GNU Linux-libre 4.19.264-gnu1
[releases.git] / fs / xfs / libxfs / xfs_iext_tree.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2017 Christoph Hellwig.
4  */
5
6 #include <linux/cache.h>
7 #include <linux/kernel.h>
8 #include <linux/slab.h>
9 #include "xfs.h"
10 #include "xfs_format.h"
11 #include "xfs_bit.h"
12 #include "xfs_log_format.h"
13 #include "xfs_inode.h"
14 #include "xfs_inode_fork.h"
15 #include "xfs_trans_resv.h"
16 #include "xfs_mount.h"
17 #include "xfs_bmap.h"
18 #include "xfs_trace.h"
19
20 /*
21  * In-core extent record layout:
22  *
23  * +-------+----------------------------+
24  * | 00:53 | all 54 bits of startoff    |
25  * | 54:63 | low 10 bits of startblock  |
26  * +-------+----------------------------+
27  * | 00:20 | all 21 bits of length      |
28  * |    21 | unwritten extent bit       |
29  * | 22:63 | high 42 bits of startblock |
30  * +-------+----------------------------+
31  */
32 #define XFS_IEXT_STARTOFF_MASK          xfs_mask64lo(BMBT_STARTOFF_BITLEN)
33 #define XFS_IEXT_LENGTH_MASK            xfs_mask64lo(BMBT_BLOCKCOUNT_BITLEN)
34 #define XFS_IEXT_STARTBLOCK_MASK        xfs_mask64lo(BMBT_STARTBLOCK_BITLEN)
35
36 struct xfs_iext_rec {
37         uint64_t                        lo;
38         uint64_t                        hi;
39 };
40
41 /*
42  * Given that the length can't be a zero, only an empty hi value indicates an
43  * unused record.
44  */
45 static bool xfs_iext_rec_is_empty(struct xfs_iext_rec *rec)
46 {
47         return rec->hi == 0;
48 }
49
50 static inline void xfs_iext_rec_clear(struct xfs_iext_rec *rec)
51 {
52         rec->lo = 0;
53         rec->hi = 0;
54 }
55
56 static void
57 xfs_iext_set(
58         struct xfs_iext_rec     *rec,
59         struct xfs_bmbt_irec    *irec)
60 {
61         ASSERT((irec->br_startoff & ~XFS_IEXT_STARTOFF_MASK) == 0);
62         ASSERT((irec->br_blockcount & ~XFS_IEXT_LENGTH_MASK) == 0);
63         ASSERT((irec->br_startblock & ~XFS_IEXT_STARTBLOCK_MASK) == 0);
64
65         rec->lo = irec->br_startoff & XFS_IEXT_STARTOFF_MASK;
66         rec->hi = irec->br_blockcount & XFS_IEXT_LENGTH_MASK;
67
68         rec->lo |= (irec->br_startblock << 54);
69         rec->hi |= ((irec->br_startblock & ~xfs_mask64lo(10)) << (22 - 10));
70
71         if (irec->br_state == XFS_EXT_UNWRITTEN)
72                 rec->hi |= (1 << 21);
73 }
74
75 static void
76 xfs_iext_get(
77         struct xfs_bmbt_irec    *irec,
78         struct xfs_iext_rec     *rec)
79 {
80         irec->br_startoff = rec->lo & XFS_IEXT_STARTOFF_MASK;
81         irec->br_blockcount = rec->hi & XFS_IEXT_LENGTH_MASK;
82
83         irec->br_startblock = rec->lo >> 54;
84         irec->br_startblock |= (rec->hi & xfs_mask64hi(42)) >> (22 - 10);
85
86         if (rec->hi & (1 << 21))
87                 irec->br_state = XFS_EXT_UNWRITTEN;
88         else
89                 irec->br_state = XFS_EXT_NORM;
90 }
91
92 enum {
93         NODE_SIZE       = 256,
94         KEYS_PER_NODE   = NODE_SIZE / (sizeof(uint64_t) + sizeof(void *)),
95         RECS_PER_LEAF   = (NODE_SIZE - (2 * sizeof(struct xfs_iext_leaf *))) /
96                                 sizeof(struct xfs_iext_rec),
97 };
98
99 /*
100  * In-core extent btree block layout:
101  *
102  * There are two types of blocks in the btree: leaf and inner (non-leaf) blocks.
103  *
104  * The leaf blocks are made up by %KEYS_PER_NODE extent records, which each
105  * contain the startoffset, blockcount, startblock and unwritten extent flag.
106  * See above for the exact format, followed by pointers to the previous and next
107  * leaf blocks (if there are any).
108  *
109  * The inner (non-leaf) blocks first contain KEYS_PER_NODE lookup keys, followed
110  * by an equal number of pointers to the btree blocks at the next lower level.
111  *
112  *              +-------+-------+-------+-------+-------+----------+----------+
113  * Leaf:        | rec 1 | rec 2 | rec 3 | rec 4 | rec N | prev-ptr | next-ptr |
114  *              +-------+-------+-------+-------+-------+----------+----------+
115  *
116  *              +-------+-------+-------+-------+-------+-------+------+-------+
117  * Inner:       | key 1 | key 2 | key 3 | key N | ptr 1 | ptr 2 | ptr3 | ptr N |
118  *              +-------+-------+-------+-------+-------+-------+------+-------+
119  */
120 struct xfs_iext_node {
121         uint64_t                keys[KEYS_PER_NODE];
122 #define XFS_IEXT_KEY_INVALID    (1ULL << 63)
123         void                    *ptrs[KEYS_PER_NODE];
124 };
125
126 struct xfs_iext_leaf {
127         struct xfs_iext_rec     recs[RECS_PER_LEAF];
128         struct xfs_iext_leaf    *prev;
129         struct xfs_iext_leaf    *next;
130 };
131
132 inline xfs_extnum_t xfs_iext_count(struct xfs_ifork *ifp)
133 {
134         return ifp->if_bytes / sizeof(struct xfs_iext_rec);
135 }
136
137 static inline int xfs_iext_max_recs(struct xfs_ifork *ifp)
138 {
139         if (ifp->if_height == 1)
140                 return xfs_iext_count(ifp);
141         return RECS_PER_LEAF;
142 }
143
144 static inline struct xfs_iext_rec *cur_rec(struct xfs_iext_cursor *cur)
145 {
146         return &cur->leaf->recs[cur->pos];
147 }
148
149 static inline bool xfs_iext_valid(struct xfs_ifork *ifp,
150                 struct xfs_iext_cursor *cur)
151 {
152         if (!cur->leaf)
153                 return false;
154         if (cur->pos < 0 || cur->pos >= xfs_iext_max_recs(ifp))
155                 return false;
156         if (xfs_iext_rec_is_empty(cur_rec(cur)))
157                 return false;
158         return true;
159 }
160
161 static void *
162 xfs_iext_find_first_leaf(
163         struct xfs_ifork        *ifp)
164 {
165         struct xfs_iext_node    *node = ifp->if_u1.if_root;
166         int                     height;
167
168         if (!ifp->if_height)
169                 return NULL;
170
171         for (height = ifp->if_height; height > 1; height--) {
172                 node = node->ptrs[0];
173                 ASSERT(node);
174         }
175
176         return node;
177 }
178
179 static void *
180 xfs_iext_find_last_leaf(
181         struct xfs_ifork        *ifp)
182 {
183         struct xfs_iext_node    *node = ifp->if_u1.if_root;
184         int                     height, i;
185
186         if (!ifp->if_height)
187                 return NULL;
188
189         for (height = ifp->if_height; height > 1; height--) {
190                 for (i = 1; i < KEYS_PER_NODE; i++)
191                         if (!node->ptrs[i])
192                                 break;
193                 node = node->ptrs[i - 1];
194                 ASSERT(node);
195         }
196
197         return node;
198 }
199
200 void
201 xfs_iext_first(
202         struct xfs_ifork        *ifp,
203         struct xfs_iext_cursor  *cur)
204 {
205         cur->pos = 0;
206         cur->leaf = xfs_iext_find_first_leaf(ifp);
207 }
208
209 void
210 xfs_iext_last(
211         struct xfs_ifork        *ifp,
212         struct xfs_iext_cursor  *cur)
213 {
214         int                     i;
215
216         cur->leaf = xfs_iext_find_last_leaf(ifp);
217         if (!cur->leaf) {
218                 cur->pos = 0;
219                 return;
220         }
221
222         for (i = 1; i < xfs_iext_max_recs(ifp); i++) {
223                 if (xfs_iext_rec_is_empty(&cur->leaf->recs[i]))
224                         break;
225         }
226         cur->pos = i - 1;
227 }
228
229 void
230 xfs_iext_next(
231         struct xfs_ifork        *ifp,
232         struct xfs_iext_cursor  *cur)
233 {
234         if (!cur->leaf) {
235                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
236                 xfs_iext_first(ifp, cur);
237                 return;
238         }
239
240         ASSERT(cur->pos >= 0);
241         ASSERT(cur->pos < xfs_iext_max_recs(ifp));
242
243         cur->pos++;
244         if (ifp->if_height > 1 && !xfs_iext_valid(ifp, cur) &&
245             cur->leaf->next) {
246                 cur->leaf = cur->leaf->next;
247                 cur->pos = 0;
248         }
249 }
250
251 void
252 xfs_iext_prev(
253         struct xfs_ifork        *ifp,
254         struct xfs_iext_cursor  *cur)
255 {
256         if (!cur->leaf) {
257                 ASSERT(cur->pos <= 0 || cur->pos >= RECS_PER_LEAF);
258                 xfs_iext_last(ifp, cur);
259                 return;
260         }
261
262         ASSERT(cur->pos >= 0);
263         ASSERT(cur->pos <= RECS_PER_LEAF);
264
265 recurse:
266         do {
267                 cur->pos--;
268                 if (xfs_iext_valid(ifp, cur))
269                         return;
270         } while (cur->pos > 0);
271
272         if (ifp->if_height > 1 && cur->leaf->prev) {
273                 cur->leaf = cur->leaf->prev;
274                 cur->pos = RECS_PER_LEAF;
275                 goto recurse;
276         }
277 }
278
279 static inline int
280 xfs_iext_key_cmp(
281         struct xfs_iext_node    *node,
282         int                     n,
283         xfs_fileoff_t           offset)
284 {
285         if (node->keys[n] > offset)
286                 return 1;
287         if (node->keys[n] < offset)
288                 return -1;
289         return 0;
290 }
291
292 static inline int
293 xfs_iext_rec_cmp(
294         struct xfs_iext_rec     *rec,
295         xfs_fileoff_t           offset)
296 {
297         uint64_t                rec_offset = rec->lo & XFS_IEXT_STARTOFF_MASK;
298         uint32_t                rec_len = rec->hi & XFS_IEXT_LENGTH_MASK;
299
300         if (rec_offset > offset)
301                 return 1;
302         if (rec_offset + rec_len <= offset)
303                 return -1;
304         return 0;
305 }
306
307 static void *
308 xfs_iext_find_level(
309         struct xfs_ifork        *ifp,
310         xfs_fileoff_t           offset,
311         int                     level)
312 {
313         struct xfs_iext_node    *node = ifp->if_u1.if_root;
314         int                     height, i;
315
316         if (!ifp->if_height)
317                 return NULL;
318
319         for (height = ifp->if_height; height > level; height--) {
320                 for (i = 1; i < KEYS_PER_NODE; i++)
321                         if (xfs_iext_key_cmp(node, i, offset) > 0)
322                                 break;
323
324                 node = node->ptrs[i - 1];
325                 if (!node)
326                         break;
327         }
328
329         return node;
330 }
331
332 static int
333 xfs_iext_node_pos(
334         struct xfs_iext_node    *node,
335         xfs_fileoff_t           offset)
336 {
337         int                     i;
338
339         for (i = 1; i < KEYS_PER_NODE; i++) {
340                 if (xfs_iext_key_cmp(node, i, offset) > 0)
341                         break;
342         }
343
344         return i - 1;
345 }
346
347 static int
348 xfs_iext_node_insert_pos(
349         struct xfs_iext_node    *node,
350         xfs_fileoff_t           offset)
351 {
352         int                     i;
353
354         for (i = 0; i < KEYS_PER_NODE; i++) {
355                 if (xfs_iext_key_cmp(node, i, offset) > 0)
356                         return i;
357         }
358
359         return KEYS_PER_NODE;
360 }
361
362 static int
363 xfs_iext_node_nr_entries(
364         struct xfs_iext_node    *node,
365         int                     start)
366 {
367         int                     i;
368
369         for (i = start; i < KEYS_PER_NODE; i++) {
370                 if (node->keys[i] == XFS_IEXT_KEY_INVALID)
371                         break;
372         }
373
374         return i;
375 }
376
377 static int
378 xfs_iext_leaf_nr_entries(
379         struct xfs_ifork        *ifp,
380         struct xfs_iext_leaf    *leaf,
381         int                     start)
382 {
383         int                     i;
384
385         for (i = start; i < xfs_iext_max_recs(ifp); i++) {
386                 if (xfs_iext_rec_is_empty(&leaf->recs[i]))
387                         break;
388         }
389
390         return i;
391 }
392
393 static inline uint64_t
394 xfs_iext_leaf_key(
395         struct xfs_iext_leaf    *leaf,
396         int                     n)
397 {
398         return leaf->recs[n].lo & XFS_IEXT_STARTOFF_MASK;
399 }
400
401 static void
402 xfs_iext_grow(
403         struct xfs_ifork        *ifp)
404 {
405         struct xfs_iext_node    *node = kmem_zalloc(NODE_SIZE, KM_NOFS);
406         int                     i;
407
408         if (ifp->if_height == 1) {
409                 struct xfs_iext_leaf *prev = ifp->if_u1.if_root;
410
411                 node->keys[0] = xfs_iext_leaf_key(prev, 0);
412                 node->ptrs[0] = prev;
413         } else  {
414                 struct xfs_iext_node *prev = ifp->if_u1.if_root;
415
416                 ASSERT(ifp->if_height > 1);
417
418                 node->keys[0] = prev->keys[0];
419                 node->ptrs[0] = prev;
420         }
421
422         for (i = 1; i < KEYS_PER_NODE; i++)
423                 node->keys[i] = XFS_IEXT_KEY_INVALID;
424
425         ifp->if_u1.if_root = node;
426         ifp->if_height++;
427 }
428
429 static void
430 xfs_iext_update_node(
431         struct xfs_ifork        *ifp,
432         xfs_fileoff_t           old_offset,
433         xfs_fileoff_t           new_offset,
434         int                     level,
435         void                    *ptr)
436 {
437         struct xfs_iext_node    *node = ifp->if_u1.if_root;
438         int                     height, i;
439
440         for (height = ifp->if_height; height > level; height--) {
441                 for (i = 0; i < KEYS_PER_NODE; i++) {
442                         if (i > 0 && xfs_iext_key_cmp(node, i, old_offset) > 0)
443                                 break;
444                         if (node->keys[i] == old_offset)
445                                 node->keys[i] = new_offset;
446                 }
447                 node = node->ptrs[i - 1];
448                 ASSERT(node);
449         }
450
451         ASSERT(node == ptr);
452 }
453
454 static struct xfs_iext_node *
455 xfs_iext_split_node(
456         struct xfs_iext_node    **nodep,
457         int                     *pos,
458         int                     *nr_entries)
459 {
460         struct xfs_iext_node    *node = *nodep;
461         struct xfs_iext_node    *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
462         const int               nr_move = KEYS_PER_NODE / 2;
463         int                     nr_keep = nr_move + (KEYS_PER_NODE & 1);
464         int                     i = 0;
465
466         /* for sequential append operations just spill over into the new node */
467         if (*pos == KEYS_PER_NODE) {
468                 *nodep = new;
469                 *pos = 0;
470                 *nr_entries = 0;
471                 goto done;
472         }
473
474
475         for (i = 0; i < nr_move; i++) {
476                 new->keys[i] = node->keys[nr_keep + i];
477                 new->ptrs[i] = node->ptrs[nr_keep + i];
478
479                 node->keys[nr_keep + i] = XFS_IEXT_KEY_INVALID;
480                 node->ptrs[nr_keep + i] = NULL;
481         }
482
483         if (*pos >= nr_keep) {
484                 *nodep = new;
485                 *pos -= nr_keep;
486                 *nr_entries = nr_move;
487         } else {
488                 *nr_entries = nr_keep;
489         }
490 done:
491         for (; i < KEYS_PER_NODE; i++)
492                 new->keys[i] = XFS_IEXT_KEY_INVALID;
493         return new;
494 }
495
496 static void
497 xfs_iext_insert_node(
498         struct xfs_ifork        *ifp,
499         uint64_t                offset,
500         void                    *ptr,
501         int                     level)
502 {
503         struct xfs_iext_node    *node, *new;
504         int                     i, pos, nr_entries;
505
506 again:
507         if (ifp->if_height < level)
508                 xfs_iext_grow(ifp);
509
510         new = NULL;
511         node = xfs_iext_find_level(ifp, offset, level);
512         pos = xfs_iext_node_insert_pos(node, offset);
513         nr_entries = xfs_iext_node_nr_entries(node, pos);
514
515         ASSERT(pos >= nr_entries || xfs_iext_key_cmp(node, pos, offset) != 0);
516         ASSERT(nr_entries <= KEYS_PER_NODE);
517
518         if (nr_entries == KEYS_PER_NODE)
519                 new = xfs_iext_split_node(&node, &pos, &nr_entries);
520
521         /*
522          * Update the pointers in higher levels if the first entry changes
523          * in an existing node.
524          */
525         if (node != new && pos == 0 && nr_entries > 0)
526                 xfs_iext_update_node(ifp, node->keys[0], offset, level, node);
527
528         for (i = nr_entries; i > pos; i--) {
529                 node->keys[i] = node->keys[i - 1];
530                 node->ptrs[i] = node->ptrs[i - 1];
531         }
532         node->keys[pos] = offset;
533         node->ptrs[pos] = ptr;
534
535         if (new) {
536                 offset = new->keys[0];
537                 ptr = new;
538                 level++;
539                 goto again;
540         }
541 }
542
543 static struct xfs_iext_leaf *
544 xfs_iext_split_leaf(
545         struct xfs_iext_cursor  *cur,
546         int                     *nr_entries)
547 {
548         struct xfs_iext_leaf    *leaf = cur->leaf;
549         struct xfs_iext_leaf    *new = kmem_zalloc(NODE_SIZE, KM_NOFS);
550         const int               nr_move = RECS_PER_LEAF / 2;
551         int                     nr_keep = nr_move + (RECS_PER_LEAF & 1);
552         int                     i;
553
554         /* for sequential append operations just spill over into the new node */
555         if (cur->pos == RECS_PER_LEAF) {
556                 cur->leaf = new;
557                 cur->pos = 0;
558                 *nr_entries = 0;
559                 goto done;
560         }
561
562         for (i = 0; i < nr_move; i++) {
563                 new->recs[i] = leaf->recs[nr_keep + i];
564                 xfs_iext_rec_clear(&leaf->recs[nr_keep + i]);
565         }
566
567         if (cur->pos >= nr_keep) {
568                 cur->leaf = new;
569                 cur->pos -= nr_keep;
570                 *nr_entries = nr_move;
571         } else {
572                 *nr_entries = nr_keep;
573         }
574 done:
575         if (leaf->next)
576                 leaf->next->prev = new;
577         new->next = leaf->next;
578         new->prev = leaf;
579         leaf->next = new;
580         return new;
581 }
582
583 static void
584 xfs_iext_alloc_root(
585         struct xfs_ifork        *ifp,
586         struct xfs_iext_cursor  *cur)
587 {
588         ASSERT(ifp->if_bytes == 0);
589
590         ifp->if_u1.if_root = kmem_zalloc(sizeof(struct xfs_iext_rec), KM_NOFS);
591         ifp->if_height = 1;
592
593         /* now that we have a node step into it */
594         cur->leaf = ifp->if_u1.if_root;
595         cur->pos = 0;
596 }
597
598 static void
599 xfs_iext_realloc_root(
600         struct xfs_ifork        *ifp,
601         struct xfs_iext_cursor  *cur)
602 {
603         size_t new_size = ifp->if_bytes + sizeof(struct xfs_iext_rec);
604         void *new;
605
606         /* account for the prev/next pointers */
607         if (new_size / sizeof(struct xfs_iext_rec) == RECS_PER_LEAF)
608                 new_size = NODE_SIZE;
609
610         new = kmem_realloc(ifp->if_u1.if_root, new_size, KM_NOFS);
611         memset(new + ifp->if_bytes, 0, new_size - ifp->if_bytes);
612         ifp->if_u1.if_root = new;
613         cur->leaf = new;
614 }
615
616 /*
617  * Increment the sequence counter if we are on a COW fork.  This allows
618  * the writeback code to skip looking for a COW extent if the COW fork
619  * hasn't changed.  We use WRITE_ONCE here to ensure the update to the
620  * sequence counter is seen before the modifications to the extent
621  * tree itself take effect.
622  */
623 static inline void xfs_iext_inc_seq(struct xfs_ifork *ifp, int state)
624 {
625         if (state & BMAP_COWFORK)
626                 WRITE_ONCE(ifp->if_seq, READ_ONCE(ifp->if_seq) + 1);
627 }
628
629 void
630 xfs_iext_insert(
631         struct xfs_inode        *ip,
632         struct xfs_iext_cursor  *cur,
633         struct xfs_bmbt_irec    *irec,
634         int                     state)
635 {
636         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
637         xfs_fileoff_t           offset = irec->br_startoff;
638         struct xfs_iext_leaf    *new = NULL;
639         int                     nr_entries, i;
640
641         xfs_iext_inc_seq(ifp, state);
642
643         if (ifp->if_height == 0)
644                 xfs_iext_alloc_root(ifp, cur);
645         else if (ifp->if_height == 1)
646                 xfs_iext_realloc_root(ifp, cur);
647
648         nr_entries = xfs_iext_leaf_nr_entries(ifp, cur->leaf, cur->pos);
649         ASSERT(nr_entries <= RECS_PER_LEAF);
650         ASSERT(cur->pos >= nr_entries ||
651                xfs_iext_rec_cmp(cur_rec(cur), irec->br_startoff) != 0);
652
653         if (nr_entries == RECS_PER_LEAF)
654                 new = xfs_iext_split_leaf(cur, &nr_entries);
655
656         /*
657          * Update the pointers in higher levels if the first entry changes
658          * in an existing node.
659          */
660         if (cur->leaf != new && cur->pos == 0 && nr_entries > 0) {
661                 xfs_iext_update_node(ifp, xfs_iext_leaf_key(cur->leaf, 0),
662                                 offset, 1, cur->leaf);
663         }
664
665         for (i = nr_entries; i > cur->pos; i--)
666                 cur->leaf->recs[i] = cur->leaf->recs[i - 1];
667         xfs_iext_set(cur_rec(cur), irec);
668         ifp->if_bytes += sizeof(struct xfs_iext_rec);
669
670         trace_xfs_iext_insert(ip, cur, state, _RET_IP_);
671
672         if (new)
673                 xfs_iext_insert_node(ifp, xfs_iext_leaf_key(new, 0), new, 2);
674 }
675
676 static struct xfs_iext_node *
677 xfs_iext_rebalance_node(
678         struct xfs_iext_node    *parent,
679         int                     *pos,
680         struct xfs_iext_node    *node,
681         int                     nr_entries)
682 {
683         /*
684          * If the neighbouring nodes are completely full, or have different
685          * parents, we might never be able to merge our node, and will only
686          * delete it once the number of entries hits zero.
687          */
688         if (nr_entries == 0)
689                 return node;
690
691         if (*pos > 0) {
692                 struct xfs_iext_node *prev = parent->ptrs[*pos - 1];
693                 int nr_prev = xfs_iext_node_nr_entries(prev, 0), i;
694
695                 if (nr_prev + nr_entries <= KEYS_PER_NODE) {
696                         for (i = 0; i < nr_entries; i++) {
697                                 prev->keys[nr_prev + i] = node->keys[i];
698                                 prev->ptrs[nr_prev + i] = node->ptrs[i];
699                         }
700                         return node;
701                 }
702         }
703
704         if (*pos + 1 < xfs_iext_node_nr_entries(parent, *pos)) {
705                 struct xfs_iext_node *next = parent->ptrs[*pos + 1];
706                 int nr_next = xfs_iext_node_nr_entries(next, 0), i;
707
708                 if (nr_entries + nr_next <= KEYS_PER_NODE) {
709                         /*
710                          * Merge the next node into this node so that we don't
711                          * have to do an additional update of the keys in the
712                          * higher levels.
713                          */
714                         for (i = 0; i < nr_next; i++) {
715                                 node->keys[nr_entries + i] = next->keys[i];
716                                 node->ptrs[nr_entries + i] = next->ptrs[i];
717                         }
718
719                         ++*pos;
720                         return next;
721                 }
722         }
723
724         return NULL;
725 }
726
727 static void
728 xfs_iext_remove_node(
729         struct xfs_ifork        *ifp,
730         xfs_fileoff_t           offset,
731         void                    *victim)
732 {
733         struct xfs_iext_node    *node, *parent;
734         int                     level = 2, pos, nr_entries, i;
735
736         ASSERT(level <= ifp->if_height);
737         node = xfs_iext_find_level(ifp, offset, level);
738         pos = xfs_iext_node_pos(node, offset);
739 again:
740         ASSERT(node->ptrs[pos]);
741         ASSERT(node->ptrs[pos] == victim);
742         kmem_free(victim);
743
744         nr_entries = xfs_iext_node_nr_entries(node, pos) - 1;
745         offset = node->keys[0];
746         for (i = pos; i < nr_entries; i++) {
747                 node->keys[i] = node->keys[i + 1];
748                 node->ptrs[i] = node->ptrs[i + 1];
749         }
750         node->keys[nr_entries] = XFS_IEXT_KEY_INVALID;
751         node->ptrs[nr_entries] = NULL;
752
753         if (pos == 0 && nr_entries > 0) {
754                 xfs_iext_update_node(ifp, offset, node->keys[0], level, node);
755                 offset = node->keys[0];
756         }
757
758         if (nr_entries >= KEYS_PER_NODE / 2)
759                 return;
760
761         if (level < ifp->if_height) {
762                 /*
763                  * If we aren't at the root yet try to find a neighbour node to
764                  * merge with (or delete the node if it is empty), and then
765                  * recurse up to the next level.
766                  */
767                 level++;
768                 parent = xfs_iext_find_level(ifp, offset, level);
769                 pos = xfs_iext_node_pos(parent, offset);
770
771                 ASSERT(pos != KEYS_PER_NODE);
772                 ASSERT(parent->ptrs[pos] == node);
773
774                 node = xfs_iext_rebalance_node(parent, &pos, node, nr_entries);
775                 if (node) {
776                         victim = node;
777                         node = parent;
778                         goto again;
779                 }
780         } else if (nr_entries == 1) {
781                 /*
782                  * If we are at the root and only one entry is left we can just
783                  * free this node and update the root pointer.
784                  */
785                 ASSERT(node == ifp->if_u1.if_root);
786                 ifp->if_u1.if_root = node->ptrs[0];
787                 ifp->if_height--;
788                 kmem_free(node);
789         }
790 }
791
792 static void
793 xfs_iext_rebalance_leaf(
794         struct xfs_ifork        *ifp,
795         struct xfs_iext_cursor  *cur,
796         struct xfs_iext_leaf    *leaf,
797         xfs_fileoff_t           offset,
798         int                     nr_entries)
799 {
800         /*
801          * If the neighbouring nodes are completely full we might never be able
802          * to merge our node, and will only delete it once the number of
803          * entries hits zero.
804          */
805         if (nr_entries == 0)
806                 goto remove_node;
807
808         if (leaf->prev) {
809                 int nr_prev = xfs_iext_leaf_nr_entries(ifp, leaf->prev, 0), i;
810
811                 if (nr_prev + nr_entries <= RECS_PER_LEAF) {
812                         for (i = 0; i < nr_entries; i++)
813                                 leaf->prev->recs[nr_prev + i] = leaf->recs[i];
814
815                         if (cur->leaf == leaf) {
816                                 cur->leaf = leaf->prev;
817                                 cur->pos += nr_prev;
818                         }
819                         goto remove_node;
820                 }
821         }
822
823         if (leaf->next) {
824                 int nr_next = xfs_iext_leaf_nr_entries(ifp, leaf->next, 0), i;
825
826                 if (nr_entries + nr_next <= RECS_PER_LEAF) {
827                         /*
828                          * Merge the next node into this node so that we don't
829                          * have to do an additional update of the keys in the
830                          * higher levels.
831                          */
832                         for (i = 0; i < nr_next; i++) {
833                                 leaf->recs[nr_entries + i] =
834                                         leaf->next->recs[i];
835                         }
836
837                         if (cur->leaf == leaf->next) {
838                                 cur->leaf = leaf;
839                                 cur->pos += nr_entries;
840                         }
841
842                         offset = xfs_iext_leaf_key(leaf->next, 0);
843                         leaf = leaf->next;
844                         goto remove_node;
845                 }
846         }
847
848         return;
849 remove_node:
850         if (leaf->prev)
851                 leaf->prev->next = leaf->next;
852         if (leaf->next)
853                 leaf->next->prev = leaf->prev;
854         xfs_iext_remove_node(ifp, offset, leaf);
855 }
856
857 static void
858 xfs_iext_free_last_leaf(
859         struct xfs_ifork        *ifp)
860 {
861         ifp->if_height--;
862         kmem_free(ifp->if_u1.if_root);
863         ifp->if_u1.if_root = NULL;
864 }
865
866 void
867 xfs_iext_remove(
868         struct xfs_inode        *ip,
869         struct xfs_iext_cursor  *cur,
870         int                     state)
871 {
872         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
873         struct xfs_iext_leaf    *leaf = cur->leaf;
874         xfs_fileoff_t           offset = xfs_iext_leaf_key(leaf, 0);
875         int                     i, nr_entries;
876
877         trace_xfs_iext_remove(ip, cur, state, _RET_IP_);
878
879         ASSERT(ifp->if_height > 0);
880         ASSERT(ifp->if_u1.if_root != NULL);
881         ASSERT(xfs_iext_valid(ifp, cur));
882
883         xfs_iext_inc_seq(ifp, state);
884
885         nr_entries = xfs_iext_leaf_nr_entries(ifp, leaf, cur->pos) - 1;
886         for (i = cur->pos; i < nr_entries; i++)
887                 leaf->recs[i] = leaf->recs[i + 1];
888         xfs_iext_rec_clear(&leaf->recs[nr_entries]);
889         ifp->if_bytes -= sizeof(struct xfs_iext_rec);
890
891         if (cur->pos == 0 && nr_entries > 0) {
892                 xfs_iext_update_node(ifp, offset, xfs_iext_leaf_key(leaf, 0), 1,
893                                 leaf);
894                 offset = xfs_iext_leaf_key(leaf, 0);
895         } else if (cur->pos == nr_entries) {
896                 if (ifp->if_height > 1 && leaf->next)
897                         cur->leaf = leaf->next;
898                 else
899                         cur->leaf = NULL;
900                 cur->pos = 0;
901         }
902
903         if (nr_entries >= RECS_PER_LEAF / 2)
904                 return;
905
906         if (ifp->if_height > 1)
907                 xfs_iext_rebalance_leaf(ifp, cur, leaf, offset, nr_entries);
908         else if (nr_entries == 0)
909                 xfs_iext_free_last_leaf(ifp);
910 }
911
912 /*
913  * Lookup the extent covering bno.
914  *
915  * If there is an extent covering bno return the extent index, and store the
916  * expanded extent structure in *gotp, and the extent cursor in *cur.
917  * If there is no extent covering bno, but there is an extent after it (e.g.
918  * it lies in a hole) return that extent in *gotp and its cursor in *cur
919  * instead.
920  * If bno is beyond the last extent return false, and return an invalid
921  * cursor value.
922  */
923 bool
924 xfs_iext_lookup_extent(
925         struct xfs_inode        *ip,
926         struct xfs_ifork        *ifp,
927         xfs_fileoff_t           offset,
928         struct xfs_iext_cursor  *cur,
929         struct xfs_bmbt_irec    *gotp)
930 {
931         XFS_STATS_INC(ip->i_mount, xs_look_exlist);
932
933         cur->leaf = xfs_iext_find_level(ifp, offset, 1);
934         if (!cur->leaf) {
935                 cur->pos = 0;
936                 return false;
937         }
938
939         for (cur->pos = 0; cur->pos < xfs_iext_max_recs(ifp); cur->pos++) {
940                 struct xfs_iext_rec *rec = cur_rec(cur);
941
942                 if (xfs_iext_rec_is_empty(rec))
943                         break;
944                 if (xfs_iext_rec_cmp(rec, offset) >= 0)
945                         goto found;
946         }
947
948         /* Try looking in the next node for an entry > offset */
949         if (ifp->if_height == 1 || !cur->leaf->next)
950                 return false;
951         cur->leaf = cur->leaf->next;
952         cur->pos = 0;
953         if (!xfs_iext_valid(ifp, cur))
954                 return false;
955 found:
956         xfs_iext_get(gotp, cur_rec(cur));
957         return true;
958 }
959
960 /*
961  * Returns the last extent before end, and if this extent doesn't cover
962  * end, update end to the end of the extent.
963  */
964 bool
965 xfs_iext_lookup_extent_before(
966         struct xfs_inode        *ip,
967         struct xfs_ifork        *ifp,
968         xfs_fileoff_t           *end,
969         struct xfs_iext_cursor  *cur,
970         struct xfs_bmbt_irec    *gotp)
971 {
972         /* could be optimized to not even look up the next on a match.. */
973         if (xfs_iext_lookup_extent(ip, ifp, *end - 1, cur, gotp) &&
974             gotp->br_startoff <= *end - 1)
975                 return true;
976         if (!xfs_iext_prev_extent(ifp, cur, gotp))
977                 return false;
978         *end = gotp->br_startoff + gotp->br_blockcount;
979         return true;
980 }
981
982 void
983 xfs_iext_update_extent(
984         struct xfs_inode        *ip,
985         int                     state,
986         struct xfs_iext_cursor  *cur,
987         struct xfs_bmbt_irec    *new)
988 {
989         struct xfs_ifork        *ifp = xfs_iext_state_to_fork(ip, state);
990
991         xfs_iext_inc_seq(ifp, state);
992
993         if (cur->pos == 0) {
994                 struct xfs_bmbt_irec    old;
995
996                 xfs_iext_get(&old, cur_rec(cur));
997                 if (new->br_startoff != old.br_startoff) {
998                         xfs_iext_update_node(ifp, old.br_startoff,
999                                         new->br_startoff, 1, cur->leaf);
1000                 }
1001         }
1002
1003         trace_xfs_bmap_pre_update(ip, cur, state, _RET_IP_);
1004         xfs_iext_set(cur_rec(cur), new);
1005         trace_xfs_bmap_post_update(ip, cur, state, _RET_IP_);
1006 }
1007
1008 /*
1009  * Return true if the cursor points at an extent and return the extent structure
1010  * in gotp.  Else return false.
1011  */
1012 bool
1013 xfs_iext_get_extent(
1014         struct xfs_ifork        *ifp,
1015         struct xfs_iext_cursor  *cur,
1016         struct xfs_bmbt_irec    *gotp)
1017 {
1018         if (!xfs_iext_valid(ifp, cur))
1019                 return false;
1020         xfs_iext_get(gotp, cur_rec(cur));
1021         return true;
1022 }
1023
1024 /*
1025  * This is a recursive function, because of that we need to be extremely
1026  * careful with stack usage.
1027  */
1028 static void
1029 xfs_iext_destroy_node(
1030         struct xfs_iext_node    *node,
1031         int                     level)
1032 {
1033         int                     i;
1034
1035         if (level > 1) {
1036                 for (i = 0; i < KEYS_PER_NODE; i++) {
1037                         if (node->keys[i] == XFS_IEXT_KEY_INVALID)
1038                                 break;
1039                         xfs_iext_destroy_node(node->ptrs[i], level - 1);
1040                 }
1041         }
1042
1043         kmem_free(node);
1044 }
1045
1046 void
1047 xfs_iext_destroy(
1048         struct xfs_ifork        *ifp)
1049 {
1050         xfs_iext_destroy_node(ifp->if_u1.if_root, ifp->if_height);
1051
1052         ifp->if_bytes = 0;
1053         ifp->if_height = 0;
1054         ifp->if_u1.if_root = NULL;
1055 }