
2091         return may_free;
2092 }
2093
2094 /*
2095  * jbd2_journal_invalidatepage
2096  *
2097  * This code is tricky.  It has a number of cases to deal with.
2098  *
2099  * There are two invariants which this code relies on:
2100  *
2101  * i_size must be updated on disk before we start calling invalidatepage on the
2102  * data.
2103  *
2104  *  This is done in ext3 by defining an ext3_setattr method which
2105  *  updates i_size before truncate gets going.  By maintaining this
2106  *  invariant, we can be sure that it is safe to throw away any buffers
2107  *  attached to the current transaction: once the transaction commits,
2108  *  we know that the data will not be needed.
2109  *
2110  *  Note however that we can *not* throw away data belonging to the
2111  *  previous, committing transaction!
2112  *
2113  * Any disk blocks which *are* part of the previous, committing
2114  * transaction (and which therefore cannot be discarded immediately) are
2115  * not going to be reused in the new running transaction
2116  *
2117  *  The bitmap committed_data images guarantee this: any block which is
2118  *  allocated in one transaction and removed in the next will be marked
2119  *  as in-use in the committed_data bitmap, so cannot be reused until
2120  *  the next transaction to delete the block commits.  This means that
2121  *  leaving committing buffers dirty is quite safe: the disk blocks
2122  *  cannot be reallocated to a different file and so buffer aliasing is
2123  *  not possible.
2124  *
2125  *
2126  * The above applies mainly to ordered data mode.  In writeback mode we
2127  * don't make guarantees about the order in which data hits disk --- in
2128  * particular we don't guarantee that new dirty data is flushed before
2129  * transaction commit --- so it is always safe just to discard data
2130  * immediately in that mode.  --sct
2131  */
2132
2133 /*
2134  * The journal_unmap_buffer helper function returns zero if the buffer
2135  * concerned remains pinned as an anonymous buffer belonging to an older
2136  * transaction.
2137  *
2138  * We're outside-transaction here.  Either or both of j_running_transaction
2139  * and j_committing_transaction may be NULL.
2140  */
2141 static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2142                                 int partial_page)
2143 {
2144         transaction_t *transaction;
2145         struct journal_head *jh;
2146         int may_free = 1;
2147
2148         BUFFER_TRACE(bh, "entry");
2149
2150         /*
2151          * It is safe to proceed here without the j_list_lock because the
2152          * buffers cannot be stolen by try_to_free_buffers as long as we are
2153          * holding the page lock. --sct
2154          */
2155
2156         if (!buffer_jbd(bh))
2157                 goto zap_buffer_unlocked;
2158
2159         /* OK, we have data buffer in journaled mode */
2160         write_lock(&journal->j_state_lock);
2161         jbd_lock_bh_state(bh);
2162         spin_lock(&journal->j_list_lock);
2163
2164         jh = jbd2_journal_grab_journal_head(bh);
2165         if (!jh)
2166                 goto zap_buffer_no_jh;
2167
2168         /*
2169          * We cannot remove the buffer from checkpoint lists until the
2170          * transaction adding inode to orphan list (let's call it T)
2171          * is committed.  Otherwise if the transaction changing the
2172          * buffer would be cleaned from the journal before T is
2173          * committed, a crash will cause that the correct contents of
2174          * the buffer will be lost.  On the other hand we have to
2175          * clear the buffer dirty bit at latest at the moment when the
2176          * transaction marking the buffer as freed in the filesystem
2177          * structures is committed because from that moment on the
2178          * block can be reallocated and used by a different page.
2179          * Since the block hasn't been freed yet but the inode has
2180          * already been added to orphan list, it is safe for us to add
2181          * the buffer to BJ_Forget list of the newest transaction.
2182          *
2183          * Also we have to clear buffer_mapped flag of a truncated buffer
2184          * because the buffer_head may be attached to the page straddling
2185          * i_size (can happen only when blocksize < pagesize) and thus the
2186          * buffer_head can be reused when the file is extended again. So we end
2187          * up keeping around invalidated buffers attached to transactions'
2188          * BJ_Forget list just to stop checkpointing code from cleaning up
2189          * the transaction this buffer was modified in.
2190          */
2191         transaction = jh->b_transaction;
2192         if (transaction == NULL) {
2193                 /* First case: not on any transaction.  If it
2194                  * has no checkpoint link, then we can zap it:
2195                  * it's a writeback-mode buffer so we don't care
2196                  * if it hits disk safely. */
2197                 if (!jh->b_cp_transaction) {
2198                         JBUFFER_TRACE(jh, "not on any transaction: zap");
2199                         goto zap_buffer;
2200                 }
2201
2202                 if (!buffer_dirty(bh)) {
2203                         /* bdflush has written it.  We can drop it now */
2204                         __jbd2_journal_remove_checkpoint(jh);
2205                         goto zap_buffer;
2206                 }
2207
2208                 /* OK, it must be in the journal but still not
2209                  * written fully to disk: it's metadata or
2210                  * journaled data... */
2211
2212                 if (journal->j_running_transaction) {
2213                         /* ... and once the current transaction has
2214                          * committed, the buffer won't be needed any
2215                          * longer. */
2216                         JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2217                         may_free = __dispose_buffer(jh,
2218                                         journal->j_running_transaction);
2219                         goto zap_buffer;
2220                 } else {
2221                         /* There is no currently-running transaction. So the
2222                          * orphan record which we wrote for this file must have
2223                          * passed into commit.  We must attach this buffer to
2224                          * the committing transaction, if it exists. */
2225                         if (journal->j_committing_transaction) {
2226                                 JBUFFER_TRACE(jh, "give to committing trans");
2227                                 may_free = __dispose_buffer(jh,
2228                                         journal->j_committing_transaction);
2229                                 goto zap_buffer;
2230                         } else {
2231                                 /* The orphan record's transaction has
2232                                  * committed.  We can cleanse this buffer */
2233                                 clear_buffer_jbddirty(bh);
2234                                 __jbd2_journal_remove_checkpoint(jh);
2235                                 goto zap_buffer;
2236                         }
2237                 }
2238         } else if (transaction == journal->j_committing_transaction) {
2239                 JBUFFER_TRACE(jh, "on committing transaction");
2240                 /*
2241                  * The buffer is committing, we simply cannot touch
2242                  * it. If the page is straddling i_size we have to wait
2243                  * for commit and try again.
2244                  */
2245                 if (partial_page) {
2246                         jbd2_journal_put_journal_head(jh);
2247                         spin_unlock(&journal->j_list_lock);
2248                         jbd_unlock_bh_state(bh);
2249                         write_unlock(&journal->j_state_lock);
2250                         return -EBUSY;
2251                 }
2252                 /*
2253                  * OK, buffer won't be reachable after truncate. We just clear
2254                  * b_modified to not confuse transaction credit accounting, and
2255                  * set j_next_transaction to the running transaction (if there
2256                  * is one) and mark buffer as freed so that commit code knows
2257                  * it should clear dirty bits when it is done with the buffer.
2258                  */
2259                 set_buffer_freed(bh);
2260                 if (journal->j_running_transaction && buffer_jbddirty(bh))
2261                         jh->b_next_transaction = journal->j_running_transaction;
2262                 jh->b_modified = 0;
2263                 jbd2_journal_put_journal_head(jh);
2264                 spin_unlock(&journal->j_list_lock);
2265                 jbd_unlock_bh_state(bh);
2266                 write_unlock(&journal->j_state_lock);
2267                 return 0;
2268         } else {
2269                 /* Good, the buffer belongs to the running transaction.
2270                  * We are writing our own transaction's data, not any
2271                  * previous one's, so it is safe to throw it away
2272                  * (remember that we expect the filesystem to have set
2273                  * i_size already for this truncate so recovery will not
2274                  * expose the disk blocks we are discarding here.) */
2275                 J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2276                 JBUFFER_TRACE(jh, "on running transaction");
2277                 may_free = __dispose_buffer(jh, transaction);
2278         }
2279
2280 zap_buffer:
2281         /*
2282          * This is tricky. Although the buffer is truncated, it may be reused
2283          * if blocksize < pagesize and it is attached to the page straddling
2284          * EOF. Since the buffer might have been added to BJ_Forget list of the
2285          * running transaction, journal_get_write_access() won't clear
2286          * b_modified and credit accounting gets confused. So clear b_modified
2287          * here.
2288          */
2289         jh->b_modified = 0;
2290         jbd2_journal_put_journal_head(jh);
2291 zap_buffer_no_jh:
2292         spin_unlock(&journal->j_list_lock);
2293         jbd_unlock_bh_state(bh);
2294         write_unlock(&journal->j_state_lock);
2295 zap_buffer_unlocked:
2296         clear_buffer_dirty(bh);
2297         J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2298         clear_buffer_mapped(bh);
2299         clear_buffer_req(bh);
2300         clear_buffer_new(bh);
2301         clear_buffer_delay(bh);
2302         clear_buffer_unwritten(bh);
2303         bh->b_bdev = NULL;
2304         return may_free;
2305 }
2306
2307 /**
2308  * void jbd2_journal_invalidatepage()
2309  * @journal: journal to use for flush...
2310  * @page:    page to flush
2311  * @offset:  start of the range to invalidate
2312  * @length:  length of the range to invalidate
2313  *
2314  * Reap page buffers containing data after in the specified range in page.
2315  * Can return -EBUSY if buffers are part of the committing transaction and
2316  * the page is straddling i_size. Caller then has to wait for current commit
2317  * and try again.
2318  */
2319 int jbd2_journal_invalidatepage(journal_t *journal,
2320                                 struct page *page,
2321                                 unsigned int offset,
2322                                 unsigned int length)
2323 {
2324         struct buffer_head *head, *bh, *next;
2325         unsigned int stop = offset + length;
2326         unsigned int curr_off = 0;
2327         int partial_page = (offset || length < PAGE_SIZE);
2328         int may_free = 1;
2329         int ret = 0;
2330
2331         if (!PageLocked(page))
2332                 BUG();
2333         if (!page_has_buffers(page))
2334                 return 0;
2335
2336         BUG_ON(stop > PAGE_SIZE || stop < length);
2337
2338         /* We will potentially be playing with lists other than just the
2339          * data lists (especially for journaled data mode), so be
2340          * cautious in our locking. */
2341
2342         head = bh = page_buffers(page);
2343         do {
2344                 unsigned int next_off = curr_off + bh->b_size;
2345                 next = bh->b_this_page;
2346
2347                 if (next_off > stop)
2348                         return 0;
2349
2350                 if (offset <= curr_off) {
2351                         /* This block is wholly outside the truncation point */
2352                         lock_buffer(bh);
2353                         ret = journal_unmap_buffer(journal, bh, partial_page);
2354                         unlock_buffer(bh);
2355                         if (ret < 0)
2356                                 return ret;
2357                         may_free &= ret;
2358                 }
2359                 curr_off = next_off;
2360                 bh = next;
2361
2362         } while (bh != head);
2363
2364         if (!partial_page) {
2365                 if (may_free && try_to_free_buffers(page))
2366                         J_ASSERT(!page_has_buffers(page));
2367         }
2368         return 0;
2369 }
2370
2371 /*
2372  * File a buffer on the given transaction list.
2373  */
2374 void __jbd2_journal_file_buffer(struct journal_head *jh,
2375                         transaction_t *transaction, int jlist)
2376 {
2377         struct journal_head **list = NULL;
2378         int was_dirty = 0;
2379         struct buffer_head *bh = jh2bh(jh);
2380
2381         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2382         assert_spin_locked(&transaction->t_journal->j_list_lock);
2383
2384         J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2385         J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2386                                 jh->b_transaction == NULL);
2387
2388         if (jh->b_transaction && jh->b_jlist == jlist)
2389                 return;
2390
2391         if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2392             jlist == BJ_Shadow || jlist == BJ_Forget) {
2393                 /*
2394                  * For metadata buffers, we track dirty bit in buffer_jbddirty
2395                  * instead of buffer_dirty. We should not see a dirty bit set
2396                  * here because we clear it in do_get_write_access but e.g.
2397                  * tune2fs can modify the sb and set the dirty bit at any time
2398                  * so we try to gracefully handle that.
2399                  */
2400                 if (buffer_dirty(bh))
2401                         warn_dirty_buffer(bh);
2402                 if (test_clear_buffer_dirty(bh) ||
2403                     test_clear_buffer_jbddirty(bh))
2404                         was_dirty = 1;
2405         }
2406
2407         if (jh->b_transaction)
2408                 __jbd2_journal_temp_unlink_buffer(jh);
2409         else
2410                 jbd2_journal_grab_journal_head(bh);
2411         jh->b_transaction = transaction;
2412
2413         switch (jlist) {
2414         case BJ_None:
2415                 J_ASSERT_JH(jh, !jh->b_committed_data);
2416                 J_ASSERT_JH(jh, !jh->b_frozen_data);
2417                 return;
2418         case BJ_Metadata:
2419                 transaction->t_nr_buffers++;
2420                 list = &transaction->t_buffers;
2421                 break;
2422         case BJ_Forget:
2423                 list = &transaction->t_forget;
2424                 break;
2425         case BJ_Shadow:
2426                 list = &transaction->t_shadow_list;
2427                 break;
2428         case BJ_Reserved:
2429                 list = &transaction->t_reserved_list;
2430                 break;
2431         }
2432
2433         __blist_add_buffer(list, jh);
2434         jh->b_jlist = jlist;
2435
2436         if (was_dirty)
2437                 set_buffer_jbddirty(bh);
2438 }
2439
2440 void jbd2_journal_file_buffer(struct journal_head *jh,
2441                                 transaction_t *transaction, int jlist)
2442 {
2443         jbd_lock_bh_state(jh2bh(jh));
2444         spin_lock(&transaction->t_journal->j_list_lock);
2445         __jbd2_journal_file_buffer(jh, transaction, jlist);
2446         spin_unlock(&transaction->t_journal->j_list_lock);
2447         jbd_unlock_bh_state(jh2bh(jh));
2448 }
2449
2450 /*
2451  * Remove a buffer from its current buffer list in preparation for
2452  * dropping it from its current transaction entirely.  If the buffer has
2453  * already started to be used by a subsequent transaction, refile the
2454  * buffer on that transaction's metadata list.
2455  *
2456  * Called under j_list_lock
2457  * Called under jbd_lock_bh_state(jh2bh(jh))
2458  *
2459  * jh and bh may be already free when this function returns
2460  */
2461 void __jbd2_journal_refile_buffer(struct journal_head *jh)
2462 {
2463         int was_dirty, jlist;
2464         struct buffer_head *bh = jh2bh(jh);
2465
2466         J_ASSERT_JH(jh, jbd_is_locked_bh_state(bh));
2467         if (jh->b_transaction)
2468                 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2469
2470         /* If the buffer is now unused, just drop it. */
2471         if (jh->b_next_transaction == NULL) {
2472                 __jbd2_journal_unfile_buffer(jh);
2473                 return;
2474         }
2475
2476         /*
2477          * It has been modified by a later transaction: add it to the new
2478          * transaction's metadata list.
2479          */
2480
2481         was_dirty = test_clear_buffer_jbddirty(bh);
2482         __jbd2_journal_temp_unlink_buffer(jh);
2483
2484         /*
2485          * b_transaction must be set, otherwise the new b_transaction won't
2486          * be holding jh reference
2487          */
2488         J_ASSERT_JH(jh, jh->b_transaction != NULL);
2489
2490         /*
2491          * We set b_transaction here because b_next_transaction will inherit
2492          * our jh reference and thus __jbd2_journal_file_buffer() must not
2493          * take a new one.
2494          */
2495         WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2496         WRITE_ONCE(jh->b_next_transaction, NULL);
2497         if (buffer_freed(bh))
2498                 jlist = BJ_Forget;
2499         else if (jh->b_modified)
2500                 jlist = BJ_Metadata;
2501         else
2502                 jlist = BJ_Reserved;
2503         __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2504         J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2505
2506         if (was_dirty)
2507                 set_buffer_jbddirty(bh);
2508 }
2509
2510 /*
2511  * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2512  * bh reference so that we can safely unlock bh.
2513  *
2514  * The jh and bh may be freed by this call.
2515  */
2516 void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2517 {
2518         struct buffer_head *bh = jh2bh(jh);
2519
2520         /* Get reference so that buffer cannot be freed before we unlock it */
2521         get_bh(bh);
2522         jbd_lock_bh_state(bh);
2523         spin_lock(&journal->j_list_lock);
2524         __jbd2_journal_refile_buffer(jh);
2525         jbd_unlock_bh_state(bh);
2526         spin_unlock(&journal->j_list_lock);
2527         __brelse(bh);
2528 }
2529
2530 /*
2531  * File inode in the inode list of the handle's transaction
2532  */
2533 static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2534                 unsigned long flags, loff_t start_byte, loff_t end_byte)
2535 {
2536         transaction_t *transaction = handle->h_transaction;
2537         journal_t *journal;
2538
2539         if (is_handle_aborted(handle))
2540                 return -EROFS;
2541         journal = transaction->t_journal;
2542
2543         jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2544                         transaction->t_tid);
2545
2546         spin_lock(&journal->j_list_lock);
2547         jinode->i_flags |= flags;
2548
2549         if (jinode->i_dirty_end) {
2550                 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2551                 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2552         } else {
2553                 jinode->i_dirty_start = start_byte;
2554                 jinode->i_dirty_end = end_byte;
2555         }
2556
2557         /* Is inode already attached where we need it? */
2558         if (jinode->i_transaction == transaction ||
2559             jinode->i_next_transaction == transaction)
2560                 goto done;
2561
2562         /*
2563          * We only ever set this variable to 1 so the test is safe. Since
2564          * t_need_data_flush is likely to be set, we do the test to save some
2565          * cacheline bouncing
2566          */
2567         if (!transaction->t_need_data_flush)
2568                 transaction->t_need_data_flush = 1;
2569         /* On some different transaction's list - should be
2570          * the committing one */
2571         if (jinode->i_transaction) {
2572                 J_ASSERT(jinode->i_next_transaction == NULL);
2573                 J_ASSERT(jinode->i_transaction ==
2574                                         journal->j_committing_transaction);
2575                 jinode->i_next_transaction = transaction;
2576                 goto done;
2577         }
2578         /* Not on any transaction list... */
2579         J_ASSERT(!jinode->i_next_transaction);
2580         jinode->i_transaction = transaction;
2581         list_add(&jinode->i_list, &transaction->t_inode_list);
2582 done:
2583         spin_unlock(&journal->j_list_lock);
2584
2585         return 0;
2586 }
2587
2588 int jbd2_journal_inode_add_write(handle_t *handle, struct jbd2_inode *jinode)
2589 {
2590         return jbd2_journal_file_inode(handle, jinode,
2591                         JI_WRITE_DATA | JI_WAIT_DATA, 0, LLONG_MAX);
2592 }
2593
2594 int jbd2_journal_inode_add_wait(handle_t *handle, struct jbd2_inode *jinode)
2595 {
2596         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 0,
2597                         LLONG_MAX);
2598 }
2599
2600 int jbd2_journal_inode_ranged_write(handle_t *handle,
2601                 struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2602 {
2603         return jbd2_journal_file_inode(handle, jinode,
2604                         JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2605                         start_byte + length - 1);
2606 }
2607
2608 int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2609                 loff_t start_byte, loff_t length)
2610 {
2611         return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2612                         start_byte, start_byte + length - 1);
2613 }
2614
2615 /*
2616  * File truncate and transaction commit interact with each other in a
2617  * non-trivial way.  If a transaction writing data block A is
2618  * committing, we cannot discard the data by truncate until we have
2619  * written them.  Otherwise if we crashed after the transaction with
2620  * write has committed but before the transaction with truncate has
2621  * committed, we could see stale data in block A.  This function is a
2622  * helper to solve this problem.  It starts writeout of the truncated
2623  * part in case it is in the committing transaction.
2624  *
2625  * Filesystem code must call this function when inode is journaled in
2626  * ordered mode before truncation happens and after the inode has been
2627  * placed on orphan list with the new inode size. The second condition
2628  * avoids the race that someone writes new data and we start
2629  * committing the transaction after this function has been called but
2630  * before a transaction for truncate is started (and furthermore it
2631  * allows us to optimize the case where the addition to orphan list
2632  * happens in the same transaction as write --- we don't have to write
2633  * any data in such case).
2634  */
2635 int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2636                                         struct jbd2_inode *jinode,
2637                                         loff_t new_size)
2638 {
2639         transaction_t *inode_trans, *commit_trans;
2640         int ret = 0;
2641
2642         /* This is a quick check to avoid locking if not necessary */
2643         if (!jinode->i_transaction)
2644                 goto out;
2645         /* Locks are here just to force reading of recent values, it is
2646          * enough that the transaction was not committing before we started
2647          * a transaction adding the inode to orphan list */
2648         read_lock(&journal->j_state_lock);
2649         commit_trans = journal->j_committing_transaction;
2650         read_unlock(&journal->j_state_lock);
2651         spin_lock(&journal->j_list_lock);
2652         inode_trans = jinode->i_transaction;
2653         spin_unlock(&journal->j_list_lock);
2654         if (inode_trans == commit_trans) {
2655                 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2656                         new_size, LLONG_MAX);
2657                 if (ret)
2658                         jbd2_journal_abort(journal, ret);
2659         }
2660 out:
2661         return ret;
2662 }