GNU Linux-libre 4.9.337-gnu1
[releases.git] / fs / xfs / libxfs / xfs_btree.c
1 /*
2  * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_bit.h"
25 #include "xfs_mount.h"
26 #include "xfs_defer.h"
27 #include "xfs_inode.h"
28 #include "xfs_trans.h"
29 #include "xfs_inode_item.h"
30 #include "xfs_buf_item.h"
31 #include "xfs_btree.h"
32 #include "xfs_error.h"
33 #include "xfs_trace.h"
34 #include "xfs_cksum.h"
35 #include "xfs_alloc.h"
36 #include "xfs_log.h"
37
38 /*
39  * Cursor allocation zone.
40  */
41 kmem_zone_t     *xfs_btree_cur_zone;
42
43 /*
44  * Btree magic numbers.
45  */
46 static const __uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
47         { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
48           XFS_FIBT_MAGIC, 0 },
49         { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
50           XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
51           XFS_REFC_CRC_MAGIC }
52 };
53 #define xfs_btree_magic(cur) \
54         xfs_magics[!!((cur)->bc_flags & XFS_BTREE_CRC_BLOCKS)][cur->bc_btnum]
55
56 STATIC int                              /* error (0 or EFSCORRUPTED) */
57 xfs_btree_check_lblock(
58         struct xfs_btree_cur    *cur,   /* btree cursor */
59         struct xfs_btree_block  *block, /* btree long form block pointer */
60         int                     level,  /* level of the btree block */
61         struct xfs_buf          *bp)    /* buffer for block, if any */
62 {
63         int                     lblock_ok = 1; /* block passes checks */
64         struct xfs_mount        *mp;    /* file system mount point */
65
66         mp = cur->bc_mp;
67
68         if (xfs_sb_version_hascrc(&mp->m_sb)) {
69                 lblock_ok = lblock_ok &&
70                         uuid_equal(&block->bb_u.l.bb_uuid,
71                                    &mp->m_sb.sb_meta_uuid) &&
72                         block->bb_u.l.bb_blkno == cpu_to_be64(
73                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
74         }
75
76         lblock_ok = lblock_ok &&
77                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
78                 be16_to_cpu(block->bb_level) == level &&
79                 be16_to_cpu(block->bb_numrecs) <=
80                         cur->bc_ops->get_maxrecs(cur, level) &&
81                 block->bb_u.l.bb_leftsib &&
82                 (block->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK) ||
83                  XFS_FSB_SANITY_CHECK(mp,
84                         be64_to_cpu(block->bb_u.l.bb_leftsib))) &&
85                 block->bb_u.l.bb_rightsib &&
86                 (block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK) ||
87                  XFS_FSB_SANITY_CHECK(mp,
88                         be64_to_cpu(block->bb_u.l.bb_rightsib)));
89
90         if (unlikely(XFS_TEST_ERROR(!lblock_ok, mp,
91                         XFS_ERRTAG_BTREE_CHECK_LBLOCK,
92                         XFS_RANDOM_BTREE_CHECK_LBLOCK))) {
93                 if (bp)
94                         trace_xfs_btree_corrupt(bp, _RET_IP_);
95                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
96                 return -EFSCORRUPTED;
97         }
98         return 0;
99 }
100
101 STATIC int                              /* error (0 or EFSCORRUPTED) */
102 xfs_btree_check_sblock(
103         struct xfs_btree_cur    *cur,   /* btree cursor */
104         struct xfs_btree_block  *block, /* btree short form block pointer */
105         int                     level,  /* level of the btree block */
106         struct xfs_buf          *bp)    /* buffer containing block */
107 {
108         struct xfs_mount        *mp;    /* file system mount point */
109         struct xfs_buf          *agbp;  /* buffer for ag. freespace struct */
110         struct xfs_agf          *agf;   /* ag. freespace structure */
111         xfs_agblock_t           agflen; /* native ag. freespace length */
112         int                     sblock_ok = 1; /* block passes checks */
113
114         mp = cur->bc_mp;
115         agbp = cur->bc_private.a.agbp;
116         agf = XFS_BUF_TO_AGF(agbp);
117         agflen = be32_to_cpu(agf->agf_length);
118
119         if (xfs_sb_version_hascrc(&mp->m_sb)) {
120                 sblock_ok = sblock_ok &&
121                         uuid_equal(&block->bb_u.s.bb_uuid,
122                                    &mp->m_sb.sb_meta_uuid) &&
123                         block->bb_u.s.bb_blkno == cpu_to_be64(
124                                 bp ? bp->b_bn : XFS_BUF_DADDR_NULL);
125         }
126
127         sblock_ok = sblock_ok &&
128                 be32_to_cpu(block->bb_magic) == xfs_btree_magic(cur) &&
129                 be16_to_cpu(block->bb_level) == level &&
130                 be16_to_cpu(block->bb_numrecs) <=
131                         cur->bc_ops->get_maxrecs(cur, level) &&
132                 (block->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) ||
133                  be32_to_cpu(block->bb_u.s.bb_leftsib) < agflen) &&
134                 block->bb_u.s.bb_leftsib &&
135                 (block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK) ||
136                  be32_to_cpu(block->bb_u.s.bb_rightsib) < agflen) &&
137                 block->bb_u.s.bb_rightsib;
138
139         if (unlikely(XFS_TEST_ERROR(!sblock_ok, mp,
140                         XFS_ERRTAG_BTREE_CHECK_SBLOCK,
141                         XFS_RANDOM_BTREE_CHECK_SBLOCK))) {
142                 if (bp)
143                         trace_xfs_btree_corrupt(bp, _RET_IP_);
144                 XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, mp);
145                 return -EFSCORRUPTED;
146         }
147         return 0;
148 }
149
150 /*
151  * Debug routine: check that block header is ok.
152  */
153 int
154 xfs_btree_check_block(
155         struct xfs_btree_cur    *cur,   /* btree cursor */
156         struct xfs_btree_block  *block, /* generic btree block pointer */
157         int                     level,  /* level of the btree block */
158         struct xfs_buf          *bp)    /* buffer containing block, if any */
159 {
160         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
161                 return xfs_btree_check_lblock(cur, block, level, bp);
162         else
163                 return xfs_btree_check_sblock(cur, block, level, bp);
164 }
165
166 /*
167  * Check that (long) pointer is ok.
168  */
169 int                                     /* error (0 or EFSCORRUPTED) */
170 xfs_btree_check_lptr(
171         struct xfs_btree_cur    *cur,   /* btree cursor */
172         xfs_fsblock_t           bno,    /* btree block disk address */
173         int                     level)  /* btree block level */
174 {
175         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
176                 level > 0 &&
177                 bno != NULLFSBLOCK &&
178                 XFS_FSB_SANITY_CHECK(cur->bc_mp, bno));
179         return 0;
180 }
181
182 #ifdef DEBUG
183 /*
184  * Check that (short) pointer is ok.
185  */
186 STATIC int                              /* error (0 or EFSCORRUPTED) */
187 xfs_btree_check_sptr(
188         struct xfs_btree_cur    *cur,   /* btree cursor */
189         xfs_agblock_t           bno,    /* btree block disk address */
190         int                     level)  /* btree block level */
191 {
192         xfs_agblock_t           agblocks = cur->bc_mp->m_sb.sb_agblocks;
193
194         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp,
195                 level > 0 &&
196                 bno != NULLAGBLOCK &&
197                 bno != 0 &&
198                 bno < agblocks);
199         return 0;
200 }
201
202 /*
203  * Check that block ptr is ok.
204  */
205 STATIC int                              /* error (0 or EFSCORRUPTED) */
206 xfs_btree_check_ptr(
207         struct xfs_btree_cur    *cur,   /* btree cursor */
208         union xfs_btree_ptr     *ptr,   /* btree block disk address */
209         int                     index,  /* offset from ptr to check */
210         int                     level)  /* btree block level */
211 {
212         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
213                 return xfs_btree_check_lptr(cur,
214                                 be64_to_cpu((&ptr->l)[index]), level);
215         } else {
216                 return xfs_btree_check_sptr(cur,
217                                 be32_to_cpu((&ptr->s)[index]), level);
218         }
219 }
220 #endif
221
222 /*
223  * Calculate CRC on the whole btree block and stuff it into the
224  * long-form btree header.
225  *
226  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
227  * it into the buffer so recovery knows what the last modification was that made
228  * it to disk.
229  */
230 void
231 xfs_btree_lblock_calc_crc(
232         struct xfs_buf          *bp)
233 {
234         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
235         struct xfs_buf_log_item *bip = bp->b_fspriv;
236
237         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
238                 return;
239         if (bip)
240                 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
241         xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
242 }
243
244 bool
245 xfs_btree_lblock_verify_crc(
246         struct xfs_buf          *bp)
247 {
248         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
249         struct xfs_mount        *mp = bp->b_target->bt_mount;
250
251         if (xfs_sb_version_hascrc(&mp->m_sb)) {
252                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
253                         return false;
254                 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
255         }
256
257         return true;
258 }
259
260 /*
261  * Calculate CRC on the whole btree block and stuff it into the
262  * short-form btree header.
263  *
264  * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265  * it into the buffer so recovery knows what the last modification was that made
266  * it to disk.
267  */
268 void
269 xfs_btree_sblock_calc_crc(
270         struct xfs_buf          *bp)
271 {
272         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
273         struct xfs_buf_log_item *bip = bp->b_fspriv;
274
275         if (!xfs_sb_version_hascrc(&bp->b_target->bt_mount->m_sb))
276                 return;
277         if (bip)
278                 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279         xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
280 }
281
282 bool
283 xfs_btree_sblock_verify_crc(
284         struct xfs_buf          *bp)
285 {
286         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
287         struct xfs_mount        *mp = bp->b_target->bt_mount;
288
289         if (xfs_sb_version_hascrc(&mp->m_sb)) {
290                 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
291                         return false;
292                 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
293         }
294
295         return true;
296 }
297
298 static int
299 xfs_btree_free_block(
300         struct xfs_btree_cur    *cur,
301         struct xfs_buf          *bp)
302 {
303         int                     error;
304
305         error = cur->bc_ops->free_block(cur, bp);
306         if (!error) {
307                 xfs_trans_binval(cur->bc_tp, bp);
308                 XFS_BTREE_STATS_INC(cur, free);
309         }
310         return error;
311 }
312
313 /*
314  * Delete the btree cursor.
315  */
316 void
317 xfs_btree_del_cursor(
318         xfs_btree_cur_t *cur,           /* btree cursor */
319         int             error)          /* del because of error */
320 {
321         int             i;              /* btree level */
322
323         /*
324          * Clear the buffer pointers, and release the buffers.
325          * If we're doing this in the face of an error, we
326          * need to make sure to inspect all of the entries
327          * in the bc_bufs array for buffers to be unlocked.
328          * This is because some of the btree code works from
329          * level n down to 0, and if we get an error along
330          * the way we won't have initialized all the entries
331          * down to 0.
332          */
333         for (i = 0; i < cur->bc_nlevels; i++) {
334                 if (cur->bc_bufs[i])
335                         xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
336                 else if (!error)
337                         break;
338         }
339         /*
340          * Can't free a bmap cursor without having dealt with the
341          * allocated indirect blocks' accounting.
342          */
343         ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP ||
344                cur->bc_private.b.allocated == 0);
345         /*
346          * Free the cursor.
347          */
348         kmem_zone_free(xfs_btree_cur_zone, cur);
349 }
350
351 /*
352  * Duplicate the btree cursor.
353  * Allocate a new one, copy the record, re-get the buffers.
354  */
355 int                                     /* error */
356 xfs_btree_dup_cursor(
357         xfs_btree_cur_t *cur,           /* input cursor */
358         xfs_btree_cur_t **ncur)         /* output cursor */
359 {
360         xfs_buf_t       *bp;            /* btree block's buffer pointer */
361         int             error;          /* error return value */
362         int             i;              /* level number of btree block */
363         xfs_mount_t     *mp;            /* mount structure for filesystem */
364         xfs_btree_cur_t *new;           /* new cursor value */
365         xfs_trans_t     *tp;            /* transaction pointer, can be NULL */
366
367         tp = cur->bc_tp;
368         mp = cur->bc_mp;
369
370         /*
371          * Allocate a new cursor like the old one.
372          */
373         new = cur->bc_ops->dup_cursor(cur);
374
375         /*
376          * Copy the record currently in the cursor.
377          */
378         new->bc_rec = cur->bc_rec;
379
380         /*
381          * For each level current, re-get the buffer and copy the ptr value.
382          */
383         for (i = 0; i < new->bc_nlevels; i++) {
384                 new->bc_ptrs[i] = cur->bc_ptrs[i];
385                 new->bc_ra[i] = cur->bc_ra[i];
386                 bp = cur->bc_bufs[i];
387                 if (bp) {
388                         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
389                                                    XFS_BUF_ADDR(bp), mp->m_bsize,
390                                                    0, &bp,
391                                                    cur->bc_ops->buf_ops);
392                         if (error) {
393                                 xfs_btree_del_cursor(new, error);
394                                 *ncur = NULL;
395                                 return error;
396                         }
397                 }
398                 new->bc_bufs[i] = bp;
399         }
400         *ncur = new;
401         return 0;
402 }
403
404 /*
405  * XFS btree block layout and addressing:
406  *
407  * There are two types of blocks in the btree: leaf and non-leaf blocks.
408  *
409  * The leaf record start with a header then followed by records containing
410  * the values.  A non-leaf block also starts with the same header, and
411  * then first contains lookup keys followed by an equal number of pointers
412  * to the btree blocks at the previous level.
413  *
414  *              +--------+-------+-------+-------+-------+-------+-------+
415  * Leaf:        | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
416  *              +--------+-------+-------+-------+-------+-------+-------+
417  *
418  *              +--------+-------+-------+-------+-------+-------+-------+
419  * Non-Leaf:    | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
420  *              +--------+-------+-------+-------+-------+-------+-------+
421  *
422  * The header is called struct xfs_btree_block for reasons better left unknown
423  * and comes in different versions for short (32bit) and long (64bit) block
424  * pointers.  The record and key structures are defined by the btree instances
425  * and opaque to the btree core.  The block pointers are simple disk endian
426  * integers, available in a short (32bit) and long (64bit) variant.
427  *
428  * The helpers below calculate the offset of a given record, key or pointer
429  * into a btree block (xfs_btree_*_offset) or return a pointer to the given
430  * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
431  * inside the btree block is done using indices starting at one, not zero!
432  *
433  * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
434  * overlapping intervals.  In such a tree, records are still sorted lowest to
435  * highest and indexed by the smallest key value that refers to the record.
436  * However, nodes are different: each pointer has two associated keys -- one
437  * indexing the lowest key available in the block(s) below (the same behavior
438  * as the key in a regular btree) and another indexing the highest key
439  * available in the block(s) below.  Because records are /not/ sorted by the
440  * highest key, all leaf block updates require us to compute the highest key
441  * that matches any record in the leaf and to recursively update the high keys
442  * in the nodes going further up in the tree, if necessary.  Nodes look like
443  * this:
444  *
445  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
446  * Non-Leaf:    | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
447  *              +--------+-----+-----+-----+-----+-----+-------+-------+-----+
448  *
449  * To perform an interval query on an overlapped tree, perform the usual
450  * depth-first search and use the low and high keys to decide if we can skip
451  * that particular node.  If a leaf node is reached, return the records that
452  * intersect the interval.  Note that an interval query may return numerous
453  * entries.  For a non-overlapped tree, simply search for the record associated
454  * with the lowest key and iterate forward until a non-matching record is
455  * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
456  * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
457  * more detail.
458  *
459  * Why do we care about overlapping intervals?  Let's say you have a bunch of
460  * reverse mapping records on a reflink filesystem:
461  *
462  * 1: +- file A startblock B offset C length D -----------+
463  * 2:      +- file E startblock F offset G length H --------------+
464  * 3:      +- file I startblock F offset J length K --+
465  * 4:                                                        +- file L... --+
466  *
467  * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
468  * we'd simply increment the length of record 1.  But how do we find the record
469  * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
470  * record 3 because the keys are ordered first by startblock.  An interval
471  * query would return records 1 and 2 because they both overlap (B+D-1), and
472  * from that we can pick out record 1 as the appropriate left neighbor.
473  *
474  * In the non-overlapped case you can do a LE lookup and decrement the cursor
475  * because a record's interval must end before the next record.
476  */
477
478 /*
479  * Return size of the btree block header for this btree instance.
480  */
481 static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
482 {
483         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
484                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
485                         return XFS_BTREE_LBLOCK_CRC_LEN;
486                 return XFS_BTREE_LBLOCK_LEN;
487         }
488         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
489                 return XFS_BTREE_SBLOCK_CRC_LEN;
490         return XFS_BTREE_SBLOCK_LEN;
491 }
492
493 /*
494  * Return size of btree block pointers for this btree instance.
495  */
496 static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
497 {
498         return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
499                 sizeof(__be64) : sizeof(__be32);
500 }
501
502 /*
503  * Calculate offset of the n-th record in a btree block.
504  */
505 STATIC size_t
506 xfs_btree_rec_offset(
507         struct xfs_btree_cur    *cur,
508         int                     n)
509 {
510         return xfs_btree_block_len(cur) +
511                 (n - 1) * cur->bc_ops->rec_len;
512 }
513
514 /*
515  * Calculate offset of the n-th key in a btree block.
516  */
517 STATIC size_t
518 xfs_btree_key_offset(
519         struct xfs_btree_cur    *cur,
520         int                     n)
521 {
522         return xfs_btree_block_len(cur) +
523                 (n - 1) * cur->bc_ops->key_len;
524 }
525
526 /*
527  * Calculate offset of the n-th high key in a btree block.
528  */
529 STATIC size_t
530 xfs_btree_high_key_offset(
531         struct xfs_btree_cur    *cur,
532         int                     n)
533 {
534         return xfs_btree_block_len(cur) +
535                 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
536 }
537
538 /*
539  * Calculate offset of the n-th block pointer in a btree block.
540  */
541 STATIC size_t
542 xfs_btree_ptr_offset(
543         struct xfs_btree_cur    *cur,
544         int                     n,
545         int                     level)
546 {
547         return xfs_btree_block_len(cur) +
548                 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
549                 (n - 1) * xfs_btree_ptr_len(cur);
550 }
551
552 /*
553  * Return a pointer to the n-th record in the btree block.
554  */
555 STATIC union xfs_btree_rec *
556 xfs_btree_rec_addr(
557         struct xfs_btree_cur    *cur,
558         int                     n,
559         struct xfs_btree_block  *block)
560 {
561         return (union xfs_btree_rec *)
562                 ((char *)block + xfs_btree_rec_offset(cur, n));
563 }
564
565 /*
566  * Return a pointer to the n-th key in the btree block.
567  */
568 STATIC union xfs_btree_key *
569 xfs_btree_key_addr(
570         struct xfs_btree_cur    *cur,
571         int                     n,
572         struct xfs_btree_block  *block)
573 {
574         return (union xfs_btree_key *)
575                 ((char *)block + xfs_btree_key_offset(cur, n));
576 }
577
578 /*
579  * Return a pointer to the n-th high key in the btree block.
580  */
581 STATIC union xfs_btree_key *
582 xfs_btree_high_key_addr(
583         struct xfs_btree_cur    *cur,
584         int                     n,
585         struct xfs_btree_block  *block)
586 {
587         return (union xfs_btree_key *)
588                 ((char *)block + xfs_btree_high_key_offset(cur, n));
589 }
590
591 /*
592  * Return a pointer to the n-th block pointer in the btree block.
593  */
594 STATIC union xfs_btree_ptr *
595 xfs_btree_ptr_addr(
596         struct xfs_btree_cur    *cur,
597         int                     n,
598         struct xfs_btree_block  *block)
599 {
600         int                     level = xfs_btree_get_level(block);
601
602         ASSERT(block->bb_level != 0);
603
604         return (union xfs_btree_ptr *)
605                 ((char *)block + xfs_btree_ptr_offset(cur, n, level));
606 }
607
608 /*
609  * Get the root block which is stored in the inode.
610  *
611  * For now this btree implementation assumes the btree root is always
612  * stored in the if_broot field of an inode fork.
613  */
614 STATIC struct xfs_btree_block *
615 xfs_btree_get_iroot(
616         struct xfs_btree_cur    *cur)
617 {
618         struct xfs_ifork        *ifp;
619
620         ifp = XFS_IFORK_PTR(cur->bc_private.b.ip, cur->bc_private.b.whichfork);
621         return (struct xfs_btree_block *)ifp->if_broot;
622 }
623
624 /*
625  * Retrieve the block pointer from the cursor at the given level.
626  * This may be an inode btree root or from a buffer.
627  */
628 STATIC struct xfs_btree_block *         /* generic btree block pointer */
629 xfs_btree_get_block(
630         struct xfs_btree_cur    *cur,   /* btree cursor */
631         int                     level,  /* level in btree */
632         struct xfs_buf          **bpp)  /* buffer containing the block */
633 {
634         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
635             (level == cur->bc_nlevels - 1)) {
636                 *bpp = NULL;
637                 return xfs_btree_get_iroot(cur);
638         }
639
640         *bpp = cur->bc_bufs[level];
641         return XFS_BUF_TO_BLOCK(*bpp);
642 }
643
644 /*
645  * Get a buffer for the block, return it with no data read.
646  * Long-form addressing.
647  */
648 xfs_buf_t *                             /* buffer for fsbno */
649 xfs_btree_get_bufl(
650         xfs_mount_t     *mp,            /* file system mount point */
651         xfs_trans_t     *tp,            /* transaction pointer */
652         xfs_fsblock_t   fsbno,          /* file system block number */
653         uint            lock)           /* lock flags for get_buf */
654 {
655         xfs_daddr_t             d;              /* real disk block address */
656
657         ASSERT(fsbno != NULLFSBLOCK);
658         d = XFS_FSB_TO_DADDR(mp, fsbno);
659         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
660 }
661
662 /*
663  * Get a buffer for the block, return it with no data read.
664  * Short-form addressing.
665  */
666 xfs_buf_t *                             /* buffer for agno/agbno */
667 xfs_btree_get_bufs(
668         xfs_mount_t     *mp,            /* file system mount point */
669         xfs_trans_t     *tp,            /* transaction pointer */
670         xfs_agnumber_t  agno,           /* allocation group number */
671         xfs_agblock_t   agbno,          /* allocation group block number */
672         uint            lock)           /* lock flags for get_buf */
673 {
674         xfs_daddr_t             d;              /* real disk block address */
675
676         ASSERT(agno != NULLAGNUMBER);
677         ASSERT(agbno != NULLAGBLOCK);
678         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
679         return xfs_trans_get_buf(tp, mp->m_ddev_targp, d, mp->m_bsize, lock);
680 }
681
682 /*
683  * Check for the cursor referring to the last block at the given level.
684  */
685 int                                     /* 1=is last block, 0=not last block */
686 xfs_btree_islastblock(
687         xfs_btree_cur_t         *cur,   /* btree cursor */
688         int                     level)  /* level to check */
689 {
690         struct xfs_btree_block  *block; /* generic btree block pointer */
691         xfs_buf_t               *bp;    /* buffer containing block */
692
693         block = xfs_btree_get_block(cur, level, &bp);
694         xfs_btree_check_block(cur, block, level, bp);
695         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
696                 return block->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK);
697         else
698                 return block->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK);
699 }
700
701 /*
702  * Change the cursor to point to the first record at the given level.
703  * Other levels are unaffected.
704  */
705 STATIC int                              /* success=1, failure=0 */
706 xfs_btree_firstrec(
707         xfs_btree_cur_t         *cur,   /* btree cursor */
708         int                     level)  /* level to change */
709 {
710         struct xfs_btree_block  *block; /* generic btree block pointer */
711         xfs_buf_t               *bp;    /* buffer containing block */
712
713         /*
714          * Get the block pointer for this level.
715          */
716         block = xfs_btree_get_block(cur, level, &bp);
717         if (xfs_btree_check_block(cur, block, level, bp))
718                 return 0;
719         /*
720          * It's empty, there is no such record.
721          */
722         if (!block->bb_numrecs)
723                 return 0;
724         /*
725          * Set the ptr value to 1, that's the first record/key.
726          */
727         cur->bc_ptrs[level] = 1;
728         return 1;
729 }
730
731 /*
732  * Change the cursor to point to the last record in the current block
733  * at the given level.  Other levels are unaffected.
734  */
735 STATIC int                              /* success=1, failure=0 */
736 xfs_btree_lastrec(
737         xfs_btree_cur_t         *cur,   /* btree cursor */
738         int                     level)  /* level to change */
739 {
740         struct xfs_btree_block  *block; /* generic btree block pointer */
741         xfs_buf_t               *bp;    /* buffer containing block */
742
743         /*
744          * Get the block pointer for this level.
745          */
746         block = xfs_btree_get_block(cur, level, &bp);
747         if (xfs_btree_check_block(cur, block, level, bp))
748                 return 0;
749         /*
750          * It's empty, there is no such record.
751          */
752         if (!block->bb_numrecs)
753                 return 0;
754         /*
755          * Set the ptr value to numrecs, that's the last record/key.
756          */
757         cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
758         return 1;
759 }
760
761 /*
762  * Compute first and last byte offsets for the fields given.
763  * Interprets the offsets table, which contains struct field offsets.
764  */
765 void
766 xfs_btree_offsets(
767         __int64_t       fields,         /* bitmask of fields */
768         const short     *offsets,       /* table of field offsets */
769         int             nbits,          /* number of bits to inspect */
770         int             *first,         /* output: first byte offset */
771         int             *last)          /* output: last byte offset */
772 {
773         int             i;              /* current bit number */
774         __int64_t       imask;          /* mask for current bit number */
775
776         ASSERT(fields != 0);
777         /*
778          * Find the lowest bit, so the first byte offset.
779          */
780         for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
781                 if (imask & fields) {
782                         *first = offsets[i];
783                         break;
784                 }
785         }
786         /*
787          * Find the highest bit, so the last byte offset.
788          */
789         for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
790                 if (imask & fields) {
791                         *last = offsets[i + 1] - 1;
792                         break;
793                 }
794         }
795 }
796
797 /*
798  * Get a buffer for the block, return it read in.
799  * Long-form addressing.
800  */
801 int
802 xfs_btree_read_bufl(
803         struct xfs_mount        *mp,            /* file system mount point */
804         struct xfs_trans        *tp,            /* transaction pointer */
805         xfs_fsblock_t           fsbno,          /* file system block number */
806         uint                    lock,           /* lock flags for read_buf */
807         struct xfs_buf          **bpp,          /* buffer for fsbno */
808         int                     refval,         /* ref count value for buffer */
809         const struct xfs_buf_ops *ops)
810 {
811         struct xfs_buf          *bp;            /* return value */
812         xfs_daddr_t             d;              /* real disk block address */
813         int                     error;
814
815         if (!XFS_FSB_SANITY_CHECK(mp, fsbno))
816                 return -EFSCORRUPTED;
817         d = XFS_FSB_TO_DADDR(mp, fsbno);
818         error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
819                                    mp->m_bsize, lock, &bp, ops);
820         if (error)
821                 return error;
822         if (bp)
823                 xfs_buf_set_ref(bp, refval);
824         *bpp = bp;
825         return 0;
826 }
827
828 /*
829  * Read-ahead the block, don't wait for it, don't return a buffer.
830  * Long-form addressing.
831  */
832 /* ARGSUSED */
833 void
834 xfs_btree_reada_bufl(
835         struct xfs_mount        *mp,            /* file system mount point */
836         xfs_fsblock_t           fsbno,          /* file system block number */
837         xfs_extlen_t            count,          /* count of filesystem blocks */
838         const struct xfs_buf_ops *ops)
839 {
840         xfs_daddr_t             d;
841
842         ASSERT(fsbno != NULLFSBLOCK);
843         d = XFS_FSB_TO_DADDR(mp, fsbno);
844         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
845 }
846
847 /*
848  * Read-ahead the block, don't wait for it, don't return a buffer.
849  * Short-form addressing.
850  */
851 /* ARGSUSED */
852 void
853 xfs_btree_reada_bufs(
854         struct xfs_mount        *mp,            /* file system mount point */
855         xfs_agnumber_t          agno,           /* allocation group number */
856         xfs_agblock_t           agbno,          /* allocation group block number */
857         xfs_extlen_t            count,          /* count of filesystem blocks */
858         const struct xfs_buf_ops *ops)
859 {
860         xfs_daddr_t             d;
861
862         ASSERT(agno != NULLAGNUMBER);
863         ASSERT(agbno != NULLAGBLOCK);
864         d = XFS_AGB_TO_DADDR(mp, agno, agbno);
865         xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
866 }
867
868 STATIC int
869 xfs_btree_readahead_lblock(
870         struct xfs_btree_cur    *cur,
871         int                     lr,
872         struct xfs_btree_block  *block)
873 {
874         int                     rval = 0;
875         xfs_fsblock_t           left = be64_to_cpu(block->bb_u.l.bb_leftsib);
876         xfs_fsblock_t           right = be64_to_cpu(block->bb_u.l.bb_rightsib);
877
878         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
879                 xfs_btree_reada_bufl(cur->bc_mp, left, 1,
880                                      cur->bc_ops->buf_ops);
881                 rval++;
882         }
883
884         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
885                 xfs_btree_reada_bufl(cur->bc_mp, right, 1,
886                                      cur->bc_ops->buf_ops);
887                 rval++;
888         }
889
890         return rval;
891 }
892
893 STATIC int
894 xfs_btree_readahead_sblock(
895         struct xfs_btree_cur    *cur,
896         int                     lr,
897         struct xfs_btree_block *block)
898 {
899         int                     rval = 0;
900         xfs_agblock_t           left = be32_to_cpu(block->bb_u.s.bb_leftsib);
901         xfs_agblock_t           right = be32_to_cpu(block->bb_u.s.bb_rightsib);
902
903
904         if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
905                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
906                                      left, 1, cur->bc_ops->buf_ops);
907                 rval++;
908         }
909
910         if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
911                 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_private.a.agno,
912                                      right, 1, cur->bc_ops->buf_ops);
913                 rval++;
914         }
915
916         return rval;
917 }
918
919 /*
920  * Read-ahead btree blocks, at the given level.
921  * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
922  */
923 STATIC int
924 xfs_btree_readahead(
925         struct xfs_btree_cur    *cur,           /* btree cursor */
926         int                     lev,            /* level in btree */
927         int                     lr)             /* left/right bits */
928 {
929         struct xfs_btree_block  *block;
930
931         /*
932          * No readahead needed if we are at the root level and the
933          * btree root is stored in the inode.
934          */
935         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
936             (lev == cur->bc_nlevels - 1))
937                 return 0;
938
939         if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
940                 return 0;
941
942         cur->bc_ra[lev] |= lr;
943         block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
944
945         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
946                 return xfs_btree_readahead_lblock(cur, lr, block);
947         return xfs_btree_readahead_sblock(cur, lr, block);
948 }
949
950 STATIC xfs_daddr_t
951 xfs_btree_ptr_to_daddr(
952         struct xfs_btree_cur    *cur,
953         union xfs_btree_ptr     *ptr)
954 {
955         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
956                 ASSERT(ptr->l != cpu_to_be64(NULLFSBLOCK));
957
958                 return XFS_FSB_TO_DADDR(cur->bc_mp, be64_to_cpu(ptr->l));
959         } else {
960                 ASSERT(cur->bc_private.a.agno != NULLAGNUMBER);
961                 ASSERT(ptr->s != cpu_to_be32(NULLAGBLOCK));
962
963                 return XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_private.a.agno,
964                                         be32_to_cpu(ptr->s));
965         }
966 }
967
968 /*
969  * Readahead @count btree blocks at the given @ptr location.
970  *
971  * We don't need to care about long or short form btrees here as we have a
972  * method of converting the ptr directly to a daddr available to us.
973  */
974 STATIC void
975 xfs_btree_readahead_ptr(
976         struct xfs_btree_cur    *cur,
977         union xfs_btree_ptr     *ptr,
978         xfs_extlen_t            count)
979 {
980         xfs_buf_readahead(cur->bc_mp->m_ddev_targp,
981                           xfs_btree_ptr_to_daddr(cur, ptr),
982                           cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
983 }
984
985 /*
986  * Set the buffer for level "lev" in the cursor to bp, releasing
987  * any previous buffer.
988  */
989 STATIC void
990 xfs_btree_setbuf(
991         xfs_btree_cur_t         *cur,   /* btree cursor */
992         int                     lev,    /* level in btree */
993         xfs_buf_t               *bp)    /* new buffer to set */
994 {
995         struct xfs_btree_block  *b;     /* btree block */
996
997         if (cur->bc_bufs[lev])
998                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
999         cur->bc_bufs[lev] = bp;
1000         cur->bc_ra[lev] = 0;
1001
1002         b = XFS_BUF_TO_BLOCK(bp);
1003         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1004                 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1005                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1006                 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1007                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1008         } else {
1009                 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1010                         cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1011                 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1012                         cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1013         }
1014 }
1015
1016 STATIC int
1017 xfs_btree_ptr_is_null(
1018         struct xfs_btree_cur    *cur,
1019         union xfs_btree_ptr     *ptr)
1020 {
1021         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1022                 return ptr->l == cpu_to_be64(NULLFSBLOCK);
1023         else
1024                 return ptr->s == cpu_to_be32(NULLAGBLOCK);
1025 }
1026
1027 STATIC void
1028 xfs_btree_set_ptr_null(
1029         struct xfs_btree_cur    *cur,
1030         union xfs_btree_ptr     *ptr)
1031 {
1032         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1033                 ptr->l = cpu_to_be64(NULLFSBLOCK);
1034         else
1035                 ptr->s = cpu_to_be32(NULLAGBLOCK);
1036 }
1037
1038 /*
1039  * Get/set/init sibling pointers
1040  */
1041 STATIC void
1042 xfs_btree_get_sibling(
1043         struct xfs_btree_cur    *cur,
1044         struct xfs_btree_block  *block,
1045         union xfs_btree_ptr     *ptr,
1046         int                     lr)
1047 {
1048         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1049
1050         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051                 if (lr == XFS_BB_RIGHTSIB)
1052                         ptr->l = block->bb_u.l.bb_rightsib;
1053                 else
1054                         ptr->l = block->bb_u.l.bb_leftsib;
1055         } else {
1056                 if (lr == XFS_BB_RIGHTSIB)
1057                         ptr->s = block->bb_u.s.bb_rightsib;
1058                 else
1059                         ptr->s = block->bb_u.s.bb_leftsib;
1060         }
1061 }
1062
1063 STATIC void
1064 xfs_btree_set_sibling(
1065         struct xfs_btree_cur    *cur,
1066         struct xfs_btree_block  *block,
1067         union xfs_btree_ptr     *ptr,
1068         int                     lr)
1069 {
1070         ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1071
1072         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1073                 if (lr == XFS_BB_RIGHTSIB)
1074                         block->bb_u.l.bb_rightsib = ptr->l;
1075                 else
1076                         block->bb_u.l.bb_leftsib = ptr->l;
1077         } else {
1078                 if (lr == XFS_BB_RIGHTSIB)
1079                         block->bb_u.s.bb_rightsib = ptr->s;
1080                 else
1081                         block->bb_u.s.bb_leftsib = ptr->s;
1082         }
1083 }
1084
1085 void
1086 xfs_btree_init_block_int(
1087         struct xfs_mount        *mp,
1088         struct xfs_btree_block  *buf,
1089         xfs_daddr_t             blkno,
1090         __u32                   magic,
1091         __u16                   level,
1092         __u16                   numrecs,
1093         __u64                   owner,
1094         unsigned int            flags)
1095 {
1096         buf->bb_magic = cpu_to_be32(magic);
1097         buf->bb_level = cpu_to_be16(level);
1098         buf->bb_numrecs = cpu_to_be16(numrecs);
1099
1100         if (flags & XFS_BTREE_LONG_PTRS) {
1101                 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1102                 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1103                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1104                         buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1105                         buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1106                         uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1107                         buf->bb_u.l.bb_pad = 0;
1108                         buf->bb_u.l.bb_lsn = 0;
1109                 }
1110         } else {
1111                 /* owner is a 32 bit value on short blocks */
1112                 __u32 __owner = (__u32)owner;
1113
1114                 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1115                 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1116                 if (flags & XFS_BTREE_CRC_BLOCKS) {
1117                         buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1118                         buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1119                         uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1120                         buf->bb_u.s.bb_lsn = 0;
1121                 }
1122         }
1123 }
1124
1125 void
1126 xfs_btree_init_block(
1127         struct xfs_mount *mp,
1128         struct xfs_buf  *bp,
1129         __u32           magic,
1130         __u16           level,
1131         __u16           numrecs,
1132         __u64           owner,
1133         unsigned int    flags)
1134 {
1135         xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1136                                  magic, level, numrecs, owner, flags);
1137 }
1138
1139 STATIC void
1140 xfs_btree_init_block_cur(
1141         struct xfs_btree_cur    *cur,
1142         struct xfs_buf          *bp,
1143         int                     level,
1144         int                     numrecs)
1145 {
1146         __u64 owner;
1147
1148         /*
1149          * we can pull the owner from the cursor right now as the different
1150          * owners align directly with the pointer size of the btree. This may
1151          * change in future, but is safe for current users of the generic btree
1152          * code.
1153          */
1154         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1155                 owner = cur->bc_private.b.ip->i_ino;
1156         else
1157                 owner = cur->bc_private.a.agno;
1158
1159         xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1160                                  xfs_btree_magic(cur), level, numrecs,
1161                                  owner, cur->bc_flags);
1162 }
1163
1164 /*
1165  * Return true if ptr is the last record in the btree and
1166  * we need to track updates to this record.  The decision
1167  * will be further refined in the update_lastrec method.
1168  */
1169 STATIC int
1170 xfs_btree_is_lastrec(
1171         struct xfs_btree_cur    *cur,
1172         struct xfs_btree_block  *block,
1173         int                     level)
1174 {
1175         union xfs_btree_ptr     ptr;
1176
1177         if (level > 0)
1178                 return 0;
1179         if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1180                 return 0;
1181
1182         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1183         if (!xfs_btree_ptr_is_null(cur, &ptr))
1184                 return 0;
1185         return 1;
1186 }
1187
1188 STATIC void
1189 xfs_btree_buf_to_ptr(
1190         struct xfs_btree_cur    *cur,
1191         struct xfs_buf          *bp,
1192         union xfs_btree_ptr     *ptr)
1193 {
1194         if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1195                 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1196                                         XFS_BUF_ADDR(bp)));
1197         else {
1198                 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1199                                         XFS_BUF_ADDR(bp)));
1200         }
1201 }
1202
1203 STATIC void
1204 xfs_btree_set_refs(
1205         struct xfs_btree_cur    *cur,
1206         struct xfs_buf          *bp)
1207 {
1208         switch (cur->bc_btnum) {
1209         case XFS_BTNUM_BNO:
1210         case XFS_BTNUM_CNT:
1211                 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1212                 break;
1213         case XFS_BTNUM_INO:
1214         case XFS_BTNUM_FINO:
1215                 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1216                 break;
1217         case XFS_BTNUM_BMAP:
1218                 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1219                 break;
1220         case XFS_BTNUM_RMAP:
1221                 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1222                 break;
1223         case XFS_BTNUM_REFC:
1224                 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1225                 break;
1226         default:
1227                 ASSERT(0);
1228         }
1229 }
1230
1231 STATIC int
1232 xfs_btree_get_buf_block(
1233         struct xfs_btree_cur    *cur,
1234         union xfs_btree_ptr     *ptr,
1235         int                     flags,
1236         struct xfs_btree_block  **block,
1237         struct xfs_buf          **bpp)
1238 {
1239         struct xfs_mount        *mp = cur->bc_mp;
1240         xfs_daddr_t             d;
1241
1242         /* need to sort out how callers deal with failures first */
1243         ASSERT(!(flags & XBF_TRYLOCK));
1244
1245         d = xfs_btree_ptr_to_daddr(cur, ptr);
1246         *bpp = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d,
1247                                  mp->m_bsize, flags);
1248
1249         if (!*bpp)
1250                 return -ENOMEM;
1251
1252         (*bpp)->b_ops = cur->bc_ops->buf_ops;
1253         *block = XFS_BUF_TO_BLOCK(*bpp);
1254         return 0;
1255 }
1256
1257 /*
1258  * Read in the buffer at the given ptr and return the buffer and
1259  * the block pointer within the buffer.
1260  */
1261 STATIC int
1262 xfs_btree_read_buf_block(
1263         struct xfs_btree_cur    *cur,
1264         union xfs_btree_ptr     *ptr,
1265         int                     flags,
1266         struct xfs_btree_block  **block,
1267         struct xfs_buf          **bpp)
1268 {
1269         struct xfs_mount        *mp = cur->bc_mp;
1270         xfs_daddr_t             d;
1271         int                     error;
1272
1273         /* need to sort out how callers deal with failures first */
1274         ASSERT(!(flags & XBF_TRYLOCK));
1275
1276         d = xfs_btree_ptr_to_daddr(cur, ptr);
1277         error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1278                                    mp->m_bsize, flags, bpp,
1279                                    cur->bc_ops->buf_ops);
1280         if (error)
1281                 return error;
1282
1283         xfs_btree_set_refs(cur, *bpp);
1284         *block = XFS_BUF_TO_BLOCK(*bpp);
1285         return 0;
1286 }
1287
1288 /*
1289  * Copy keys from one btree block to another.
1290  */
1291 STATIC void
1292 xfs_btree_copy_keys(
1293         struct xfs_btree_cur    *cur,
1294         union xfs_btree_key     *dst_key,
1295         union xfs_btree_key     *src_key,
1296         int                     numkeys)
1297 {
1298         ASSERT(numkeys >= 0);
1299         memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1300 }
1301
1302 /*
1303  * Copy records from one btree block to another.
1304  */
1305 STATIC void
1306 xfs_btree_copy_recs(
1307         struct xfs_btree_cur    *cur,
1308         union xfs_btree_rec     *dst_rec,
1309         union xfs_btree_rec     *src_rec,
1310         int                     numrecs)
1311 {
1312         ASSERT(numrecs >= 0);
1313         memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1314 }
1315
1316 /*
1317  * Copy block pointers from one btree block to another.
1318  */
1319 STATIC void
1320 xfs_btree_copy_ptrs(
1321         struct xfs_btree_cur    *cur,
1322         union xfs_btree_ptr     *dst_ptr,
1323         union xfs_btree_ptr     *src_ptr,
1324         int                     numptrs)
1325 {
1326         ASSERT(numptrs >= 0);
1327         memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1328 }
1329
1330 /*
1331  * Shift keys one index left/right inside a single btree block.
1332  */
1333 STATIC void
1334 xfs_btree_shift_keys(
1335         struct xfs_btree_cur    *cur,
1336         union xfs_btree_key     *key,
1337         int                     dir,
1338         int                     numkeys)
1339 {
1340         char                    *dst_key;
1341
1342         ASSERT(numkeys >= 0);
1343         ASSERT(dir == 1 || dir == -1);
1344
1345         dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1346         memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1347 }
1348
1349 /*
1350  * Shift records one index left/right inside a single btree block.
1351  */
1352 STATIC void
1353 xfs_btree_shift_recs(
1354         struct xfs_btree_cur    *cur,
1355         union xfs_btree_rec     *rec,
1356         int                     dir,
1357         int                     numrecs)
1358 {
1359         char                    *dst_rec;
1360
1361         ASSERT(numrecs >= 0);
1362         ASSERT(dir == 1 || dir == -1);
1363
1364         dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1365         memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1366 }
1367
1368 /*
1369  * Shift block pointers one index left/right inside a single btree block.
1370  */
1371 STATIC void
1372 xfs_btree_shift_ptrs(
1373         struct xfs_btree_cur    *cur,
1374         union xfs_btree_ptr     *ptr,
1375         int                     dir,
1376         int                     numptrs)
1377 {
1378         char                    *dst_ptr;
1379
1380         ASSERT(numptrs >= 0);
1381         ASSERT(dir == 1 || dir == -1);
1382
1383         dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1384         memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1385 }
1386
1387 /*
1388  * Log key values from the btree block.
1389  */
1390 STATIC void
1391 xfs_btree_log_keys(
1392         struct xfs_btree_cur    *cur,
1393         struct xfs_buf          *bp,
1394         int                     first,
1395         int                     last)
1396 {
1397         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1398         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1399
1400         if (bp) {
1401                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1402                 xfs_trans_log_buf(cur->bc_tp, bp,
1403                                   xfs_btree_key_offset(cur, first),
1404                                   xfs_btree_key_offset(cur, last + 1) - 1);
1405         } else {
1406                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1407                                 xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1408         }
1409
1410         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1411 }
1412
1413 /*
1414  * Log record values from the btree block.
1415  */
1416 void
1417 xfs_btree_log_recs(
1418         struct xfs_btree_cur    *cur,
1419         struct xfs_buf          *bp,
1420         int                     first,
1421         int                     last)
1422 {
1423         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1424         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1425
1426         xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1427         xfs_trans_log_buf(cur->bc_tp, bp,
1428                           xfs_btree_rec_offset(cur, first),
1429                           xfs_btree_rec_offset(cur, last + 1) - 1);
1430
1431         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1432 }
1433
1434 /*
1435  * Log block pointer fields from a btree block (nonleaf).
1436  */
1437 STATIC void
1438 xfs_btree_log_ptrs(
1439         struct xfs_btree_cur    *cur,   /* btree cursor */
1440         struct xfs_buf          *bp,    /* buffer containing btree block */
1441         int                     first,  /* index of first pointer to log */
1442         int                     last)   /* index of last pointer to log */
1443 {
1444         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1445         XFS_BTREE_TRACE_ARGBII(cur, bp, first, last);
1446
1447         if (bp) {
1448                 struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
1449                 int                     level = xfs_btree_get_level(block);
1450
1451                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1452                 xfs_trans_log_buf(cur->bc_tp, bp,
1453                                 xfs_btree_ptr_offset(cur, first, level),
1454                                 xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1455         } else {
1456                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1457                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1458         }
1459
1460         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1461 }
1462
1463 /*
1464  * Log fields from a btree block header.
1465  */
1466 void
1467 xfs_btree_log_block(
1468         struct xfs_btree_cur    *cur,   /* btree cursor */
1469         struct xfs_buf          *bp,    /* buffer containing btree block */
1470         int                     fields) /* mask of fields: XFS_BB_... */
1471 {
1472         int                     first;  /* first byte offset logged */
1473         int                     last;   /* last byte offset logged */
1474         static const short      soffsets[] = {  /* table of offsets (short) */
1475                 offsetof(struct xfs_btree_block, bb_magic),
1476                 offsetof(struct xfs_btree_block, bb_level),
1477                 offsetof(struct xfs_btree_block, bb_numrecs),
1478                 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1479                 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1480                 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1481                 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1482                 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1483                 offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1484                 offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1485                 XFS_BTREE_SBLOCK_CRC_LEN
1486         };
1487         static const short      loffsets[] = {  /* table of offsets (long) */
1488                 offsetof(struct xfs_btree_block, bb_magic),
1489                 offsetof(struct xfs_btree_block, bb_level),
1490                 offsetof(struct xfs_btree_block, bb_numrecs),
1491                 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1492                 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1493                 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1494                 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1495                 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1496                 offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1497                 offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1498                 offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1499                 XFS_BTREE_LBLOCK_CRC_LEN
1500         };
1501
1502         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1503         XFS_BTREE_TRACE_ARGBI(cur, bp, fields);
1504
1505         if (bp) {
1506                 int nbits;
1507
1508                 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1509                         /*
1510                          * We don't log the CRC when updating a btree
1511                          * block but instead recreate it during log
1512                          * recovery.  As the log buffers have checksums
1513                          * of their own this is safe and avoids logging a crc
1514                          * update in a lot of places.
1515                          */
1516                         if (fields == XFS_BB_ALL_BITS)
1517                                 fields = XFS_BB_ALL_BITS_CRC;
1518                         nbits = XFS_BB_NUM_BITS_CRC;
1519                 } else {
1520                         nbits = XFS_BB_NUM_BITS;
1521                 }
1522                 xfs_btree_offsets(fields,
1523                                   (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1524                                         loffsets : soffsets,
1525                                   nbits, &first, &last);
1526                 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1527                 xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1528         } else {
1529                 xfs_trans_log_inode(cur->bc_tp, cur->bc_private.b.ip,
1530                         xfs_ilog_fbroot(cur->bc_private.b.whichfork));
1531         }
1532
1533         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1534 }
1535
1536 /*
1537  * Increment cursor by one record at the level.
1538  * For nonzero levels the leaf-ward information is untouched.
1539  */
1540 int                                             /* error */
1541 xfs_btree_increment(
1542         struct xfs_btree_cur    *cur,
1543         int                     level,
1544         int                     *stat)          /* success/failure */
1545 {
1546         struct xfs_btree_block  *block;
1547         union xfs_btree_ptr     ptr;
1548         struct xfs_buf          *bp;
1549         int                     error;          /* error return value */
1550         int                     lev;
1551
1552         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1553         XFS_BTREE_TRACE_ARGI(cur, level);
1554
1555         ASSERT(level < cur->bc_nlevels);
1556
1557         /* Read-ahead to the right at this level. */
1558         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1559
1560         /* Get a pointer to the btree block. */
1561         block = xfs_btree_get_block(cur, level, &bp);
1562
1563 #ifdef DEBUG
1564         error = xfs_btree_check_block(cur, block, level, bp);
1565         if (error)
1566                 goto error0;
1567 #endif
1568
1569         /* We're done if we remain in the block after the increment. */
1570         if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1571                 goto out1;
1572
1573         /* Fail if we just went off the right edge of the tree. */
1574         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1575         if (xfs_btree_ptr_is_null(cur, &ptr))
1576                 goto out0;
1577
1578         XFS_BTREE_STATS_INC(cur, increment);
1579
1580         /*
1581          * March up the tree incrementing pointers.
1582          * Stop when we don't go off the right edge of a block.
1583          */
1584         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1585                 block = xfs_btree_get_block(cur, lev, &bp);
1586
1587 #ifdef DEBUG
1588                 error = xfs_btree_check_block(cur, block, lev, bp);
1589                 if (error)
1590                         goto error0;
1591 #endif
1592
1593                 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1594                         break;
1595
1596                 /* Read-ahead the right block for the next loop. */
1597                 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1598         }
1599
1600         /*
1601          * If we went off the root then we are either seriously
1602          * confused or have the tree root in an inode.
1603          */
1604         if (lev == cur->bc_nlevels) {
1605                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1606                         goto out0;
1607                 ASSERT(0);
1608                 error = -EFSCORRUPTED;
1609                 goto error0;
1610         }
1611         ASSERT(lev < cur->bc_nlevels);
1612
1613         /*
1614          * Now walk back down the tree, fixing up the cursor's buffer
1615          * pointers and key numbers.
1616          */
1617         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1618                 union xfs_btree_ptr     *ptrp;
1619
1620                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1621                 --lev;
1622                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1623                 if (error)
1624                         goto error0;
1625
1626                 xfs_btree_setbuf(cur, lev, bp);
1627                 cur->bc_ptrs[lev] = 1;
1628         }
1629 out1:
1630         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1631         *stat = 1;
1632         return 0;
1633
1634 out0:
1635         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1636         *stat = 0;
1637         return 0;
1638
1639 error0:
1640         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1641         return error;
1642 }
1643
1644 /*
1645  * Decrement cursor by one record at the level.
1646  * For nonzero levels the leaf-ward information is untouched.
1647  */
1648 int                                             /* error */
1649 xfs_btree_decrement(
1650         struct xfs_btree_cur    *cur,
1651         int                     level,
1652         int                     *stat)          /* success/failure */
1653 {
1654         struct xfs_btree_block  *block;
1655         xfs_buf_t               *bp;
1656         int                     error;          /* error return value */
1657         int                     lev;
1658         union xfs_btree_ptr     ptr;
1659
1660         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1661         XFS_BTREE_TRACE_ARGI(cur, level);
1662
1663         ASSERT(level < cur->bc_nlevels);
1664
1665         /* Read-ahead to the left at this level. */
1666         xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1667
1668         /* We're done if we remain in the block after the decrement. */
1669         if (--cur->bc_ptrs[level] > 0)
1670                 goto out1;
1671
1672         /* Get a pointer to the btree block. */
1673         block = xfs_btree_get_block(cur, level, &bp);
1674
1675 #ifdef DEBUG
1676         error = xfs_btree_check_block(cur, block, level, bp);
1677         if (error)
1678                 goto error0;
1679 #endif
1680
1681         /* Fail if we just went off the left edge of the tree. */
1682         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1683         if (xfs_btree_ptr_is_null(cur, &ptr))
1684                 goto out0;
1685
1686         XFS_BTREE_STATS_INC(cur, decrement);
1687
1688         /*
1689          * March up the tree decrementing pointers.
1690          * Stop when we don't go off the left edge of a block.
1691          */
1692         for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1693                 if (--cur->bc_ptrs[lev] > 0)
1694                         break;
1695                 /* Read-ahead the left block for the next loop. */
1696                 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1697         }
1698
1699         /*
1700          * If we went off the root then we are seriously confused.
1701          * or the root of the tree is in an inode.
1702          */
1703         if (lev == cur->bc_nlevels) {
1704                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1705                         goto out0;
1706                 ASSERT(0);
1707                 error = -EFSCORRUPTED;
1708                 goto error0;
1709         }
1710         ASSERT(lev < cur->bc_nlevels);
1711
1712         /*
1713          * Now walk back down the tree, fixing up the cursor's buffer
1714          * pointers and key numbers.
1715          */
1716         for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1717                 union xfs_btree_ptr     *ptrp;
1718
1719                 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1720                 --lev;
1721                 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1722                 if (error)
1723                         goto error0;
1724                 xfs_btree_setbuf(cur, lev, bp);
1725                 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1726         }
1727 out1:
1728         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1729         *stat = 1;
1730         return 0;
1731
1732 out0:
1733         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1734         *stat = 0;
1735         return 0;
1736
1737 error0:
1738         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1739         return error;
1740 }
1741
1742 STATIC int
1743 xfs_btree_lookup_get_block(
1744         struct xfs_btree_cur    *cur,   /* btree cursor */
1745         int                     level,  /* level in the btree */
1746         union xfs_btree_ptr     *pp,    /* ptr to btree block */
1747         struct xfs_btree_block  **blkp) /* return btree block */
1748 {
1749         struct xfs_buf          *bp;    /* buffer pointer for btree block */
1750         int                     error = 0;
1751
1752         /* special case the root block if in an inode */
1753         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1754             (level == cur->bc_nlevels - 1)) {
1755                 *blkp = xfs_btree_get_iroot(cur);
1756                 return 0;
1757         }
1758
1759         /*
1760          * If the old buffer at this level for the disk address we are
1761          * looking for re-use it.
1762          *
1763          * Otherwise throw it away and get a new one.
1764          */
1765         bp = cur->bc_bufs[level];
1766         if (bp && XFS_BUF_ADDR(bp) == xfs_btree_ptr_to_daddr(cur, pp)) {
1767                 *blkp = XFS_BUF_TO_BLOCK(bp);
1768                 return 0;
1769         }
1770
1771         error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1772         if (error)
1773                 return error;
1774
1775         /* Check the inode owner since the verifiers don't. */
1776         if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1777             !(cur->bc_private.b.flags & XFS_BTCUR_BPRV_INVALID_OWNER) &&
1778             (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1779             be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1780                         cur->bc_private.b.ip->i_ino)
1781                 goto out_bad;
1782
1783         /* Did we get the level we were looking for? */
1784         if (be16_to_cpu((*blkp)->bb_level) != level)
1785                 goto out_bad;
1786
1787         /* Check that internal nodes have at least one record. */
1788         if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1789                 goto out_bad;
1790
1791         xfs_btree_setbuf(cur, level, bp);
1792         return 0;
1793
1794 out_bad:
1795         *blkp = NULL;
1796         xfs_trans_brelse(cur->bc_tp, bp);
1797         return -EFSCORRUPTED;
1798 }
1799
1800 /*
1801  * Get current search key.  For level 0 we don't actually have a key
1802  * structure so we make one up from the record.  For all other levels
1803  * we just return the right key.
1804  */
1805 STATIC union xfs_btree_key *
1806 xfs_lookup_get_search_key(
1807         struct xfs_btree_cur    *cur,
1808         int                     level,
1809         int                     keyno,
1810         struct xfs_btree_block  *block,
1811         union xfs_btree_key     *kp)
1812 {
1813         if (level == 0) {
1814                 cur->bc_ops->init_key_from_rec(kp,
1815                                 xfs_btree_rec_addr(cur, keyno, block));
1816                 return kp;
1817         }
1818
1819         return xfs_btree_key_addr(cur, keyno, block);
1820 }
1821
1822 /*
1823  * Lookup the record.  The cursor is made to point to it, based on dir.
1824  * stat is set to 0 if can't find any such record, 1 for success.
1825  */
1826 int                                     /* error */
1827 xfs_btree_lookup(
1828         struct xfs_btree_cur    *cur,   /* btree cursor */
1829         xfs_lookup_t            dir,    /* <=, ==, or >= */
1830         int                     *stat)  /* success/failure */
1831 {
1832         struct xfs_btree_block  *block; /* current btree block */
1833         __int64_t               diff;   /* difference for the current key */
1834         int                     error;  /* error return value */
1835         int                     keyno;  /* current key number */
1836         int                     level;  /* level in the btree */
1837         union xfs_btree_ptr     *pp;    /* ptr to btree block */
1838         union xfs_btree_ptr     ptr;    /* ptr to btree block */
1839
1840         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
1841         XFS_BTREE_TRACE_ARGI(cur, dir);
1842
1843         XFS_BTREE_STATS_INC(cur, lookup);
1844
1845         /* No such thing as a zero-level tree. */
1846         if (cur->bc_nlevels == 0)
1847                 return -EFSCORRUPTED;
1848
1849         block = NULL;
1850         keyno = 0;
1851
1852         /* initialise start pointer from cursor */
1853         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1854         pp = &ptr;
1855
1856         /*
1857          * Iterate over each level in the btree, starting at the root.
1858          * For each level above the leaves, find the key we need, based
1859          * on the lookup record, then follow the corresponding block
1860          * pointer down to the next level.
1861          */
1862         for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1863                 /* Get the block we need to do the lookup on. */
1864                 error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1865                 if (error)
1866                         goto error0;
1867
1868                 if (diff == 0) {
1869                         /*
1870                          * If we already had a key match at a higher level, we
1871                          * know we need to use the first entry in this block.
1872                          */
1873                         keyno = 1;
1874                 } else {
1875                         /* Otherwise search this block. Do a binary search. */
1876
1877                         int     high;   /* high entry number */
1878                         int     low;    /* low entry number */
1879
1880                         /* Set low and high entry numbers, 1-based. */
1881                         low = 1;
1882                         high = xfs_btree_get_numrecs(block);
1883                         if (!high) {
1884                                 /* Block is empty, must be an empty leaf. */
1885                                 ASSERT(level == 0 && cur->bc_nlevels == 1);
1886
1887                                 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1888                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1889                                 *stat = 0;
1890                                 return 0;
1891                         }
1892
1893                         /* Binary search the block. */
1894                         while (low <= high) {
1895                                 union xfs_btree_key     key;
1896                                 union xfs_btree_key     *kp;
1897
1898                                 XFS_BTREE_STATS_INC(cur, compare);
1899
1900                                 /* keyno is average of low and high. */
1901                                 keyno = (low + high) >> 1;
1902
1903                                 /* Get current search key */
1904                                 kp = xfs_lookup_get_search_key(cur, level,
1905                                                 keyno, block, &key);
1906
1907                                 /*
1908                                  * Compute difference to get next direction:
1909                                  *  - less than, move right
1910                                  *  - greater than, move left
1911                                  *  - equal, we're done
1912                                  */
1913                                 diff = cur->bc_ops->key_diff(cur, kp);
1914                                 if (diff < 0)
1915                                         low = keyno + 1;
1916                                 else if (diff > 0)
1917                                         high = keyno - 1;
1918                                 else
1919                                         break;
1920                         }
1921                 }
1922
1923                 /*
1924                  * If there are more levels, set up for the next level
1925                  * by getting the block number and filling in the cursor.
1926                  */
1927                 if (level > 0) {
1928                         /*
1929                          * If we moved left, need the previous key number,
1930                          * unless there isn't one.
1931                          */
1932                         if (diff > 0 && --keyno < 1)
1933                                 keyno = 1;
1934                         pp = xfs_btree_ptr_addr(cur, keyno, block);
1935
1936 #ifdef DEBUG
1937                         error = xfs_btree_check_ptr(cur, pp, 0, level);
1938                         if (error)
1939                                 goto error0;
1940 #endif
1941                         cur->bc_ptrs[level] = keyno;
1942                 }
1943         }
1944
1945         /* Done with the search. See if we need to adjust the results. */
1946         if (dir != XFS_LOOKUP_LE && diff < 0) {
1947                 keyno++;
1948                 /*
1949                  * If ge search and we went off the end of the block, but it's
1950                  * not the last block, we're in the wrong block.
1951                  */
1952                 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1953                 if (dir == XFS_LOOKUP_GE &&
1954                     keyno > xfs_btree_get_numrecs(block) &&
1955                     !xfs_btree_ptr_is_null(cur, &ptr)) {
1956                         int     i;
1957
1958                         cur->bc_ptrs[0] = keyno;
1959                         error = xfs_btree_increment(cur, 0, &i);
1960                         if (error)
1961                                 goto error0;
1962                         XFS_WANT_CORRUPTED_RETURN(cur->bc_mp, i == 1);
1963                         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1964                         *stat = 1;
1965                         return 0;
1966                 }
1967         } else if (dir == XFS_LOOKUP_LE && diff > 0)
1968                 keyno--;
1969         cur->bc_ptrs[0] = keyno;
1970
1971         /* Return if we succeeded or not. */
1972         if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1973                 *stat = 0;
1974         else if (dir != XFS_LOOKUP_EQ || diff == 0)
1975                 *stat = 1;
1976         else
1977                 *stat = 0;
1978         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
1979         return 0;
1980
1981 error0:
1982         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
1983         return error;
1984 }
1985
1986 /* Find the high key storage area from a regular key. */
1987 STATIC union xfs_btree_key *
1988 xfs_btree_high_key_from_key(
1989         struct xfs_btree_cur    *cur,
1990         union xfs_btree_key     *key)
1991 {
1992         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1993         return (union xfs_btree_key *)((char *)key +
1994                         (cur->bc_ops->key_len / 2));
1995 }
1996
1997 /* Determine the low (and high if overlapped) keys of a leaf block */
1998 STATIC void
1999 xfs_btree_get_leaf_keys(
2000         struct xfs_btree_cur    *cur,
2001         struct xfs_btree_block  *block,
2002         union xfs_btree_key     *key)
2003 {
2004         union xfs_btree_key     max_hkey;
2005         union xfs_btree_key     hkey;
2006         union xfs_btree_rec     *rec;
2007         union xfs_btree_key     *high;
2008         int                     n;
2009
2010         rec = xfs_btree_rec_addr(cur, 1, block);
2011         cur->bc_ops->init_key_from_rec(key, rec);
2012
2013         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2014
2015                 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
2016                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2017                         rec = xfs_btree_rec_addr(cur, n, block);
2018                         cur->bc_ops->init_high_key_from_rec(&hkey, rec);
2019                         if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
2020                                         > 0)
2021                                 max_hkey = hkey;
2022                 }
2023
2024                 high = xfs_btree_high_key_from_key(cur, key);
2025                 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2026         }
2027 }
2028
2029 /* Determine the low (and high if overlapped) keys of a node block */
2030 STATIC void
2031 xfs_btree_get_node_keys(
2032         struct xfs_btree_cur    *cur,
2033         struct xfs_btree_block  *block,
2034         union xfs_btree_key     *key)
2035 {
2036         union xfs_btree_key     *hkey;
2037         union xfs_btree_key     *max_hkey;
2038         union xfs_btree_key     *high;
2039         int                     n;
2040
2041         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2042                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2043                                 cur->bc_ops->key_len / 2);
2044
2045                 max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2046                 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2047                         hkey = xfs_btree_high_key_addr(cur, n, block);
2048                         if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2049                                 max_hkey = hkey;
2050                 }
2051
2052                 high = xfs_btree_high_key_from_key(cur, key);
2053                 memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2054         } else {
2055                 memcpy(key, xfs_btree_key_addr(cur, 1, block),
2056                                 cur->bc_ops->key_len);
2057         }
2058 }
2059
2060 /* Derive the keys for any btree block. */
2061 STATIC void
2062 xfs_btree_get_keys(
2063         struct xfs_btree_cur    *cur,
2064         struct xfs_btree_block  *block,
2065         union xfs_btree_key     *key)
2066 {
2067         if (be16_to_cpu(block->bb_level) == 0)
2068                 xfs_btree_get_leaf_keys(cur, block, key);
2069         else
2070                 xfs_btree_get_node_keys(cur, block, key);
2071 }
2072
2073 /*
2074  * Decide if we need to update the parent keys of a btree block.  For
2075  * a standard btree this is only necessary if we're updating the first
2076  * record/key.  For an overlapping btree, we must always update the
2077  * keys because the highest key can be in any of the records or keys
2078  * in the block.
2079  */
2080 static inline bool
2081 xfs_btree_needs_key_update(
2082         struct xfs_btree_cur    *cur,
2083         int                     ptr)
2084 {
2085         return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2086 }
2087
2088 /*
2089  * Update the low and high parent keys of the given level, progressing
2090  * towards the root.  If force_all is false, stop if the keys for a given
2091  * level do not need updating.
2092  */
2093 STATIC int
2094 __xfs_btree_updkeys(
2095         struct xfs_btree_cur    *cur,
2096         int                     level,
2097         struct xfs_btree_block  *block,
2098         struct xfs_buf          *bp0,
2099         bool                    force_all)
2100 {
2101         union xfs_btree_key     key;    /* keys from current level */
2102         union xfs_btree_key     *lkey;  /* keys from the next level up */
2103         union xfs_btree_key     *hkey;
2104         union xfs_btree_key     *nlkey; /* keys from the next level up */
2105         union xfs_btree_key     *nhkey;
2106         struct xfs_buf          *bp;
2107         int                     ptr;
2108
2109         ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2110
2111         /* Exit if there aren't any parent levels to update. */
2112         if (level + 1 >= cur->bc_nlevels)
2113                 return 0;
2114
2115         trace_xfs_btree_updkeys(cur, level, bp0);
2116
2117         lkey = &key;
2118         hkey = xfs_btree_high_key_from_key(cur, lkey);
2119         xfs_btree_get_keys(cur, block, lkey);
2120         for (level++; level < cur->bc_nlevels; level++) {
2121 #ifdef DEBUG
2122                 int             error;
2123 #endif
2124                 block = xfs_btree_get_block(cur, level, &bp);
2125                 trace_xfs_btree_updkeys(cur, level, bp);
2126 #ifdef DEBUG
2127                 error = xfs_btree_check_block(cur, block, level, bp);
2128                 if (error) {
2129                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2130                         return error;
2131                 }
2132 #endif
2133                 ptr = cur->bc_ptrs[level];
2134                 nlkey = xfs_btree_key_addr(cur, ptr, block);
2135                 nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2136                 if (!force_all &&
2137                     !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2138                       cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2139                         break;
2140                 xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2141                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2142                 if (level + 1 >= cur->bc_nlevels)
2143                         break;
2144                 xfs_btree_get_node_keys(cur, block, lkey);
2145         }
2146
2147         return 0;
2148 }
2149
2150 /* Update all the keys from some level in cursor back to the root. */
2151 STATIC int
2152 xfs_btree_updkeys_force(
2153         struct xfs_btree_cur    *cur,
2154         int                     level)
2155 {
2156         struct xfs_buf          *bp;
2157         struct xfs_btree_block  *block;
2158
2159         block = xfs_btree_get_block(cur, level, &bp);
2160         return __xfs_btree_updkeys(cur, level, block, bp, true);
2161 }
2162
2163 /*
2164  * Update the parent keys of the given level, progressing towards the root.
2165  */
2166 STATIC int
2167 xfs_btree_update_keys(
2168         struct xfs_btree_cur    *cur,
2169         int                     level)
2170 {
2171         struct xfs_btree_block  *block;
2172         struct xfs_buf          *bp;
2173         union xfs_btree_key     *kp;
2174         union xfs_btree_key     key;
2175         int                     ptr;
2176
2177         ASSERT(level >= 0);
2178
2179         block = xfs_btree_get_block(cur, level, &bp);
2180         if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2181                 return __xfs_btree_updkeys(cur, level, block, bp, false);
2182
2183         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2184         XFS_BTREE_TRACE_ARGIK(cur, level, keyp);
2185
2186         /*
2187          * Go up the tree from this level toward the root.
2188          * At each level, update the key value to the value input.
2189          * Stop when we reach a level where the cursor isn't pointing
2190          * at the first entry in the block.
2191          */
2192         xfs_btree_get_keys(cur, block, &key);
2193         for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2194 #ifdef DEBUG
2195                 int             error;
2196 #endif
2197                 block = xfs_btree_get_block(cur, level, &bp);
2198 #ifdef DEBUG
2199                 error = xfs_btree_check_block(cur, block, level, bp);
2200                 if (error) {
2201                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2202                         return error;
2203                 }
2204 #endif
2205                 ptr = cur->bc_ptrs[level];
2206                 kp = xfs_btree_key_addr(cur, ptr, block);
2207                 xfs_btree_copy_keys(cur, kp, &key, 1);
2208                 xfs_btree_log_keys(cur, bp, ptr, ptr);
2209         }
2210
2211         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2212         return 0;
2213 }
2214
2215 /*
2216  * Update the record referred to by cur to the value in the
2217  * given record. This either works (return 0) or gets an
2218  * EFSCORRUPTED error.
2219  */
2220 int
2221 xfs_btree_update(
2222         struct xfs_btree_cur    *cur,
2223         union xfs_btree_rec     *rec)
2224 {
2225         struct xfs_btree_block  *block;
2226         struct xfs_buf          *bp;
2227         int                     error;
2228         int                     ptr;
2229         union xfs_btree_rec     *rp;
2230
2231         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2232         XFS_BTREE_TRACE_ARGR(cur, rec);
2233
2234         /* Pick up the current block. */
2235         block = xfs_btree_get_block(cur, 0, &bp);
2236
2237 #ifdef DEBUG
2238         error = xfs_btree_check_block(cur, block, 0, bp);
2239         if (error)
2240                 goto error0;
2241 #endif
2242         /* Get the address of the rec to be updated. */
2243         ptr = cur->bc_ptrs[0];
2244         rp = xfs_btree_rec_addr(cur, ptr, block);
2245
2246         /* Fill in the new contents and log them. */
2247         xfs_btree_copy_recs(cur, rp, rec, 1);
2248         xfs_btree_log_recs(cur, bp, ptr, ptr);
2249
2250         /*
2251          * If we are tracking the last record in the tree and
2252          * we are at the far right edge of the tree, update it.
2253          */
2254         if (xfs_btree_is_lastrec(cur, block, 0)) {
2255                 cur->bc_ops->update_lastrec(cur, block, rec,
2256                                             ptr, LASTREC_UPDATE);
2257         }
2258
2259         /* Pass new key value up to our parent. */
2260         if (xfs_btree_needs_key_update(cur, ptr)) {
2261                 error = xfs_btree_update_keys(cur, 0);
2262                 if (error)
2263                         goto error0;
2264         }
2265
2266         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2267         return 0;
2268
2269 error0:
2270         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2271         return error;
2272 }
2273
2274 /*
2275  * Move 1 record left from cur/level if possible.
2276  * Update cur to reflect the new path.
2277  */
2278 STATIC int                                      /* error */
2279 xfs_btree_lshift(
2280         struct xfs_btree_cur    *cur,
2281         int                     level,
2282         int                     *stat)          /* success/failure */
2283 {
2284         struct xfs_buf          *lbp;           /* left buffer pointer */
2285         struct xfs_btree_block  *left;          /* left btree block */
2286         int                     lrecs;          /* left record count */
2287         struct xfs_buf          *rbp;           /* right buffer pointer */
2288         struct xfs_btree_block  *right;         /* right btree block */
2289         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2290         int                     rrecs;          /* right record count */
2291         union xfs_btree_ptr     lptr;           /* left btree pointer */
2292         union xfs_btree_key     *rkp = NULL;    /* right btree key */
2293         union xfs_btree_ptr     *rpp = NULL;    /* right address pointer */
2294         union xfs_btree_rec     *rrp = NULL;    /* right record pointer */
2295         int                     error;          /* error return value */
2296         int                     i;
2297
2298         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2299         XFS_BTREE_TRACE_ARGI(cur, level);
2300
2301         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2302             level == cur->bc_nlevels - 1)
2303                 goto out0;
2304
2305         /* Set up variables for this block as "right". */
2306         right = xfs_btree_get_block(cur, level, &rbp);
2307
2308 #ifdef DEBUG
2309         error = xfs_btree_check_block(cur, right, level, rbp);
2310         if (error)
2311                 goto error0;
2312 #endif
2313
2314         /* If we've got no left sibling then we can't shift an entry left. */
2315         xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2316         if (xfs_btree_ptr_is_null(cur, &lptr))
2317                 goto out0;
2318
2319         /*
2320          * If the cursor entry is the one that would be moved, don't
2321          * do it... it's too complicated.
2322          */
2323         if (cur->bc_ptrs[level] <= 1)
2324                 goto out0;
2325
2326         /* Set up the left neighbor as "left". */
2327         error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2328         if (error)
2329                 goto error0;
2330
2331         /* If it's full, it can't take another entry. */
2332         lrecs = xfs_btree_get_numrecs(left);
2333         if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2334                 goto out0;
2335
2336         rrecs = xfs_btree_get_numrecs(right);
2337
2338         /*
2339          * We add one entry to the left side and remove one for the right side.
2340          * Account for it here, the changes will be updated on disk and logged
2341          * later.
2342          */
2343         lrecs++;
2344         rrecs--;
2345
2346         XFS_BTREE_STATS_INC(cur, lshift);
2347         XFS_BTREE_STATS_ADD(cur, moves, 1);
2348
2349         /*
2350          * If non-leaf, copy a key and a ptr to the left block.
2351          * Log the changes to the left block.
2352          */
2353         if (level > 0) {
2354                 /* It's a non-leaf.  Move keys and pointers. */
2355                 union xfs_btree_key     *lkp;   /* left btree key */
2356                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2357
2358                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2359                 rkp = xfs_btree_key_addr(cur, 1, right);
2360
2361                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2362                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2363 #ifdef DEBUG
2364                 error = xfs_btree_check_ptr(cur, rpp, 0, level);
2365                 if (error)
2366                         goto error0;
2367 #endif
2368                 xfs_btree_copy_keys(cur, lkp, rkp, 1);
2369                 xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2370
2371                 xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2372                 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2373
2374                 ASSERT(cur->bc_ops->keys_inorder(cur,
2375                         xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2376         } else {
2377                 /* It's a leaf.  Move records.  */
2378                 union xfs_btree_rec     *lrp;   /* left record pointer */
2379
2380                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2381                 rrp = xfs_btree_rec_addr(cur, 1, right);
2382
2383                 xfs_btree_copy_recs(cur, lrp, rrp, 1);
2384                 xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2385
2386                 ASSERT(cur->bc_ops->recs_inorder(cur,
2387                         xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2388         }
2389
2390         xfs_btree_set_numrecs(left, lrecs);
2391         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2392
2393         xfs_btree_set_numrecs(right, rrecs);
2394         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2395
2396         /*
2397          * Slide the contents of right down one entry.
2398          */
2399         XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2400         if (level > 0) {
2401                 /* It's a nonleaf. operate on keys and ptrs */
2402 #ifdef DEBUG
2403                 int                     i;              /* loop index */
2404
2405                 for (i = 0; i < rrecs; i++) {
2406                         error = xfs_btree_check_ptr(cur, rpp, i + 1, level);
2407                         if (error)
2408                                 goto error0;
2409                 }
2410 #endif
2411                 xfs_btree_shift_keys(cur,
2412                                 xfs_btree_key_addr(cur, 2, right),
2413                                 -1, rrecs);
2414                 xfs_btree_shift_ptrs(cur,
2415                                 xfs_btree_ptr_addr(cur, 2, right),
2416                                 -1, rrecs);
2417
2418                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2419                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2420         } else {
2421                 /* It's a leaf. operate on records */
2422                 xfs_btree_shift_recs(cur,
2423                         xfs_btree_rec_addr(cur, 2, right),
2424                         -1, rrecs);
2425                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2426         }
2427
2428         /*
2429          * Using a temporary cursor, update the parent key values of the
2430          * block on the left.
2431          */
2432         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2433                 error = xfs_btree_dup_cursor(cur, &tcur);
2434                 if (error)
2435                         goto error0;
2436                 i = xfs_btree_firstrec(tcur, level);
2437                 XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2438
2439                 error = xfs_btree_decrement(tcur, level, &i);
2440                 if (error)
2441                         goto error1;
2442
2443                 /* Update the parent high keys of the left block, if needed. */
2444                 error = xfs_btree_update_keys(tcur, level);
2445                 if (error)
2446                         goto error1;
2447
2448                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2449         }
2450
2451         /* Update the parent keys of the right block. */
2452         error = xfs_btree_update_keys(cur, level);
2453         if (error)
2454                 goto error0;
2455
2456         /* Slide the cursor value left one. */
2457         cur->bc_ptrs[level]--;
2458
2459         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2460         *stat = 1;
2461         return 0;
2462
2463 out0:
2464         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2465         *stat = 0;
2466         return 0;
2467
2468 error0:
2469         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2470         return error;
2471
2472 error1:
2473         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2474         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2475         return error;
2476 }
2477
2478 /*
2479  * Move 1 record right from cur/level if possible.
2480  * Update cur to reflect the new path.
2481  */
2482 STATIC int                                      /* error */
2483 xfs_btree_rshift(
2484         struct xfs_btree_cur    *cur,
2485         int                     level,
2486         int                     *stat)          /* success/failure */
2487 {
2488         struct xfs_buf          *lbp;           /* left buffer pointer */
2489         struct xfs_btree_block  *left;          /* left btree block */
2490         struct xfs_buf          *rbp;           /* right buffer pointer */
2491         struct xfs_btree_block  *right;         /* right btree block */
2492         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
2493         union xfs_btree_ptr     rptr;           /* right block pointer */
2494         union xfs_btree_key     *rkp;           /* right btree key */
2495         int                     rrecs;          /* right record count */
2496         int                     lrecs;          /* left record count */
2497         int                     error;          /* error return value */
2498         int                     i;              /* loop counter */
2499
2500         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2501         XFS_BTREE_TRACE_ARGI(cur, level);
2502
2503         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2504             (level == cur->bc_nlevels - 1))
2505                 goto out0;
2506
2507         /* Set up variables for this block as "left". */
2508         left = xfs_btree_get_block(cur, level, &lbp);
2509
2510 #ifdef DEBUG
2511         error = xfs_btree_check_block(cur, left, level, lbp);
2512         if (error)
2513                 goto error0;
2514 #endif
2515
2516         /* If we've got no right sibling then we can't shift an entry right. */
2517         xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2518         if (xfs_btree_ptr_is_null(cur, &rptr))
2519                 goto out0;
2520
2521         /*
2522          * If the cursor entry is the one that would be moved, don't
2523          * do it... it's too complicated.
2524          */
2525         lrecs = xfs_btree_get_numrecs(left);
2526         if (cur->bc_ptrs[level] >= lrecs)
2527                 goto out0;
2528
2529         /* Set up the right neighbor as "right". */
2530         error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2531         if (error)
2532                 goto error0;
2533
2534         /* If it's full, it can't take another entry. */
2535         rrecs = xfs_btree_get_numrecs(right);
2536         if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2537                 goto out0;
2538
2539         XFS_BTREE_STATS_INC(cur, rshift);
2540         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2541
2542         /*
2543          * Make a hole at the start of the right neighbor block, then
2544          * copy the last left block entry to the hole.
2545          */
2546         if (level > 0) {
2547                 /* It's a nonleaf. make a hole in the keys and ptrs */
2548                 union xfs_btree_key     *lkp;
2549                 union xfs_btree_ptr     *lpp;
2550                 union xfs_btree_ptr     *rpp;
2551
2552                 lkp = xfs_btree_key_addr(cur, lrecs, left);
2553                 lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2554                 rkp = xfs_btree_key_addr(cur, 1, right);
2555                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2556
2557 #ifdef DEBUG
2558                 for (i = rrecs - 1; i >= 0; i--) {
2559                         error = xfs_btree_check_ptr(cur, rpp, i, level);
2560                         if (error)
2561                                 goto error0;
2562                 }
2563 #endif
2564
2565                 xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2566                 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2567
2568 #ifdef DEBUG
2569                 error = xfs_btree_check_ptr(cur, lpp, 0, level);
2570                 if (error)
2571                         goto error0;
2572 #endif
2573
2574                 /* Now put the new data in, and log it. */
2575                 xfs_btree_copy_keys(cur, rkp, lkp, 1);
2576                 xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2577
2578                 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2579                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2580
2581                 ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2582                         xfs_btree_key_addr(cur, 2, right)));
2583         } else {
2584                 /* It's a leaf. make a hole in the records */
2585                 union xfs_btree_rec     *lrp;
2586                 union xfs_btree_rec     *rrp;
2587
2588                 lrp = xfs_btree_rec_addr(cur, lrecs, left);
2589                 rrp = xfs_btree_rec_addr(cur, 1, right);
2590
2591                 xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2592
2593                 /* Now put the new data in, and log it. */
2594                 xfs_btree_copy_recs(cur, rrp, lrp, 1);
2595                 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2596         }
2597
2598         /*
2599          * Decrement and log left's numrecs, bump and log right's numrecs.
2600          */
2601         xfs_btree_set_numrecs(left, --lrecs);
2602         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2603
2604         xfs_btree_set_numrecs(right, ++rrecs);
2605         xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2606
2607         /*
2608          * Using a temporary cursor, update the parent key values of the
2609          * block on the right.
2610          */
2611         error = xfs_btree_dup_cursor(cur, &tcur);
2612         if (error)
2613                 goto error0;
2614         i = xfs_btree_lastrec(tcur, level);
2615         XFS_WANT_CORRUPTED_GOTO(tcur->bc_mp, i == 1, error0);
2616
2617         error = xfs_btree_increment(tcur, level, &i);
2618         if (error)
2619                 goto error1;
2620
2621         /* Update the parent high keys of the left block, if needed. */
2622         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2623                 error = xfs_btree_update_keys(cur, level);
2624                 if (error)
2625                         goto error1;
2626         }
2627
2628         /* Update the parent keys of the right block. */
2629         error = xfs_btree_update_keys(tcur, level);
2630         if (error)
2631                 goto error1;
2632
2633         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2634
2635         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2636         *stat = 1;
2637         return 0;
2638
2639 out0:
2640         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2641         *stat = 0;
2642         return 0;
2643
2644 error0:
2645         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2646         return error;
2647
2648 error1:
2649         XFS_BTREE_TRACE_CURSOR(tcur, XBT_ERROR);
2650         xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2651         return error;
2652 }
2653
2654 /*
2655  * Split cur/level block in half.
2656  * Return new block number and the key to its first
2657  * record (to be inserted into parent).
2658  */
2659 STATIC int                                      /* error */
2660 __xfs_btree_split(
2661         struct xfs_btree_cur    *cur,
2662         int                     level,
2663         union xfs_btree_ptr     *ptrp,
2664         union xfs_btree_key     *key,
2665         struct xfs_btree_cur    **curp,
2666         int                     *stat)          /* success/failure */
2667 {
2668         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
2669         struct xfs_buf          *lbp;           /* left buffer pointer */
2670         struct xfs_btree_block  *left;          /* left btree block */
2671         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
2672         struct xfs_buf          *rbp;           /* right buffer pointer */
2673         struct xfs_btree_block  *right;         /* right btree block */
2674         union xfs_btree_ptr     rrptr;          /* right-right sibling ptr */
2675         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
2676         struct xfs_btree_block  *rrblock;       /* right-right btree block */
2677         int                     lrecs;
2678         int                     rrecs;
2679         int                     src_index;
2680         int                     error;          /* error return value */
2681 #ifdef DEBUG
2682         int                     i;
2683 #endif
2684
2685         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2686         XFS_BTREE_TRACE_ARGIPK(cur, level, *ptrp, key);
2687
2688         XFS_BTREE_STATS_INC(cur, split);
2689
2690         /* Set up left block (current one). */
2691         left = xfs_btree_get_block(cur, level, &lbp);
2692
2693 #ifdef DEBUG
2694         error = xfs_btree_check_block(cur, left, level, lbp);
2695         if (error)
2696                 goto error0;
2697 #endif
2698
2699         xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2700
2701         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2702         error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2703         if (error)
2704                 goto error0;
2705         if (*stat == 0)
2706                 goto out0;
2707         XFS_BTREE_STATS_INC(cur, alloc);
2708
2709         /* Set up the new block as "right". */
2710         error = xfs_btree_get_buf_block(cur, &rptr, 0, &right, &rbp);
2711         if (error)
2712                 goto error0;
2713
2714         /* Fill in the btree header for the new right block. */
2715         xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2716
2717         /*
2718          * Split the entries between the old and the new block evenly.
2719          * Make sure that if there's an odd number of entries now, that
2720          * each new block will have the same number of entries.
2721          */
2722         lrecs = xfs_btree_get_numrecs(left);
2723         rrecs = lrecs / 2;
2724         if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2725                 rrecs++;
2726         src_index = (lrecs - rrecs + 1);
2727
2728         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2729
2730         /* Adjust numrecs for the later get_*_keys() calls. */
2731         lrecs -= rrecs;
2732         xfs_btree_set_numrecs(left, lrecs);
2733         xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2734
2735         /*
2736          * Copy btree block entries from the left block over to the
2737          * new block, the right. Update the right block and log the
2738          * changes.
2739          */
2740         if (level > 0) {
2741                 /* It's a non-leaf.  Move keys and pointers. */
2742                 union xfs_btree_key     *lkp;   /* left btree key */
2743                 union xfs_btree_ptr     *lpp;   /* left address pointer */
2744                 union xfs_btree_key     *rkp;   /* right btree key */
2745                 union xfs_btree_ptr     *rpp;   /* right address pointer */
2746
2747                 lkp = xfs_btree_key_addr(cur, src_index, left);
2748                 lpp = xfs_btree_ptr_addr(cur, src_index, left);
2749                 rkp = xfs_btree_key_addr(cur, 1, right);
2750                 rpp = xfs_btree_ptr_addr(cur, 1, right);
2751
2752 #ifdef DEBUG
2753                 for (i = src_index; i < rrecs; i++) {
2754                         error = xfs_btree_check_ptr(cur, lpp, i, level);
2755                         if (error)
2756                                 goto error0;
2757                 }
2758 #endif
2759
2760                 /* Copy the keys & pointers to the new block. */
2761                 xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2762                 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2763
2764                 xfs_btree_log_keys(cur, rbp, 1, rrecs);
2765                 xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2766
2767                 /* Stash the keys of the new block for later insertion. */
2768                 xfs_btree_get_node_keys(cur, right, key);
2769         } else {
2770                 /* It's a leaf.  Move records.  */
2771                 union xfs_btree_rec     *lrp;   /* left record pointer */
2772                 union xfs_btree_rec     *rrp;   /* right record pointer */
2773
2774                 lrp = xfs_btree_rec_addr(cur, src_index, left);
2775                 rrp = xfs_btree_rec_addr(cur, 1, right);
2776
2777                 /* Copy records to the new block. */
2778                 xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2779                 xfs_btree_log_recs(cur, rbp, 1, rrecs);
2780
2781                 /* Stash the keys of the new block for later insertion. */
2782                 xfs_btree_get_leaf_keys(cur, right, key);
2783         }
2784
2785         /*
2786          * Find the left block number by looking in the buffer.
2787          * Adjust sibling pointers.
2788          */
2789         xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2790         xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2791         xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2792         xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2793
2794         xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2795         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2796
2797         /*
2798          * If there's a block to the new block's right, make that block
2799          * point back to right instead of to left.
2800          */
2801         if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2802                 error = xfs_btree_read_buf_block(cur, &rrptr,
2803                                                         0, &rrblock, &rrbp);
2804                 if (error)
2805                         goto error0;
2806                 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2807                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2808         }
2809
2810         /* Update the parent high keys of the left block, if needed. */
2811         if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2812                 error = xfs_btree_update_keys(cur, level);
2813                 if (error)
2814                         goto error0;
2815         }
2816
2817         /*
2818          * If the cursor is really in the right block, move it there.
2819          * If it's just pointing past the last entry in left, then we'll
2820          * insert there, so don't change anything in that case.
2821          */
2822         if (cur->bc_ptrs[level] > lrecs + 1) {
2823                 xfs_btree_setbuf(cur, level, rbp);
2824                 cur->bc_ptrs[level] -= lrecs;
2825         }
2826         /*
2827          * If there are more levels, we'll need another cursor which refers
2828          * the right block, no matter where this cursor was.
2829          */
2830         if (level + 1 < cur->bc_nlevels) {
2831                 error = xfs_btree_dup_cursor(cur, curp);
2832                 if (error)
2833                         goto error0;
2834                 (*curp)->bc_ptrs[level + 1]++;
2835         }
2836         *ptrp = rptr;
2837         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2838         *stat = 1;
2839         return 0;
2840 out0:
2841         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2842         *stat = 0;
2843         return 0;
2844
2845 error0:
2846         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
2847         return error;
2848 }
2849
2850 struct xfs_btree_split_args {
2851         struct xfs_btree_cur    *cur;
2852         int                     level;
2853         union xfs_btree_ptr     *ptrp;
2854         union xfs_btree_key     *key;
2855         struct xfs_btree_cur    **curp;
2856         int                     *stat;          /* success/failure */
2857         int                     result;
2858         bool                    kswapd; /* allocation in kswapd context */
2859         struct completion       *done;
2860         struct work_struct      work;
2861 };
2862
2863 /*
2864  * Stack switching interfaces for allocation
2865  */
2866 static void
2867 xfs_btree_split_worker(
2868         struct work_struct      *work)
2869 {
2870         struct xfs_btree_split_args     *args = container_of(work,
2871                                                 struct xfs_btree_split_args, work);
2872         unsigned long           pflags;
2873         unsigned long           new_pflags = PF_FSTRANS;
2874
2875         /*
2876          * we are in a transaction context here, but may also be doing work
2877          * in kswapd context, and hence we may need to inherit that state
2878          * temporarily to ensure that we don't block waiting for memory reclaim
2879          * in any way.
2880          */
2881         if (args->kswapd)
2882                 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2883
2884         current_set_flags_nested(&pflags, new_pflags);
2885
2886         args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2887                                          args->key, args->curp, args->stat);
2888         complete(args->done);
2889
2890         current_restore_flags_nested(&pflags, new_pflags);
2891 }
2892
2893 /*
2894  * BMBT split requests often come in with little stack to work on. Push
2895  * them off to a worker thread so there is lots of stack to use. For the other
2896  * btree types, just call directly to avoid the context switch overhead here.
2897  */
2898 STATIC int                                      /* error */
2899 xfs_btree_split(
2900         struct xfs_btree_cur    *cur,
2901         int                     level,
2902         union xfs_btree_ptr     *ptrp,
2903         union xfs_btree_key     *key,
2904         struct xfs_btree_cur    **curp,
2905         int                     *stat)          /* success/failure */
2906 {
2907         struct xfs_btree_split_args     args;
2908         DECLARE_COMPLETION_ONSTACK(done);
2909
2910         if (cur->bc_btnum != XFS_BTNUM_BMAP)
2911                 return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2912
2913         args.cur = cur;
2914         args.level = level;
2915         args.ptrp = ptrp;
2916         args.key = key;
2917         args.curp = curp;
2918         args.stat = stat;
2919         args.done = &done;
2920         args.kswapd = current_is_kswapd();
2921         INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2922         queue_work(xfs_alloc_wq, &args.work);
2923         wait_for_completion(&done);
2924         destroy_work_on_stack(&args.work);
2925         return args.result;
2926 }
2927
2928
2929 /*
2930  * Copy the old inode root contents into a real block and make the
2931  * broot point to it.
2932  */
2933 int                                             /* error */
2934 xfs_btree_new_iroot(
2935         struct xfs_btree_cur    *cur,           /* btree cursor */
2936         int                     *logflags,      /* logging flags for inode */
2937         int                     *stat)          /* return status - 0 fail */
2938 {
2939         struct xfs_buf          *cbp;           /* buffer for cblock */
2940         struct xfs_btree_block  *block;         /* btree block */
2941         struct xfs_btree_block  *cblock;        /* child btree block */
2942         union xfs_btree_key     *ckp;           /* child key pointer */
2943         union xfs_btree_ptr     *cpp;           /* child ptr pointer */
2944         union xfs_btree_key     *kp;            /* pointer to btree key */
2945         union xfs_btree_ptr     *pp;            /* pointer to block addr */
2946         union xfs_btree_ptr     nptr;           /* new block addr */
2947         int                     level;          /* btree level */
2948         int                     error;          /* error return code */
2949 #ifdef DEBUG
2950         int                     i;              /* loop counter */
2951 #endif
2952
2953         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
2954         XFS_BTREE_STATS_INC(cur, newroot);
2955
2956         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2957
2958         level = cur->bc_nlevels - 1;
2959
2960         block = xfs_btree_get_iroot(cur);
2961         pp = xfs_btree_ptr_addr(cur, 1, block);
2962
2963         /* Allocate the new block. If we can't do it, we're toast. Give up. */
2964         error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2965         if (error)
2966                 goto error0;
2967         if (*stat == 0) {
2968                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
2969                 return 0;
2970         }
2971         XFS_BTREE_STATS_INC(cur, alloc);
2972
2973         /* Copy the root into a real block. */
2974         error = xfs_btree_get_buf_block(cur, &nptr, 0, &cblock, &cbp);
2975         if (error)
2976                 goto error0;
2977
2978         /*
2979          * we can't just memcpy() the root in for CRC enabled btree blocks.
2980          * In that case have to also ensure the blkno remains correct
2981          */
2982         memcpy(cblock, block, xfs_btree_block_len(cur));
2983         if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2984                 if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2985                         cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2986                 else
2987                         cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2988         }
2989
2990         be16_add_cpu(&block->bb_level, 1);
2991         xfs_btree_set_numrecs(block, 1);
2992         cur->bc_nlevels++;
2993         cur->bc_ptrs[level + 1] = 1;
2994
2995         kp = xfs_btree_key_addr(cur, 1, block);
2996         ckp = xfs_btree_key_addr(cur, 1, cblock);
2997         xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2998
2999         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3000 #ifdef DEBUG
3001         for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
3002                 error = xfs_btree_check_ptr(cur, pp, i, level);
3003                 if (error)
3004                         goto error0;
3005         }
3006 #endif
3007         xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
3008
3009 #ifdef DEBUG
3010         error = xfs_btree_check_ptr(cur, &nptr, 0, level);
3011         if (error)
3012                 goto error0;
3013 #endif
3014         xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
3015
3016         xfs_iroot_realloc(cur->bc_private.b.ip,
3017                           1 - xfs_btree_get_numrecs(cblock),
3018                           cur->bc_private.b.whichfork);
3019
3020         xfs_btree_setbuf(cur, level, cbp);
3021
3022         /*
3023          * Do all this logging at the end so that
3024          * the root is at the right level.
3025          */
3026         xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
3027         xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3028         xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
3029
3030         *logflags |=
3031                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork);
3032         *stat = 1;
3033         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3034         return 0;
3035 error0:
3036         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3037         return error;
3038 }
3039
3040 /*
3041  * Allocate a new root block, fill it in.
3042  */
3043 STATIC int                              /* error */
3044 xfs_btree_new_root(
3045         struct xfs_btree_cur    *cur,   /* btree cursor */
3046         int                     *stat)  /* success/failure */
3047 {
3048         struct xfs_btree_block  *block; /* one half of the old root block */
3049         struct xfs_buf          *bp;    /* buffer containing block */
3050         int                     error;  /* error return value */
3051         struct xfs_buf          *lbp;   /* left buffer pointer */
3052         struct xfs_btree_block  *left;  /* left btree block */
3053         struct xfs_buf          *nbp;   /* new (root) buffer */
3054         struct xfs_btree_block  *new;   /* new (root) btree block */
3055         int                     nptr;   /* new value for key index, 1 or 2 */
3056         struct xfs_buf          *rbp;   /* right buffer pointer */
3057         struct xfs_btree_block  *right; /* right btree block */
3058         union xfs_btree_ptr     rptr;
3059         union xfs_btree_ptr     lptr;
3060
3061         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3062         XFS_BTREE_STATS_INC(cur, newroot);
3063
3064         /* initialise our start point from the cursor */
3065         cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3066
3067         /* Allocate the new block. If we can't do it, we're toast. Give up. */
3068         error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3069         if (error)
3070                 goto error0;
3071         if (*stat == 0)
3072                 goto out0;
3073         XFS_BTREE_STATS_INC(cur, alloc);
3074
3075         /* Set up the new block. */
3076         error = xfs_btree_get_buf_block(cur, &lptr, 0, &new, &nbp);
3077         if (error)
3078                 goto error0;
3079
3080         /* Set the root in the holding structure  increasing the level by 1. */
3081         cur->bc_ops->set_root(cur, &lptr, 1);
3082
3083         /*
3084          * At the previous root level there are now two blocks: the old root,
3085          * and the new block generated when it was split.  We don't know which
3086          * one the cursor is pointing at, so we set up variables "left" and
3087          * "right" for each case.
3088          */
3089         block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3090
3091 #ifdef DEBUG
3092         error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3093         if (error)
3094                 goto error0;
3095 #endif
3096
3097         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3098         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3099                 /* Our block is left, pick up the right block. */
3100                 lbp = bp;
3101                 xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3102                 left = block;
3103                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3104                 if (error)
3105                         goto error0;
3106                 bp = rbp;
3107                 nptr = 1;
3108         } else {
3109                 /* Our block is right, pick up the left block. */
3110                 rbp = bp;
3111                 xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3112                 right = block;
3113                 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3114                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3115                 if (error)
3116                         goto error0;
3117                 bp = lbp;
3118                 nptr = 2;
3119         }
3120
3121         /* Fill in the new block's btree header and log it. */
3122         xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3123         xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3124         ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3125                         !xfs_btree_ptr_is_null(cur, &rptr));
3126
3127         /* Fill in the key data in the new root. */
3128         if (xfs_btree_get_level(left) > 0) {
3129                 /*
3130                  * Get the keys for the left block's keys and put them directly
3131                  * in the parent block.  Do the same for the right block.
3132                  */
3133                 xfs_btree_get_node_keys(cur, left,
3134                                 xfs_btree_key_addr(cur, 1, new));
3135                 xfs_btree_get_node_keys(cur, right,
3136                                 xfs_btree_key_addr(cur, 2, new));
3137         } else {
3138                 /*
3139                  * Get the keys for the left block's records and put them
3140                  * directly in the parent block.  Do the same for the right
3141                  * block.
3142                  */
3143                 xfs_btree_get_leaf_keys(cur, left,
3144                         xfs_btree_key_addr(cur, 1, new));
3145                 xfs_btree_get_leaf_keys(cur, right,
3146                         xfs_btree_key_addr(cur, 2, new));
3147         }
3148         xfs_btree_log_keys(cur, nbp, 1, 2);
3149
3150         /* Fill in the pointer data in the new root. */
3151         xfs_btree_copy_ptrs(cur,
3152                 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3153         xfs_btree_copy_ptrs(cur,
3154                 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3155         xfs_btree_log_ptrs(cur, nbp, 1, 2);
3156
3157         /* Fix up the cursor. */
3158         xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3159         cur->bc_ptrs[cur->bc_nlevels] = nptr;
3160         cur->bc_nlevels++;
3161         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3162         *stat = 1;
3163         return 0;
3164 error0:
3165         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3166         return error;
3167 out0:
3168         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3169         *stat = 0;
3170         return 0;
3171 }
3172
3173 STATIC int
3174 xfs_btree_make_block_unfull(
3175         struct xfs_btree_cur    *cur,   /* btree cursor */
3176         int                     level,  /* btree level */
3177         int                     numrecs,/* # of recs in block */
3178         int                     *oindex,/* old tree index */
3179         int                     *index, /* new tree index */
3180         union xfs_btree_ptr     *nptr,  /* new btree ptr */
3181         struct xfs_btree_cur    **ncur, /* new btree cursor */
3182         union xfs_btree_key     *key,   /* key of new block */
3183         int                     *stat)
3184 {
3185         int                     error = 0;
3186
3187         if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3188             level == cur->bc_nlevels - 1) {
3189                 struct xfs_inode *ip = cur->bc_private.b.ip;
3190
3191                 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3192                         /* A root block that can be made bigger. */
3193                         xfs_iroot_realloc(ip, 1, cur->bc_private.b.whichfork);
3194                         *stat = 1;
3195                 } else {
3196                         /* A root block that needs replacing */
3197                         int     logflags = 0;
3198
3199                         error = xfs_btree_new_iroot(cur, &logflags, stat);
3200                         if (error || *stat == 0)
3201                                 return error;
3202
3203                         xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3204                 }
3205
3206                 return 0;
3207         }
3208
3209         /* First, try shifting an entry to the right neighbor. */
3210         error = xfs_btree_rshift(cur, level, stat);
3211         if (error || *stat)
3212                 return error;
3213
3214         /* Next, try shifting an entry to the left neighbor. */
3215         error = xfs_btree_lshift(cur, level, stat);
3216         if (error)
3217                 return error;
3218
3219         if (*stat) {
3220                 *oindex = *index = cur->bc_ptrs[level];
3221                 return 0;
3222         }
3223
3224         /*
3225          * Next, try splitting the current block in half.
3226          *
3227          * If this works we have to re-set our variables because we
3228          * could be in a different block now.
3229          */
3230         error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3231         if (error || *stat == 0)
3232                 return error;
3233
3234
3235         *index = cur->bc_ptrs[level];
3236         return 0;
3237 }
3238
3239 /*
3240  * Insert one record/level.  Return information to the caller
3241  * allowing the next level up to proceed if necessary.
3242  */
3243 STATIC int
3244 xfs_btree_insrec(
3245         struct xfs_btree_cur    *cur,   /* btree cursor */
3246         int                     level,  /* level to insert record at */
3247         union xfs_btree_ptr     *ptrp,  /* i/o: block number inserted */
3248         union xfs_btree_rec     *rec,   /* record to insert */
3249         union xfs_btree_key     *key,   /* i/o: block key for ptrp */
3250         struct xfs_btree_cur    **curp, /* output: new cursor replacing cur */
3251         int                     *stat)  /* success/failure */
3252 {
3253         struct xfs_btree_block  *block; /* btree block */
3254         struct xfs_buf          *bp;    /* buffer for block */
3255         union xfs_btree_ptr     nptr;   /* new block ptr */
3256         struct xfs_btree_cur    *ncur;  /* new btree cursor */
3257         union xfs_btree_key     nkey;   /* new block key */
3258         union xfs_btree_key     *lkey;
3259         int                     optr;   /* old key/record index */
3260         int                     ptr;    /* key/record index */
3261         int                     numrecs;/* number of records */
3262         int                     error;  /* error return value */
3263 #ifdef DEBUG
3264         int                     i;
3265 #endif
3266         xfs_daddr_t             old_bn;
3267
3268         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3269         XFS_BTREE_TRACE_ARGIPR(cur, level, *ptrp, &rec);
3270
3271         ncur = NULL;
3272         lkey = &nkey;
3273
3274         /*
3275          * If we have an external root pointer, and we've made it to the
3276          * root level, allocate a new root block and we're done.
3277          */
3278         if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3279             (level >= cur->bc_nlevels)) {
3280                 error = xfs_btree_new_root(cur, stat);
3281                 xfs_btree_set_ptr_null(cur, ptrp);
3282
3283                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3284                 return error;
3285         }
3286
3287         /* If we're off the left edge, return failure. */
3288         ptr = cur->bc_ptrs[level];
3289         if (ptr == 0) {
3290                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3291                 *stat = 0;
3292                 return 0;
3293         }
3294
3295         optr = ptr;
3296
3297         XFS_BTREE_STATS_INC(cur, insrec);
3298
3299         /* Get pointers to the btree buffer and block. */
3300         block = xfs_btree_get_block(cur, level, &bp);
3301         old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3302         numrecs = xfs_btree_get_numrecs(block);
3303
3304 #ifdef DEBUG
3305         error = xfs_btree_check_block(cur, block, level, bp);
3306         if (error)
3307                 goto error0;
3308
3309         /* Check that the new entry is being inserted in the right place. */
3310         if (ptr <= numrecs) {
3311                 if (level == 0) {
3312                         ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3313                                 xfs_btree_rec_addr(cur, ptr, block)));
3314                 } else {
3315                         ASSERT(cur->bc_ops->keys_inorder(cur, key,
3316                                 xfs_btree_key_addr(cur, ptr, block)));
3317                 }
3318         }
3319 #endif
3320
3321         /*
3322          * If the block is full, we can't insert the new entry until we
3323          * make the block un-full.
3324          */
3325         xfs_btree_set_ptr_null(cur, &nptr);
3326         if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3327                 error = xfs_btree_make_block_unfull(cur, level, numrecs,
3328                                         &optr, &ptr, &nptr, &ncur, lkey, stat);
3329                 if (error || *stat == 0)
3330                         goto error0;
3331         }
3332
3333         /*
3334          * The current block may have changed if the block was
3335          * previously full and we have just made space in it.
3336          */
3337         block = xfs_btree_get_block(cur, level, &bp);
3338         numrecs = xfs_btree_get_numrecs(block);
3339
3340 #ifdef DEBUG
3341         error = xfs_btree_check_block(cur, block, level, bp);
3342         if (error)
3343                 return error;
3344 #endif
3345
3346         /*
3347          * At this point we know there's room for our new entry in the block
3348          * we're pointing at.
3349          */
3350         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3351
3352         if (level > 0) {
3353                 /* It's a nonleaf. make a hole in the keys and ptrs */
3354                 union xfs_btree_key     *kp;
3355                 union xfs_btree_ptr     *pp;
3356
3357                 kp = xfs_btree_key_addr(cur, ptr, block);
3358                 pp = xfs_btree_ptr_addr(cur, ptr, block);
3359
3360 #ifdef DEBUG
3361                 for (i = numrecs - ptr; i >= 0; i--) {
3362                         error = xfs_btree_check_ptr(cur, pp, i, level);
3363                         if (error)
3364                                 return error;
3365                 }
3366 #endif
3367
3368                 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3369                 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3370
3371 #ifdef DEBUG
3372                 error = xfs_btree_check_ptr(cur, ptrp, 0, level);
3373                 if (error)
3374                         goto error0;
3375 #endif
3376
3377                 /* Now put the new data in, bump numrecs and log it. */
3378                 xfs_btree_copy_keys(cur, kp, key, 1);
3379                 xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3380                 numrecs++;
3381                 xfs_btree_set_numrecs(block, numrecs);
3382                 xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3383                 xfs_btree_log_keys(cur, bp, ptr, numrecs);
3384 #ifdef DEBUG
3385                 if (ptr < numrecs) {
3386                         ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3387                                 xfs_btree_key_addr(cur, ptr + 1, block)));
3388                 }
3389 #endif
3390         } else {
3391                 /* It's a leaf. make a hole in the records */
3392                 union xfs_btree_rec             *rp;
3393
3394                 rp = xfs_btree_rec_addr(cur, ptr, block);
3395
3396                 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3397
3398                 /* Now put the new data in, bump numrecs and log it. */
3399                 xfs_btree_copy_recs(cur, rp, rec, 1);
3400                 xfs_btree_set_numrecs(block, ++numrecs);
3401                 xfs_btree_log_recs(cur, bp, ptr, numrecs);
3402 #ifdef DEBUG
3403                 if (ptr < numrecs) {
3404                         ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3405                                 xfs_btree_rec_addr(cur, ptr + 1, block)));
3406                 }
3407 #endif
3408         }
3409
3410         /* Log the new number of records in the btree header. */
3411         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3412
3413         /*
3414          * If we just inserted into a new tree block, we have to
3415          * recalculate nkey here because nkey is out of date.
3416          *
3417          * Otherwise we're just updating an existing block (having shoved
3418          * some records into the new tree block), so use the regular key
3419          * update mechanism.
3420          */
3421         if (bp && bp->b_bn != old_bn) {
3422                 xfs_btree_get_keys(cur, block, lkey);
3423         } else if (xfs_btree_needs_key_update(cur, optr)) {
3424                 error = xfs_btree_update_keys(cur, level);
3425                 if (error)
3426                         goto error0;
3427         }
3428
3429         /*
3430          * If we are tracking the last record in the tree and
3431          * we are at the far right edge of the tree, update it.
3432          */
3433         if (xfs_btree_is_lastrec(cur, block, level)) {
3434                 cur->bc_ops->update_lastrec(cur, block, rec,
3435                                             ptr, LASTREC_INSREC);
3436         }
3437
3438         /*
3439          * Return the new block number, if any.
3440          * If there is one, give back a record value and a cursor too.
3441          */
3442         *ptrp = nptr;
3443         if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3444                 xfs_btree_copy_keys(cur, key, lkey, 1);
3445                 *curp = ncur;
3446         }
3447
3448         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3449         *stat = 1;
3450         return 0;
3451
3452 error0:
3453         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3454         return error;
3455 }
3456
3457 /*
3458  * Insert the record at the point referenced by cur.
3459  *
3460  * A multi-level split of the tree on insert will invalidate the original
3461  * cursor.  All callers of this function should assume that the cursor is
3462  * no longer valid and revalidate it.
3463  */
3464 int
3465 xfs_btree_insert(
3466         struct xfs_btree_cur    *cur,
3467         int                     *stat)
3468 {
3469         int                     error;  /* error return value */
3470         int                     i;      /* result value, 0 for failure */
3471         int                     level;  /* current level number in btree */
3472         union xfs_btree_ptr     nptr;   /* new block number (split result) */
3473         struct xfs_btree_cur    *ncur;  /* new cursor (split result) */
3474         struct xfs_btree_cur    *pcur;  /* previous level's cursor */
3475         union xfs_btree_key     bkey;   /* key of block to insert */
3476         union xfs_btree_key     *key;
3477         union xfs_btree_rec     rec;    /* record to insert */
3478
3479         level = 0;
3480         ncur = NULL;
3481         pcur = cur;
3482         key = &bkey;
3483
3484         xfs_btree_set_ptr_null(cur, &nptr);
3485
3486         /* Make a key out of the record data to be inserted, and save it. */
3487         cur->bc_ops->init_rec_from_cur(cur, &rec);
3488         cur->bc_ops->init_key_from_rec(key, &rec);
3489
3490         /*
3491          * Loop going up the tree, starting at the leaf level.
3492          * Stop when we don't get a split block, that must mean that
3493          * the insert is finished with this level.
3494          */
3495         do {
3496                 /*
3497                  * Insert nrec/nptr into this level of the tree.
3498                  * Note if we fail, nptr will be null.
3499                  */
3500                 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3501                                 &ncur, &i);
3502                 if (error) {
3503                         if (pcur != cur)
3504                                 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3505                         goto error0;
3506                 }
3507
3508                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3509                 level++;
3510
3511                 /*
3512                  * See if the cursor we just used is trash.
3513                  * Can't trash the caller's cursor, but otherwise we should
3514                  * if ncur is a new cursor or we're about to be done.
3515                  */
3516                 if (pcur != cur &&
3517                     (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3518                         /* Save the state from the cursor before we trash it */
3519                         if (cur->bc_ops->update_cursor)
3520                                 cur->bc_ops->update_cursor(pcur, cur);
3521                         cur->bc_nlevels = pcur->bc_nlevels;
3522                         xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3523                 }
3524                 /* If we got a new cursor, switch to it. */
3525                 if (ncur) {
3526                         pcur = ncur;
3527                         ncur = NULL;
3528                 }
3529         } while (!xfs_btree_ptr_is_null(cur, &nptr));
3530
3531         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3532         *stat = i;
3533         return 0;
3534 error0:
3535         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3536         return error;
3537 }
3538
3539 /*
3540  * Try to merge a non-leaf block back into the inode root.
3541  *
3542  * Note: the killroot names comes from the fact that we're effectively
3543  * killing the old root block.  But because we can't just delete the
3544  * inode we have to copy the single block it was pointing to into the
3545  * inode.
3546  */
3547 STATIC int
3548 xfs_btree_kill_iroot(
3549         struct xfs_btree_cur    *cur)
3550 {
3551         int                     whichfork = cur->bc_private.b.whichfork;
3552         struct xfs_inode        *ip = cur->bc_private.b.ip;
3553         struct xfs_ifork        *ifp = XFS_IFORK_PTR(ip, whichfork);
3554         struct xfs_btree_block  *block;
3555         struct xfs_btree_block  *cblock;
3556         union xfs_btree_key     *kp;
3557         union xfs_btree_key     *ckp;
3558         union xfs_btree_ptr     *pp;
3559         union xfs_btree_ptr     *cpp;
3560         struct xfs_buf          *cbp;
3561         int                     level;
3562         int                     index;
3563         int                     numrecs;
3564         int                     error;
3565 #ifdef DEBUG
3566         union xfs_btree_ptr     ptr;
3567         int                     i;
3568 #endif
3569
3570         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3571
3572         ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3573         ASSERT(cur->bc_nlevels > 1);
3574
3575         /*
3576          * Don't deal with the root block needs to be a leaf case.
3577          * We're just going to turn the thing back into extents anyway.
3578          */
3579         level = cur->bc_nlevels - 1;
3580         if (level == 1)
3581                 goto out0;
3582
3583         /*
3584          * Give up if the root has multiple children.
3585          */
3586         block = xfs_btree_get_iroot(cur);
3587         if (xfs_btree_get_numrecs(block) != 1)
3588                 goto out0;
3589
3590         cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3591         numrecs = xfs_btree_get_numrecs(cblock);
3592
3593         /*
3594          * Only do this if the next level will fit.
3595          * Then the data must be copied up to the inode,
3596          * instead of freeing the root you free the next level.
3597          */
3598         if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3599                 goto out0;
3600
3601         XFS_BTREE_STATS_INC(cur, killroot);
3602
3603 #ifdef DEBUG
3604         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3605         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3606         xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3607         ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3608 #endif
3609
3610         index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3611         if (index) {
3612                 xfs_iroot_realloc(cur->bc_private.b.ip, index,
3613                                   cur->bc_private.b.whichfork);
3614                 block = ifp->if_broot;
3615         }
3616
3617         be16_add_cpu(&block->bb_numrecs, index);
3618         ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3619
3620         kp = xfs_btree_key_addr(cur, 1, block);
3621         ckp = xfs_btree_key_addr(cur, 1, cblock);
3622         xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3623
3624         pp = xfs_btree_ptr_addr(cur, 1, block);
3625         cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3626 #ifdef DEBUG
3627         for (i = 0; i < numrecs; i++) {
3628                 error = xfs_btree_check_ptr(cur, cpp, i, level - 1);
3629                 if (error) {
3630                         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3631                         return error;
3632                 }
3633         }
3634 #endif
3635         xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3636
3637         error = xfs_btree_free_block(cur, cbp);
3638         if (error) {
3639                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3640                 return error;
3641         }
3642
3643         cur->bc_bufs[level - 1] = NULL;
3644         be16_add_cpu(&block->bb_level, -1);
3645         xfs_trans_log_inode(cur->bc_tp, ip,
3646                 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_private.b.whichfork));
3647         cur->bc_nlevels--;
3648 out0:
3649         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3650         return 0;
3651 }
3652
3653 /*
3654  * Kill the current root node, and replace it with it's only child node.
3655  */
3656 STATIC int
3657 xfs_btree_kill_root(
3658         struct xfs_btree_cur    *cur,
3659         struct xfs_buf          *bp,
3660         int                     level,
3661         union xfs_btree_ptr     *newroot)
3662 {
3663         int                     error;
3664
3665         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3666         XFS_BTREE_STATS_INC(cur, killroot);
3667
3668         /*
3669          * Update the root pointer, decreasing the level by 1 and then
3670          * free the old root.
3671          */
3672         cur->bc_ops->set_root(cur, newroot, -1);
3673
3674         error = xfs_btree_free_block(cur, bp);
3675         if (error) {
3676                 XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
3677                 return error;
3678         }
3679
3680         cur->bc_bufs[level] = NULL;
3681         cur->bc_ra[level] = 0;
3682         cur->bc_nlevels--;
3683
3684         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3685         return 0;
3686 }
3687
3688 STATIC int
3689 xfs_btree_dec_cursor(
3690         struct xfs_btree_cur    *cur,
3691         int                     level,
3692         int                     *stat)
3693 {
3694         int                     error;
3695         int                     i;
3696
3697         if (level > 0) {
3698                 error = xfs_btree_decrement(cur, level, &i);
3699                 if (error)
3700                         return error;
3701         }
3702
3703         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3704         *stat = 1;
3705         return 0;
3706 }
3707
3708 /*
3709  * Single level of the btree record deletion routine.
3710  * Delete record pointed to by cur/level.
3711  * Remove the record from its block then rebalance the tree.
3712  * Return 0 for error, 1 for done, 2 to go on to the next level.
3713  */
3714 STATIC int                                      /* error */
3715 xfs_btree_delrec(
3716         struct xfs_btree_cur    *cur,           /* btree cursor */
3717         int                     level,          /* level removing record from */
3718         int                     *stat)          /* fail/done/go-on */
3719 {
3720         struct xfs_btree_block  *block;         /* btree block */
3721         union xfs_btree_ptr     cptr;           /* current block ptr */
3722         struct xfs_buf          *bp;            /* buffer for block */
3723         int                     error;          /* error return value */
3724         int                     i;              /* loop counter */
3725         union xfs_btree_ptr     lptr;           /* left sibling block ptr */
3726         struct xfs_buf          *lbp;           /* left buffer pointer */
3727         struct xfs_btree_block  *left;          /* left btree block */
3728         int                     lrecs = 0;      /* left record count */
3729         int                     ptr;            /* key/record index */
3730         union xfs_btree_ptr     rptr;           /* right sibling block ptr */
3731         struct xfs_buf          *rbp;           /* right buffer pointer */
3732         struct xfs_btree_block  *right;         /* right btree block */
3733         struct xfs_btree_block  *rrblock;       /* right-right btree block */
3734         struct xfs_buf          *rrbp;          /* right-right buffer pointer */
3735         int                     rrecs = 0;      /* right record count */
3736         struct xfs_btree_cur    *tcur;          /* temporary btree cursor */
3737         int                     numrecs;        /* temporary numrec count */
3738
3739         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
3740         XFS_BTREE_TRACE_ARGI(cur, level);
3741
3742         tcur = NULL;
3743
3744         /* Get the index of the entry being deleted, check for nothing there. */
3745         ptr = cur->bc_ptrs[level];
3746         if (ptr == 0) {
3747                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3748                 *stat = 0;
3749                 return 0;
3750         }
3751
3752         /* Get the buffer & block containing the record or key/ptr. */
3753         block = xfs_btree_get_block(cur, level, &bp);
3754         numrecs = xfs_btree_get_numrecs(block);
3755
3756 #ifdef DEBUG
3757         error = xfs_btree_check_block(cur, block, level, bp);
3758         if (error)
3759                 goto error0;
3760 #endif
3761
3762         /* Fail if we're off the end of the block. */
3763         if (ptr > numrecs) {
3764                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
3765                 *stat = 0;
3766                 return 0;
3767         }
3768
3769         XFS_BTREE_STATS_INC(cur, delrec);
3770         XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3771
3772         /* Excise the entries being deleted. */
3773         if (level > 0) {
3774                 /* It's a nonleaf. operate on keys and ptrs */
3775                 union xfs_btree_key     *lkp;
3776                 union xfs_btree_ptr     *lpp;
3777
3778                 lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3779                 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3780
3781 #ifdef DEBUG
3782                 for (i = 0; i < numrecs - ptr; i++) {
3783                         error = xfs_btree_check_ptr(cur, lpp, i, level);
3784                         if (error)
3785                                 goto error0;
3786                 }
3787 #endif
3788
3789                 if (ptr < numrecs) {
3790                         xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3791                         xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3792                         xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3793                         xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3794                 }
3795         } else {
3796                 /* It's a leaf. operate on records */
3797                 if (ptr < numrecs) {
3798                         xfs_btree_shift_recs(cur,
3799                                 xfs_btree_rec_addr(cur, ptr + 1, block),
3800                                 -1, numrecs - ptr);
3801                         xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3802                 }
3803         }
3804
3805         /*
3806          * Decrement and log the number of entries in the block.
3807          */
3808         xfs_btree_set_numrecs(block, --numrecs);
3809         xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3810
3811         /*
3812          * If we are tracking the last record in the tree and
3813          * we are at the far right edge of the tree, update it.
3814          */
3815         if (xfs_btree_is_lastrec(cur, block, level)) {
3816                 cur->bc_ops->update_lastrec(cur, block, NULL,
3817                                             ptr, LASTREC_DELREC);
3818         }
3819
3820         /*
3821          * We're at the root level.  First, shrink the root block in-memory.
3822          * Try to get rid of the next level down.  If we can't then there's
3823          * nothing left to do.
3824          */
3825         if (level == cur->bc_nlevels - 1) {
3826                 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3827                         xfs_iroot_realloc(cur->bc_private.b.ip, -1,
3828                                           cur->bc_private.b.whichfork);
3829
3830                         error = xfs_btree_kill_iroot(cur);
3831                         if (error)
3832                                 goto error0;
3833
3834                         error = xfs_btree_dec_cursor(cur, level, stat);
3835                         if (error)
3836                                 goto error0;
3837                         *stat = 1;
3838                         return 0;
3839                 }
3840
3841                 /*
3842                  * If this is the root level, and there's only one entry left,
3843                  * and it's NOT the leaf level, then we can get rid of this
3844                  * level.
3845                  */
3846                 if (numrecs == 1 && level > 0) {
3847                         union xfs_btree_ptr     *pp;
3848                         /*
3849                          * pp is still set to the first pointer in the block.
3850                          * Make it the new root of the btree.
3851                          */
3852                         pp = xfs_btree_ptr_addr(cur, 1, block);
3853                         error = xfs_btree_kill_root(cur, bp, level, pp);
3854                         if (error)
3855                                 goto error0;
3856                 } else if (level > 0) {
3857                         error = xfs_btree_dec_cursor(cur, level, stat);
3858                         if (error)
3859                                 goto error0;
3860                 }
3861                 *stat = 1;
3862                 return 0;
3863         }
3864
3865         /*
3866          * If we deleted the leftmost entry in the block, update the
3867          * key values above us in the tree.
3868          */
3869         if (xfs_btree_needs_key_update(cur, ptr)) {
3870                 error = xfs_btree_update_keys(cur, level);
3871                 if (error)
3872                         goto error0;
3873         }
3874
3875         /*
3876          * If the number of records remaining in the block is at least
3877          * the minimum, we're done.
3878          */
3879         if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3880                 error = xfs_btree_dec_cursor(cur, level, stat);
3881                 if (error)
3882                         goto error0;
3883                 return 0;
3884         }
3885
3886         /*
3887          * Otherwise, we have to move some records around to keep the
3888          * tree balanced.  Look at the left and right sibling blocks to
3889          * see if we can re-balance by moving only one record.
3890          */
3891         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3892         xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3893
3894         if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3895                 /*
3896                  * One child of root, need to get a chance to copy its contents
3897                  * into the root and delete it. Can't go up to next level,
3898                  * there's nothing to delete there.
3899                  */
3900                 if (xfs_btree_ptr_is_null(cur, &rptr) &&
3901                     xfs_btree_ptr_is_null(cur, &lptr) &&
3902                     level == cur->bc_nlevels - 2) {
3903                         error = xfs_btree_kill_iroot(cur);
3904                         if (!error)
3905                                 error = xfs_btree_dec_cursor(cur, level, stat);
3906                         if (error)
3907                                 goto error0;
3908                         return 0;
3909                 }
3910         }
3911
3912         ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3913                !xfs_btree_ptr_is_null(cur, &lptr));
3914
3915         /*
3916          * Duplicate the cursor so our btree manipulations here won't
3917          * disrupt the next level up.
3918          */
3919         error = xfs_btree_dup_cursor(cur, &tcur);
3920         if (error)
3921                 goto error0;
3922
3923         /*
3924          * If there's a right sibling, see if it's ok to shift an entry
3925          * out of it.
3926          */
3927         if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3928                 /*
3929                  * Move the temp cursor to the last entry in the next block.
3930                  * Actually any entry but the first would suffice.
3931                  */
3932                 i = xfs_btree_lastrec(tcur, level);
3933                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3934
3935                 error = xfs_btree_increment(tcur, level, &i);
3936                 if (error)
3937                         goto error0;
3938                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3939
3940                 i = xfs_btree_lastrec(tcur, level);
3941                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3942
3943                 /* Grab a pointer to the block. */
3944                 right = xfs_btree_get_block(tcur, level, &rbp);
3945 #ifdef DEBUG
3946                 error = xfs_btree_check_block(tcur, right, level, rbp);
3947                 if (error)
3948                         goto error0;
3949 #endif
3950                 /* Grab the current block number, for future use. */
3951                 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3952
3953                 /*
3954                  * If right block is full enough so that removing one entry
3955                  * won't make it too empty, and left-shifting an entry out
3956                  * of right to us works, we're done.
3957                  */
3958                 if (xfs_btree_get_numrecs(right) - 1 >=
3959                     cur->bc_ops->get_minrecs(tcur, level)) {
3960                         error = xfs_btree_lshift(tcur, level, &i);
3961                         if (error)
3962                                 goto error0;
3963                         if (i) {
3964                                 ASSERT(xfs_btree_get_numrecs(block) >=
3965                                        cur->bc_ops->get_minrecs(tcur, level));
3966
3967                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3968                                 tcur = NULL;
3969
3970                                 error = xfs_btree_dec_cursor(cur, level, stat);
3971                                 if (error)
3972                                         goto error0;
3973                                 return 0;
3974                         }
3975                 }
3976
3977                 /*
3978                  * Otherwise, grab the number of records in right for
3979                  * future reference, and fix up the temp cursor to point
3980                  * to our block again (last record).
3981                  */
3982                 rrecs = xfs_btree_get_numrecs(right);
3983                 if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3984                         i = xfs_btree_firstrec(tcur, level);
3985                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3986
3987                         error = xfs_btree_decrement(tcur, level, &i);
3988                         if (error)
3989                                 goto error0;
3990                         XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
3991                 }
3992         }
3993
3994         /*
3995          * If there's a left sibling, see if it's ok to shift an entry
3996          * out of it.
3997          */
3998         if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3999                 /*
4000                  * Move the temp cursor to the first entry in the
4001                  * previous block.
4002                  */
4003                 i = xfs_btree_firstrec(tcur, level);
4004                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4005
4006                 error = xfs_btree_decrement(tcur, level, &i);
4007                 if (error)
4008                         goto error0;
4009                 i = xfs_btree_firstrec(tcur, level);
4010                 XFS_WANT_CORRUPTED_GOTO(cur->bc_mp, i == 1, error0);
4011
4012                 /* Grab a pointer to the block. */
4013                 left = xfs_btree_get_block(tcur, level, &lbp);
4014 #ifdef DEBUG
4015                 error = xfs_btree_check_block(cur, left, level, lbp);
4016                 if (error)
4017                         goto error0;
4018 #endif
4019                 /* Grab the current block number, for future use. */
4020                 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
4021
4022                 /*
4023                  * If left block is full enough so that removing one entry
4024                  * won't make it too empty, and right-shifting an entry out
4025                  * of left to us works, we're done.
4026                  */
4027                 if (xfs_btree_get_numrecs(left) - 1 >=
4028                     cur->bc_ops->get_minrecs(tcur, level)) {
4029                         error = xfs_btree_rshift(tcur, level, &i);
4030                         if (error)
4031                                 goto error0;
4032                         if (i) {
4033                                 ASSERT(xfs_btree_get_numrecs(block) >=
4034                                        cur->bc_ops->get_minrecs(tcur, level));
4035                                 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4036                                 tcur = NULL;
4037                                 if (level == 0)
4038                                         cur->bc_ptrs[0]++;
4039                                 XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4040                                 *stat = 1;
4041                                 return 0;
4042                         }
4043                 }
4044
4045                 /*
4046                  * Otherwise, grab the number of records in right for
4047                  * future reference.
4048                  */
4049                 lrecs = xfs_btree_get_numrecs(left);
4050         }
4051
4052         /* Delete the temp cursor, we're done with it. */
4053         xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
4054         tcur = NULL;
4055
4056         /* If here, we need to do a join to keep the tree balanced. */
4057         ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
4058
4059         if (!xfs_btree_ptr_is_null(cur, &lptr) &&
4060             lrecs + xfs_btree_get_numrecs(block) <=
4061                         cur->bc_ops->get_maxrecs(cur, level)) {
4062                 /*
4063                  * Set "right" to be the starting block,
4064                  * "left" to be the left neighbor.
4065                  */
4066                 rptr = cptr;
4067                 right = block;
4068                 rbp = bp;
4069                 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
4070                 if (error)
4071                         goto error0;
4072
4073         /*
4074          * If that won't work, see if we can join with the right neighbor block.
4075          */
4076         } else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4077                    rrecs + xfs_btree_get_numrecs(block) <=
4078                         cur->bc_ops->get_maxrecs(cur, level)) {
4079                 /*
4080                  * Set "left" to be the starting block,
4081                  * "right" to be the right neighbor.
4082                  */
4083                 lptr = cptr;
4084                 left = block;
4085                 lbp = bp;
4086                 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4087                 if (error)
4088                         goto error0;
4089
4090         /*
4091          * Otherwise, we can't fix the imbalance.
4092          * Just return.  This is probably a logic error, but it's not fatal.
4093          */
4094         } else {
4095                 error = xfs_btree_dec_cursor(cur, level, stat);
4096                 if (error)
4097                         goto error0;
4098                 return 0;
4099         }
4100
4101         rrecs = xfs_btree_get_numrecs(right);
4102         lrecs = xfs_btree_get_numrecs(left);
4103
4104         /*
4105          * We're now going to join "left" and "right" by moving all the stuff
4106          * in "right" to "left" and deleting "right".
4107          */
4108         XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4109         if (level > 0) {
4110                 /* It's a non-leaf.  Move keys and pointers. */
4111                 union xfs_btree_key     *lkp;   /* left btree key */
4112                 union xfs_btree_ptr     *lpp;   /* left address pointer */
4113                 union xfs_btree_key     *rkp;   /* right btree key */
4114                 union xfs_btree_ptr     *rpp;   /* right address pointer */
4115
4116                 lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4117                 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4118                 rkp = xfs_btree_key_addr(cur, 1, right);
4119                 rpp = xfs_btree_ptr_addr(cur, 1, right);
4120 #ifdef DEBUG
4121                 for (i = 1; i < rrecs; i++) {
4122                         error = xfs_btree_check_ptr(cur, rpp, i, level);
4123                         if (error)
4124                                 goto error0;
4125                 }
4126 #endif
4127                 xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4128                 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4129
4130                 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4131                 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4132         } else {
4133                 /* It's a leaf.  Move records.  */
4134                 union xfs_btree_rec     *lrp;   /* left record pointer */
4135                 union xfs_btree_rec     *rrp;   /* right record pointer */
4136
4137                 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4138                 rrp = xfs_btree_rec_addr(cur, 1, right);
4139
4140                 xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4141                 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4142         }
4143
4144         XFS_BTREE_STATS_INC(cur, join);
4145
4146         /*
4147          * Fix up the number of records and right block pointer in the
4148          * surviving block, and log it.
4149          */
4150         xfs_btree_set_numrecs(left, lrecs + rrecs);
4151         xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4152         xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4153         xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4154
4155         /* If there is a right sibling, point it to the remaining block. */
4156         xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4157         if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4158                 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4159                 if (error)
4160                         goto error0;
4161                 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4162                 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4163         }
4164
4165         /* Free the deleted block. */
4166         error = xfs_btree_free_block(cur, rbp);
4167         if (error)
4168                 goto error0;
4169
4170         /*
4171          * If we joined with the left neighbor, set the buffer in the
4172          * cursor to the left block, and fix up the index.
4173          */
4174         if (bp != lbp) {
4175                 cur->bc_bufs[level] = lbp;
4176                 cur->bc_ptrs[level] += lrecs;
4177                 cur->bc_ra[level] = 0;
4178         }
4179         /*
4180          * If we joined with the right neighbor and there's a level above
4181          * us, increment the cursor at that level.
4182          */
4183         else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4184                    (level + 1 < cur->bc_nlevels)) {
4185                 error = xfs_btree_increment(cur, level + 1, &i);
4186                 if (error)
4187                         goto error0;
4188         }
4189
4190         /*
4191          * Readjust the ptr at this level if it's not a leaf, since it's
4192          * still pointing at the deletion point, which makes the cursor
4193          * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4194          * We can't use decrement because it would change the next level up.
4195          */
4196         if (level > 0)
4197                 cur->bc_ptrs[level]--;
4198
4199         /*
4200          * We combined blocks, so we have to update the parent keys if the
4201          * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4202          * points to the old block so that the caller knows which record to
4203          * delete.  Therefore, the caller must be savvy enough to call updkeys
4204          * for us if we return stat == 2.  The other exit points from this
4205          * function don't require deletions further up the tree, so they can
4206          * call updkeys directly.
4207          */
4208
4209         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4210         /* Return value means the next level up has something to do. */
4211         *stat = 2;
4212         return 0;
4213
4214 error0:
4215         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4216         if (tcur)
4217                 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4218         return error;
4219 }
4220
4221 /*
4222  * Delete the record pointed to by cur.
4223  * The cursor refers to the place where the record was (could be inserted)
4224  * when the operation returns.
4225  */
4226 int                                     /* error */
4227 xfs_btree_delete(
4228         struct xfs_btree_cur    *cur,
4229         int                     *stat)  /* success/failure */
4230 {
4231         int                     error;  /* error return value */
4232         int                     level;
4233         int                     i;
4234         bool                    joined = false;
4235
4236         XFS_BTREE_TRACE_CURSOR(cur, XBT_ENTRY);
4237
4238         /*
4239          * Go up the tree, starting at leaf level.
4240          *
4241          * If 2 is returned then a join was done; go to the next level.
4242          * Otherwise we are done.
4243          */
4244         for (level = 0, i = 2; i == 2; level++) {
4245                 error = xfs_btree_delrec(cur, level, &i);
4246                 if (error)
4247                         goto error0;
4248                 if (i == 2)
4249                         joined = true;
4250         }
4251
4252         /*
4253          * If we combined blocks as part of deleting the record, delrec won't
4254          * have updated the parent high keys so we have to do that here.
4255          */
4256         if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4257                 error = xfs_btree_updkeys_force(cur, 0);
4258                 if (error)
4259                         goto error0;
4260         }
4261
4262         if (i == 0) {
4263                 for (level = 1; level < cur->bc_nlevels; level++) {
4264                         if (cur->bc_ptrs[level] == 0) {
4265                                 error = xfs_btree_decrement(cur, level, &i);
4266                                 if (error)
4267                                         goto error0;
4268                                 break;
4269                         }
4270                 }
4271         }
4272
4273         XFS_BTREE_TRACE_CURSOR(cur, XBT_EXIT);
4274         *stat = i;
4275         return 0;
4276 error0:
4277         XFS_BTREE_TRACE_CURSOR(cur, XBT_ERROR);
4278         return error;
4279 }
4280
4281 /*
4282  * Get the data from the pointed-to record.
4283  */
4284 int                                     /* error */
4285 xfs_btree_get_rec(
4286         struct xfs_btree_cur    *cur,   /* btree cursor */
4287         union xfs_btree_rec     **recp, /* output: btree record */
4288         int                     *stat)  /* output: success/failure */
4289 {
4290         struct xfs_btree_block  *block; /* btree block */
4291         struct xfs_buf          *bp;    /* buffer pointer */
4292         int                     ptr;    /* record number */
4293 #ifdef DEBUG
4294         int                     error;  /* error return value */
4295 #endif
4296
4297         ptr = cur->bc_ptrs[0];
4298         block = xfs_btree_get_block(cur, 0, &bp);
4299
4300 #ifdef DEBUG
4301         error = xfs_btree_check_block(cur, block, 0, bp);
4302         if (error)
4303                 return error;
4304 #endif
4305
4306         /*
4307          * Off the right end or left end, return failure.
4308          */
4309         if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4310                 *stat = 0;
4311                 return 0;
4312         }
4313
4314         /*
4315          * Point to the record and extract its data.
4316          */
4317         *recp = xfs_btree_rec_addr(cur, ptr, block);
4318         *stat = 1;
4319         return 0;
4320 }
4321
4322 /* Visit a block in a btree. */
4323 STATIC int
4324 xfs_btree_visit_block(
4325         struct xfs_btree_cur            *cur,
4326         int                             level,
4327         xfs_btree_visit_blocks_fn       fn,
4328         void                            *data)
4329 {
4330         struct xfs_btree_block          *block;
4331         struct xfs_buf                  *bp;
4332         union xfs_btree_ptr             rptr;
4333         int                             error;
4334
4335         /* do right sibling readahead */
4336         xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4337         block = xfs_btree_get_block(cur, level, &bp);
4338
4339         /* process the block */
4340         error = fn(cur, level, data);
4341         if (error)
4342                 return error;
4343
4344         /* now read rh sibling block for next iteration */
4345         xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4346         if (xfs_btree_ptr_is_null(cur, &rptr))
4347                 return -ENOENT;
4348
4349         return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4350 }
4351
4352
4353 /* Visit every block in a btree. */
4354 int
4355 xfs_btree_visit_blocks(
4356         struct xfs_btree_cur            *cur,
4357         xfs_btree_visit_blocks_fn       fn,
4358         void                            *data)
4359 {
4360         union xfs_btree_ptr             lptr;
4361         int                             level;
4362         struct xfs_btree_block          *block = NULL;
4363         int                             error = 0;
4364
4365         cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4366
4367         /* for each level */
4368         for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4369                 /* grab the left hand block */
4370                 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4371                 if (error)
4372                         return error;
4373
4374                 /* readahead the left most block for the next level down */
4375                 if (level > 0) {
4376                         union xfs_btree_ptr     *ptr;
4377
4378                         ptr = xfs_btree_ptr_addr(cur, 1, block);
4379                         xfs_btree_readahead_ptr(cur, ptr, 1);
4380
4381                         /* save for the next iteration of the loop */
4382                         xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4383                 }
4384
4385                 /* for each buffer in the level */
4386                 do {
4387                         error = xfs_btree_visit_block(cur, level, fn, data);
4388                 } while (!error);
4389
4390                 if (error != -ENOENT)
4391                         return error;
4392         }
4393
4394         return 0;
4395 }
4396
4397 /*
4398  * Change the owner of a btree.
4399  *
4400  * The mechanism we use here is ordered buffer logging. Because we don't know
4401  * how many buffers were are going to need to modify, we don't really want to
4402  * have to make transaction reservations for the worst case of every buffer in a
4403  * full size btree as that may be more space that we can fit in the log....
4404  *
4405  * We do the btree walk in the most optimal manner possible - we have sibling
4406  * pointers so we can just walk all the blocks on each level from left to right
4407  * in a single pass, and then move to the next level and do the same. We can
4408  * also do readahead on the sibling pointers to get IO moving more quickly,
4409  * though for slow disks this is unlikely to make much difference to performance
4410  * as the amount of CPU work we have to do before moving to the next block is
4411  * relatively small.
4412  *
4413  * For each btree block that we load, modify the owner appropriately, set the
4414  * buffer as an ordered buffer and log it appropriately. We need to ensure that
4415  * we mark the region we change dirty so that if the buffer is relogged in
4416  * a subsequent transaction the changes we make here as an ordered buffer are
4417  * correctly relogged in that transaction.  If we are in recovery context, then
4418  * just queue the modified buffer as delayed write buffer so the transaction
4419  * recovery completion writes the changes to disk.
4420  */
4421 struct xfs_btree_block_change_owner_info {
4422         __uint64_t              new_owner;
4423         struct list_head        *buffer_list;
4424 };
4425
4426 static int
4427 xfs_btree_block_change_owner(
4428         struct xfs_btree_cur    *cur,
4429         int                     level,
4430         void                    *data)
4431 {
4432         struct xfs_btree_block_change_owner_info        *bbcoi = data;
4433         struct xfs_btree_block  *block;
4434         struct xfs_buf          *bp;
4435
4436         /* modify the owner */
4437         block = xfs_btree_get_block(cur, level, &bp);
4438         if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4439                 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4440                         return 0;
4441                 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4442         } else {
4443                 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4444                         return 0;
4445                 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4446         }
4447
4448         /*
4449          * If the block is a root block hosted in an inode, we might not have a
4450          * buffer pointer here and we shouldn't attempt to log the change as the
4451          * information is already held in the inode and discarded when the root
4452          * block is formatted into the on-disk inode fork. We still change it,
4453          * though, so everything is consistent in memory.
4454          */
4455         if (!bp) {
4456                 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4457                 ASSERT(level == cur->bc_nlevels - 1);
4458                 return 0;
4459         }
4460
4461         if (cur->bc_tp) {
4462                 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4463                         xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4464                         return -EAGAIN;
4465                 }
4466         } else {
4467                 xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4468         }
4469
4470         return 0;
4471 }
4472
4473 int
4474 xfs_btree_change_owner(
4475         struct xfs_btree_cur    *cur,
4476         __uint64_t              new_owner,
4477         struct list_head        *buffer_list)
4478 {
4479         struct xfs_btree_block_change_owner_info        bbcoi;
4480
4481         bbcoi.new_owner = new_owner;
4482         bbcoi.buffer_list = buffer_list;
4483
4484         return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4485                         &bbcoi);
4486 }
4487
4488 /**
4489  * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4490  *                                    btree block
4491  *
4492  * @bp: buffer containing the btree block
4493  * @max_recs: pointer to the m_*_mxr max records field in the xfs mount
4494  * @pag_max_level: pointer to the per-ag max level field
4495  */
4496 bool
4497 xfs_btree_sblock_v5hdr_verify(
4498         struct xfs_buf          *bp)
4499 {
4500         struct xfs_mount        *mp = bp->b_target->bt_mount;
4501         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4502         struct xfs_perag        *pag = bp->b_pag;
4503
4504         if (!xfs_sb_version_hascrc(&mp->m_sb))
4505                 return false;
4506         if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4507                 return false;
4508         if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4509                 return false;
4510         if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4511                 return false;
4512         return true;
4513 }
4514
4515 /**
4516  * xfs_btree_sblock_verify() -- verify a short-format btree block
4517  *
4518  * @bp: buffer containing the btree block
4519  * @max_recs: maximum records allowed in this btree node
4520  */
4521 bool
4522 xfs_btree_sblock_verify(
4523         struct xfs_buf          *bp,
4524         unsigned int            max_recs)
4525 {
4526         struct xfs_mount        *mp = bp->b_target->bt_mount;
4527         struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
4528
4529         /* numrecs verification */
4530         if (be16_to_cpu(block->bb_numrecs) > max_recs)
4531                 return false;
4532
4533         /* sibling pointer verification */
4534         if (!block->bb_u.s.bb_leftsib ||
4535             (be32_to_cpu(block->bb_u.s.bb_leftsib) >= mp->m_sb.sb_agblocks &&
4536              block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK)))
4537                 return false;
4538         if (!block->bb_u.s.bb_rightsib ||
4539             (be32_to_cpu(block->bb_u.s.bb_rightsib) >= mp->m_sb.sb_agblocks &&
4540              block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK)))
4541                 return false;
4542
4543         return true;
4544 }
4545
4546 /*
4547  * Calculate the number of btree levels needed to store a given number of
4548  * records in a short-format btree.
4549  */
4550 uint
4551 xfs_btree_compute_maxlevels(
4552         struct xfs_mount        *mp,
4553         uint                    *limits,
4554         unsigned long           len)
4555 {
4556         uint                    level;
4557         unsigned long           maxblocks;
4558
4559         maxblocks = (len + limits[0] - 1) / limits[0];
4560         for (level = 1; maxblocks > 1; level++)
4561                 maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4562         return level;
4563 }
4564
4565 /*
4566  * Query a regular btree for all records overlapping a given interval.
4567  * Start with a LE lookup of the key of low_rec and return all records
4568  * until we find a record with a key greater than the key of high_rec.
4569  */
4570 STATIC int
4571 xfs_btree_simple_query_range(
4572         struct xfs_btree_cur            *cur,
4573         union xfs_btree_key             *low_key,
4574         union xfs_btree_key             *high_key,
4575         xfs_btree_query_range_fn        fn,
4576         void                            *priv)
4577 {
4578         union xfs_btree_rec             *recp;
4579         union xfs_btree_key             rec_key;
4580         __int64_t                       diff;
4581         int                             stat;
4582         bool                            firstrec = true;
4583         int                             error;
4584
4585         ASSERT(cur->bc_ops->init_high_key_from_rec);
4586         ASSERT(cur->bc_ops->diff_two_keys);
4587
4588         /*
4589          * Find the leftmost record.  The btree cursor must be set
4590          * to the low record used to generate low_key.
4591          */
4592         stat = 0;
4593         error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4594         if (error)
4595                 goto out;
4596
4597         /* Nothing?  See if there's anything to the right. */
4598         if (!stat) {
4599                 error = xfs_btree_increment(cur, 0, &stat);
4600                 if (error)
4601                         goto out;
4602         }
4603
4604         while (stat) {
4605                 /* Find the record. */
4606                 error = xfs_btree_get_rec(cur, &recp, &stat);
4607                 if (error || !stat)
4608                         break;
4609
4610                 /* Skip if high_key(rec) < low_key. */
4611                 if (firstrec) {
4612                         cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4613                         firstrec = false;
4614                         diff = cur->bc_ops->diff_two_keys(cur, low_key,
4615                                         &rec_key);
4616                         if (diff > 0)
4617                                 goto advloop;
4618                 }
4619
4620                 /* Stop if high_key < low_key(rec). */
4621                 cur->bc_ops->init_key_from_rec(&rec_key, recp);
4622                 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4623                 if (diff > 0)
4624                         break;
4625
4626                 /* Callback */
4627                 error = fn(cur, recp, priv);
4628                 if (error < 0 || error == XFS_BTREE_QUERY_RANGE_ABORT)
4629                         break;
4630
4631 advloop:
4632                 /* Move on to the next record. */
4633                 error = xfs_btree_increment(cur, 0, &stat);
4634                 if (error)
4635                         break;
4636         }
4637
4638 out:
4639         return error;
4640 }
4641
4642 /*
4643  * Query an overlapped interval btree for all records overlapping a given
4644  * interval.  This function roughly follows the algorithm given in
4645  * "Interval Trees" of _Introduction to Algorithms_, which is section
4646  * 14.3 in the 2nd and 3rd editions.
4647  *
4648  * First, generate keys for the low and high records passed in.
4649  *
4650  * For any leaf node, generate the high and low keys for the record.
4651  * If the record keys overlap with the query low/high keys, pass the
4652  * record to the function iterator.
4653  *
4654  * For any internal node, compare the low and high keys of each
4655  * pointer against the query low/high keys.  If there's an overlap,
4656  * follow the pointer.
4657  *
4658  * As an optimization, we stop scanning a block when we find a low key
4659  * that is greater than the query's high key.
4660  */
4661 STATIC int
4662 xfs_btree_overlapped_query_range(
4663         struct xfs_btree_cur            *cur,
4664         union xfs_btree_key             *low_key,
4665         union xfs_btree_key             *high_key,
4666         xfs_btree_query_range_fn        fn,
4667         void                            *priv)
4668 {
4669         union xfs_btree_ptr             ptr;
4670         union xfs_btree_ptr             *pp;
4671         union xfs_btree_key             rec_key;
4672         union xfs_btree_key             rec_hkey;
4673         union xfs_btree_key             *lkp;
4674         union xfs_btree_key             *hkp;
4675         union xfs_btree_rec             *recp;
4676         struct xfs_btree_block          *block;
4677         __int64_t                       ldiff;
4678         __int64_t                       hdiff;
4679         int                             level;
4680         struct xfs_buf                  *bp;
4681         int                             i;
4682         int                             error;
4683
4684         /* Load the root of the btree. */
4685         level = cur->bc_nlevels - 1;
4686         cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4687         error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4688         if (error)
4689                 return error;
4690         xfs_btree_get_block(cur, level, &bp);
4691         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4692 #ifdef DEBUG
4693         error = xfs_btree_check_block(cur, block, level, bp);
4694         if (error)
4695                 goto out;
4696 #endif
4697         cur->bc_ptrs[level] = 1;
4698
4699         while (level < cur->bc_nlevels) {
4700                 block = xfs_btree_get_block(cur, level, &bp);
4701
4702                 /* End of node, pop back towards the root. */
4703                 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4704 pop_up:
4705                         if (level < cur->bc_nlevels - 1)
4706                                 cur->bc_ptrs[level + 1]++;
4707                         level++;
4708                         continue;
4709                 }
4710
4711                 if (level == 0) {
4712                         /* Handle a leaf node. */
4713                         recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4714
4715                         cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4716                         ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4717                                         low_key);
4718
4719                         cur->bc_ops->init_key_from_rec(&rec_key, recp);
4720                         hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4721                                         &rec_key);
4722
4723                         /*
4724                          * If (record's high key >= query's low key) and
4725                          *    (query's high key >= record's low key), then
4726                          * this record overlaps the query range; callback.
4727                          */
4728                         if (ldiff >= 0 && hdiff >= 0) {
4729                                 error = fn(cur, recp, priv);
4730                                 if (error < 0 ||
4731                                     error == XFS_BTREE_QUERY_RANGE_ABORT)
4732                                         break;
4733                         } else if (hdiff < 0) {
4734                                 /* Record is larger than high key; pop. */
4735                                 goto pop_up;
4736                         }
4737                         cur->bc_ptrs[level]++;
4738                         continue;
4739                 }
4740
4741                 /* Handle an internal node. */
4742                 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4743                 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4744                 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4745
4746                 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4747                 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4748
4749                 /*
4750                  * If (pointer's high key >= query's low key) and
4751                  *    (query's high key >= pointer's low key), then
4752                  * this record overlaps the query range; follow pointer.
4753                  */
4754                 if (ldiff >= 0 && hdiff >= 0) {
4755                         level--;
4756                         error = xfs_btree_lookup_get_block(cur, level, pp,
4757                                         &block);
4758                         if (error)
4759                                 goto out;
4760                         xfs_btree_get_block(cur, level, &bp);
4761                         trace_xfs_btree_overlapped_query_range(cur, level, bp);
4762 #ifdef DEBUG
4763                         error = xfs_btree_check_block(cur, block, level, bp);
4764                         if (error)
4765                                 goto out;
4766 #endif
4767                         cur->bc_ptrs[level] = 1;
4768                         continue;
4769                 } else if (hdiff < 0) {
4770                         /* The low key is larger than the upper range; pop. */
4771                         goto pop_up;
4772                 }
4773                 cur->bc_ptrs[level]++;
4774         }
4775
4776 out:
4777         /*
4778          * If we don't end this function with the cursor pointing at a record
4779          * block, a subsequent non-error cursor deletion will not release
4780          * node-level buffers, causing a buffer leak.  This is quite possible
4781          * with a zero-results range query, so release the buffers if we
4782          * failed to return any results.
4783          */
4784         if (cur->bc_bufs[0] == NULL) {
4785                 for (i = 0; i < cur->bc_nlevels; i++) {
4786                         if (cur->bc_bufs[i]) {
4787                                 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4788                                 cur->bc_bufs[i] = NULL;
4789                                 cur->bc_ptrs[i] = 0;
4790                                 cur->bc_ra[i] = 0;
4791                         }
4792                 }
4793         }
4794
4795         return error;
4796 }
4797
4798 /*
4799  * Query a btree for all records overlapping a given interval of keys.  The
4800  * supplied function will be called with each record found; return one of the
4801  * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4802  * code.  This function returns XFS_BTREE_QUERY_RANGE_ABORT, zero, or a
4803  * negative error code.
4804  */
4805 int
4806 xfs_btree_query_range(
4807         struct xfs_btree_cur            *cur,
4808         union xfs_btree_irec            *low_rec,
4809         union xfs_btree_irec            *high_rec,
4810         xfs_btree_query_range_fn        fn,
4811         void                            *priv)
4812 {
4813         union xfs_btree_rec             rec;
4814         union xfs_btree_key             low_key;
4815         union xfs_btree_key             high_key;
4816
4817         /* Find the keys of both ends of the interval. */
4818         cur->bc_rec = *high_rec;
4819         cur->bc_ops->init_rec_from_cur(cur, &rec);
4820         cur->bc_ops->init_key_from_rec(&high_key, &rec);
4821
4822         cur->bc_rec = *low_rec;
4823         cur->bc_ops->init_rec_from_cur(cur, &rec);
4824         cur->bc_ops->init_key_from_rec(&low_key, &rec);
4825
4826         /* Enforce low key < high key. */
4827         if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4828                 return -EINVAL;
4829
4830         if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4831                 return xfs_btree_simple_query_range(cur, &low_key,
4832                                 &high_key, fn, priv);
4833         return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4834                         fn, priv);
4835 }
4836
4837 /*
4838  * Calculate the number of blocks needed to store a given number of records
4839  * in a short-format (per-AG metadata) btree.
4840  */
4841 xfs_extlen_t
4842 xfs_btree_calc_size(
4843         struct xfs_mount        *mp,
4844         uint                    *limits,
4845         unsigned long long      len)
4846 {
4847         int                     level;
4848         int                     maxrecs;
4849         xfs_extlen_t            rval;
4850
4851         maxrecs = limits[0];
4852         for (level = 0, rval = 0; len > 1; level++) {
4853                 len += maxrecs - 1;
4854                 do_div(len, maxrecs);
4855                 maxrecs = limits[1];
4856                 rval += len;
4857         }
4858         return rval;
4859 }
4860
4861 static int
4862 xfs_btree_count_blocks_helper(
4863         struct xfs_btree_cur    *cur,
4864         int                     level,
4865         void                    *data)
4866 {
4867         xfs_extlen_t            *blocks = data;
4868         (*blocks)++;
4869
4870         return 0;
4871 }
4872
4873 /* Count the blocks in a btree and return the result in *blocks. */
4874 int
4875 xfs_btree_count_blocks(
4876         struct xfs_btree_cur    *cur,
4877         xfs_extlen_t            *blocks)
4878 {
4879         *blocks = 0;
4880         return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4881                         blocks);
4882 }