GNU Linux-libre 4.9.337-gnu1
[releases.git] / fs / udf / inode.c
1 /*
2  * inode.c
3  *
4  * PURPOSE
5  *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6  *
7  * COPYRIGHT
8  *  This file is distributed under the terms of the GNU General Public
9  *  License (GPL). Copies of the GPL can be obtained from:
10  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11  *  Each contributing author retains all rights to their own work.
12  *
13  *  (C) 1998 Dave Boynton
14  *  (C) 1998-2004 Ben Fennema
15  *  (C) 1999-2000 Stelias Computing Inc
16  *
17  * HISTORY
18  *
19  *  10/04/98 dgb  Added rudimentary directory functions
20  *  10/07/98      Fully working udf_block_map! It works!
21  *  11/25/98      bmap altered to better support extents
22  *  12/06/98 blf  partition support in udf_iget, udf_block_map
23  *                and udf_read_inode
24  *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25  *                block boundaries (which is not actually allowed)
26  *  12/20/98      added support for strategy 4096
27  *  03/07/99      rewrote udf_block_map (again)
28  *                New funcs, inode_bmap, udf_next_aext
29  *  04/19/99      Support for writing device EA's for major/minor #
30  */
31
32 #include "udfdecl.h"
33 #include <linux/mm.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/writeback.h>
37 #include <linux/slab.h>
38 #include <linux/crc-itu-t.h>
39 #include <linux/mpage.h>
40 #include <linux/uio.h>
41
42 #include "udf_i.h"
43 #include "udf_sb.h"
44
45 MODULE_AUTHOR("Ben Fennema");
46 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47 MODULE_LICENSE("GPL");
48
49 #define EXTENT_MERGE_SIZE 5
50
51 static umode_t udf_convert_permissions(struct fileEntry *);
52 static int udf_update_inode(struct inode *, int);
53 static int udf_sync_inode(struct inode *inode);
54 static int udf_alloc_i_data(struct inode *inode, size_t size);
55 static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
56 static int8_t udf_insert_aext(struct inode *, struct extent_position,
57                               struct kernel_lb_addr, uint32_t);
58 static void udf_split_extents(struct inode *, int *, int, int,
59                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60 static void udf_prealloc_extents(struct inode *, int, int,
61                                  struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62 static void udf_merge_extents(struct inode *,
63                               struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64 static void udf_update_extents(struct inode *,
65                                struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66                                struct extent_position *);
67 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69 static void __udf_clear_extent_cache(struct inode *inode)
70 {
71         struct udf_inode_info *iinfo = UDF_I(inode);
72
73         if (iinfo->cached_extent.lstart != -1) {
74                 brelse(iinfo->cached_extent.epos.bh);
75                 iinfo->cached_extent.lstart = -1;
76         }
77 }
78
79 /* Invalidate extent cache */
80 static void udf_clear_extent_cache(struct inode *inode)
81 {
82         struct udf_inode_info *iinfo = UDF_I(inode);
83
84         spin_lock(&iinfo->i_extent_cache_lock);
85         __udf_clear_extent_cache(inode);
86         spin_unlock(&iinfo->i_extent_cache_lock);
87 }
88
89 /* Return contents of extent cache */
90 static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
91                                  loff_t *lbcount, struct extent_position *pos)
92 {
93         struct udf_inode_info *iinfo = UDF_I(inode);
94         int ret = 0;
95
96         spin_lock(&iinfo->i_extent_cache_lock);
97         if ((iinfo->cached_extent.lstart <= bcount) &&
98             (iinfo->cached_extent.lstart != -1)) {
99                 /* Cache hit */
100                 *lbcount = iinfo->cached_extent.lstart;
101                 memcpy(pos, &iinfo->cached_extent.epos,
102                        sizeof(struct extent_position));
103                 if (pos->bh)
104                         get_bh(pos->bh);
105                 ret = 1;
106         }
107         spin_unlock(&iinfo->i_extent_cache_lock);
108         return ret;
109 }
110
111 /* Add extent to extent cache */
112 static void udf_update_extent_cache(struct inode *inode, loff_t estart,
113                                     struct extent_position *pos, int next_epos)
114 {
115         struct udf_inode_info *iinfo = UDF_I(inode);
116
117         spin_lock(&iinfo->i_extent_cache_lock);
118         /* Invalidate previously cached extent */
119         __udf_clear_extent_cache(inode);
120         if (pos->bh)
121                 get_bh(pos->bh);
122         memcpy(&iinfo->cached_extent.epos, pos,
123                sizeof(struct extent_position));
124         iinfo->cached_extent.lstart = estart;
125         if (next_epos)
126                 switch (iinfo->i_alloc_type) {
127                 case ICBTAG_FLAG_AD_SHORT:
128                         iinfo->cached_extent.epos.offset -=
129                         sizeof(struct short_ad);
130                         break;
131                 case ICBTAG_FLAG_AD_LONG:
132                         iinfo->cached_extent.epos.offset -=
133                         sizeof(struct long_ad);
134                 }
135         spin_unlock(&iinfo->i_extent_cache_lock);
136 }
137
138 void udf_evict_inode(struct inode *inode)
139 {
140         struct udf_inode_info *iinfo = UDF_I(inode);
141         int want_delete = 0;
142
143         if (!is_bad_inode(inode)) {
144                 if (!inode->i_nlink) {
145                         want_delete = 1;
146                         udf_setsize(inode, 0);
147                         udf_update_inode(inode, IS_SYNC(inode));
148                 }
149                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
150                     inode->i_size != iinfo->i_lenExtents) {
151                         udf_warn(inode->i_sb,
152                                  "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
153                                  inode->i_ino, inode->i_mode,
154                                  (unsigned long long)inode->i_size,
155                                  (unsigned long long)iinfo->i_lenExtents);
156                 }
157         }
158         truncate_inode_pages_final(&inode->i_data);
159         invalidate_inode_buffers(inode);
160         clear_inode(inode);
161         kfree(iinfo->i_ext.i_data);
162         iinfo->i_ext.i_data = NULL;
163         udf_clear_extent_cache(inode);
164         if (want_delete) {
165                 udf_free_inode(inode);
166         }
167 }
168
169 static void udf_write_failed(struct address_space *mapping, loff_t to)
170 {
171         struct inode *inode = mapping->host;
172         struct udf_inode_info *iinfo = UDF_I(inode);
173         loff_t isize = inode->i_size;
174
175         if (to > isize) {
176                 truncate_pagecache(inode, isize);
177                 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
178                         down_write(&iinfo->i_data_sem);
179                         udf_clear_extent_cache(inode);
180                         udf_truncate_extents(inode);
181                         up_write(&iinfo->i_data_sem);
182                 }
183         }
184 }
185
186 static int udf_writepage(struct page *page, struct writeback_control *wbc)
187 {
188         return block_write_full_page(page, udf_get_block, wbc);
189 }
190
191 static int udf_writepages(struct address_space *mapping,
192                         struct writeback_control *wbc)
193 {
194         return mpage_writepages(mapping, wbc, udf_get_block);
195 }
196
197 static int udf_readpage(struct file *file, struct page *page)
198 {
199         return mpage_readpage(page, udf_get_block);
200 }
201
202 static int udf_readpages(struct file *file, struct address_space *mapping,
203                         struct list_head *pages, unsigned nr_pages)
204 {
205         return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
206 }
207
208 static int udf_write_begin(struct file *file, struct address_space *mapping,
209                         loff_t pos, unsigned len, unsigned flags,
210                         struct page **pagep, void **fsdata)
211 {
212         int ret;
213
214         ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
215         if (unlikely(ret))
216                 udf_write_failed(mapping, pos + len);
217         return ret;
218 }
219
220 static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
221 {
222         struct file *file = iocb->ki_filp;
223         struct address_space *mapping = file->f_mapping;
224         struct inode *inode = mapping->host;
225         size_t count = iov_iter_count(iter);
226         ssize_t ret;
227
228         ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
229         if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
230                 udf_write_failed(mapping, iocb->ki_pos + count);
231         return ret;
232 }
233
234 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
235 {
236         return generic_block_bmap(mapping, block, udf_get_block);
237 }
238
239 const struct address_space_operations udf_aops = {
240         .readpage       = udf_readpage,
241         .readpages      = udf_readpages,
242         .writepage      = udf_writepage,
243         .writepages     = udf_writepages,
244         .write_begin    = udf_write_begin,
245         .write_end      = generic_write_end,
246         .direct_IO      = udf_direct_IO,
247         .bmap           = udf_bmap,
248 };
249
250 /*
251  * Expand file stored in ICB to a normal one-block-file
252  *
253  * This function requires i_data_sem for writing and releases it.
254  * This function requires i_mutex held
255  */
256 int udf_expand_file_adinicb(struct inode *inode)
257 {
258         struct page *page;
259         char *kaddr;
260         struct udf_inode_info *iinfo = UDF_I(inode);
261         int err;
262
263         WARN_ON_ONCE(!inode_is_locked(inode));
264         if (!iinfo->i_lenAlloc) {
265                 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
266                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
267                 else
268                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
269                 /* from now on we have normal address_space methods */
270                 inode->i_data.a_ops = &udf_aops;
271                 up_write(&iinfo->i_data_sem);
272                 mark_inode_dirty(inode);
273                 return 0;
274         }
275         /*
276          * Release i_data_sem so that we can lock a page - page lock ranks
277          * above i_data_sem. i_mutex still protects us against file changes.
278          */
279         up_write(&iinfo->i_data_sem);
280
281         page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
282         if (!page)
283                 return -ENOMEM;
284
285         if (!PageUptodate(page)) {
286                 kaddr = kmap(page);
287                 memset(kaddr + iinfo->i_lenAlloc, 0x00,
288                        PAGE_SIZE - iinfo->i_lenAlloc);
289                 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
290                         iinfo->i_lenAlloc);
291                 flush_dcache_page(page);
292                 SetPageUptodate(page);
293                 kunmap(page);
294         }
295         down_write(&iinfo->i_data_sem);
296         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
297                iinfo->i_lenAlloc);
298         iinfo->i_lenAlloc = 0;
299         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
300                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
301         else
302                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
303         /* from now on we have normal address_space methods */
304         inode->i_data.a_ops = &udf_aops;
305         set_page_dirty(page);
306         unlock_page(page);
307         up_write(&iinfo->i_data_sem);
308         err = filemap_fdatawrite(inode->i_mapping);
309         if (err) {
310                 /* Restore everything back so that we don't lose data... */
311                 lock_page(page);
312                 kaddr = kmap(page);
313                 down_write(&iinfo->i_data_sem);
314                 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315                        inode->i_size);
316                 kunmap(page);
317                 unlock_page(page);
318                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319                 inode->i_data.a_ops = &udf_adinicb_aops;
320                 iinfo->i_lenAlloc = inode->i_size;
321                 up_write(&iinfo->i_data_sem);
322         }
323         put_page(page);
324         mark_inode_dirty(inode);
325
326         return err;
327 }
328
329 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
330                                            int *err)
331 {
332         int newblock;
333         struct buffer_head *dbh = NULL;
334         struct kernel_lb_addr eloc;
335         uint8_t alloctype;
336         struct extent_position epos;
337
338         struct udf_fileident_bh sfibh, dfibh;
339         loff_t f_pos = udf_ext0_offset(inode);
340         int size = udf_ext0_offset(inode) + inode->i_size;
341         struct fileIdentDesc cfi, *sfi, *dfi;
342         struct udf_inode_info *iinfo = UDF_I(inode);
343
344         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
345                 alloctype = ICBTAG_FLAG_AD_SHORT;
346         else
347                 alloctype = ICBTAG_FLAG_AD_LONG;
348
349         if (!inode->i_size) {
350                 iinfo->i_alloc_type = alloctype;
351                 mark_inode_dirty(inode);
352                 return NULL;
353         }
354
355         /* alloc block, and copy data to it */
356         *block = udf_new_block(inode->i_sb, inode,
357                                iinfo->i_location.partitionReferenceNum,
358                                iinfo->i_location.logicalBlockNum, err);
359         if (!(*block))
360                 return NULL;
361         newblock = udf_get_pblock(inode->i_sb, *block,
362                                   iinfo->i_location.partitionReferenceNum,
363                                 0);
364         if (!newblock)
365                 return NULL;
366         dbh = udf_tgetblk(inode->i_sb, newblock);
367         if (!dbh)
368                 return NULL;
369         lock_buffer(dbh);
370         memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
371         set_buffer_uptodate(dbh);
372         unlock_buffer(dbh);
373         mark_buffer_dirty_inode(dbh, inode);
374
375         sfibh.soffset = sfibh.eoffset =
376                         f_pos & (inode->i_sb->s_blocksize - 1);
377         sfibh.sbh = sfibh.ebh = NULL;
378         dfibh.soffset = dfibh.eoffset = 0;
379         dfibh.sbh = dfibh.ebh = dbh;
380         while (f_pos < size) {
381                 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
382                 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
383                                          NULL, NULL, NULL);
384                 if (!sfi) {
385                         brelse(dbh);
386                         return NULL;
387                 }
388                 iinfo->i_alloc_type = alloctype;
389                 sfi->descTag.tagLocation = cpu_to_le32(*block);
390                 dfibh.soffset = dfibh.eoffset;
391                 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
392                 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
393                 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
394                                  sfi->fileIdent +
395                                         le16_to_cpu(sfi->lengthOfImpUse))) {
396                         iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
397                         brelse(dbh);
398                         return NULL;
399                 }
400         }
401         mark_buffer_dirty_inode(dbh, inode);
402
403         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
404                 iinfo->i_lenAlloc);
405         iinfo->i_lenAlloc = 0;
406         eloc.logicalBlockNum = *block;
407         eloc.partitionReferenceNum =
408                                 iinfo->i_location.partitionReferenceNum;
409         iinfo->i_lenExtents = inode->i_size;
410         epos.bh = NULL;
411         epos.block = iinfo->i_location;
412         epos.offset = udf_file_entry_alloc_offset(inode);
413         udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
414         /* UniqueID stuff */
415
416         brelse(epos.bh);
417         mark_inode_dirty(inode);
418         return dbh;
419 }
420
421 static int udf_get_block(struct inode *inode, sector_t block,
422                          struct buffer_head *bh_result, int create)
423 {
424         int err, new;
425         sector_t phys = 0;
426         struct udf_inode_info *iinfo;
427
428         if (!create) {
429                 phys = udf_block_map(inode, block);
430                 if (phys)
431                         map_bh(bh_result, inode->i_sb, phys);
432                 return 0;
433         }
434
435         err = -EIO;
436         new = 0;
437         iinfo = UDF_I(inode);
438
439         down_write(&iinfo->i_data_sem);
440         if (block == iinfo->i_next_alloc_block + 1) {
441                 iinfo->i_next_alloc_block++;
442                 iinfo->i_next_alloc_goal++;
443         }
444
445         /*
446          * Block beyond EOF and prealloc extents? Just discard preallocation
447          * as it is not useful and complicates things.
448          */
449         if (((loff_t)block) << inode->i_blkbits > iinfo->i_lenExtents)
450                 udf_discard_prealloc(inode);
451         udf_clear_extent_cache(inode);
452         phys = inode_getblk(inode, block, &err, &new);
453         if (!phys)
454                 goto abort;
455
456         if (new)
457                 set_buffer_new(bh_result);
458         map_bh(bh_result, inode->i_sb, phys);
459
460 abort:
461         up_write(&iinfo->i_data_sem);
462         return err;
463 }
464
465 static struct buffer_head *udf_getblk(struct inode *inode, long block,
466                                       int create, int *err)
467 {
468         struct buffer_head *bh;
469         struct buffer_head dummy;
470
471         dummy.b_state = 0;
472         dummy.b_blocknr = -1000;
473         *err = udf_get_block(inode, block, &dummy, create);
474         if (!*err && buffer_mapped(&dummy)) {
475                 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
476                 if (buffer_new(&dummy)) {
477                         lock_buffer(bh);
478                         memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
479                         set_buffer_uptodate(bh);
480                         unlock_buffer(bh);
481                         mark_buffer_dirty_inode(bh, inode);
482                 }
483                 return bh;
484         }
485
486         return NULL;
487 }
488
489 /* Extend the file with new blocks totaling 'new_block_bytes',
490  * return the number of extents added
491  */
492 static int udf_do_extend_file(struct inode *inode,
493                               struct extent_position *last_pos,
494                               struct kernel_long_ad *last_ext,
495                               loff_t new_block_bytes)
496 {
497         uint32_t add;
498         int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
499         struct super_block *sb = inode->i_sb;
500         struct udf_inode_info *iinfo;
501         int err;
502
503         /* The previous extent is fake and we should not extend by anything
504          * - there's nothing to do... */
505         if (!new_block_bytes && fake)
506                 return 0;
507
508         iinfo = UDF_I(inode);
509         /* Round the last extent up to a multiple of block size */
510         if (last_ext->extLength & (sb->s_blocksize - 1)) {
511                 last_ext->extLength =
512                         (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
513                         (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
514                           sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
515                 iinfo->i_lenExtents =
516                         (iinfo->i_lenExtents + sb->s_blocksize - 1) &
517                         ~(sb->s_blocksize - 1);
518         }
519
520         /* Can we merge with the previous extent? */
521         if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
522                                         EXT_NOT_RECORDED_NOT_ALLOCATED) {
523                 add = (1 << 30) - sb->s_blocksize -
524                         (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
525                 if (add > new_block_bytes)
526                         add = new_block_bytes;
527                 new_block_bytes -= add;
528                 last_ext->extLength += add;
529         }
530
531         if (fake) {
532                 udf_add_aext(inode, last_pos, &last_ext->extLocation,
533                              last_ext->extLength, 1);
534                 count++;
535         } else {
536                 struct kernel_lb_addr tmploc;
537                 uint32_t tmplen;
538
539                 udf_write_aext(inode, last_pos, &last_ext->extLocation,
540                                 last_ext->extLength, 1);
541
542                 /*
543                  * We've rewritten the last extent. If we are going to add
544                  * more extents, we may need to enter possible following
545                  * empty indirect extent.
546                  */
547                 if (new_block_bytes)
548                         udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
549         }
550
551         /* Managed to do everything necessary? */
552         if (!new_block_bytes)
553                 goto out;
554
555         /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
556         last_ext->extLocation.logicalBlockNum = 0;
557         last_ext->extLocation.partitionReferenceNum = 0;
558         add = (1 << 30) - sb->s_blocksize;
559         last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
560
561         /* Create enough extents to cover the whole hole */
562         while (new_block_bytes > add) {
563                 new_block_bytes -= add;
564                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
565                                    last_ext->extLength, 1);
566                 if (err)
567                         return err;
568                 count++;
569         }
570         if (new_block_bytes) {
571                 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
572                         new_block_bytes;
573                 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
574                                    last_ext->extLength, 1);
575                 if (err)
576                         return err;
577                 count++;
578         }
579
580 out:
581         /* last_pos should point to the last written extent... */
582         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
583                 last_pos->offset -= sizeof(struct short_ad);
584         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
585                 last_pos->offset -= sizeof(struct long_ad);
586         else
587                 return -EIO;
588
589         return count;
590 }
591
592 /* Extend the final block of the file to final_block_len bytes */
593 static void udf_do_extend_final_block(struct inode *inode,
594                                       struct extent_position *last_pos,
595                                       struct kernel_long_ad *last_ext,
596                                       uint32_t new_elen)
597 {
598         uint32_t added_bytes;
599
600         /*
601          * Extent already large enough? It may be already rounded up to block
602          * size...
603          */
604         if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
605                 return;
606         added_bytes = (last_ext->extLength & UDF_EXTENT_LENGTH_MASK) - new_elen;
607         last_ext->extLength += added_bytes;
608         UDF_I(inode)->i_lenExtents += added_bytes;
609
610         udf_write_aext(inode, last_pos, &last_ext->extLocation,
611                         last_ext->extLength, 1);
612 }
613
614 static int udf_extend_file(struct inode *inode, loff_t newsize)
615 {
616
617         struct extent_position epos;
618         struct kernel_lb_addr eloc;
619         uint32_t elen;
620         int8_t etype;
621         struct super_block *sb = inode->i_sb;
622         sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
623         loff_t new_elen;
624         int adsize;
625         struct udf_inode_info *iinfo = UDF_I(inode);
626         struct kernel_long_ad extent;
627         int err = 0;
628         bool within_last_ext;
629
630         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
631                 adsize = sizeof(struct short_ad);
632         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
633                 adsize = sizeof(struct long_ad);
634         else
635                 BUG();
636
637         /*
638          * When creating hole in file, just don't bother with preserving
639          * preallocation. It likely won't be very useful anyway.
640          */
641         udf_discard_prealloc(inode);
642
643         etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
644         within_last_ext = (etype != -1);
645         /* We don't expect extents past EOF... */
646         WARN_ON_ONCE(within_last_ext &&
647                      elen > ((loff_t)offset + 1) << inode->i_blkbits);
648
649         if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
650             (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
651                 /* File has no extents at all or has empty last
652                  * indirect extent! Create a fake extent... */
653                 extent.extLocation.logicalBlockNum = 0;
654                 extent.extLocation.partitionReferenceNum = 0;
655                 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
656         } else {
657                 epos.offset -= adsize;
658                 etype = udf_next_aext(inode, &epos, &extent.extLocation,
659                                       &extent.extLength, 0);
660                 extent.extLength |= etype << 30;
661         }
662
663         new_elen = ((loff_t)offset << inode->i_blkbits) |
664                                         (newsize & (sb->s_blocksize - 1));
665
666         /* File has extent covering the new size (could happen when extending
667          * inside a block)?
668          */
669         if (within_last_ext) {
670                 /* Extending file within the last file block */
671                 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
672         } else {
673                 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
674         }
675
676         if (err < 0)
677                 goto out;
678         err = 0;
679         iinfo->i_lenExtents = newsize;
680 out:
681         brelse(epos.bh);
682         return err;
683 }
684
685 static sector_t inode_getblk(struct inode *inode, sector_t block,
686                              int *err, int *new)
687 {
688         struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
689         struct extent_position prev_epos, cur_epos, next_epos;
690         int count = 0, startnum = 0, endnum = 0;
691         uint32_t elen = 0, tmpelen;
692         struct kernel_lb_addr eloc, tmpeloc;
693         int c = 1;
694         loff_t lbcount = 0, b_off = 0;
695         uint32_t newblocknum, newblock;
696         sector_t offset = 0;
697         int8_t etype;
698         struct udf_inode_info *iinfo = UDF_I(inode);
699         int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
700         int lastblock = 0;
701         bool isBeyondEOF;
702
703         *err = 0;
704         *new = 0;
705         prev_epos.offset = udf_file_entry_alloc_offset(inode);
706         prev_epos.block = iinfo->i_location;
707         prev_epos.bh = NULL;
708         cur_epos = next_epos = prev_epos;
709         b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
710
711         /* find the extent which contains the block we are looking for.
712            alternate between laarr[0] and laarr[1] for locations of the
713            current extent, and the previous extent */
714         do {
715                 if (prev_epos.bh != cur_epos.bh) {
716                         brelse(prev_epos.bh);
717                         get_bh(cur_epos.bh);
718                         prev_epos.bh = cur_epos.bh;
719                 }
720                 if (cur_epos.bh != next_epos.bh) {
721                         brelse(cur_epos.bh);
722                         get_bh(next_epos.bh);
723                         cur_epos.bh = next_epos.bh;
724                 }
725
726                 lbcount += elen;
727
728                 prev_epos.block = cur_epos.block;
729                 cur_epos.block = next_epos.block;
730
731                 prev_epos.offset = cur_epos.offset;
732                 cur_epos.offset = next_epos.offset;
733
734                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
735                 if (etype == -1)
736                         break;
737
738                 c = !c;
739
740                 laarr[c].extLength = (etype << 30) | elen;
741                 laarr[c].extLocation = eloc;
742
743                 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
744                         pgoal = eloc.logicalBlockNum +
745                                 ((elen + inode->i_sb->s_blocksize - 1) >>
746                                  inode->i_sb->s_blocksize_bits);
747
748                 count++;
749         } while (lbcount + elen <= b_off);
750
751         b_off -= lbcount;
752         offset = b_off >> inode->i_sb->s_blocksize_bits;
753         /*
754          * Move prev_epos and cur_epos into indirect extent if we are at
755          * the pointer to it
756          */
757         udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
758         udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
759
760         /* if the extent is allocated and recorded, return the block
761            if the extent is not a multiple of the blocksize, round up */
762
763         if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
764                 if (elen & (inode->i_sb->s_blocksize - 1)) {
765                         elen = EXT_RECORDED_ALLOCATED |
766                                 ((elen + inode->i_sb->s_blocksize - 1) &
767                                  ~(inode->i_sb->s_blocksize - 1));
768                         udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
769                 }
770                 brelse(prev_epos.bh);
771                 brelse(cur_epos.bh);
772                 brelse(next_epos.bh);
773                 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774                 return newblock;
775         }
776
777         /* Are we beyond EOF and preallocated extent? */
778         if (etype == -1) {
779                 int ret;
780                 loff_t hole_len;
781
782                 isBeyondEOF = true;
783                 if (count) {
784                         if (c)
785                                 laarr[0] = laarr[1];
786                         startnum = 1;
787                 } else {
788                         /* Create a fake extent when there's not one */
789                         memset(&laarr[0].extLocation, 0x00,
790                                 sizeof(struct kernel_lb_addr));
791                         laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
792                         /* Will udf_do_extend_file() create real extent from
793                            a fake one? */
794                         startnum = (offset > 0);
795                 }
796                 /* Create extents for the hole between EOF and offset */
797                 hole_len = (loff_t)offset << inode->i_blkbits;
798                 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
799                 if (ret < 0) {
800                         brelse(prev_epos.bh);
801                         brelse(cur_epos.bh);
802                         brelse(next_epos.bh);
803                         *err = ret;
804                         return 0;
805                 }
806                 c = 0;
807                 offset = 0;
808                 count += ret;
809                 /* We are not covered by a preallocated extent? */
810                 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
811                                                 EXT_NOT_RECORDED_ALLOCATED) {
812                         /* Is there any real extent? - otherwise we overwrite
813                          * the fake one... */
814                         if (count)
815                                 c = !c;
816                         laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
817                                 inode->i_sb->s_blocksize;
818                         memset(&laarr[c].extLocation, 0x00,
819                                 sizeof(struct kernel_lb_addr));
820                         count++;
821                 }
822                 endnum = c + 1;
823                 lastblock = 1;
824         } else {
825                 isBeyondEOF = false;
826                 endnum = startnum = ((count > 2) ? 2 : count);
827
828                 /* if the current extent is in position 0,
829                    swap it with the previous */
830                 if (!c && count != 1) {
831                         laarr[2] = laarr[0];
832                         laarr[0] = laarr[1];
833                         laarr[1] = laarr[2];
834                         c = 1;
835                 }
836
837                 /* if the current block is located in an extent,
838                    read the next extent */
839                 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
840                 if (etype != -1) {
841                         laarr[c + 1].extLength = (etype << 30) | elen;
842                         laarr[c + 1].extLocation = eloc;
843                         count++;
844                         startnum++;
845                         endnum++;
846                 } else
847                         lastblock = 1;
848         }
849
850         /* if the current extent is not recorded but allocated, get the
851          * block in the extent corresponding to the requested block */
852         if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
853                 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
854         else { /* otherwise, allocate a new block */
855                 if (iinfo->i_next_alloc_block == block)
856                         goal = iinfo->i_next_alloc_goal;
857
858                 if (!goal) {
859                         if (!(goal = pgoal)) /* XXX: what was intended here? */
860                                 goal = iinfo->i_location.logicalBlockNum + 1;
861                 }
862
863                 newblocknum = udf_new_block(inode->i_sb, inode,
864                                 iinfo->i_location.partitionReferenceNum,
865                                 goal, err);
866                 if (!newblocknum) {
867                         brelse(prev_epos.bh);
868                         brelse(cur_epos.bh);
869                         brelse(next_epos.bh);
870                         *err = -ENOSPC;
871                         return 0;
872                 }
873                 if (isBeyondEOF)
874                         iinfo->i_lenExtents += inode->i_sb->s_blocksize;
875         }
876
877         /* if the extent the requsted block is located in contains multiple
878          * blocks, split the extent into at most three extents. blocks prior
879          * to requested block, requested block, and blocks after requested
880          * block */
881         udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
882
883 #ifdef UDF_PREALLOCATE
884         /* We preallocate blocks only for regular files. It also makes sense
885          * for directories but there's a problem when to drop the
886          * preallocation. We might use some delayed work for that but I feel
887          * it's overengineering for a filesystem like UDF. */
888         if (S_ISREG(inode->i_mode))
889                 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
890 #endif
891
892         /* merge any continuous blocks in laarr */
893         udf_merge_extents(inode, laarr, &endnum);
894
895         /* write back the new extents, inserting new extents if the new number
896          * of extents is greater than the old number, and deleting extents if
897          * the new number of extents is less than the old number */
898         udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
899
900         brelse(prev_epos.bh);
901         brelse(cur_epos.bh);
902         brelse(next_epos.bh);
903
904         newblock = udf_get_pblock(inode->i_sb, newblocknum,
905                                 iinfo->i_location.partitionReferenceNum, 0);
906         if (!newblock) {
907                 *err = -EIO;
908                 return 0;
909         }
910         *new = 1;
911         iinfo->i_next_alloc_block = block;
912         iinfo->i_next_alloc_goal = newblocknum;
913         inode->i_ctime = current_time(inode);
914
915         if (IS_SYNC(inode))
916                 udf_sync_inode(inode);
917         else
918                 mark_inode_dirty(inode);
919
920         return newblock;
921 }
922
923 static void udf_split_extents(struct inode *inode, int *c, int offset,
924                               int newblocknum,
925                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
926                               int *endnum)
927 {
928         unsigned long blocksize = inode->i_sb->s_blocksize;
929         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
930
931         if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
932             (laarr[*c].extLength >> 30) ==
933                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
934                 int curr = *c;
935                 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
936                             blocksize - 1) >> blocksize_bits;
937                 int8_t etype = (laarr[curr].extLength >> 30);
938
939                 if (blen == 1)
940                         ;
941                 else if (!offset || blen == offset + 1) {
942                         laarr[curr + 2] = laarr[curr + 1];
943                         laarr[curr + 1] = laarr[curr];
944                 } else {
945                         laarr[curr + 3] = laarr[curr + 1];
946                         laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
947                 }
948
949                 if (offset) {
950                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
951                                 udf_free_blocks(inode->i_sb, inode,
952                                                 &laarr[curr].extLocation,
953                                                 0, offset);
954                                 laarr[curr].extLength =
955                                         EXT_NOT_RECORDED_NOT_ALLOCATED |
956                                         (offset << blocksize_bits);
957                                 laarr[curr].extLocation.logicalBlockNum = 0;
958                                 laarr[curr].extLocation.
959                                                 partitionReferenceNum = 0;
960                         } else
961                                 laarr[curr].extLength = (etype << 30) |
962                                         (offset << blocksize_bits);
963                         curr++;
964                         (*c)++;
965                         (*endnum)++;
966                 }
967
968                 laarr[curr].extLocation.logicalBlockNum = newblocknum;
969                 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
970                         laarr[curr].extLocation.partitionReferenceNum =
971                                 UDF_I(inode)->i_location.partitionReferenceNum;
972                 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
973                         blocksize;
974                 curr++;
975
976                 if (blen != offset + 1) {
977                         if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
978                                 laarr[curr].extLocation.logicalBlockNum +=
979                                                                 offset + 1;
980                         laarr[curr].extLength = (etype << 30) |
981                                 ((blen - (offset + 1)) << blocksize_bits);
982                         curr++;
983                         (*endnum)++;
984                 }
985         }
986 }
987
988 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
989                                  struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
990                                  int *endnum)
991 {
992         int start, length = 0, currlength = 0, i;
993
994         if (*endnum >= (c + 1)) {
995                 if (!lastblock)
996                         return;
997                 else
998                         start = c;
999         } else {
1000                 if ((laarr[c + 1].extLength >> 30) ==
1001                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1002                         start = c + 1;
1003                         length = currlength =
1004                                 (((laarr[c + 1].extLength &
1005                                         UDF_EXTENT_LENGTH_MASK) +
1006                                 inode->i_sb->s_blocksize - 1) >>
1007                                 inode->i_sb->s_blocksize_bits);
1008                 } else
1009                         start = c;
1010         }
1011
1012         for (i = start + 1; i <= *endnum; i++) {
1013                 if (i == *endnum) {
1014                         if (lastblock)
1015                                 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1016                 } else if ((laarr[i].extLength >> 30) ==
1017                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1018                         length += (((laarr[i].extLength &
1019                                                 UDF_EXTENT_LENGTH_MASK) +
1020                                     inode->i_sb->s_blocksize - 1) >>
1021                                     inode->i_sb->s_blocksize_bits);
1022                 } else
1023                         break;
1024         }
1025
1026         if (length) {
1027                 int next = laarr[start].extLocation.logicalBlockNum +
1028                         (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1029                           inode->i_sb->s_blocksize - 1) >>
1030                           inode->i_sb->s_blocksize_bits);
1031                 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1032                                 laarr[start].extLocation.partitionReferenceNum,
1033                                 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1034                                 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1035                                 currlength);
1036                 if (numalloc)   {
1037                         if (start == (c + 1))
1038                                 laarr[start].extLength +=
1039                                         (numalloc <<
1040                                          inode->i_sb->s_blocksize_bits);
1041                         else {
1042                                 memmove(&laarr[c + 2], &laarr[c + 1],
1043                                         sizeof(struct long_ad) * (*endnum - (c + 1)));
1044                                 (*endnum)++;
1045                                 laarr[c + 1].extLocation.logicalBlockNum = next;
1046                                 laarr[c + 1].extLocation.partitionReferenceNum =
1047                                         laarr[c].extLocation.
1048                                                         partitionReferenceNum;
1049                                 laarr[c + 1].extLength =
1050                                         EXT_NOT_RECORDED_ALLOCATED |
1051                                         (numalloc <<
1052                                          inode->i_sb->s_blocksize_bits);
1053                                 start = c + 1;
1054                         }
1055
1056                         for (i = start + 1; numalloc && i < *endnum; i++) {
1057                                 int elen = ((laarr[i].extLength &
1058                                                 UDF_EXTENT_LENGTH_MASK) +
1059                                             inode->i_sb->s_blocksize - 1) >>
1060                                             inode->i_sb->s_blocksize_bits;
1061
1062                                 if (elen > numalloc) {
1063                                         laarr[i].extLength -=
1064                                                 (numalloc <<
1065                                                  inode->i_sb->s_blocksize_bits);
1066                                         numalloc = 0;
1067                                 } else {
1068                                         numalloc -= elen;
1069                                         if (*endnum > (i + 1))
1070                                                 memmove(&laarr[i],
1071                                                         &laarr[i + 1],
1072                                                         sizeof(struct long_ad) *
1073                                                         (*endnum - (i + 1)));
1074                                         i--;
1075                                         (*endnum)--;
1076                                 }
1077                         }
1078                         UDF_I(inode)->i_lenExtents +=
1079                                 numalloc << inode->i_sb->s_blocksize_bits;
1080                 }
1081         }
1082 }
1083
1084 static void udf_merge_extents(struct inode *inode,
1085                               struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1086                               int *endnum)
1087 {
1088         int i;
1089         unsigned long blocksize = inode->i_sb->s_blocksize;
1090         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1091
1092         for (i = 0; i < (*endnum - 1); i++) {
1093                 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1094                 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1095
1096                 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1097                         (((li->extLength >> 30) ==
1098                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1099                         ((lip1->extLocation.logicalBlockNum -
1100                           li->extLocation.logicalBlockNum) ==
1101                         (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1102                         blocksize - 1) >> blocksize_bits)))) {
1103
1104                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1105                                 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1106                                 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1107                                 lip1->extLength = (lip1->extLength -
1108                                                   (li->extLength &
1109                                                    UDF_EXTENT_LENGTH_MASK) +
1110                                                    UDF_EXTENT_LENGTH_MASK) &
1111                                                         ~(blocksize - 1);
1112                                 li->extLength = (li->extLength &
1113                                                  UDF_EXTENT_FLAG_MASK) +
1114                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1115                                                 blocksize;
1116                                 lip1->extLocation.logicalBlockNum =
1117                                         li->extLocation.logicalBlockNum +
1118                                         ((li->extLength &
1119                                                 UDF_EXTENT_LENGTH_MASK) >>
1120                                                 blocksize_bits);
1121                         } else {
1122                                 li->extLength = lip1->extLength +
1123                                         (((li->extLength &
1124                                                 UDF_EXTENT_LENGTH_MASK) +
1125                                          blocksize - 1) & ~(blocksize - 1));
1126                                 if (*endnum > (i + 2))
1127                                         memmove(&laarr[i + 1], &laarr[i + 2],
1128                                                 sizeof(struct long_ad) *
1129                                                 (*endnum - (i + 2)));
1130                                 i--;
1131                                 (*endnum)--;
1132                         }
1133                 } else if (((li->extLength >> 30) ==
1134                                 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1135                            ((lip1->extLength >> 30) ==
1136                                 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1137                         udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1138                                         ((li->extLength &
1139                                           UDF_EXTENT_LENGTH_MASK) +
1140                                          blocksize - 1) >> blocksize_bits);
1141                         li->extLocation.logicalBlockNum = 0;
1142                         li->extLocation.partitionReferenceNum = 0;
1143
1144                         if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1145                              (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1146                              blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1147                                 lip1->extLength = (lip1->extLength -
1148                                                    (li->extLength &
1149                                                    UDF_EXTENT_LENGTH_MASK) +
1150                                                    UDF_EXTENT_LENGTH_MASK) &
1151                                                    ~(blocksize - 1);
1152                                 li->extLength = (li->extLength &
1153                                                  UDF_EXTENT_FLAG_MASK) +
1154                                                 (UDF_EXTENT_LENGTH_MASK + 1) -
1155                                                 blocksize;
1156                         } else {
1157                                 li->extLength = lip1->extLength +
1158                                         (((li->extLength &
1159                                                 UDF_EXTENT_LENGTH_MASK) +
1160                                           blocksize - 1) & ~(blocksize - 1));
1161                                 if (*endnum > (i + 2))
1162                                         memmove(&laarr[i + 1], &laarr[i + 2],
1163                                                 sizeof(struct long_ad) *
1164                                                 (*endnum - (i + 2)));
1165                                 i--;
1166                                 (*endnum)--;
1167                         }
1168                 } else if ((li->extLength >> 30) ==
1169                                         (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1170                         udf_free_blocks(inode->i_sb, inode,
1171                                         &li->extLocation, 0,
1172                                         ((li->extLength &
1173                                                 UDF_EXTENT_LENGTH_MASK) +
1174                                          blocksize - 1) >> blocksize_bits);
1175                         li->extLocation.logicalBlockNum = 0;
1176                         li->extLocation.partitionReferenceNum = 0;
1177                         li->extLength = (li->extLength &
1178                                                 UDF_EXTENT_LENGTH_MASK) |
1179                                                 EXT_NOT_RECORDED_NOT_ALLOCATED;
1180                 }
1181         }
1182 }
1183
1184 static void udf_update_extents(struct inode *inode,
1185                                struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1186                                int startnum, int endnum,
1187                                struct extent_position *epos)
1188 {
1189         int start = 0, i;
1190         struct kernel_lb_addr tmploc;
1191         uint32_t tmplen;
1192
1193         if (startnum > endnum) {
1194                 for (i = 0; i < (startnum - endnum); i++)
1195                         udf_delete_aext(inode, *epos);
1196         } else if (startnum < endnum) {
1197                 for (i = 0; i < (endnum - startnum); i++) {
1198                         udf_insert_aext(inode, *epos, laarr[i].extLocation,
1199                                         laarr[i].extLength);
1200                         udf_next_aext(inode, epos, &laarr[i].extLocation,
1201                                       &laarr[i].extLength, 1);
1202                         start++;
1203                 }
1204         }
1205
1206         for (i = start; i < endnum; i++) {
1207                 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1208                 udf_write_aext(inode, epos, &laarr[i].extLocation,
1209                                laarr[i].extLength, 1);
1210         }
1211 }
1212
1213 struct buffer_head *udf_bread(struct inode *inode, int block,
1214                               int create, int *err)
1215 {
1216         struct buffer_head *bh = NULL;
1217
1218         bh = udf_getblk(inode, block, create, err);
1219         if (!bh)
1220                 return NULL;
1221
1222         if (buffer_uptodate(bh))
1223                 return bh;
1224
1225         ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1226
1227         wait_on_buffer(bh);
1228         if (buffer_uptodate(bh))
1229                 return bh;
1230
1231         brelse(bh);
1232         *err = -EIO;
1233         return NULL;
1234 }
1235
1236 int udf_setsize(struct inode *inode, loff_t newsize)
1237 {
1238         int err;
1239         struct udf_inode_info *iinfo;
1240         int bsize = i_blocksize(inode);
1241
1242         if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1243               S_ISLNK(inode->i_mode)))
1244                 return -EINVAL;
1245         if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1246                 return -EPERM;
1247
1248         iinfo = UDF_I(inode);
1249         if (newsize > inode->i_size) {
1250                 down_write(&iinfo->i_data_sem);
1251                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1252                         if (bsize <
1253                             (udf_file_entry_alloc_offset(inode) + newsize)) {
1254                                 err = udf_expand_file_adinicb(inode);
1255                                 if (err)
1256                                         return err;
1257                                 down_write(&iinfo->i_data_sem);
1258                         } else {
1259                                 iinfo->i_lenAlloc = newsize;
1260                                 goto set_size;
1261                         }
1262                 }
1263                 err = udf_extend_file(inode, newsize);
1264                 if (err) {
1265                         up_write(&iinfo->i_data_sem);
1266                         return err;
1267                 }
1268 set_size:
1269                 up_write(&iinfo->i_data_sem);
1270                 truncate_setsize(inode, newsize);
1271         } else {
1272                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1273                         down_write(&iinfo->i_data_sem);
1274                         udf_clear_extent_cache(inode);
1275                         memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1276                                0x00, bsize - newsize -
1277                                udf_file_entry_alloc_offset(inode));
1278                         iinfo->i_lenAlloc = newsize;
1279                         truncate_setsize(inode, newsize);
1280                         up_write(&iinfo->i_data_sem);
1281                         goto update_time;
1282                 }
1283                 err = block_truncate_page(inode->i_mapping, newsize,
1284                                           udf_get_block);
1285                 if (err)
1286                         return err;
1287                 truncate_setsize(inode, newsize);
1288                 down_write(&iinfo->i_data_sem);
1289                 udf_clear_extent_cache(inode);
1290                 udf_truncate_extents(inode);
1291                 up_write(&iinfo->i_data_sem);
1292         }
1293 update_time:
1294         inode->i_mtime = inode->i_ctime = current_time(inode);
1295         if (IS_SYNC(inode))
1296                 udf_sync_inode(inode);
1297         else
1298                 mark_inode_dirty(inode);
1299         return 0;
1300 }
1301
1302 /*
1303  * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1304  * arbitrary - just that we hopefully don't limit any real use of rewritten
1305  * inode on write-once media but avoid looping for too long on corrupted media.
1306  */
1307 #define UDF_MAX_ICB_NESTING 1024
1308
1309 static int udf_read_inode(struct inode *inode, bool hidden_inode)
1310 {
1311         struct buffer_head *bh = NULL;
1312         struct fileEntry *fe;
1313         struct extendedFileEntry *efe;
1314         uint16_t ident;
1315         struct udf_inode_info *iinfo = UDF_I(inode);
1316         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1317         struct kernel_lb_addr *iloc = &iinfo->i_location;
1318         unsigned int link_count;
1319         unsigned int indirections = 0;
1320         int bs = inode->i_sb->s_blocksize;
1321         int ret = -EIO;
1322
1323 reread:
1324         if (iloc->logicalBlockNum >=
1325             sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1326                 udf_debug("block=%d, partition=%d out of range\n",
1327                           iloc->logicalBlockNum, iloc->partitionReferenceNum);
1328                 return -EIO;
1329         }
1330
1331         /*
1332          * Set defaults, but the inode is still incomplete!
1333          * Note: get_new_inode() sets the following on a new inode:
1334          *      i_sb = sb
1335          *      i_no = ino
1336          *      i_flags = sb->s_flags
1337          *      i_state = 0
1338          * clean_inode(): zero fills and sets
1339          *      i_count = 1
1340          *      i_nlink = 1
1341          *      i_op = NULL;
1342          */
1343         bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1344         if (!bh) {
1345                 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1346                 return -EIO;
1347         }
1348
1349         if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1350             ident != TAG_IDENT_USE) {
1351                 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1352                         inode->i_ino, ident);
1353                 goto out;
1354         }
1355
1356         fe = (struct fileEntry *)bh->b_data;
1357         efe = (struct extendedFileEntry *)bh->b_data;
1358
1359         if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1360                 struct buffer_head *ibh;
1361
1362                 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1363                 if (ident == TAG_IDENT_IE && ibh) {
1364                         struct kernel_lb_addr loc;
1365                         struct indirectEntry *ie;
1366
1367                         ie = (struct indirectEntry *)ibh->b_data;
1368                         loc = lelb_to_cpu(ie->indirectICB.extLocation);
1369
1370                         if (ie->indirectICB.extLength) {
1371                                 brelse(ibh);
1372                                 memcpy(&iinfo->i_location, &loc,
1373                                        sizeof(struct kernel_lb_addr));
1374                                 if (++indirections > UDF_MAX_ICB_NESTING) {
1375                                         udf_err(inode->i_sb,
1376                                                 "too many ICBs in ICB hierarchy"
1377                                                 " (max %d supported)\n",
1378                                                 UDF_MAX_ICB_NESTING);
1379                                         goto out;
1380                                 }
1381                                 brelse(bh);
1382                                 goto reread;
1383                         }
1384                 }
1385                 brelse(ibh);
1386         } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1387                 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1388                         le16_to_cpu(fe->icbTag.strategyType));
1389                 goto out;
1390         }
1391         if (fe->icbTag.strategyType == cpu_to_le16(4))
1392                 iinfo->i_strat4096 = 0;
1393         else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1394                 iinfo->i_strat4096 = 1;
1395
1396         iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1397                                                         ICBTAG_FLAG_AD_MASK;
1398         if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1399             iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1400             iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1401                 ret = -EIO;
1402                 goto out;
1403         }
1404         iinfo->i_unique = 0;
1405         iinfo->i_lenEAttr = 0;
1406         iinfo->i_lenExtents = 0;
1407         iinfo->i_lenAlloc = 0;
1408         iinfo->i_next_alloc_block = 0;
1409         iinfo->i_next_alloc_goal = 0;
1410         if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1411                 iinfo->i_efe = 1;
1412                 iinfo->i_use = 0;
1413                 ret = udf_alloc_i_data(inode, bs -
1414                                         sizeof(struct extendedFileEntry));
1415                 if (ret)
1416                         goto out;
1417                 memcpy(iinfo->i_ext.i_data,
1418                        bh->b_data + sizeof(struct extendedFileEntry),
1419                        bs - sizeof(struct extendedFileEntry));
1420         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1421                 iinfo->i_efe = 0;
1422                 iinfo->i_use = 0;
1423                 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1424                 if (ret)
1425                         goto out;
1426                 memcpy(iinfo->i_ext.i_data,
1427                        bh->b_data + sizeof(struct fileEntry),
1428                        bs - sizeof(struct fileEntry));
1429         } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1430                 iinfo->i_efe = 0;
1431                 iinfo->i_use = 1;
1432                 iinfo->i_lenAlloc = le32_to_cpu(
1433                                 ((struct unallocSpaceEntry *)bh->b_data)->
1434                                  lengthAllocDescs);
1435                 ret = udf_alloc_i_data(inode, bs -
1436                                         sizeof(struct unallocSpaceEntry));
1437                 if (ret)
1438                         goto out;
1439                 memcpy(iinfo->i_ext.i_data,
1440                        bh->b_data + sizeof(struct unallocSpaceEntry),
1441                        bs - sizeof(struct unallocSpaceEntry));
1442                 return 0;
1443         }
1444
1445         ret = -EIO;
1446         read_lock(&sbi->s_cred_lock);
1447         i_uid_write(inode, le32_to_cpu(fe->uid));
1448         if (!uid_valid(inode->i_uid) ||
1449             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1450             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1451                 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1452
1453         i_gid_write(inode, le32_to_cpu(fe->gid));
1454         if (!gid_valid(inode->i_gid) ||
1455             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1456             UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1457                 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1458
1459         if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1460                         sbi->s_fmode != UDF_INVALID_MODE)
1461                 inode->i_mode = sbi->s_fmode;
1462         else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1463                         sbi->s_dmode != UDF_INVALID_MODE)
1464                 inode->i_mode = sbi->s_dmode;
1465         else
1466                 inode->i_mode = udf_convert_permissions(fe);
1467         inode->i_mode &= ~sbi->s_umask;
1468         read_unlock(&sbi->s_cred_lock);
1469
1470         link_count = le16_to_cpu(fe->fileLinkCount);
1471         if (!link_count) {
1472                 if (!hidden_inode) {
1473                         ret = -ESTALE;
1474                         goto out;
1475                 }
1476                 link_count = 1;
1477         }
1478         set_nlink(inode, link_count);
1479
1480         inode->i_size = le64_to_cpu(fe->informationLength);
1481         iinfo->i_lenExtents = inode->i_size;
1482
1483         if (iinfo->i_efe == 0) {
1484                 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1485                         (inode->i_sb->s_blocksize_bits - 9);
1486
1487                 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1488                         inode->i_atime = sbi->s_record_time;
1489
1490                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1491                                             fe->modificationTime))
1492                         inode->i_mtime = sbi->s_record_time;
1493
1494                 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1495                         inode->i_ctime = sbi->s_record_time;
1496
1497                 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1498                 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1499                 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1500                 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1501         } else {
1502                 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1503                     (inode->i_sb->s_blocksize_bits - 9);
1504
1505                 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1506                         inode->i_atime = sbi->s_record_time;
1507
1508                 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1509                                             efe->modificationTime))
1510                         inode->i_mtime = sbi->s_record_time;
1511
1512                 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1513                         iinfo->i_crtime = sbi->s_record_time;
1514
1515                 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1516                         inode->i_ctime = sbi->s_record_time;
1517
1518                 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1519                 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1520                 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1521                 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1522         }
1523         inode->i_generation = iinfo->i_unique;
1524
1525         /*
1526          * Sanity check length of allocation descriptors and extended attrs to
1527          * avoid integer overflows
1528          */
1529         if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1530                 goto out;
1531         /* Now do exact checks */
1532         if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1533                 goto out;
1534         /* Sanity checks for files in ICB so that we don't get confused later */
1535         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1536                 /*
1537                  * For file in ICB data is stored in allocation descriptor
1538                  * so sizes should match
1539                  */
1540                 if (iinfo->i_lenAlloc != inode->i_size)
1541                         goto out;
1542                 /* File in ICB has to fit in there... */
1543                 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1544                         goto out;
1545         }
1546
1547         switch (fe->icbTag.fileType) {
1548         case ICBTAG_FILE_TYPE_DIRECTORY:
1549                 inode->i_op = &udf_dir_inode_operations;
1550                 inode->i_fop = &udf_dir_operations;
1551                 inode->i_mode |= S_IFDIR;
1552                 inc_nlink(inode);
1553                 break;
1554         case ICBTAG_FILE_TYPE_REALTIME:
1555         case ICBTAG_FILE_TYPE_REGULAR:
1556         case ICBTAG_FILE_TYPE_UNDEF:
1557         case ICBTAG_FILE_TYPE_VAT20:
1558                 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1559                         inode->i_data.a_ops = &udf_adinicb_aops;
1560                 else
1561                         inode->i_data.a_ops = &udf_aops;
1562                 inode->i_op = &udf_file_inode_operations;
1563                 inode->i_fop = &udf_file_operations;
1564                 inode->i_mode |= S_IFREG;
1565                 break;
1566         case ICBTAG_FILE_TYPE_BLOCK:
1567                 inode->i_mode |= S_IFBLK;
1568                 break;
1569         case ICBTAG_FILE_TYPE_CHAR:
1570                 inode->i_mode |= S_IFCHR;
1571                 break;
1572         case ICBTAG_FILE_TYPE_FIFO:
1573                 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1574                 break;
1575         case ICBTAG_FILE_TYPE_SOCKET:
1576                 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1577                 break;
1578         case ICBTAG_FILE_TYPE_SYMLINK:
1579                 inode->i_data.a_ops = &udf_symlink_aops;
1580                 inode->i_op = &page_symlink_inode_operations;
1581                 inode_nohighmem(inode);
1582                 inode->i_mode = S_IFLNK | S_IRWXUGO;
1583                 break;
1584         case ICBTAG_FILE_TYPE_MAIN:
1585                 udf_debug("METADATA FILE-----\n");
1586                 break;
1587         case ICBTAG_FILE_TYPE_MIRROR:
1588                 udf_debug("METADATA MIRROR FILE-----\n");
1589                 break;
1590         case ICBTAG_FILE_TYPE_BITMAP:
1591                 udf_debug("METADATA BITMAP FILE-----\n");
1592                 break;
1593         default:
1594                 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1595                         inode->i_ino, fe->icbTag.fileType);
1596                 goto out;
1597         }
1598         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1599                 struct deviceSpec *dsea =
1600                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1601                 if (dsea) {
1602                         init_special_inode(inode, inode->i_mode,
1603                                 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1604                                       le32_to_cpu(dsea->minorDeviceIdent)));
1605                         /* Developer ID ??? */
1606                 } else
1607                         goto out;
1608         }
1609         ret = 0;
1610 out:
1611         brelse(bh);
1612         return ret;
1613 }
1614
1615 static int udf_alloc_i_data(struct inode *inode, size_t size)
1616 {
1617         struct udf_inode_info *iinfo = UDF_I(inode);
1618         iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1619
1620         if (!iinfo->i_ext.i_data) {
1621                 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1622                         inode->i_ino);
1623                 return -ENOMEM;
1624         }
1625
1626         return 0;
1627 }
1628
1629 static umode_t udf_convert_permissions(struct fileEntry *fe)
1630 {
1631         umode_t mode;
1632         uint32_t permissions;
1633         uint32_t flags;
1634
1635         permissions = le32_to_cpu(fe->permissions);
1636         flags = le16_to_cpu(fe->icbTag.flags);
1637
1638         mode =  ((permissions) & S_IRWXO) |
1639                 ((permissions >> 2) & S_IRWXG) |
1640                 ((permissions >> 4) & S_IRWXU) |
1641                 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1642                 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1643                 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1644
1645         return mode;
1646 }
1647
1648 int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1649 {
1650         return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1651 }
1652
1653 static int udf_sync_inode(struct inode *inode)
1654 {
1655         return udf_update_inode(inode, 1);
1656 }
1657
1658 static int udf_update_inode(struct inode *inode, int do_sync)
1659 {
1660         struct buffer_head *bh = NULL;
1661         struct fileEntry *fe;
1662         struct extendedFileEntry *efe;
1663         uint64_t lb_recorded;
1664         uint32_t udfperms;
1665         uint16_t icbflags;
1666         uint16_t crclen;
1667         int err = 0;
1668         struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1669         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1670         struct udf_inode_info *iinfo = UDF_I(inode);
1671
1672         bh = udf_tgetblk(inode->i_sb,
1673                         udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1674         if (!bh) {
1675                 udf_debug("getblk failure\n");
1676                 return -EIO;
1677         }
1678
1679         lock_buffer(bh);
1680         memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1681         fe = (struct fileEntry *)bh->b_data;
1682         efe = (struct extendedFileEntry *)bh->b_data;
1683
1684         if (iinfo->i_use) {
1685                 struct unallocSpaceEntry *use =
1686                         (struct unallocSpaceEntry *)bh->b_data;
1687
1688                 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1689                 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1690                        iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1691                                         sizeof(struct unallocSpaceEntry));
1692                 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1693                 crclen = sizeof(struct unallocSpaceEntry);
1694
1695                 goto finish;
1696         }
1697
1698         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1699                 fe->uid = cpu_to_le32(-1);
1700         else
1701                 fe->uid = cpu_to_le32(i_uid_read(inode));
1702
1703         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1704                 fe->gid = cpu_to_le32(-1);
1705         else
1706                 fe->gid = cpu_to_le32(i_gid_read(inode));
1707
1708         udfperms = ((inode->i_mode & S_IRWXO)) |
1709                    ((inode->i_mode & S_IRWXG) << 2) |
1710                    ((inode->i_mode & S_IRWXU) << 4);
1711
1712         udfperms |= (le32_to_cpu(fe->permissions) &
1713                     (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1714                      FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1715                      FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1716         fe->permissions = cpu_to_le32(udfperms);
1717
1718         if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1719                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1720         else
1721                 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1722
1723         fe->informationLength = cpu_to_le64(inode->i_size);
1724
1725         if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1726                 struct regid *eid;
1727                 struct deviceSpec *dsea =
1728                         (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1729                 if (!dsea) {
1730                         dsea = (struct deviceSpec *)
1731                                 udf_add_extendedattr(inode,
1732                                                      sizeof(struct deviceSpec) +
1733                                                      sizeof(struct regid), 12, 0x3);
1734                         dsea->attrType = cpu_to_le32(12);
1735                         dsea->attrSubtype = 1;
1736                         dsea->attrLength = cpu_to_le32(
1737                                                 sizeof(struct deviceSpec) +
1738                                                 sizeof(struct regid));
1739                         dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1740                 }
1741                 eid = (struct regid *)dsea->impUse;
1742                 memset(eid, 0, sizeof(struct regid));
1743                 strcpy(eid->ident, UDF_ID_DEVELOPER);
1744                 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1745                 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1746                 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1747                 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1748         }
1749
1750         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1751                 lb_recorded = 0; /* No extents => no blocks! */
1752         else
1753                 lb_recorded =
1754                         (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1755                         (blocksize_bits - 9);
1756
1757         if (iinfo->i_efe == 0) {
1758                 memcpy(bh->b_data + sizeof(struct fileEntry),
1759                        iinfo->i_ext.i_data,
1760                        inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1761                 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1762
1763                 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1764                 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1765                 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1766                 memset(&(fe->impIdent), 0, sizeof(struct regid));
1767                 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1768                 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1769                 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1770                 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1771                 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1772                 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1773                 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1774                 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1775                 crclen = sizeof(struct fileEntry);
1776         } else {
1777                 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1778                        iinfo->i_ext.i_data,
1779                        inode->i_sb->s_blocksize -
1780                                         sizeof(struct extendedFileEntry));
1781                 efe->objectSize = cpu_to_le64(inode->i_size);
1782                 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1783
1784                 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1785                     (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1786                      iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1787                         iinfo->i_crtime = inode->i_atime;
1788
1789                 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1790                     (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1791                      iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1792                         iinfo->i_crtime = inode->i_mtime;
1793
1794                 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1795                     (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1796                      iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1797                         iinfo->i_crtime = inode->i_ctime;
1798
1799                 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1800                 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1801                 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1802                 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1803
1804                 memset(&(efe->impIdent), 0, sizeof(struct regid));
1805                 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1806                 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1807                 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1808                 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1809                 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1810                 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1811                 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1812                 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1813                 crclen = sizeof(struct extendedFileEntry);
1814         }
1815
1816 finish:
1817         if (iinfo->i_strat4096) {
1818                 fe->icbTag.strategyType = cpu_to_le16(4096);
1819                 fe->icbTag.strategyParameter = cpu_to_le16(1);
1820                 fe->icbTag.numEntries = cpu_to_le16(2);
1821         } else {
1822                 fe->icbTag.strategyType = cpu_to_le16(4);
1823                 fe->icbTag.numEntries = cpu_to_le16(1);
1824         }
1825
1826         if (iinfo->i_use)
1827                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1828         else if (S_ISDIR(inode->i_mode))
1829                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1830         else if (S_ISREG(inode->i_mode))
1831                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1832         else if (S_ISLNK(inode->i_mode))
1833                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1834         else if (S_ISBLK(inode->i_mode))
1835                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1836         else if (S_ISCHR(inode->i_mode))
1837                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1838         else if (S_ISFIFO(inode->i_mode))
1839                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1840         else if (S_ISSOCK(inode->i_mode))
1841                 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1842
1843         icbflags =      iinfo->i_alloc_type |
1844                         ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1845                         ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1846                         ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1847                         (le16_to_cpu(fe->icbTag.flags) &
1848                                 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1849                                 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1850
1851         fe->icbTag.flags = cpu_to_le16(icbflags);
1852         if (sbi->s_udfrev >= 0x0200)
1853                 fe->descTag.descVersion = cpu_to_le16(3);
1854         else
1855                 fe->descTag.descVersion = cpu_to_le16(2);
1856         fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1857         fe->descTag.tagLocation = cpu_to_le32(
1858                                         iinfo->i_location.logicalBlockNum);
1859         crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1860         fe->descTag.descCRCLength = cpu_to_le16(crclen);
1861         fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1862                                                   crclen));
1863         fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1864
1865         set_buffer_uptodate(bh);
1866         unlock_buffer(bh);
1867
1868         /* write the data blocks */
1869         mark_buffer_dirty(bh);
1870         if (do_sync) {
1871                 sync_dirty_buffer(bh);
1872                 if (buffer_write_io_error(bh)) {
1873                         udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1874                                  inode->i_ino);
1875                         err = -EIO;
1876                 }
1877         }
1878         brelse(bh);
1879
1880         return err;
1881 }
1882
1883 struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1884                          bool hidden_inode)
1885 {
1886         unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1887         struct inode *inode = iget_locked(sb, block);
1888         int err;
1889
1890         if (!inode)
1891                 return ERR_PTR(-ENOMEM);
1892
1893         if (!(inode->i_state & I_NEW))
1894                 return inode;
1895
1896         memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1897         err = udf_read_inode(inode, hidden_inode);
1898         if (err < 0) {
1899                 iget_failed(inode);
1900                 return ERR_PTR(err);
1901         }
1902         unlock_new_inode(inode);
1903
1904         return inode;
1905 }
1906
1907 int udf_setup_indirect_aext(struct inode *inode, int block,
1908                             struct extent_position *epos)
1909 {
1910         struct super_block *sb = inode->i_sb;
1911         struct buffer_head *bh;
1912         struct allocExtDesc *aed;
1913         struct extent_position nepos;
1914         struct kernel_lb_addr neloc;
1915         int ver, adsize;
1916
1917         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1918                 adsize = sizeof(struct short_ad);
1919         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1920                 adsize = sizeof(struct long_ad);
1921         else
1922                 return -EIO;
1923
1924         neloc.logicalBlockNum = block;
1925         neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1926
1927         bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1928         if (!bh)
1929                 return -EIO;
1930         lock_buffer(bh);
1931         memset(bh->b_data, 0x00, sb->s_blocksize);
1932         set_buffer_uptodate(bh);
1933         unlock_buffer(bh);
1934         mark_buffer_dirty_inode(bh, inode);
1935
1936         aed = (struct allocExtDesc *)(bh->b_data);
1937         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1938                 aed->previousAllocExtLocation =
1939                                 cpu_to_le32(epos->block.logicalBlockNum);
1940         }
1941         aed->lengthAllocDescs = cpu_to_le32(0);
1942         if (UDF_SB(sb)->s_udfrev >= 0x0200)
1943                 ver = 3;
1944         else
1945                 ver = 2;
1946         udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1947                     sizeof(struct tag));
1948
1949         nepos.block = neloc;
1950         nepos.offset = sizeof(struct allocExtDesc);
1951         nepos.bh = bh;
1952
1953         /*
1954          * Do we have to copy current last extent to make space for indirect
1955          * one?
1956          */
1957         if (epos->offset + adsize > sb->s_blocksize) {
1958                 struct kernel_lb_addr cp_loc;
1959                 uint32_t cp_len;
1960                 int cp_type;
1961
1962                 epos->offset -= adsize;
1963                 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1964                 cp_len |= ((uint32_t)cp_type) << 30;
1965
1966                 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1967                 udf_write_aext(inode, epos, &nepos.block,
1968                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1969         } else {
1970                 __udf_add_aext(inode, epos, &nepos.block,
1971                                sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1972         }
1973
1974         brelse(epos->bh);
1975         *epos = nepos;
1976
1977         return 0;
1978 }
1979
1980 /*
1981  * Append extent at the given position - should be the first free one in inode
1982  * / indirect extent. This function assumes there is enough space in the inode
1983  * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1984  */
1985 int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1986                    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987 {
1988         struct udf_inode_info *iinfo = UDF_I(inode);
1989         struct allocExtDesc *aed;
1990         int adsize;
1991
1992         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1993                 adsize = sizeof(struct short_ad);
1994         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1995                 adsize = sizeof(struct long_ad);
1996         else
1997                 return -EIO;
1998
1999         if (!epos->bh) {
2000                 WARN_ON(iinfo->i_lenAlloc !=
2001                         epos->offset - udf_file_entry_alloc_offset(inode));
2002         } else {
2003                 aed = (struct allocExtDesc *)epos->bh->b_data;
2004                 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2005                         epos->offset - sizeof(struct allocExtDesc));
2006                 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2007         }
2008
2009         udf_write_aext(inode, epos, eloc, elen, inc);
2010
2011         if (!epos->bh) {
2012                 iinfo->i_lenAlloc += adsize;
2013                 mark_inode_dirty(inode);
2014         } else {
2015                 aed = (struct allocExtDesc *)epos->bh->b_data;
2016                 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2017                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2018                                 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2019                         udf_update_tag(epos->bh->b_data,
2020                                         epos->offset + (inc ? 0 : adsize));
2021                 else
2022                         udf_update_tag(epos->bh->b_data,
2023                                         sizeof(struct allocExtDesc));
2024                 mark_buffer_dirty_inode(epos->bh, inode);
2025         }
2026
2027         return 0;
2028 }
2029
2030 /*
2031  * Append extent at given position - should be the first free one in inode
2032  * / indirect extent. Takes care of allocating and linking indirect blocks.
2033  */
2034 int udf_add_aext(struct inode *inode, struct extent_position *epos,
2035                  struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2036 {
2037         int adsize;
2038         struct super_block *sb = inode->i_sb;
2039
2040         if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2041                 adsize = sizeof(struct short_ad);
2042         else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2043                 adsize = sizeof(struct long_ad);
2044         else
2045                 return -EIO;
2046
2047         if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2048                 int err;
2049                 int new_block;
2050
2051                 new_block = udf_new_block(sb, NULL,
2052                                           epos->block.partitionReferenceNum,
2053                                           epos->block.logicalBlockNum, &err);
2054                 if (!new_block)
2055                         return -ENOSPC;
2056
2057                 err = udf_setup_indirect_aext(inode, new_block, epos);
2058                 if (err)
2059                         return err;
2060         }
2061
2062         return __udf_add_aext(inode, epos, eloc, elen, inc);
2063 }
2064
2065 void udf_write_aext(struct inode *inode, struct extent_position *epos,
2066                     struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2067 {
2068         int adsize;
2069         uint8_t *ptr;
2070         struct short_ad *sad;
2071         struct long_ad *lad;
2072         struct udf_inode_info *iinfo = UDF_I(inode);
2073
2074         if (!epos->bh)
2075                 ptr = iinfo->i_ext.i_data + epos->offset -
2076                         udf_file_entry_alloc_offset(inode) +
2077                         iinfo->i_lenEAttr;
2078         else
2079                 ptr = epos->bh->b_data + epos->offset;
2080
2081         switch (iinfo->i_alloc_type) {
2082         case ICBTAG_FLAG_AD_SHORT:
2083                 sad = (struct short_ad *)ptr;
2084                 sad->extLength = cpu_to_le32(elen);
2085                 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2086                 adsize = sizeof(struct short_ad);
2087                 break;
2088         case ICBTAG_FLAG_AD_LONG:
2089                 lad = (struct long_ad *)ptr;
2090                 lad->extLength = cpu_to_le32(elen);
2091                 lad->extLocation = cpu_to_lelb(*eloc);
2092                 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2093                 adsize = sizeof(struct long_ad);
2094                 break;
2095         default:
2096                 return;
2097         }
2098
2099         if (epos->bh) {
2100                 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2101                     UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2102                         struct allocExtDesc *aed =
2103                                 (struct allocExtDesc *)epos->bh->b_data;
2104                         udf_update_tag(epos->bh->b_data,
2105                                        le32_to_cpu(aed->lengthAllocDescs) +
2106                                        sizeof(struct allocExtDesc));
2107                 }
2108                 mark_buffer_dirty_inode(epos->bh, inode);
2109         } else {
2110                 mark_inode_dirty(inode);
2111         }
2112
2113         if (inc)
2114                 epos->offset += adsize;
2115 }
2116
2117 /*
2118  * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2119  * someone does some weird stuff.
2120  */
2121 #define UDF_MAX_INDIR_EXTS 16
2122
2123 int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2124                      struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2125 {
2126         int8_t etype;
2127         unsigned int indirections = 0;
2128
2129         while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2130                (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2131                 int block;
2132
2133                 if (++indirections > UDF_MAX_INDIR_EXTS) {
2134                         udf_err(inode->i_sb,
2135                                 "too many indirect extents in inode %lu\n",
2136                                 inode->i_ino);
2137                         return -1;
2138                 }
2139
2140                 epos->block = *eloc;
2141                 epos->offset = sizeof(struct allocExtDesc);
2142                 brelse(epos->bh);
2143                 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2144                 epos->bh = udf_tread(inode->i_sb, block);
2145                 if (!epos->bh) {
2146                         udf_debug("reading block %d failed!\n", block);
2147                         return -1;
2148                 }
2149         }
2150
2151         return etype;
2152 }
2153
2154 int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2155                         struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2156 {
2157         int alen;
2158         int8_t etype;
2159         uint8_t *ptr;
2160         struct short_ad *sad;
2161         struct long_ad *lad;
2162         struct udf_inode_info *iinfo = UDF_I(inode);
2163
2164         if (!epos->bh) {
2165                 if (!epos->offset)
2166                         epos->offset = udf_file_entry_alloc_offset(inode);
2167                 ptr = iinfo->i_ext.i_data + epos->offset -
2168                         udf_file_entry_alloc_offset(inode) +
2169                         iinfo->i_lenEAttr;
2170                 alen = udf_file_entry_alloc_offset(inode) +
2171                                                         iinfo->i_lenAlloc;
2172         } else {
2173                 if (!epos->offset)
2174                         epos->offset = sizeof(struct allocExtDesc);
2175                 ptr = epos->bh->b_data + epos->offset;
2176                 alen = sizeof(struct allocExtDesc) +
2177                         le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2178                                                         lengthAllocDescs);
2179         }
2180
2181         switch (iinfo->i_alloc_type) {
2182         case ICBTAG_FLAG_AD_SHORT:
2183                 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2184                 if (!sad)
2185                         return -1;
2186                 etype = le32_to_cpu(sad->extLength) >> 30;
2187                 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2188                 eloc->partitionReferenceNum =
2189                                 iinfo->i_location.partitionReferenceNum;
2190                 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2191                 break;
2192         case ICBTAG_FLAG_AD_LONG:
2193                 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2194                 if (!lad)
2195                         return -1;
2196                 etype = le32_to_cpu(lad->extLength) >> 30;
2197                 *eloc = lelb_to_cpu(lad->extLocation);
2198                 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2199                 break;
2200         default:
2201                 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2202                 return -1;
2203         }
2204
2205         return etype;
2206 }
2207
2208 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2209                               struct kernel_lb_addr neloc, uint32_t nelen)
2210 {
2211         struct kernel_lb_addr oeloc;
2212         uint32_t oelen;
2213         int8_t etype;
2214
2215         if (epos.bh)
2216                 get_bh(epos.bh);
2217
2218         while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2219                 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2220                 neloc = oeloc;
2221                 nelen = (etype << 30) | oelen;
2222         }
2223         udf_add_aext(inode, &epos, &neloc, nelen, 1);
2224         brelse(epos.bh);
2225
2226         return (nelen >> 30);
2227 }
2228
2229 int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2230 {
2231         struct extent_position oepos;
2232         int adsize;
2233         int8_t etype;
2234         struct allocExtDesc *aed;
2235         struct udf_inode_info *iinfo;
2236         struct kernel_lb_addr eloc;
2237         uint32_t elen;
2238
2239         if (epos.bh) {
2240                 get_bh(epos.bh);
2241                 get_bh(epos.bh);
2242         }
2243
2244         iinfo = UDF_I(inode);
2245         if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2246                 adsize = sizeof(struct short_ad);
2247         else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2248                 adsize = sizeof(struct long_ad);
2249         else
2250                 adsize = 0;
2251
2252         oepos = epos;
2253         if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2254                 return -1;
2255
2256         while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2257                 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2258                 if (oepos.bh != epos.bh) {
2259                         oepos.block = epos.block;
2260                         brelse(oepos.bh);
2261                         get_bh(epos.bh);
2262                         oepos.bh = epos.bh;
2263                         oepos.offset = epos.offset - adsize;
2264                 }
2265         }
2266         memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2267         elen = 0;
2268
2269         if (epos.bh != oepos.bh) {
2270                 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2271                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2272                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2273                 if (!oepos.bh) {
2274                         iinfo->i_lenAlloc -= (adsize * 2);
2275                         mark_inode_dirty(inode);
2276                 } else {
2277                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2278                         le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2279                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2280                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2281                                 udf_update_tag(oepos.bh->b_data,
2282                                                 oepos.offset - (2 * adsize));
2283                         else
2284                                 udf_update_tag(oepos.bh->b_data,
2285                                                 sizeof(struct allocExtDesc));
2286                         mark_buffer_dirty_inode(oepos.bh, inode);
2287                 }
2288         } else {
2289                 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2290                 if (!oepos.bh) {
2291                         iinfo->i_lenAlloc -= adsize;
2292                         mark_inode_dirty(inode);
2293                 } else {
2294                         aed = (struct allocExtDesc *)oepos.bh->b_data;
2295                         le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2296                         if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2297                             UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2298                                 udf_update_tag(oepos.bh->b_data,
2299                                                 epos.offset - adsize);
2300                         else
2301                                 udf_update_tag(oepos.bh->b_data,
2302                                                 sizeof(struct allocExtDesc));
2303                         mark_buffer_dirty_inode(oepos.bh, inode);
2304                 }
2305         }
2306
2307         brelse(epos.bh);
2308         brelse(oepos.bh);
2309
2310         return (elen >> 30);
2311 }
2312
2313 int8_t inode_bmap(struct inode *inode, sector_t block,
2314                   struct extent_position *pos, struct kernel_lb_addr *eloc,
2315                   uint32_t *elen, sector_t *offset)
2316 {
2317         unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2318         loff_t lbcount = 0, bcount =
2319             (loff_t) block << blocksize_bits;
2320         int8_t etype;
2321         struct udf_inode_info *iinfo;
2322
2323         iinfo = UDF_I(inode);
2324         if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2325                 pos->offset = 0;
2326                 pos->block = iinfo->i_location;
2327                 pos->bh = NULL;
2328         }
2329         *elen = 0;
2330         do {
2331                 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2332                 if (etype == -1) {
2333                         *offset = (bcount - lbcount) >> blocksize_bits;
2334                         iinfo->i_lenExtents = lbcount;
2335                         return -1;
2336                 }
2337                 lbcount += *elen;
2338         } while (lbcount <= bcount);
2339         /* update extent cache */
2340         udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2341         *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2342
2343         return etype;
2344 }
2345
2346 long udf_block_map(struct inode *inode, sector_t block)
2347 {
2348         struct kernel_lb_addr eloc;
2349         uint32_t elen;
2350         sector_t offset;
2351         struct extent_position epos = {};
2352         int ret;
2353
2354         down_read(&UDF_I(inode)->i_data_sem);
2355
2356         if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2357                                                 (EXT_RECORDED_ALLOCATED >> 30))
2358                 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2359         else
2360                 ret = 0;
2361
2362         up_read(&UDF_I(inode)->i_data_sem);
2363         brelse(epos.bh);
2364
2365         if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2366                 return udf_fixed_to_variable(ret);
2367         else
2368                 return ret;
2369 }