GNU Linux-libre 4.4.284-gnu1
[releases.git] / fs / ubifs / debug.c
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
36
37 static DEFINE_SPINLOCK(dbg_lock);
38
39 static const char *get_key_fmt(int fmt)
40 {
41         switch (fmt) {
42         case UBIFS_SIMPLE_KEY_FMT:
43                 return "simple";
44         default:
45                 return "unknown/invalid format";
46         }
47 }
48
49 static const char *get_key_hash(int hash)
50 {
51         switch (hash) {
52         case UBIFS_KEY_HASH_R5:
53                 return "R5";
54         case UBIFS_KEY_HASH_TEST:
55                 return "test";
56         default:
57                 return "unknown/invalid name hash";
58         }
59 }
60
61 static const char *get_key_type(int type)
62 {
63         switch (type) {
64         case UBIFS_INO_KEY:
65                 return "inode";
66         case UBIFS_DENT_KEY:
67                 return "direntry";
68         case UBIFS_XENT_KEY:
69                 return "xentry";
70         case UBIFS_DATA_KEY:
71                 return "data";
72         case UBIFS_TRUN_KEY:
73                 return "truncate";
74         default:
75                 return "unknown/invalid key";
76         }
77 }
78
79 static const char *get_dent_type(int type)
80 {
81         switch (type) {
82         case UBIFS_ITYPE_REG:
83                 return "file";
84         case UBIFS_ITYPE_DIR:
85                 return "dir";
86         case UBIFS_ITYPE_LNK:
87                 return "symlink";
88         case UBIFS_ITYPE_BLK:
89                 return "blkdev";
90         case UBIFS_ITYPE_CHR:
91                 return "char dev";
92         case UBIFS_ITYPE_FIFO:
93                 return "fifo";
94         case UBIFS_ITYPE_SOCK:
95                 return "socket";
96         default:
97                 return "unknown/invalid type";
98         }
99 }
100
101 const char *dbg_snprintf_key(const struct ubifs_info *c,
102                              const union ubifs_key *key, char *buffer, int len)
103 {
104         char *p = buffer;
105         int type = key_type(c, key);
106
107         if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
108                 switch (type) {
109                 case UBIFS_INO_KEY:
110                         len -= snprintf(p, len, "(%lu, %s)",
111                                         (unsigned long)key_inum(c, key),
112                                         get_key_type(type));
113                         break;
114                 case UBIFS_DENT_KEY:
115                 case UBIFS_XENT_KEY:
116                         len -= snprintf(p, len, "(%lu, %s, %#08x)",
117                                         (unsigned long)key_inum(c, key),
118                                         get_key_type(type), key_hash(c, key));
119                         break;
120                 case UBIFS_DATA_KEY:
121                         len -= snprintf(p, len, "(%lu, %s, %u)",
122                                         (unsigned long)key_inum(c, key),
123                                         get_key_type(type), key_block(c, key));
124                         break;
125                 case UBIFS_TRUN_KEY:
126                         len -= snprintf(p, len, "(%lu, %s)",
127                                         (unsigned long)key_inum(c, key),
128                                         get_key_type(type));
129                         break;
130                 default:
131                         len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
132                                         key->u32[0], key->u32[1]);
133                 }
134         } else
135                 len -= snprintf(p, len, "bad key format %d", c->key_fmt);
136         ubifs_assert(len > 0);
137         return p;
138 }
139
140 const char *dbg_ntype(int type)
141 {
142         switch (type) {
143         case UBIFS_PAD_NODE:
144                 return "padding node";
145         case UBIFS_SB_NODE:
146                 return "superblock node";
147         case UBIFS_MST_NODE:
148                 return "master node";
149         case UBIFS_REF_NODE:
150                 return "reference node";
151         case UBIFS_INO_NODE:
152                 return "inode node";
153         case UBIFS_DENT_NODE:
154                 return "direntry node";
155         case UBIFS_XENT_NODE:
156                 return "xentry node";
157         case UBIFS_DATA_NODE:
158                 return "data node";
159         case UBIFS_TRUN_NODE:
160                 return "truncate node";
161         case UBIFS_IDX_NODE:
162                 return "indexing node";
163         case UBIFS_CS_NODE:
164                 return "commit start node";
165         case UBIFS_ORPH_NODE:
166                 return "orphan node";
167         default:
168                 return "unknown node";
169         }
170 }
171
172 static const char *dbg_gtype(int type)
173 {
174         switch (type) {
175         case UBIFS_NO_NODE_GROUP:
176                 return "no node group";
177         case UBIFS_IN_NODE_GROUP:
178                 return "in node group";
179         case UBIFS_LAST_OF_NODE_GROUP:
180                 return "last of node group";
181         default:
182                 return "unknown";
183         }
184 }
185
186 const char *dbg_cstate(int cmt_state)
187 {
188         switch (cmt_state) {
189         case COMMIT_RESTING:
190                 return "commit resting";
191         case COMMIT_BACKGROUND:
192                 return "background commit requested";
193         case COMMIT_REQUIRED:
194                 return "commit required";
195         case COMMIT_RUNNING_BACKGROUND:
196                 return "BACKGROUND commit running";
197         case COMMIT_RUNNING_REQUIRED:
198                 return "commit running and required";
199         case COMMIT_BROKEN:
200                 return "broken commit";
201         default:
202                 return "unknown commit state";
203         }
204 }
205
206 const char *dbg_jhead(int jhead)
207 {
208         switch (jhead) {
209         case GCHD:
210                 return "0 (GC)";
211         case BASEHD:
212                 return "1 (base)";
213         case DATAHD:
214                 return "2 (data)";
215         default:
216                 return "unknown journal head";
217         }
218 }
219
220 static void dump_ch(const struct ubifs_ch *ch)
221 {
222         pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
223         pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
224         pr_err("\tnode_type      %d (%s)\n", ch->node_type,
225                dbg_ntype(ch->node_type));
226         pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
227                dbg_gtype(ch->group_type));
228         pr_err("\tsqnum          %llu\n",
229                (unsigned long long)le64_to_cpu(ch->sqnum));
230         pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
231 }
232
233 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
234 {
235         const struct ubifs_inode *ui = ubifs_inode(inode);
236         struct qstr nm = { .name = NULL };
237         union ubifs_key key;
238         struct ubifs_dent_node *dent, *pdent = NULL;
239         int count = 2;
240
241         pr_err("Dump in-memory inode:");
242         pr_err("\tinode          %lu\n", inode->i_ino);
243         pr_err("\tsize           %llu\n",
244                (unsigned long long)i_size_read(inode));
245         pr_err("\tnlink          %u\n", inode->i_nlink);
246         pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
247         pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
248         pr_err("\tatime          %u.%u\n",
249                (unsigned int)inode->i_atime.tv_sec,
250                (unsigned int)inode->i_atime.tv_nsec);
251         pr_err("\tmtime          %u.%u\n",
252                (unsigned int)inode->i_mtime.tv_sec,
253                (unsigned int)inode->i_mtime.tv_nsec);
254         pr_err("\tctime          %u.%u\n",
255                (unsigned int)inode->i_ctime.tv_sec,
256                (unsigned int)inode->i_ctime.tv_nsec);
257         pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
258         pr_err("\txattr_size     %u\n", ui->xattr_size);
259         pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
260         pr_err("\txattr_names    %u\n", ui->xattr_names);
261         pr_err("\tdirty          %u\n", ui->dirty);
262         pr_err("\txattr          %u\n", ui->xattr);
263         pr_err("\tbulk_read      %u\n", ui->xattr);
264         pr_err("\tsynced_i_size  %llu\n",
265                (unsigned long long)ui->synced_i_size);
266         pr_err("\tui_size        %llu\n",
267                (unsigned long long)ui->ui_size);
268         pr_err("\tflags          %d\n", ui->flags);
269         pr_err("\tcompr_type     %d\n", ui->compr_type);
270         pr_err("\tlast_page_read %lu\n", ui->last_page_read);
271         pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
272         pr_err("\tdata_len       %d\n", ui->data_len);
273
274         if (!S_ISDIR(inode->i_mode))
275                 return;
276
277         pr_err("List of directory entries:\n");
278         ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
279
280         lowest_dent_key(c, &key, inode->i_ino);
281         while (1) {
282                 dent = ubifs_tnc_next_ent(c, &key, &nm);
283                 if (IS_ERR(dent)) {
284                         if (PTR_ERR(dent) != -ENOENT)
285                                 pr_err("error %ld\n", PTR_ERR(dent));
286                         break;
287                 }
288
289                 pr_err("\t%d: %s (%s)\n",
290                        count++, dent->name, get_dent_type(dent->type));
291
292                 nm.name = dent->name;
293                 nm.len = le16_to_cpu(dent->nlen);
294                 kfree(pdent);
295                 pdent = dent;
296                 key_read(c, &dent->key, &key);
297         }
298         kfree(pdent);
299 }
300
301 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
302 {
303         int i, n;
304         union ubifs_key key;
305         const struct ubifs_ch *ch = node;
306         char key_buf[DBG_KEY_BUF_LEN];
307
308         /* If the magic is incorrect, just hexdump the first bytes */
309         if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
310                 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
311                 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
312                                (void *)node, UBIFS_CH_SZ, 1);
313                 return;
314         }
315
316         spin_lock(&dbg_lock);
317         dump_ch(node);
318
319         switch (ch->node_type) {
320         case UBIFS_PAD_NODE:
321         {
322                 const struct ubifs_pad_node *pad = node;
323
324                 pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
325                 break;
326         }
327         case UBIFS_SB_NODE:
328         {
329                 const struct ubifs_sb_node *sup = node;
330                 unsigned int sup_flags = le32_to_cpu(sup->flags);
331
332                 pr_err("\tkey_hash       %d (%s)\n",
333                        (int)sup->key_hash, get_key_hash(sup->key_hash));
334                 pr_err("\tkey_fmt        %d (%s)\n",
335                        (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
336                 pr_err("\tflags          %#x\n", sup_flags);
337                 pr_err("\tbig_lpt        %u\n",
338                        !!(sup_flags & UBIFS_FLG_BIGLPT));
339                 pr_err("\tspace_fixup    %u\n",
340                        !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
341                 pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
342                 pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
343                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
344                 pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
345                 pr_err("\tmax_bud_bytes  %llu\n",
346                        (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
347                 pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
348                 pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
349                 pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
350                 pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
351                 pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
352                 pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
353                 pr_err("\tdefault_compr  %u\n",
354                        (int)le16_to_cpu(sup->default_compr));
355                 pr_err("\trp_size        %llu\n",
356                        (unsigned long long)le64_to_cpu(sup->rp_size));
357                 pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
358                 pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
359                 pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
360                 pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
361                 pr_err("\tUUID           %pUB\n", sup->uuid);
362                 break;
363         }
364         case UBIFS_MST_NODE:
365         {
366                 const struct ubifs_mst_node *mst = node;
367
368                 pr_err("\thighest_inum   %llu\n",
369                        (unsigned long long)le64_to_cpu(mst->highest_inum));
370                 pr_err("\tcommit number  %llu\n",
371                        (unsigned long long)le64_to_cpu(mst->cmt_no));
372                 pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
373                 pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
374                 pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
375                 pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
376                 pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
377                 pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
378                 pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
379                 pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
380                 pr_err("\tindex_size     %llu\n",
381                        (unsigned long long)le64_to_cpu(mst->index_size));
382                 pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
383                 pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
384                 pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
385                 pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
386                 pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
387                 pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
388                 pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
389                 pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
390                 pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
391                 pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
392                 pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
393                 pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
394                 pr_err("\ttotal_free     %llu\n",
395                        (unsigned long long)le64_to_cpu(mst->total_free));
396                 pr_err("\ttotal_dirty    %llu\n",
397                        (unsigned long long)le64_to_cpu(mst->total_dirty));
398                 pr_err("\ttotal_used     %llu\n",
399                        (unsigned long long)le64_to_cpu(mst->total_used));
400                 pr_err("\ttotal_dead     %llu\n",
401                        (unsigned long long)le64_to_cpu(mst->total_dead));
402                 pr_err("\ttotal_dark     %llu\n",
403                        (unsigned long long)le64_to_cpu(mst->total_dark));
404                 break;
405         }
406         case UBIFS_REF_NODE:
407         {
408                 const struct ubifs_ref_node *ref = node;
409
410                 pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
411                 pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
412                 pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
413                 break;
414         }
415         case UBIFS_INO_NODE:
416         {
417                 const struct ubifs_ino_node *ino = node;
418
419                 key_read(c, &ino->key, &key);
420                 pr_err("\tkey            %s\n",
421                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
422                 pr_err("\tcreat_sqnum    %llu\n",
423                        (unsigned long long)le64_to_cpu(ino->creat_sqnum));
424                 pr_err("\tsize           %llu\n",
425                        (unsigned long long)le64_to_cpu(ino->size));
426                 pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
427                 pr_err("\tatime          %lld.%u\n",
428                        (long long)le64_to_cpu(ino->atime_sec),
429                        le32_to_cpu(ino->atime_nsec));
430                 pr_err("\tmtime          %lld.%u\n",
431                        (long long)le64_to_cpu(ino->mtime_sec),
432                        le32_to_cpu(ino->mtime_nsec));
433                 pr_err("\tctime          %lld.%u\n",
434                        (long long)le64_to_cpu(ino->ctime_sec),
435                        le32_to_cpu(ino->ctime_nsec));
436                 pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
437                 pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
438                 pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
439                 pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
440                 pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
441                 pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
442                 pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
443                 pr_err("\tcompr_type     %#x\n",
444                        (int)le16_to_cpu(ino->compr_type));
445                 pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
446                 break;
447         }
448         case UBIFS_DENT_NODE:
449         case UBIFS_XENT_NODE:
450         {
451                 const struct ubifs_dent_node *dent = node;
452                 int nlen = le16_to_cpu(dent->nlen);
453
454                 key_read(c, &dent->key, &key);
455                 pr_err("\tkey            %s\n",
456                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
457                 pr_err("\tinum           %llu\n",
458                        (unsigned long long)le64_to_cpu(dent->inum));
459                 pr_err("\ttype           %d\n", (int)dent->type);
460                 pr_err("\tnlen           %d\n", nlen);
461                 pr_err("\tname           ");
462
463                 if (nlen > UBIFS_MAX_NLEN)
464                         pr_err("(bad name length, not printing, bad or corrupted node)");
465                 else {
466                         for (i = 0; i < nlen && dent->name[i]; i++)
467                                 pr_cont("%c", dent->name[i]);
468                 }
469                 pr_cont("\n");
470
471                 break;
472         }
473         case UBIFS_DATA_NODE:
474         {
475                 const struct ubifs_data_node *dn = node;
476                 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
477
478                 key_read(c, &dn->key, &key);
479                 pr_err("\tkey            %s\n",
480                        dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
481                 pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
482                 pr_err("\tcompr_typ      %d\n",
483                        (int)le16_to_cpu(dn->compr_type));
484                 pr_err("\tdata size      %d\n", dlen);
485                 pr_err("\tdata:\n");
486                 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
487                                (void *)&dn->data, dlen, 0);
488                 break;
489         }
490         case UBIFS_TRUN_NODE:
491         {
492                 const struct ubifs_trun_node *trun = node;
493
494                 pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
495                 pr_err("\told_size       %llu\n",
496                        (unsigned long long)le64_to_cpu(trun->old_size));
497                 pr_err("\tnew_size       %llu\n",
498                        (unsigned long long)le64_to_cpu(trun->new_size));
499                 break;
500         }
501         case UBIFS_IDX_NODE:
502         {
503                 const struct ubifs_idx_node *idx = node;
504
505                 n = le16_to_cpu(idx->child_cnt);
506                 pr_err("\tchild_cnt      %d\n", n);
507                 pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
508                 pr_err("\tBranches:\n");
509
510                 for (i = 0; i < n && i < c->fanout - 1; i++) {
511                         const struct ubifs_branch *br;
512
513                         br = ubifs_idx_branch(c, idx, i);
514                         key_read(c, &br->key, &key);
515                         pr_err("\t%d: LEB %d:%d len %d key %s\n",
516                                i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
517                                le32_to_cpu(br->len),
518                                dbg_snprintf_key(c, &key, key_buf,
519                                                 DBG_KEY_BUF_LEN));
520                 }
521                 break;
522         }
523         case UBIFS_CS_NODE:
524                 break;
525         case UBIFS_ORPH_NODE:
526         {
527                 const struct ubifs_orph_node *orph = node;
528
529                 pr_err("\tcommit number  %llu\n",
530                        (unsigned long long)
531                                 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
532                 pr_err("\tlast node flag %llu\n",
533                        (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
534                 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
535                 pr_err("\t%d orphan inode numbers:\n", n);
536                 for (i = 0; i < n; i++)
537                         pr_err("\t  ino %llu\n",
538                                (unsigned long long)le64_to_cpu(orph->inos[i]));
539                 break;
540         }
541         default:
542                 pr_err("node type %d was not recognized\n",
543                        (int)ch->node_type);
544         }
545         spin_unlock(&dbg_lock);
546 }
547
548 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
549 {
550         spin_lock(&dbg_lock);
551         pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
552                req->new_ino, req->dirtied_ino);
553         pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
554                req->new_ino_d, req->dirtied_ino_d);
555         pr_err("\tnew_page    %d, dirtied_page %d\n",
556                req->new_page, req->dirtied_page);
557         pr_err("\tnew_dent    %d, mod_dent     %d\n",
558                req->new_dent, req->mod_dent);
559         pr_err("\tidx_growth  %d\n", req->idx_growth);
560         pr_err("\tdata_growth %d dd_growth     %d\n",
561                req->data_growth, req->dd_growth);
562         spin_unlock(&dbg_lock);
563 }
564
565 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
566 {
567         spin_lock(&dbg_lock);
568         pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
569                current->pid, lst->empty_lebs, lst->idx_lebs);
570         pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
571                lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
572         pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
573                lst->total_used, lst->total_dark, lst->total_dead);
574         spin_unlock(&dbg_lock);
575 }
576
577 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
578 {
579         int i;
580         struct rb_node *rb;
581         struct ubifs_bud *bud;
582         struct ubifs_gced_idx_leb *idx_gc;
583         long long available, outstanding, free;
584
585         spin_lock(&c->space_lock);
586         spin_lock(&dbg_lock);
587         pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
588                current->pid, bi->data_growth + bi->dd_growth,
589                bi->data_growth + bi->dd_growth + bi->idx_growth);
590         pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
591                bi->data_growth, bi->dd_growth, bi->idx_growth);
592         pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
593                bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
594         pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
595                bi->page_budget, bi->inode_budget, bi->dent_budget);
596         pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
597         pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
598                c->dark_wm, c->dead_wm, c->max_idx_node_sz);
599
600         if (bi != &c->bi)
601                 /*
602                  * If we are dumping saved budgeting data, do not print
603                  * additional information which is about the current state, not
604                  * the old one which corresponded to the saved budgeting data.
605                  */
606                 goto out_unlock;
607
608         pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
609                c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
610         pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
611                atomic_long_read(&c->dirty_pg_cnt),
612                atomic_long_read(&c->dirty_zn_cnt),
613                atomic_long_read(&c->clean_zn_cnt));
614         pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
615
616         /* If we are in R/O mode, journal heads do not exist */
617         if (c->jheads)
618                 for (i = 0; i < c->jhead_cnt; i++)
619                         pr_err("\tjhead %s\t LEB %d\n",
620                                dbg_jhead(c->jheads[i].wbuf.jhead),
621                                c->jheads[i].wbuf.lnum);
622         for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623                 bud = rb_entry(rb, struct ubifs_bud, rb);
624                 pr_err("\tbud LEB %d\n", bud->lnum);
625         }
626         list_for_each_entry(bud, &c->old_buds, list)
627                 pr_err("\told bud LEB %d\n", bud->lnum);
628         list_for_each_entry(idx_gc, &c->idx_gc, list)
629                 pr_err("\tGC'ed idx LEB %d unmap %d\n",
630                        idx_gc->lnum, idx_gc->unmap);
631         pr_err("\tcommit state %d\n", c->cmt_state);
632
633         /* Print budgeting predictions */
634         available = ubifs_calc_available(c, c->bi.min_idx_lebs);
635         outstanding = c->bi.data_growth + c->bi.dd_growth;
636         free = ubifs_get_free_space_nolock(c);
637         pr_err("Budgeting predictions:\n");
638         pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
639                available, outstanding, free);
640 out_unlock:
641         spin_unlock(&dbg_lock);
642         spin_unlock(&c->space_lock);
643 }
644
645 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
646 {
647         int i, spc, dark = 0, dead = 0;
648         struct rb_node *rb;
649         struct ubifs_bud *bud;
650
651         spc = lp->free + lp->dirty;
652         if (spc < c->dead_wm)
653                 dead = spc;
654         else
655                 dark = ubifs_calc_dark(c, spc);
656
657         if (lp->flags & LPROPS_INDEX)
658                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
659                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
660                        lp->flags);
661         else
662                 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
663                        lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
664                        dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
665
666         if (lp->flags & LPROPS_TAKEN) {
667                 if (lp->flags & LPROPS_INDEX)
668                         pr_cont("index, taken");
669                 else
670                         pr_cont("taken");
671         } else {
672                 const char *s;
673
674                 if (lp->flags & LPROPS_INDEX) {
675                         switch (lp->flags & LPROPS_CAT_MASK) {
676                         case LPROPS_DIRTY_IDX:
677                                 s = "dirty index";
678                                 break;
679                         case LPROPS_FRDI_IDX:
680                                 s = "freeable index";
681                                 break;
682                         default:
683                                 s = "index";
684                         }
685                 } else {
686                         switch (lp->flags & LPROPS_CAT_MASK) {
687                         case LPROPS_UNCAT:
688                                 s = "not categorized";
689                                 break;
690                         case LPROPS_DIRTY:
691                                 s = "dirty";
692                                 break;
693                         case LPROPS_FREE:
694                                 s = "free";
695                                 break;
696                         case LPROPS_EMPTY:
697                                 s = "empty";
698                                 break;
699                         case LPROPS_FREEABLE:
700                                 s = "freeable";
701                                 break;
702                         default:
703                                 s = NULL;
704                                 break;
705                         }
706                 }
707                 pr_cont("%s", s);
708         }
709
710         for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
711                 bud = rb_entry(rb, struct ubifs_bud, rb);
712                 if (bud->lnum == lp->lnum) {
713                         int head = 0;
714                         for (i = 0; i < c->jhead_cnt; i++) {
715                                 /*
716                                  * Note, if we are in R/O mode or in the middle
717                                  * of mounting/re-mounting, the write-buffers do
718                                  * not exist.
719                                  */
720                                 if (c->jheads &&
721                                     lp->lnum == c->jheads[i].wbuf.lnum) {
722                                         pr_cont(", jhead %s", dbg_jhead(i));
723                                         head = 1;
724                                 }
725                         }
726                         if (!head)
727                                 pr_cont(", bud of jhead %s",
728                                        dbg_jhead(bud->jhead));
729                 }
730         }
731         if (lp->lnum == c->gc_lnum)
732                 pr_cont(", GC LEB");
733         pr_cont(")\n");
734 }
735
736 void ubifs_dump_lprops(struct ubifs_info *c)
737 {
738         int lnum, err;
739         struct ubifs_lprops lp;
740         struct ubifs_lp_stats lst;
741
742         pr_err("(pid %d) start dumping LEB properties\n", current->pid);
743         ubifs_get_lp_stats(c, &lst);
744         ubifs_dump_lstats(&lst);
745
746         for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
747                 err = ubifs_read_one_lp(c, lnum, &lp);
748                 if (err) {
749                         ubifs_err(c, "cannot read lprops for LEB %d", lnum);
750                         continue;
751                 }
752
753                 ubifs_dump_lprop(c, &lp);
754         }
755         pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
756 }
757
758 void ubifs_dump_lpt_info(struct ubifs_info *c)
759 {
760         int i;
761
762         spin_lock(&dbg_lock);
763         pr_err("(pid %d) dumping LPT information\n", current->pid);
764         pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
765         pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
766         pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
767         pr_err("\tltab_sz:       %d\n", c->ltab_sz);
768         pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
769         pr_err("\tbig_lpt:       %d\n", c->big_lpt);
770         pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
771         pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
772         pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
773         pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
774         pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
775         pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
776         pr_err("\tspace_bits:    %d\n", c->space_bits);
777         pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
778         pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
779         pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
780         pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
781         pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
782         pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
783         pr_err("\tLPT head is at %d:%d\n",
784                c->nhead_lnum, c->nhead_offs);
785         pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
786         if (c->big_lpt)
787                 pr_err("\tLPT lsave is at %d:%d\n",
788                        c->lsave_lnum, c->lsave_offs);
789         for (i = 0; i < c->lpt_lebs; i++)
790                 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
791                        i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
792                        c->ltab[i].tgc, c->ltab[i].cmt);
793         spin_unlock(&dbg_lock);
794 }
795
796 void ubifs_dump_sleb(const struct ubifs_info *c,
797                      const struct ubifs_scan_leb *sleb, int offs)
798 {
799         struct ubifs_scan_node *snod;
800
801         pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
802                current->pid, sleb->lnum, offs);
803
804         list_for_each_entry(snod, &sleb->nodes, list) {
805                 cond_resched();
806                 pr_err("Dumping node at LEB %d:%d len %d\n",
807                        sleb->lnum, snod->offs, snod->len);
808                 ubifs_dump_node(c, snod->node);
809         }
810 }
811
812 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
813 {
814         struct ubifs_scan_leb *sleb;
815         struct ubifs_scan_node *snod;
816         void *buf;
817
818         pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
819
820         buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
821         if (!buf) {
822                 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
823                 return;
824         }
825
826         sleb = ubifs_scan(c, lnum, 0, buf, 0);
827         if (IS_ERR(sleb)) {
828                 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
829                 goto out;
830         }
831
832         pr_err("LEB %d has %d nodes ending at %d\n", lnum,
833                sleb->nodes_cnt, sleb->endpt);
834
835         list_for_each_entry(snod, &sleb->nodes, list) {
836                 cond_resched();
837                 pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
838                        snod->offs, snod->len);
839                 ubifs_dump_node(c, snod->node);
840         }
841
842         pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
843         ubifs_scan_destroy(sleb);
844
845 out:
846         vfree(buf);
847         return;
848 }
849
850 void ubifs_dump_znode(const struct ubifs_info *c,
851                       const struct ubifs_znode *znode)
852 {
853         int n;
854         const struct ubifs_zbranch *zbr;
855         char key_buf[DBG_KEY_BUF_LEN];
856
857         spin_lock(&dbg_lock);
858         if (znode->parent)
859                 zbr = &znode->parent->zbranch[znode->iip];
860         else
861                 zbr = &c->zroot;
862
863         pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
864                znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
865                znode->level, znode->child_cnt, znode->flags);
866
867         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
868                 spin_unlock(&dbg_lock);
869                 return;
870         }
871
872         pr_err("zbranches:\n");
873         for (n = 0; n < znode->child_cnt; n++) {
874                 zbr = &znode->zbranch[n];
875                 if (znode->level > 0)
876                         pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
877                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
878                                dbg_snprintf_key(c, &zbr->key, key_buf,
879                                                 DBG_KEY_BUF_LEN));
880                 else
881                         pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
882                                n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
883                                dbg_snprintf_key(c, &zbr->key, key_buf,
884                                                 DBG_KEY_BUF_LEN));
885         }
886         spin_unlock(&dbg_lock);
887 }
888
889 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
890 {
891         int i;
892
893         pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
894                current->pid, cat, heap->cnt);
895         for (i = 0; i < heap->cnt; i++) {
896                 struct ubifs_lprops *lprops = heap->arr[i];
897
898                 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
899                        i, lprops->lnum, lprops->hpos, lprops->free,
900                        lprops->dirty, lprops->flags);
901         }
902         pr_err("(pid %d) finish dumping heap\n", current->pid);
903 }
904
905 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
906                       struct ubifs_nnode *parent, int iip)
907 {
908         int i;
909
910         pr_err("(pid %d) dumping pnode:\n", current->pid);
911         pr_err("\taddress %zx parent %zx cnext %zx\n",
912                (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
913         pr_err("\tflags %lu iip %d level %d num %d\n",
914                pnode->flags, iip, pnode->level, pnode->num);
915         for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
916                 struct ubifs_lprops *lp = &pnode->lprops[i];
917
918                 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
919                        i, lp->free, lp->dirty, lp->flags, lp->lnum);
920         }
921 }
922
923 void ubifs_dump_tnc(struct ubifs_info *c)
924 {
925         struct ubifs_znode *znode;
926         int level;
927
928         pr_err("\n");
929         pr_err("(pid %d) start dumping TNC tree\n", current->pid);
930         znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
931         level = znode->level;
932         pr_err("== Level %d ==\n", level);
933         while (znode) {
934                 if (level != znode->level) {
935                         level = znode->level;
936                         pr_err("== Level %d ==\n", level);
937                 }
938                 ubifs_dump_znode(c, znode);
939                 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
940         }
941         pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
942 }
943
944 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
945                       void *priv)
946 {
947         ubifs_dump_znode(c, znode);
948         return 0;
949 }
950
951 /**
952  * ubifs_dump_index - dump the on-flash index.
953  * @c: UBIFS file-system description object
954  *
955  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
956  * which dumps only in-memory znodes and does not read znodes which from flash.
957  */
958 void ubifs_dump_index(struct ubifs_info *c)
959 {
960         dbg_walk_index(c, NULL, dump_znode, NULL);
961 }
962
963 /**
964  * dbg_save_space_info - save information about flash space.
965  * @c: UBIFS file-system description object
966  *
967  * This function saves information about UBIFS free space, dirty space, etc, in
968  * order to check it later.
969  */
970 void dbg_save_space_info(struct ubifs_info *c)
971 {
972         struct ubifs_debug_info *d = c->dbg;
973         int freeable_cnt;
974
975         spin_lock(&c->space_lock);
976         memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
977         memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
978         d->saved_idx_gc_cnt = c->idx_gc_cnt;
979
980         /*
981          * We use a dirty hack here and zero out @c->freeable_cnt, because it
982          * affects the free space calculations, and UBIFS might not know about
983          * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
984          * only when we read their lprops, and we do this only lazily, upon the
985          * need. So at any given point of time @c->freeable_cnt might be not
986          * exactly accurate.
987          *
988          * Just one example about the issue we hit when we did not zero
989          * @c->freeable_cnt.
990          * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
991          *    amount of free space in @d->saved_free
992          * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
993          *    information from flash, where we cache LEBs from various
994          *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
995          *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
996          *    -> 'ubifs_get_pnode()' -> 'update_cats()'
997          *    -> 'ubifs_add_to_cat()').
998          * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
999          *    becomes %1.
1000          * 4. We calculate the amount of free space when the re-mount is
1001          *    finished in 'dbg_check_space_info()' and it does not match
1002          *    @d->saved_free.
1003          */
1004         freeable_cnt = c->freeable_cnt;
1005         c->freeable_cnt = 0;
1006         d->saved_free = ubifs_get_free_space_nolock(c);
1007         c->freeable_cnt = freeable_cnt;
1008         spin_unlock(&c->space_lock);
1009 }
1010
1011 /**
1012  * dbg_check_space_info - check flash space information.
1013  * @c: UBIFS file-system description object
1014  *
1015  * This function compares current flash space information with the information
1016  * which was saved when the 'dbg_save_space_info()' function was called.
1017  * Returns zero if the information has not changed, and %-EINVAL it it has
1018  * changed.
1019  */
1020 int dbg_check_space_info(struct ubifs_info *c)
1021 {
1022         struct ubifs_debug_info *d = c->dbg;
1023         struct ubifs_lp_stats lst;
1024         long long free;
1025         int freeable_cnt;
1026
1027         spin_lock(&c->space_lock);
1028         freeable_cnt = c->freeable_cnt;
1029         c->freeable_cnt = 0;
1030         free = ubifs_get_free_space_nolock(c);
1031         c->freeable_cnt = freeable_cnt;
1032         spin_unlock(&c->space_lock);
1033
1034         if (free != d->saved_free) {
1035                 ubifs_err(c, "free space changed from %lld to %lld",
1036                           d->saved_free, free);
1037                 goto out;
1038         }
1039
1040         return 0;
1041
1042 out:
1043         ubifs_msg(c, "saved lprops statistics dump");
1044         ubifs_dump_lstats(&d->saved_lst);
1045         ubifs_msg(c, "saved budgeting info dump");
1046         ubifs_dump_budg(c, &d->saved_bi);
1047         ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1048         ubifs_msg(c, "current lprops statistics dump");
1049         ubifs_get_lp_stats(c, &lst);
1050         ubifs_dump_lstats(&lst);
1051         ubifs_msg(c, "current budgeting info dump");
1052         ubifs_dump_budg(c, &c->bi);
1053         dump_stack();
1054         return -EINVAL;
1055 }
1056
1057 /**
1058  * dbg_check_synced_i_size - check synchronized inode size.
1059  * @c: UBIFS file-system description object
1060  * @inode: inode to check
1061  *
1062  * If inode is clean, synchronized inode size has to be equivalent to current
1063  * inode size. This function has to be called only for locked inodes (@i_mutex
1064  * has to be locked). Returns %0 if synchronized inode size if correct, and
1065  * %-EINVAL if not.
1066  */
1067 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1068 {
1069         int err = 0;
1070         struct ubifs_inode *ui = ubifs_inode(inode);
1071
1072         if (!dbg_is_chk_gen(c))
1073                 return 0;
1074         if (!S_ISREG(inode->i_mode))
1075                 return 0;
1076
1077         mutex_lock(&ui->ui_mutex);
1078         spin_lock(&ui->ui_lock);
1079         if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1080                 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1081                           ui->ui_size, ui->synced_i_size);
1082                 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1083                           inode->i_mode, i_size_read(inode));
1084                 dump_stack();
1085                 err = -EINVAL;
1086         }
1087         spin_unlock(&ui->ui_lock);
1088         mutex_unlock(&ui->ui_mutex);
1089         return err;
1090 }
1091
1092 /*
1093  * dbg_check_dir - check directory inode size and link count.
1094  * @c: UBIFS file-system description object
1095  * @dir: the directory to calculate size for
1096  * @size: the result is returned here
1097  *
1098  * This function makes sure that directory size and link count are correct.
1099  * Returns zero in case of success and a negative error code in case of
1100  * failure.
1101  *
1102  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1103  * calling this function.
1104  */
1105 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1106 {
1107         unsigned int nlink = 2;
1108         union ubifs_key key;
1109         struct ubifs_dent_node *dent, *pdent = NULL;
1110         struct qstr nm = { .name = NULL };
1111         loff_t size = UBIFS_INO_NODE_SZ;
1112
1113         if (!dbg_is_chk_gen(c))
1114                 return 0;
1115
1116         if (!S_ISDIR(dir->i_mode))
1117                 return 0;
1118
1119         lowest_dent_key(c, &key, dir->i_ino);
1120         while (1) {
1121                 int err;
1122
1123                 dent = ubifs_tnc_next_ent(c, &key, &nm);
1124                 if (IS_ERR(dent)) {
1125                         err = PTR_ERR(dent);
1126                         if (err == -ENOENT)
1127                                 break;
1128                         kfree(pdent);
1129                         return err;
1130                 }
1131
1132                 nm.name = dent->name;
1133                 nm.len = le16_to_cpu(dent->nlen);
1134                 size += CALC_DENT_SIZE(nm.len);
1135                 if (dent->type == UBIFS_ITYPE_DIR)
1136                         nlink += 1;
1137                 kfree(pdent);
1138                 pdent = dent;
1139                 key_read(c, &dent->key, &key);
1140         }
1141         kfree(pdent);
1142
1143         if (i_size_read(dir) != size) {
1144                 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1145                           dir->i_ino, (unsigned long long)i_size_read(dir),
1146                           (unsigned long long)size);
1147                 ubifs_dump_inode(c, dir);
1148                 dump_stack();
1149                 return -EINVAL;
1150         }
1151         if (dir->i_nlink != nlink) {
1152                 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1153                           dir->i_ino, dir->i_nlink, nlink);
1154                 ubifs_dump_inode(c, dir);
1155                 dump_stack();
1156                 return -EINVAL;
1157         }
1158
1159         return 0;
1160 }
1161
1162 /**
1163  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1164  * @c: UBIFS file-system description object
1165  * @zbr1: first zbranch
1166  * @zbr2: following zbranch
1167  *
1168  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1169  * names of the direntries/xentries which are referred by the keys. This
1170  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1171  * sure the name of direntry/xentry referred by @zbr1 is less than
1172  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1173  * and a negative error code in case of failure.
1174  */
1175 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1176                                struct ubifs_zbranch *zbr2)
1177 {
1178         int err, nlen1, nlen2, cmp;
1179         struct ubifs_dent_node *dent1, *dent2;
1180         union ubifs_key key;
1181         char key_buf[DBG_KEY_BUF_LEN];
1182
1183         ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1184         dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185         if (!dent1)
1186                 return -ENOMEM;
1187         dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1188         if (!dent2) {
1189                 err = -ENOMEM;
1190                 goto out_free;
1191         }
1192
1193         err = ubifs_tnc_read_node(c, zbr1, dent1);
1194         if (err)
1195                 goto out_free;
1196         err = ubifs_validate_entry(c, dent1);
1197         if (err)
1198                 goto out_free;
1199
1200         err = ubifs_tnc_read_node(c, zbr2, dent2);
1201         if (err)
1202                 goto out_free;
1203         err = ubifs_validate_entry(c, dent2);
1204         if (err)
1205                 goto out_free;
1206
1207         /* Make sure node keys are the same as in zbranch */
1208         err = 1;
1209         key_read(c, &dent1->key, &key);
1210         if (keys_cmp(c, &zbr1->key, &key)) {
1211                 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1212                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1213                                                        DBG_KEY_BUF_LEN));
1214                 ubifs_err(c, "but it should have key %s according to tnc",
1215                           dbg_snprintf_key(c, &zbr1->key, key_buf,
1216                                            DBG_KEY_BUF_LEN));
1217                 ubifs_dump_node(c, dent1);
1218                 goto out_free;
1219         }
1220
1221         key_read(c, &dent2->key, &key);
1222         if (keys_cmp(c, &zbr2->key, &key)) {
1223                 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1224                           zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1225                                                        DBG_KEY_BUF_LEN));
1226                 ubifs_err(c, "but it should have key %s according to tnc",
1227                           dbg_snprintf_key(c, &zbr2->key, key_buf,
1228                                            DBG_KEY_BUF_LEN));
1229                 ubifs_dump_node(c, dent2);
1230                 goto out_free;
1231         }
1232
1233         nlen1 = le16_to_cpu(dent1->nlen);
1234         nlen2 = le16_to_cpu(dent2->nlen);
1235
1236         cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1237         if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1238                 err = 0;
1239                 goto out_free;
1240         }
1241         if (cmp == 0 && nlen1 == nlen2)
1242                 ubifs_err(c, "2 xent/dent nodes with the same name");
1243         else
1244                 ubifs_err(c, "bad order of colliding key %s",
1245                           dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1246
1247         ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1248         ubifs_dump_node(c, dent1);
1249         ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1250         ubifs_dump_node(c, dent2);
1251
1252 out_free:
1253         kfree(dent2);
1254         kfree(dent1);
1255         return err;
1256 }
1257
1258 /**
1259  * dbg_check_znode - check if znode is all right.
1260  * @c: UBIFS file-system description object
1261  * @zbr: zbranch which points to this znode
1262  *
1263  * This function makes sure that znode referred to by @zbr is all right.
1264  * Returns zero if it is, and %-EINVAL if it is not.
1265  */
1266 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1267 {
1268         struct ubifs_znode *znode = zbr->znode;
1269         struct ubifs_znode *zp = znode->parent;
1270         int n, err, cmp;
1271
1272         if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1273                 err = 1;
1274                 goto out;
1275         }
1276         if (znode->level < 0) {
1277                 err = 2;
1278                 goto out;
1279         }
1280         if (znode->iip < 0 || znode->iip >= c->fanout) {
1281                 err = 3;
1282                 goto out;
1283         }
1284
1285         if (zbr->len == 0)
1286                 /* Only dirty zbranch may have no on-flash nodes */
1287                 if (!ubifs_zn_dirty(znode)) {
1288                         err = 4;
1289                         goto out;
1290                 }
1291
1292         if (ubifs_zn_dirty(znode)) {
1293                 /*
1294                  * If znode is dirty, its parent has to be dirty as well. The
1295                  * order of the operation is important, so we have to have
1296                  * memory barriers.
1297                  */
1298                 smp_mb();
1299                 if (zp && !ubifs_zn_dirty(zp)) {
1300                         /*
1301                          * The dirty flag is atomic and is cleared outside the
1302                          * TNC mutex, so znode's dirty flag may now have
1303                          * been cleared. The child is always cleared before the
1304                          * parent, so we just need to check again.
1305                          */
1306                         smp_mb();
1307                         if (ubifs_zn_dirty(znode)) {
1308                                 err = 5;
1309                                 goto out;
1310                         }
1311                 }
1312         }
1313
1314         if (zp) {
1315                 const union ubifs_key *min, *max;
1316
1317                 if (znode->level != zp->level - 1) {
1318                         err = 6;
1319                         goto out;
1320                 }
1321
1322                 /* Make sure the 'parent' pointer in our znode is correct */
1323                 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1324                 if (!err) {
1325                         /* This zbranch does not exist in the parent */
1326                         err = 7;
1327                         goto out;
1328                 }
1329
1330                 if (znode->iip >= zp->child_cnt) {
1331                         err = 8;
1332                         goto out;
1333                 }
1334
1335                 if (znode->iip != n) {
1336                         /* This may happen only in case of collisions */
1337                         if (keys_cmp(c, &zp->zbranch[n].key,
1338                                      &zp->zbranch[znode->iip].key)) {
1339                                 err = 9;
1340                                 goto out;
1341                         }
1342                         n = znode->iip;
1343                 }
1344
1345                 /*
1346                  * Make sure that the first key in our znode is greater than or
1347                  * equal to the key in the pointing zbranch.
1348                  */
1349                 min = &zbr->key;
1350                 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1351                 if (cmp == 1) {
1352                         err = 10;
1353                         goto out;
1354                 }
1355
1356                 if (n + 1 < zp->child_cnt) {
1357                         max = &zp->zbranch[n + 1].key;
1358
1359                         /*
1360                          * Make sure the last key in our znode is less or
1361                          * equivalent than the key in the zbranch which goes
1362                          * after our pointing zbranch.
1363                          */
1364                         cmp = keys_cmp(c, max,
1365                                 &znode->zbranch[znode->child_cnt - 1].key);
1366                         if (cmp == -1) {
1367                                 err = 11;
1368                                 goto out;
1369                         }
1370                 }
1371         } else {
1372                 /* This may only be root znode */
1373                 if (zbr != &c->zroot) {
1374                         err = 12;
1375                         goto out;
1376                 }
1377         }
1378
1379         /*
1380          * Make sure that next key is greater or equivalent then the previous
1381          * one.
1382          */
1383         for (n = 1; n < znode->child_cnt; n++) {
1384                 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1385                                &znode->zbranch[n].key);
1386                 if (cmp > 0) {
1387                         err = 13;
1388                         goto out;
1389                 }
1390                 if (cmp == 0) {
1391                         /* This can only be keys with colliding hash */
1392                         if (!is_hash_key(c, &znode->zbranch[n].key)) {
1393                                 err = 14;
1394                                 goto out;
1395                         }
1396
1397                         if (znode->level != 0 || c->replaying)
1398                                 continue;
1399
1400                         /*
1401                          * Colliding keys should follow binary order of
1402                          * corresponding xentry/dentry names.
1403                          */
1404                         err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1405                                                   &znode->zbranch[n]);
1406                         if (err < 0)
1407                                 return err;
1408                         if (err) {
1409                                 err = 15;
1410                                 goto out;
1411                         }
1412                 }
1413         }
1414
1415         for (n = 0; n < znode->child_cnt; n++) {
1416                 if (!znode->zbranch[n].znode &&
1417                     (znode->zbranch[n].lnum == 0 ||
1418                      znode->zbranch[n].len == 0)) {
1419                         err = 16;
1420                         goto out;
1421                 }
1422
1423                 if (znode->zbranch[n].lnum != 0 &&
1424                     znode->zbranch[n].len == 0) {
1425                         err = 17;
1426                         goto out;
1427                 }
1428
1429                 if (znode->zbranch[n].lnum == 0 &&
1430                     znode->zbranch[n].len != 0) {
1431                         err = 18;
1432                         goto out;
1433                 }
1434
1435                 if (znode->zbranch[n].lnum == 0 &&
1436                     znode->zbranch[n].offs != 0) {
1437                         err = 19;
1438                         goto out;
1439                 }
1440
1441                 if (znode->level != 0 && znode->zbranch[n].znode)
1442                         if (znode->zbranch[n].znode->parent != znode) {
1443                                 err = 20;
1444                                 goto out;
1445                         }
1446         }
1447
1448         return 0;
1449
1450 out:
1451         ubifs_err(c, "failed, error %d", err);
1452         ubifs_msg(c, "dump of the znode");
1453         ubifs_dump_znode(c, znode);
1454         if (zp) {
1455                 ubifs_msg(c, "dump of the parent znode");
1456                 ubifs_dump_znode(c, zp);
1457         }
1458         dump_stack();
1459         return -EINVAL;
1460 }
1461
1462 /**
1463  * dbg_check_tnc - check TNC tree.
1464  * @c: UBIFS file-system description object
1465  * @extra: do extra checks that are possible at start commit
1466  *
1467  * This function traverses whole TNC tree and checks every znode. Returns zero
1468  * if everything is all right and %-EINVAL if something is wrong with TNC.
1469  */
1470 int dbg_check_tnc(struct ubifs_info *c, int extra)
1471 {
1472         struct ubifs_znode *znode;
1473         long clean_cnt = 0, dirty_cnt = 0;
1474         int err, last;
1475
1476         if (!dbg_is_chk_index(c))
1477                 return 0;
1478
1479         ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1480         if (!c->zroot.znode)
1481                 return 0;
1482
1483         znode = ubifs_tnc_postorder_first(c->zroot.znode);
1484         while (1) {
1485                 struct ubifs_znode *prev;
1486                 struct ubifs_zbranch *zbr;
1487
1488                 if (!znode->parent)
1489                         zbr = &c->zroot;
1490                 else
1491                         zbr = &znode->parent->zbranch[znode->iip];
1492
1493                 err = dbg_check_znode(c, zbr);
1494                 if (err)
1495                         return err;
1496
1497                 if (extra) {
1498                         if (ubifs_zn_dirty(znode))
1499                                 dirty_cnt += 1;
1500                         else
1501                                 clean_cnt += 1;
1502                 }
1503
1504                 prev = znode;
1505                 znode = ubifs_tnc_postorder_next(znode);
1506                 if (!znode)
1507                         break;
1508
1509                 /*
1510                  * If the last key of this znode is equivalent to the first key
1511                  * of the next znode (collision), then check order of the keys.
1512                  */
1513                 last = prev->child_cnt - 1;
1514                 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1515                     !keys_cmp(c, &prev->zbranch[last].key,
1516                               &znode->zbranch[0].key)) {
1517                         err = dbg_check_key_order(c, &prev->zbranch[last],
1518                                                   &znode->zbranch[0]);
1519                         if (err < 0)
1520                                 return err;
1521                         if (err) {
1522                                 ubifs_msg(c, "first znode");
1523                                 ubifs_dump_znode(c, prev);
1524                                 ubifs_msg(c, "second znode");
1525                                 ubifs_dump_znode(c, znode);
1526                                 return -EINVAL;
1527                         }
1528                 }
1529         }
1530
1531         if (extra) {
1532                 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1533                         ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1534                                   atomic_long_read(&c->clean_zn_cnt),
1535                                   clean_cnt);
1536                         return -EINVAL;
1537                 }
1538                 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1539                         ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1540                                   atomic_long_read(&c->dirty_zn_cnt),
1541                                   dirty_cnt);
1542                         return -EINVAL;
1543                 }
1544         }
1545
1546         return 0;
1547 }
1548
1549 /**
1550  * dbg_walk_index - walk the on-flash index.
1551  * @c: UBIFS file-system description object
1552  * @leaf_cb: called for each leaf node
1553  * @znode_cb: called for each indexing node
1554  * @priv: private data which is passed to callbacks
1555  *
1556  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1557  * node and @znode_cb for each indexing node. Returns zero in case of success
1558  * and a negative error code in case of failure.
1559  *
1560  * It would be better if this function removed every znode it pulled to into
1561  * the TNC, so that the behavior more closely matched the non-debugging
1562  * behavior.
1563  */
1564 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1565                    dbg_znode_callback znode_cb, void *priv)
1566 {
1567         int err;
1568         struct ubifs_zbranch *zbr;
1569         struct ubifs_znode *znode, *child;
1570
1571         mutex_lock(&c->tnc_mutex);
1572         /* If the root indexing node is not in TNC - pull it */
1573         if (!c->zroot.znode) {
1574                 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1575                 if (IS_ERR(c->zroot.znode)) {
1576                         err = PTR_ERR(c->zroot.znode);
1577                         c->zroot.znode = NULL;
1578                         goto out_unlock;
1579                 }
1580         }
1581
1582         /*
1583          * We are going to traverse the indexing tree in the postorder manner.
1584          * Go down and find the leftmost indexing node where we are going to
1585          * start from.
1586          */
1587         znode = c->zroot.znode;
1588         while (znode->level > 0) {
1589                 zbr = &znode->zbranch[0];
1590                 child = zbr->znode;
1591                 if (!child) {
1592                         child = ubifs_load_znode(c, zbr, znode, 0);
1593                         if (IS_ERR(child)) {
1594                                 err = PTR_ERR(child);
1595                                 goto out_unlock;
1596                         }
1597                         zbr->znode = child;
1598                 }
1599
1600                 znode = child;
1601         }
1602
1603         /* Iterate over all indexing nodes */
1604         while (1) {
1605                 int idx;
1606
1607                 cond_resched();
1608
1609                 if (znode_cb) {
1610                         err = znode_cb(c, znode, priv);
1611                         if (err) {
1612                                 ubifs_err(c, "znode checking function returned error %d",
1613                                           err);
1614                                 ubifs_dump_znode(c, znode);
1615                                 goto out_dump;
1616                         }
1617                 }
1618                 if (leaf_cb && znode->level == 0) {
1619                         for (idx = 0; idx < znode->child_cnt; idx++) {
1620                                 zbr = &znode->zbranch[idx];
1621                                 err = leaf_cb(c, zbr, priv);
1622                                 if (err) {
1623                                         ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1624                                                   err, zbr->lnum, zbr->offs);
1625                                         goto out_dump;
1626                                 }
1627                         }
1628                 }
1629
1630                 if (!znode->parent)
1631                         break;
1632
1633                 idx = znode->iip + 1;
1634                 znode = znode->parent;
1635                 if (idx < znode->child_cnt) {
1636                         /* Switch to the next index in the parent */
1637                         zbr = &znode->zbranch[idx];
1638                         child = zbr->znode;
1639                         if (!child) {
1640                                 child = ubifs_load_znode(c, zbr, znode, idx);
1641                                 if (IS_ERR(child)) {
1642                                         err = PTR_ERR(child);
1643                                         goto out_unlock;
1644                                 }
1645                                 zbr->znode = child;
1646                         }
1647                         znode = child;
1648                 } else
1649                         /*
1650                          * This is the last child, switch to the parent and
1651                          * continue.
1652                          */
1653                         continue;
1654
1655                 /* Go to the lowest leftmost znode in the new sub-tree */
1656                 while (znode->level > 0) {
1657                         zbr = &znode->zbranch[0];
1658                         child = zbr->znode;
1659                         if (!child) {
1660                                 child = ubifs_load_znode(c, zbr, znode, 0);
1661                                 if (IS_ERR(child)) {
1662                                         err = PTR_ERR(child);
1663                                         goto out_unlock;
1664                                 }
1665                                 zbr->znode = child;
1666                         }
1667                         znode = child;
1668                 }
1669         }
1670
1671         mutex_unlock(&c->tnc_mutex);
1672         return 0;
1673
1674 out_dump:
1675         if (znode->parent)
1676                 zbr = &znode->parent->zbranch[znode->iip];
1677         else
1678                 zbr = &c->zroot;
1679         ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1680         ubifs_dump_znode(c, znode);
1681 out_unlock:
1682         mutex_unlock(&c->tnc_mutex);
1683         return err;
1684 }
1685
1686 /**
1687  * add_size - add znode size to partially calculated index size.
1688  * @c: UBIFS file-system description object
1689  * @znode: znode to add size for
1690  * @priv: partially calculated index size
1691  *
1692  * This is a helper function for 'dbg_check_idx_size()' which is called for
1693  * every indexing node and adds its size to the 'long long' variable pointed to
1694  * by @priv.
1695  */
1696 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1697 {
1698         long long *idx_size = priv;
1699         int add;
1700
1701         add = ubifs_idx_node_sz(c, znode->child_cnt);
1702         add = ALIGN(add, 8);
1703         *idx_size += add;
1704         return 0;
1705 }
1706
1707 /**
1708  * dbg_check_idx_size - check index size.
1709  * @c: UBIFS file-system description object
1710  * @idx_size: size to check
1711  *
1712  * This function walks the UBIFS index, calculates its size and checks that the
1713  * size is equivalent to @idx_size. Returns zero in case of success and a
1714  * negative error code in case of failure.
1715  */
1716 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1717 {
1718         int err;
1719         long long calc = 0;
1720
1721         if (!dbg_is_chk_index(c))
1722                 return 0;
1723
1724         err = dbg_walk_index(c, NULL, add_size, &calc);
1725         if (err) {
1726                 ubifs_err(c, "error %d while walking the index", err);
1727                 return err;
1728         }
1729
1730         if (calc != idx_size) {
1731                 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1732                           calc, idx_size);
1733                 dump_stack();
1734                 return -EINVAL;
1735         }
1736
1737         return 0;
1738 }
1739
1740 /**
1741  * struct fsck_inode - information about an inode used when checking the file-system.
1742  * @rb: link in the RB-tree of inodes
1743  * @inum: inode number
1744  * @mode: inode type, permissions, etc
1745  * @nlink: inode link count
1746  * @xattr_cnt: count of extended attributes
1747  * @references: how many directory/xattr entries refer this inode (calculated
1748  *              while walking the index)
1749  * @calc_cnt: for directory inode count of child directories
1750  * @size: inode size (read from on-flash inode)
1751  * @xattr_sz: summary size of all extended attributes (read from on-flash
1752  *            inode)
1753  * @calc_sz: for directories calculated directory size
1754  * @calc_xcnt: count of extended attributes
1755  * @calc_xsz: calculated summary size of all extended attributes
1756  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1757  *             inode (read from on-flash inode)
1758  * @calc_xnms: calculated sum of lengths of all extended attribute names
1759  */
1760 struct fsck_inode {
1761         struct rb_node rb;
1762         ino_t inum;
1763         umode_t mode;
1764         unsigned int nlink;
1765         unsigned int xattr_cnt;
1766         int references;
1767         int calc_cnt;
1768         long long size;
1769         unsigned int xattr_sz;
1770         long long calc_sz;
1771         long long calc_xcnt;
1772         long long calc_xsz;
1773         unsigned int xattr_nms;
1774         long long calc_xnms;
1775 };
1776
1777 /**
1778  * struct fsck_data - private FS checking information.
1779  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1780  */
1781 struct fsck_data {
1782         struct rb_root inodes;
1783 };
1784
1785 /**
1786  * add_inode - add inode information to RB-tree of inodes.
1787  * @c: UBIFS file-system description object
1788  * @fsckd: FS checking information
1789  * @ino: raw UBIFS inode to add
1790  *
1791  * This is a helper function for 'check_leaf()' which adds information about
1792  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1793  * case of success and a negative error code in case of failure.
1794  */
1795 static struct fsck_inode *add_inode(struct ubifs_info *c,
1796                                     struct fsck_data *fsckd,
1797                                     struct ubifs_ino_node *ino)
1798 {
1799         struct rb_node **p, *parent = NULL;
1800         struct fsck_inode *fscki;
1801         ino_t inum = key_inum_flash(c, &ino->key);
1802         struct inode *inode;
1803         struct ubifs_inode *ui;
1804
1805         p = &fsckd->inodes.rb_node;
1806         while (*p) {
1807                 parent = *p;
1808                 fscki = rb_entry(parent, struct fsck_inode, rb);
1809                 if (inum < fscki->inum)
1810                         p = &(*p)->rb_left;
1811                 else if (inum > fscki->inum)
1812                         p = &(*p)->rb_right;
1813                 else
1814                         return fscki;
1815         }
1816
1817         if (inum > c->highest_inum) {
1818                 ubifs_err(c, "too high inode number, max. is %lu",
1819                           (unsigned long)c->highest_inum);
1820                 return ERR_PTR(-EINVAL);
1821         }
1822
1823         fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1824         if (!fscki)
1825                 return ERR_PTR(-ENOMEM);
1826
1827         inode = ilookup(c->vfs_sb, inum);
1828
1829         fscki->inum = inum;
1830         /*
1831          * If the inode is present in the VFS inode cache, use it instead of
1832          * the on-flash inode which might be out-of-date. E.g., the size might
1833          * be out-of-date. If we do not do this, the following may happen, for
1834          * example:
1835          *   1. A power cut happens
1836          *   2. We mount the file-system R/O, the replay process fixes up the
1837          *      inode size in the VFS cache, but on on-flash.
1838          *   3. 'check_leaf()' fails because it hits a data node beyond inode
1839          *      size.
1840          */
1841         if (!inode) {
1842                 fscki->nlink = le32_to_cpu(ino->nlink);
1843                 fscki->size = le64_to_cpu(ino->size);
1844                 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1845                 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1846                 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1847                 fscki->mode = le32_to_cpu(ino->mode);
1848         } else {
1849                 ui = ubifs_inode(inode);
1850                 fscki->nlink = inode->i_nlink;
1851                 fscki->size = inode->i_size;
1852                 fscki->xattr_cnt = ui->xattr_cnt;
1853                 fscki->xattr_sz = ui->xattr_size;
1854                 fscki->xattr_nms = ui->xattr_names;
1855                 fscki->mode = inode->i_mode;
1856                 iput(inode);
1857         }
1858
1859         if (S_ISDIR(fscki->mode)) {
1860                 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1861                 fscki->calc_cnt = 2;
1862         }
1863
1864         rb_link_node(&fscki->rb, parent, p);
1865         rb_insert_color(&fscki->rb, &fsckd->inodes);
1866
1867         return fscki;
1868 }
1869
1870 /**
1871  * search_inode - search inode in the RB-tree of inodes.
1872  * @fsckd: FS checking information
1873  * @inum: inode number to search
1874  *
1875  * This is a helper function for 'check_leaf()' which searches inode @inum in
1876  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1877  * the inode was not found.
1878  */
1879 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1880 {
1881         struct rb_node *p;
1882         struct fsck_inode *fscki;
1883
1884         p = fsckd->inodes.rb_node;
1885         while (p) {
1886                 fscki = rb_entry(p, struct fsck_inode, rb);
1887                 if (inum < fscki->inum)
1888                         p = p->rb_left;
1889                 else if (inum > fscki->inum)
1890                         p = p->rb_right;
1891                 else
1892                         return fscki;
1893         }
1894         return NULL;
1895 }
1896
1897 /**
1898  * read_add_inode - read inode node and add it to RB-tree of inodes.
1899  * @c: UBIFS file-system description object
1900  * @fsckd: FS checking information
1901  * @inum: inode number to read
1902  *
1903  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1904  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1905  * information pointer in case of success and a negative error code in case of
1906  * failure.
1907  */
1908 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1909                                          struct fsck_data *fsckd, ino_t inum)
1910 {
1911         int n, err;
1912         union ubifs_key key;
1913         struct ubifs_znode *znode;
1914         struct ubifs_zbranch *zbr;
1915         struct ubifs_ino_node *ino;
1916         struct fsck_inode *fscki;
1917
1918         fscki = search_inode(fsckd, inum);
1919         if (fscki)
1920                 return fscki;
1921
1922         ino_key_init(c, &key, inum);
1923         err = ubifs_lookup_level0(c, &key, &znode, &n);
1924         if (!err) {
1925                 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1926                 return ERR_PTR(-ENOENT);
1927         } else if (err < 0) {
1928                 ubifs_err(c, "error %d while looking up inode %lu",
1929                           err, (unsigned long)inum);
1930                 return ERR_PTR(err);
1931         }
1932
1933         zbr = &znode->zbranch[n];
1934         if (zbr->len < UBIFS_INO_NODE_SZ) {
1935                 ubifs_err(c, "bad node %lu node length %d",
1936                           (unsigned long)inum, zbr->len);
1937                 return ERR_PTR(-EINVAL);
1938         }
1939
1940         ino = kmalloc(zbr->len, GFP_NOFS);
1941         if (!ino)
1942                 return ERR_PTR(-ENOMEM);
1943
1944         err = ubifs_tnc_read_node(c, zbr, ino);
1945         if (err) {
1946                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1947                           zbr->lnum, zbr->offs, err);
1948                 kfree(ino);
1949                 return ERR_PTR(err);
1950         }
1951
1952         fscki = add_inode(c, fsckd, ino);
1953         kfree(ino);
1954         if (IS_ERR(fscki)) {
1955                 ubifs_err(c, "error %ld while adding inode %lu node",
1956                           PTR_ERR(fscki), (unsigned long)inum);
1957                 return fscki;
1958         }
1959
1960         return fscki;
1961 }
1962
1963 /**
1964  * check_leaf - check leaf node.
1965  * @c: UBIFS file-system description object
1966  * @zbr: zbranch of the leaf node to check
1967  * @priv: FS checking information
1968  *
1969  * This is a helper function for 'dbg_check_filesystem()' which is called for
1970  * every single leaf node while walking the indexing tree. It checks that the
1971  * leaf node referred from the indexing tree exists, has correct CRC, and does
1972  * some other basic validation. This function is also responsible for building
1973  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1974  * calculates reference count, size, etc for each inode in order to later
1975  * compare them to the information stored inside the inodes and detect possible
1976  * inconsistencies. Returns zero in case of success and a negative error code
1977  * in case of failure.
1978  */
1979 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1980                       void *priv)
1981 {
1982         ino_t inum;
1983         void *node;
1984         struct ubifs_ch *ch;
1985         int err, type = key_type(c, &zbr->key);
1986         struct fsck_inode *fscki;
1987
1988         if (zbr->len < UBIFS_CH_SZ) {
1989                 ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1990                           zbr->len, zbr->lnum, zbr->offs);
1991                 return -EINVAL;
1992         }
1993
1994         node = kmalloc(zbr->len, GFP_NOFS);
1995         if (!node)
1996                 return -ENOMEM;
1997
1998         err = ubifs_tnc_read_node(c, zbr, node);
1999         if (err) {
2000                 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
2001                           zbr->lnum, zbr->offs, err);
2002                 goto out_free;
2003         }
2004
2005         /* If this is an inode node, add it to RB-tree of inodes */
2006         if (type == UBIFS_INO_KEY) {
2007                 fscki = add_inode(c, priv, node);
2008                 if (IS_ERR(fscki)) {
2009                         err = PTR_ERR(fscki);
2010                         ubifs_err(c, "error %d while adding inode node", err);
2011                         goto out_dump;
2012                 }
2013                 goto out;
2014         }
2015
2016         if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2017             type != UBIFS_DATA_KEY) {
2018                 ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2019                           type, zbr->lnum, zbr->offs);
2020                 err = -EINVAL;
2021                 goto out_free;
2022         }
2023
2024         ch = node;
2025         if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2026                 ubifs_err(c, "too high sequence number, max. is %llu",
2027                           c->max_sqnum);
2028                 err = -EINVAL;
2029                 goto out_dump;
2030         }
2031
2032         if (type == UBIFS_DATA_KEY) {
2033                 long long blk_offs;
2034                 struct ubifs_data_node *dn = node;
2035
2036                 ubifs_assert(zbr->len >= UBIFS_DATA_NODE_SZ);
2037
2038                 /*
2039                  * Search the inode node this data node belongs to and insert
2040                  * it to the RB-tree of inodes.
2041                  */
2042                 inum = key_inum_flash(c, &dn->key);
2043                 fscki = read_add_inode(c, priv, inum);
2044                 if (IS_ERR(fscki)) {
2045                         err = PTR_ERR(fscki);
2046                         ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2047                                   err, (unsigned long)inum);
2048                         goto out_dump;
2049                 }
2050
2051                 /* Make sure the data node is within inode size */
2052                 blk_offs = key_block_flash(c, &dn->key);
2053                 blk_offs <<= UBIFS_BLOCK_SHIFT;
2054                 blk_offs += le32_to_cpu(dn->size);
2055                 if (blk_offs > fscki->size) {
2056                         ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2057                                   zbr->lnum, zbr->offs, fscki->size);
2058                         err = -EINVAL;
2059                         goto out_dump;
2060                 }
2061         } else {
2062                 int nlen;
2063                 struct ubifs_dent_node *dent = node;
2064                 struct fsck_inode *fscki1;
2065
2066                 ubifs_assert(zbr->len >= UBIFS_DENT_NODE_SZ);
2067
2068                 err = ubifs_validate_entry(c, dent);
2069                 if (err)
2070                         goto out_dump;
2071
2072                 /*
2073                  * Search the inode node this entry refers to and the parent
2074                  * inode node and insert them to the RB-tree of inodes.
2075                  */
2076                 inum = le64_to_cpu(dent->inum);
2077                 fscki = read_add_inode(c, priv, inum);
2078                 if (IS_ERR(fscki)) {
2079                         err = PTR_ERR(fscki);
2080                         ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2081                                   err, (unsigned long)inum);
2082                         goto out_dump;
2083                 }
2084
2085                 /* Count how many direntries or xentries refers this inode */
2086                 fscki->references += 1;
2087
2088                 inum = key_inum_flash(c, &dent->key);
2089                 fscki1 = read_add_inode(c, priv, inum);
2090                 if (IS_ERR(fscki1)) {
2091                         err = PTR_ERR(fscki1);
2092                         ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2093                                   err, (unsigned long)inum);
2094                         goto out_dump;
2095                 }
2096
2097                 nlen = le16_to_cpu(dent->nlen);
2098                 if (type == UBIFS_XENT_KEY) {
2099                         fscki1->calc_xcnt += 1;
2100                         fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2101                         fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2102                         fscki1->calc_xnms += nlen;
2103                 } else {
2104                         fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2105                         if (dent->type == UBIFS_ITYPE_DIR)
2106                                 fscki1->calc_cnt += 1;
2107                 }
2108         }
2109
2110 out:
2111         kfree(node);
2112         return 0;
2113
2114 out_dump:
2115         ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2116         ubifs_dump_node(c, node);
2117 out_free:
2118         kfree(node);
2119         return err;
2120 }
2121
2122 /**
2123  * free_inodes - free RB-tree of inodes.
2124  * @fsckd: FS checking information
2125  */
2126 static void free_inodes(struct fsck_data *fsckd)
2127 {
2128         struct fsck_inode *fscki, *n;
2129
2130         rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2131                 kfree(fscki);
2132 }
2133
2134 /**
2135  * check_inodes - checks all inodes.
2136  * @c: UBIFS file-system description object
2137  * @fsckd: FS checking information
2138  *
2139  * This is a helper function for 'dbg_check_filesystem()' which walks the
2140  * RB-tree of inodes after the index scan has been finished, and checks that
2141  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2142  * %-EINVAL if not, and a negative error code in case of failure.
2143  */
2144 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2145 {
2146         int n, err;
2147         union ubifs_key key;
2148         struct ubifs_znode *znode;
2149         struct ubifs_zbranch *zbr;
2150         struct ubifs_ino_node *ino;
2151         struct fsck_inode *fscki;
2152         struct rb_node *this = rb_first(&fsckd->inodes);
2153
2154         while (this) {
2155                 fscki = rb_entry(this, struct fsck_inode, rb);
2156                 this = rb_next(this);
2157
2158                 if (S_ISDIR(fscki->mode)) {
2159                         /*
2160                          * Directories have to have exactly one reference (they
2161                          * cannot have hardlinks), although root inode is an
2162                          * exception.
2163                          */
2164                         if (fscki->inum != UBIFS_ROOT_INO &&
2165                             fscki->references != 1) {
2166                                 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2167                                           (unsigned long)fscki->inum,
2168                                           fscki->references);
2169                                 goto out_dump;
2170                         }
2171                         if (fscki->inum == UBIFS_ROOT_INO &&
2172                             fscki->references != 0) {
2173                                 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2174                                           (unsigned long)fscki->inum,
2175                                           fscki->references);
2176                                 goto out_dump;
2177                         }
2178                         if (fscki->calc_sz != fscki->size) {
2179                                 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2180                                           (unsigned long)fscki->inum,
2181                                           fscki->size, fscki->calc_sz);
2182                                 goto out_dump;
2183                         }
2184                         if (fscki->calc_cnt != fscki->nlink) {
2185                                 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2186                                           (unsigned long)fscki->inum,
2187                                           fscki->nlink, fscki->calc_cnt);
2188                                 goto out_dump;
2189                         }
2190                 } else {
2191                         if (fscki->references != fscki->nlink) {
2192                                 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2193                                           (unsigned long)fscki->inum,
2194                                           fscki->nlink, fscki->references);
2195                                 goto out_dump;
2196                         }
2197                 }
2198                 if (fscki->xattr_sz != fscki->calc_xsz) {
2199                         ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2200                                   (unsigned long)fscki->inum, fscki->xattr_sz,
2201                                   fscki->calc_xsz);
2202                         goto out_dump;
2203                 }
2204                 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2205                         ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2206                                   (unsigned long)fscki->inum,
2207                                   fscki->xattr_cnt, fscki->calc_xcnt);
2208                         goto out_dump;
2209                 }
2210                 if (fscki->xattr_nms != fscki->calc_xnms) {
2211                         ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2212                                   (unsigned long)fscki->inum, fscki->xattr_nms,
2213                                   fscki->calc_xnms);
2214                         goto out_dump;
2215                 }
2216         }
2217
2218         return 0;
2219
2220 out_dump:
2221         /* Read the bad inode and dump it */
2222         ino_key_init(c, &key, fscki->inum);
2223         err = ubifs_lookup_level0(c, &key, &znode, &n);
2224         if (!err) {
2225                 ubifs_err(c, "inode %lu not found in index",
2226                           (unsigned long)fscki->inum);
2227                 return -ENOENT;
2228         } else if (err < 0) {
2229                 ubifs_err(c, "error %d while looking up inode %lu",
2230                           err, (unsigned long)fscki->inum);
2231                 return err;
2232         }
2233
2234         zbr = &znode->zbranch[n];
2235         ino = kmalloc(zbr->len, GFP_NOFS);
2236         if (!ino)
2237                 return -ENOMEM;
2238
2239         err = ubifs_tnc_read_node(c, zbr, ino);
2240         if (err) {
2241                 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2242                           zbr->lnum, zbr->offs, err);
2243                 kfree(ino);
2244                 return err;
2245         }
2246
2247         ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2248                   (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2249         ubifs_dump_node(c, ino);
2250         kfree(ino);
2251         return -EINVAL;
2252 }
2253
2254 /**
2255  * dbg_check_filesystem - check the file-system.
2256  * @c: UBIFS file-system description object
2257  *
2258  * This function checks the file system, namely:
2259  * o makes sure that all leaf nodes exist and their CRCs are correct;
2260  * o makes sure inode nlink, size, xattr size/count are correct (for all
2261  *   inodes).
2262  *
2263  * The function reads whole indexing tree and all nodes, so it is pretty
2264  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2265  * not, and a negative error code in case of failure.
2266  */
2267 int dbg_check_filesystem(struct ubifs_info *c)
2268 {
2269         int err;
2270         struct fsck_data fsckd;
2271
2272         if (!dbg_is_chk_fs(c))
2273                 return 0;
2274
2275         fsckd.inodes = RB_ROOT;
2276         err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2277         if (err)
2278                 goto out_free;
2279
2280         err = check_inodes(c, &fsckd);
2281         if (err)
2282                 goto out_free;
2283
2284         free_inodes(&fsckd);
2285         return 0;
2286
2287 out_free:
2288         ubifs_err(c, "file-system check failed with error %d", err);
2289         dump_stack();
2290         free_inodes(&fsckd);
2291         return err;
2292 }
2293
2294 /**
2295  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2296  * @c: UBIFS file-system description object
2297  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2298  *
2299  * This function returns zero if the list of data nodes is sorted correctly,
2300  * and %-EINVAL if not.
2301  */
2302 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2303 {
2304         struct list_head *cur;
2305         struct ubifs_scan_node *sa, *sb;
2306
2307         if (!dbg_is_chk_gen(c))
2308                 return 0;
2309
2310         for (cur = head->next; cur->next != head; cur = cur->next) {
2311                 ino_t inuma, inumb;
2312                 uint32_t blka, blkb;
2313
2314                 cond_resched();
2315                 sa = container_of(cur, struct ubifs_scan_node, list);
2316                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2317
2318                 if (sa->type != UBIFS_DATA_NODE) {
2319                         ubifs_err(c, "bad node type %d", sa->type);
2320                         ubifs_dump_node(c, sa->node);
2321                         return -EINVAL;
2322                 }
2323                 if (sb->type != UBIFS_DATA_NODE) {
2324                         ubifs_err(c, "bad node type %d", sb->type);
2325                         ubifs_dump_node(c, sb->node);
2326                         return -EINVAL;
2327                 }
2328
2329                 inuma = key_inum(c, &sa->key);
2330                 inumb = key_inum(c, &sb->key);
2331
2332                 if (inuma < inumb)
2333                         continue;
2334                 if (inuma > inumb) {
2335                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2336                                   (unsigned long)inuma, (unsigned long)inumb);
2337                         goto error_dump;
2338                 }
2339
2340                 blka = key_block(c, &sa->key);
2341                 blkb = key_block(c, &sb->key);
2342
2343                 if (blka > blkb) {
2344                         ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2345                         goto error_dump;
2346                 }
2347                 if (blka == blkb) {
2348                         ubifs_err(c, "two data nodes for the same block");
2349                         goto error_dump;
2350                 }
2351         }
2352
2353         return 0;
2354
2355 error_dump:
2356         ubifs_dump_node(c, sa->node);
2357         ubifs_dump_node(c, sb->node);
2358         return -EINVAL;
2359 }
2360
2361 /**
2362  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2363  * @c: UBIFS file-system description object
2364  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2365  *
2366  * This function returns zero if the list of non-data nodes is sorted correctly,
2367  * and %-EINVAL if not.
2368  */
2369 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2370 {
2371         struct list_head *cur;
2372         struct ubifs_scan_node *sa, *sb;
2373
2374         if (!dbg_is_chk_gen(c))
2375                 return 0;
2376
2377         for (cur = head->next; cur->next != head; cur = cur->next) {
2378                 ino_t inuma, inumb;
2379                 uint32_t hasha, hashb;
2380
2381                 cond_resched();
2382                 sa = container_of(cur, struct ubifs_scan_node, list);
2383                 sb = container_of(cur->next, struct ubifs_scan_node, list);
2384
2385                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2386                     sa->type != UBIFS_XENT_NODE) {
2387                         ubifs_err(c, "bad node type %d", sa->type);
2388                         ubifs_dump_node(c, sa->node);
2389                         return -EINVAL;
2390                 }
2391                 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2392                     sa->type != UBIFS_XENT_NODE) {
2393                         ubifs_err(c, "bad node type %d", sb->type);
2394                         ubifs_dump_node(c, sb->node);
2395                         return -EINVAL;
2396                 }
2397
2398                 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2399                         ubifs_err(c, "non-inode node goes before inode node");
2400                         goto error_dump;
2401                 }
2402
2403                 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2404                         continue;
2405
2406                 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2407                         /* Inode nodes are sorted in descending size order */
2408                         if (sa->len < sb->len) {
2409                                 ubifs_err(c, "smaller inode node goes first");
2410                                 goto error_dump;
2411                         }
2412                         continue;
2413                 }
2414
2415                 /*
2416                  * This is either a dentry or xentry, which should be sorted in
2417                  * ascending (parent ino, hash) order.
2418                  */
2419                 inuma = key_inum(c, &sa->key);
2420                 inumb = key_inum(c, &sb->key);
2421
2422                 if (inuma < inumb)
2423                         continue;
2424                 if (inuma > inumb) {
2425                         ubifs_err(c, "larger inum %lu goes before inum %lu",
2426                                   (unsigned long)inuma, (unsigned long)inumb);
2427                         goto error_dump;
2428                 }
2429
2430                 hasha = key_block(c, &sa->key);
2431                 hashb = key_block(c, &sb->key);
2432
2433                 if (hasha > hashb) {
2434                         ubifs_err(c, "larger hash %u goes before %u",
2435                                   hasha, hashb);
2436                         goto error_dump;
2437                 }
2438         }
2439
2440         return 0;
2441
2442 error_dump:
2443         ubifs_msg(c, "dumping first node");
2444         ubifs_dump_node(c, sa->node);
2445         ubifs_msg(c, "dumping second node");
2446         ubifs_dump_node(c, sb->node);
2447         return -EINVAL;
2448         return 0;
2449 }
2450
2451 static inline int chance(unsigned int n, unsigned int out_of)
2452 {
2453         return !!((prandom_u32() % out_of) + 1 <= n);
2454
2455 }
2456
2457 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2458 {
2459         struct ubifs_debug_info *d = c->dbg;
2460
2461         ubifs_assert(dbg_is_tst_rcvry(c));
2462
2463         if (!d->pc_cnt) {
2464                 /* First call - decide delay to the power cut */
2465                 if (chance(1, 2)) {
2466                         unsigned long delay;
2467
2468                         if (chance(1, 2)) {
2469                                 d->pc_delay = 1;
2470                                 /* Fail within 1 minute */
2471                                 delay = prandom_u32() % 60000;
2472                                 d->pc_timeout = jiffies;
2473                                 d->pc_timeout += msecs_to_jiffies(delay);
2474                                 ubifs_warn(c, "failing after %lums", delay);
2475                         } else {
2476                                 d->pc_delay = 2;
2477                                 delay = prandom_u32() % 10000;
2478                                 /* Fail within 10000 operations */
2479                                 d->pc_cnt_max = delay;
2480                                 ubifs_warn(c, "failing after %lu calls", delay);
2481                         }
2482                 }
2483
2484                 d->pc_cnt += 1;
2485         }
2486
2487         /* Determine if failure delay has expired */
2488         if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2489                         return 0;
2490         if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2491                         return 0;
2492
2493         if (lnum == UBIFS_SB_LNUM) {
2494                 if (write && chance(1, 2))
2495                         return 0;
2496                 if (chance(19, 20))
2497                         return 0;
2498                 ubifs_warn(c, "failing in super block LEB %d", lnum);
2499         } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2500                 if (chance(19, 20))
2501                         return 0;
2502                 ubifs_warn(c, "failing in master LEB %d", lnum);
2503         } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2504                 if (write && chance(99, 100))
2505                         return 0;
2506                 if (chance(399, 400))
2507                         return 0;
2508                 ubifs_warn(c, "failing in log LEB %d", lnum);
2509         } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2510                 if (write && chance(7, 8))
2511                         return 0;
2512                 if (chance(19, 20))
2513                         return 0;
2514                 ubifs_warn(c, "failing in LPT LEB %d", lnum);
2515         } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2516                 if (write && chance(1, 2))
2517                         return 0;
2518                 if (chance(9, 10))
2519                         return 0;
2520                 ubifs_warn(c, "failing in orphan LEB %d", lnum);
2521         } else if (lnum == c->ihead_lnum) {
2522                 if (chance(99, 100))
2523                         return 0;
2524                 ubifs_warn(c, "failing in index head LEB %d", lnum);
2525         } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2526                 if (chance(9, 10))
2527                         return 0;
2528                 ubifs_warn(c, "failing in GC head LEB %d", lnum);
2529         } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2530                    !ubifs_search_bud(c, lnum)) {
2531                 if (chance(19, 20))
2532                         return 0;
2533                 ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2534         } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2535                    c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2536                 if (chance(999, 1000))
2537                         return 0;
2538                 ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2539         } else {
2540                 if (chance(9999, 10000))
2541                         return 0;
2542                 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2543         }
2544
2545         d->pc_happened = 1;
2546         ubifs_warn(c, "========== Power cut emulated ==========");
2547         dump_stack();
2548         return 1;
2549 }
2550
2551 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2552                         unsigned int len)
2553 {
2554         unsigned int from, to, ffs = chance(1, 2);
2555         unsigned char *p = (void *)buf;
2556
2557         from = prandom_u32() % len;
2558         /* Corruption span max to end of write unit */
2559         to = min(len, ALIGN(from + 1, c->max_write_size));
2560
2561         ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2562                    ffs ? "0xFFs" : "random data");
2563
2564         if (ffs)
2565                 memset(p + from, 0xFF, to - from);
2566         else
2567                 prandom_bytes(p + from, to - from);
2568
2569         return to;
2570 }
2571
2572 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2573                   int offs, int len)
2574 {
2575         int err, failing;
2576
2577         if (dbg_is_power_cut(c))
2578                 return -EROFS;
2579
2580         failing = power_cut_emulated(c, lnum, 1);
2581         if (failing) {
2582                 len = corrupt_data(c, buf, len);
2583                 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2584                            len, lnum, offs);
2585         }
2586         err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2587         if (err)
2588                 return err;
2589         if (failing)
2590                 return -EROFS;
2591         return 0;
2592 }
2593
2594 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2595                    int len)
2596 {
2597         int err;
2598
2599         if (dbg_is_power_cut(c))
2600                 return -EROFS;
2601         if (power_cut_emulated(c, lnum, 1))
2602                 return -EROFS;
2603         err = ubi_leb_change(c->ubi, lnum, buf, len);
2604         if (err)
2605                 return err;
2606         if (power_cut_emulated(c, lnum, 1))
2607                 return -EROFS;
2608         return 0;
2609 }
2610
2611 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2612 {
2613         int err;
2614
2615         if (dbg_is_power_cut(c))
2616                 return -EROFS;
2617         if (power_cut_emulated(c, lnum, 0))
2618                 return -EROFS;
2619         err = ubi_leb_unmap(c->ubi, lnum);
2620         if (err)
2621                 return err;
2622         if (power_cut_emulated(c, lnum, 0))
2623                 return -EROFS;
2624         return 0;
2625 }
2626
2627 int dbg_leb_map(struct ubifs_info *c, int lnum)
2628 {
2629         int err;
2630
2631         if (dbg_is_power_cut(c))
2632                 return -EROFS;
2633         if (power_cut_emulated(c, lnum, 0))
2634                 return -EROFS;
2635         err = ubi_leb_map(c->ubi, lnum);
2636         if (err)
2637                 return err;
2638         if (power_cut_emulated(c, lnum, 0))
2639                 return -EROFS;
2640         return 0;
2641 }
2642
2643 /*
2644  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2645  * contain the stuff specific to particular file-system mounts.
2646  */
2647 static struct dentry *dfs_rootdir;
2648
2649 static int dfs_file_open(struct inode *inode, struct file *file)
2650 {
2651         file->private_data = inode->i_private;
2652         return nonseekable_open(inode, file);
2653 }
2654
2655 /**
2656  * provide_user_output - provide output to the user reading a debugfs file.
2657  * @val: boolean value for the answer
2658  * @u: the buffer to store the answer at
2659  * @count: size of the buffer
2660  * @ppos: position in the @u output buffer
2661  *
2662  * This is a simple helper function which stores @val boolean value in the user
2663  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2664  * bytes written to @u in case of success and a negative error code in case of
2665  * failure.
2666  */
2667 static int provide_user_output(int val, char __user *u, size_t count,
2668                                loff_t *ppos)
2669 {
2670         char buf[3];
2671
2672         if (val)
2673                 buf[0] = '1';
2674         else
2675                 buf[0] = '0';
2676         buf[1] = '\n';
2677         buf[2] = 0x00;
2678
2679         return simple_read_from_buffer(u, count, ppos, buf, 2);
2680 }
2681
2682 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2683                              loff_t *ppos)
2684 {
2685         struct dentry *dent = file->f_path.dentry;
2686         struct ubifs_info *c = file->private_data;
2687         struct ubifs_debug_info *d = c->dbg;
2688         int val;
2689
2690         if (dent == d->dfs_chk_gen)
2691                 val = d->chk_gen;
2692         else if (dent == d->dfs_chk_index)
2693                 val = d->chk_index;
2694         else if (dent == d->dfs_chk_orph)
2695                 val = d->chk_orph;
2696         else if (dent == d->dfs_chk_lprops)
2697                 val = d->chk_lprops;
2698         else if (dent == d->dfs_chk_fs)
2699                 val = d->chk_fs;
2700         else if (dent == d->dfs_tst_rcvry)
2701                 val = d->tst_rcvry;
2702         else if (dent == d->dfs_ro_error)
2703                 val = c->ro_error;
2704         else
2705                 return -EINVAL;
2706
2707         return provide_user_output(val, u, count, ppos);
2708 }
2709
2710 /**
2711  * interpret_user_input - interpret user debugfs file input.
2712  * @u: user-provided buffer with the input
2713  * @count: buffer size
2714  *
2715  * This is a helper function which interpret user input to a boolean UBIFS
2716  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2717  * in case of failure.
2718  */
2719 static int interpret_user_input(const char __user *u, size_t count)
2720 {
2721         size_t buf_size;
2722         char buf[8];
2723
2724         buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2725         if (copy_from_user(buf, u, buf_size))
2726                 return -EFAULT;
2727
2728         if (buf[0] == '1')
2729                 return 1;
2730         else if (buf[0] == '0')
2731                 return 0;
2732
2733         return -EINVAL;
2734 }
2735
2736 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2737                               size_t count, loff_t *ppos)
2738 {
2739         struct ubifs_info *c = file->private_data;
2740         struct ubifs_debug_info *d = c->dbg;
2741         struct dentry *dent = file->f_path.dentry;
2742         int val;
2743
2744         /*
2745          * TODO: this is racy - the file-system might have already been
2746          * unmounted and we'd oops in this case. The plan is to fix it with
2747          * help of 'iterate_supers_type()' which we should have in v3.0: when
2748          * a debugfs opened, we rember FS's UUID in file->private_data. Then
2749          * whenever we access the FS via a debugfs file, we iterate all UBIFS
2750          * superblocks and fine the one with the same UUID, and take the
2751          * locking right.
2752          *
2753          * The other way to go suggested by Al Viro is to create a separate
2754          * 'ubifs-debug' file-system instead.
2755          */
2756         if (file->f_path.dentry == d->dfs_dump_lprops) {
2757                 ubifs_dump_lprops(c);
2758                 return count;
2759         }
2760         if (file->f_path.dentry == d->dfs_dump_budg) {
2761                 ubifs_dump_budg(c, &c->bi);
2762                 return count;
2763         }
2764         if (file->f_path.dentry == d->dfs_dump_tnc) {
2765                 mutex_lock(&c->tnc_mutex);
2766                 ubifs_dump_tnc(c);
2767                 mutex_unlock(&c->tnc_mutex);
2768                 return count;
2769         }
2770
2771         val = interpret_user_input(u, count);
2772         if (val < 0)
2773                 return val;
2774
2775         if (dent == d->dfs_chk_gen)
2776                 d->chk_gen = val;
2777         else if (dent == d->dfs_chk_index)
2778                 d->chk_index = val;
2779         else if (dent == d->dfs_chk_orph)
2780                 d->chk_orph = val;
2781         else if (dent == d->dfs_chk_lprops)
2782                 d->chk_lprops = val;
2783         else if (dent == d->dfs_chk_fs)
2784                 d->chk_fs = val;
2785         else if (dent == d->dfs_tst_rcvry)
2786                 d->tst_rcvry = val;
2787         else if (dent == d->dfs_ro_error)
2788                 c->ro_error = !!val;
2789         else
2790                 return -EINVAL;
2791
2792         return count;
2793 }
2794
2795 static const struct file_operations dfs_fops = {
2796         .open = dfs_file_open,
2797         .read = dfs_file_read,
2798         .write = dfs_file_write,
2799         .owner = THIS_MODULE,
2800         .llseek = no_llseek,
2801 };
2802
2803 /**
2804  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2805  * @c: UBIFS file-system description object
2806  *
2807  * This function creates all debugfs files for this instance of UBIFS. Returns
2808  * zero in case of success and a negative error code in case of failure.
2809  *
2810  * Note, the only reason we have not merged this function with the
2811  * 'ubifs_debugging_init()' function is because it is better to initialize
2812  * debugfs interfaces at the very end of the mount process, and remove them at
2813  * the very beginning of the mount process.
2814  */
2815 int dbg_debugfs_init_fs(struct ubifs_info *c)
2816 {
2817         int err, n;
2818         const char *fname;
2819         struct dentry *dent;
2820         struct ubifs_debug_info *d = c->dbg;
2821
2822         if (!IS_ENABLED(CONFIG_DEBUG_FS))
2823                 return 0;
2824
2825         n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2826                      c->vi.ubi_num, c->vi.vol_id);
2827         if (n == UBIFS_DFS_DIR_LEN) {
2828                 /* The array size is too small */
2829                 fname = UBIFS_DFS_DIR_NAME;
2830                 dent = ERR_PTR(-EINVAL);
2831                 goto out;
2832         }
2833
2834         fname = d->dfs_dir_name;
2835         dent = debugfs_create_dir(fname, dfs_rootdir);
2836         if (IS_ERR_OR_NULL(dent))
2837                 goto out;
2838         d->dfs_dir = dent;
2839
2840         fname = "dump_lprops";
2841         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2842         if (IS_ERR_OR_NULL(dent))
2843                 goto out_remove;
2844         d->dfs_dump_lprops = dent;
2845
2846         fname = "dump_budg";
2847         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2848         if (IS_ERR_OR_NULL(dent))
2849                 goto out_remove;
2850         d->dfs_dump_budg = dent;
2851
2852         fname = "dump_tnc";
2853         dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2854         if (IS_ERR_OR_NULL(dent))
2855                 goto out_remove;
2856         d->dfs_dump_tnc = dent;
2857
2858         fname = "chk_general";
2859         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2860                                    &dfs_fops);
2861         if (IS_ERR_OR_NULL(dent))
2862                 goto out_remove;
2863         d->dfs_chk_gen = dent;
2864
2865         fname = "chk_index";
2866         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2867                                    &dfs_fops);
2868         if (IS_ERR_OR_NULL(dent))
2869                 goto out_remove;
2870         d->dfs_chk_index = dent;
2871
2872         fname = "chk_orphans";
2873         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2874                                    &dfs_fops);
2875         if (IS_ERR_OR_NULL(dent))
2876                 goto out_remove;
2877         d->dfs_chk_orph = dent;
2878
2879         fname = "chk_lprops";
2880         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2881                                    &dfs_fops);
2882         if (IS_ERR_OR_NULL(dent))
2883                 goto out_remove;
2884         d->dfs_chk_lprops = dent;
2885
2886         fname = "chk_fs";
2887         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2888                                    &dfs_fops);
2889         if (IS_ERR_OR_NULL(dent))
2890                 goto out_remove;
2891         d->dfs_chk_fs = dent;
2892
2893         fname = "tst_recovery";
2894         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2895                                    &dfs_fops);
2896         if (IS_ERR_OR_NULL(dent))
2897                 goto out_remove;
2898         d->dfs_tst_rcvry = dent;
2899
2900         fname = "ro_error";
2901         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2902                                    &dfs_fops);
2903         if (IS_ERR_OR_NULL(dent))
2904                 goto out_remove;
2905         d->dfs_ro_error = dent;
2906
2907         return 0;
2908
2909 out_remove:
2910         debugfs_remove_recursive(d->dfs_dir);
2911 out:
2912         err = dent ? PTR_ERR(dent) : -ENODEV;
2913         ubifs_err(c, "cannot create \"%s\" debugfs file or directory, error %d\n",
2914                   fname, err);
2915         return err;
2916 }
2917
2918 /**
2919  * dbg_debugfs_exit_fs - remove all debugfs files.
2920  * @c: UBIFS file-system description object
2921  */
2922 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2923 {
2924         if (IS_ENABLED(CONFIG_DEBUG_FS))
2925                 debugfs_remove_recursive(c->dbg->dfs_dir);
2926 }
2927
2928 struct ubifs_global_debug_info ubifs_dbg;
2929
2930 static struct dentry *dfs_chk_gen;
2931 static struct dentry *dfs_chk_index;
2932 static struct dentry *dfs_chk_orph;
2933 static struct dentry *dfs_chk_lprops;
2934 static struct dentry *dfs_chk_fs;
2935 static struct dentry *dfs_tst_rcvry;
2936
2937 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2938                                     size_t count, loff_t *ppos)
2939 {
2940         struct dentry *dent = file->f_path.dentry;
2941         int val;
2942
2943         if (dent == dfs_chk_gen)
2944                 val = ubifs_dbg.chk_gen;
2945         else if (dent == dfs_chk_index)
2946                 val = ubifs_dbg.chk_index;
2947         else if (dent == dfs_chk_orph)
2948                 val = ubifs_dbg.chk_orph;
2949         else if (dent == dfs_chk_lprops)
2950                 val = ubifs_dbg.chk_lprops;
2951         else if (dent == dfs_chk_fs)
2952                 val = ubifs_dbg.chk_fs;
2953         else if (dent == dfs_tst_rcvry)
2954                 val = ubifs_dbg.tst_rcvry;
2955         else
2956                 return -EINVAL;
2957
2958         return provide_user_output(val, u, count, ppos);
2959 }
2960
2961 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2962                                      size_t count, loff_t *ppos)
2963 {
2964         struct dentry *dent = file->f_path.dentry;
2965         int val;
2966
2967         val = interpret_user_input(u, count);
2968         if (val < 0)
2969                 return val;
2970
2971         if (dent == dfs_chk_gen)
2972                 ubifs_dbg.chk_gen = val;
2973         else if (dent == dfs_chk_index)
2974                 ubifs_dbg.chk_index = val;
2975         else if (dent == dfs_chk_orph)
2976                 ubifs_dbg.chk_orph = val;
2977         else if (dent == dfs_chk_lprops)
2978                 ubifs_dbg.chk_lprops = val;
2979         else if (dent == dfs_chk_fs)
2980                 ubifs_dbg.chk_fs = val;
2981         else if (dent == dfs_tst_rcvry)
2982                 ubifs_dbg.tst_rcvry = val;
2983         else
2984                 return -EINVAL;
2985
2986         return count;
2987 }
2988
2989 static const struct file_operations dfs_global_fops = {
2990         .read = dfs_global_file_read,
2991         .write = dfs_global_file_write,
2992         .owner = THIS_MODULE,
2993         .llseek = no_llseek,
2994 };
2995
2996 /**
2997  * dbg_debugfs_init - initialize debugfs file-system.
2998  *
2999  * UBIFS uses debugfs file-system to expose various debugging knobs to
3000  * user-space. This function creates "ubifs" directory in the debugfs
3001  * file-system. Returns zero in case of success and a negative error code in
3002  * case of failure.
3003  */
3004 int dbg_debugfs_init(void)
3005 {
3006         int err;
3007         const char *fname;
3008         struct dentry *dent;
3009
3010         if (!IS_ENABLED(CONFIG_DEBUG_FS))
3011                 return 0;
3012
3013         fname = "ubifs";
3014         dent = debugfs_create_dir(fname, NULL);
3015         if (IS_ERR_OR_NULL(dent))
3016                 goto out;
3017         dfs_rootdir = dent;
3018
3019         fname = "chk_general";
3020         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3021                                    &dfs_global_fops);
3022         if (IS_ERR_OR_NULL(dent))
3023                 goto out_remove;
3024         dfs_chk_gen = dent;
3025
3026         fname = "chk_index";
3027         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3028                                    &dfs_global_fops);
3029         if (IS_ERR_OR_NULL(dent))
3030                 goto out_remove;
3031         dfs_chk_index = dent;
3032
3033         fname = "chk_orphans";
3034         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3035                                    &dfs_global_fops);
3036         if (IS_ERR_OR_NULL(dent))
3037                 goto out_remove;
3038         dfs_chk_orph = dent;
3039
3040         fname = "chk_lprops";
3041         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3042                                    &dfs_global_fops);
3043         if (IS_ERR_OR_NULL(dent))
3044                 goto out_remove;
3045         dfs_chk_lprops = dent;
3046
3047         fname = "chk_fs";
3048         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3049                                    &dfs_global_fops);
3050         if (IS_ERR_OR_NULL(dent))
3051                 goto out_remove;
3052         dfs_chk_fs = dent;
3053
3054         fname = "tst_recovery";
3055         dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3056                                    &dfs_global_fops);
3057         if (IS_ERR_OR_NULL(dent))
3058                 goto out_remove;
3059         dfs_tst_rcvry = dent;
3060
3061         return 0;
3062
3063 out_remove:
3064         debugfs_remove_recursive(dfs_rootdir);
3065 out:
3066         err = dent ? PTR_ERR(dent) : -ENODEV;
3067         pr_err("UBIFS error (pid %d): cannot create \"%s\" debugfs file or directory, error %d\n",
3068                current->pid, fname, err);
3069         return err;
3070 }
3071
3072 /**
3073  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3074  */
3075 void dbg_debugfs_exit(void)
3076 {
3077         if (IS_ENABLED(CONFIG_DEBUG_FS))
3078                 debugfs_remove_recursive(dfs_rootdir);
3079 }
3080
3081 /**
3082  * ubifs_debugging_init - initialize UBIFS debugging.
3083  * @c: UBIFS file-system description object
3084  *
3085  * This function initializes debugging-related data for the file system.
3086  * Returns zero in case of success and a negative error code in case of
3087  * failure.
3088  */
3089 int ubifs_debugging_init(struct ubifs_info *c)
3090 {
3091         c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3092         if (!c->dbg)
3093                 return -ENOMEM;
3094
3095         return 0;
3096 }
3097
3098 /**
3099  * ubifs_debugging_exit - free debugging data.
3100  * @c: UBIFS file-system description object
3101  */
3102 void ubifs_debugging_exit(struct ubifs_info *c)
3103 {
3104         kfree(c->dbg);
3105 }