GNU Linux-libre 4.4.288-gnu1
[releases.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 enum { UDF_MAX_LINKS = 0xffff };
82
83 /* These are the "meat" - everything else is stuffing */
84 static int udf_fill_super(struct super_block *, void *, int);
85 static void udf_put_super(struct super_block *);
86 static int udf_sync_fs(struct super_block *, int);
87 static int udf_remount_fs(struct super_block *, int *, char *);
88 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
89 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
90                             struct kernel_lb_addr *);
91 static void udf_load_fileset(struct super_block *, struct buffer_head *,
92                              struct kernel_lb_addr *);
93 static void udf_open_lvid(struct super_block *);
94 static void udf_close_lvid(struct super_block *);
95 static unsigned int udf_count_free(struct super_block *);
96 static int udf_statfs(struct dentry *, struct kstatfs *);
97 static int udf_show_options(struct seq_file *, struct dentry *);
98
99 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
100 {
101         struct logicalVolIntegrityDesc *lvid;
102         unsigned int partnum;
103         unsigned int offset;
104
105         if (!UDF_SB(sb)->s_lvid_bh)
106                 return NULL;
107         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
108         partnum = le32_to_cpu(lvid->numOfPartitions);
109         if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
110              offsetof(struct logicalVolIntegrityDesc, impUse)) /
111              (2 * sizeof(uint32_t)) < partnum) {
112                 udf_err(sb, "Logical volume integrity descriptor corrupted "
113                         "(numOfPartitions = %u)!\n", partnum);
114                 return NULL;
115         }
116         /* The offset is to skip freeSpaceTable and sizeTable arrays */
117         offset = partnum * 2 * sizeof(uint32_t);
118         return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
119 }
120
121 /* UDF filesystem type */
122 static struct dentry *udf_mount(struct file_system_type *fs_type,
123                       int flags, const char *dev_name, void *data)
124 {
125         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
126 }
127
128 static struct file_system_type udf_fstype = {
129         .owner          = THIS_MODULE,
130         .name           = "udf",
131         .mount          = udf_mount,
132         .kill_sb        = kill_block_super,
133         .fs_flags       = FS_REQUIRES_DEV,
134 };
135 MODULE_ALIAS_FS("udf");
136
137 static struct kmem_cache *udf_inode_cachep;
138
139 static struct inode *udf_alloc_inode(struct super_block *sb)
140 {
141         struct udf_inode_info *ei;
142         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
143         if (!ei)
144                 return NULL;
145
146         ei->i_unique = 0;
147         ei->i_lenExtents = 0;
148         ei->i_next_alloc_block = 0;
149         ei->i_next_alloc_goal = 0;
150         ei->i_strat4096 = 0;
151         init_rwsem(&ei->i_data_sem);
152         ei->cached_extent.lstart = -1;
153         spin_lock_init(&ei->i_extent_cache_lock);
154
155         return &ei->vfs_inode;
156 }
157
158 static void udf_i_callback(struct rcu_head *head)
159 {
160         struct inode *inode = container_of(head, struct inode, i_rcu);
161         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
162 }
163
164 static void udf_destroy_inode(struct inode *inode)
165 {
166         call_rcu(&inode->i_rcu, udf_i_callback);
167 }
168
169 static void init_once(void *foo)
170 {
171         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
172
173         ei->i_ext.i_data = NULL;
174         inode_init_once(&ei->vfs_inode);
175 }
176
177 static int __init init_inodecache(void)
178 {
179         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
180                                              sizeof(struct udf_inode_info),
181                                              0, (SLAB_RECLAIM_ACCOUNT |
182                                                  SLAB_MEM_SPREAD),
183                                              init_once);
184         if (!udf_inode_cachep)
185                 return -ENOMEM;
186         return 0;
187 }
188
189 static void destroy_inodecache(void)
190 {
191         /*
192          * Make sure all delayed rcu free inodes are flushed before we
193          * destroy cache.
194          */
195         rcu_barrier();
196         kmem_cache_destroy(udf_inode_cachep);
197 }
198
199 /* Superblock operations */
200 static const struct super_operations udf_sb_ops = {
201         .alloc_inode    = udf_alloc_inode,
202         .destroy_inode  = udf_destroy_inode,
203         .write_inode    = udf_write_inode,
204         .evict_inode    = udf_evict_inode,
205         .put_super      = udf_put_super,
206         .sync_fs        = udf_sync_fs,
207         .statfs         = udf_statfs,
208         .remount_fs     = udf_remount_fs,
209         .show_options   = udf_show_options,
210 };
211
212 struct udf_options {
213         unsigned char novrs;
214         unsigned int blocksize;
215         unsigned int session;
216         unsigned int lastblock;
217         unsigned int anchor;
218         unsigned int volume;
219         unsigned short partition;
220         unsigned int fileset;
221         unsigned int rootdir;
222         unsigned int flags;
223         umode_t umask;
224         kgid_t gid;
225         kuid_t uid;
226         umode_t fmode;
227         umode_t dmode;
228         struct nls_table *nls_map;
229 };
230
231 static int __init init_udf_fs(void)
232 {
233         int err;
234
235         err = init_inodecache();
236         if (err)
237                 goto out1;
238         err = register_filesystem(&udf_fstype);
239         if (err)
240                 goto out;
241
242         return 0;
243
244 out:
245         destroy_inodecache();
246
247 out1:
248         return err;
249 }
250
251 static void __exit exit_udf_fs(void)
252 {
253         unregister_filesystem(&udf_fstype);
254         destroy_inodecache();
255 }
256
257 module_init(init_udf_fs)
258 module_exit(exit_udf_fs)
259
260 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
261 {
262         struct udf_sb_info *sbi = UDF_SB(sb);
263
264         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
265                                   GFP_KERNEL);
266         if (!sbi->s_partmaps) {
267                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
268                         count);
269                 sbi->s_partitions = 0;
270                 return -ENOMEM;
271         }
272
273         sbi->s_partitions = count;
274         return 0;
275 }
276
277 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
278 {
279         int i;
280         int nr_groups = bitmap->s_nr_groups;
281         int size = sizeof(struct udf_bitmap) + (sizeof(struct buffer_head *) *
282                                                 nr_groups);
283
284         for (i = 0; i < nr_groups; i++)
285                 if (bitmap->s_block_bitmap[i])
286                         brelse(bitmap->s_block_bitmap[i]);
287
288         if (size <= PAGE_SIZE)
289                 kfree(bitmap);
290         else
291                 vfree(bitmap);
292 }
293
294 static void udf_free_partition(struct udf_part_map *map)
295 {
296         int i;
297         struct udf_meta_data *mdata;
298
299         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
300                 iput(map->s_uspace.s_table);
301         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
302                 iput(map->s_fspace.s_table);
303         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
304                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
305         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
306                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
307         if (map->s_partition_type == UDF_SPARABLE_MAP15)
308                 for (i = 0; i < 4; i++)
309                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
310         else if (map->s_partition_type == UDF_METADATA_MAP25) {
311                 mdata = &map->s_type_specific.s_metadata;
312                 iput(mdata->s_metadata_fe);
313                 mdata->s_metadata_fe = NULL;
314
315                 iput(mdata->s_mirror_fe);
316                 mdata->s_mirror_fe = NULL;
317
318                 iput(mdata->s_bitmap_fe);
319                 mdata->s_bitmap_fe = NULL;
320         }
321 }
322
323 static void udf_sb_free_partitions(struct super_block *sb)
324 {
325         struct udf_sb_info *sbi = UDF_SB(sb);
326         int i;
327         if (sbi->s_partmaps == NULL)
328                 return;
329         for (i = 0; i < sbi->s_partitions; i++)
330                 udf_free_partition(&sbi->s_partmaps[i]);
331         kfree(sbi->s_partmaps);
332         sbi->s_partmaps = NULL;
333 }
334
335 static int udf_show_options(struct seq_file *seq, struct dentry *root)
336 {
337         struct super_block *sb = root->d_sb;
338         struct udf_sb_info *sbi = UDF_SB(sb);
339
340         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
341                 seq_puts(seq, ",nostrict");
342         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
343                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
344         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
345                 seq_puts(seq, ",unhide");
346         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
347                 seq_puts(seq, ",undelete");
348         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
349                 seq_puts(seq, ",noadinicb");
350         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
351                 seq_puts(seq, ",shortad");
352         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
353                 seq_puts(seq, ",uid=forget");
354         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
355                 seq_puts(seq, ",uid=ignore");
356         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
357                 seq_puts(seq, ",gid=forget");
358         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
359                 seq_puts(seq, ",gid=ignore");
360         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
361                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
362         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
363                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
364         if (sbi->s_umask != 0)
365                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
366         if (sbi->s_fmode != UDF_INVALID_MODE)
367                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
368         if (sbi->s_dmode != UDF_INVALID_MODE)
369                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
370         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
371                 seq_printf(seq, ",session=%u", sbi->s_session);
372         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
373                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
374         if (sbi->s_anchor != 0)
375                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
376         /*
377          * volume, partition, fileset and rootdir seem to be ignored
378          * currently
379          */
380         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
381                 seq_puts(seq, ",utf8");
382         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
383                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
384
385         return 0;
386 }
387
388 /*
389  * udf_parse_options
390  *
391  * PURPOSE
392  *      Parse mount options.
393  *
394  * DESCRIPTION
395  *      The following mount options are supported:
396  *
397  *      gid=            Set the default group.
398  *      umask=          Set the default umask.
399  *      mode=           Set the default file permissions.
400  *      dmode=          Set the default directory permissions.
401  *      uid=            Set the default user.
402  *      bs=             Set the block size.
403  *      unhide          Show otherwise hidden files.
404  *      undelete        Show deleted files in lists.
405  *      adinicb         Embed data in the inode (default)
406  *      noadinicb       Don't embed data in the inode
407  *      shortad         Use short ad's
408  *      longad          Use long ad's (default)
409  *      nostrict        Unset strict conformance
410  *      iocharset=      Set the NLS character set
411  *
412  *      The remaining are for debugging and disaster recovery:
413  *
414  *      novrs           Skip volume sequence recognition
415  *
416  *      The following expect a offset from 0.
417  *
418  *      session=        Set the CDROM session (default= last session)
419  *      anchor=         Override standard anchor location. (default= 256)
420  *      volume=         Override the VolumeDesc location. (unused)
421  *      partition=      Override the PartitionDesc location. (unused)
422  *      lastblock=      Set the last block of the filesystem/
423  *
424  *      The following expect a offset from the partition root.
425  *
426  *      fileset=        Override the fileset block location. (unused)
427  *      rootdir=        Override the root directory location. (unused)
428  *              WARNING: overriding the rootdir to a non-directory may
429  *              yield highly unpredictable results.
430  *
431  * PRE-CONDITIONS
432  *      options         Pointer to mount options string.
433  *      uopts           Pointer to mount options variable.
434  *
435  * POST-CONDITIONS
436  *      <return>        1       Mount options parsed okay.
437  *      <return>        0       Error parsing mount options.
438  *
439  * HISTORY
440  *      July 1, 1997 - Andrew E. Mileski
441  *      Written, tested, and released.
442  */
443
444 enum {
445         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
446         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
447         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
448         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
449         Opt_rootdir, Opt_utf8, Opt_iocharset,
450         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
451         Opt_fmode, Opt_dmode
452 };
453
454 static const match_table_t tokens = {
455         {Opt_novrs,     "novrs"},
456         {Opt_nostrict,  "nostrict"},
457         {Opt_bs,        "bs=%u"},
458         {Opt_unhide,    "unhide"},
459         {Opt_undelete,  "undelete"},
460         {Opt_noadinicb, "noadinicb"},
461         {Opt_adinicb,   "adinicb"},
462         {Opt_shortad,   "shortad"},
463         {Opt_longad,    "longad"},
464         {Opt_uforget,   "uid=forget"},
465         {Opt_uignore,   "uid=ignore"},
466         {Opt_gforget,   "gid=forget"},
467         {Opt_gignore,   "gid=ignore"},
468         {Opt_gid,       "gid=%u"},
469         {Opt_uid,       "uid=%u"},
470         {Opt_umask,     "umask=%o"},
471         {Opt_session,   "session=%u"},
472         {Opt_lastblock, "lastblock=%u"},
473         {Opt_anchor,    "anchor=%u"},
474         {Opt_volume,    "volume=%u"},
475         {Opt_partition, "partition=%u"},
476         {Opt_fileset,   "fileset=%u"},
477         {Opt_rootdir,   "rootdir=%u"},
478         {Opt_utf8,      "utf8"},
479         {Opt_iocharset, "iocharset=%s"},
480         {Opt_fmode,     "mode=%o"},
481         {Opt_dmode,     "dmode=%o"},
482         {Opt_err,       NULL}
483 };
484
485 static int udf_parse_options(char *options, struct udf_options *uopt,
486                              bool remount)
487 {
488         char *p;
489         int option;
490
491         uopt->novrs = 0;
492         uopt->partition = 0xFFFF;
493         uopt->session = 0xFFFFFFFF;
494         uopt->lastblock = 0;
495         uopt->anchor = 0;
496         uopt->volume = 0xFFFFFFFF;
497         uopt->rootdir = 0xFFFFFFFF;
498         uopt->fileset = 0xFFFFFFFF;
499         uopt->nls_map = NULL;
500
501         if (!options)
502                 return 1;
503
504         while ((p = strsep(&options, ",")) != NULL) {
505                 substring_t args[MAX_OPT_ARGS];
506                 int token;
507                 unsigned n;
508                 if (!*p)
509                         continue;
510
511                 token = match_token(p, tokens, args);
512                 switch (token) {
513                 case Opt_novrs:
514                         uopt->novrs = 1;
515                         break;
516                 case Opt_bs:
517                         if (match_int(&args[0], &option))
518                                 return 0;
519                         n = option;
520                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
521                                 return 0;
522                         uopt->blocksize = n;
523                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
524                         break;
525                 case Opt_unhide:
526                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
527                         break;
528                 case Opt_undelete:
529                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
530                         break;
531                 case Opt_noadinicb:
532                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
533                         break;
534                 case Opt_adinicb:
535                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
536                         break;
537                 case Opt_shortad:
538                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
539                         break;
540                 case Opt_longad:
541                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
542                         break;
543                 case Opt_gid:
544                         if (match_int(args, &option))
545                                 return 0;
546                         uopt->gid = make_kgid(current_user_ns(), option);
547                         if (!gid_valid(uopt->gid))
548                                 return 0;
549                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
550                         break;
551                 case Opt_uid:
552                         if (match_int(args, &option))
553                                 return 0;
554                         uopt->uid = make_kuid(current_user_ns(), option);
555                         if (!uid_valid(uopt->uid))
556                                 return 0;
557                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
558                         break;
559                 case Opt_umask:
560                         if (match_octal(args, &option))
561                                 return 0;
562                         uopt->umask = option;
563                         break;
564                 case Opt_nostrict:
565                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
566                         break;
567                 case Opt_session:
568                         if (match_int(args, &option))
569                                 return 0;
570                         uopt->session = option;
571                         if (!remount)
572                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
573                         break;
574                 case Opt_lastblock:
575                         if (match_int(args, &option))
576                                 return 0;
577                         uopt->lastblock = option;
578                         if (!remount)
579                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
580                         break;
581                 case Opt_anchor:
582                         if (match_int(args, &option))
583                                 return 0;
584                         uopt->anchor = option;
585                         break;
586                 case Opt_volume:
587                         if (match_int(args, &option))
588                                 return 0;
589                         uopt->volume = option;
590                         break;
591                 case Opt_partition:
592                         if (match_int(args, &option))
593                                 return 0;
594                         uopt->partition = option;
595                         break;
596                 case Opt_fileset:
597                         if (match_int(args, &option))
598                                 return 0;
599                         uopt->fileset = option;
600                         break;
601                 case Opt_rootdir:
602                         if (match_int(args, &option))
603                                 return 0;
604                         uopt->rootdir = option;
605                         break;
606                 case Opt_utf8:
607                         uopt->flags |= (1 << UDF_FLAG_UTF8);
608                         break;
609 #ifdef CONFIG_UDF_NLS
610                 case Opt_iocharset:
611                         uopt->nls_map = load_nls(args[0].from);
612                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
613                         break;
614 #endif
615                 case Opt_uignore:
616                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
617                         break;
618                 case Opt_uforget:
619                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
620                         break;
621                 case Opt_gignore:
622                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
623                         break;
624                 case Opt_gforget:
625                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
626                         break;
627                 case Opt_fmode:
628                         if (match_octal(args, &option))
629                                 return 0;
630                         uopt->fmode = option & 0777;
631                         break;
632                 case Opt_dmode:
633                         if (match_octal(args, &option))
634                                 return 0;
635                         uopt->dmode = option & 0777;
636                         break;
637                 default:
638                         pr_err("bad mount option \"%s\" or missing value\n", p);
639                         return 0;
640                 }
641         }
642         return 1;
643 }
644
645 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
646 {
647         struct udf_options uopt;
648         struct udf_sb_info *sbi = UDF_SB(sb);
649         int error = 0;
650         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
651
652         sync_filesystem(sb);
653         if (lvidiu) {
654                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
655                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
656                         return -EACCES;
657         }
658
659         uopt.flags = sbi->s_flags;
660         uopt.uid   = sbi->s_uid;
661         uopt.gid   = sbi->s_gid;
662         uopt.umask = sbi->s_umask;
663         uopt.fmode = sbi->s_fmode;
664         uopt.dmode = sbi->s_dmode;
665
666         if (!udf_parse_options(options, &uopt, true))
667                 return -EINVAL;
668
669         write_lock(&sbi->s_cred_lock);
670         sbi->s_flags = uopt.flags;
671         sbi->s_uid   = uopt.uid;
672         sbi->s_gid   = uopt.gid;
673         sbi->s_umask = uopt.umask;
674         sbi->s_fmode = uopt.fmode;
675         sbi->s_dmode = uopt.dmode;
676         write_unlock(&sbi->s_cred_lock);
677
678         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
679                 goto out_unlock;
680
681         if (*flags & MS_RDONLY)
682                 udf_close_lvid(sb);
683         else
684                 udf_open_lvid(sb);
685
686 out_unlock:
687         return error;
688 }
689
690 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
691 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
692 static loff_t udf_check_vsd(struct super_block *sb)
693 {
694         struct volStructDesc *vsd = NULL;
695         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
696         int sectorsize;
697         struct buffer_head *bh = NULL;
698         int nsr02 = 0;
699         int nsr03 = 0;
700         struct udf_sb_info *sbi;
701
702         sbi = UDF_SB(sb);
703         if (sb->s_blocksize < sizeof(struct volStructDesc))
704                 sectorsize = sizeof(struct volStructDesc);
705         else
706                 sectorsize = sb->s_blocksize;
707
708         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
709
710         udf_debug("Starting at sector %u (%ld byte sectors)\n",
711                   (unsigned int)(sector >> sb->s_blocksize_bits),
712                   sb->s_blocksize);
713         /* Process the sequence (if applicable). The hard limit on the sector
714          * offset is arbitrary, hopefully large enough so that all valid UDF
715          * filesystems will be recognised. There is no mention of an upper
716          * bound to the size of the volume recognition area in the standard.
717          *  The limit will prevent the code to read all the sectors of a
718          * specially crafted image (like a bluray disc full of CD001 sectors),
719          * potentially causing minutes or even hours of uninterruptible I/O
720          * activity. This actually happened with uninitialised SSD partitions
721          * (all 0xFF) before the check for the limit and all valid IDs were
722          * added */
723         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
724              sector += sectorsize) {
725                 /* Read a block */
726                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
727                 if (!bh)
728                         break;
729
730                 /* Look for ISO  descriptors */
731                 vsd = (struct volStructDesc *)(bh->b_data +
732                                               (sector & (sb->s_blocksize - 1)));
733
734                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
735                                     VSD_STD_ID_LEN)) {
736                         switch (vsd->structType) {
737                         case 0:
738                                 udf_debug("ISO9660 Boot Record found\n");
739                                 break;
740                         case 1:
741                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
742                                 break;
743                         case 2:
744                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
745                                 break;
746                         case 3:
747                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
748                                 break;
749                         case 255:
750                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
751                                 break;
752                         default:
753                                 udf_debug("ISO9660 VRS (%u) found\n",
754                                           vsd->structType);
755                                 break;
756                         }
757                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
758                                     VSD_STD_ID_LEN))
759                         ; /* nothing */
760                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
761                                     VSD_STD_ID_LEN)) {
762                         brelse(bh);
763                         break;
764                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
765                                     VSD_STD_ID_LEN))
766                         nsr02 = sector;
767                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
768                                     VSD_STD_ID_LEN))
769                         nsr03 = sector;
770                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
771                                     VSD_STD_ID_LEN))
772                         ; /* nothing */
773                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
774                                     VSD_STD_ID_LEN))
775                         ; /* nothing */
776                 else {
777                         /* invalid id : end of volume recognition area */
778                         brelse(bh);
779                         break;
780                 }
781                 brelse(bh);
782         }
783
784         if (nsr03)
785                 return nsr03;
786         else if (nsr02)
787                 return nsr02;
788         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
789                         VSD_FIRST_SECTOR_OFFSET)
790                 return -1;
791         else
792                 return 0;
793 }
794
795 static int udf_find_fileset(struct super_block *sb,
796                             struct kernel_lb_addr *fileset,
797                             struct kernel_lb_addr *root)
798 {
799         struct buffer_head *bh = NULL;
800         long lastblock;
801         uint16_t ident;
802         struct udf_sb_info *sbi;
803
804         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
805             fileset->partitionReferenceNum != 0xFFFF) {
806                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
807
808                 if (!bh) {
809                         return 1;
810                 } else if (ident != TAG_IDENT_FSD) {
811                         brelse(bh);
812                         return 1;
813                 }
814
815         }
816
817         sbi = UDF_SB(sb);
818         if (!bh) {
819                 /* Search backwards through the partitions */
820                 struct kernel_lb_addr newfileset;
821
822 /* --> cvg: FIXME - is it reasonable? */
823                 return 1;
824
825                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
826                      (newfileset.partitionReferenceNum != 0xFFFF &&
827                       fileset->logicalBlockNum == 0xFFFFFFFF &&
828                       fileset->partitionReferenceNum == 0xFFFF);
829                      newfileset.partitionReferenceNum--) {
830                         lastblock = sbi->s_partmaps
831                                         [newfileset.partitionReferenceNum]
832                                                 .s_partition_len;
833                         newfileset.logicalBlockNum = 0;
834
835                         do {
836                                 bh = udf_read_ptagged(sb, &newfileset, 0,
837                                                       &ident);
838                                 if (!bh) {
839                                         newfileset.logicalBlockNum++;
840                                         continue;
841                                 }
842
843                                 switch (ident) {
844                                 case TAG_IDENT_SBD:
845                                 {
846                                         struct spaceBitmapDesc *sp;
847                                         sp = (struct spaceBitmapDesc *)
848                                                                 bh->b_data;
849                                         newfileset.logicalBlockNum += 1 +
850                                                 ((le32_to_cpu(sp->numOfBytes) +
851                                                   sizeof(struct spaceBitmapDesc)
852                                                   - 1) >> sb->s_blocksize_bits);
853                                         brelse(bh);
854                                         break;
855                                 }
856                                 case TAG_IDENT_FSD:
857                                         *fileset = newfileset;
858                                         break;
859                                 default:
860                                         newfileset.logicalBlockNum++;
861                                         brelse(bh);
862                                         bh = NULL;
863                                         break;
864                                 }
865                         } while (newfileset.logicalBlockNum < lastblock &&
866                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
867                                  fileset->partitionReferenceNum == 0xFFFF);
868                 }
869         }
870
871         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
872              fileset->partitionReferenceNum != 0xFFFF) && bh) {
873                 udf_debug("Fileset at block=%d, partition=%d\n",
874                           fileset->logicalBlockNum,
875                           fileset->partitionReferenceNum);
876
877                 sbi->s_partition = fileset->partitionReferenceNum;
878                 udf_load_fileset(sb, bh, root);
879                 brelse(bh);
880                 return 0;
881         }
882         return 1;
883 }
884
885 /*
886  * Load primary Volume Descriptor Sequence
887  *
888  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
889  * should be tried.
890  */
891 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
892 {
893         struct primaryVolDesc *pvoldesc;
894         struct ustr *instr, *outstr;
895         struct buffer_head *bh;
896         uint16_t ident;
897         int ret = -ENOMEM;
898
899         instr = kmalloc(sizeof(struct ustr), GFP_NOFS);
900         if (!instr)
901                 return -ENOMEM;
902
903         outstr = kmalloc(sizeof(struct ustr), GFP_NOFS);
904         if (!outstr)
905                 goto out1;
906
907         bh = udf_read_tagged(sb, block, block, &ident);
908         if (!bh) {
909                 ret = -EAGAIN;
910                 goto out2;
911         }
912
913         if (ident != TAG_IDENT_PVD) {
914                 ret = -EIO;
915                 goto out_bh;
916         }
917
918         pvoldesc = (struct primaryVolDesc *)bh->b_data;
919
920         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
921                               pvoldesc->recordingDateAndTime)) {
922 #ifdef UDFFS_DEBUG
923                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
924                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
925                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
926                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
927 #endif
928         }
929
930         if (!udf_build_ustr(instr, pvoldesc->volIdent, 32)) {
931                 ret = udf_CS0toUTF8(outstr, instr);
932                 if (ret < 0)
933                         goto out_bh;
934
935                 strncpy(UDF_SB(sb)->s_volume_ident, outstr->u_name,
936                         outstr->u_len > 31 ? 31 : outstr->u_len);
937                 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
938         }
939
940         if (!udf_build_ustr(instr, pvoldesc->volSetIdent, 128)) {
941                 ret = udf_CS0toUTF8(outstr, instr);
942                 if (ret < 0)
943                         goto out_bh;
944
945                 udf_debug("volSetIdent[] = '%s'\n", outstr->u_name);
946         }
947
948         ret = 0;
949 out_bh:
950         brelse(bh);
951 out2:
952         kfree(outstr);
953 out1:
954         kfree(instr);
955         return ret;
956 }
957
958 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
959                                         u32 meta_file_loc, u32 partition_num)
960 {
961         struct kernel_lb_addr addr;
962         struct inode *metadata_fe;
963
964         addr.logicalBlockNum = meta_file_loc;
965         addr.partitionReferenceNum = partition_num;
966
967         metadata_fe = udf_iget_special(sb, &addr);
968
969         if (IS_ERR(metadata_fe)) {
970                 udf_warn(sb, "metadata inode efe not found\n");
971                 return metadata_fe;
972         }
973         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
974                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
975                 iput(metadata_fe);
976                 return ERR_PTR(-EIO);
977         }
978
979         return metadata_fe;
980 }
981
982 static int udf_load_metadata_files(struct super_block *sb, int partition)
983 {
984         struct udf_sb_info *sbi = UDF_SB(sb);
985         struct udf_part_map *map;
986         struct udf_meta_data *mdata;
987         struct kernel_lb_addr addr;
988         struct inode *fe;
989
990         map = &sbi->s_partmaps[partition];
991         mdata = &map->s_type_specific.s_metadata;
992
993         /* metadata address */
994         udf_debug("Metadata file location: block = %d part = %d\n",
995                   mdata->s_meta_file_loc, map->s_partition_num);
996
997         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
998                                          map->s_partition_num);
999         if (IS_ERR(fe)) {
1000                 /* mirror file entry */
1001                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
1002                           mdata->s_mirror_file_loc, map->s_partition_num);
1003
1004                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1005                                                  map->s_partition_num);
1006
1007                 if (IS_ERR(fe)) {
1008                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1009                         return PTR_ERR(fe);
1010                 }
1011                 mdata->s_mirror_fe = fe;
1012         } else
1013                 mdata->s_metadata_fe = fe;
1014
1015
1016         /*
1017          * bitmap file entry
1018          * Note:
1019          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1020         */
1021         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1022                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1023                 addr.partitionReferenceNum = map->s_partition_num;
1024
1025                 udf_debug("Bitmap file location: block = %d part = %d\n",
1026                           addr.logicalBlockNum, addr.partitionReferenceNum);
1027
1028                 fe = udf_iget_special(sb, &addr);
1029                 if (IS_ERR(fe)) {
1030                         if (sb->s_flags & MS_RDONLY)
1031                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1032                         else {
1033                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1034                                 return PTR_ERR(fe);
1035                         }
1036                 } else
1037                         mdata->s_bitmap_fe = fe;
1038         }
1039
1040         udf_debug("udf_load_metadata_files Ok\n");
1041         return 0;
1042 }
1043
1044 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1045                              struct kernel_lb_addr *root)
1046 {
1047         struct fileSetDesc *fset;
1048
1049         fset = (struct fileSetDesc *)bh->b_data;
1050
1051         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1052
1053         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1054
1055         udf_debug("Rootdir at block=%d, partition=%d\n",
1056                   root->logicalBlockNum, root->partitionReferenceNum);
1057 }
1058
1059 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1060 {
1061         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1062         return DIV_ROUND_UP(map->s_partition_len +
1063                             (sizeof(struct spaceBitmapDesc) << 3),
1064                             sb->s_blocksize * 8);
1065 }
1066
1067 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1068 {
1069         struct udf_bitmap *bitmap;
1070         int nr_groups;
1071         int size;
1072
1073         nr_groups = udf_compute_nr_groups(sb, index);
1074         size = sizeof(struct udf_bitmap) +
1075                 (sizeof(struct buffer_head *) * nr_groups);
1076
1077         if (size <= PAGE_SIZE)
1078                 bitmap = kzalloc(size, GFP_KERNEL);
1079         else
1080                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1081
1082         if (bitmap == NULL)
1083                 return NULL;
1084
1085         bitmap->s_nr_groups = nr_groups;
1086         return bitmap;
1087 }
1088
1089 static int udf_fill_partdesc_info(struct super_block *sb,
1090                 struct partitionDesc *p, int p_index)
1091 {
1092         struct udf_part_map *map;
1093         struct udf_sb_info *sbi = UDF_SB(sb);
1094         struct partitionHeaderDesc *phd;
1095
1096         map = &sbi->s_partmaps[p_index];
1097
1098         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1099         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1100
1101         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1102                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1103         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1104                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1105         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1106                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1107         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1108                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1109
1110         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1111                   p_index, map->s_partition_type,
1112                   map->s_partition_root, map->s_partition_len);
1113
1114         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1115             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1116                 return 0;
1117
1118         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1119         if (phd->unallocSpaceTable.extLength) {
1120                 struct kernel_lb_addr loc = {
1121                         .logicalBlockNum = le32_to_cpu(
1122                                 phd->unallocSpaceTable.extPosition),
1123                         .partitionReferenceNum = p_index,
1124                 };
1125                 struct inode *inode;
1126
1127                 inode = udf_iget_special(sb, &loc);
1128                 if (IS_ERR(inode)) {
1129                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1130                                   p_index);
1131                         return PTR_ERR(inode);
1132                 }
1133                 map->s_uspace.s_table = inode;
1134                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1135                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1136                           p_index, map->s_uspace.s_table->i_ino);
1137         }
1138
1139         if (phd->unallocSpaceBitmap.extLength) {
1140                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1141                 if (!bitmap)
1142                         return -ENOMEM;
1143                 map->s_uspace.s_bitmap = bitmap;
1144                 bitmap->s_extPosition = le32_to_cpu(
1145                                 phd->unallocSpaceBitmap.extPosition);
1146                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1147                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1148                           p_index, bitmap->s_extPosition);
1149         }
1150
1151         if (phd->partitionIntegrityTable.extLength)
1152                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1153
1154         if (phd->freedSpaceTable.extLength) {
1155                 struct kernel_lb_addr loc = {
1156                         .logicalBlockNum = le32_to_cpu(
1157                                 phd->freedSpaceTable.extPosition),
1158                         .partitionReferenceNum = p_index,
1159                 };
1160                 struct inode *inode;
1161
1162                 inode = udf_iget_special(sb, &loc);
1163                 if (IS_ERR(inode)) {
1164                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1165                                   p_index);
1166                         return PTR_ERR(inode);
1167                 }
1168                 map->s_fspace.s_table = inode;
1169                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1170                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1171                           p_index, map->s_fspace.s_table->i_ino);
1172         }
1173
1174         if (phd->freedSpaceBitmap.extLength) {
1175                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1176                 if (!bitmap)
1177                         return -ENOMEM;
1178                 map->s_fspace.s_bitmap = bitmap;
1179                 bitmap->s_extPosition = le32_to_cpu(
1180                                 phd->freedSpaceBitmap.extPosition);
1181                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1182                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1183                           p_index, bitmap->s_extPosition);
1184         }
1185         return 0;
1186 }
1187
1188 static void udf_find_vat_block(struct super_block *sb, int p_index,
1189                                int type1_index, sector_t start_block)
1190 {
1191         struct udf_sb_info *sbi = UDF_SB(sb);
1192         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1193         sector_t vat_block;
1194         struct kernel_lb_addr ino;
1195         struct inode *inode;
1196
1197         /*
1198          * VAT file entry is in the last recorded block. Some broken disks have
1199          * it a few blocks before so try a bit harder...
1200          */
1201         ino.partitionReferenceNum = type1_index;
1202         for (vat_block = start_block;
1203              vat_block >= map->s_partition_root &&
1204              vat_block >= start_block - 3; vat_block--) {
1205                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1206                 inode = udf_iget_special(sb, &ino);
1207                 if (!IS_ERR(inode)) {
1208                         sbi->s_vat_inode = inode;
1209                         break;
1210                 }
1211         }
1212 }
1213
1214 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1215 {
1216         struct udf_sb_info *sbi = UDF_SB(sb);
1217         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1218         struct buffer_head *bh = NULL;
1219         struct udf_inode_info *vati;
1220         uint32_t pos;
1221         struct virtualAllocationTable20 *vat20;
1222         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1223
1224         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1225         if (!sbi->s_vat_inode &&
1226             sbi->s_last_block != blocks - 1) {
1227                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1228                           (unsigned long)sbi->s_last_block,
1229                           (unsigned long)blocks - 1);
1230                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1231         }
1232         if (!sbi->s_vat_inode)
1233                 return -EIO;
1234
1235         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1236                 map->s_type_specific.s_virtual.s_start_offset = 0;
1237                 map->s_type_specific.s_virtual.s_num_entries =
1238                         (sbi->s_vat_inode->i_size - 36) >> 2;
1239         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1240                 vati = UDF_I(sbi->s_vat_inode);
1241                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1242                         pos = udf_block_map(sbi->s_vat_inode, 0);
1243                         bh = sb_bread(sb, pos);
1244                         if (!bh)
1245                                 return -EIO;
1246                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1247                 } else {
1248                         vat20 = (struct virtualAllocationTable20 *)
1249                                                         vati->i_ext.i_data;
1250                 }
1251
1252                 map->s_type_specific.s_virtual.s_start_offset =
1253                         le16_to_cpu(vat20->lengthHeader);
1254                 map->s_type_specific.s_virtual.s_num_entries =
1255                         (sbi->s_vat_inode->i_size -
1256                                 map->s_type_specific.s_virtual.
1257                                         s_start_offset) >> 2;
1258                 brelse(bh);
1259         }
1260         return 0;
1261 }
1262
1263 /*
1264  * Load partition descriptor block
1265  *
1266  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1267  * sequence.
1268  */
1269 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1270 {
1271         struct buffer_head *bh;
1272         struct partitionDesc *p;
1273         struct udf_part_map *map;
1274         struct udf_sb_info *sbi = UDF_SB(sb);
1275         int i, type1_idx;
1276         uint16_t partitionNumber;
1277         uint16_t ident;
1278         int ret;
1279
1280         bh = udf_read_tagged(sb, block, block, &ident);
1281         if (!bh)
1282                 return -EAGAIN;
1283         if (ident != TAG_IDENT_PD) {
1284                 ret = 0;
1285                 goto out_bh;
1286         }
1287
1288         p = (struct partitionDesc *)bh->b_data;
1289         partitionNumber = le16_to_cpu(p->partitionNumber);
1290
1291         /* First scan for TYPE1, SPARABLE and METADATA partitions */
1292         for (i = 0; i < sbi->s_partitions; i++) {
1293                 map = &sbi->s_partmaps[i];
1294                 udf_debug("Searching map: (%d == %d)\n",
1295                           map->s_partition_num, partitionNumber);
1296                 if (map->s_partition_num == partitionNumber &&
1297                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1298                      map->s_partition_type == UDF_SPARABLE_MAP15))
1299                         break;
1300         }
1301
1302         if (i >= sbi->s_partitions) {
1303                 udf_debug("Partition (%d) not found in partition map\n",
1304                           partitionNumber);
1305                 ret = 0;
1306                 goto out_bh;
1307         }
1308
1309         ret = udf_fill_partdesc_info(sb, p, i);
1310         if (ret < 0)
1311                 goto out_bh;
1312
1313         /*
1314          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1315          * PHYSICAL partitions are already set up
1316          */
1317         type1_idx = i;
1318 #ifdef UDFFS_DEBUG
1319         map = NULL; /* supress 'maybe used uninitialized' warning */
1320 #endif
1321         for (i = 0; i < sbi->s_partitions; i++) {
1322                 map = &sbi->s_partmaps[i];
1323
1324                 if (map->s_partition_num == partitionNumber &&
1325                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1326                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1327                      map->s_partition_type == UDF_METADATA_MAP25))
1328                         break;
1329         }
1330
1331         if (i >= sbi->s_partitions) {
1332                 ret = 0;
1333                 goto out_bh;
1334         }
1335
1336         ret = udf_fill_partdesc_info(sb, p, i);
1337         if (ret < 0)
1338                 goto out_bh;
1339
1340         if (map->s_partition_type == UDF_METADATA_MAP25) {
1341                 ret = udf_load_metadata_files(sb, i);
1342                 if (ret < 0) {
1343                         udf_err(sb, "error loading MetaData partition map %d\n",
1344                                 i);
1345                         goto out_bh;
1346                 }
1347         } else {
1348                 /*
1349                  * If we have a partition with virtual map, we don't handle
1350                  * writing to it (we overwrite blocks instead of relocating
1351                  * them).
1352                  */
1353                 if (!(sb->s_flags & MS_RDONLY)) {
1354                         ret = -EACCES;
1355                         goto out_bh;
1356                 }
1357                 ret = udf_load_vat(sb, i, type1_idx);
1358                 if (ret < 0)
1359                         goto out_bh;
1360         }
1361         ret = 0;
1362 out_bh:
1363         /* In case loading failed, we handle cleanup in udf_fill_super */
1364         brelse(bh);
1365         return ret;
1366 }
1367
1368 static int udf_load_sparable_map(struct super_block *sb,
1369                                  struct udf_part_map *map,
1370                                  struct sparablePartitionMap *spm)
1371 {
1372         uint32_t loc;
1373         uint16_t ident;
1374         struct sparingTable *st;
1375         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1376         int i;
1377         struct buffer_head *bh;
1378
1379         map->s_partition_type = UDF_SPARABLE_MAP15;
1380         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1381         if (!is_power_of_2(sdata->s_packet_len)) {
1382                 udf_err(sb, "error loading logical volume descriptor: "
1383                         "Invalid packet length %u\n",
1384                         (unsigned)sdata->s_packet_len);
1385                 return -EIO;
1386         }
1387         if (spm->numSparingTables > 4) {
1388                 udf_err(sb, "error loading logical volume descriptor: "
1389                         "Too many sparing tables (%d)\n",
1390                         (int)spm->numSparingTables);
1391                 return -EIO;
1392         }
1393         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1394                 udf_err(sb, "error loading logical volume descriptor: "
1395                         "Too big sparing table size (%u)\n",
1396                         le32_to_cpu(spm->sizeSparingTable));
1397                 return -EIO;
1398         }
1399
1400         for (i = 0; i < spm->numSparingTables; i++) {
1401                 loc = le32_to_cpu(spm->locSparingTable[i]);
1402                 bh = udf_read_tagged(sb, loc, loc, &ident);
1403                 if (!bh)
1404                         continue;
1405
1406                 st = (struct sparingTable *)bh->b_data;
1407                 if (ident != 0 ||
1408                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1409                             strlen(UDF_ID_SPARING)) ||
1410                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1411                                                         sb->s_blocksize) {
1412                         brelse(bh);
1413                         continue;
1414                 }
1415
1416                 sdata->s_spar_map[i] = bh;
1417         }
1418         map->s_partition_func = udf_get_pblock_spar15;
1419         return 0;
1420 }
1421
1422 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1423                                struct kernel_lb_addr *fileset)
1424 {
1425         struct logicalVolDesc *lvd;
1426         int i, offset;
1427         uint8_t type;
1428         struct udf_sb_info *sbi = UDF_SB(sb);
1429         struct genericPartitionMap *gpm;
1430         uint16_t ident;
1431         struct buffer_head *bh;
1432         unsigned int table_len;
1433         int ret;
1434
1435         bh = udf_read_tagged(sb, block, block, &ident);
1436         if (!bh)
1437                 return -EAGAIN;
1438         BUG_ON(ident != TAG_IDENT_LVD);
1439         lvd = (struct logicalVolDesc *)bh->b_data;
1440         table_len = le32_to_cpu(lvd->mapTableLength);
1441         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1442                 udf_err(sb, "error loading logical volume descriptor: "
1443                         "Partition table too long (%u > %lu)\n", table_len,
1444                         sb->s_blocksize - sizeof(*lvd));
1445                 ret = -EIO;
1446                 goto out_bh;
1447         }
1448
1449         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1450         if (ret)
1451                 goto out_bh;
1452
1453         for (i = 0, offset = 0;
1454              i < sbi->s_partitions && offset < table_len;
1455              i++, offset += gpm->partitionMapLength) {
1456                 struct udf_part_map *map = &sbi->s_partmaps[i];
1457                 gpm = (struct genericPartitionMap *)
1458                                 &(lvd->partitionMaps[offset]);
1459                 type = gpm->partitionMapType;
1460                 if (type == 1) {
1461                         struct genericPartitionMap1 *gpm1 =
1462                                 (struct genericPartitionMap1 *)gpm;
1463                         map->s_partition_type = UDF_TYPE1_MAP15;
1464                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1465                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1466                         map->s_partition_func = NULL;
1467                 } else if (type == 2) {
1468                         struct udfPartitionMap2 *upm2 =
1469                                                 (struct udfPartitionMap2 *)gpm;
1470                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1471                                                 strlen(UDF_ID_VIRTUAL))) {
1472                                 u16 suf =
1473                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1474                                                         identSuffix)[0]);
1475                                 if (suf < 0x0200) {
1476                                         map->s_partition_type =
1477                                                         UDF_VIRTUAL_MAP15;
1478                                         map->s_partition_func =
1479                                                         udf_get_pblock_virt15;
1480                                 } else {
1481                                         map->s_partition_type =
1482                                                         UDF_VIRTUAL_MAP20;
1483                                         map->s_partition_func =
1484                                                         udf_get_pblock_virt20;
1485                                 }
1486                         } else if (!strncmp(upm2->partIdent.ident,
1487                                                 UDF_ID_SPARABLE,
1488                                                 strlen(UDF_ID_SPARABLE))) {
1489                                 ret = udf_load_sparable_map(sb, map,
1490                                         (struct sparablePartitionMap *)gpm);
1491                                 if (ret < 0)
1492                                         goto out_bh;
1493                         } else if (!strncmp(upm2->partIdent.ident,
1494                                                 UDF_ID_METADATA,
1495                                                 strlen(UDF_ID_METADATA))) {
1496                                 struct udf_meta_data *mdata =
1497                                         &map->s_type_specific.s_metadata;
1498                                 struct metadataPartitionMap *mdm =
1499                                                 (struct metadataPartitionMap *)
1500                                                 &(lvd->partitionMaps[offset]);
1501                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1502                                           i, type, UDF_ID_METADATA);
1503
1504                                 map->s_partition_type = UDF_METADATA_MAP25;
1505                                 map->s_partition_func = udf_get_pblock_meta25;
1506
1507                                 mdata->s_meta_file_loc   =
1508                                         le32_to_cpu(mdm->metadataFileLoc);
1509                                 mdata->s_mirror_file_loc =
1510                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1511                                 mdata->s_bitmap_file_loc =
1512                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1513                                 mdata->s_alloc_unit_size =
1514                                         le32_to_cpu(mdm->allocUnitSize);
1515                                 mdata->s_align_unit_size =
1516                                         le16_to_cpu(mdm->alignUnitSize);
1517                                 if (mdm->flags & 0x01)
1518                                         mdata->s_flags |= MF_DUPLICATE_MD;
1519
1520                                 udf_debug("Metadata Ident suffix=0x%x\n",
1521                                           le16_to_cpu(*(__le16 *)
1522                                                       mdm->partIdent.identSuffix));
1523                                 udf_debug("Metadata part num=%d\n",
1524                                           le16_to_cpu(mdm->partitionNum));
1525                                 udf_debug("Metadata part alloc unit size=%d\n",
1526                                           le32_to_cpu(mdm->allocUnitSize));
1527                                 udf_debug("Metadata file loc=%d\n",
1528                                           le32_to_cpu(mdm->metadataFileLoc));
1529                                 udf_debug("Mirror file loc=%d\n",
1530                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1531                                 udf_debug("Bitmap file loc=%d\n",
1532                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1533                                 udf_debug("Flags: %d %d\n",
1534                                           mdata->s_flags, mdm->flags);
1535                         } else {
1536                                 udf_debug("Unknown ident: %s\n",
1537                                           upm2->partIdent.ident);
1538                                 continue;
1539                         }
1540                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1541                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1542                 }
1543                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1544                           i, map->s_partition_num, type, map->s_volumeseqnum);
1545         }
1546
1547         if (fileset) {
1548                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1549
1550                 *fileset = lelb_to_cpu(la->extLocation);
1551                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1552                           fileset->logicalBlockNum,
1553                           fileset->partitionReferenceNum);
1554         }
1555         if (lvd->integritySeqExt.extLength)
1556                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1557         ret = 0;
1558 out_bh:
1559         brelse(bh);
1560         return ret;
1561 }
1562
1563 /*
1564  * udf_load_logicalvolint
1565  *
1566  */
1567 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1568 {
1569         struct buffer_head *bh = NULL;
1570         uint16_t ident;
1571         struct udf_sb_info *sbi = UDF_SB(sb);
1572         struct logicalVolIntegrityDesc *lvid;
1573
1574         while (loc.extLength > 0 &&
1575                (bh = udf_read_tagged(sb, loc.extLocation,
1576                                      loc.extLocation, &ident)) &&
1577                ident == TAG_IDENT_LVID) {
1578                 sbi->s_lvid_bh = bh;
1579                 lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1580
1581                 if (lvid->nextIntegrityExt.extLength)
1582                         udf_load_logicalvolint(sb,
1583                                 leea_to_cpu(lvid->nextIntegrityExt));
1584
1585                 if (sbi->s_lvid_bh != bh)
1586                         brelse(bh);
1587                 loc.extLength -= sb->s_blocksize;
1588                 loc.extLocation++;
1589         }
1590         if (sbi->s_lvid_bh != bh)
1591                 brelse(bh);
1592 }
1593
1594 /*
1595  * Process a main/reserve volume descriptor sequence.
1596  *   @block             First block of first extent of the sequence.
1597  *   @lastblock         Lastblock of first extent of the sequence.
1598  *   @fileset           There we store extent containing root fileset
1599  *
1600  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1601  * sequence
1602  */
1603 static noinline int udf_process_sequence(
1604                 struct super_block *sb,
1605                 sector_t block, sector_t lastblock,
1606                 struct kernel_lb_addr *fileset)
1607 {
1608         struct buffer_head *bh = NULL;
1609         struct udf_vds_record vds[VDS_POS_LENGTH];
1610         struct udf_vds_record *curr;
1611         struct generic_desc *gd;
1612         struct volDescPtr *vdp;
1613         bool done = false;
1614         uint32_t vdsn;
1615         uint16_t ident;
1616         long next_s = 0, next_e = 0;
1617         int ret;
1618
1619         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1620
1621         /*
1622          * Read the main descriptor sequence and find which descriptors
1623          * are in it.
1624          */
1625         for (; (!done && block <= lastblock); block++) {
1626
1627                 bh = udf_read_tagged(sb, block, block, &ident);
1628                 if (!bh) {
1629                         udf_err(sb,
1630                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1631                                 (unsigned long long)block);
1632                         return -EAGAIN;
1633                 }
1634
1635                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1636                 gd = (struct generic_desc *)bh->b_data;
1637                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1638                 switch (ident) {
1639                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1640                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1641                         if (vdsn >= curr->volDescSeqNum) {
1642                                 curr->volDescSeqNum = vdsn;
1643                                 curr->block = block;
1644                         }
1645                         break;
1646                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1647                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1648                         if (vdsn >= curr->volDescSeqNum) {
1649                                 curr->volDescSeqNum = vdsn;
1650                                 curr->block = block;
1651
1652                                 vdp = (struct volDescPtr *)bh->b_data;
1653                                 next_s = le32_to_cpu(
1654                                         vdp->nextVolDescSeqExt.extLocation);
1655                                 next_e = le32_to_cpu(
1656                                         vdp->nextVolDescSeqExt.extLength);
1657                                 next_e = next_e >> sb->s_blocksize_bits;
1658                                 next_e += next_s;
1659                         }
1660                         break;
1661                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1662                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1663                         if (vdsn >= curr->volDescSeqNum) {
1664                                 curr->volDescSeqNum = vdsn;
1665                                 curr->block = block;
1666                         }
1667                         break;
1668                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1669                         curr = &vds[VDS_POS_PARTITION_DESC];
1670                         if (!curr->block)
1671                                 curr->block = block;
1672                         break;
1673                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1674                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1675                         if (vdsn >= curr->volDescSeqNum) {
1676                                 curr->volDescSeqNum = vdsn;
1677                                 curr->block = block;
1678                         }
1679                         break;
1680                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1681                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1682                         if (vdsn >= curr->volDescSeqNum) {
1683                                 curr->volDescSeqNum = vdsn;
1684                                 curr->block = block;
1685                         }
1686                         break;
1687                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1688                         vds[VDS_POS_TERMINATING_DESC].block = block;
1689                         if (next_e) {
1690                                 block = next_s;
1691                                 lastblock = next_e;
1692                                 next_s = next_e = 0;
1693                         } else
1694                                 done = true;
1695                         break;
1696                 }
1697                 brelse(bh);
1698         }
1699         /*
1700          * Now read interesting descriptors again and process them
1701          * in a suitable order
1702          */
1703         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1704                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1705                 return -EAGAIN;
1706         }
1707         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1708         if (ret < 0)
1709                 return ret;
1710
1711         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1712                 ret = udf_load_logicalvol(sb,
1713                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1714                                           fileset);
1715                 if (ret < 0)
1716                         return ret;
1717         }
1718
1719         if (vds[VDS_POS_PARTITION_DESC].block) {
1720                 /*
1721                  * We rescan the whole descriptor sequence to find
1722                  * partition descriptor blocks and process them.
1723                  */
1724                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1725                      block < vds[VDS_POS_TERMINATING_DESC].block;
1726                      block++) {
1727                         ret = udf_load_partdesc(sb, block);
1728                         if (ret < 0)
1729                                 return ret;
1730                 }
1731         }
1732
1733         return 0;
1734 }
1735
1736 /*
1737  * Load Volume Descriptor Sequence described by anchor in bh
1738  *
1739  * Returns <0 on error, 0 on success
1740  */
1741 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1742                              struct kernel_lb_addr *fileset)
1743 {
1744         struct anchorVolDescPtr *anchor;
1745         sector_t main_s, main_e, reserve_s, reserve_e;
1746         int ret;
1747
1748         anchor = (struct anchorVolDescPtr *)bh->b_data;
1749
1750         /* Locate the main sequence */
1751         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1752         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1753         main_e = main_e >> sb->s_blocksize_bits;
1754         main_e += main_s;
1755
1756         /* Locate the reserve sequence */
1757         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1758         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1759         reserve_e = reserve_e >> sb->s_blocksize_bits;
1760         reserve_e += reserve_s;
1761
1762         /* Process the main & reserve sequences */
1763         /* responsible for finding the PartitionDesc(s) */
1764         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1765         if (ret != -EAGAIN)
1766                 return ret;
1767         udf_sb_free_partitions(sb);
1768         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1769         if (ret < 0) {
1770                 udf_sb_free_partitions(sb);
1771                 /* No sequence was OK, return -EIO */
1772                 if (ret == -EAGAIN)
1773                         ret = -EIO;
1774         }
1775         return ret;
1776 }
1777
1778 /*
1779  * Check whether there is an anchor block in the given block and
1780  * load Volume Descriptor Sequence if so.
1781  *
1782  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1783  * block
1784  */
1785 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1786                                   struct kernel_lb_addr *fileset)
1787 {
1788         struct buffer_head *bh;
1789         uint16_t ident;
1790         int ret;
1791
1792         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1793             udf_fixed_to_variable(block) >=
1794             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1795                 return -EAGAIN;
1796
1797         bh = udf_read_tagged(sb, block, block, &ident);
1798         if (!bh)
1799                 return -EAGAIN;
1800         if (ident != TAG_IDENT_AVDP) {
1801                 brelse(bh);
1802                 return -EAGAIN;
1803         }
1804         ret = udf_load_sequence(sb, bh, fileset);
1805         brelse(bh);
1806         return ret;
1807 }
1808
1809 /*
1810  * Search for an anchor volume descriptor pointer.
1811  *
1812  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1813  * of anchors.
1814  */
1815 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1816                             struct kernel_lb_addr *fileset)
1817 {
1818         sector_t last[6];
1819         int i;
1820         struct udf_sb_info *sbi = UDF_SB(sb);
1821         int last_count = 0;
1822         int ret;
1823
1824         /* First try user provided anchor */
1825         if (sbi->s_anchor) {
1826                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1827                 if (ret != -EAGAIN)
1828                         return ret;
1829         }
1830         /*
1831          * according to spec, anchor is in either:
1832          *     block 256
1833          *     lastblock-256
1834          *     lastblock
1835          *  however, if the disc isn't closed, it could be 512.
1836          */
1837         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1838         if (ret != -EAGAIN)
1839                 return ret;
1840         /*
1841          * The trouble is which block is the last one. Drives often misreport
1842          * this so we try various possibilities.
1843          */
1844         last[last_count++] = *lastblock;
1845         if (*lastblock >= 1)
1846                 last[last_count++] = *lastblock - 1;
1847         last[last_count++] = *lastblock + 1;
1848         if (*lastblock >= 2)
1849                 last[last_count++] = *lastblock - 2;
1850         if (*lastblock >= 150)
1851                 last[last_count++] = *lastblock - 150;
1852         if (*lastblock >= 152)
1853                 last[last_count++] = *lastblock - 152;
1854
1855         for (i = 0; i < last_count; i++) {
1856                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1857                                 sb->s_blocksize_bits)
1858                         continue;
1859                 ret = udf_check_anchor_block(sb, last[i], fileset);
1860                 if (ret != -EAGAIN) {
1861                         if (!ret)
1862                                 *lastblock = last[i];
1863                         return ret;
1864                 }
1865                 if (last[i] < 256)
1866                         continue;
1867                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1868                 if (ret != -EAGAIN) {
1869                         if (!ret)
1870                                 *lastblock = last[i];
1871                         return ret;
1872                 }
1873         }
1874
1875         /* Finally try block 512 in case media is open */
1876         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1877 }
1878
1879 /*
1880  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1881  * area specified by it. The function expects sbi->s_lastblock to be the last
1882  * block on the media.
1883  *
1884  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1885  * was not found.
1886  */
1887 static int udf_find_anchor(struct super_block *sb,
1888                            struct kernel_lb_addr *fileset)
1889 {
1890         struct udf_sb_info *sbi = UDF_SB(sb);
1891         sector_t lastblock = sbi->s_last_block;
1892         int ret;
1893
1894         ret = udf_scan_anchors(sb, &lastblock, fileset);
1895         if (ret != -EAGAIN)
1896                 goto out;
1897
1898         /* No anchor found? Try VARCONV conversion of block numbers */
1899         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1900         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1901         /* Firstly, we try to not convert number of the last block */
1902         ret = udf_scan_anchors(sb, &lastblock, fileset);
1903         if (ret != -EAGAIN)
1904                 goto out;
1905
1906         lastblock = sbi->s_last_block;
1907         /* Secondly, we try with converted number of the last block */
1908         ret = udf_scan_anchors(sb, &lastblock, fileset);
1909         if (ret < 0) {
1910                 /* VARCONV didn't help. Clear it. */
1911                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1912         }
1913 out:
1914         if (ret == 0)
1915                 sbi->s_last_block = lastblock;
1916         return ret;
1917 }
1918
1919 /*
1920  * Check Volume Structure Descriptor, find Anchor block and load Volume
1921  * Descriptor Sequence.
1922  *
1923  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1924  * block was not found.
1925  */
1926 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1927                         int silent, struct kernel_lb_addr *fileset)
1928 {
1929         struct udf_sb_info *sbi = UDF_SB(sb);
1930         loff_t nsr_off;
1931         int ret;
1932
1933         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1934                 if (!silent)
1935                         udf_warn(sb, "Bad block size\n");
1936                 return -EINVAL;
1937         }
1938         sbi->s_last_block = uopt->lastblock;
1939         if (!uopt->novrs) {
1940                 /* Check that it is NSR02 compliant */
1941                 nsr_off = udf_check_vsd(sb);
1942                 if (!nsr_off) {
1943                         if (!silent)
1944                                 udf_warn(sb, "No VRS found\n");
1945                         return 0;
1946                 }
1947                 if (nsr_off == -1)
1948                         udf_debug("Failed to read sector at offset %d. "
1949                                   "Assuming open disc. Skipping validity "
1950                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1951                 if (!sbi->s_last_block)
1952                         sbi->s_last_block = udf_get_last_block(sb);
1953         } else {
1954                 udf_debug("Validity check skipped because of novrs option\n");
1955         }
1956
1957         /* Look for anchor block and load Volume Descriptor Sequence */
1958         sbi->s_anchor = uopt->anchor;
1959         ret = udf_find_anchor(sb, fileset);
1960         if (ret < 0) {
1961                 if (!silent && ret == -EAGAIN)
1962                         udf_warn(sb, "No anchor found\n");
1963                 return ret;
1964         }
1965         return 0;
1966 }
1967
1968 static void udf_open_lvid(struct super_block *sb)
1969 {
1970         struct udf_sb_info *sbi = UDF_SB(sb);
1971         struct buffer_head *bh = sbi->s_lvid_bh;
1972         struct logicalVolIntegrityDesc *lvid;
1973         struct logicalVolIntegrityDescImpUse *lvidiu;
1974
1975         if (!bh)
1976                 return;
1977         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
1978         lvidiu = udf_sb_lvidiu(sb);
1979         if (!lvidiu)
1980                 return;
1981
1982         mutex_lock(&sbi->s_alloc_mutex);
1983         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1984         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1985         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
1986                                 CURRENT_TIME);
1987         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
1988
1989         lvid->descTag.descCRC = cpu_to_le16(
1990                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
1991                         le16_to_cpu(lvid->descTag.descCRCLength)));
1992
1993         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
1994         mark_buffer_dirty(bh);
1995         sbi->s_lvid_dirty = 0;
1996         mutex_unlock(&sbi->s_alloc_mutex);
1997         /* Make opening of filesystem visible on the media immediately */
1998         sync_dirty_buffer(bh);
1999 }
2000
2001 static void udf_close_lvid(struct super_block *sb)
2002 {
2003         struct udf_sb_info *sbi = UDF_SB(sb);
2004         struct buffer_head *bh = sbi->s_lvid_bh;
2005         struct logicalVolIntegrityDesc *lvid;
2006         struct logicalVolIntegrityDescImpUse *lvidiu;
2007
2008         if (!bh)
2009                 return;
2010         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2011         lvidiu = udf_sb_lvidiu(sb);
2012         if (!lvidiu)
2013                 return;
2014
2015         mutex_lock(&sbi->s_alloc_mutex);
2016         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2017         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2018         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2019         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2020                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2021         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2022                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2023         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2024                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2025         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2026
2027         lvid->descTag.descCRC = cpu_to_le16(
2028                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2029                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2030
2031         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2032         /*
2033          * We set buffer uptodate unconditionally here to avoid spurious
2034          * warnings from mark_buffer_dirty() when previous EIO has marked
2035          * the buffer as !uptodate
2036          */
2037         set_buffer_uptodate(bh);
2038         mark_buffer_dirty(bh);
2039         sbi->s_lvid_dirty = 0;
2040         mutex_unlock(&sbi->s_alloc_mutex);
2041         /* Make closing of filesystem visible on the media immediately */
2042         sync_dirty_buffer(bh);
2043 }
2044
2045 u64 lvid_get_unique_id(struct super_block *sb)
2046 {
2047         struct buffer_head *bh;
2048         struct udf_sb_info *sbi = UDF_SB(sb);
2049         struct logicalVolIntegrityDesc *lvid;
2050         struct logicalVolHeaderDesc *lvhd;
2051         u64 uniqueID;
2052         u64 ret;
2053
2054         bh = sbi->s_lvid_bh;
2055         if (!bh)
2056                 return 0;
2057
2058         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2059         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2060
2061         mutex_lock(&sbi->s_alloc_mutex);
2062         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2063         if (!(++uniqueID & 0xFFFFFFFF))
2064                 uniqueID += 16;
2065         lvhd->uniqueID = cpu_to_le64(uniqueID);
2066         mutex_unlock(&sbi->s_alloc_mutex);
2067         mark_buffer_dirty(bh);
2068
2069         return ret;
2070 }
2071
2072 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2073 {
2074         int ret = -EINVAL;
2075         struct inode *inode = NULL;
2076         struct udf_options uopt;
2077         struct kernel_lb_addr rootdir, fileset;
2078         struct udf_sb_info *sbi;
2079         bool lvid_open = false;
2080
2081         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2082         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2083         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2084         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2085         uopt.umask = 0;
2086         uopt.fmode = UDF_INVALID_MODE;
2087         uopt.dmode = UDF_INVALID_MODE;
2088
2089         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2090         if (!sbi)
2091                 return -ENOMEM;
2092
2093         sb->s_fs_info = sbi;
2094
2095         mutex_init(&sbi->s_alloc_mutex);
2096
2097         if (!udf_parse_options((char *)options, &uopt, false))
2098                 goto parse_options_failure;
2099
2100         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2101             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2102                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2103                 goto parse_options_failure;
2104         }
2105 #ifdef CONFIG_UDF_NLS
2106         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2107                 uopt.nls_map = load_nls_default();
2108                 if (!uopt.nls_map)
2109                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2110                 else
2111                         udf_debug("Using default NLS map\n");
2112         }
2113 #endif
2114         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2115                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2116
2117         fileset.logicalBlockNum = 0xFFFFFFFF;
2118         fileset.partitionReferenceNum = 0xFFFF;
2119
2120         sbi->s_flags = uopt.flags;
2121         sbi->s_uid = uopt.uid;
2122         sbi->s_gid = uopt.gid;
2123         sbi->s_umask = uopt.umask;
2124         sbi->s_fmode = uopt.fmode;
2125         sbi->s_dmode = uopt.dmode;
2126         sbi->s_nls_map = uopt.nls_map;
2127         rwlock_init(&sbi->s_cred_lock);
2128
2129         if (uopt.session == 0xFFFFFFFF)
2130                 sbi->s_session = udf_get_last_session(sb);
2131         else
2132                 sbi->s_session = uopt.session;
2133
2134         udf_debug("Multi-session=%d\n", sbi->s_session);
2135
2136         /* Fill in the rest of the superblock */
2137         sb->s_op = &udf_sb_ops;
2138         sb->s_export_op = &udf_export_ops;
2139
2140         sb->s_magic = UDF_SUPER_MAGIC;
2141         sb->s_time_gran = 1000;
2142
2143         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2144                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2145         } else {
2146                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2147                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2148                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2149                         if (!silent)
2150                                 pr_notice("Rescanning with blocksize %d\n",
2151                                           UDF_DEFAULT_BLOCKSIZE);
2152                         brelse(sbi->s_lvid_bh);
2153                         sbi->s_lvid_bh = NULL;
2154                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2155                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2156                 }
2157         }
2158         if (ret < 0) {
2159                 if (ret == -EAGAIN) {
2160                         udf_warn(sb, "No partition found (1)\n");
2161                         ret = -EINVAL;
2162                 }
2163                 goto error_out;
2164         }
2165
2166         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2167
2168         if (sbi->s_lvid_bh) {
2169                 struct logicalVolIntegrityDescImpUse *lvidiu =
2170                                                         udf_sb_lvidiu(sb);
2171                 uint16_t minUDFReadRev;
2172                 uint16_t minUDFWriteRev;
2173
2174                 if (!lvidiu) {
2175                         ret = -EINVAL;
2176                         goto error_out;
2177                 }
2178                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2179                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2180                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2181                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2182                                 minUDFReadRev,
2183                                 UDF_MAX_READ_VERSION);
2184                         ret = -EINVAL;
2185                         goto error_out;
2186                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2187                            !(sb->s_flags & MS_RDONLY)) {
2188                         ret = -EACCES;
2189                         goto error_out;
2190                 }
2191
2192                 sbi->s_udfrev = minUDFWriteRev;
2193
2194                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2195                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2196                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2197                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2198         }
2199
2200         if (!sbi->s_partitions) {
2201                 udf_warn(sb, "No partition found (2)\n");
2202                 ret = -EINVAL;
2203                 goto error_out;
2204         }
2205
2206         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2207                         UDF_PART_FLAG_READ_ONLY &&
2208             !(sb->s_flags & MS_RDONLY)) {
2209                 ret = -EACCES;
2210                 goto error_out;
2211         }
2212
2213         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2214                 udf_warn(sb, "No fileset found\n");
2215                 ret = -EINVAL;
2216                 goto error_out;
2217         }
2218
2219         if (!silent) {
2220                 struct timestamp ts;
2221                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2222                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2223                          sbi->s_volume_ident,
2224                          le16_to_cpu(ts.year), ts.month, ts.day,
2225                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2226         }
2227         if (!(sb->s_flags & MS_RDONLY)) {
2228                 udf_open_lvid(sb);
2229                 lvid_open = true;
2230         }
2231
2232         /* Assign the root inode */
2233         /* assign inodes by physical block number */
2234         /* perhaps it's not extensible enough, but for now ... */
2235         inode = udf_iget(sb, &rootdir);
2236         if (IS_ERR(inode)) {
2237                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2238                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2239                 ret = PTR_ERR(inode);
2240                 goto error_out;
2241         }
2242
2243         /* Allocate a dentry for the root inode */
2244         sb->s_root = d_make_root(inode);
2245         if (!sb->s_root) {
2246                 udf_err(sb, "Couldn't allocate root dentry\n");
2247                 ret = -ENOMEM;
2248                 goto error_out;
2249         }
2250         sb->s_maxbytes = MAX_LFS_FILESIZE;
2251         sb->s_max_links = UDF_MAX_LINKS;
2252         return 0;
2253
2254 error_out:
2255         iput(sbi->s_vat_inode);
2256 parse_options_failure:
2257 #ifdef CONFIG_UDF_NLS
2258         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2259                 unload_nls(sbi->s_nls_map);
2260 #endif
2261         if (lvid_open)
2262                 udf_close_lvid(sb);
2263         brelse(sbi->s_lvid_bh);
2264         udf_sb_free_partitions(sb);
2265         kfree(sbi);
2266         sb->s_fs_info = NULL;
2267
2268         return ret;
2269 }
2270
2271 void _udf_err(struct super_block *sb, const char *function,
2272               const char *fmt, ...)
2273 {
2274         struct va_format vaf;
2275         va_list args;
2276
2277         va_start(args, fmt);
2278
2279         vaf.fmt = fmt;
2280         vaf.va = &args;
2281
2282         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2283
2284         va_end(args);
2285 }
2286
2287 void _udf_warn(struct super_block *sb, const char *function,
2288                const char *fmt, ...)
2289 {
2290         struct va_format vaf;
2291         va_list args;
2292
2293         va_start(args, fmt);
2294
2295         vaf.fmt = fmt;
2296         vaf.va = &args;
2297
2298         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2299
2300         va_end(args);
2301 }
2302
2303 static void udf_put_super(struct super_block *sb)
2304 {
2305         struct udf_sb_info *sbi;
2306
2307         sbi = UDF_SB(sb);
2308
2309         iput(sbi->s_vat_inode);
2310 #ifdef CONFIG_UDF_NLS
2311         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2312                 unload_nls(sbi->s_nls_map);
2313 #endif
2314         if (!(sb->s_flags & MS_RDONLY))
2315                 udf_close_lvid(sb);
2316         brelse(sbi->s_lvid_bh);
2317         udf_sb_free_partitions(sb);
2318         mutex_destroy(&sbi->s_alloc_mutex);
2319         kfree(sb->s_fs_info);
2320         sb->s_fs_info = NULL;
2321 }
2322
2323 static int udf_sync_fs(struct super_block *sb, int wait)
2324 {
2325         struct udf_sb_info *sbi = UDF_SB(sb);
2326
2327         mutex_lock(&sbi->s_alloc_mutex);
2328         if (sbi->s_lvid_dirty) {
2329                 /*
2330                  * Blockdevice will be synced later so we don't have to submit
2331                  * the buffer for IO
2332                  */
2333                 mark_buffer_dirty(sbi->s_lvid_bh);
2334                 sbi->s_lvid_dirty = 0;
2335         }
2336         mutex_unlock(&sbi->s_alloc_mutex);
2337
2338         return 0;
2339 }
2340
2341 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2342 {
2343         struct super_block *sb = dentry->d_sb;
2344         struct udf_sb_info *sbi = UDF_SB(sb);
2345         struct logicalVolIntegrityDescImpUse *lvidiu;
2346         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2347
2348         lvidiu = udf_sb_lvidiu(sb);
2349         buf->f_type = UDF_SUPER_MAGIC;
2350         buf->f_bsize = sb->s_blocksize;
2351         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2352         buf->f_bfree = udf_count_free(sb);
2353         buf->f_bavail = buf->f_bfree;
2354         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2355                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2356                         + buf->f_bfree;
2357         buf->f_ffree = buf->f_bfree;
2358         buf->f_namelen = UDF_NAME_LEN - 2;
2359         buf->f_fsid.val[0] = (u32)id;
2360         buf->f_fsid.val[1] = (u32)(id >> 32);
2361
2362         return 0;
2363 }
2364
2365 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2366                                           struct udf_bitmap *bitmap)
2367 {
2368         struct buffer_head *bh = NULL;
2369         unsigned int accum = 0;
2370         int index;
2371         int block = 0, newblock;
2372         struct kernel_lb_addr loc;
2373         uint32_t bytes;
2374         uint8_t *ptr;
2375         uint16_t ident;
2376         struct spaceBitmapDesc *bm;
2377
2378         loc.logicalBlockNum = bitmap->s_extPosition;
2379         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2380         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2381
2382         if (!bh) {
2383                 udf_err(sb, "udf_count_free failed\n");
2384                 goto out;
2385         } else if (ident != TAG_IDENT_SBD) {
2386                 brelse(bh);
2387                 udf_err(sb, "udf_count_free failed\n");
2388                 goto out;
2389         }
2390
2391         bm = (struct spaceBitmapDesc *)bh->b_data;
2392         bytes = le32_to_cpu(bm->numOfBytes);
2393         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2394         ptr = (uint8_t *)bh->b_data;
2395
2396         while (bytes > 0) {
2397                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2398                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2399                                         cur_bytes * 8);
2400                 bytes -= cur_bytes;
2401                 if (bytes) {
2402                         brelse(bh);
2403                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2404                         bh = udf_tread(sb, newblock);
2405                         if (!bh) {
2406                                 udf_debug("read failed\n");
2407                                 goto out;
2408                         }
2409                         index = 0;
2410                         ptr = (uint8_t *)bh->b_data;
2411                 }
2412         }
2413         brelse(bh);
2414 out:
2415         return accum;
2416 }
2417
2418 static unsigned int udf_count_free_table(struct super_block *sb,
2419                                          struct inode *table)
2420 {
2421         unsigned int accum = 0;
2422         uint32_t elen;
2423         struct kernel_lb_addr eloc;
2424         int8_t etype;
2425         struct extent_position epos;
2426
2427         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2428         epos.block = UDF_I(table)->i_location;
2429         epos.offset = sizeof(struct unallocSpaceEntry);
2430         epos.bh = NULL;
2431
2432         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2433                 accum += (elen >> table->i_sb->s_blocksize_bits);
2434
2435         brelse(epos.bh);
2436         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2437
2438         return accum;
2439 }
2440
2441 static unsigned int udf_count_free(struct super_block *sb)
2442 {
2443         unsigned int accum = 0;
2444         struct udf_sb_info *sbi;
2445         struct udf_part_map *map;
2446
2447         sbi = UDF_SB(sb);
2448         if (sbi->s_lvid_bh) {
2449                 struct logicalVolIntegrityDesc *lvid =
2450                         (struct logicalVolIntegrityDesc *)
2451                         sbi->s_lvid_bh->b_data;
2452                 if (le32_to_cpu(lvid->numOfPartitions) > sbi->s_partition) {
2453                         accum = le32_to_cpu(
2454                                         lvid->freeSpaceTable[sbi->s_partition]);
2455                         if (accum == 0xFFFFFFFF)
2456                                 accum = 0;
2457                 }
2458         }
2459
2460         if (accum)
2461                 return accum;
2462
2463         map = &sbi->s_partmaps[sbi->s_partition];
2464         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2465                 accum += udf_count_free_bitmap(sb,
2466                                                map->s_uspace.s_bitmap);
2467         }
2468         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2469                 accum += udf_count_free_bitmap(sb,
2470                                                map->s_fspace.s_bitmap);
2471         }
2472         if (accum)
2473                 return accum;
2474
2475         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2476                 accum += udf_count_free_table(sb,
2477                                               map->s_uspace.s_table);
2478         }
2479         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2480                 accum += udf_count_free_table(sb,
2481                                               map->s_fspace.s_table);
2482         }
2483
2484         return accum;
2485 }