GNU Linux-libre 4.9.337-gnu1
[releases.git] / fs / udf / super.c
1 /*
2  * super.c
3  *
4  * PURPOSE
5  *  Super block routines for the OSTA-UDF(tm) filesystem.
6  *
7  * DESCRIPTION
8  *  OSTA-UDF(tm) = Optical Storage Technology Association
9  *  Universal Disk Format.
10  *
11  *  This code is based on version 2.00 of the UDF specification,
12  *  and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
13  *    http://www.osta.org/
14  *    http://www.ecma.ch/
15  *    http://www.iso.org/
16  *
17  * COPYRIGHT
18  *  This file is distributed under the terms of the GNU General Public
19  *  License (GPL). Copies of the GPL can be obtained from:
20  *    ftp://prep.ai.mit.edu/pub/gnu/GPL
21  *  Each contributing author retains all rights to their own work.
22  *
23  *  (C) 1998 Dave Boynton
24  *  (C) 1998-2004 Ben Fennema
25  *  (C) 2000 Stelias Computing Inc
26  *
27  * HISTORY
28  *
29  *  09/24/98 dgb  changed to allow compiling outside of kernel, and
30  *                added some debugging.
31  *  10/01/98 dgb  updated to allow (some) possibility of compiling w/2.0.34
32  *  10/16/98      attempting some multi-session support
33  *  10/17/98      added freespace count for "df"
34  *  11/11/98 gr   added novrs option
35  *  11/26/98 dgb  added fileset,anchor mount options
36  *  12/06/98 blf  really hosed things royally. vat/sparing support. sequenced
37  *                vol descs. rewrote option handling based on isofs
38  *  12/20/98      find the free space bitmap (if it exists)
39  */
40
41 #include "udfdecl.h"
42
43 #include <linux/blkdev.h>
44 #include <linux/slab.h>
45 #include <linux/kernel.h>
46 #include <linux/module.h>
47 #include <linux/parser.h>
48 #include <linux/stat.h>
49 #include <linux/cdrom.h>
50 #include <linux/nls.h>
51 #include <linux/vfs.h>
52 #include <linux/vmalloc.h>
53 #include <linux/errno.h>
54 #include <linux/mount.h>
55 #include <linux/seq_file.h>
56 #include <linux/bitmap.h>
57 #include <linux/crc-itu-t.h>
58 #include <linux/log2.h>
59 #include <asm/byteorder.h>
60
61 #include "udf_sb.h"
62 #include "udf_i.h"
63
64 #include <linux/init.h>
65 #include <linux/uaccess.h>
66
67 #define VDS_POS_PRIMARY_VOL_DESC        0
68 #define VDS_POS_UNALLOC_SPACE_DESC      1
69 #define VDS_POS_LOGICAL_VOL_DESC        2
70 #define VDS_POS_PARTITION_DESC          3
71 #define VDS_POS_IMP_USE_VOL_DESC        4
72 #define VDS_POS_VOL_DESC_PTR            5
73 #define VDS_POS_TERMINATING_DESC        6
74 #define VDS_POS_LENGTH                  7
75
76 #define UDF_DEFAULT_BLOCKSIZE 2048
77
78 #define VSD_FIRST_SECTOR_OFFSET         32768
79 #define VSD_MAX_SECTOR_OFFSET           0x800000
80
81 /*
82  * Maximum number of Terminating Descriptor / Logical Volume Integrity
83  * Descriptor redirections. The chosen numbers are arbitrary - just that we
84  * hopefully don't limit any real use of rewritten inode on write-once media
85  * but avoid looping for too long on corrupted media.
86  */
87 #define UDF_MAX_TD_NESTING 64
88 #define UDF_MAX_LVID_NESTING 1000
89
90 enum { UDF_MAX_LINKS = 0xffff };
91
92 /* These are the "meat" - everything else is stuffing */
93 static int udf_fill_super(struct super_block *, void *, int);
94 static void udf_put_super(struct super_block *);
95 static int udf_sync_fs(struct super_block *, int);
96 static int udf_remount_fs(struct super_block *, int *, char *);
97 static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
98 static int udf_find_fileset(struct super_block *, struct kernel_lb_addr *,
99                             struct kernel_lb_addr *);
100 static void udf_load_fileset(struct super_block *, struct buffer_head *,
101                              struct kernel_lb_addr *);
102 static void udf_open_lvid(struct super_block *);
103 static void udf_close_lvid(struct super_block *);
104 static unsigned int udf_count_free(struct super_block *);
105 static int udf_statfs(struct dentry *, struct kstatfs *);
106 static int udf_show_options(struct seq_file *, struct dentry *);
107
108 struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
109 {
110         struct logicalVolIntegrityDesc *lvid;
111         unsigned int partnum;
112         unsigned int offset;
113
114         if (!UDF_SB(sb)->s_lvid_bh)
115                 return NULL;
116         lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
117         partnum = le32_to_cpu(lvid->numOfPartitions);
118         /* The offset is to skip freeSpaceTable and sizeTable arrays */
119         offset = partnum * 2 * sizeof(uint32_t);
120         return (struct logicalVolIntegrityDescImpUse *)
121                                         (((uint8_t *)(lvid + 1)) + offset);
122 }
123
124 /* UDF filesystem type */
125 static struct dentry *udf_mount(struct file_system_type *fs_type,
126                       int flags, const char *dev_name, void *data)
127 {
128         return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
129 }
130
131 static struct file_system_type udf_fstype = {
132         .owner          = THIS_MODULE,
133         .name           = "udf",
134         .mount          = udf_mount,
135         .kill_sb        = kill_block_super,
136         .fs_flags       = FS_REQUIRES_DEV,
137 };
138 MODULE_ALIAS_FS("udf");
139
140 static struct kmem_cache *udf_inode_cachep;
141
142 static struct inode *udf_alloc_inode(struct super_block *sb)
143 {
144         struct udf_inode_info *ei;
145         ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
146         if (!ei)
147                 return NULL;
148
149         ei->i_unique = 0;
150         ei->i_lenExtents = 0;
151         ei->i_next_alloc_block = 0;
152         ei->i_next_alloc_goal = 0;
153         ei->i_strat4096 = 0;
154         init_rwsem(&ei->i_data_sem);
155         ei->cached_extent.lstart = -1;
156         spin_lock_init(&ei->i_extent_cache_lock);
157
158         return &ei->vfs_inode;
159 }
160
161 static void udf_i_callback(struct rcu_head *head)
162 {
163         struct inode *inode = container_of(head, struct inode, i_rcu);
164         kmem_cache_free(udf_inode_cachep, UDF_I(inode));
165 }
166
167 static void udf_destroy_inode(struct inode *inode)
168 {
169         call_rcu(&inode->i_rcu, udf_i_callback);
170 }
171
172 static void init_once(void *foo)
173 {
174         struct udf_inode_info *ei = (struct udf_inode_info *)foo;
175
176         ei->i_ext.i_data = NULL;
177         inode_init_once(&ei->vfs_inode);
178 }
179
180 static int __init init_inodecache(void)
181 {
182         udf_inode_cachep = kmem_cache_create("udf_inode_cache",
183                                              sizeof(struct udf_inode_info),
184                                              0, (SLAB_RECLAIM_ACCOUNT |
185                                                  SLAB_MEM_SPREAD |
186                                                  SLAB_ACCOUNT),
187                                              init_once);
188         if (!udf_inode_cachep)
189                 return -ENOMEM;
190         return 0;
191 }
192
193 static void destroy_inodecache(void)
194 {
195         /*
196          * Make sure all delayed rcu free inodes are flushed before we
197          * destroy cache.
198          */
199         rcu_barrier();
200         kmem_cache_destroy(udf_inode_cachep);
201 }
202
203 /* Superblock operations */
204 static const struct super_operations udf_sb_ops = {
205         .alloc_inode    = udf_alloc_inode,
206         .destroy_inode  = udf_destroy_inode,
207         .write_inode    = udf_write_inode,
208         .evict_inode    = udf_evict_inode,
209         .put_super      = udf_put_super,
210         .sync_fs        = udf_sync_fs,
211         .statfs         = udf_statfs,
212         .remount_fs     = udf_remount_fs,
213         .show_options   = udf_show_options,
214 };
215
216 struct udf_options {
217         unsigned char novrs;
218         unsigned int blocksize;
219         unsigned int session;
220         unsigned int lastblock;
221         unsigned int anchor;
222         unsigned int volume;
223         unsigned short partition;
224         unsigned int fileset;
225         unsigned int rootdir;
226         unsigned int flags;
227         umode_t umask;
228         kgid_t gid;
229         kuid_t uid;
230         umode_t fmode;
231         umode_t dmode;
232         struct nls_table *nls_map;
233 };
234
235 static int __init init_udf_fs(void)
236 {
237         int err;
238
239         err = init_inodecache();
240         if (err)
241                 goto out1;
242         err = register_filesystem(&udf_fstype);
243         if (err)
244                 goto out;
245
246         return 0;
247
248 out:
249         destroy_inodecache();
250
251 out1:
252         return err;
253 }
254
255 static void __exit exit_udf_fs(void)
256 {
257         unregister_filesystem(&udf_fstype);
258         destroy_inodecache();
259 }
260
261 module_init(init_udf_fs)
262 module_exit(exit_udf_fs)
263
264 static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
265 {
266         struct udf_sb_info *sbi = UDF_SB(sb);
267
268         sbi->s_partmaps = kcalloc(count, sizeof(struct udf_part_map),
269                                   GFP_KERNEL);
270         if (!sbi->s_partmaps) {
271                 udf_err(sb, "Unable to allocate space for %d partition maps\n",
272                         count);
273                 sbi->s_partitions = 0;
274                 return -ENOMEM;
275         }
276
277         sbi->s_partitions = count;
278         return 0;
279 }
280
281 static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
282 {
283         int i;
284         int nr_groups = bitmap->s_nr_groups;
285
286         for (i = 0; i < nr_groups; i++)
287                 if (bitmap->s_block_bitmap[i])
288                         brelse(bitmap->s_block_bitmap[i]);
289
290         kvfree(bitmap);
291 }
292
293 static void udf_free_partition(struct udf_part_map *map)
294 {
295         int i;
296         struct udf_meta_data *mdata;
297
298         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
299                 iput(map->s_uspace.s_table);
300         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE)
301                 iput(map->s_fspace.s_table);
302         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
303                 udf_sb_free_bitmap(map->s_uspace.s_bitmap);
304         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP)
305                 udf_sb_free_bitmap(map->s_fspace.s_bitmap);
306         if (map->s_partition_type == UDF_SPARABLE_MAP15)
307                 for (i = 0; i < 4; i++)
308                         brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
309         else if (map->s_partition_type == UDF_METADATA_MAP25) {
310                 mdata = &map->s_type_specific.s_metadata;
311                 iput(mdata->s_metadata_fe);
312                 mdata->s_metadata_fe = NULL;
313
314                 iput(mdata->s_mirror_fe);
315                 mdata->s_mirror_fe = NULL;
316
317                 iput(mdata->s_bitmap_fe);
318                 mdata->s_bitmap_fe = NULL;
319         }
320 }
321
322 static void udf_sb_free_partitions(struct super_block *sb)
323 {
324         struct udf_sb_info *sbi = UDF_SB(sb);
325         int i;
326         if (sbi->s_partmaps == NULL)
327                 return;
328         for (i = 0; i < sbi->s_partitions; i++)
329                 udf_free_partition(&sbi->s_partmaps[i]);
330         kfree(sbi->s_partmaps);
331         sbi->s_partmaps = NULL;
332 }
333
334 static int udf_show_options(struct seq_file *seq, struct dentry *root)
335 {
336         struct super_block *sb = root->d_sb;
337         struct udf_sb_info *sbi = UDF_SB(sb);
338
339         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
340                 seq_puts(seq, ",nostrict");
341         if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
342                 seq_printf(seq, ",bs=%lu", sb->s_blocksize);
343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
344                 seq_puts(seq, ",unhide");
345         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
346                 seq_puts(seq, ",undelete");
347         if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
348                 seq_puts(seq, ",noadinicb");
349         if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
350                 seq_puts(seq, ",shortad");
351         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
352                 seq_puts(seq, ",uid=forget");
353         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_IGNORE))
354                 seq_puts(seq, ",uid=ignore");
355         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
356                 seq_puts(seq, ",gid=forget");
357         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_IGNORE))
358                 seq_puts(seq, ",gid=ignore");
359         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
360                 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
361         if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
362                 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
363         if (sbi->s_umask != 0)
364                 seq_printf(seq, ",umask=%ho", sbi->s_umask);
365         if (sbi->s_fmode != UDF_INVALID_MODE)
366                 seq_printf(seq, ",mode=%ho", sbi->s_fmode);
367         if (sbi->s_dmode != UDF_INVALID_MODE)
368                 seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
369         if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
370                 seq_printf(seq, ",session=%u", sbi->s_session);
371         if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
372                 seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
373         if (sbi->s_anchor != 0)
374                 seq_printf(seq, ",anchor=%u", sbi->s_anchor);
375         /*
376          * volume, partition, fileset and rootdir seem to be ignored
377          * currently
378          */
379         if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
380                 seq_puts(seq, ",utf8");
381         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
382                 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
383
384         return 0;
385 }
386
387 /*
388  * udf_parse_options
389  *
390  * PURPOSE
391  *      Parse mount options.
392  *
393  * DESCRIPTION
394  *      The following mount options are supported:
395  *
396  *      gid=            Set the default group.
397  *      umask=          Set the default umask.
398  *      mode=           Set the default file permissions.
399  *      dmode=          Set the default directory permissions.
400  *      uid=            Set the default user.
401  *      bs=             Set the block size.
402  *      unhide          Show otherwise hidden files.
403  *      undelete        Show deleted files in lists.
404  *      adinicb         Embed data in the inode (default)
405  *      noadinicb       Don't embed data in the inode
406  *      shortad         Use short ad's
407  *      longad          Use long ad's (default)
408  *      nostrict        Unset strict conformance
409  *      iocharset=      Set the NLS character set
410  *
411  *      The remaining are for debugging and disaster recovery:
412  *
413  *      novrs           Skip volume sequence recognition
414  *
415  *      The following expect a offset from 0.
416  *
417  *      session=        Set the CDROM session (default= last session)
418  *      anchor=         Override standard anchor location. (default= 256)
419  *      volume=         Override the VolumeDesc location. (unused)
420  *      partition=      Override the PartitionDesc location. (unused)
421  *      lastblock=      Set the last block of the filesystem/
422  *
423  *      The following expect a offset from the partition root.
424  *
425  *      fileset=        Override the fileset block location. (unused)
426  *      rootdir=        Override the root directory location. (unused)
427  *              WARNING: overriding the rootdir to a non-directory may
428  *              yield highly unpredictable results.
429  *
430  * PRE-CONDITIONS
431  *      options         Pointer to mount options string.
432  *      uopts           Pointer to mount options variable.
433  *
434  * POST-CONDITIONS
435  *      <return>        1       Mount options parsed okay.
436  *      <return>        0       Error parsing mount options.
437  *
438  * HISTORY
439  *      July 1, 1997 - Andrew E. Mileski
440  *      Written, tested, and released.
441  */
442
443 enum {
444         Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
445         Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
446         Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
447         Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
448         Opt_rootdir, Opt_utf8, Opt_iocharset,
449         Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
450         Opt_fmode, Opt_dmode
451 };
452
453 static const match_table_t tokens = {
454         {Opt_novrs,     "novrs"},
455         {Opt_nostrict,  "nostrict"},
456         {Opt_bs,        "bs=%u"},
457         {Opt_unhide,    "unhide"},
458         {Opt_undelete,  "undelete"},
459         {Opt_noadinicb, "noadinicb"},
460         {Opt_adinicb,   "adinicb"},
461         {Opt_shortad,   "shortad"},
462         {Opt_longad,    "longad"},
463         {Opt_uforget,   "uid=forget"},
464         {Opt_uignore,   "uid=ignore"},
465         {Opt_gforget,   "gid=forget"},
466         {Opt_gignore,   "gid=ignore"},
467         {Opt_gid,       "gid=%u"},
468         {Opt_uid,       "uid=%u"},
469         {Opt_umask,     "umask=%o"},
470         {Opt_session,   "session=%u"},
471         {Opt_lastblock, "lastblock=%u"},
472         {Opt_anchor,    "anchor=%u"},
473         {Opt_volume,    "volume=%u"},
474         {Opt_partition, "partition=%u"},
475         {Opt_fileset,   "fileset=%u"},
476         {Opt_rootdir,   "rootdir=%u"},
477         {Opt_utf8,      "utf8"},
478         {Opt_iocharset, "iocharset=%s"},
479         {Opt_fmode,     "mode=%o"},
480         {Opt_dmode,     "dmode=%o"},
481         {Opt_err,       NULL}
482 };
483
484 static int udf_parse_options(char *options, struct udf_options *uopt,
485                              bool remount)
486 {
487         char *p;
488         int option;
489
490         uopt->novrs = 0;
491         uopt->partition = 0xFFFF;
492         uopt->session = 0xFFFFFFFF;
493         uopt->lastblock = 0;
494         uopt->anchor = 0;
495         uopt->volume = 0xFFFFFFFF;
496         uopt->rootdir = 0xFFFFFFFF;
497         uopt->fileset = 0xFFFFFFFF;
498         uopt->nls_map = NULL;
499
500         if (!options)
501                 return 1;
502
503         while ((p = strsep(&options, ",")) != NULL) {
504                 substring_t args[MAX_OPT_ARGS];
505                 int token;
506                 unsigned n;
507                 if (!*p)
508                         continue;
509
510                 token = match_token(p, tokens, args);
511                 switch (token) {
512                 case Opt_novrs:
513                         uopt->novrs = 1;
514                         break;
515                 case Opt_bs:
516                         if (match_int(&args[0], &option))
517                                 return 0;
518                         n = option;
519                         if (n != 512 && n != 1024 && n != 2048 && n != 4096)
520                                 return 0;
521                         uopt->blocksize = n;
522                         uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
523                         break;
524                 case Opt_unhide:
525                         uopt->flags |= (1 << UDF_FLAG_UNHIDE);
526                         break;
527                 case Opt_undelete:
528                         uopt->flags |= (1 << UDF_FLAG_UNDELETE);
529                         break;
530                 case Opt_noadinicb:
531                         uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
532                         break;
533                 case Opt_adinicb:
534                         uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
535                         break;
536                 case Opt_shortad:
537                         uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
538                         break;
539                 case Opt_longad:
540                         uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
541                         break;
542                 case Opt_gid:
543                         if (match_int(args, &option))
544                                 return 0;
545                         uopt->gid = make_kgid(current_user_ns(), option);
546                         if (!gid_valid(uopt->gid))
547                                 return 0;
548                         uopt->flags |= (1 << UDF_FLAG_GID_SET);
549                         break;
550                 case Opt_uid:
551                         if (match_int(args, &option))
552                                 return 0;
553                         uopt->uid = make_kuid(current_user_ns(), option);
554                         if (!uid_valid(uopt->uid))
555                                 return 0;
556                         uopt->flags |= (1 << UDF_FLAG_UID_SET);
557                         break;
558                 case Opt_umask:
559                         if (match_octal(args, &option))
560                                 return 0;
561                         uopt->umask = option;
562                         break;
563                 case Opt_nostrict:
564                         uopt->flags &= ~(1 << UDF_FLAG_STRICT);
565                         break;
566                 case Opt_session:
567                         if (match_int(args, &option))
568                                 return 0;
569                         uopt->session = option;
570                         if (!remount)
571                                 uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
572                         break;
573                 case Opt_lastblock:
574                         if (match_int(args, &option))
575                                 return 0;
576                         uopt->lastblock = option;
577                         if (!remount)
578                                 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
579                         break;
580                 case Opt_anchor:
581                         if (match_int(args, &option))
582                                 return 0;
583                         uopt->anchor = option;
584                         break;
585                 case Opt_volume:
586                         if (match_int(args, &option))
587                                 return 0;
588                         uopt->volume = option;
589                         break;
590                 case Opt_partition:
591                         if (match_int(args, &option))
592                                 return 0;
593                         uopt->partition = option;
594                         break;
595                 case Opt_fileset:
596                         if (match_int(args, &option))
597                                 return 0;
598                         uopt->fileset = option;
599                         break;
600                 case Opt_rootdir:
601                         if (match_int(args, &option))
602                                 return 0;
603                         uopt->rootdir = option;
604                         break;
605                 case Opt_utf8:
606                         uopt->flags |= (1 << UDF_FLAG_UTF8);
607                         break;
608 #ifdef CONFIG_UDF_NLS
609                 case Opt_iocharset:
610                         uopt->nls_map = load_nls(args[0].from);
611                         uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
612                         break;
613 #endif
614                 case Opt_uignore:
615                         uopt->flags |= (1 << UDF_FLAG_UID_IGNORE);
616                         break;
617                 case Opt_uforget:
618                         uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
619                         break;
620                 case Opt_gignore:
621                         uopt->flags |= (1 << UDF_FLAG_GID_IGNORE);
622                         break;
623                 case Opt_gforget:
624                         uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
625                         break;
626                 case Opt_fmode:
627                         if (match_octal(args, &option))
628                                 return 0;
629                         uopt->fmode = option & 0777;
630                         break;
631                 case Opt_dmode:
632                         if (match_octal(args, &option))
633                                 return 0;
634                         uopt->dmode = option & 0777;
635                         break;
636                 default:
637                         pr_err("bad mount option \"%s\" or missing value\n", p);
638                         return 0;
639                 }
640         }
641         return 1;
642 }
643
644 static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
645 {
646         struct udf_options uopt;
647         struct udf_sb_info *sbi = UDF_SB(sb);
648         int error = 0;
649         struct logicalVolIntegrityDescImpUse *lvidiu = udf_sb_lvidiu(sb);
650
651         sync_filesystem(sb);
652         if (lvidiu) {
653                 int write_rev = le16_to_cpu(lvidiu->minUDFWriteRev);
654                 if (write_rev > UDF_MAX_WRITE_VERSION && !(*flags & MS_RDONLY))
655                         return -EACCES;
656         }
657
658         uopt.flags = sbi->s_flags;
659         uopt.uid   = sbi->s_uid;
660         uopt.gid   = sbi->s_gid;
661         uopt.umask = sbi->s_umask;
662         uopt.fmode = sbi->s_fmode;
663         uopt.dmode = sbi->s_dmode;
664
665         if (!udf_parse_options(options, &uopt, true))
666                 return -EINVAL;
667
668         write_lock(&sbi->s_cred_lock);
669         sbi->s_flags = uopt.flags;
670         sbi->s_uid   = uopt.uid;
671         sbi->s_gid   = uopt.gid;
672         sbi->s_umask = uopt.umask;
673         sbi->s_fmode = uopt.fmode;
674         sbi->s_dmode = uopt.dmode;
675         write_unlock(&sbi->s_cred_lock);
676
677         if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
678                 goto out_unlock;
679
680         if (*flags & MS_RDONLY)
681                 udf_close_lvid(sb);
682         else
683                 udf_open_lvid(sb);
684
685 out_unlock:
686         return error;
687 }
688
689 /* Check Volume Structure Descriptors (ECMA 167 2/9.1) */
690 /* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) */
691 static loff_t udf_check_vsd(struct super_block *sb)
692 {
693         struct volStructDesc *vsd = NULL;
694         loff_t sector = VSD_FIRST_SECTOR_OFFSET;
695         int sectorsize;
696         struct buffer_head *bh = NULL;
697         int nsr02 = 0;
698         int nsr03 = 0;
699         struct udf_sb_info *sbi;
700
701         sbi = UDF_SB(sb);
702         if (sb->s_blocksize < sizeof(struct volStructDesc))
703                 sectorsize = sizeof(struct volStructDesc);
704         else
705                 sectorsize = sb->s_blocksize;
706
707         sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
708
709         udf_debug("Starting at sector %u (%ld byte sectors)\n",
710                   (unsigned int)(sector >> sb->s_blocksize_bits),
711                   sb->s_blocksize);
712         /* Process the sequence (if applicable). The hard limit on the sector
713          * offset is arbitrary, hopefully large enough so that all valid UDF
714          * filesystems will be recognised. There is no mention of an upper
715          * bound to the size of the volume recognition area in the standard.
716          *  The limit will prevent the code to read all the sectors of a
717          * specially crafted image (like a bluray disc full of CD001 sectors),
718          * potentially causing minutes or even hours of uninterruptible I/O
719          * activity. This actually happened with uninitialised SSD partitions
720          * (all 0xFF) before the check for the limit and all valid IDs were
721          * added */
722         for (; !nsr02 && !nsr03 && sector < VSD_MAX_SECTOR_OFFSET;
723              sector += sectorsize) {
724                 /* Read a block */
725                 bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
726                 if (!bh)
727                         break;
728
729                 /* Look for ISO  descriptors */
730                 vsd = (struct volStructDesc *)(bh->b_data +
731                                               (sector & (sb->s_blocksize - 1)));
732
733                 if (!strncmp(vsd->stdIdent, VSD_STD_ID_CD001,
734                                     VSD_STD_ID_LEN)) {
735                         switch (vsd->structType) {
736                         case 0:
737                                 udf_debug("ISO9660 Boot Record found\n");
738                                 break;
739                         case 1:
740                                 udf_debug("ISO9660 Primary Volume Descriptor found\n");
741                                 break;
742                         case 2:
743                                 udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
744                                 break;
745                         case 3:
746                                 udf_debug("ISO9660 Volume Partition Descriptor found\n");
747                                 break;
748                         case 255:
749                                 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
750                                 break;
751                         default:
752                                 udf_debug("ISO9660 VRS (%u) found\n",
753                                           vsd->structType);
754                                 break;
755                         }
756                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BEA01,
757                                     VSD_STD_ID_LEN))
758                         ; /* nothing */
759                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_TEA01,
760                                     VSD_STD_ID_LEN)) {
761                         brelse(bh);
762                         break;
763                 } else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR02,
764                                     VSD_STD_ID_LEN))
765                         nsr02 = sector;
766                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_NSR03,
767                                     VSD_STD_ID_LEN))
768                         nsr03 = sector;
769                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_BOOT2,
770                                     VSD_STD_ID_LEN))
771                         ; /* nothing */
772                 else if (!strncmp(vsd->stdIdent, VSD_STD_ID_CDW02,
773                                     VSD_STD_ID_LEN))
774                         ; /* nothing */
775                 else {
776                         /* invalid id : end of volume recognition area */
777                         brelse(bh);
778                         break;
779                 }
780                 brelse(bh);
781         }
782
783         if (nsr03)
784                 return nsr03;
785         else if (nsr02)
786                 return nsr02;
787         else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
788                         VSD_FIRST_SECTOR_OFFSET)
789                 return -1;
790         else
791                 return 0;
792 }
793
794 static int udf_find_fileset(struct super_block *sb,
795                             struct kernel_lb_addr *fileset,
796                             struct kernel_lb_addr *root)
797 {
798         struct buffer_head *bh = NULL;
799         long lastblock;
800         uint16_t ident;
801         struct udf_sb_info *sbi;
802
803         if (fileset->logicalBlockNum != 0xFFFFFFFF ||
804             fileset->partitionReferenceNum != 0xFFFF) {
805                 bh = udf_read_ptagged(sb, fileset, 0, &ident);
806
807                 if (!bh) {
808                         return 1;
809                 } else if (ident != TAG_IDENT_FSD) {
810                         brelse(bh);
811                         return 1;
812                 }
813
814         }
815
816         sbi = UDF_SB(sb);
817         if (!bh) {
818                 /* Search backwards through the partitions */
819                 struct kernel_lb_addr newfileset;
820
821 /* --> cvg: FIXME - is it reasonable? */
822                 return 1;
823
824                 for (newfileset.partitionReferenceNum = sbi->s_partitions - 1;
825                      (newfileset.partitionReferenceNum != 0xFFFF &&
826                       fileset->logicalBlockNum == 0xFFFFFFFF &&
827                       fileset->partitionReferenceNum == 0xFFFF);
828                      newfileset.partitionReferenceNum--) {
829                         lastblock = sbi->s_partmaps
830                                         [newfileset.partitionReferenceNum]
831                                                 .s_partition_len;
832                         newfileset.logicalBlockNum = 0;
833
834                         do {
835                                 bh = udf_read_ptagged(sb, &newfileset, 0,
836                                                       &ident);
837                                 if (!bh) {
838                                         newfileset.logicalBlockNum++;
839                                         continue;
840                                 }
841
842                                 switch (ident) {
843                                 case TAG_IDENT_SBD:
844                                 {
845                                         struct spaceBitmapDesc *sp;
846                                         sp = (struct spaceBitmapDesc *)
847                                                                 bh->b_data;
848                                         newfileset.logicalBlockNum += 1 +
849                                                 ((le32_to_cpu(sp->numOfBytes) +
850                                                   sizeof(struct spaceBitmapDesc)
851                                                   - 1) >> sb->s_blocksize_bits);
852                                         brelse(bh);
853                                         break;
854                                 }
855                                 case TAG_IDENT_FSD:
856                                         *fileset = newfileset;
857                                         break;
858                                 default:
859                                         newfileset.logicalBlockNum++;
860                                         brelse(bh);
861                                         bh = NULL;
862                                         break;
863                                 }
864                         } while (newfileset.logicalBlockNum < lastblock &&
865                                  fileset->logicalBlockNum == 0xFFFFFFFF &&
866                                  fileset->partitionReferenceNum == 0xFFFF);
867                 }
868         }
869
870         if ((fileset->logicalBlockNum != 0xFFFFFFFF ||
871              fileset->partitionReferenceNum != 0xFFFF) && bh) {
872                 udf_debug("Fileset at block=%d, partition=%d\n",
873                           fileset->logicalBlockNum,
874                           fileset->partitionReferenceNum);
875
876                 sbi->s_partition = fileset->partitionReferenceNum;
877                 udf_load_fileset(sb, bh, root);
878                 brelse(bh);
879                 return 0;
880         }
881         return 1;
882 }
883
884 /*
885  * Load primary Volume Descriptor Sequence
886  *
887  * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
888  * should be tried.
889  */
890 static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
891 {
892         struct primaryVolDesc *pvoldesc;
893         uint8_t *outstr;
894         struct buffer_head *bh;
895         uint16_t ident;
896         int ret = -ENOMEM;
897
898         outstr = kmalloc(128, GFP_NOFS);
899         if (!outstr)
900                 return -ENOMEM;
901
902         bh = udf_read_tagged(sb, block, block, &ident);
903         if (!bh) {
904                 ret = -EAGAIN;
905                 goto out2;
906         }
907
908         if (ident != TAG_IDENT_PVD) {
909                 ret = -EIO;
910                 goto out_bh;
911         }
912
913         pvoldesc = (struct primaryVolDesc *)bh->b_data;
914
915         if (udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
916                               pvoldesc->recordingDateAndTime)) {
917 #ifdef UDFFS_DEBUG
918                 struct timestamp *ts = &pvoldesc->recordingDateAndTime;
919                 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
920                           le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
921                           ts->minute, le16_to_cpu(ts->typeAndTimezone));
922 #endif
923         }
924
925         ret = udf_dstrCS0toUTF8(outstr, 31, pvoldesc->volIdent, 32);
926         if (ret < 0) {
927                 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
928                 pr_warn("incorrect volume identification, setting to "
929                         "'InvalidName'\n");
930         } else {
931                 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
932         }
933         udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
934
935         ret = udf_dstrCS0toUTF8(outstr, 127, pvoldesc->volSetIdent, 128);
936         if (ret < 0) {
937                 ret = 0;
938                 goto out_bh;
939         }
940         outstr[ret] = 0;
941         udf_debug("volSetIdent[] = '%s'\n", outstr);
942
943         ret = 0;
944 out_bh:
945         brelse(bh);
946 out2:
947         kfree(outstr);
948         return ret;
949 }
950
951 struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
952                                         u32 meta_file_loc, u32 partition_ref)
953 {
954         struct kernel_lb_addr addr;
955         struct inode *metadata_fe;
956
957         addr.logicalBlockNum = meta_file_loc;
958         addr.partitionReferenceNum = partition_ref;
959
960         metadata_fe = udf_iget_special(sb, &addr);
961
962         if (IS_ERR(metadata_fe)) {
963                 udf_warn(sb, "metadata inode efe not found\n");
964                 return metadata_fe;
965         }
966         if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
967                 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
968                 iput(metadata_fe);
969                 return ERR_PTR(-EIO);
970         }
971
972         return metadata_fe;
973 }
974
975 static int udf_load_metadata_files(struct super_block *sb, int partition,
976                                    int type1_index)
977 {
978         struct udf_sb_info *sbi = UDF_SB(sb);
979         struct udf_part_map *map;
980         struct udf_meta_data *mdata;
981         struct kernel_lb_addr addr;
982         struct inode *fe;
983
984         map = &sbi->s_partmaps[partition];
985         mdata = &map->s_type_specific.s_metadata;
986         mdata->s_phys_partition_ref = type1_index;
987
988         /* metadata address */
989         udf_debug("Metadata file location: block = %d part = %d\n",
990                   mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
991
992         fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
993                                          mdata->s_phys_partition_ref);
994         if (IS_ERR(fe)) {
995                 /* mirror file entry */
996                 udf_debug("Mirror metadata file location: block = %d part = %d\n",
997                           mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
998
999                 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
1000                                                  mdata->s_phys_partition_ref);
1001
1002                 if (IS_ERR(fe)) {
1003                         udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
1004                         return PTR_ERR(fe);
1005                 }
1006                 mdata->s_mirror_fe = fe;
1007         } else
1008                 mdata->s_metadata_fe = fe;
1009
1010
1011         /*
1012          * bitmap file entry
1013          * Note:
1014          * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
1015         */
1016         if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
1017                 addr.logicalBlockNum = mdata->s_bitmap_file_loc;
1018                 addr.partitionReferenceNum = mdata->s_phys_partition_ref;
1019
1020                 udf_debug("Bitmap file location: block = %d part = %d\n",
1021                           addr.logicalBlockNum, addr.partitionReferenceNum);
1022
1023                 fe = udf_iget_special(sb, &addr);
1024                 if (IS_ERR(fe)) {
1025                         if (sb->s_flags & MS_RDONLY)
1026                                 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
1027                         else {
1028                                 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
1029                                 return PTR_ERR(fe);
1030                         }
1031                 } else
1032                         mdata->s_bitmap_fe = fe;
1033         }
1034
1035         udf_debug("udf_load_metadata_files Ok\n");
1036         return 0;
1037 }
1038
1039 static void udf_load_fileset(struct super_block *sb, struct buffer_head *bh,
1040                              struct kernel_lb_addr *root)
1041 {
1042         struct fileSetDesc *fset;
1043
1044         fset = (struct fileSetDesc *)bh->b_data;
1045
1046         *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
1047
1048         UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
1049
1050         udf_debug("Rootdir at block=%d, partition=%d\n",
1051                   root->logicalBlockNum, root->partitionReferenceNum);
1052 }
1053
1054 int udf_compute_nr_groups(struct super_block *sb, u32 partition)
1055 {
1056         struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
1057         return DIV_ROUND_UP(map->s_partition_len +
1058                             (sizeof(struct spaceBitmapDesc) << 3),
1059                             sb->s_blocksize * 8);
1060 }
1061
1062 static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
1063 {
1064         struct udf_bitmap *bitmap;
1065         int nr_groups;
1066         int size;
1067
1068         nr_groups = udf_compute_nr_groups(sb, index);
1069         size = sizeof(struct udf_bitmap) +
1070                 (sizeof(struct buffer_head *) * nr_groups);
1071
1072         if (size <= PAGE_SIZE)
1073                 bitmap = kzalloc(size, GFP_KERNEL);
1074         else
1075                 bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
1076
1077         if (bitmap == NULL)
1078                 return NULL;
1079
1080         bitmap->s_nr_groups = nr_groups;
1081         return bitmap;
1082 }
1083
1084 static int udf_fill_partdesc_info(struct super_block *sb,
1085                 struct partitionDesc *p, int p_index)
1086 {
1087         struct udf_part_map *map;
1088         struct udf_sb_info *sbi = UDF_SB(sb);
1089         struct partitionHeaderDesc *phd;
1090
1091         map = &sbi->s_partmaps[p_index];
1092
1093         map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
1094         map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
1095
1096         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
1097                 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
1098         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
1099                 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
1100         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
1101                 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
1102         if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
1103                 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
1104
1105         udf_debug("Partition (%d type %x) starts at physical %d, block length %d\n",
1106                   p_index, map->s_partition_type,
1107                   map->s_partition_root, map->s_partition_len);
1108
1109         if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
1110             strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
1111                 return 0;
1112
1113         phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
1114         if (phd->unallocSpaceTable.extLength) {
1115                 struct kernel_lb_addr loc = {
1116                         .logicalBlockNum = le32_to_cpu(
1117                                 phd->unallocSpaceTable.extPosition),
1118                         .partitionReferenceNum = p_index,
1119                 };
1120                 struct inode *inode;
1121
1122                 inode = udf_iget_special(sb, &loc);
1123                 if (IS_ERR(inode)) {
1124                         udf_debug("cannot load unallocSpaceTable (part %d)\n",
1125                                   p_index);
1126                         return PTR_ERR(inode);
1127                 }
1128                 map->s_uspace.s_table = inode;
1129                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
1130                 udf_debug("unallocSpaceTable (part %d) @ %ld\n",
1131                           p_index, map->s_uspace.s_table->i_ino);
1132         }
1133
1134         if (phd->unallocSpaceBitmap.extLength) {
1135                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1136                 if (!bitmap)
1137                         return -ENOMEM;
1138                 map->s_uspace.s_bitmap = bitmap;
1139                 bitmap->s_extPosition = le32_to_cpu(
1140                                 phd->unallocSpaceBitmap.extPosition);
1141                 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
1142                 udf_debug("unallocSpaceBitmap (part %d) @ %d\n",
1143                           p_index, bitmap->s_extPosition);
1144         }
1145
1146         if (phd->partitionIntegrityTable.extLength)
1147                 udf_debug("partitionIntegrityTable (part %d)\n", p_index);
1148
1149         if (phd->freedSpaceTable.extLength) {
1150                 struct kernel_lb_addr loc = {
1151                         .logicalBlockNum = le32_to_cpu(
1152                                 phd->freedSpaceTable.extPosition),
1153                         .partitionReferenceNum = p_index,
1154                 };
1155                 struct inode *inode;
1156
1157                 inode = udf_iget_special(sb, &loc);
1158                 if (IS_ERR(inode)) {
1159                         udf_debug("cannot load freedSpaceTable (part %d)\n",
1160                                   p_index);
1161                         return PTR_ERR(inode);
1162                 }
1163                 map->s_fspace.s_table = inode;
1164                 map->s_partition_flags |= UDF_PART_FLAG_FREED_TABLE;
1165                 udf_debug("freedSpaceTable (part %d) @ %ld\n",
1166                           p_index, map->s_fspace.s_table->i_ino);
1167         }
1168
1169         if (phd->freedSpaceBitmap.extLength) {
1170                 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
1171                 if (!bitmap)
1172                         return -ENOMEM;
1173                 map->s_fspace.s_bitmap = bitmap;
1174                 bitmap->s_extPosition = le32_to_cpu(
1175                                 phd->freedSpaceBitmap.extPosition);
1176                 map->s_partition_flags |= UDF_PART_FLAG_FREED_BITMAP;
1177                 udf_debug("freedSpaceBitmap (part %d) @ %d\n",
1178                           p_index, bitmap->s_extPosition);
1179         }
1180         return 0;
1181 }
1182
1183 static void udf_find_vat_block(struct super_block *sb, int p_index,
1184                                int type1_index, sector_t start_block)
1185 {
1186         struct udf_sb_info *sbi = UDF_SB(sb);
1187         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1188         sector_t vat_block;
1189         struct kernel_lb_addr ino;
1190         struct inode *inode;
1191
1192         /*
1193          * VAT file entry is in the last recorded block. Some broken disks have
1194          * it a few blocks before so try a bit harder...
1195          */
1196         ino.partitionReferenceNum = type1_index;
1197         for (vat_block = start_block;
1198              vat_block >= map->s_partition_root &&
1199              vat_block >= start_block - 3; vat_block--) {
1200                 ino.logicalBlockNum = vat_block - map->s_partition_root;
1201                 inode = udf_iget_special(sb, &ino);
1202                 if (!IS_ERR(inode)) {
1203                         sbi->s_vat_inode = inode;
1204                         break;
1205                 }
1206         }
1207 }
1208
1209 static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
1210 {
1211         struct udf_sb_info *sbi = UDF_SB(sb);
1212         struct udf_part_map *map = &sbi->s_partmaps[p_index];
1213         struct buffer_head *bh = NULL;
1214         struct udf_inode_info *vati;
1215         uint32_t pos;
1216         struct virtualAllocationTable20 *vat20;
1217         sector_t blocks = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
1218
1219         udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
1220         if (!sbi->s_vat_inode &&
1221             sbi->s_last_block != blocks - 1) {
1222                 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
1223                           (unsigned long)sbi->s_last_block,
1224                           (unsigned long)blocks - 1);
1225                 udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
1226         }
1227         if (!sbi->s_vat_inode)
1228                 return -EIO;
1229
1230         if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
1231                 map->s_type_specific.s_virtual.s_start_offset = 0;
1232                 map->s_type_specific.s_virtual.s_num_entries =
1233                         (sbi->s_vat_inode->i_size - 36) >> 2;
1234         } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
1235                 vati = UDF_I(sbi->s_vat_inode);
1236                 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1237                         pos = udf_block_map(sbi->s_vat_inode, 0);
1238                         bh = sb_bread(sb, pos);
1239                         if (!bh)
1240                                 return -EIO;
1241                         vat20 = (struct virtualAllocationTable20 *)bh->b_data;
1242                 } else {
1243                         vat20 = (struct virtualAllocationTable20 *)
1244                                                         vati->i_ext.i_data;
1245                 }
1246
1247                 map->s_type_specific.s_virtual.s_start_offset =
1248                         le16_to_cpu(vat20->lengthHeader);
1249                 map->s_type_specific.s_virtual.s_num_entries =
1250                         (sbi->s_vat_inode->i_size -
1251                                 map->s_type_specific.s_virtual.
1252                                         s_start_offset) >> 2;
1253                 brelse(bh);
1254         }
1255         return 0;
1256 }
1257
1258 /*
1259  * Load partition descriptor block
1260  *
1261  * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
1262  * sequence.
1263  */
1264 static int udf_load_partdesc(struct super_block *sb, sector_t block)
1265 {
1266         struct buffer_head *bh;
1267         struct partitionDesc *p;
1268         struct udf_part_map *map;
1269         struct udf_sb_info *sbi = UDF_SB(sb);
1270         int i, type1_idx;
1271         uint16_t partitionNumber;
1272         uint16_t ident;
1273         int ret;
1274
1275         bh = udf_read_tagged(sb, block, block, &ident);
1276         if (!bh)
1277                 return -EAGAIN;
1278         if (ident != TAG_IDENT_PD) {
1279                 ret = 0;
1280                 goto out_bh;
1281         }
1282
1283         p = (struct partitionDesc *)bh->b_data;
1284         partitionNumber = le16_to_cpu(p->partitionNumber);
1285
1286         /* First scan for TYPE1 and SPARABLE partitions */
1287         for (i = 0; i < sbi->s_partitions; i++) {
1288                 map = &sbi->s_partmaps[i];
1289                 udf_debug("Searching map: (%d == %d)\n",
1290                           map->s_partition_num, partitionNumber);
1291                 if (map->s_partition_num == partitionNumber &&
1292                     (map->s_partition_type == UDF_TYPE1_MAP15 ||
1293                      map->s_partition_type == UDF_SPARABLE_MAP15))
1294                         break;
1295         }
1296
1297         if (i >= sbi->s_partitions) {
1298                 udf_debug("Partition (%d) not found in partition map\n",
1299                           partitionNumber);
1300                 ret = 0;
1301                 goto out_bh;
1302         }
1303
1304         ret = udf_fill_partdesc_info(sb, p, i);
1305         if (ret < 0)
1306                 goto out_bh;
1307
1308         /*
1309          * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
1310          * PHYSICAL partitions are already set up
1311          */
1312         type1_idx = i;
1313 #ifdef UDFFS_DEBUG
1314         map = NULL; /* supress 'maybe used uninitialized' warning */
1315 #endif
1316         for (i = 0; i < sbi->s_partitions; i++) {
1317                 map = &sbi->s_partmaps[i];
1318
1319                 if (map->s_partition_num == partitionNumber &&
1320                     (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
1321                      map->s_partition_type == UDF_VIRTUAL_MAP20 ||
1322                      map->s_partition_type == UDF_METADATA_MAP25))
1323                         break;
1324         }
1325
1326         if (i >= sbi->s_partitions) {
1327                 ret = 0;
1328                 goto out_bh;
1329         }
1330
1331         ret = udf_fill_partdesc_info(sb, p, i);
1332         if (ret < 0)
1333                 goto out_bh;
1334
1335         if (map->s_partition_type == UDF_METADATA_MAP25) {
1336                 ret = udf_load_metadata_files(sb, i, type1_idx);
1337                 if (ret < 0) {
1338                         udf_err(sb, "error loading MetaData partition map %d\n",
1339                                 i);
1340                         goto out_bh;
1341                 }
1342         } else {
1343                 /*
1344                  * If we have a partition with virtual map, we don't handle
1345                  * writing to it (we overwrite blocks instead of relocating
1346                  * them).
1347                  */
1348                 if (!(sb->s_flags & MS_RDONLY)) {
1349                         ret = -EACCES;
1350                         goto out_bh;
1351                 }
1352                 ret = udf_load_vat(sb, i, type1_idx);
1353                 if (ret < 0)
1354                         goto out_bh;
1355         }
1356         ret = 0;
1357 out_bh:
1358         /* In case loading failed, we handle cleanup in udf_fill_super */
1359         brelse(bh);
1360         return ret;
1361 }
1362
1363 static int udf_load_sparable_map(struct super_block *sb,
1364                                  struct udf_part_map *map,
1365                                  struct sparablePartitionMap *spm)
1366 {
1367         uint32_t loc;
1368         uint16_t ident;
1369         struct sparingTable *st;
1370         struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
1371         int i;
1372         struct buffer_head *bh;
1373
1374         map->s_partition_type = UDF_SPARABLE_MAP15;
1375         sdata->s_packet_len = le16_to_cpu(spm->packetLength);
1376         if (!is_power_of_2(sdata->s_packet_len)) {
1377                 udf_err(sb, "error loading logical volume descriptor: "
1378                         "Invalid packet length %u\n",
1379                         (unsigned)sdata->s_packet_len);
1380                 return -EIO;
1381         }
1382         if (spm->numSparingTables > 4) {
1383                 udf_err(sb, "error loading logical volume descriptor: "
1384                         "Too many sparing tables (%d)\n",
1385                         (int)spm->numSparingTables);
1386                 return -EIO;
1387         }
1388         if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) {
1389                 udf_err(sb, "error loading logical volume descriptor: "
1390                         "Too big sparing table size (%u)\n",
1391                         le32_to_cpu(spm->sizeSparingTable));
1392                 return -EIO;
1393         }
1394
1395         for (i = 0; i < spm->numSparingTables; i++) {
1396                 loc = le32_to_cpu(spm->locSparingTable[i]);
1397                 bh = udf_read_tagged(sb, loc, loc, &ident);
1398                 if (!bh)
1399                         continue;
1400
1401                 st = (struct sparingTable *)bh->b_data;
1402                 if (ident != 0 ||
1403                     strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
1404                             strlen(UDF_ID_SPARING)) ||
1405                     sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
1406                                                         sb->s_blocksize) {
1407                         brelse(bh);
1408                         continue;
1409                 }
1410
1411                 sdata->s_spar_map[i] = bh;
1412         }
1413         map->s_partition_func = udf_get_pblock_spar15;
1414         return 0;
1415 }
1416
1417 static int udf_load_logicalvol(struct super_block *sb, sector_t block,
1418                                struct kernel_lb_addr *fileset)
1419 {
1420         struct logicalVolDesc *lvd;
1421         int i, offset;
1422         uint8_t type;
1423         struct udf_sb_info *sbi = UDF_SB(sb);
1424         struct genericPartitionMap *gpm;
1425         uint16_t ident;
1426         struct buffer_head *bh;
1427         unsigned int table_len;
1428         int ret;
1429
1430         bh = udf_read_tagged(sb, block, block, &ident);
1431         if (!bh)
1432                 return -EAGAIN;
1433         BUG_ON(ident != TAG_IDENT_LVD);
1434         lvd = (struct logicalVolDesc *)bh->b_data;
1435         table_len = le32_to_cpu(lvd->mapTableLength);
1436         if (table_len > sb->s_blocksize - sizeof(*lvd)) {
1437                 udf_err(sb, "error loading logical volume descriptor: "
1438                         "Partition table too long (%u > %lu)\n", table_len,
1439                         sb->s_blocksize - sizeof(*lvd));
1440                 ret = -EIO;
1441                 goto out_bh;
1442         }
1443
1444         ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
1445         if (ret)
1446                 goto out_bh;
1447
1448         for (i = 0, offset = 0;
1449              i < sbi->s_partitions && offset < table_len;
1450              i++, offset += gpm->partitionMapLength) {
1451                 struct udf_part_map *map = &sbi->s_partmaps[i];
1452                 gpm = (struct genericPartitionMap *)
1453                                 &(lvd->partitionMaps[offset]);
1454                 type = gpm->partitionMapType;
1455                 if (type == 1) {
1456                         struct genericPartitionMap1 *gpm1 =
1457                                 (struct genericPartitionMap1 *)gpm;
1458                         map->s_partition_type = UDF_TYPE1_MAP15;
1459                         map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
1460                         map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
1461                         map->s_partition_func = NULL;
1462                 } else if (type == 2) {
1463                         struct udfPartitionMap2 *upm2 =
1464                                                 (struct udfPartitionMap2 *)gpm;
1465                         if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
1466                                                 strlen(UDF_ID_VIRTUAL))) {
1467                                 u16 suf =
1468                                         le16_to_cpu(((__le16 *)upm2->partIdent.
1469                                                         identSuffix)[0]);
1470                                 if (suf < 0x0200) {
1471                                         map->s_partition_type =
1472                                                         UDF_VIRTUAL_MAP15;
1473                                         map->s_partition_func =
1474                                                         udf_get_pblock_virt15;
1475                                 } else {
1476                                         map->s_partition_type =
1477                                                         UDF_VIRTUAL_MAP20;
1478                                         map->s_partition_func =
1479                                                         udf_get_pblock_virt20;
1480                                 }
1481                         } else if (!strncmp(upm2->partIdent.ident,
1482                                                 UDF_ID_SPARABLE,
1483                                                 strlen(UDF_ID_SPARABLE))) {
1484                                 ret = udf_load_sparable_map(sb, map,
1485                                         (struct sparablePartitionMap *)gpm);
1486                                 if (ret < 0)
1487                                         goto out_bh;
1488                         } else if (!strncmp(upm2->partIdent.ident,
1489                                                 UDF_ID_METADATA,
1490                                                 strlen(UDF_ID_METADATA))) {
1491                                 struct udf_meta_data *mdata =
1492                                         &map->s_type_specific.s_metadata;
1493                                 struct metadataPartitionMap *mdm =
1494                                                 (struct metadataPartitionMap *)
1495                                                 &(lvd->partitionMaps[offset]);
1496                                 udf_debug("Parsing Logical vol part %d type %d  id=%s\n",
1497                                           i, type, UDF_ID_METADATA);
1498
1499                                 map->s_partition_type = UDF_METADATA_MAP25;
1500                                 map->s_partition_func = udf_get_pblock_meta25;
1501
1502                                 mdata->s_meta_file_loc   =
1503                                         le32_to_cpu(mdm->metadataFileLoc);
1504                                 mdata->s_mirror_file_loc =
1505                                         le32_to_cpu(mdm->metadataMirrorFileLoc);
1506                                 mdata->s_bitmap_file_loc =
1507                                         le32_to_cpu(mdm->metadataBitmapFileLoc);
1508                                 mdata->s_alloc_unit_size =
1509                                         le32_to_cpu(mdm->allocUnitSize);
1510                                 mdata->s_align_unit_size =
1511                                         le16_to_cpu(mdm->alignUnitSize);
1512                                 if (mdm->flags & 0x01)
1513                                         mdata->s_flags |= MF_DUPLICATE_MD;
1514
1515                                 udf_debug("Metadata Ident suffix=0x%x\n",
1516                                           le16_to_cpu(*(__le16 *)
1517                                                       mdm->partIdent.identSuffix));
1518                                 udf_debug("Metadata part num=%d\n",
1519                                           le16_to_cpu(mdm->partitionNum));
1520                                 udf_debug("Metadata part alloc unit size=%d\n",
1521                                           le32_to_cpu(mdm->allocUnitSize));
1522                                 udf_debug("Metadata file loc=%d\n",
1523                                           le32_to_cpu(mdm->metadataFileLoc));
1524                                 udf_debug("Mirror file loc=%d\n",
1525                                           le32_to_cpu(mdm->metadataMirrorFileLoc));
1526                                 udf_debug("Bitmap file loc=%d\n",
1527                                           le32_to_cpu(mdm->metadataBitmapFileLoc));
1528                                 udf_debug("Flags: %d %d\n",
1529                                           mdata->s_flags, mdm->flags);
1530                         } else {
1531                                 udf_debug("Unknown ident: %s\n",
1532                                           upm2->partIdent.ident);
1533                                 continue;
1534                         }
1535                         map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
1536                         map->s_partition_num = le16_to_cpu(upm2->partitionNum);
1537                 }
1538                 udf_debug("Partition (%d:%d) type %d on volume %d\n",
1539                           i, map->s_partition_num, type, map->s_volumeseqnum);
1540         }
1541
1542         if (fileset) {
1543                 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
1544
1545                 *fileset = lelb_to_cpu(la->extLocation);
1546                 udf_debug("FileSet found in LogicalVolDesc at block=%d, partition=%d\n",
1547                           fileset->logicalBlockNum,
1548                           fileset->partitionReferenceNum);
1549         }
1550         if (lvd->integritySeqExt.extLength)
1551                 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
1552         ret = 0;
1553 out_bh:
1554         brelse(bh);
1555         return ret;
1556 }
1557
1558 /*
1559  * Find the prevailing Logical Volume Integrity Descriptor.
1560  */
1561 static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
1562 {
1563         struct buffer_head *bh, *final_bh;
1564         uint16_t ident;
1565         struct udf_sb_info *sbi = UDF_SB(sb);
1566         struct logicalVolIntegrityDesc *lvid;
1567         int indirections = 0;
1568         u32 parts, impuselen;
1569
1570         while (++indirections <= UDF_MAX_LVID_NESTING) {
1571                 final_bh = NULL;
1572                 while (loc.extLength > 0 &&
1573                         (bh = udf_read_tagged(sb, loc.extLocation,
1574                                         loc.extLocation, &ident))) {
1575                         if (ident != TAG_IDENT_LVID) {
1576                                 brelse(bh);
1577                                 break;
1578                         }
1579
1580                         brelse(final_bh);
1581                         final_bh = bh;
1582
1583                         loc.extLength -= sb->s_blocksize;
1584                         loc.extLocation++;
1585                 }
1586
1587                 if (!final_bh)
1588                         return;
1589
1590                 brelse(sbi->s_lvid_bh);
1591                 sbi->s_lvid_bh = final_bh;
1592
1593                 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
1594                 if (lvid->nextIntegrityExt.extLength == 0)
1595                         goto check;
1596
1597                 loc = leea_to_cpu(lvid->nextIntegrityExt);
1598         }
1599
1600         udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
1601                 UDF_MAX_LVID_NESTING);
1602 out_err:
1603         brelse(sbi->s_lvid_bh);
1604         sbi->s_lvid_bh = NULL;
1605         return;
1606 check:
1607         parts = le32_to_cpu(lvid->numOfPartitions);
1608         impuselen = le32_to_cpu(lvid->lengthOfImpUse);
1609         if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize ||
1610             sizeof(struct logicalVolIntegrityDesc) + impuselen +
1611             2 * parts * sizeof(u32) > sb->s_blocksize) {
1612                 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), "
1613                          "ignoring.\n", parts, impuselen);
1614                 goto out_err;
1615         }
1616 }
1617
1618
1619 /*
1620  * Process a main/reserve volume descriptor sequence.
1621  *   @block             First block of first extent of the sequence.
1622  *   @lastblock         Lastblock of first extent of the sequence.
1623  *   @fileset           There we store extent containing root fileset
1624  *
1625  * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
1626  * sequence
1627  */
1628 static noinline int udf_process_sequence(
1629                 struct super_block *sb,
1630                 sector_t block, sector_t lastblock,
1631                 struct kernel_lb_addr *fileset)
1632 {
1633         struct buffer_head *bh = NULL;
1634         struct udf_vds_record vds[VDS_POS_LENGTH];
1635         struct udf_vds_record *curr;
1636         struct generic_desc *gd;
1637         struct volDescPtr *vdp;
1638         bool done = false;
1639         uint32_t vdsn;
1640         uint16_t ident;
1641         long next_s = 0, next_e = 0;
1642         int ret;
1643         unsigned int indirections = 0;
1644
1645         memset(vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
1646
1647         /*
1648          * Read the main descriptor sequence and find which descriptors
1649          * are in it.
1650          */
1651         for (; (!done && block <= lastblock); block++) {
1652
1653                 bh = udf_read_tagged(sb, block, block, &ident);
1654                 if (!bh) {
1655                         udf_err(sb,
1656                                 "Block %llu of volume descriptor sequence is corrupted or we could not read it\n",
1657                                 (unsigned long long)block);
1658                         return -EAGAIN;
1659                 }
1660
1661                 /* Process each descriptor (ISO 13346 3/8.3-8.4) */
1662                 gd = (struct generic_desc *)bh->b_data;
1663                 vdsn = le32_to_cpu(gd->volDescSeqNum);
1664                 switch (ident) {
1665                 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
1666                         curr = &vds[VDS_POS_PRIMARY_VOL_DESC];
1667                         if (vdsn >= curr->volDescSeqNum) {
1668                                 curr->volDescSeqNum = vdsn;
1669                                 curr->block = block;
1670                         }
1671                         break;
1672                 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
1673                         curr = &vds[VDS_POS_VOL_DESC_PTR];
1674                         if (vdsn >= curr->volDescSeqNum) {
1675                                 curr->volDescSeqNum = vdsn;
1676                                 curr->block = block;
1677
1678                                 vdp = (struct volDescPtr *)bh->b_data;
1679                                 next_s = le32_to_cpu(
1680                                         vdp->nextVolDescSeqExt.extLocation);
1681                                 next_e = le32_to_cpu(
1682                                         vdp->nextVolDescSeqExt.extLength);
1683                                 next_e = next_e >> sb->s_blocksize_bits;
1684                                 next_e += next_s;
1685                         }
1686                         break;
1687                 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
1688                         curr = &vds[VDS_POS_IMP_USE_VOL_DESC];
1689                         if (vdsn >= curr->volDescSeqNum) {
1690                                 curr->volDescSeqNum = vdsn;
1691                                 curr->block = block;
1692                         }
1693                         break;
1694                 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
1695                         curr = &vds[VDS_POS_PARTITION_DESC];
1696                         if (!curr->block)
1697                                 curr->block = block;
1698                         break;
1699                 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
1700                         curr = &vds[VDS_POS_LOGICAL_VOL_DESC];
1701                         if (vdsn >= curr->volDescSeqNum) {
1702                                 curr->volDescSeqNum = vdsn;
1703                                 curr->block = block;
1704                         }
1705                         break;
1706                 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
1707                         curr = &vds[VDS_POS_UNALLOC_SPACE_DESC];
1708                         if (vdsn >= curr->volDescSeqNum) {
1709                                 curr->volDescSeqNum = vdsn;
1710                                 curr->block = block;
1711                         }
1712                         break;
1713                 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
1714                         if (++indirections > UDF_MAX_TD_NESTING) {
1715                                 udf_err(sb, "too many TDs (max %u supported)\n", UDF_MAX_TD_NESTING);
1716                                 brelse(bh);
1717                                 return -EIO;
1718                         }
1719
1720                         vds[VDS_POS_TERMINATING_DESC].block = block;
1721                         if (next_e) {
1722                                 block = next_s;
1723                                 lastblock = next_e;
1724                                 next_s = next_e = 0;
1725                         } else
1726                                 done = true;
1727                         break;
1728                 }
1729                 brelse(bh);
1730         }
1731         /*
1732          * Now read interesting descriptors again and process them
1733          * in a suitable order
1734          */
1735         if (!vds[VDS_POS_PRIMARY_VOL_DESC].block) {
1736                 udf_err(sb, "Primary Volume Descriptor not found!\n");
1737                 return -EAGAIN;
1738         }
1739         ret = udf_load_pvoldesc(sb, vds[VDS_POS_PRIMARY_VOL_DESC].block);
1740         if (ret < 0)
1741                 return ret;
1742
1743         if (vds[VDS_POS_LOGICAL_VOL_DESC].block) {
1744                 ret = udf_load_logicalvol(sb,
1745                                           vds[VDS_POS_LOGICAL_VOL_DESC].block,
1746                                           fileset);
1747                 if (ret < 0)
1748                         return ret;
1749         }
1750
1751         if (vds[VDS_POS_PARTITION_DESC].block) {
1752                 /*
1753                  * We rescan the whole descriptor sequence to find
1754                  * partition descriptor blocks and process them.
1755                  */
1756                 for (block = vds[VDS_POS_PARTITION_DESC].block;
1757                      block < vds[VDS_POS_TERMINATING_DESC].block;
1758                      block++) {
1759                         ret = udf_load_partdesc(sb, block);
1760                         if (ret < 0)
1761                                 return ret;
1762                 }
1763         }
1764
1765         return 0;
1766 }
1767
1768 /*
1769  * Load Volume Descriptor Sequence described by anchor in bh
1770  *
1771  * Returns <0 on error, 0 on success
1772  */
1773 static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
1774                              struct kernel_lb_addr *fileset)
1775 {
1776         struct anchorVolDescPtr *anchor;
1777         sector_t main_s, main_e, reserve_s, reserve_e;
1778         int ret;
1779
1780         anchor = (struct anchorVolDescPtr *)bh->b_data;
1781
1782         /* Locate the main sequence */
1783         main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
1784         main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
1785         main_e = main_e >> sb->s_blocksize_bits;
1786         main_e += main_s;
1787
1788         /* Locate the reserve sequence */
1789         reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
1790         reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
1791         reserve_e = reserve_e >> sb->s_blocksize_bits;
1792         reserve_e += reserve_s;
1793
1794         /* Process the main & reserve sequences */
1795         /* responsible for finding the PartitionDesc(s) */
1796         ret = udf_process_sequence(sb, main_s, main_e, fileset);
1797         if (ret != -EAGAIN)
1798                 return ret;
1799         udf_sb_free_partitions(sb);
1800         ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
1801         if (ret < 0) {
1802                 udf_sb_free_partitions(sb);
1803                 /* No sequence was OK, return -EIO */
1804                 if (ret == -EAGAIN)
1805                         ret = -EIO;
1806         }
1807         return ret;
1808 }
1809
1810 /*
1811  * Check whether there is an anchor block in the given block and
1812  * load Volume Descriptor Sequence if so.
1813  *
1814  * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
1815  * block
1816  */
1817 static int udf_check_anchor_block(struct super_block *sb, sector_t block,
1818                                   struct kernel_lb_addr *fileset)
1819 {
1820         struct buffer_head *bh;
1821         uint16_t ident;
1822         int ret;
1823
1824         if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
1825             udf_fixed_to_variable(block) >=
1826             sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits)
1827                 return -EAGAIN;
1828
1829         bh = udf_read_tagged(sb, block, block, &ident);
1830         if (!bh)
1831                 return -EAGAIN;
1832         if (ident != TAG_IDENT_AVDP) {
1833                 brelse(bh);
1834                 return -EAGAIN;
1835         }
1836         ret = udf_load_sequence(sb, bh, fileset);
1837         brelse(bh);
1838         return ret;
1839 }
1840
1841 /*
1842  * Search for an anchor volume descriptor pointer.
1843  *
1844  * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
1845  * of anchors.
1846  */
1847 static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
1848                             struct kernel_lb_addr *fileset)
1849 {
1850         sector_t last[6];
1851         int i;
1852         struct udf_sb_info *sbi = UDF_SB(sb);
1853         int last_count = 0;
1854         int ret;
1855
1856         /* First try user provided anchor */
1857         if (sbi->s_anchor) {
1858                 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
1859                 if (ret != -EAGAIN)
1860                         return ret;
1861         }
1862         /*
1863          * according to spec, anchor is in either:
1864          *     block 256
1865          *     lastblock-256
1866          *     lastblock
1867          *  however, if the disc isn't closed, it could be 512.
1868          */
1869         ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
1870         if (ret != -EAGAIN)
1871                 return ret;
1872         /*
1873          * The trouble is which block is the last one. Drives often misreport
1874          * this so we try various possibilities.
1875          */
1876         last[last_count++] = *lastblock;
1877         if (*lastblock >= 1)
1878                 last[last_count++] = *lastblock - 1;
1879         last[last_count++] = *lastblock + 1;
1880         if (*lastblock >= 2)
1881                 last[last_count++] = *lastblock - 2;
1882         if (*lastblock >= 150)
1883                 last[last_count++] = *lastblock - 150;
1884         if (*lastblock >= 152)
1885                 last[last_count++] = *lastblock - 152;
1886
1887         for (i = 0; i < last_count; i++) {
1888                 if (last[i] >= sb->s_bdev->bd_inode->i_size >>
1889                                 sb->s_blocksize_bits)
1890                         continue;
1891                 ret = udf_check_anchor_block(sb, last[i], fileset);
1892                 if (ret != -EAGAIN) {
1893                         if (!ret)
1894                                 *lastblock = last[i];
1895                         return ret;
1896                 }
1897                 if (last[i] < 256)
1898                         continue;
1899                 ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
1900                 if (ret != -EAGAIN) {
1901                         if (!ret)
1902                                 *lastblock = last[i];
1903                         return ret;
1904                 }
1905         }
1906
1907         /* Finally try block 512 in case media is open */
1908         return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
1909 }
1910
1911 /*
1912  * Find an anchor volume descriptor and load Volume Descriptor Sequence from
1913  * area specified by it. The function expects sbi->s_lastblock to be the last
1914  * block on the media.
1915  *
1916  * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
1917  * was not found.
1918  */
1919 static int udf_find_anchor(struct super_block *sb,
1920                            struct kernel_lb_addr *fileset)
1921 {
1922         struct udf_sb_info *sbi = UDF_SB(sb);
1923         sector_t lastblock = sbi->s_last_block;
1924         int ret;
1925
1926         ret = udf_scan_anchors(sb, &lastblock, fileset);
1927         if (ret != -EAGAIN)
1928                 goto out;
1929
1930         /* No anchor found? Try VARCONV conversion of block numbers */
1931         UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
1932         lastblock = udf_variable_to_fixed(sbi->s_last_block);
1933         /* Firstly, we try to not convert number of the last block */
1934         ret = udf_scan_anchors(sb, &lastblock, fileset);
1935         if (ret != -EAGAIN)
1936                 goto out;
1937
1938         lastblock = sbi->s_last_block;
1939         /* Secondly, we try with converted number of the last block */
1940         ret = udf_scan_anchors(sb, &lastblock, fileset);
1941         if (ret < 0) {
1942                 /* VARCONV didn't help. Clear it. */
1943                 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
1944         }
1945 out:
1946         if (ret == 0)
1947                 sbi->s_last_block = lastblock;
1948         return ret;
1949 }
1950
1951 /*
1952  * Check Volume Structure Descriptor, find Anchor block and load Volume
1953  * Descriptor Sequence.
1954  *
1955  * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
1956  * block was not found.
1957  */
1958 static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
1959                         int silent, struct kernel_lb_addr *fileset)
1960 {
1961         struct udf_sb_info *sbi = UDF_SB(sb);
1962         loff_t nsr_off;
1963         int ret;
1964
1965         if (!sb_set_blocksize(sb, uopt->blocksize)) {
1966                 if (!silent)
1967                         udf_warn(sb, "Bad block size\n");
1968                 return -EINVAL;
1969         }
1970         sbi->s_last_block = uopt->lastblock;
1971         if (!uopt->novrs) {
1972                 /* Check that it is NSR02 compliant */
1973                 nsr_off = udf_check_vsd(sb);
1974                 if (!nsr_off) {
1975                         if (!silent)
1976                                 udf_warn(sb, "No VRS found\n");
1977                         return 0;
1978                 }
1979                 if (nsr_off == -1)
1980                         udf_debug("Failed to read sector at offset %d. "
1981                                   "Assuming open disc. Skipping validity "
1982                                   "check\n", VSD_FIRST_SECTOR_OFFSET);
1983                 if (!sbi->s_last_block)
1984                         sbi->s_last_block = udf_get_last_block(sb);
1985         } else {
1986                 udf_debug("Validity check skipped because of novrs option\n");
1987         }
1988
1989         /* Look for anchor block and load Volume Descriptor Sequence */
1990         sbi->s_anchor = uopt->anchor;
1991         ret = udf_find_anchor(sb, fileset);
1992         if (ret < 0) {
1993                 if (!silent && ret == -EAGAIN)
1994                         udf_warn(sb, "No anchor found\n");
1995                 return ret;
1996         }
1997         return 0;
1998 }
1999
2000 static void udf_open_lvid(struct super_block *sb)
2001 {
2002         struct udf_sb_info *sbi = UDF_SB(sb);
2003         struct buffer_head *bh = sbi->s_lvid_bh;
2004         struct logicalVolIntegrityDesc *lvid;
2005         struct logicalVolIntegrityDescImpUse *lvidiu;
2006
2007         if (!bh)
2008                 return;
2009         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2010         lvidiu = udf_sb_lvidiu(sb);
2011         if (!lvidiu)
2012                 return;
2013
2014         mutex_lock(&sbi->s_alloc_mutex);
2015         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2016         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2017         udf_time_to_disk_stamp(&lvid->recordingDateAndTime,
2018                                 CURRENT_TIME);
2019         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
2020
2021         lvid->descTag.descCRC = cpu_to_le16(
2022                 crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2023                         le16_to_cpu(lvid->descTag.descCRCLength)));
2024
2025         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2026         mark_buffer_dirty(bh);
2027         sbi->s_lvid_dirty = 0;
2028         mutex_unlock(&sbi->s_alloc_mutex);
2029         /* Make opening of filesystem visible on the media immediately */
2030         sync_dirty_buffer(bh);
2031 }
2032
2033 static void udf_close_lvid(struct super_block *sb)
2034 {
2035         struct udf_sb_info *sbi = UDF_SB(sb);
2036         struct buffer_head *bh = sbi->s_lvid_bh;
2037         struct logicalVolIntegrityDesc *lvid;
2038         struct logicalVolIntegrityDescImpUse *lvidiu;
2039
2040         if (!bh)
2041                 return;
2042         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2043         lvidiu = udf_sb_lvidiu(sb);
2044         if (!lvidiu)
2045                 return;
2046
2047         mutex_lock(&sbi->s_alloc_mutex);
2048         lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
2049         lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
2050         udf_time_to_disk_stamp(&lvid->recordingDateAndTime, CURRENT_TIME);
2051         if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
2052                 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
2053         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
2054                 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
2055         if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
2056                 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
2057         lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
2058
2059         lvid->descTag.descCRC = cpu_to_le16(
2060                         crc_itu_t(0, (char *)lvid + sizeof(struct tag),
2061                                 le16_to_cpu(lvid->descTag.descCRCLength)));
2062
2063         lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
2064         /*
2065          * We set buffer uptodate unconditionally here to avoid spurious
2066          * warnings from mark_buffer_dirty() when previous EIO has marked
2067          * the buffer as !uptodate
2068          */
2069         set_buffer_uptodate(bh);
2070         mark_buffer_dirty(bh);
2071         sbi->s_lvid_dirty = 0;
2072         mutex_unlock(&sbi->s_alloc_mutex);
2073         /* Make closing of filesystem visible on the media immediately */
2074         sync_dirty_buffer(bh);
2075 }
2076
2077 u64 lvid_get_unique_id(struct super_block *sb)
2078 {
2079         struct buffer_head *bh;
2080         struct udf_sb_info *sbi = UDF_SB(sb);
2081         struct logicalVolIntegrityDesc *lvid;
2082         struct logicalVolHeaderDesc *lvhd;
2083         u64 uniqueID;
2084         u64 ret;
2085
2086         bh = sbi->s_lvid_bh;
2087         if (!bh)
2088                 return 0;
2089
2090         lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
2091         lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
2092
2093         mutex_lock(&sbi->s_alloc_mutex);
2094         ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
2095         if (!(++uniqueID & 0xFFFFFFFF))
2096                 uniqueID += 16;
2097         lvhd->uniqueID = cpu_to_le64(uniqueID);
2098         mutex_unlock(&sbi->s_alloc_mutex);
2099         mark_buffer_dirty(bh);
2100
2101         return ret;
2102 }
2103
2104 static int udf_fill_super(struct super_block *sb, void *options, int silent)
2105 {
2106         int ret = -EINVAL;
2107         struct inode *inode = NULL;
2108         struct udf_options uopt;
2109         struct kernel_lb_addr rootdir, fileset;
2110         struct udf_sb_info *sbi;
2111         bool lvid_open = false;
2112
2113         uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
2114         /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
2115         uopt.uid = make_kuid(current_user_ns(), overflowuid);
2116         uopt.gid = make_kgid(current_user_ns(), overflowgid);
2117         uopt.umask = 0;
2118         uopt.fmode = UDF_INVALID_MODE;
2119         uopt.dmode = UDF_INVALID_MODE;
2120
2121         sbi = kzalloc(sizeof(struct udf_sb_info), GFP_KERNEL);
2122         if (!sbi)
2123                 return -ENOMEM;
2124
2125         sb->s_fs_info = sbi;
2126
2127         mutex_init(&sbi->s_alloc_mutex);
2128
2129         if (!udf_parse_options((char *)options, &uopt, false))
2130                 goto parse_options_failure;
2131
2132         if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
2133             uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
2134                 udf_err(sb, "utf8 cannot be combined with iocharset\n");
2135                 goto parse_options_failure;
2136         }
2137 #ifdef CONFIG_UDF_NLS
2138         if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
2139                 uopt.nls_map = load_nls_default();
2140                 if (!uopt.nls_map)
2141                         uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
2142                 else
2143                         udf_debug("Using default NLS map\n");
2144         }
2145 #endif
2146         if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
2147                 uopt.flags |= (1 << UDF_FLAG_UTF8);
2148
2149         fileset.logicalBlockNum = 0xFFFFFFFF;
2150         fileset.partitionReferenceNum = 0xFFFF;
2151
2152         sbi->s_flags = uopt.flags;
2153         sbi->s_uid = uopt.uid;
2154         sbi->s_gid = uopt.gid;
2155         sbi->s_umask = uopt.umask;
2156         sbi->s_fmode = uopt.fmode;
2157         sbi->s_dmode = uopt.dmode;
2158         sbi->s_nls_map = uopt.nls_map;
2159         rwlock_init(&sbi->s_cred_lock);
2160
2161         if (uopt.session == 0xFFFFFFFF)
2162                 sbi->s_session = udf_get_last_session(sb);
2163         else
2164                 sbi->s_session = uopt.session;
2165
2166         udf_debug("Multi-session=%d\n", sbi->s_session);
2167
2168         /* Fill in the rest of the superblock */
2169         sb->s_op = &udf_sb_ops;
2170         sb->s_export_op = &udf_export_ops;
2171
2172         sb->s_magic = UDF_SUPER_MAGIC;
2173         sb->s_time_gran = 1000;
2174
2175         if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
2176                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2177         } else {
2178                 uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
2179                 ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2180                 if (ret == -EAGAIN && uopt.blocksize != UDF_DEFAULT_BLOCKSIZE) {
2181                         if (!silent)
2182                                 pr_notice("Rescanning with blocksize %d\n",
2183                                           UDF_DEFAULT_BLOCKSIZE);
2184                         brelse(sbi->s_lvid_bh);
2185                         sbi->s_lvid_bh = NULL;
2186                         uopt.blocksize = UDF_DEFAULT_BLOCKSIZE;
2187                         ret = udf_load_vrs(sb, &uopt, silent, &fileset);
2188                 }
2189         }
2190         if (ret < 0) {
2191                 if (ret == -EAGAIN) {
2192                         udf_warn(sb, "No partition found (1)\n");
2193                         ret = -EINVAL;
2194                 }
2195                 goto error_out;
2196         }
2197
2198         udf_debug("Lastblock=%d\n", sbi->s_last_block);
2199
2200         if (sbi->s_lvid_bh) {
2201                 struct logicalVolIntegrityDescImpUse *lvidiu =
2202                                                         udf_sb_lvidiu(sb);
2203                 uint16_t minUDFReadRev;
2204                 uint16_t minUDFWriteRev;
2205
2206                 if (!lvidiu) {
2207                         ret = -EINVAL;
2208                         goto error_out;
2209                 }
2210                 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
2211                 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
2212                 if (minUDFReadRev > UDF_MAX_READ_VERSION) {
2213                         udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
2214                                 minUDFReadRev,
2215                                 UDF_MAX_READ_VERSION);
2216                         ret = -EINVAL;
2217                         goto error_out;
2218                 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION &&
2219                            !(sb->s_flags & MS_RDONLY)) {
2220                         ret = -EACCES;
2221                         goto error_out;
2222                 }
2223
2224                 sbi->s_udfrev = minUDFWriteRev;
2225
2226                 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
2227                         UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
2228                 if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
2229                         UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
2230         }
2231
2232         if (!sbi->s_partitions) {
2233                 udf_warn(sb, "No partition found (2)\n");
2234                 ret = -EINVAL;
2235                 goto error_out;
2236         }
2237
2238         if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
2239                         UDF_PART_FLAG_READ_ONLY &&
2240             !(sb->s_flags & MS_RDONLY)) {
2241                 ret = -EACCES;
2242                 goto error_out;
2243         }
2244
2245         if (udf_find_fileset(sb, &fileset, &rootdir)) {
2246                 udf_warn(sb, "No fileset found\n");
2247                 ret = -EINVAL;
2248                 goto error_out;
2249         }
2250
2251         if (!silent) {
2252                 struct timestamp ts;
2253                 udf_time_to_disk_stamp(&ts, sbi->s_record_time);
2254                 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
2255                          sbi->s_volume_ident,
2256                          le16_to_cpu(ts.year), ts.month, ts.day,
2257                          ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
2258         }
2259         if (!(sb->s_flags & MS_RDONLY)) {
2260                 udf_open_lvid(sb);
2261                 lvid_open = true;
2262         }
2263
2264         /* Assign the root inode */
2265         /* assign inodes by physical block number */
2266         /* perhaps it's not extensible enough, but for now ... */
2267         inode = udf_iget(sb, &rootdir);
2268         if (IS_ERR(inode)) {
2269                 udf_err(sb, "Error in udf_iget, block=%d, partition=%d\n",
2270                        rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
2271                 ret = PTR_ERR(inode);
2272                 goto error_out;
2273         }
2274
2275         /* Allocate a dentry for the root inode */
2276         sb->s_root = d_make_root(inode);
2277         if (!sb->s_root) {
2278                 udf_err(sb, "Couldn't allocate root dentry\n");
2279                 ret = -ENOMEM;
2280                 goto error_out;
2281         }
2282         sb->s_maxbytes = MAX_LFS_FILESIZE;
2283         sb->s_max_links = UDF_MAX_LINKS;
2284         return 0;
2285
2286 error_out:
2287         iput(sbi->s_vat_inode);
2288 parse_options_failure:
2289 #ifdef CONFIG_UDF_NLS
2290         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2291                 unload_nls(sbi->s_nls_map);
2292 #endif
2293         if (lvid_open)
2294                 udf_close_lvid(sb);
2295         brelse(sbi->s_lvid_bh);
2296         udf_sb_free_partitions(sb);
2297         kfree(sbi);
2298         sb->s_fs_info = NULL;
2299
2300         return ret;
2301 }
2302
2303 void _udf_err(struct super_block *sb, const char *function,
2304               const char *fmt, ...)
2305 {
2306         struct va_format vaf;
2307         va_list args;
2308
2309         va_start(args, fmt);
2310
2311         vaf.fmt = fmt;
2312         vaf.va = &args;
2313
2314         pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
2315
2316         va_end(args);
2317 }
2318
2319 void _udf_warn(struct super_block *sb, const char *function,
2320                const char *fmt, ...)
2321 {
2322         struct va_format vaf;
2323         va_list args;
2324
2325         va_start(args, fmt);
2326
2327         vaf.fmt = fmt;
2328         vaf.va = &args;
2329
2330         pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
2331
2332         va_end(args);
2333 }
2334
2335 static void udf_put_super(struct super_block *sb)
2336 {
2337         struct udf_sb_info *sbi;
2338
2339         sbi = UDF_SB(sb);
2340
2341         iput(sbi->s_vat_inode);
2342 #ifdef CONFIG_UDF_NLS
2343         if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
2344                 unload_nls(sbi->s_nls_map);
2345 #endif
2346         if (!(sb->s_flags & MS_RDONLY))
2347                 udf_close_lvid(sb);
2348         brelse(sbi->s_lvid_bh);
2349         udf_sb_free_partitions(sb);
2350         mutex_destroy(&sbi->s_alloc_mutex);
2351         kfree(sb->s_fs_info);
2352         sb->s_fs_info = NULL;
2353 }
2354
2355 static int udf_sync_fs(struct super_block *sb, int wait)
2356 {
2357         struct udf_sb_info *sbi = UDF_SB(sb);
2358
2359         mutex_lock(&sbi->s_alloc_mutex);
2360         if (sbi->s_lvid_dirty) {
2361                 /*
2362                  * Blockdevice will be synced later so we don't have to submit
2363                  * the buffer for IO
2364                  */
2365                 mark_buffer_dirty(sbi->s_lvid_bh);
2366                 sbi->s_lvid_dirty = 0;
2367         }
2368         mutex_unlock(&sbi->s_alloc_mutex);
2369
2370         return 0;
2371 }
2372
2373 static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
2374 {
2375         struct super_block *sb = dentry->d_sb;
2376         struct udf_sb_info *sbi = UDF_SB(sb);
2377         struct logicalVolIntegrityDescImpUse *lvidiu;
2378         u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
2379
2380         lvidiu = udf_sb_lvidiu(sb);
2381         buf->f_type = UDF_SUPER_MAGIC;
2382         buf->f_bsize = sb->s_blocksize;
2383         buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
2384         buf->f_bfree = udf_count_free(sb);
2385         buf->f_bavail = buf->f_bfree;
2386         buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
2387                                           le32_to_cpu(lvidiu->numDirs)) : 0)
2388                         + buf->f_bfree;
2389         buf->f_ffree = buf->f_bfree;
2390         buf->f_namelen = UDF_NAME_LEN;
2391         buf->f_fsid.val[0] = (u32)id;
2392         buf->f_fsid.val[1] = (u32)(id >> 32);
2393
2394         return 0;
2395 }
2396
2397 static unsigned int udf_count_free_bitmap(struct super_block *sb,
2398                                           struct udf_bitmap *bitmap)
2399 {
2400         struct buffer_head *bh = NULL;
2401         unsigned int accum = 0;
2402         int index;
2403         int block = 0, newblock;
2404         struct kernel_lb_addr loc;
2405         uint32_t bytes;
2406         uint8_t *ptr;
2407         uint16_t ident;
2408         struct spaceBitmapDesc *bm;
2409
2410         loc.logicalBlockNum = bitmap->s_extPosition;
2411         loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
2412         bh = udf_read_ptagged(sb, &loc, 0, &ident);
2413
2414         if (!bh) {
2415                 udf_err(sb, "udf_count_free failed\n");
2416                 goto out;
2417         } else if (ident != TAG_IDENT_SBD) {
2418                 brelse(bh);
2419                 udf_err(sb, "udf_count_free failed\n");
2420                 goto out;
2421         }
2422
2423         bm = (struct spaceBitmapDesc *)bh->b_data;
2424         bytes = le32_to_cpu(bm->numOfBytes);
2425         index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
2426         ptr = (uint8_t *)bh->b_data;
2427
2428         while (bytes > 0) {
2429                 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
2430                 accum += bitmap_weight((const unsigned long *)(ptr + index),
2431                                         cur_bytes * 8);
2432                 bytes -= cur_bytes;
2433                 if (bytes) {
2434                         brelse(bh);
2435                         newblock = udf_get_lb_pblock(sb, &loc, ++block);
2436                         bh = udf_tread(sb, newblock);
2437                         if (!bh) {
2438                                 udf_debug("read failed\n");
2439                                 goto out;
2440                         }
2441                         index = 0;
2442                         ptr = (uint8_t *)bh->b_data;
2443                 }
2444         }
2445         brelse(bh);
2446 out:
2447         return accum;
2448 }
2449
2450 static unsigned int udf_count_free_table(struct super_block *sb,
2451                                          struct inode *table)
2452 {
2453         unsigned int accum = 0;
2454         uint32_t elen;
2455         struct kernel_lb_addr eloc;
2456         int8_t etype;
2457         struct extent_position epos;
2458
2459         mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
2460         epos.block = UDF_I(table)->i_location;
2461         epos.offset = sizeof(struct unallocSpaceEntry);
2462         epos.bh = NULL;
2463
2464         while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
2465                 accum += (elen >> table->i_sb->s_blocksize_bits);
2466
2467         brelse(epos.bh);
2468         mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
2469
2470         return accum;
2471 }
2472
2473 static unsigned int udf_count_free(struct super_block *sb)
2474 {
2475         unsigned int accum = 0;
2476         struct udf_sb_info *sbi = UDF_SB(sb);
2477         struct udf_part_map *map;
2478         unsigned int part = sbi->s_partition;
2479         int ptype = sbi->s_partmaps[part].s_partition_type;
2480
2481         if (ptype == UDF_METADATA_MAP25) {
2482                 part = sbi->s_partmaps[part].s_type_specific.s_metadata.
2483                                                         s_phys_partition_ref;
2484         } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
2485                 /*
2486                  * Filesystems with VAT are append-only and we cannot write to
2487                  * them. Let's just report 0 here.
2488                  */
2489                 return 0;
2490         }
2491
2492         if (sbi->s_lvid_bh) {
2493                 struct logicalVolIntegrityDesc *lvid =
2494                         (struct logicalVolIntegrityDesc *)
2495                         sbi->s_lvid_bh->b_data;
2496                 if (le32_to_cpu(lvid->numOfPartitions) > part) {
2497                         accum = le32_to_cpu(
2498                                         lvid->freeSpaceTable[part]);
2499                         if (accum == 0xFFFFFFFF)
2500                                 accum = 0;
2501                 }
2502         }
2503
2504         if (accum)
2505                 return accum;
2506
2507         map = &sbi->s_partmaps[part];
2508         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
2509                 accum += udf_count_free_bitmap(sb,
2510                                                map->s_uspace.s_bitmap);
2511         }
2512         if (map->s_partition_flags & UDF_PART_FLAG_FREED_BITMAP) {
2513                 accum += udf_count_free_bitmap(sb,
2514                                                map->s_fspace.s_bitmap);
2515         }
2516         if (accum)
2517                 return accum;
2518
2519         if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
2520                 accum += udf_count_free_table(sb,
2521                                               map->s_uspace.s_table);
2522         }
2523         if (map->s_partition_flags & UDF_PART_FLAG_FREED_TABLE) {
2524                 accum += udf_count_free_table(sb,
2525                                               map->s_fspace.s_table);
2526         }
2527
2528         return accum;
2529 }