GNU Linux-libre 4.19.286-gnu1
[releases.git] / fs / userfaultfd.c
1 /*
2  *  fs/userfaultfd.c
3  *
4  *  Copyright (C) 2007  Davide Libenzi <davidel@xmailserver.org>
5  *  Copyright (C) 2008-2009 Red Hat, Inc.
6  *  Copyright (C) 2015  Red Hat, Inc.
7  *
8  *  This work is licensed under the terms of the GNU GPL, version 2. See
9  *  the COPYING file in the top-level directory.
10  *
11  *  Some part derived from fs/eventfd.c (anon inode setup) and
12  *  mm/ksm.c (mm hashing).
13  */
14
15 #include <linux/list.h>
16 #include <linux/hashtable.h>
17 #include <linux/sched/signal.h>
18 #include <linux/sched/mm.h>
19 #include <linux/mm.h>
20 #include <linux/poll.h>
21 #include <linux/slab.h>
22 #include <linux/seq_file.h>
23 #include <linux/file.h>
24 #include <linux/bug.h>
25 #include <linux/anon_inodes.h>
26 #include <linux/syscalls.h>
27 #include <linux/userfaultfd_k.h>
28 #include <linux/mempolicy.h>
29 #include <linux/ioctl.h>
30 #include <linux/security.h>
31 #include <linux/hugetlb.h>
32
33 static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
34
35 /*
36  * Start with fault_pending_wqh and fault_wqh so they're more likely
37  * to be in the same cacheline.
38  *
39  * Locking order:
40  *      fd_wqh.lock
41  *              fault_pending_wqh.lock
42  *                      fault_wqh.lock
43  *              event_wqh.lock
44  *
45  * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
46  * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
47  * also taken in IRQ context.
48  */
49 struct userfaultfd_ctx {
50         /* waitqueue head for the pending (i.e. not read) userfaults */
51         wait_queue_head_t fault_pending_wqh;
52         /* waitqueue head for the userfaults */
53         wait_queue_head_t fault_wqh;
54         /* waitqueue head for the pseudo fd to wakeup poll/read */
55         wait_queue_head_t fd_wqh;
56         /* waitqueue head for events */
57         wait_queue_head_t event_wqh;
58         /* a refile sequence protected by fault_pending_wqh lock */
59         struct seqcount refile_seq;
60         /* pseudo fd refcounting */
61         atomic_t refcount;
62         /* userfaultfd syscall flags */
63         unsigned int flags;
64         /* features requested from the userspace */
65         unsigned int features;
66         /* released */
67         bool released;
68         /* memory mappings are changing because of non-cooperative event */
69         bool mmap_changing;
70         /* mm with one ore more vmas attached to this userfaultfd_ctx */
71         struct mm_struct *mm;
72 };
73
74 struct userfaultfd_fork_ctx {
75         struct userfaultfd_ctx *orig;
76         struct userfaultfd_ctx *new;
77         struct list_head list;
78 };
79
80 struct userfaultfd_unmap_ctx {
81         struct userfaultfd_ctx *ctx;
82         unsigned long start;
83         unsigned long end;
84         struct list_head list;
85 };
86
87 struct userfaultfd_wait_queue {
88         struct uffd_msg msg;
89         wait_queue_entry_t wq;
90         struct userfaultfd_ctx *ctx;
91         bool waken;
92 };
93
94 struct userfaultfd_wake_range {
95         unsigned long start;
96         unsigned long len;
97 };
98
99 /* internal indication that UFFD_API ioctl was successfully executed */
100 #define UFFD_FEATURE_INITIALIZED                (1u << 31)
101
102 static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
103 {
104         return ctx->features & UFFD_FEATURE_INITIALIZED;
105 }
106
107 static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
108                                      int wake_flags, void *key)
109 {
110         struct userfaultfd_wake_range *range = key;
111         int ret;
112         struct userfaultfd_wait_queue *uwq;
113         unsigned long start, len;
114
115         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
116         ret = 0;
117         /* len == 0 means wake all */
118         start = range->start;
119         len = range->len;
120         if (len && (start > uwq->msg.arg.pagefault.address ||
121                     start + len <= uwq->msg.arg.pagefault.address))
122                 goto out;
123         WRITE_ONCE(uwq->waken, true);
124         /*
125          * The Program-Order guarantees provided by the scheduler
126          * ensure uwq->waken is visible before the task is woken.
127          */
128         ret = wake_up_state(wq->private, mode);
129         if (ret) {
130                 /*
131                  * Wake only once, autoremove behavior.
132                  *
133                  * After the effect of list_del_init is visible to the other
134                  * CPUs, the waitqueue may disappear from under us, see the
135                  * !list_empty_careful() in handle_userfault().
136                  *
137                  * try_to_wake_up() has an implicit smp_mb(), and the
138                  * wq->private is read before calling the extern function
139                  * "wake_up_state" (which in turns calls try_to_wake_up).
140                  */
141                 list_del_init(&wq->entry);
142         }
143 out:
144         return ret;
145 }
146
147 /**
148  * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
149  * context.
150  * @ctx: [in] Pointer to the userfaultfd context.
151  */
152 static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
153 {
154         if (!atomic_inc_not_zero(&ctx->refcount))
155                 BUG();
156 }
157
158 /**
159  * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
160  * context.
161  * @ctx: [in] Pointer to userfaultfd context.
162  *
163  * The userfaultfd context reference must have been previously acquired either
164  * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
165  */
166 static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
167 {
168         if (atomic_dec_and_test(&ctx->refcount)) {
169                 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
170                 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
171                 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
172                 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
173                 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
174                 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
175                 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
176                 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
177                 mmdrop(ctx->mm);
178                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
179         }
180 }
181
182 static inline void msg_init(struct uffd_msg *msg)
183 {
184         BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
185         /*
186          * Must use memset to zero out the paddings or kernel data is
187          * leaked to userland.
188          */
189         memset(msg, 0, sizeof(struct uffd_msg));
190 }
191
192 static inline struct uffd_msg userfault_msg(unsigned long address,
193                                             unsigned int flags,
194                                             unsigned long reason,
195                                             unsigned int features)
196 {
197         struct uffd_msg msg;
198         msg_init(&msg);
199         msg.event = UFFD_EVENT_PAGEFAULT;
200         msg.arg.pagefault.address = address;
201         if (flags & FAULT_FLAG_WRITE)
202                 /*
203                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
204                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
205                  * was not set in a UFFD_EVENT_PAGEFAULT, it means it
206                  * was a read fault, otherwise if set it means it's
207                  * a write fault.
208                  */
209                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
210         if (reason & VM_UFFD_WP)
211                 /*
212                  * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
213                  * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
214                  * not set in a UFFD_EVENT_PAGEFAULT, it means it was
215                  * a missing fault, otherwise if set it means it's a
216                  * write protect fault.
217                  */
218                 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
219         if (features & UFFD_FEATURE_THREAD_ID)
220                 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
221         return msg;
222 }
223
224 #ifdef CONFIG_HUGETLB_PAGE
225 /*
226  * Same functionality as userfaultfd_must_wait below with modifications for
227  * hugepmd ranges.
228  */
229 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
230                                          struct vm_area_struct *vma,
231                                          unsigned long address,
232                                          unsigned long flags,
233                                          unsigned long reason)
234 {
235         struct mm_struct *mm = ctx->mm;
236         pte_t *ptep, pte;
237         bool ret = true;
238
239         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
240
241         ptep = huge_pte_offset(mm, address, vma_mmu_pagesize(vma));
242
243         if (!ptep)
244                 goto out;
245
246         ret = false;
247         pte = huge_ptep_get(ptep);
248
249         /*
250          * Lockless access: we're in a wait_event so it's ok if it
251          * changes under us.
252          */
253         if (huge_pte_none(pte))
254                 ret = true;
255         if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
256                 ret = true;
257 out:
258         return ret;
259 }
260 #else
261 static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
262                                          struct vm_area_struct *vma,
263                                          unsigned long address,
264                                          unsigned long flags,
265                                          unsigned long reason)
266 {
267         return false;   /* should never get here */
268 }
269 #endif /* CONFIG_HUGETLB_PAGE */
270
271 /*
272  * Verify the pagetables are still not ok after having reigstered into
273  * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
274  * userfault that has already been resolved, if userfaultfd_read and
275  * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
276  * threads.
277  */
278 static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
279                                          unsigned long address,
280                                          unsigned long flags,
281                                          unsigned long reason)
282 {
283         struct mm_struct *mm = ctx->mm;
284         pgd_t *pgd;
285         p4d_t *p4d;
286         pud_t *pud;
287         pmd_t *pmd, _pmd;
288         pte_t *pte;
289         bool ret = true;
290
291         VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
292
293         pgd = pgd_offset(mm, address);
294         if (!pgd_present(*pgd))
295                 goto out;
296         p4d = p4d_offset(pgd, address);
297         if (!p4d_present(*p4d))
298                 goto out;
299         pud = pud_offset(p4d, address);
300         if (!pud_present(*pud))
301                 goto out;
302         pmd = pmd_offset(pud, address);
303         /*
304          * READ_ONCE must function as a barrier with narrower scope
305          * and it must be equivalent to:
306          *      _pmd = *pmd; barrier();
307          *
308          * This is to deal with the instability (as in
309          * pmd_trans_unstable) of the pmd.
310          */
311         _pmd = READ_ONCE(*pmd);
312         if (pmd_none(_pmd))
313                 goto out;
314
315         ret = false;
316         if (!pmd_present(_pmd))
317                 goto out;
318
319         if (pmd_trans_huge(_pmd))
320                 goto out;
321
322         /*
323          * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
324          * and use the standard pte_offset_map() instead of parsing _pmd.
325          */
326         pte = pte_offset_map(pmd, address);
327         /*
328          * Lockless access: we're in a wait_event so it's ok if it
329          * changes under us.
330          */
331         if (pte_none(*pte))
332                 ret = true;
333         pte_unmap(pte);
334
335 out:
336         return ret;
337 }
338
339 /*
340  * The locking rules involved in returning VM_FAULT_RETRY depending on
341  * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
342  * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
343  * recommendation in __lock_page_or_retry is not an understatement.
344  *
345  * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
346  * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
347  * not set.
348  *
349  * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
350  * set, VM_FAULT_RETRY can still be returned if and only if there are
351  * fatal_signal_pending()s, and the mmap_sem must be released before
352  * returning it.
353  */
354 vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
355 {
356         struct mm_struct *mm = vmf->vma->vm_mm;
357         struct userfaultfd_ctx *ctx;
358         struct userfaultfd_wait_queue uwq;
359         vm_fault_t ret = VM_FAULT_SIGBUS;
360         bool must_wait, return_to_userland;
361         long blocking_state;
362
363         /*
364          * We don't do userfault handling for the final child pid update.
365          *
366          * We also don't do userfault handling during
367          * coredumping. hugetlbfs has the special
368          * follow_hugetlb_page() to skip missing pages in the
369          * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
370          * the no_page_table() helper in follow_page_mask(), but the
371          * shmem_vm_ops->fault method is invoked even during
372          * coredumping without mmap_sem and it ends up here.
373          */
374         if (current->flags & (PF_EXITING|PF_DUMPCORE))
375                 goto out;
376
377         /*
378          * Coredumping runs without mmap_sem so we can only check that
379          * the mmap_sem is held, if PF_DUMPCORE was not set.
380          */
381         WARN_ON_ONCE(!rwsem_is_locked(&mm->mmap_sem));
382
383         ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
384         if (!ctx)
385                 goto out;
386
387         BUG_ON(ctx->mm != mm);
388
389         VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
390         VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
391
392         if (ctx->features & UFFD_FEATURE_SIGBUS)
393                 goto out;
394
395         /*
396          * If it's already released don't get it. This avoids to loop
397          * in __get_user_pages if userfaultfd_release waits on the
398          * caller of handle_userfault to release the mmap_sem.
399          */
400         if (unlikely(READ_ONCE(ctx->released))) {
401                 /*
402                  * Don't return VM_FAULT_SIGBUS in this case, so a non
403                  * cooperative manager can close the uffd after the
404                  * last UFFDIO_COPY, without risking to trigger an
405                  * involuntary SIGBUS if the process was starting the
406                  * userfaultfd while the userfaultfd was still armed
407                  * (but after the last UFFDIO_COPY). If the uffd
408                  * wasn't already closed when the userfault reached
409                  * this point, that would normally be solved by
410                  * userfaultfd_must_wait returning 'false'.
411                  *
412                  * If we were to return VM_FAULT_SIGBUS here, the non
413                  * cooperative manager would be instead forced to
414                  * always call UFFDIO_UNREGISTER before it can safely
415                  * close the uffd.
416                  */
417                 ret = VM_FAULT_NOPAGE;
418                 goto out;
419         }
420
421         /*
422          * Check that we can return VM_FAULT_RETRY.
423          *
424          * NOTE: it should become possible to return VM_FAULT_RETRY
425          * even if FAULT_FLAG_TRIED is set without leading to gup()
426          * -EBUSY failures, if the userfaultfd is to be extended for
427          * VM_UFFD_WP tracking and we intend to arm the userfault
428          * without first stopping userland access to the memory. For
429          * VM_UFFD_MISSING userfaults this is enough for now.
430          */
431         if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
432                 /*
433                  * Validate the invariant that nowait must allow retry
434                  * to be sure not to return SIGBUS erroneously on
435                  * nowait invocations.
436                  */
437                 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
438 #ifdef CONFIG_DEBUG_VM
439                 if (printk_ratelimit()) {
440                         printk(KERN_WARNING
441                                "FAULT_FLAG_ALLOW_RETRY missing %x\n",
442                                vmf->flags);
443                         dump_stack();
444                 }
445 #endif
446                 goto out;
447         }
448
449         /*
450          * Handle nowait, not much to do other than tell it to retry
451          * and wait.
452          */
453         ret = VM_FAULT_RETRY;
454         if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
455                 goto out;
456
457         /* take the reference before dropping the mmap_sem */
458         userfaultfd_ctx_get(ctx);
459
460         init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
461         uwq.wq.private = current;
462         uwq.msg = userfault_msg(vmf->address, vmf->flags, reason,
463                         ctx->features);
464         uwq.ctx = ctx;
465         uwq.waken = false;
466
467         return_to_userland =
468                 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
469                 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
470         blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
471                          TASK_KILLABLE;
472
473         spin_lock_irq(&ctx->fault_pending_wqh.lock);
474         /*
475          * After the __add_wait_queue the uwq is visible to userland
476          * through poll/read().
477          */
478         __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
479         /*
480          * The smp_mb() after __set_current_state prevents the reads
481          * following the spin_unlock to happen before the list_add in
482          * __add_wait_queue.
483          */
484         set_current_state(blocking_state);
485         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
486
487         if (!is_vm_hugetlb_page(vmf->vma))
488                 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
489                                                   reason);
490         else
491                 must_wait = userfaultfd_huge_must_wait(ctx, vmf->vma,
492                                                        vmf->address,
493                                                        vmf->flags, reason);
494         up_read(&mm->mmap_sem);
495
496         if (likely(must_wait && !READ_ONCE(ctx->released) &&
497                    (return_to_userland ? !signal_pending(current) :
498                     !fatal_signal_pending(current)))) {
499                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
500                 schedule();
501                 ret |= VM_FAULT_MAJOR;
502
503                 /*
504                  * False wakeups can orginate even from rwsem before
505                  * up_read() however userfaults will wait either for a
506                  * targeted wakeup on the specific uwq waitqueue from
507                  * wake_userfault() or for signals or for uffd
508                  * release.
509                  */
510                 while (!READ_ONCE(uwq.waken)) {
511                         /*
512                          * This needs the full smp_store_mb()
513                          * guarantee as the state write must be
514                          * visible to other CPUs before reading
515                          * uwq.waken from other CPUs.
516                          */
517                         set_current_state(blocking_state);
518                         if (READ_ONCE(uwq.waken) ||
519                             READ_ONCE(ctx->released) ||
520                             (return_to_userland ? signal_pending(current) :
521                              fatal_signal_pending(current)))
522                                 break;
523                         schedule();
524                 }
525         }
526
527         __set_current_state(TASK_RUNNING);
528
529         if (return_to_userland) {
530                 if (signal_pending(current) &&
531                     !fatal_signal_pending(current)) {
532                         /*
533                          * If we got a SIGSTOP or SIGCONT and this is
534                          * a normal userland page fault, just let
535                          * userland return so the signal will be
536                          * handled and gdb debugging works.  The page
537                          * fault code immediately after we return from
538                          * this function is going to release the
539                          * mmap_sem and it's not depending on it
540                          * (unlike gup would if we were not to return
541                          * VM_FAULT_RETRY).
542                          *
543                          * If a fatal signal is pending we still take
544                          * the streamlined VM_FAULT_RETRY failure path
545                          * and there's no need to retake the mmap_sem
546                          * in such case.
547                          */
548                         down_read(&mm->mmap_sem);
549                         ret = VM_FAULT_NOPAGE;
550                 }
551         }
552
553         /*
554          * Here we race with the list_del; list_add in
555          * userfaultfd_ctx_read(), however because we don't ever run
556          * list_del_init() to refile across the two lists, the prev
557          * and next pointers will never point to self. list_add also
558          * would never let any of the two pointers to point to
559          * self. So list_empty_careful won't risk to see both pointers
560          * pointing to self at any time during the list refile. The
561          * only case where list_del_init() is called is the full
562          * removal in the wake function and there we don't re-list_add
563          * and it's fine not to block on the spinlock. The uwq on this
564          * kernel stack can be released after the list_del_init.
565          */
566         if (!list_empty_careful(&uwq.wq.entry)) {
567                 spin_lock_irq(&ctx->fault_pending_wqh.lock);
568                 /*
569                  * No need of list_del_init(), the uwq on the stack
570                  * will be freed shortly anyway.
571                  */
572                 list_del(&uwq.wq.entry);
573                 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
574         }
575
576         /*
577          * ctx may go away after this if the userfault pseudo fd is
578          * already released.
579          */
580         userfaultfd_ctx_put(ctx);
581
582 out:
583         return ret;
584 }
585
586 static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
587                                               struct userfaultfd_wait_queue *ewq)
588 {
589         struct userfaultfd_ctx *release_new_ctx;
590
591         if (WARN_ON_ONCE(current->flags & PF_EXITING))
592                 goto out;
593
594         ewq->ctx = ctx;
595         init_waitqueue_entry(&ewq->wq, current);
596         release_new_ctx = NULL;
597
598         spin_lock_irq(&ctx->event_wqh.lock);
599         /*
600          * After the __add_wait_queue the uwq is visible to userland
601          * through poll/read().
602          */
603         __add_wait_queue(&ctx->event_wqh, &ewq->wq);
604         for (;;) {
605                 set_current_state(TASK_KILLABLE);
606                 if (ewq->msg.event == 0)
607                         break;
608                 if (READ_ONCE(ctx->released) ||
609                     fatal_signal_pending(current)) {
610                         /*
611                          * &ewq->wq may be queued in fork_event, but
612                          * __remove_wait_queue ignores the head
613                          * parameter. It would be a problem if it
614                          * didn't.
615                          */
616                         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
617                         if (ewq->msg.event == UFFD_EVENT_FORK) {
618                                 struct userfaultfd_ctx *new;
619
620                                 new = (struct userfaultfd_ctx *)
621                                         (unsigned long)
622                                         ewq->msg.arg.reserved.reserved1;
623                                 release_new_ctx = new;
624                         }
625                         break;
626                 }
627
628                 spin_unlock_irq(&ctx->event_wqh.lock);
629
630                 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
631                 schedule();
632
633                 spin_lock_irq(&ctx->event_wqh.lock);
634         }
635         __set_current_state(TASK_RUNNING);
636         spin_unlock_irq(&ctx->event_wqh.lock);
637
638         if (release_new_ctx) {
639                 struct vm_area_struct *vma;
640                 struct mm_struct *mm = release_new_ctx->mm;
641
642                 /* the various vma->vm_userfaultfd_ctx still points to it */
643                 down_write(&mm->mmap_sem);
644                 /* no task can run (and in turn coredump) yet */
645                 VM_WARN_ON(!mmget_still_valid(mm));
646                 for (vma = mm->mmap; vma; vma = vma->vm_next)
647                         if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
648                                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
649                                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
650                         }
651                 up_write(&mm->mmap_sem);
652
653                 userfaultfd_ctx_put(release_new_ctx);
654         }
655
656         /*
657          * ctx may go away after this if the userfault pseudo fd is
658          * already released.
659          */
660 out:
661         WRITE_ONCE(ctx->mmap_changing, false);
662         userfaultfd_ctx_put(ctx);
663 }
664
665 static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
666                                        struct userfaultfd_wait_queue *ewq)
667 {
668         ewq->msg.event = 0;
669         wake_up_locked(&ctx->event_wqh);
670         __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
671 }
672
673 int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
674 {
675         struct userfaultfd_ctx *ctx = NULL, *octx;
676         struct userfaultfd_fork_ctx *fctx;
677
678         octx = vma->vm_userfaultfd_ctx.ctx;
679         if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
680                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
681                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
682                 return 0;
683         }
684
685         list_for_each_entry(fctx, fcs, list)
686                 if (fctx->orig == octx) {
687                         ctx = fctx->new;
688                         break;
689                 }
690
691         if (!ctx) {
692                 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
693                 if (!fctx)
694                         return -ENOMEM;
695
696                 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
697                 if (!ctx) {
698                         kfree(fctx);
699                         return -ENOMEM;
700                 }
701
702                 atomic_set(&ctx->refcount, 1);
703                 ctx->flags = octx->flags;
704                 ctx->features = octx->features;
705                 ctx->released = false;
706                 ctx->mmap_changing = false;
707                 ctx->mm = vma->vm_mm;
708                 mmgrab(ctx->mm);
709
710                 userfaultfd_ctx_get(octx);
711                 WRITE_ONCE(octx->mmap_changing, true);
712                 fctx->orig = octx;
713                 fctx->new = ctx;
714                 list_add_tail(&fctx->list, fcs);
715         }
716
717         vma->vm_userfaultfd_ctx.ctx = ctx;
718         return 0;
719 }
720
721 static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
722 {
723         struct userfaultfd_ctx *ctx = fctx->orig;
724         struct userfaultfd_wait_queue ewq;
725
726         msg_init(&ewq.msg);
727
728         ewq.msg.event = UFFD_EVENT_FORK;
729         ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
730
731         userfaultfd_event_wait_completion(ctx, &ewq);
732 }
733
734 void dup_userfaultfd_complete(struct list_head *fcs)
735 {
736         struct userfaultfd_fork_ctx *fctx, *n;
737
738         list_for_each_entry_safe(fctx, n, fcs, list) {
739                 dup_fctx(fctx);
740                 list_del(&fctx->list);
741                 kfree(fctx);
742         }
743 }
744
745 void mremap_userfaultfd_prep(struct vm_area_struct *vma,
746                              struct vm_userfaultfd_ctx *vm_ctx)
747 {
748         struct userfaultfd_ctx *ctx;
749
750         ctx = vma->vm_userfaultfd_ctx.ctx;
751
752         if (!ctx)
753                 return;
754
755         if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
756                 vm_ctx->ctx = ctx;
757                 userfaultfd_ctx_get(ctx);
758                 WRITE_ONCE(ctx->mmap_changing, true);
759         } else {
760                 /* Drop uffd context if remap feature not enabled */
761                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
762                 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
763         }
764 }
765
766 void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
767                                  unsigned long from, unsigned long to,
768                                  unsigned long len)
769 {
770         struct userfaultfd_ctx *ctx = vm_ctx->ctx;
771         struct userfaultfd_wait_queue ewq;
772
773         if (!ctx)
774                 return;
775
776         if (to & ~PAGE_MASK) {
777                 userfaultfd_ctx_put(ctx);
778                 return;
779         }
780
781         msg_init(&ewq.msg);
782
783         ewq.msg.event = UFFD_EVENT_REMAP;
784         ewq.msg.arg.remap.from = from;
785         ewq.msg.arg.remap.to = to;
786         ewq.msg.arg.remap.len = len;
787
788         userfaultfd_event_wait_completion(ctx, &ewq);
789 }
790
791 bool userfaultfd_remove(struct vm_area_struct *vma,
792                         unsigned long start, unsigned long end)
793 {
794         struct mm_struct *mm = vma->vm_mm;
795         struct userfaultfd_ctx *ctx;
796         struct userfaultfd_wait_queue ewq;
797
798         ctx = vma->vm_userfaultfd_ctx.ctx;
799         if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
800                 return true;
801
802         userfaultfd_ctx_get(ctx);
803         WRITE_ONCE(ctx->mmap_changing, true);
804         up_read(&mm->mmap_sem);
805
806         msg_init(&ewq.msg);
807
808         ewq.msg.event = UFFD_EVENT_REMOVE;
809         ewq.msg.arg.remove.start = start;
810         ewq.msg.arg.remove.end = end;
811
812         userfaultfd_event_wait_completion(ctx, &ewq);
813
814         return false;
815 }
816
817 static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
818                           unsigned long start, unsigned long end)
819 {
820         struct userfaultfd_unmap_ctx *unmap_ctx;
821
822         list_for_each_entry(unmap_ctx, unmaps, list)
823                 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
824                     unmap_ctx->end == end)
825                         return true;
826
827         return false;
828 }
829
830 int userfaultfd_unmap_prep(struct vm_area_struct *vma,
831                            unsigned long start, unsigned long end,
832                            struct list_head *unmaps)
833 {
834         for ( ; vma && vma->vm_start < end; vma = vma->vm_next) {
835                 struct userfaultfd_unmap_ctx *unmap_ctx;
836                 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
837
838                 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
839                     has_unmap_ctx(ctx, unmaps, start, end))
840                         continue;
841
842                 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
843                 if (!unmap_ctx)
844                         return -ENOMEM;
845
846                 userfaultfd_ctx_get(ctx);
847                 WRITE_ONCE(ctx->mmap_changing, true);
848                 unmap_ctx->ctx = ctx;
849                 unmap_ctx->start = start;
850                 unmap_ctx->end = end;
851                 list_add_tail(&unmap_ctx->list, unmaps);
852         }
853
854         return 0;
855 }
856
857 void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
858 {
859         struct userfaultfd_unmap_ctx *ctx, *n;
860         struct userfaultfd_wait_queue ewq;
861
862         list_for_each_entry_safe(ctx, n, uf, list) {
863                 msg_init(&ewq.msg);
864
865                 ewq.msg.event = UFFD_EVENT_UNMAP;
866                 ewq.msg.arg.remove.start = ctx->start;
867                 ewq.msg.arg.remove.end = ctx->end;
868
869                 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
870
871                 list_del(&ctx->list);
872                 kfree(ctx);
873         }
874 }
875
876 static int userfaultfd_release(struct inode *inode, struct file *file)
877 {
878         struct userfaultfd_ctx *ctx = file->private_data;
879         struct mm_struct *mm = ctx->mm;
880         struct vm_area_struct *vma, *prev;
881         /* len == 0 means wake all */
882         struct userfaultfd_wake_range range = { .len = 0, };
883         unsigned long new_flags;
884         bool still_valid;
885
886         WRITE_ONCE(ctx->released, true);
887
888         if (!mmget_not_zero(mm))
889                 goto wakeup;
890
891         /*
892          * Flush page faults out of all CPUs. NOTE: all page faults
893          * must be retried without returning VM_FAULT_SIGBUS if
894          * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
895          * changes while handle_userfault released the mmap_sem. So
896          * it's critical that released is set to true (above), before
897          * taking the mmap_sem for writing.
898          */
899         down_write(&mm->mmap_sem);
900         still_valid = mmget_still_valid(mm);
901         prev = NULL;
902         for (vma = mm->mmap; vma; vma = vma->vm_next) {
903                 cond_resched();
904                 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
905                        !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
906                 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
907                         prev = vma;
908                         continue;
909                 }
910                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
911                 if (still_valid) {
912                         prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
913                                          new_flags, vma->anon_vma,
914                                          vma->vm_file, vma->vm_pgoff,
915                                          vma_policy(vma),
916                                          NULL_VM_UFFD_CTX);
917                         if (prev)
918                                 vma = prev;
919                         else
920                                 prev = vma;
921                 }
922                 vma->vm_flags = new_flags;
923                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
924         }
925         up_write(&mm->mmap_sem);
926         mmput(mm);
927 wakeup:
928         /*
929          * After no new page faults can wait on this fault_*wqh, flush
930          * the last page faults that may have been already waiting on
931          * the fault_*wqh.
932          */
933         spin_lock_irq(&ctx->fault_pending_wqh.lock);
934         __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
935         __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
936         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
937
938         /* Flush pending events that may still wait on event_wqh */
939         wake_up_all(&ctx->event_wqh);
940
941         wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
942         userfaultfd_ctx_put(ctx);
943         return 0;
944 }
945
946 /* fault_pending_wqh.lock must be hold by the caller */
947 static inline struct userfaultfd_wait_queue *find_userfault_in(
948                 wait_queue_head_t *wqh)
949 {
950         wait_queue_entry_t *wq;
951         struct userfaultfd_wait_queue *uwq;
952
953         VM_BUG_ON(!spin_is_locked(&wqh->lock));
954
955         uwq = NULL;
956         if (!waitqueue_active(wqh))
957                 goto out;
958         /* walk in reverse to provide FIFO behavior to read userfaults */
959         wq = list_last_entry(&wqh->head, typeof(*wq), entry);
960         uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
961 out:
962         return uwq;
963 }
964
965 static inline struct userfaultfd_wait_queue *find_userfault(
966                 struct userfaultfd_ctx *ctx)
967 {
968         return find_userfault_in(&ctx->fault_pending_wqh);
969 }
970
971 static inline struct userfaultfd_wait_queue *find_userfault_evt(
972                 struct userfaultfd_ctx *ctx)
973 {
974         return find_userfault_in(&ctx->event_wqh);
975 }
976
977 static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
978 {
979         struct userfaultfd_ctx *ctx = file->private_data;
980         __poll_t ret;
981
982         poll_wait(file, &ctx->fd_wqh, wait);
983
984         if (!userfaultfd_is_initialized(ctx))
985                 return EPOLLERR;
986
987         /*
988          * poll() never guarantees that read won't block.
989          * userfaults can be waken before they're read().
990          */
991         if (unlikely(!(file->f_flags & O_NONBLOCK)))
992                 return EPOLLERR;
993         /*
994          * lockless access to see if there are pending faults
995          * __pollwait last action is the add_wait_queue but
996          * the spin_unlock would allow the waitqueue_active to
997          * pass above the actual list_add inside
998          * add_wait_queue critical section. So use a full
999          * memory barrier to serialize the list_add write of
1000          * add_wait_queue() with the waitqueue_active read
1001          * below.
1002          */
1003         ret = 0;
1004         smp_mb();
1005         if (waitqueue_active(&ctx->fault_pending_wqh))
1006                 ret = EPOLLIN;
1007         else if (waitqueue_active(&ctx->event_wqh))
1008                 ret = EPOLLIN;
1009
1010         return ret;
1011 }
1012
1013 static const struct file_operations userfaultfd_fops;
1014
1015 static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
1016                                   struct userfaultfd_ctx *new,
1017                                   struct uffd_msg *msg)
1018 {
1019         int fd;
1020
1021         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, new,
1022                               O_RDWR | (new->flags & UFFD_SHARED_FCNTL_FLAGS));
1023         if (fd < 0)
1024                 return fd;
1025
1026         msg->arg.reserved.reserved1 = 0;
1027         msg->arg.fork.ufd = fd;
1028         return 0;
1029 }
1030
1031 static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1032                                     struct uffd_msg *msg)
1033 {
1034         ssize_t ret;
1035         DECLARE_WAITQUEUE(wait, current);
1036         struct userfaultfd_wait_queue *uwq;
1037         /*
1038          * Handling fork event requires sleeping operations, so
1039          * we drop the event_wqh lock, then do these ops, then
1040          * lock it back and wake up the waiter. While the lock is
1041          * dropped the ewq may go away so we keep track of it
1042          * carefully.
1043          */
1044         LIST_HEAD(fork_event);
1045         struct userfaultfd_ctx *fork_nctx = NULL;
1046
1047         /* always take the fd_wqh lock before the fault_pending_wqh lock */
1048         spin_lock_irq(&ctx->fd_wqh.lock);
1049         __add_wait_queue(&ctx->fd_wqh, &wait);
1050         for (;;) {
1051                 set_current_state(TASK_INTERRUPTIBLE);
1052                 spin_lock(&ctx->fault_pending_wqh.lock);
1053                 uwq = find_userfault(ctx);
1054                 if (uwq) {
1055                         /*
1056                          * Use a seqcount to repeat the lockless check
1057                          * in wake_userfault() to avoid missing
1058                          * wakeups because during the refile both
1059                          * waitqueue could become empty if this is the
1060                          * only userfault.
1061                          */
1062                         write_seqcount_begin(&ctx->refile_seq);
1063
1064                         /*
1065                          * The fault_pending_wqh.lock prevents the uwq
1066                          * to disappear from under us.
1067                          *
1068                          * Refile this userfault from
1069                          * fault_pending_wqh to fault_wqh, it's not
1070                          * pending anymore after we read it.
1071                          *
1072                          * Use list_del() by hand (as
1073                          * userfaultfd_wake_function also uses
1074                          * list_del_init() by hand) to be sure nobody
1075                          * changes __remove_wait_queue() to use
1076                          * list_del_init() in turn breaking the
1077                          * !list_empty_careful() check in
1078                          * handle_userfault(). The uwq->wq.head list
1079                          * must never be empty at any time during the
1080                          * refile, or the waitqueue could disappear
1081                          * from under us. The "wait_queue_head_t"
1082                          * parameter of __remove_wait_queue() is unused
1083                          * anyway.
1084                          */
1085                         list_del(&uwq->wq.entry);
1086                         add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1087
1088                         write_seqcount_end(&ctx->refile_seq);
1089
1090                         /* careful to always initialize msg if ret == 0 */
1091                         *msg = uwq->msg;
1092                         spin_unlock(&ctx->fault_pending_wqh.lock);
1093                         ret = 0;
1094                         break;
1095                 }
1096                 spin_unlock(&ctx->fault_pending_wqh.lock);
1097
1098                 spin_lock(&ctx->event_wqh.lock);
1099                 uwq = find_userfault_evt(ctx);
1100                 if (uwq) {
1101                         *msg = uwq->msg;
1102
1103                         if (uwq->msg.event == UFFD_EVENT_FORK) {
1104                                 fork_nctx = (struct userfaultfd_ctx *)
1105                                         (unsigned long)
1106                                         uwq->msg.arg.reserved.reserved1;
1107                                 list_move(&uwq->wq.entry, &fork_event);
1108                                 /*
1109                                  * fork_nctx can be freed as soon as
1110                                  * we drop the lock, unless we take a
1111                                  * reference on it.
1112                                  */
1113                                 userfaultfd_ctx_get(fork_nctx);
1114                                 spin_unlock(&ctx->event_wqh.lock);
1115                                 ret = 0;
1116                                 break;
1117                         }
1118
1119                         userfaultfd_event_complete(ctx, uwq);
1120                         spin_unlock(&ctx->event_wqh.lock);
1121                         ret = 0;
1122                         break;
1123                 }
1124                 spin_unlock(&ctx->event_wqh.lock);
1125
1126                 if (signal_pending(current)) {
1127                         ret = -ERESTARTSYS;
1128                         break;
1129                 }
1130                 if (no_wait) {
1131                         ret = -EAGAIN;
1132                         break;
1133                 }
1134                 spin_unlock_irq(&ctx->fd_wqh.lock);
1135                 schedule();
1136                 spin_lock_irq(&ctx->fd_wqh.lock);
1137         }
1138         __remove_wait_queue(&ctx->fd_wqh, &wait);
1139         __set_current_state(TASK_RUNNING);
1140         spin_unlock_irq(&ctx->fd_wqh.lock);
1141
1142         if (!ret && msg->event == UFFD_EVENT_FORK) {
1143                 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
1144                 spin_lock_irq(&ctx->event_wqh.lock);
1145                 if (!list_empty(&fork_event)) {
1146                         /*
1147                          * The fork thread didn't abort, so we can
1148                          * drop the temporary refcount.
1149                          */
1150                         userfaultfd_ctx_put(fork_nctx);
1151
1152                         uwq = list_first_entry(&fork_event,
1153                                                typeof(*uwq),
1154                                                wq.entry);
1155                         /*
1156                          * If fork_event list wasn't empty and in turn
1157                          * the event wasn't already released by fork
1158                          * (the event is allocated on fork kernel
1159                          * stack), put the event back to its place in
1160                          * the event_wq. fork_event head will be freed
1161                          * as soon as we return so the event cannot
1162                          * stay queued there no matter the current
1163                          * "ret" value.
1164                          */
1165                         list_del(&uwq->wq.entry);
1166                         __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1167
1168                         /*
1169                          * Leave the event in the waitqueue and report
1170                          * error to userland if we failed to resolve
1171                          * the userfault fork.
1172                          */
1173                         if (likely(!ret))
1174                                 userfaultfd_event_complete(ctx, uwq);
1175                 } else {
1176                         /*
1177                          * Here the fork thread aborted and the
1178                          * refcount from the fork thread on fork_nctx
1179                          * has already been released. We still hold
1180                          * the reference we took before releasing the
1181                          * lock above. If resolve_userfault_fork
1182                          * failed we've to drop it because the
1183                          * fork_nctx has to be freed in such case. If
1184                          * it succeeded we'll hold it because the new
1185                          * uffd references it.
1186                          */
1187                         if (ret)
1188                                 userfaultfd_ctx_put(fork_nctx);
1189                 }
1190                 spin_unlock_irq(&ctx->event_wqh.lock);
1191         }
1192
1193         return ret;
1194 }
1195
1196 static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1197                                 size_t count, loff_t *ppos)
1198 {
1199         struct userfaultfd_ctx *ctx = file->private_data;
1200         ssize_t _ret, ret = 0;
1201         struct uffd_msg msg;
1202         int no_wait = file->f_flags & O_NONBLOCK;
1203
1204         if (!userfaultfd_is_initialized(ctx))
1205                 return -EINVAL;
1206
1207         for (;;) {
1208                 if (count < sizeof(msg))
1209                         return ret ? ret : -EINVAL;
1210                 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
1211                 if (_ret < 0)
1212                         return ret ? ret : _ret;
1213                 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1214                         return ret ? ret : -EFAULT;
1215                 ret += sizeof(msg);
1216                 buf += sizeof(msg);
1217                 count -= sizeof(msg);
1218                 /*
1219                  * Allow to read more than one fault at time but only
1220                  * block if waiting for the very first one.
1221                  */
1222                 no_wait = O_NONBLOCK;
1223         }
1224 }
1225
1226 static void __wake_userfault(struct userfaultfd_ctx *ctx,
1227                              struct userfaultfd_wake_range *range)
1228 {
1229         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1230         /* wake all in the range and autoremove */
1231         if (waitqueue_active(&ctx->fault_pending_wqh))
1232                 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1233                                      range);
1234         if (waitqueue_active(&ctx->fault_wqh))
1235                 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1236         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1237 }
1238
1239 static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1240                                            struct userfaultfd_wake_range *range)
1241 {
1242         unsigned seq;
1243         bool need_wakeup;
1244
1245         /*
1246          * To be sure waitqueue_active() is not reordered by the CPU
1247          * before the pagetable update, use an explicit SMP memory
1248          * barrier here. PT lock release or up_read(mmap_sem) still
1249          * have release semantics that can allow the
1250          * waitqueue_active() to be reordered before the pte update.
1251          */
1252         smp_mb();
1253
1254         /*
1255          * Use waitqueue_active because it's very frequent to
1256          * change the address space atomically even if there are no
1257          * userfaults yet. So we take the spinlock only when we're
1258          * sure we've userfaults to wake.
1259          */
1260         do {
1261                 seq = read_seqcount_begin(&ctx->refile_seq);
1262                 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1263                         waitqueue_active(&ctx->fault_wqh);
1264                 cond_resched();
1265         } while (read_seqcount_retry(&ctx->refile_seq, seq));
1266         if (need_wakeup)
1267                 __wake_userfault(ctx, range);
1268 }
1269
1270 static __always_inline int validate_range(struct mm_struct *mm,
1271                                           __u64 start, __u64 len)
1272 {
1273         __u64 task_size = mm->task_size;
1274
1275         if (start & ~PAGE_MASK)
1276                 return -EINVAL;
1277         if (len & ~PAGE_MASK)
1278                 return -EINVAL;
1279         if (!len)
1280                 return -EINVAL;
1281         if (start < mmap_min_addr)
1282                 return -EINVAL;
1283         if (start >= task_size)
1284                 return -EINVAL;
1285         if (len > task_size - start)
1286                 return -EINVAL;
1287         return 0;
1288 }
1289
1290 static inline bool vma_can_userfault(struct vm_area_struct *vma)
1291 {
1292         return vma_is_anonymous(vma) || is_vm_hugetlb_page(vma) ||
1293                 vma_is_shmem(vma);
1294 }
1295
1296 static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1297                                 unsigned long arg)
1298 {
1299         struct mm_struct *mm = ctx->mm;
1300         struct vm_area_struct *vma, *prev, *cur;
1301         int ret;
1302         struct uffdio_register uffdio_register;
1303         struct uffdio_register __user *user_uffdio_register;
1304         unsigned long vm_flags, new_flags;
1305         bool found;
1306         bool basic_ioctls;
1307         unsigned long start, end, vma_end;
1308
1309         user_uffdio_register = (struct uffdio_register __user *) arg;
1310
1311         ret = -EFAULT;
1312         if (copy_from_user(&uffdio_register, user_uffdio_register,
1313                            sizeof(uffdio_register)-sizeof(__u64)))
1314                 goto out;
1315
1316         ret = -EINVAL;
1317         if (!uffdio_register.mode)
1318                 goto out;
1319         if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1320                                      UFFDIO_REGISTER_MODE_WP))
1321                 goto out;
1322         vm_flags = 0;
1323         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1324                 vm_flags |= VM_UFFD_MISSING;
1325         if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1326                 vm_flags |= VM_UFFD_WP;
1327                 /*
1328                  * FIXME: remove the below error constraint by
1329                  * implementing the wprotect tracking mode.
1330                  */
1331                 ret = -EINVAL;
1332                 goto out;
1333         }
1334
1335         ret = validate_range(mm, uffdio_register.range.start,
1336                              uffdio_register.range.len);
1337         if (ret)
1338                 goto out;
1339
1340         start = uffdio_register.range.start;
1341         end = start + uffdio_register.range.len;
1342
1343         ret = -ENOMEM;
1344         if (!mmget_not_zero(mm))
1345                 goto out;
1346
1347         down_write(&mm->mmap_sem);
1348         if (!mmget_still_valid(mm))
1349                 goto out_unlock;
1350         vma = find_vma_prev(mm, start, &prev);
1351         if (!vma)
1352                 goto out_unlock;
1353
1354         /* check that there's at least one vma in the range */
1355         ret = -EINVAL;
1356         if (vma->vm_start >= end)
1357                 goto out_unlock;
1358
1359         /*
1360          * If the first vma contains huge pages, make sure start address
1361          * is aligned to huge page size.
1362          */
1363         if (is_vm_hugetlb_page(vma)) {
1364                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1365
1366                 if (start & (vma_hpagesize - 1))
1367                         goto out_unlock;
1368         }
1369
1370         /*
1371          * Search for not compatible vmas.
1372          */
1373         found = false;
1374         basic_ioctls = false;
1375         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1376                 cond_resched();
1377
1378                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1379                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1380
1381                 /* check not compatible vmas */
1382                 ret = -EINVAL;
1383                 if (!vma_can_userfault(cur))
1384                         goto out_unlock;
1385
1386                 /*
1387                  * UFFDIO_COPY will fill file holes even without
1388                  * PROT_WRITE. This check enforces that if this is a
1389                  * MAP_SHARED, the process has write permission to the backing
1390                  * file. If VM_MAYWRITE is set it also enforces that on a
1391                  * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1392                  * F_WRITE_SEAL can be taken until the vma is destroyed.
1393                  */
1394                 ret = -EPERM;
1395                 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1396                         goto out_unlock;
1397
1398                 /*
1399                  * If this vma contains ending address, and huge pages
1400                  * check alignment.
1401                  */
1402                 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1403                     end > cur->vm_start) {
1404                         unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1405
1406                         ret = -EINVAL;
1407
1408                         if (end & (vma_hpagesize - 1))
1409                                 goto out_unlock;
1410                 }
1411
1412                 /*
1413                  * Check that this vma isn't already owned by a
1414                  * different userfaultfd. We can't allow more than one
1415                  * userfaultfd to own a single vma simultaneously or we
1416                  * wouldn't know which one to deliver the userfaults to.
1417                  */
1418                 ret = -EBUSY;
1419                 if (cur->vm_userfaultfd_ctx.ctx &&
1420                     cur->vm_userfaultfd_ctx.ctx != ctx)
1421                         goto out_unlock;
1422
1423                 /*
1424                  * Note vmas containing huge pages
1425                  */
1426                 if (is_vm_hugetlb_page(cur))
1427                         basic_ioctls = true;
1428
1429                 found = true;
1430         }
1431         BUG_ON(!found);
1432
1433         if (vma->vm_start < start)
1434                 prev = vma;
1435
1436         ret = 0;
1437         do {
1438                 cond_resched();
1439
1440                 BUG_ON(!vma_can_userfault(vma));
1441                 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1442                        vma->vm_userfaultfd_ctx.ctx != ctx);
1443                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1444
1445                 /*
1446                  * Nothing to do: this vma is already registered into this
1447                  * userfaultfd and with the right tracking mode too.
1448                  */
1449                 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1450                     (vma->vm_flags & vm_flags) == vm_flags)
1451                         goto skip;
1452
1453                 if (vma->vm_start > start)
1454                         start = vma->vm_start;
1455                 vma_end = min(end, vma->vm_end);
1456
1457                 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1458                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1459                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1460                                  vma_policy(vma),
1461                                  ((struct vm_userfaultfd_ctx){ ctx }));
1462                 if (prev) {
1463                         vma = prev;
1464                         goto next;
1465                 }
1466                 if (vma->vm_start < start) {
1467                         ret = split_vma(mm, vma, start, 1);
1468                         if (ret)
1469                                 break;
1470                 }
1471                 if (vma->vm_end > end) {
1472                         ret = split_vma(mm, vma, end, 0);
1473                         if (ret)
1474                                 break;
1475                 }
1476         next:
1477                 /*
1478                  * In the vma_merge() successful mprotect-like case 8:
1479                  * the next vma was merged into the current one and
1480                  * the current one has not been updated yet.
1481                  */
1482                 vma->vm_flags = new_flags;
1483                 vma->vm_userfaultfd_ctx.ctx = ctx;
1484
1485         skip:
1486                 prev = vma;
1487                 start = vma->vm_end;
1488                 vma = vma->vm_next;
1489         } while (vma && vma->vm_start < end);
1490 out_unlock:
1491         up_write(&mm->mmap_sem);
1492         mmput(mm);
1493         if (!ret) {
1494                 /*
1495                  * Now that we scanned all vmas we can already tell
1496                  * userland which ioctls methods are guaranteed to
1497                  * succeed on this range.
1498                  */
1499                 if (put_user(basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1500                              UFFD_API_RANGE_IOCTLS,
1501                              &user_uffdio_register->ioctls))
1502                         ret = -EFAULT;
1503         }
1504 out:
1505         return ret;
1506 }
1507
1508 static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1509                                   unsigned long arg)
1510 {
1511         struct mm_struct *mm = ctx->mm;
1512         struct vm_area_struct *vma, *prev, *cur;
1513         int ret;
1514         struct uffdio_range uffdio_unregister;
1515         unsigned long new_flags;
1516         bool found;
1517         unsigned long start, end, vma_end;
1518         const void __user *buf = (void __user *)arg;
1519
1520         ret = -EFAULT;
1521         if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1522                 goto out;
1523
1524         ret = validate_range(mm, uffdio_unregister.start,
1525                              uffdio_unregister.len);
1526         if (ret)
1527                 goto out;
1528
1529         start = uffdio_unregister.start;
1530         end = start + uffdio_unregister.len;
1531
1532         ret = -ENOMEM;
1533         if (!mmget_not_zero(mm))
1534                 goto out;
1535
1536         down_write(&mm->mmap_sem);
1537         if (!mmget_still_valid(mm))
1538                 goto out_unlock;
1539         vma = find_vma_prev(mm, start, &prev);
1540         if (!vma)
1541                 goto out_unlock;
1542
1543         /* check that there's at least one vma in the range */
1544         ret = -EINVAL;
1545         if (vma->vm_start >= end)
1546                 goto out_unlock;
1547
1548         /*
1549          * If the first vma contains huge pages, make sure start address
1550          * is aligned to huge page size.
1551          */
1552         if (is_vm_hugetlb_page(vma)) {
1553                 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1554
1555                 if (start & (vma_hpagesize - 1))
1556                         goto out_unlock;
1557         }
1558
1559         /*
1560          * Search for not compatible vmas.
1561          */
1562         found = false;
1563         ret = -EINVAL;
1564         for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1565                 cond_resched();
1566
1567                 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1568                        !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1569
1570                 /*
1571                  * Check not compatible vmas, not strictly required
1572                  * here as not compatible vmas cannot have an
1573                  * userfaultfd_ctx registered on them, but this
1574                  * provides for more strict behavior to notice
1575                  * unregistration errors.
1576                  */
1577                 if (!vma_can_userfault(cur))
1578                         goto out_unlock;
1579
1580                 found = true;
1581         }
1582         BUG_ON(!found);
1583
1584         if (vma->vm_start < start)
1585                 prev = vma;
1586
1587         ret = 0;
1588         do {
1589                 cond_resched();
1590
1591                 BUG_ON(!vma_can_userfault(vma));
1592
1593                 /*
1594                  * Nothing to do: this vma is already registered into this
1595                  * userfaultfd and with the right tracking mode too.
1596                  */
1597                 if (!vma->vm_userfaultfd_ctx.ctx)
1598                         goto skip;
1599
1600                 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1601
1602                 if (vma->vm_start > start)
1603                         start = vma->vm_start;
1604                 vma_end = min(end, vma->vm_end);
1605
1606                 if (userfaultfd_missing(vma)) {
1607                         /*
1608                          * Wake any concurrent pending userfault while
1609                          * we unregister, so they will not hang
1610                          * permanently and it avoids userland to call
1611                          * UFFDIO_WAKE explicitly.
1612                          */
1613                         struct userfaultfd_wake_range range;
1614                         range.start = start;
1615                         range.len = vma_end - start;
1616                         wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1617                 }
1618
1619                 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1620                 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1621                                  vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1622                                  vma_policy(vma),
1623                                  NULL_VM_UFFD_CTX);
1624                 if (prev) {
1625                         vma = prev;
1626                         goto next;
1627                 }
1628                 if (vma->vm_start < start) {
1629                         ret = split_vma(mm, vma, start, 1);
1630                         if (ret)
1631                                 break;
1632                 }
1633                 if (vma->vm_end > end) {
1634                         ret = split_vma(mm, vma, end, 0);
1635                         if (ret)
1636                                 break;
1637                 }
1638         next:
1639                 /*
1640                  * In the vma_merge() successful mprotect-like case 8:
1641                  * the next vma was merged into the current one and
1642                  * the current one has not been updated yet.
1643                  */
1644                 vma->vm_flags = new_flags;
1645                 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1646
1647         skip:
1648                 prev = vma;
1649                 start = vma->vm_end;
1650                 vma = vma->vm_next;
1651         } while (vma && vma->vm_start < end);
1652 out_unlock:
1653         up_write(&mm->mmap_sem);
1654         mmput(mm);
1655 out:
1656         return ret;
1657 }
1658
1659 /*
1660  * userfaultfd_wake may be used in combination with the
1661  * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1662  */
1663 static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1664                             unsigned long arg)
1665 {
1666         int ret;
1667         struct uffdio_range uffdio_wake;
1668         struct userfaultfd_wake_range range;
1669         const void __user *buf = (void __user *)arg;
1670
1671         ret = -EFAULT;
1672         if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1673                 goto out;
1674
1675         ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1676         if (ret)
1677                 goto out;
1678
1679         range.start = uffdio_wake.start;
1680         range.len = uffdio_wake.len;
1681
1682         /*
1683          * len == 0 means wake all and we don't want to wake all here,
1684          * so check it again to be sure.
1685          */
1686         VM_BUG_ON(!range.len);
1687
1688         wake_userfault(ctx, &range);
1689         ret = 0;
1690
1691 out:
1692         return ret;
1693 }
1694
1695 static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1696                             unsigned long arg)
1697 {
1698         __s64 ret;
1699         struct uffdio_copy uffdio_copy;
1700         struct uffdio_copy __user *user_uffdio_copy;
1701         struct userfaultfd_wake_range range;
1702
1703         user_uffdio_copy = (struct uffdio_copy __user *) arg;
1704
1705         ret = -EAGAIN;
1706         if (READ_ONCE(ctx->mmap_changing))
1707                 goto out;
1708
1709         ret = -EFAULT;
1710         if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1711                            /* don't copy "copy" last field */
1712                            sizeof(uffdio_copy)-sizeof(__s64)))
1713                 goto out;
1714
1715         ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1716         if (ret)
1717                 goto out;
1718         /*
1719          * double check for wraparound just in case. copy_from_user()
1720          * will later check uffdio_copy.src + uffdio_copy.len to fit
1721          * in the userland range.
1722          */
1723         ret = -EINVAL;
1724         if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1725                 goto out;
1726         if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1727                 goto out;
1728         if (mmget_not_zero(ctx->mm)) {
1729                 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1730                                    uffdio_copy.len, &ctx->mmap_changing);
1731                 mmput(ctx->mm);
1732         } else {
1733                 return -ESRCH;
1734         }
1735         if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1736                 return -EFAULT;
1737         if (ret < 0)
1738                 goto out;
1739         BUG_ON(!ret);
1740         /* len == 0 would wake all */
1741         range.len = ret;
1742         if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1743                 range.start = uffdio_copy.dst;
1744                 wake_userfault(ctx, &range);
1745         }
1746         ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1747 out:
1748         return ret;
1749 }
1750
1751 static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1752                                 unsigned long arg)
1753 {
1754         __s64 ret;
1755         struct uffdio_zeropage uffdio_zeropage;
1756         struct uffdio_zeropage __user *user_uffdio_zeropage;
1757         struct userfaultfd_wake_range range;
1758
1759         user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1760
1761         ret = -EAGAIN;
1762         if (READ_ONCE(ctx->mmap_changing))
1763                 goto out;
1764
1765         ret = -EFAULT;
1766         if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1767                            /* don't copy "zeropage" last field */
1768                            sizeof(uffdio_zeropage)-sizeof(__s64)))
1769                 goto out;
1770
1771         ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1772                              uffdio_zeropage.range.len);
1773         if (ret)
1774                 goto out;
1775         ret = -EINVAL;
1776         if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1777                 goto out;
1778
1779         if (mmget_not_zero(ctx->mm)) {
1780                 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1781                                      uffdio_zeropage.range.len,
1782                                      &ctx->mmap_changing);
1783                 mmput(ctx->mm);
1784         } else {
1785                 return -ESRCH;
1786         }
1787         if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1788                 return -EFAULT;
1789         if (ret < 0)
1790                 goto out;
1791         /* len == 0 would wake all */
1792         BUG_ON(!ret);
1793         range.len = ret;
1794         if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1795                 range.start = uffdio_zeropage.range.start;
1796                 wake_userfault(ctx, &range);
1797         }
1798         ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1799 out:
1800         return ret;
1801 }
1802
1803 static inline unsigned int uffd_ctx_features(__u64 user_features)
1804 {
1805         /*
1806          * For the current set of features the bits just coincide. Set
1807          * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1808          */
1809         return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1810 }
1811
1812 /*
1813  * userland asks for a certain API version and we return which bits
1814  * and ioctl commands are implemented in this kernel for such API
1815  * version or -EINVAL if unknown.
1816  */
1817 static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1818                            unsigned long arg)
1819 {
1820         struct uffdio_api uffdio_api;
1821         void __user *buf = (void __user *)arg;
1822         unsigned int ctx_features;
1823         int ret;
1824         __u64 features;
1825
1826         ret = -EFAULT;
1827         if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
1828                 goto out;
1829         features = uffdio_api.features;
1830         ret = -EINVAL;
1831         if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
1832                 goto err_out;
1833         ret = -EPERM;
1834         if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
1835                 goto err_out;
1836         /* report all available features and ioctls to userland */
1837         uffdio_api.features = UFFD_API_FEATURES;
1838         uffdio_api.ioctls = UFFD_API_IOCTLS;
1839         ret = -EFAULT;
1840         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1841                 goto out;
1842
1843         /* only enable the requested features for this uffd context */
1844         ctx_features = uffd_ctx_features(features);
1845         ret = -EINVAL;
1846         if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
1847                 goto err_out;
1848
1849         ret = 0;
1850 out:
1851         return ret;
1852 err_out:
1853         memset(&uffdio_api, 0, sizeof(uffdio_api));
1854         if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1855                 ret = -EFAULT;
1856         goto out;
1857 }
1858
1859 static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1860                               unsigned long arg)
1861 {
1862         int ret = -EINVAL;
1863         struct userfaultfd_ctx *ctx = file->private_data;
1864
1865         if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
1866                 return -EINVAL;
1867
1868         switch(cmd) {
1869         case UFFDIO_API:
1870                 ret = userfaultfd_api(ctx, arg);
1871                 break;
1872         case UFFDIO_REGISTER:
1873                 ret = userfaultfd_register(ctx, arg);
1874                 break;
1875         case UFFDIO_UNREGISTER:
1876                 ret = userfaultfd_unregister(ctx, arg);
1877                 break;
1878         case UFFDIO_WAKE:
1879                 ret = userfaultfd_wake(ctx, arg);
1880                 break;
1881         case UFFDIO_COPY:
1882                 ret = userfaultfd_copy(ctx, arg);
1883                 break;
1884         case UFFDIO_ZEROPAGE:
1885                 ret = userfaultfd_zeropage(ctx, arg);
1886                 break;
1887         }
1888         return ret;
1889 }
1890
1891 #ifdef CONFIG_PROC_FS
1892 static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1893 {
1894         struct userfaultfd_ctx *ctx = f->private_data;
1895         wait_queue_entry_t *wq;
1896         unsigned long pending = 0, total = 0;
1897
1898         spin_lock_irq(&ctx->fault_pending_wqh.lock);
1899         list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
1900                 pending++;
1901                 total++;
1902         }
1903         list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
1904                 total++;
1905         }
1906         spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1907
1908         /*
1909          * If more protocols will be added, there will be all shown
1910          * separated by a space. Like this:
1911          *      protocols: aa:... bb:...
1912          */
1913         seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
1914                    pending, total, UFFD_API, ctx->features,
1915                    UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1916 }
1917 #endif
1918
1919 static const struct file_operations userfaultfd_fops = {
1920 #ifdef CONFIG_PROC_FS
1921         .show_fdinfo    = userfaultfd_show_fdinfo,
1922 #endif
1923         .release        = userfaultfd_release,
1924         .poll           = userfaultfd_poll,
1925         .read           = userfaultfd_read,
1926         .unlocked_ioctl = userfaultfd_ioctl,
1927         .compat_ioctl   = userfaultfd_ioctl,
1928         .llseek         = noop_llseek,
1929 };
1930
1931 static void init_once_userfaultfd_ctx(void *mem)
1932 {
1933         struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1934
1935         init_waitqueue_head(&ctx->fault_pending_wqh);
1936         init_waitqueue_head(&ctx->fault_wqh);
1937         init_waitqueue_head(&ctx->event_wqh);
1938         init_waitqueue_head(&ctx->fd_wqh);
1939         seqcount_init(&ctx->refile_seq);
1940 }
1941
1942 SYSCALL_DEFINE1(userfaultfd, int, flags)
1943 {
1944         struct userfaultfd_ctx *ctx;
1945         int fd;
1946
1947         BUG_ON(!current->mm);
1948
1949         /* Check the UFFD_* constants for consistency.  */
1950         BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1951         BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1952
1953         if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1954                 return -EINVAL;
1955
1956         ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
1957         if (!ctx)
1958                 return -ENOMEM;
1959
1960         atomic_set(&ctx->refcount, 1);
1961         ctx->flags = flags;
1962         ctx->features = 0;
1963         ctx->released = false;
1964         ctx->mmap_changing = false;
1965         ctx->mm = current->mm;
1966         /* prevent the mm struct to be freed */
1967         mmgrab(ctx->mm);
1968
1969         fd = anon_inode_getfd("[userfaultfd]", &userfaultfd_fops, ctx,
1970                               O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
1971         if (fd < 0) {
1972                 mmdrop(ctx->mm);
1973                 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
1974         }
1975         return fd;
1976 }
1977
1978 static int __init userfaultfd_init(void)
1979 {
1980         userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1981                                                 sizeof(struct userfaultfd_ctx),
1982                                                 0,
1983                                                 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1984                                                 init_once_userfaultfd_ctx);
1985         return 0;
1986 }
1987 __initcall(userfaultfd_init);