GNU Linux-libre 4.9.337-gnu1
[releases.git] / fs / xfs / xfs_log.c
1 /*
2  * Copyright (c) 2000-2005 Silicon Graphics, Inc.
3  * All Rights Reserved.
4  *
5  * This program is free software; you can redistribute it and/or
6  * modify it under the terms of the GNU General Public License as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it would be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write the Free Software Foundation,
16  * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
17  */
18 #include "xfs.h"
19 #include "xfs_fs.h"
20 #include "xfs_shared.h"
21 #include "xfs_format.h"
22 #include "xfs_log_format.h"
23 #include "xfs_trans_resv.h"
24 #include "xfs_mount.h"
25 #include "xfs_error.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_log.h"
29 #include "xfs_log_priv.h"
30 #include "xfs_log_recover.h"
31 #include "xfs_inode.h"
32 #include "xfs_trace.h"
33 #include "xfs_fsops.h"
34 #include "xfs_cksum.h"
35 #include "xfs_sysfs.h"
36 #include "xfs_sb.h"
37
38 kmem_zone_t     *xfs_log_ticket_zone;
39
40 /* Local miscellaneous function prototypes */
41 STATIC int
42 xlog_commit_record(
43         struct xlog             *log,
44         struct xlog_ticket      *ticket,
45         struct xlog_in_core     **iclog,
46         xfs_lsn_t               *commitlsnp);
47
48 STATIC struct xlog *
49 xlog_alloc_log(
50         struct xfs_mount        *mp,
51         struct xfs_buftarg      *log_target,
52         xfs_daddr_t             blk_offset,
53         int                     num_bblks);
54 STATIC int
55 xlog_space_left(
56         struct xlog             *log,
57         atomic64_t              *head);
58 STATIC int
59 xlog_sync(
60         struct xlog             *log,
61         struct xlog_in_core     *iclog);
62 STATIC void
63 xlog_dealloc_log(
64         struct xlog             *log);
65
66 /* local state machine functions */
67 STATIC void xlog_state_done_syncing(xlog_in_core_t *iclog, int);
68 STATIC void
69 xlog_state_do_callback(
70         struct xlog             *log,
71         int                     aborted,
72         struct xlog_in_core     *iclog);
73 STATIC int
74 xlog_state_get_iclog_space(
75         struct xlog             *log,
76         int                     len,
77         struct xlog_in_core     **iclog,
78         struct xlog_ticket      *ticket,
79         int                     *continued_write,
80         int                     *logoffsetp);
81 STATIC int
82 xlog_state_release_iclog(
83         struct xlog             *log,
84         struct xlog_in_core     *iclog);
85 STATIC void
86 xlog_state_switch_iclogs(
87         struct xlog             *log,
88         struct xlog_in_core     *iclog,
89         int                     eventual_size);
90 STATIC void
91 xlog_state_want_sync(
92         struct xlog             *log,
93         struct xlog_in_core     *iclog);
94
95 STATIC void
96 xlog_grant_push_ail(
97         struct xlog             *log,
98         int                     need_bytes);
99 STATIC void
100 xlog_regrant_reserve_log_space(
101         struct xlog             *log,
102         struct xlog_ticket      *ticket);
103 STATIC void
104 xlog_ungrant_log_space(
105         struct xlog             *log,
106         struct xlog_ticket      *ticket);
107
108 #if defined(DEBUG)
109 STATIC void
110 xlog_verify_dest_ptr(
111         struct xlog             *log,
112         void                    *ptr);
113 STATIC void
114 xlog_verify_grant_tail(
115         struct xlog *log);
116 STATIC void
117 xlog_verify_iclog(
118         struct xlog             *log,
119         struct xlog_in_core     *iclog,
120         int                     count,
121         bool                    syncing);
122 STATIC void
123 xlog_verify_tail_lsn(
124         struct xlog             *log,
125         struct xlog_in_core     *iclog,
126         xfs_lsn_t               tail_lsn);
127 #else
128 #define xlog_verify_dest_ptr(a,b)
129 #define xlog_verify_grant_tail(a)
130 #define xlog_verify_iclog(a,b,c,d)
131 #define xlog_verify_tail_lsn(a,b,c)
132 #endif
133
134 STATIC int
135 xlog_iclogs_empty(
136         struct xlog             *log);
137
138 static void
139 xlog_grant_sub_space(
140         struct xlog             *log,
141         atomic64_t              *head,
142         int                     bytes)
143 {
144         int64_t head_val = atomic64_read(head);
145         int64_t new, old;
146
147         do {
148                 int     cycle, space;
149
150                 xlog_crack_grant_head_val(head_val, &cycle, &space);
151
152                 space -= bytes;
153                 if (space < 0) {
154                         space += log->l_logsize;
155                         cycle--;
156                 }
157
158                 old = head_val;
159                 new = xlog_assign_grant_head_val(cycle, space);
160                 head_val = atomic64_cmpxchg(head, old, new);
161         } while (head_val != old);
162 }
163
164 static void
165 xlog_grant_add_space(
166         struct xlog             *log,
167         atomic64_t              *head,
168         int                     bytes)
169 {
170         int64_t head_val = atomic64_read(head);
171         int64_t new, old;
172
173         do {
174                 int             tmp;
175                 int             cycle, space;
176
177                 xlog_crack_grant_head_val(head_val, &cycle, &space);
178
179                 tmp = log->l_logsize - space;
180                 if (tmp > bytes)
181                         space += bytes;
182                 else {
183                         space = bytes - tmp;
184                         cycle++;
185                 }
186
187                 old = head_val;
188                 new = xlog_assign_grant_head_val(cycle, space);
189                 head_val = atomic64_cmpxchg(head, old, new);
190         } while (head_val != old);
191 }
192
193 STATIC void
194 xlog_grant_head_init(
195         struct xlog_grant_head  *head)
196 {
197         xlog_assign_grant_head(&head->grant, 1, 0);
198         INIT_LIST_HEAD(&head->waiters);
199         spin_lock_init(&head->lock);
200 }
201
202 STATIC void
203 xlog_grant_head_wake_all(
204         struct xlog_grant_head  *head)
205 {
206         struct xlog_ticket      *tic;
207
208         spin_lock(&head->lock);
209         list_for_each_entry(tic, &head->waiters, t_queue)
210                 wake_up_process(tic->t_task);
211         spin_unlock(&head->lock);
212 }
213
214 static inline int
215 xlog_ticket_reservation(
216         struct xlog             *log,
217         struct xlog_grant_head  *head,
218         struct xlog_ticket      *tic)
219 {
220         if (head == &log->l_write_head) {
221                 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
222                 return tic->t_unit_res;
223         } else {
224                 if (tic->t_flags & XLOG_TIC_PERM_RESERV)
225                         return tic->t_unit_res * tic->t_cnt;
226                 else
227                         return tic->t_unit_res;
228         }
229 }
230
231 STATIC bool
232 xlog_grant_head_wake(
233         struct xlog             *log,
234         struct xlog_grant_head  *head,
235         int                     *free_bytes)
236 {
237         struct xlog_ticket      *tic;
238         int                     need_bytes;
239
240         list_for_each_entry(tic, &head->waiters, t_queue) {
241                 need_bytes = xlog_ticket_reservation(log, head, tic);
242                 if (*free_bytes < need_bytes)
243                         return false;
244
245                 *free_bytes -= need_bytes;
246                 trace_xfs_log_grant_wake_up(log, tic);
247                 wake_up_process(tic->t_task);
248         }
249
250         return true;
251 }
252
253 STATIC int
254 xlog_grant_head_wait(
255         struct xlog             *log,
256         struct xlog_grant_head  *head,
257         struct xlog_ticket      *tic,
258         int                     need_bytes) __releases(&head->lock)
259                                             __acquires(&head->lock)
260 {
261         list_add_tail(&tic->t_queue, &head->waiters);
262
263         do {
264                 if (XLOG_FORCED_SHUTDOWN(log))
265                         goto shutdown;
266                 xlog_grant_push_ail(log, need_bytes);
267
268                 __set_current_state(TASK_UNINTERRUPTIBLE);
269                 spin_unlock(&head->lock);
270
271                 XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
272
273                 trace_xfs_log_grant_sleep(log, tic);
274                 schedule();
275                 trace_xfs_log_grant_wake(log, tic);
276
277                 spin_lock(&head->lock);
278                 if (XLOG_FORCED_SHUTDOWN(log))
279                         goto shutdown;
280         } while (xlog_space_left(log, &head->grant) < need_bytes);
281
282         list_del_init(&tic->t_queue);
283         return 0;
284 shutdown:
285         list_del_init(&tic->t_queue);
286         return -EIO;
287 }
288
289 /*
290  * Atomically get the log space required for a log ticket.
291  *
292  * Once a ticket gets put onto head->waiters, it will only return after the
293  * needed reservation is satisfied.
294  *
295  * This function is structured so that it has a lock free fast path. This is
296  * necessary because every new transaction reservation will come through this
297  * path. Hence any lock will be globally hot if we take it unconditionally on
298  * every pass.
299  *
300  * As tickets are only ever moved on and off head->waiters under head->lock, we
301  * only need to take that lock if we are going to add the ticket to the queue
302  * and sleep. We can avoid taking the lock if the ticket was never added to
303  * head->waiters because the t_queue list head will be empty and we hold the
304  * only reference to it so it can safely be checked unlocked.
305  */
306 STATIC int
307 xlog_grant_head_check(
308         struct xlog             *log,
309         struct xlog_grant_head  *head,
310         struct xlog_ticket      *tic,
311         int                     *need_bytes)
312 {
313         int                     free_bytes;
314         int                     error = 0;
315
316         ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
317
318         /*
319          * If there are other waiters on the queue then give them a chance at
320          * logspace before us.  Wake up the first waiters, if we do not wake
321          * up all the waiters then go to sleep waiting for more free space,
322          * otherwise try to get some space for this transaction.
323          */
324         *need_bytes = xlog_ticket_reservation(log, head, tic);
325         free_bytes = xlog_space_left(log, &head->grant);
326         if (!list_empty_careful(&head->waiters)) {
327                 spin_lock(&head->lock);
328                 if (!xlog_grant_head_wake(log, head, &free_bytes) ||
329                     free_bytes < *need_bytes) {
330                         error = xlog_grant_head_wait(log, head, tic,
331                                                      *need_bytes);
332                 }
333                 spin_unlock(&head->lock);
334         } else if (free_bytes < *need_bytes) {
335                 spin_lock(&head->lock);
336                 error = xlog_grant_head_wait(log, head, tic, *need_bytes);
337                 spin_unlock(&head->lock);
338         }
339
340         return error;
341 }
342
343 static void
344 xlog_tic_reset_res(xlog_ticket_t *tic)
345 {
346         tic->t_res_num = 0;
347         tic->t_res_arr_sum = 0;
348         tic->t_res_num_ophdrs = 0;
349 }
350
351 static void
352 xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
353 {
354         if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
355                 /* add to overflow and start again */
356                 tic->t_res_o_flow += tic->t_res_arr_sum;
357                 tic->t_res_num = 0;
358                 tic->t_res_arr_sum = 0;
359         }
360
361         tic->t_res_arr[tic->t_res_num].r_len = len;
362         tic->t_res_arr[tic->t_res_num].r_type = type;
363         tic->t_res_arr_sum += len;
364         tic->t_res_num++;
365 }
366
367 /*
368  * Replenish the byte reservation required by moving the grant write head.
369  */
370 int
371 xfs_log_regrant(
372         struct xfs_mount        *mp,
373         struct xlog_ticket      *tic)
374 {
375         struct xlog             *log = mp->m_log;
376         int                     need_bytes;
377         int                     error = 0;
378
379         if (XLOG_FORCED_SHUTDOWN(log))
380                 return -EIO;
381
382         XFS_STATS_INC(mp, xs_try_logspace);
383
384         /*
385          * This is a new transaction on the ticket, so we need to change the
386          * transaction ID so that the next transaction has a different TID in
387          * the log. Just add one to the existing tid so that we can see chains
388          * of rolling transactions in the log easily.
389          */
390         tic->t_tid++;
391
392         xlog_grant_push_ail(log, tic->t_unit_res);
393
394         tic->t_curr_res = tic->t_unit_res;
395         xlog_tic_reset_res(tic);
396
397         if (tic->t_cnt > 0)
398                 return 0;
399
400         trace_xfs_log_regrant(log, tic);
401
402         error = xlog_grant_head_check(log, &log->l_write_head, tic,
403                                       &need_bytes);
404         if (error)
405                 goto out_error;
406
407         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
408         trace_xfs_log_regrant_exit(log, tic);
409         xlog_verify_grant_tail(log);
410         return 0;
411
412 out_error:
413         /*
414          * If we are failing, make sure the ticket doesn't have any current
415          * reservations.  We don't want to add this back when the ticket/
416          * transaction gets cancelled.
417          */
418         tic->t_curr_res = 0;
419         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
420         return error;
421 }
422
423 /*
424  * Reserve log space and return a ticket corresponding the reservation.
425  *
426  * Each reservation is going to reserve extra space for a log record header.
427  * When writes happen to the on-disk log, we don't subtract the length of the
428  * log record header from any reservation.  By wasting space in each
429  * reservation, we prevent over allocation problems.
430  */
431 int
432 xfs_log_reserve(
433         struct xfs_mount        *mp,
434         int                     unit_bytes,
435         int                     cnt,
436         struct xlog_ticket      **ticp,
437         __uint8_t               client,
438         bool                    permanent)
439 {
440         struct xlog             *log = mp->m_log;
441         struct xlog_ticket      *tic;
442         int                     need_bytes;
443         int                     error = 0;
444
445         ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
446
447         if (XLOG_FORCED_SHUTDOWN(log))
448                 return -EIO;
449
450         XFS_STATS_INC(mp, xs_try_logspace);
451
452         ASSERT(*ticp == NULL);
453         tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent,
454                                 KM_SLEEP | KM_MAYFAIL);
455         if (!tic)
456                 return -ENOMEM;
457
458         *ticp = tic;
459
460         xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
461                                             : tic->t_unit_res);
462
463         trace_xfs_log_reserve(log, tic);
464
465         error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
466                                       &need_bytes);
467         if (error)
468                 goto out_error;
469
470         xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
471         xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
472         trace_xfs_log_reserve_exit(log, tic);
473         xlog_verify_grant_tail(log);
474         return 0;
475
476 out_error:
477         /*
478          * If we are failing, make sure the ticket doesn't have any current
479          * reservations.  We don't want to add this back when the ticket/
480          * transaction gets cancelled.
481          */
482         tic->t_curr_res = 0;
483         tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */
484         return error;
485 }
486
487
488 /*
489  * NOTES:
490  *
491  *      1. currblock field gets updated at startup and after in-core logs
492  *              marked as with WANT_SYNC.
493  */
494
495 /*
496  * This routine is called when a user of a log manager ticket is done with
497  * the reservation.  If the ticket was ever used, then a commit record for
498  * the associated transaction is written out as a log operation header with
499  * no data.  The flag XLOG_TIC_INITED is set when the first write occurs with
500  * a given ticket.  If the ticket was one with a permanent reservation, then
501  * a few operations are done differently.  Permanent reservation tickets by
502  * default don't release the reservation.  They just commit the current
503  * transaction with the belief that the reservation is still needed.  A flag
504  * must be passed in before permanent reservations are actually released.
505  * When these type of tickets are not released, they need to be set into
506  * the inited state again.  By doing this, a start record will be written
507  * out when the next write occurs.
508  */
509 xfs_lsn_t
510 xfs_log_done(
511         struct xfs_mount        *mp,
512         struct xlog_ticket      *ticket,
513         struct xlog_in_core     **iclog,
514         bool                    regrant)
515 {
516         struct xlog             *log = mp->m_log;
517         xfs_lsn_t               lsn = 0;
518
519         if (XLOG_FORCED_SHUTDOWN(log) ||
520             /*
521              * If nothing was ever written, don't write out commit record.
522              * If we get an error, just continue and give back the log ticket.
523              */
524             (((ticket->t_flags & XLOG_TIC_INITED) == 0) &&
525              (xlog_commit_record(log, ticket, iclog, &lsn)))) {
526                 lsn = (xfs_lsn_t) -1;
527                 regrant = false;
528         }
529
530
531         if (!regrant) {
532                 trace_xfs_log_done_nonperm(log, ticket);
533
534                 /*
535                  * Release ticket if not permanent reservation or a specific
536                  * request has been made to release a permanent reservation.
537                  */
538                 xlog_ungrant_log_space(log, ticket);
539         } else {
540                 trace_xfs_log_done_perm(log, ticket);
541
542                 xlog_regrant_reserve_log_space(log, ticket);
543                 /* If this ticket was a permanent reservation and we aren't
544                  * trying to release it, reset the inited flags; so next time
545                  * we write, a start record will be written out.
546                  */
547                 ticket->t_flags |= XLOG_TIC_INITED;
548         }
549
550         xfs_log_ticket_put(ticket);
551         return lsn;
552 }
553
554 /*
555  * Attaches a new iclog I/O completion callback routine during
556  * transaction commit.  If the log is in error state, a non-zero
557  * return code is handed back and the caller is responsible for
558  * executing the callback at an appropriate time.
559  */
560 int
561 xfs_log_notify(
562         struct xfs_mount        *mp,
563         struct xlog_in_core     *iclog,
564         xfs_log_callback_t      *cb)
565 {
566         int     abortflg;
567
568         spin_lock(&iclog->ic_callback_lock);
569         abortflg = (iclog->ic_state & XLOG_STATE_IOERROR);
570         if (!abortflg) {
571                 ASSERT_ALWAYS((iclog->ic_state == XLOG_STATE_ACTIVE) ||
572                               (iclog->ic_state == XLOG_STATE_WANT_SYNC));
573                 cb->cb_next = NULL;
574                 *(iclog->ic_callback_tail) = cb;
575                 iclog->ic_callback_tail = &(cb->cb_next);
576         }
577         spin_unlock(&iclog->ic_callback_lock);
578         return abortflg;
579 }
580
581 int
582 xfs_log_release_iclog(
583         struct xfs_mount        *mp,
584         struct xlog_in_core     *iclog)
585 {
586         if (xlog_state_release_iclog(mp->m_log, iclog)) {
587                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
588                 return -EIO;
589         }
590
591         return 0;
592 }
593
594 /*
595  * Mount a log filesystem
596  *
597  * mp           - ubiquitous xfs mount point structure
598  * log_target   - buftarg of on-disk log device
599  * blk_offset   - Start block # where block size is 512 bytes (BBSIZE)
600  * num_bblocks  - Number of BBSIZE blocks in on-disk log
601  *
602  * Return error or zero.
603  */
604 int
605 xfs_log_mount(
606         xfs_mount_t     *mp,
607         xfs_buftarg_t   *log_target,
608         xfs_daddr_t     blk_offset,
609         int             num_bblks)
610 {
611         int             error = 0;
612         int             min_logfsbs;
613
614         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
615                 xfs_notice(mp, "Mounting V%d Filesystem",
616                            XFS_SB_VERSION_NUM(&mp->m_sb));
617         } else {
618                 xfs_notice(mp,
619 "Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
620                            XFS_SB_VERSION_NUM(&mp->m_sb));
621                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
622         }
623
624         mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
625         if (IS_ERR(mp->m_log)) {
626                 error = PTR_ERR(mp->m_log);
627                 goto out;
628         }
629
630         /*
631          * Validate the given log space and drop a critical message via syslog
632          * if the log size is too small that would lead to some unexpected
633          * situations in transaction log space reservation stage.
634          *
635          * Note: we can't just reject the mount if the validation fails.  This
636          * would mean that people would have to downgrade their kernel just to
637          * remedy the situation as there is no way to grow the log (short of
638          * black magic surgery with xfs_db).
639          *
640          * We can, however, reject mounts for CRC format filesystems, as the
641          * mkfs binary being used to make the filesystem should never create a
642          * filesystem with a log that is too small.
643          */
644         min_logfsbs = xfs_log_calc_minimum_size(mp);
645
646         if (mp->m_sb.sb_logblocks < min_logfsbs) {
647                 xfs_warn(mp,
648                 "Log size %d blocks too small, minimum size is %d blocks",
649                          mp->m_sb.sb_logblocks, min_logfsbs);
650                 error = -EINVAL;
651         } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
652                 xfs_warn(mp,
653                 "Log size %d blocks too large, maximum size is %lld blocks",
654                          mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
655                 error = -EINVAL;
656         } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
657                 xfs_warn(mp,
658                 "log size %lld bytes too large, maximum size is %lld bytes",
659                          XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
660                          XFS_MAX_LOG_BYTES);
661                 error = -EINVAL;
662         }
663         if (error) {
664                 if (xfs_sb_version_hascrc(&mp->m_sb)) {
665                         xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
666                         ASSERT(0);
667                         goto out_free_log;
668                 }
669                 xfs_crit(mp, "Log size out of supported range.");
670                 xfs_crit(mp,
671 "Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
672         }
673
674         /*
675          * Initialize the AIL now we have a log.
676          */
677         error = xfs_trans_ail_init(mp);
678         if (error) {
679                 xfs_warn(mp, "AIL initialisation failed: error %d", error);
680                 goto out_free_log;
681         }
682         mp->m_log->l_ailp = mp->m_ail;
683
684         /*
685          * skip log recovery on a norecovery mount.  pretend it all
686          * just worked.
687          */
688         if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
689                 int     readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
690
691                 if (readonly)
692                         mp->m_flags &= ~XFS_MOUNT_RDONLY;
693
694                 error = xlog_recover(mp->m_log);
695
696                 if (readonly)
697                         mp->m_flags |= XFS_MOUNT_RDONLY;
698                 if (error) {
699                         xfs_warn(mp, "log mount/recovery failed: error %d",
700                                 error);
701                         xlog_recover_cancel(mp->m_log);
702                         goto out_destroy_ail;
703                 }
704         }
705
706         error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
707                                "log");
708         if (error)
709                 goto out_destroy_ail;
710
711         /* Normal transactions can now occur */
712         mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
713
714         /*
715          * Now the log has been fully initialised and we know were our
716          * space grant counters are, we can initialise the permanent ticket
717          * needed for delayed logging to work.
718          */
719         xlog_cil_init_post_recovery(mp->m_log);
720
721         return 0;
722
723 out_destroy_ail:
724         xfs_trans_ail_destroy(mp);
725 out_free_log:
726         xlog_dealloc_log(mp->m_log);
727 out:
728         return error;
729 }
730
731 /*
732  * Finish the recovery of the file system.  This is separate from the
733  * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
734  * in the root and real-time bitmap inodes between calling xfs_log_mount() and
735  * here.
736  *
737  * If we finish recovery successfully, start the background log work. If we are
738  * not doing recovery, then we have a RO filesystem and we don't need to start
739  * it.
740  */
741 int
742 xfs_log_mount_finish(
743         struct xfs_mount        *mp)
744 {
745         int     error = 0;
746         bool    readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
747
748         if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
749                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
750                 return 0;
751         } else if (readonly) {
752                 /* Allow unlinked processing to proceed */
753                 mp->m_flags &= ~XFS_MOUNT_RDONLY;
754         }
755
756         /*
757          * During the second phase of log recovery, we need iget and
758          * iput to behave like they do for an active filesystem.
759          * xfs_fs_drop_inode needs to be able to prevent the deletion
760          * of inodes before we're done replaying log items on those
761          * inodes.  Turn it off immediately after recovery finishes
762          * so that we don't leak the quota inodes if subsequent mount
763          * activities fail.
764          *
765          * We let all inodes involved in redo item processing end up on
766          * the LRU instead of being evicted immediately so that if we do
767          * something to an unlinked inode, the irele won't cause
768          * premature truncation and freeing of the inode, which results
769          * in log recovery failure.  We have to evict the unreferenced
770          * lru inodes after clearing MS_ACTIVE because we don't
771          * otherwise clean up the lru if there's a subsequent failure in
772          * xfs_mountfs, which leads to us leaking the inodes if nothing
773          * else (e.g. quotacheck) references the inodes before the
774          * mount failure occurs.
775          */
776         mp->m_super->s_flags |= MS_ACTIVE;
777         error = xlog_recover_finish(mp->m_log);
778         if (!error)
779                 xfs_log_work_queue(mp);
780         mp->m_super->s_flags &= ~MS_ACTIVE;
781         evict_inodes(mp->m_super);
782
783         if (readonly)
784                 mp->m_flags |= XFS_MOUNT_RDONLY;
785
786         return error;
787 }
788
789 /*
790  * The mount has failed. Cancel the recovery if it hasn't completed and destroy
791  * the log.
792  */
793 int
794 xfs_log_mount_cancel(
795         struct xfs_mount        *mp)
796 {
797         int                     error;
798
799         error = xlog_recover_cancel(mp->m_log);
800         xfs_log_unmount(mp);
801
802         return error;
803 }
804
805 /*
806  * Final log writes as part of unmount.
807  *
808  * Mark the filesystem clean as unmount happens.  Note that during relocation
809  * this routine needs to be executed as part of source-bag while the
810  * deallocation must not be done until source-end.
811  */
812
813 /*
814  * Unmount record used to have a string "Unmount filesystem--" in the
815  * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
816  * We just write the magic number now since that particular field isn't
817  * currently architecture converted and "Unmount" is a bit foo.
818  * As far as I know, there weren't any dependencies on the old behaviour.
819  */
820
821 static int
822 xfs_log_unmount_write(xfs_mount_t *mp)
823 {
824         struct xlog      *log = mp->m_log;
825         xlog_in_core_t   *iclog;
826 #ifdef DEBUG
827         xlog_in_core_t   *first_iclog;
828 #endif
829         xlog_ticket_t   *tic = NULL;
830         xfs_lsn_t        lsn;
831         int              error;
832
833         /*
834          * Don't write out unmount record on norecovery mounts or ro devices.
835          * Or, if we are doing a forced umount (typically because of IO errors).
836          */
837         if (mp->m_flags & XFS_MOUNT_NORECOVERY ||
838             xfs_readonly_buftarg(log->l_mp->m_logdev_targp)) {
839                 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
840                 return 0;
841         }
842
843         error = _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
844         ASSERT(error || !(XLOG_FORCED_SHUTDOWN(log)));
845
846 #ifdef DEBUG
847         first_iclog = iclog = log->l_iclog;
848         do {
849                 if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
850                         ASSERT(iclog->ic_state & XLOG_STATE_ACTIVE);
851                         ASSERT(iclog->ic_offset == 0);
852                 }
853                 iclog = iclog->ic_next;
854         } while (iclog != first_iclog);
855 #endif
856         if (! (XLOG_FORCED_SHUTDOWN(log))) {
857                 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
858                 if (!error) {
859                         /* the data section must be 32 bit size aligned */
860                         struct {
861                             __uint16_t magic;
862                             __uint16_t pad1;
863                             __uint32_t pad2; /* may as well make it 64 bits */
864                         } magic = {
865                                 .magic = XLOG_UNMOUNT_TYPE,
866                         };
867                         struct xfs_log_iovec reg = {
868                                 .i_addr = &magic,
869                                 .i_len = sizeof(magic),
870                                 .i_type = XLOG_REG_TYPE_UNMOUNT,
871                         };
872                         struct xfs_log_vec vec = {
873                                 .lv_niovecs = 1,
874                                 .lv_iovecp = &reg,
875                         };
876
877                         /* remove inited flag, and account for space used */
878                         tic->t_flags = 0;
879                         tic->t_curr_res -= sizeof(magic);
880                         error = xlog_write(log, &vec, tic, &lsn,
881                                            NULL, XLOG_UNMOUNT_TRANS);
882                         /*
883                          * At this point, we're umounting anyway,
884                          * so there's no point in transitioning log state
885                          * to IOERROR. Just continue...
886                          */
887                 }
888
889                 if (error)
890                         xfs_alert(mp, "%s: unmount record failed", __func__);
891
892
893                 spin_lock(&log->l_icloglock);
894                 iclog = log->l_iclog;
895                 atomic_inc(&iclog->ic_refcnt);
896                 xlog_state_want_sync(log, iclog);
897                 spin_unlock(&log->l_icloglock);
898                 error = xlog_state_release_iclog(log, iclog);
899
900                 spin_lock(&log->l_icloglock);
901                 if (!(iclog->ic_state == XLOG_STATE_ACTIVE ||
902                       iclog->ic_state == XLOG_STATE_DIRTY)) {
903                         if (!XLOG_FORCED_SHUTDOWN(log)) {
904                                 xlog_wait(&iclog->ic_force_wait,
905                                                         &log->l_icloglock);
906                         } else {
907                                 spin_unlock(&log->l_icloglock);
908                         }
909                 } else {
910                         spin_unlock(&log->l_icloglock);
911                 }
912                 if (tic) {
913                         trace_xfs_log_umount_write(log, tic);
914                         xlog_ungrant_log_space(log, tic);
915                         xfs_log_ticket_put(tic);
916                 }
917         } else {
918                 /*
919                  * We're already in forced_shutdown mode, couldn't
920                  * even attempt to write out the unmount transaction.
921                  *
922                  * Go through the motions of sync'ing and releasing
923                  * the iclog, even though no I/O will actually happen,
924                  * we need to wait for other log I/Os that may already
925                  * be in progress.  Do this as a separate section of
926                  * code so we'll know if we ever get stuck here that
927                  * we're in this odd situation of trying to unmount
928                  * a file system that went into forced_shutdown as
929                  * the result of an unmount..
930                  */
931                 spin_lock(&log->l_icloglock);
932                 iclog = log->l_iclog;
933                 atomic_inc(&iclog->ic_refcnt);
934
935                 xlog_state_want_sync(log, iclog);
936                 spin_unlock(&log->l_icloglock);
937                 error =  xlog_state_release_iclog(log, iclog);
938
939                 spin_lock(&log->l_icloglock);
940
941                 if ( ! (   iclog->ic_state == XLOG_STATE_ACTIVE
942                         || iclog->ic_state == XLOG_STATE_DIRTY
943                         || iclog->ic_state == XLOG_STATE_IOERROR) ) {
944
945                                 xlog_wait(&iclog->ic_force_wait,
946                                                         &log->l_icloglock);
947                 } else {
948                         spin_unlock(&log->l_icloglock);
949                 }
950         }
951
952         return error;
953 }       /* xfs_log_unmount_write */
954
955 /*
956  * Empty the log for unmount/freeze.
957  *
958  * To do this, we first need to shut down the background log work so it is not
959  * trying to cover the log as we clean up. We then need to unpin all objects in
960  * the log so we can then flush them out. Once they have completed their IO and
961  * run the callbacks removing themselves from the AIL, we can write the unmount
962  * record.
963  */
964 void
965 xfs_log_quiesce(
966         struct xfs_mount        *mp)
967 {
968         cancel_delayed_work_sync(&mp->m_log->l_work);
969         xfs_log_force(mp, XFS_LOG_SYNC);
970
971         /*
972          * The superblock buffer is uncached and while xfs_ail_push_all_sync()
973          * will push it, xfs_wait_buftarg() will not wait for it. Further,
974          * xfs_buf_iowait() cannot be used because it was pushed with the
975          * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
976          * the IO to complete.
977          */
978         xfs_ail_push_all_sync(mp->m_ail);
979         xfs_wait_buftarg(mp->m_ddev_targp);
980         xfs_buf_lock(mp->m_sb_bp);
981         xfs_buf_unlock(mp->m_sb_bp);
982
983         xfs_log_unmount_write(mp);
984 }
985
986 /*
987  * Shut down and release the AIL and Log.
988  *
989  * During unmount, we need to ensure we flush all the dirty metadata objects
990  * from the AIL so that the log is empty before we write the unmount record to
991  * the log. Once this is done, we can tear down the AIL and the log.
992  */
993 void
994 xfs_log_unmount(
995         struct xfs_mount        *mp)
996 {
997         xfs_log_quiesce(mp);
998
999         xfs_trans_ail_destroy(mp);
1000
1001         xfs_sysfs_del(&mp->m_log->l_kobj);
1002
1003         xlog_dealloc_log(mp->m_log);
1004 }
1005
1006 void
1007 xfs_log_item_init(
1008         struct xfs_mount        *mp,
1009         struct xfs_log_item     *item,
1010         int                     type,
1011         const struct xfs_item_ops *ops)
1012 {
1013         item->li_mountp = mp;
1014         item->li_ailp = mp->m_ail;
1015         item->li_type = type;
1016         item->li_ops = ops;
1017         item->li_lv = NULL;
1018
1019         INIT_LIST_HEAD(&item->li_ail);
1020         INIT_LIST_HEAD(&item->li_cil);
1021 }
1022
1023 /*
1024  * Wake up processes waiting for log space after we have moved the log tail.
1025  */
1026 void
1027 xfs_log_space_wake(
1028         struct xfs_mount        *mp)
1029 {
1030         struct xlog             *log = mp->m_log;
1031         int                     free_bytes;
1032
1033         if (XLOG_FORCED_SHUTDOWN(log))
1034                 return;
1035
1036         if (!list_empty_careful(&log->l_write_head.waiters)) {
1037                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1038
1039                 spin_lock(&log->l_write_head.lock);
1040                 free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1041                 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1042                 spin_unlock(&log->l_write_head.lock);
1043         }
1044
1045         if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1046                 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1047
1048                 spin_lock(&log->l_reserve_head.lock);
1049                 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1050                 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1051                 spin_unlock(&log->l_reserve_head.lock);
1052         }
1053 }
1054
1055 /*
1056  * Determine if we have a transaction that has gone to disk that needs to be
1057  * covered. To begin the transition to the idle state firstly the log needs to
1058  * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1059  * we start attempting to cover the log.
1060  *
1061  * Only if we are then in a state where covering is needed, the caller is
1062  * informed that dummy transactions are required to move the log into the idle
1063  * state.
1064  *
1065  * If there are any items in the AIl or CIL, then we do not want to attempt to
1066  * cover the log as we may be in a situation where there isn't log space
1067  * available to run a dummy transaction and this can lead to deadlocks when the
1068  * tail of the log is pinned by an item that is modified in the CIL.  Hence
1069  * there's no point in running a dummy transaction at this point because we
1070  * can't start trying to idle the log until both the CIL and AIL are empty.
1071  */
1072 static int
1073 xfs_log_need_covered(xfs_mount_t *mp)
1074 {
1075         struct xlog     *log = mp->m_log;
1076         int             needed = 0;
1077
1078         if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1079                 return 0;
1080
1081         if (!xlog_cil_empty(log))
1082                 return 0;
1083
1084         spin_lock(&log->l_icloglock);
1085         switch (log->l_covered_state) {
1086         case XLOG_STATE_COVER_DONE:
1087         case XLOG_STATE_COVER_DONE2:
1088         case XLOG_STATE_COVER_IDLE:
1089                 break;
1090         case XLOG_STATE_COVER_NEED:
1091         case XLOG_STATE_COVER_NEED2:
1092                 if (xfs_ail_min_lsn(log->l_ailp))
1093                         break;
1094                 if (!xlog_iclogs_empty(log))
1095                         break;
1096
1097                 needed = 1;
1098                 if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1099                         log->l_covered_state = XLOG_STATE_COVER_DONE;
1100                 else
1101                         log->l_covered_state = XLOG_STATE_COVER_DONE2;
1102                 break;
1103         default:
1104                 needed = 1;
1105                 break;
1106         }
1107         spin_unlock(&log->l_icloglock);
1108         return needed;
1109 }
1110
1111 /*
1112  * We may be holding the log iclog lock upon entering this routine.
1113  */
1114 xfs_lsn_t
1115 xlog_assign_tail_lsn_locked(
1116         struct xfs_mount        *mp)
1117 {
1118         struct xlog             *log = mp->m_log;
1119         struct xfs_log_item     *lip;
1120         xfs_lsn_t               tail_lsn;
1121
1122         assert_spin_locked(&mp->m_ail->xa_lock);
1123
1124         /*
1125          * To make sure we always have a valid LSN for the log tail we keep
1126          * track of the last LSN which was committed in log->l_last_sync_lsn,
1127          * and use that when the AIL was empty.
1128          */
1129         lip = xfs_ail_min(mp->m_ail);
1130         if (lip)
1131                 tail_lsn = lip->li_lsn;
1132         else
1133                 tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1134         trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1135         atomic64_set(&log->l_tail_lsn, tail_lsn);
1136         return tail_lsn;
1137 }
1138
1139 xfs_lsn_t
1140 xlog_assign_tail_lsn(
1141         struct xfs_mount        *mp)
1142 {
1143         xfs_lsn_t               tail_lsn;
1144
1145         spin_lock(&mp->m_ail->xa_lock);
1146         tail_lsn = xlog_assign_tail_lsn_locked(mp);
1147         spin_unlock(&mp->m_ail->xa_lock);
1148
1149         return tail_lsn;
1150 }
1151
1152 /*
1153  * Return the space in the log between the tail and the head.  The head
1154  * is passed in the cycle/bytes formal parms.  In the special case where
1155  * the reserve head has wrapped passed the tail, this calculation is no
1156  * longer valid.  In this case, just return 0 which means there is no space
1157  * in the log.  This works for all places where this function is called
1158  * with the reserve head.  Of course, if the write head were to ever
1159  * wrap the tail, we should blow up.  Rather than catch this case here,
1160  * we depend on other ASSERTions in other parts of the code.   XXXmiken
1161  *
1162  * This code also handles the case where the reservation head is behind
1163  * the tail.  The details of this case are described below, but the end
1164  * result is that we return the size of the log as the amount of space left.
1165  */
1166 STATIC int
1167 xlog_space_left(
1168         struct xlog     *log,
1169         atomic64_t      *head)
1170 {
1171         int             free_bytes;
1172         int             tail_bytes;
1173         int             tail_cycle;
1174         int             head_cycle;
1175         int             head_bytes;
1176
1177         xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1178         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1179         tail_bytes = BBTOB(tail_bytes);
1180         if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1181                 free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1182         else if (tail_cycle + 1 < head_cycle)
1183                 return 0;
1184         else if (tail_cycle < head_cycle) {
1185                 ASSERT(tail_cycle == (head_cycle - 1));
1186                 free_bytes = tail_bytes - head_bytes;
1187         } else {
1188                 /*
1189                  * The reservation head is behind the tail.
1190                  * In this case we just want to return the size of the
1191                  * log as the amount of space left.
1192                  */
1193                 xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1194                 xfs_alert(log->l_mp,
1195                           "  tail_cycle = %d, tail_bytes = %d",
1196                           tail_cycle, tail_bytes);
1197                 xfs_alert(log->l_mp,
1198                           "  GH   cycle = %d, GH   bytes = %d",
1199                           head_cycle, head_bytes);
1200                 ASSERT(0);
1201                 free_bytes = log->l_logsize;
1202         }
1203         return free_bytes;
1204 }
1205
1206
1207 /*
1208  * Log function which is called when an io completes.
1209  *
1210  * The log manager needs its own routine, in order to control what
1211  * happens with the buffer after the write completes.
1212  */
1213 static void
1214 xlog_iodone(xfs_buf_t *bp)
1215 {
1216         struct xlog_in_core     *iclog = bp->b_fspriv;
1217         struct xlog             *l = iclog->ic_log;
1218         int                     aborted = 0;
1219
1220         /*
1221          * Race to shutdown the filesystem if we see an error or the iclog is in
1222          * IOABORT state. The IOABORT state is only set in DEBUG mode to inject
1223          * CRC errors into log recovery.
1224          */
1225         if (XFS_TEST_ERROR(bp->b_error, l->l_mp, XFS_ERRTAG_IODONE_IOERR,
1226                            XFS_RANDOM_IODONE_IOERR) ||
1227             iclog->ic_state & XLOG_STATE_IOABORT) {
1228                 if (iclog->ic_state & XLOG_STATE_IOABORT)
1229                         iclog->ic_state &= ~XLOG_STATE_IOABORT;
1230
1231                 xfs_buf_ioerror_alert(bp, __func__);
1232                 xfs_buf_stale(bp);
1233                 xfs_force_shutdown(l->l_mp, SHUTDOWN_LOG_IO_ERROR);
1234                 /*
1235                  * This flag will be propagated to the trans-committed
1236                  * callback routines to let them know that the log-commit
1237                  * didn't succeed.
1238                  */
1239                 aborted = XFS_LI_ABORTED;
1240         } else if (iclog->ic_state & XLOG_STATE_IOERROR) {
1241                 aborted = XFS_LI_ABORTED;
1242         }
1243
1244         /* log I/O is always issued ASYNC */
1245         ASSERT(bp->b_flags & XBF_ASYNC);
1246         xlog_state_done_syncing(iclog, aborted);
1247
1248         /*
1249          * drop the buffer lock now that we are done. Nothing references
1250          * the buffer after this, so an unmount waiting on this lock can now
1251          * tear it down safely. As such, it is unsafe to reference the buffer
1252          * (bp) after the unlock as we could race with it being freed.
1253          */
1254         xfs_buf_unlock(bp);
1255 }
1256
1257 /*
1258  * Return size of each in-core log record buffer.
1259  *
1260  * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1261  *
1262  * If the filesystem blocksize is too large, we may need to choose a
1263  * larger size since the directory code currently logs entire blocks.
1264  */
1265
1266 STATIC void
1267 xlog_get_iclog_buffer_size(
1268         struct xfs_mount        *mp,
1269         struct xlog             *log)
1270 {
1271         int size;
1272         int xhdrs;
1273
1274         if (mp->m_logbufs <= 0)
1275                 log->l_iclog_bufs = XLOG_MAX_ICLOGS;
1276         else
1277                 log->l_iclog_bufs = mp->m_logbufs;
1278
1279         /*
1280          * Buffer size passed in from mount system call.
1281          */
1282         if (mp->m_logbsize > 0) {
1283                 size = log->l_iclog_size = mp->m_logbsize;
1284                 log->l_iclog_size_log = 0;
1285                 while (size != 1) {
1286                         log->l_iclog_size_log++;
1287                         size >>= 1;
1288                 }
1289
1290                 if (xfs_sb_version_haslogv2(&mp->m_sb)) {
1291                         /* # headers = size / 32k
1292                          * one header holds cycles from 32k of data
1293                          */
1294
1295                         xhdrs = mp->m_logbsize / XLOG_HEADER_CYCLE_SIZE;
1296                         if (mp->m_logbsize % XLOG_HEADER_CYCLE_SIZE)
1297                                 xhdrs++;
1298                         log->l_iclog_hsize = xhdrs << BBSHIFT;
1299                         log->l_iclog_heads = xhdrs;
1300                 } else {
1301                         ASSERT(mp->m_logbsize <= XLOG_BIG_RECORD_BSIZE);
1302                         log->l_iclog_hsize = BBSIZE;
1303                         log->l_iclog_heads = 1;
1304                 }
1305                 goto done;
1306         }
1307
1308         /* All machines use 32kB buffers by default. */
1309         log->l_iclog_size = XLOG_BIG_RECORD_BSIZE;
1310         log->l_iclog_size_log = XLOG_BIG_RECORD_BSHIFT;
1311
1312         /* the default log size is 16k or 32k which is one header sector */
1313         log->l_iclog_hsize = BBSIZE;
1314         log->l_iclog_heads = 1;
1315
1316 done:
1317         /* are we being asked to make the sizes selected above visible? */
1318         if (mp->m_logbufs == 0)
1319                 mp->m_logbufs = log->l_iclog_bufs;
1320         if (mp->m_logbsize == 0)
1321                 mp->m_logbsize = log->l_iclog_size;
1322 }       /* xlog_get_iclog_buffer_size */
1323
1324
1325 void
1326 xfs_log_work_queue(
1327         struct xfs_mount        *mp)
1328 {
1329         queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1330                                 msecs_to_jiffies(xfs_syncd_centisecs * 10));
1331 }
1332
1333 /*
1334  * Every sync period we need to unpin all items in the AIL and push them to
1335  * disk. If there is nothing dirty, then we might need to cover the log to
1336  * indicate that the filesystem is idle.
1337  */
1338 static void
1339 xfs_log_worker(
1340         struct work_struct      *work)
1341 {
1342         struct xlog             *log = container_of(to_delayed_work(work),
1343                                                 struct xlog, l_work);
1344         struct xfs_mount        *mp = log->l_mp;
1345
1346         /* dgc: errors ignored - not fatal and nowhere to report them */
1347         if (xfs_log_need_covered(mp)) {
1348                 /*
1349                  * Dump a transaction into the log that contains no real change.
1350                  * This is needed to stamp the current tail LSN into the log
1351                  * during the covering operation.
1352                  *
1353                  * We cannot use an inode here for this - that will push dirty
1354                  * state back up into the VFS and then periodic inode flushing
1355                  * will prevent log covering from making progress. Hence we
1356                  * synchronously log the superblock instead to ensure the
1357                  * superblock is immediately unpinned and can be written back.
1358                  */
1359                 xfs_sync_sb(mp, true);
1360         } else
1361                 xfs_log_force(mp, 0);
1362
1363         /* start pushing all the metadata that is currently dirty */
1364         xfs_ail_push_all(mp->m_ail);
1365
1366         /* queue us up again */
1367         xfs_log_work_queue(mp);
1368 }
1369
1370 /*
1371  * This routine initializes some of the log structure for a given mount point.
1372  * Its primary purpose is to fill in enough, so recovery can occur.  However,
1373  * some other stuff may be filled in too.
1374  */
1375 STATIC struct xlog *
1376 xlog_alloc_log(
1377         struct xfs_mount        *mp,
1378         struct xfs_buftarg      *log_target,
1379         xfs_daddr_t             blk_offset,
1380         int                     num_bblks)
1381 {
1382         struct xlog             *log;
1383         xlog_rec_header_t       *head;
1384         xlog_in_core_t          **iclogp;
1385         xlog_in_core_t          *iclog, *prev_iclog=NULL;
1386         xfs_buf_t               *bp;
1387         int                     i;
1388         int                     error = -ENOMEM;
1389         uint                    log2_size = 0;
1390
1391         log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1392         if (!log) {
1393                 xfs_warn(mp, "Log allocation failed: No memory!");
1394                 goto out;
1395         }
1396
1397         log->l_mp          = mp;
1398         log->l_targ        = log_target;
1399         log->l_logsize     = BBTOB(num_bblks);
1400         log->l_logBBstart  = blk_offset;
1401         log->l_logBBsize   = num_bblks;
1402         log->l_covered_state = XLOG_STATE_COVER_IDLE;
1403         log->l_flags       |= XLOG_ACTIVE_RECOVERY;
1404         INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1405
1406         log->l_prev_block  = -1;
1407         /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1408         xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1409         xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1410         log->l_curr_cycle  = 1;     /* 0 is bad since this is initial value */
1411
1412         xlog_grant_head_init(&log->l_reserve_head);
1413         xlog_grant_head_init(&log->l_write_head);
1414
1415         error = -EFSCORRUPTED;
1416         if (xfs_sb_version_hassector(&mp->m_sb)) {
1417                 log2_size = mp->m_sb.sb_logsectlog;
1418                 if (log2_size < BBSHIFT) {
1419                         xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1420                                 log2_size, BBSHIFT);
1421                         goto out_free_log;
1422                 }
1423
1424                 log2_size -= BBSHIFT;
1425                 if (log2_size > mp->m_sectbb_log) {
1426                         xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1427                                 log2_size, mp->m_sectbb_log);
1428                         goto out_free_log;
1429                 }
1430
1431                 /* for larger sector sizes, must have v2 or external log */
1432                 if (log2_size && log->l_logBBstart > 0 &&
1433                             !xfs_sb_version_haslogv2(&mp->m_sb)) {
1434                         xfs_warn(mp,
1435                 "log sector size (0x%x) invalid for configuration.",
1436                                 log2_size);
1437                         goto out_free_log;
1438                 }
1439         }
1440         log->l_sectBBsize = 1 << log2_size;
1441
1442         xlog_get_iclog_buffer_size(mp, log);
1443
1444         /*
1445          * Use a NULL block for the extra log buffer used during splits so that
1446          * it will trigger errors if we ever try to do IO on it without first
1447          * having set it up properly.
1448          */
1449         error = -ENOMEM;
1450         bp = xfs_buf_alloc(mp->m_logdev_targp, XFS_BUF_DADDR_NULL,
1451                            BTOBB(log->l_iclog_size), XBF_NO_IOACCT);
1452         if (!bp)
1453                 goto out_free_log;
1454
1455         /*
1456          * The iclogbuf buffer locks are held over IO but we are not going to do
1457          * IO yet.  Hence unlock the buffer so that the log IO path can grab it
1458          * when appropriately.
1459          */
1460         ASSERT(xfs_buf_islocked(bp));
1461         xfs_buf_unlock(bp);
1462
1463         /* use high priority wq for log I/O completion */
1464         bp->b_ioend_wq = mp->m_log_workqueue;
1465         bp->b_iodone = xlog_iodone;
1466         log->l_xbuf = bp;
1467
1468         spin_lock_init(&log->l_icloglock);
1469         init_waitqueue_head(&log->l_flush_wait);
1470
1471         iclogp = &log->l_iclog;
1472         /*
1473          * The amount of memory to allocate for the iclog structure is
1474          * rather funky due to the way the structure is defined.  It is
1475          * done this way so that we can use different sizes for machines
1476          * with different amounts of memory.  See the definition of
1477          * xlog_in_core_t in xfs_log_priv.h for details.
1478          */
1479         ASSERT(log->l_iclog_size >= 4096);
1480         for (i=0; i < log->l_iclog_bufs; i++) {
1481                 *iclogp = kmem_zalloc(sizeof(xlog_in_core_t), KM_MAYFAIL);
1482                 if (!*iclogp)
1483                         goto out_free_iclog;
1484
1485                 iclog = *iclogp;
1486                 iclog->ic_prev = prev_iclog;
1487                 prev_iclog = iclog;
1488
1489                 bp = xfs_buf_get_uncached(mp->m_logdev_targp,
1490                                           BTOBB(log->l_iclog_size),
1491                                           XBF_NO_IOACCT);
1492                 if (!bp)
1493                         goto out_free_iclog;
1494
1495                 ASSERT(xfs_buf_islocked(bp));
1496                 xfs_buf_unlock(bp);
1497
1498                 /* use high priority wq for log I/O completion */
1499                 bp->b_ioend_wq = mp->m_log_workqueue;
1500                 bp->b_iodone = xlog_iodone;
1501                 iclog->ic_bp = bp;
1502                 iclog->ic_data = bp->b_addr;
1503 #ifdef DEBUG
1504                 log->l_iclog_bak[i] = &iclog->ic_header;
1505 #endif
1506                 head = &iclog->ic_header;
1507                 memset(head, 0, sizeof(xlog_rec_header_t));
1508                 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1509                 head->h_version = cpu_to_be32(
1510                         xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1511                 head->h_size = cpu_to_be32(log->l_iclog_size);
1512                 /* new fields */
1513                 head->h_fmt = cpu_to_be32(XLOG_FMT);
1514                 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1515
1516                 iclog->ic_size = BBTOB(bp->b_length) - log->l_iclog_hsize;
1517                 iclog->ic_state = XLOG_STATE_ACTIVE;
1518                 iclog->ic_log = log;
1519                 atomic_set(&iclog->ic_refcnt, 0);
1520                 spin_lock_init(&iclog->ic_callback_lock);
1521                 iclog->ic_callback_tail = &(iclog->ic_callback);
1522                 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1523
1524                 init_waitqueue_head(&iclog->ic_force_wait);
1525                 init_waitqueue_head(&iclog->ic_write_wait);
1526
1527                 iclogp = &iclog->ic_next;
1528         }
1529         *iclogp = log->l_iclog;                 /* complete ring */
1530         log->l_iclog->ic_prev = prev_iclog;     /* re-write 1st prev ptr */
1531
1532         error = xlog_cil_init(log);
1533         if (error)
1534                 goto out_free_iclog;
1535         return log;
1536
1537 out_free_iclog:
1538         for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1539                 prev_iclog = iclog->ic_next;
1540                 if (iclog->ic_bp)
1541                         xfs_buf_free(iclog->ic_bp);
1542                 kmem_free(iclog);
1543                 if (prev_iclog == log->l_iclog)
1544                         break;
1545         }
1546         spinlock_destroy(&log->l_icloglock);
1547         xfs_buf_free(log->l_xbuf);
1548 out_free_log:
1549         kmem_free(log);
1550 out:
1551         return ERR_PTR(error);
1552 }       /* xlog_alloc_log */
1553
1554
1555 /*
1556  * Write out the commit record of a transaction associated with the given
1557  * ticket.  Return the lsn of the commit record.
1558  */
1559 STATIC int
1560 xlog_commit_record(
1561         struct xlog             *log,
1562         struct xlog_ticket      *ticket,
1563         struct xlog_in_core     **iclog,
1564         xfs_lsn_t               *commitlsnp)
1565 {
1566         struct xfs_mount *mp = log->l_mp;
1567         int     error;
1568         struct xfs_log_iovec reg = {
1569                 .i_addr = NULL,
1570                 .i_len = 0,
1571                 .i_type = XLOG_REG_TYPE_COMMIT,
1572         };
1573         struct xfs_log_vec vec = {
1574                 .lv_niovecs = 1,
1575                 .lv_iovecp = &reg,
1576         };
1577
1578         ASSERT_ALWAYS(iclog);
1579         error = xlog_write(log, &vec, ticket, commitlsnp, iclog,
1580                                         XLOG_COMMIT_TRANS);
1581         if (error)
1582                 xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
1583         return error;
1584 }
1585
1586 /*
1587  * Push on the buffer cache code if we ever use more than 75% of the on-disk
1588  * log space.  This code pushes on the lsn which would supposedly free up
1589  * the 25% which we want to leave free.  We may need to adopt a policy which
1590  * pushes on an lsn which is further along in the log once we reach the high
1591  * water mark.  In this manner, we would be creating a low water mark.
1592  */
1593 STATIC void
1594 xlog_grant_push_ail(
1595         struct xlog     *log,
1596         int             need_bytes)
1597 {
1598         xfs_lsn_t       threshold_lsn = 0;
1599         xfs_lsn_t       last_sync_lsn;
1600         int             free_blocks;
1601         int             free_bytes;
1602         int             threshold_block;
1603         int             threshold_cycle;
1604         int             free_threshold;
1605
1606         ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1607
1608         free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1609         free_blocks = BTOBBT(free_bytes);
1610
1611         /*
1612          * Set the threshold for the minimum number of free blocks in the
1613          * log to the maximum of what the caller needs, one quarter of the
1614          * log, and 256 blocks.
1615          */
1616         free_threshold = BTOBB(need_bytes);
1617         free_threshold = MAX(free_threshold, (log->l_logBBsize >> 2));
1618         free_threshold = MAX(free_threshold, 256);
1619         if (free_blocks >= free_threshold)
1620                 return;
1621
1622         xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1623                                                 &threshold_block);
1624         threshold_block += free_threshold;
1625         if (threshold_block >= log->l_logBBsize) {
1626                 threshold_block -= log->l_logBBsize;
1627                 threshold_cycle += 1;
1628         }
1629         threshold_lsn = xlog_assign_lsn(threshold_cycle,
1630                                         threshold_block);
1631         /*
1632          * Don't pass in an lsn greater than the lsn of the last
1633          * log record known to be on disk. Use a snapshot of the last sync lsn
1634          * so that it doesn't change between the compare and the set.
1635          */
1636         last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1637         if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1638                 threshold_lsn = last_sync_lsn;
1639
1640         /*
1641          * Get the transaction layer to kick the dirty buffers out to
1642          * disk asynchronously. No point in trying to do this if
1643          * the filesystem is shutting down.
1644          */
1645         if (!XLOG_FORCED_SHUTDOWN(log))
1646                 xfs_ail_push(log->l_ailp, threshold_lsn);
1647 }
1648
1649 /*
1650  * Stamp cycle number in every block
1651  */
1652 STATIC void
1653 xlog_pack_data(
1654         struct xlog             *log,
1655         struct xlog_in_core     *iclog,
1656         int                     roundoff)
1657 {
1658         int                     i, j, k;
1659         int                     size = iclog->ic_offset + roundoff;
1660         __be32                  cycle_lsn;
1661         char                    *dp;
1662
1663         cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1664
1665         dp = iclog->ic_datap;
1666         for (i = 0; i < BTOBB(size); i++) {
1667                 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1668                         break;
1669                 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1670                 *(__be32 *)dp = cycle_lsn;
1671                 dp += BBSIZE;
1672         }
1673
1674         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1675                 xlog_in_core_2_t *xhdr = iclog->ic_data;
1676
1677                 for ( ; i < BTOBB(size); i++) {
1678                         j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1679                         k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1680                         xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1681                         *(__be32 *)dp = cycle_lsn;
1682                         dp += BBSIZE;
1683                 }
1684
1685                 for (i = 1; i < log->l_iclog_heads; i++)
1686                         xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1687         }
1688 }
1689
1690 /*
1691  * Calculate the checksum for a log buffer.
1692  *
1693  * This is a little more complicated than it should be because the various
1694  * headers and the actual data are non-contiguous.
1695  */
1696 __le32
1697 xlog_cksum(
1698         struct xlog             *log,
1699         struct xlog_rec_header  *rhead,
1700         char                    *dp,
1701         int                     size)
1702 {
1703         __uint32_t              crc;
1704
1705         /* first generate the crc for the record header ... */
1706         crc = xfs_start_cksum((char *)rhead,
1707                               sizeof(struct xlog_rec_header),
1708                               offsetof(struct xlog_rec_header, h_crc));
1709
1710         /* ... then for additional cycle data for v2 logs ... */
1711         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1712                 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1713                 int             i;
1714                 int             xheads;
1715
1716                 xheads = size / XLOG_HEADER_CYCLE_SIZE;
1717                 if (size % XLOG_HEADER_CYCLE_SIZE)
1718                         xheads++;
1719
1720                 for (i = 1; i < xheads; i++) {
1721                         crc = crc32c(crc, &xhdr[i].hic_xheader,
1722                                      sizeof(struct xlog_rec_ext_header));
1723                 }
1724         }
1725
1726         /* ... and finally for the payload */
1727         crc = crc32c(crc, dp, size);
1728
1729         return xfs_end_cksum(crc);
1730 }
1731
1732 /*
1733  * The bdstrat callback function for log bufs. This gives us a central
1734  * place to trap bufs in case we get hit by a log I/O error and need to
1735  * shutdown. Actually, in practice, even when we didn't get a log error,
1736  * we transition the iclogs to IOERROR state *after* flushing all existing
1737  * iclogs to disk. This is because we don't want anymore new transactions to be
1738  * started or completed afterwards.
1739  *
1740  * We lock the iclogbufs here so that we can serialise against IO completion
1741  * during unmount. We might be processing a shutdown triggered during unmount,
1742  * and that can occur asynchronously to the unmount thread, and hence we need to
1743  * ensure that completes before tearing down the iclogbufs. Hence we need to
1744  * hold the buffer lock across the log IO to acheive that.
1745  */
1746 STATIC int
1747 xlog_bdstrat(
1748         struct xfs_buf          *bp)
1749 {
1750         struct xlog_in_core     *iclog = bp->b_fspriv;
1751
1752         xfs_buf_lock(bp);
1753         if (iclog->ic_state & XLOG_STATE_IOERROR) {
1754                 xfs_buf_ioerror(bp, -EIO);
1755                 xfs_buf_stale(bp);
1756                 xfs_buf_ioend(bp);
1757                 /*
1758                  * It would seem logical to return EIO here, but we rely on
1759                  * the log state machine to propagate I/O errors instead of
1760                  * doing it here. Similarly, IO completion will unlock the
1761                  * buffer, so we don't do it here.
1762                  */
1763                 return 0;
1764         }
1765
1766         xfs_buf_submit(bp);
1767         return 0;
1768 }
1769
1770 /*
1771  * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 
1772  * fashion.  Previously, we should have moved the current iclog
1773  * ptr in the log to point to the next available iclog.  This allows further
1774  * write to continue while this code syncs out an iclog ready to go.
1775  * Before an in-core log can be written out, the data section must be scanned
1776  * to save away the 1st word of each BBSIZE block into the header.  We replace
1777  * it with the current cycle count.  Each BBSIZE block is tagged with the
1778  * cycle count because there in an implicit assumption that drives will
1779  * guarantee that entire 512 byte blocks get written at once.  In other words,
1780  * we can't have part of a 512 byte block written and part not written.  By
1781  * tagging each block, we will know which blocks are valid when recovering
1782  * after an unclean shutdown.
1783  *
1784  * This routine is single threaded on the iclog.  No other thread can be in
1785  * this routine with the same iclog.  Changing contents of iclog can there-
1786  * fore be done without grabbing the state machine lock.  Updating the global
1787  * log will require grabbing the lock though.
1788  *
1789  * The entire log manager uses a logical block numbering scheme.  Only
1790  * log_sync (and then only bwrite()) know about the fact that the log may
1791  * not start with block zero on a given device.  The log block start offset
1792  * is added immediately before calling bwrite().
1793  */
1794
1795 STATIC int
1796 xlog_sync(
1797         struct xlog             *log,
1798         struct xlog_in_core     *iclog)
1799 {
1800         xfs_buf_t       *bp;
1801         int             i;
1802         uint            count;          /* byte count of bwrite */
1803         uint            count_init;     /* initial count before roundup */
1804         int             roundoff;       /* roundoff to BB or stripe */
1805         int             split = 0;      /* split write into two regions */
1806         int             error;
1807         int             v2 = xfs_sb_version_haslogv2(&log->l_mp->m_sb);
1808         int             size;
1809
1810         XFS_STATS_INC(log->l_mp, xs_log_writes);
1811         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1812
1813         /* Add for LR header */
1814         count_init = log->l_iclog_hsize + iclog->ic_offset;
1815
1816         /* Round out the log write size */
1817         if (v2 && log->l_mp->m_sb.sb_logsunit > 1) {
1818                 /* we have a v2 stripe unit to use */
1819                 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1820         } else {
1821                 count = BBTOB(BTOBB(count_init));
1822         }
1823         roundoff = count - count_init;
1824         ASSERT(roundoff >= 0);
1825         ASSERT((v2 && log->l_mp->m_sb.sb_logsunit > 1 && 
1826                 roundoff < log->l_mp->m_sb.sb_logsunit)
1827                 || 
1828                 (log->l_mp->m_sb.sb_logsunit <= 1 && 
1829                  roundoff < BBTOB(1)));
1830
1831         /* move grant heads by roundoff in sync */
1832         xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1833         xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1834
1835         /* put cycle number in every block */
1836         xlog_pack_data(log, iclog, roundoff); 
1837
1838         /* real byte length */
1839         size = iclog->ic_offset;
1840         if (v2)
1841                 size += roundoff;
1842         iclog->ic_header.h_len = cpu_to_be32(size);
1843
1844         bp = iclog->ic_bp;
1845         XFS_BUF_SET_ADDR(bp, BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)));
1846
1847         XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1848
1849         /* Do we need to split this write into 2 parts? */
1850         if (XFS_BUF_ADDR(bp) + BTOBB(count) > log->l_logBBsize) {
1851                 char            *dptr;
1852
1853                 split = count - (BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp)));
1854                 count = BBTOB(log->l_logBBsize - XFS_BUF_ADDR(bp));
1855                 iclog->ic_bwritecnt = 2;
1856
1857                 /*
1858                  * Bump the cycle numbers at the start of each block in the
1859                  * part of the iclog that ends up in the buffer that gets
1860                  * written to the start of the log.
1861                  *
1862                  * Watch out for the header magic number case, though.
1863                  */
1864                 dptr = (char *)&iclog->ic_header + count;
1865                 for (i = 0; i < split; i += BBSIZE) {
1866                         __uint32_t cycle = be32_to_cpu(*(__be32 *)dptr);
1867                         if (++cycle == XLOG_HEADER_MAGIC_NUM)
1868                                 cycle++;
1869                         *(__be32 *)dptr = cpu_to_be32(cycle);
1870
1871                         dptr += BBSIZE;
1872                 }
1873         } else {
1874                 iclog->ic_bwritecnt = 1;
1875         }
1876
1877         /* calculcate the checksum */
1878         iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1879                                             iclog->ic_datap, size);
1880 #ifdef DEBUG
1881         /*
1882          * Intentionally corrupt the log record CRC based on the error injection
1883          * frequency, if defined. This facilitates testing log recovery in the
1884          * event of torn writes. Hence, set the IOABORT state to abort the log
1885          * write on I/O completion and shutdown the fs. The subsequent mount
1886          * detects the bad CRC and attempts to recover.
1887          */
1888         if (log->l_badcrc_factor &&
1889             (prandom_u32() % log->l_badcrc_factor == 0)) {
1890                 iclog->ic_header.h_crc &= 0xAAAAAAAA;
1891                 iclog->ic_state |= XLOG_STATE_IOABORT;
1892                 xfs_warn(log->l_mp,
1893         "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1894                          be64_to_cpu(iclog->ic_header.h_lsn));
1895         }
1896 #endif
1897
1898         bp->b_io_length = BTOBB(count);
1899         bp->b_fspriv = iclog;
1900         bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1901         bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1902
1903         if (log->l_mp->m_flags & XFS_MOUNT_BARRIER) {
1904                 bp->b_flags |= XBF_FUA;
1905
1906                 /*
1907                  * Flush the data device before flushing the log to make
1908                  * sure all meta data written back from the AIL actually made
1909                  * it to disk before stamping the new log tail LSN into the
1910                  * log buffer.  For an external log we need to issue the
1911                  * flush explicitly, and unfortunately synchronously here;
1912                  * for an internal log we can simply use the block layer
1913                  * state machine for preflushes.
1914                  */
1915                 if (log->l_mp->m_logdev_targp != log->l_mp->m_ddev_targp)
1916                         xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1917                 else
1918                         bp->b_flags |= XBF_FLUSH;
1919         }
1920
1921         ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1922         ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1923
1924         xlog_verify_iclog(log, iclog, count, true);
1925
1926         /* account for log which doesn't start at block #0 */
1927         XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1928
1929         /*
1930          * Don't call xfs_bwrite here. We do log-syncs even when the filesystem
1931          * is shutting down.
1932          */
1933         error = xlog_bdstrat(bp);
1934         if (error) {
1935                 xfs_buf_ioerror_alert(bp, "xlog_sync");
1936                 return error;
1937         }
1938         if (split) {
1939                 bp = iclog->ic_log->l_xbuf;
1940                 XFS_BUF_SET_ADDR(bp, 0);             /* logical 0 */
1941                 xfs_buf_associate_memory(bp,
1942                                 (char *)&iclog->ic_header + count, split);
1943                 bp->b_fspriv = iclog;
1944                 bp->b_flags &= ~(XBF_FUA | XBF_FLUSH);
1945                 bp->b_flags |= (XBF_ASYNC | XBF_SYNCIO | XBF_WRITE);
1946                 if (log->l_mp->m_flags & XFS_MOUNT_BARRIER)
1947                         bp->b_flags |= XBF_FUA;
1948
1949                 ASSERT(XFS_BUF_ADDR(bp) <= log->l_logBBsize-1);
1950                 ASSERT(XFS_BUF_ADDR(bp) + BTOBB(count) <= log->l_logBBsize);
1951
1952                 /* account for internal log which doesn't start at block #0 */
1953                 XFS_BUF_SET_ADDR(bp, XFS_BUF_ADDR(bp) + log->l_logBBstart);
1954                 error = xlog_bdstrat(bp);
1955                 if (error) {
1956                         xfs_buf_ioerror_alert(bp, "xlog_sync (split)");
1957                         return error;
1958                 }
1959         }
1960         return 0;
1961 }       /* xlog_sync */
1962
1963 /*
1964  * Deallocate a log structure
1965  */
1966 STATIC void
1967 xlog_dealloc_log(
1968         struct xlog     *log)
1969 {
1970         xlog_in_core_t  *iclog, *next_iclog;
1971         int             i;
1972
1973         xlog_cil_destroy(log);
1974
1975         /*
1976          * Cycle all the iclogbuf locks to make sure all log IO completion
1977          * is done before we tear down these buffers.
1978          */
1979         iclog = log->l_iclog;
1980         for (i = 0; i < log->l_iclog_bufs; i++) {
1981                 xfs_buf_lock(iclog->ic_bp);
1982                 xfs_buf_unlock(iclog->ic_bp);
1983                 iclog = iclog->ic_next;
1984         }
1985
1986         /*
1987          * Always need to ensure that the extra buffer does not point to memory
1988          * owned by another log buffer before we free it. Also, cycle the lock
1989          * first to ensure we've completed IO on it.
1990          */
1991         xfs_buf_lock(log->l_xbuf);
1992         xfs_buf_unlock(log->l_xbuf);
1993         xfs_buf_set_empty(log->l_xbuf, BTOBB(log->l_iclog_size));
1994         xfs_buf_free(log->l_xbuf);
1995
1996         iclog = log->l_iclog;
1997         for (i = 0; i < log->l_iclog_bufs; i++) {
1998                 xfs_buf_free(iclog->ic_bp);
1999                 next_iclog = iclog->ic_next;
2000                 kmem_free(iclog);
2001                 iclog = next_iclog;
2002         }
2003         spinlock_destroy(&log->l_icloglock);
2004
2005         log->l_mp->m_log = NULL;
2006         kmem_free(log);
2007 }       /* xlog_dealloc_log */
2008
2009 /*
2010  * Update counters atomically now that memcpy is done.
2011  */
2012 /* ARGSUSED */
2013 static inline void
2014 xlog_state_finish_copy(
2015         struct xlog             *log,
2016         struct xlog_in_core     *iclog,
2017         int                     record_cnt,
2018         int                     copy_bytes)
2019 {
2020         spin_lock(&log->l_icloglock);
2021
2022         be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
2023         iclog->ic_offset += copy_bytes;
2024
2025         spin_unlock(&log->l_icloglock);
2026 }       /* xlog_state_finish_copy */
2027
2028
2029
2030
2031 /*
2032  * print out info relating to regions written which consume
2033  * the reservation
2034  */
2035 void
2036 xlog_print_tic_res(
2037         struct xfs_mount        *mp,
2038         struct xlog_ticket      *ticket)
2039 {
2040         uint i;
2041         uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
2042
2043         /* match with XLOG_REG_TYPE_* in xfs_log.h */
2044 #define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str
2045         static char *res_type_str[XLOG_REG_TYPE_MAX + 1] = {
2046             REG_TYPE_STR(BFORMAT, "bformat"),
2047             REG_TYPE_STR(BCHUNK, "bchunk"),
2048             REG_TYPE_STR(EFI_FORMAT, "efi_format"),
2049             REG_TYPE_STR(EFD_FORMAT, "efd_format"),
2050             REG_TYPE_STR(IFORMAT, "iformat"),
2051             REG_TYPE_STR(ICORE, "icore"),
2052             REG_TYPE_STR(IEXT, "iext"),
2053             REG_TYPE_STR(IBROOT, "ibroot"),
2054             REG_TYPE_STR(ILOCAL, "ilocal"),
2055             REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
2056             REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
2057             REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
2058             REG_TYPE_STR(QFORMAT, "qformat"),
2059             REG_TYPE_STR(DQUOT, "dquot"),
2060             REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2061             REG_TYPE_STR(LRHEADER, "LR header"),
2062             REG_TYPE_STR(UNMOUNT, "unmount"),
2063             REG_TYPE_STR(COMMIT, "commit"),
2064             REG_TYPE_STR(TRANSHDR, "trans header"),
2065             REG_TYPE_STR(ICREATE, "inode create")
2066         };
2067 #undef REG_TYPE_STR
2068
2069         xfs_warn(mp, "xlog_write: reservation summary:");
2070         xfs_warn(mp, "  unit res    = %d bytes",
2071                  ticket->t_unit_res);
2072         xfs_warn(mp, "  current res = %d bytes",
2073                  ticket->t_curr_res);
2074         xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2075                  ticket->t_res_arr_sum, ticket->t_res_o_flow);
2076         xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2077                  ticket->t_res_num_ophdrs, ophdr_spc);
2078         xfs_warn(mp, "  ophdr + reg = %u bytes",
2079                  ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2080         xfs_warn(mp, "  num regions = %u",
2081                  ticket->t_res_num);
2082
2083         for (i = 0; i < ticket->t_res_num; i++) {
2084                 uint r_type = ticket->t_res_arr[i].r_type;
2085                 xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2086                             ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2087                             "bad-rtype" : res_type_str[r_type]),
2088                             ticket->t_res_arr[i].r_len);
2089         }
2090
2091         xfs_alert_tag(mp, XFS_PTAG_LOGRES,
2092                 "xlog_write: reservation ran out. Need to up reservation");
2093         xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2094 }
2095
2096 /*
2097  * Calculate the potential space needed by the log vector.  Each region gets
2098  * its own xlog_op_header_t and may need to be double word aligned.
2099  */
2100 static int
2101 xlog_write_calc_vec_length(
2102         struct xlog_ticket      *ticket,
2103         struct xfs_log_vec      *log_vector)
2104 {
2105         struct xfs_log_vec      *lv;
2106         int                     headers = 0;
2107         int                     len = 0;
2108         int                     i;
2109
2110         /* acct for start rec of xact */
2111         if (ticket->t_flags & XLOG_TIC_INITED)
2112                 headers++;
2113
2114         for (lv = log_vector; lv; lv = lv->lv_next) {
2115                 /* we don't write ordered log vectors */
2116                 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2117                         continue;
2118
2119                 headers += lv->lv_niovecs;
2120
2121                 for (i = 0; i < lv->lv_niovecs; i++) {
2122                         struct xfs_log_iovec    *vecp = &lv->lv_iovecp[i];
2123
2124                         len += vecp->i_len;
2125                         xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2126                 }
2127         }
2128
2129         ticket->t_res_num_ophdrs += headers;
2130         len += headers * sizeof(struct xlog_op_header);
2131
2132         return len;
2133 }
2134
2135 /*
2136  * If first write for transaction, insert start record  We can't be trying to
2137  * commit if we are inited.  We can't have any "partial_copy" if we are inited.
2138  */
2139 static int
2140 xlog_write_start_rec(
2141         struct xlog_op_header   *ophdr,
2142         struct xlog_ticket      *ticket)
2143 {
2144         if (!(ticket->t_flags & XLOG_TIC_INITED))
2145                 return 0;
2146
2147         ophdr->oh_tid   = cpu_to_be32(ticket->t_tid);
2148         ophdr->oh_clientid = ticket->t_clientid;
2149         ophdr->oh_len = 0;
2150         ophdr->oh_flags = XLOG_START_TRANS;
2151         ophdr->oh_res2 = 0;
2152
2153         ticket->t_flags &= ~XLOG_TIC_INITED;
2154
2155         return sizeof(struct xlog_op_header);
2156 }
2157
2158 static xlog_op_header_t *
2159 xlog_write_setup_ophdr(
2160         struct xlog             *log,
2161         struct xlog_op_header   *ophdr,
2162         struct xlog_ticket      *ticket,
2163         uint                    flags)
2164 {
2165         ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2166         ophdr->oh_clientid = ticket->t_clientid;
2167         ophdr->oh_res2 = 0;
2168
2169         /* are we copying a commit or unmount record? */
2170         ophdr->oh_flags = flags;
2171
2172         /*
2173          * We've seen logs corrupted with bad transaction client ids.  This
2174          * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2175          * and shut down the filesystem.
2176          */
2177         switch (ophdr->oh_clientid)  {
2178         case XFS_TRANSACTION:
2179         case XFS_VOLUME:
2180         case XFS_LOG:
2181                 break;
2182         default:
2183                 xfs_warn(log->l_mp,
2184                         "Bad XFS transaction clientid 0x%x in ticket 0x%p",
2185                         ophdr->oh_clientid, ticket);
2186                 return NULL;
2187         }
2188
2189         return ophdr;
2190 }
2191
2192 /*
2193  * Set up the parameters of the region copy into the log. This has
2194  * to handle region write split across multiple log buffers - this
2195  * state is kept external to this function so that this code can
2196  * be written in an obvious, self documenting manner.
2197  */
2198 static int
2199 xlog_write_setup_copy(
2200         struct xlog_ticket      *ticket,
2201         struct xlog_op_header   *ophdr,
2202         int                     space_available,
2203         int                     space_required,
2204         int                     *copy_off,
2205         int                     *copy_len,
2206         int                     *last_was_partial_copy,
2207         int                     *bytes_consumed)
2208 {
2209         int                     still_to_copy;
2210
2211         still_to_copy = space_required - *bytes_consumed;
2212         *copy_off = *bytes_consumed;
2213
2214         if (still_to_copy <= space_available) {
2215                 /* write of region completes here */
2216                 *copy_len = still_to_copy;
2217                 ophdr->oh_len = cpu_to_be32(*copy_len);
2218                 if (*last_was_partial_copy)
2219                         ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2220                 *last_was_partial_copy = 0;
2221                 *bytes_consumed = 0;
2222                 return 0;
2223         }
2224
2225         /* partial write of region, needs extra log op header reservation */
2226         *copy_len = space_available;
2227         ophdr->oh_len = cpu_to_be32(*copy_len);
2228         ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2229         if (*last_was_partial_copy)
2230                 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2231         *bytes_consumed += *copy_len;
2232         (*last_was_partial_copy)++;
2233
2234         /* account for new log op header */
2235         ticket->t_curr_res -= sizeof(struct xlog_op_header);
2236         ticket->t_res_num_ophdrs++;
2237
2238         return sizeof(struct xlog_op_header);
2239 }
2240
2241 static int
2242 xlog_write_copy_finish(
2243         struct xlog             *log,
2244         struct xlog_in_core     *iclog,
2245         uint                    flags,
2246         int                     *record_cnt,
2247         int                     *data_cnt,
2248         int                     *partial_copy,
2249         int                     *partial_copy_len,
2250         int                     log_offset,
2251         struct xlog_in_core     **commit_iclog)
2252 {
2253         if (*partial_copy) {
2254                 /*
2255                  * This iclog has already been marked WANT_SYNC by
2256                  * xlog_state_get_iclog_space.
2257                  */
2258                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2259                 *record_cnt = 0;
2260                 *data_cnt = 0;
2261                 return xlog_state_release_iclog(log, iclog);
2262         }
2263
2264         *partial_copy = 0;
2265         *partial_copy_len = 0;
2266
2267         if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2268                 /* no more space in this iclog - push it. */
2269                 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2270                 *record_cnt = 0;
2271                 *data_cnt = 0;
2272
2273                 spin_lock(&log->l_icloglock);
2274                 xlog_state_want_sync(log, iclog);
2275                 spin_unlock(&log->l_icloglock);
2276
2277                 if (!commit_iclog)
2278                         return xlog_state_release_iclog(log, iclog);
2279                 ASSERT(flags & XLOG_COMMIT_TRANS);
2280                 *commit_iclog = iclog;
2281         }
2282
2283         return 0;
2284 }
2285
2286 /*
2287  * Write some region out to in-core log
2288  *
2289  * This will be called when writing externally provided regions or when
2290  * writing out a commit record for a given transaction.
2291  *
2292  * General algorithm:
2293  *      1. Find total length of this write.  This may include adding to the
2294  *              lengths passed in.
2295  *      2. Check whether we violate the tickets reservation.
2296  *      3. While writing to this iclog
2297  *          A. Reserve as much space in this iclog as can get
2298  *          B. If this is first write, save away start lsn
2299  *          C. While writing this region:
2300  *              1. If first write of transaction, write start record
2301  *              2. Write log operation header (header per region)
2302  *              3. Find out if we can fit entire region into this iclog
2303  *              4. Potentially, verify destination memcpy ptr
2304  *              5. Memcpy (partial) region
2305  *              6. If partial copy, release iclog; otherwise, continue
2306  *                      copying more regions into current iclog
2307  *      4. Mark want sync bit (in simulation mode)
2308  *      5. Release iclog for potential flush to on-disk log.
2309  *
2310  * ERRORS:
2311  * 1.   Panic if reservation is overrun.  This should never happen since
2312  *      reservation amounts are generated internal to the filesystem.
2313  * NOTES:
2314  * 1. Tickets are single threaded data structures.
2315  * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2316  *      syncing routine.  When a single log_write region needs to span
2317  *      multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2318  *      on all log operation writes which don't contain the end of the
2319  *      region.  The XLOG_END_TRANS bit is used for the in-core log
2320  *      operation which contains the end of the continued log_write region.
2321  * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2322  *      we don't really know exactly how much space will be used.  As a result,
2323  *      we don't update ic_offset until the end when we know exactly how many
2324  *      bytes have been written out.
2325  */
2326 int
2327 xlog_write(
2328         struct xlog             *log,
2329         struct xfs_log_vec      *log_vector,
2330         struct xlog_ticket      *ticket,
2331         xfs_lsn_t               *start_lsn,
2332         struct xlog_in_core     **commit_iclog,
2333         uint                    flags)
2334 {
2335         struct xlog_in_core     *iclog = NULL;
2336         struct xfs_log_iovec    *vecp;
2337         struct xfs_log_vec      *lv;
2338         int                     len;
2339         int                     index;
2340         int                     partial_copy = 0;
2341         int                     partial_copy_len = 0;
2342         int                     contwr = 0;
2343         int                     record_cnt = 0;
2344         int                     data_cnt = 0;
2345         int                     error;
2346
2347         *start_lsn = 0;
2348
2349         len = xlog_write_calc_vec_length(ticket, log_vector);
2350
2351         /*
2352          * Region headers and bytes are already accounted for.
2353          * We only need to take into account start records and
2354          * split regions in this function.
2355          */
2356         if (ticket->t_flags & XLOG_TIC_INITED)
2357                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2358
2359         /*
2360          * Commit record headers need to be accounted for. These
2361          * come in as separate writes so are easy to detect.
2362          */
2363         if (flags & (XLOG_COMMIT_TRANS | XLOG_UNMOUNT_TRANS))
2364                 ticket->t_curr_res -= sizeof(xlog_op_header_t);
2365
2366         if (ticket->t_curr_res < 0)
2367                 xlog_print_tic_res(log->l_mp, ticket);
2368
2369         index = 0;
2370         lv = log_vector;
2371         vecp = lv->lv_iovecp;
2372         while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2373                 void            *ptr;
2374                 int             log_offset;
2375
2376                 error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2377                                                    &contwr, &log_offset);
2378                 if (error)
2379                         return error;
2380
2381                 ASSERT(log_offset <= iclog->ic_size - 1);
2382                 ptr = iclog->ic_datap + log_offset;
2383
2384                 /* start_lsn is the first lsn written to. That's all we need. */
2385                 if (!*start_lsn)
2386                         *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2387
2388                 /*
2389                  * This loop writes out as many regions as can fit in the amount
2390                  * of space which was allocated by xlog_state_get_iclog_space().
2391                  */
2392                 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2393                         struct xfs_log_iovec    *reg;
2394                         struct xlog_op_header   *ophdr;
2395                         int                     start_rec_copy;
2396                         int                     copy_len;
2397                         int                     copy_off;
2398                         bool                    ordered = false;
2399
2400                         /* ordered log vectors have no regions to write */
2401                         if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2402                                 ASSERT(lv->lv_niovecs == 0);
2403                                 ordered = true;
2404                                 goto next_lv;
2405                         }
2406
2407                         reg = &vecp[index];
2408                         ASSERT(reg->i_len % sizeof(__int32_t) == 0);
2409                         ASSERT((unsigned long)ptr % sizeof(__int32_t) == 0);
2410
2411                         start_rec_copy = xlog_write_start_rec(ptr, ticket);
2412                         if (start_rec_copy) {
2413                                 record_cnt++;
2414                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2415                                                    start_rec_copy);
2416                         }
2417
2418                         ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2419                         if (!ophdr)
2420                                 return -EIO;
2421
2422                         xlog_write_adv_cnt(&ptr, &len, &log_offset,
2423                                            sizeof(struct xlog_op_header));
2424
2425                         len += xlog_write_setup_copy(ticket, ophdr,
2426                                                      iclog->ic_size-log_offset,
2427                                                      reg->i_len,
2428                                                      &copy_off, &copy_len,
2429                                                      &partial_copy,
2430                                                      &partial_copy_len);
2431                         xlog_verify_dest_ptr(log, ptr);
2432
2433                         /*
2434                          * Copy region.
2435                          *
2436                          * Unmount records just log an opheader, so can have
2437                          * empty payloads with no data region to copy. Hence we
2438                          * only copy the payload if the vector says it has data
2439                          * to copy.
2440                          */
2441                         ASSERT(copy_len >= 0);
2442                         if (copy_len > 0) {
2443                                 memcpy(ptr, reg->i_addr + copy_off, copy_len);
2444                                 xlog_write_adv_cnt(&ptr, &len, &log_offset,
2445                                                    copy_len);
2446                         }
2447                         copy_len += start_rec_copy + sizeof(xlog_op_header_t);
2448                         record_cnt++;
2449                         data_cnt += contwr ? copy_len : 0;
2450
2451                         error = xlog_write_copy_finish(log, iclog, flags,
2452                                                        &record_cnt, &data_cnt,
2453                                                        &partial_copy,
2454                                                        &partial_copy_len,
2455                                                        log_offset,
2456                                                        commit_iclog);
2457                         if (error)
2458                                 return error;
2459
2460                         /*
2461                          * if we had a partial copy, we need to get more iclog
2462                          * space but we don't want to increment the region
2463                          * index because there is still more is this region to
2464                          * write.
2465                          *
2466                          * If we completed writing this region, and we flushed
2467                          * the iclog (indicated by resetting of the record
2468                          * count), then we also need to get more log space. If
2469                          * this was the last record, though, we are done and
2470                          * can just return.
2471                          */
2472                         if (partial_copy)
2473                                 break;
2474
2475                         if (++index == lv->lv_niovecs) {
2476 next_lv:
2477                                 lv = lv->lv_next;
2478                                 index = 0;
2479                                 if (lv)
2480                                         vecp = lv->lv_iovecp;
2481                         }
2482                         if (record_cnt == 0 && ordered == false) {
2483                                 if (!lv)
2484                                         return 0;
2485                                 break;
2486                         }
2487                 }
2488         }
2489
2490         ASSERT(len == 0);
2491
2492         xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2493         if (!commit_iclog)
2494                 return xlog_state_release_iclog(log, iclog);
2495
2496         ASSERT(flags & XLOG_COMMIT_TRANS);
2497         *commit_iclog = iclog;
2498         return 0;
2499 }
2500
2501
2502 /*****************************************************************************
2503  *
2504  *              State Machine functions
2505  *
2506  *****************************************************************************
2507  */
2508
2509 /* Clean iclogs starting from the head.  This ordering must be
2510  * maintained, so an iclog doesn't become ACTIVE beyond one that
2511  * is SYNCING.  This is also required to maintain the notion that we use
2512  * a ordered wait queue to hold off would be writers to the log when every
2513  * iclog is trying to sync to disk.
2514  *
2515  * State Change: DIRTY -> ACTIVE
2516  */
2517 STATIC void
2518 xlog_state_clean_log(
2519         struct xlog *log)
2520 {
2521         xlog_in_core_t  *iclog;
2522         int changed = 0;
2523
2524         iclog = log->l_iclog;
2525         do {
2526                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
2527                         iclog->ic_state = XLOG_STATE_ACTIVE;
2528                         iclog->ic_offset       = 0;
2529                         ASSERT(iclog->ic_callback == NULL);
2530                         /*
2531                          * If the number of ops in this iclog indicate it just
2532                          * contains the dummy transaction, we can
2533                          * change state into IDLE (the second time around).
2534                          * Otherwise we should change the state into
2535                          * NEED a dummy.
2536                          * We don't need to cover the dummy.
2537                          */
2538                         if (!changed &&
2539                            (be32_to_cpu(iclog->ic_header.h_num_logops) ==
2540                                         XLOG_COVER_OPS)) {
2541                                 changed = 1;
2542                         } else {
2543                                 /*
2544                                  * We have two dirty iclogs so start over
2545                                  * This could also be num of ops indicates
2546                                  * this is not the dummy going out.
2547                                  */
2548                                 changed = 2;
2549                         }
2550                         iclog->ic_header.h_num_logops = 0;
2551                         memset(iclog->ic_header.h_cycle_data, 0,
2552                               sizeof(iclog->ic_header.h_cycle_data));
2553                         iclog->ic_header.h_lsn = 0;
2554                 } else if (iclog->ic_state == XLOG_STATE_ACTIVE)
2555                         /* do nothing */;
2556                 else
2557                         break;  /* stop cleaning */
2558                 iclog = iclog->ic_next;
2559         } while (iclog != log->l_iclog);
2560
2561         /* log is locked when we are called */
2562         /*
2563          * Change state for the dummy log recording.
2564          * We usually go to NEED. But we go to NEED2 if the changed indicates
2565          * we are done writing the dummy record.
2566          * If we are done with the second dummy recored (DONE2), then
2567          * we go to IDLE.
2568          */
2569         if (changed) {
2570                 switch (log->l_covered_state) {
2571                 case XLOG_STATE_COVER_IDLE:
2572                 case XLOG_STATE_COVER_NEED:
2573                 case XLOG_STATE_COVER_NEED2:
2574                         log->l_covered_state = XLOG_STATE_COVER_NEED;
2575                         break;
2576
2577                 case XLOG_STATE_COVER_DONE:
2578                         if (changed == 1)
2579                                 log->l_covered_state = XLOG_STATE_COVER_NEED2;
2580                         else
2581                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2582                         break;
2583
2584                 case XLOG_STATE_COVER_DONE2:
2585                         if (changed == 1)
2586                                 log->l_covered_state = XLOG_STATE_COVER_IDLE;
2587                         else
2588                                 log->l_covered_state = XLOG_STATE_COVER_NEED;
2589                         break;
2590
2591                 default:
2592                         ASSERT(0);
2593                 }
2594         }
2595 }       /* xlog_state_clean_log */
2596
2597 STATIC xfs_lsn_t
2598 xlog_get_lowest_lsn(
2599         struct xlog     *log)
2600 {
2601         xlog_in_core_t  *lsn_log;
2602         xfs_lsn_t       lowest_lsn, lsn;
2603
2604         lsn_log = log->l_iclog;
2605         lowest_lsn = 0;
2606         do {
2607             if (!(lsn_log->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY))) {
2608                 lsn = be64_to_cpu(lsn_log->ic_header.h_lsn);
2609                 if ((lsn && !lowest_lsn) ||
2610                     (XFS_LSN_CMP(lsn, lowest_lsn) < 0)) {
2611                         lowest_lsn = lsn;
2612                 }
2613             }
2614             lsn_log = lsn_log->ic_next;
2615         } while (lsn_log != log->l_iclog);
2616         return lowest_lsn;
2617 }
2618
2619
2620 STATIC void
2621 xlog_state_do_callback(
2622         struct xlog             *log,
2623         int                     aborted,
2624         struct xlog_in_core     *ciclog)
2625 {
2626         xlog_in_core_t     *iclog;
2627         xlog_in_core_t     *first_iclog;        /* used to know when we've
2628                                                  * processed all iclogs once */
2629         xfs_log_callback_t *cb, *cb_next;
2630         int                flushcnt = 0;
2631         xfs_lsn_t          lowest_lsn;
2632         int                ioerrors;    /* counter: iclogs with errors */
2633         int                loopdidcallbacks; /* flag: inner loop did callbacks*/
2634         int                funcdidcallbacks; /* flag: function did callbacks */
2635         int                repeats;     /* for issuing console warnings if
2636                                          * looping too many times */
2637
2638         spin_lock(&log->l_icloglock);
2639         first_iclog = iclog = log->l_iclog;
2640         ioerrors = 0;
2641         funcdidcallbacks = 0;
2642         repeats = 0;
2643
2644         do {
2645                 /*
2646                  * Scan all iclogs starting with the one pointed to by the
2647                  * log.  Reset this starting point each time the log is
2648                  * unlocked (during callbacks).
2649                  *
2650                  * Keep looping through iclogs until one full pass is made
2651                  * without running any callbacks.
2652                  */
2653                 first_iclog = log->l_iclog;
2654                 iclog = log->l_iclog;
2655                 loopdidcallbacks = 0;
2656                 repeats++;
2657
2658                 do {
2659
2660                         /* skip all iclogs in the ACTIVE & DIRTY states */
2661                         if (iclog->ic_state &
2662                             (XLOG_STATE_ACTIVE|XLOG_STATE_DIRTY)) {
2663                                 iclog = iclog->ic_next;
2664                                 continue;
2665                         }
2666
2667                         /*
2668                          * Between marking a filesystem SHUTDOWN and stopping
2669                          * the log, we do flush all iclogs to disk (if there
2670                          * wasn't a log I/O error). So, we do want things to
2671                          * go smoothly in case of just a SHUTDOWN  w/o a
2672                          * LOG_IO_ERROR.
2673                          */
2674                         if (!(iclog->ic_state & XLOG_STATE_IOERROR)) {
2675                                 /*
2676                                  * Can only perform callbacks in order.  Since
2677                                  * this iclog is not in the DONE_SYNC/
2678                                  * DO_CALLBACK state, we skip the rest and
2679                                  * just try to clean up.  If we set our iclog
2680                                  * to DO_CALLBACK, we will not process it when
2681                                  * we retry since a previous iclog is in the
2682                                  * CALLBACK and the state cannot change since
2683                                  * we are holding the l_icloglock.
2684                                  */
2685                                 if (!(iclog->ic_state &
2686                                         (XLOG_STATE_DONE_SYNC |
2687                                                  XLOG_STATE_DO_CALLBACK))) {
2688                                         if (ciclog && (ciclog->ic_state ==
2689                                                         XLOG_STATE_DONE_SYNC)) {
2690                                                 ciclog->ic_state = XLOG_STATE_DO_CALLBACK;
2691                                         }
2692                                         break;
2693                                 }
2694                                 /*
2695                                  * We now have an iclog that is in either the
2696                                  * DO_CALLBACK or DONE_SYNC states. The other
2697                                  * states (WANT_SYNC, SYNCING, or CALLBACK were
2698                                  * caught by the above if and are going to
2699                                  * clean (i.e. we aren't doing their callbacks)
2700                                  * see the above if.
2701                                  */
2702
2703                                 /*
2704                                  * We will do one more check here to see if we
2705                                  * have chased our tail around.
2706                                  */
2707
2708                                 lowest_lsn = xlog_get_lowest_lsn(log);
2709                                 if (lowest_lsn &&
2710                                     XFS_LSN_CMP(lowest_lsn,
2711                                                 be64_to_cpu(iclog->ic_header.h_lsn)) < 0) {
2712                                         iclog = iclog->ic_next;
2713                                         continue; /* Leave this iclog for
2714                                                    * another thread */
2715                                 }
2716
2717                                 iclog->ic_state = XLOG_STATE_CALLBACK;
2718
2719
2720                                 /*
2721                                  * Completion of a iclog IO does not imply that
2722                                  * a transaction has completed, as transactions
2723                                  * can be large enough to span many iclogs. We
2724                                  * cannot change the tail of the log half way
2725                                  * through a transaction as this may be the only
2726                                  * transaction in the log and moving th etail to
2727                                  * point to the middle of it will prevent
2728                                  * recovery from finding the start of the
2729                                  * transaction. Hence we should only update the
2730                                  * last_sync_lsn if this iclog contains
2731                                  * transaction completion callbacks on it.
2732                                  *
2733                                  * We have to do this before we drop the
2734                                  * icloglock to ensure we are the only one that
2735                                  * can update it.
2736                                  */
2737                                 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2738                                         be64_to_cpu(iclog->ic_header.h_lsn)) <= 0);
2739                                 if (iclog->ic_callback)
2740                                         atomic64_set(&log->l_last_sync_lsn,
2741                                                 be64_to_cpu(iclog->ic_header.h_lsn));
2742
2743                         } else
2744                                 ioerrors++;
2745
2746                         spin_unlock(&log->l_icloglock);
2747
2748                         /*
2749                          * Keep processing entries in the callback list until
2750                          * we come around and it is empty.  We need to
2751                          * atomically see that the list is empty and change the
2752                          * state to DIRTY so that we don't miss any more
2753                          * callbacks being added.
2754                          */
2755                         spin_lock(&iclog->ic_callback_lock);
2756                         cb = iclog->ic_callback;
2757                         while (cb) {
2758                                 iclog->ic_callback_tail = &(iclog->ic_callback);
2759                                 iclog->ic_callback = NULL;
2760                                 spin_unlock(&iclog->ic_callback_lock);
2761
2762                                 /* perform callbacks in the order given */
2763                                 for (; cb; cb = cb_next) {
2764                                         cb_next = cb->cb_next;
2765                                         cb->cb_func(cb->cb_arg, aborted);
2766                                 }
2767                                 spin_lock(&iclog->ic_callback_lock);
2768                                 cb = iclog->ic_callback;
2769                         }
2770
2771                         loopdidcallbacks++;
2772                         funcdidcallbacks++;
2773
2774                         spin_lock(&log->l_icloglock);
2775                         ASSERT(iclog->ic_callback == NULL);
2776                         spin_unlock(&iclog->ic_callback_lock);
2777                         if (!(iclog->ic_state & XLOG_STATE_IOERROR))
2778                                 iclog->ic_state = XLOG_STATE_DIRTY;
2779
2780                         /*
2781                          * Transition from DIRTY to ACTIVE if applicable.
2782                          * NOP if STATE_IOERROR.
2783                          */
2784                         xlog_state_clean_log(log);
2785
2786                         /* wake up threads waiting in xfs_log_force() */
2787                         wake_up_all(&iclog->ic_force_wait);
2788
2789                         iclog = iclog->ic_next;
2790                 } while (first_iclog != iclog);
2791
2792                 if (repeats > 5000) {
2793                         flushcnt += repeats;
2794                         repeats = 0;
2795                         xfs_warn(log->l_mp,
2796                                 "%s: possible infinite loop (%d iterations)",
2797                                 __func__, flushcnt);
2798                 }
2799         } while (!ioerrors && loopdidcallbacks);
2800
2801 #ifdef DEBUG
2802         /*
2803          * Make one last gasp attempt to see if iclogs are being left in limbo.
2804          * If the above loop finds an iclog earlier than the current iclog and
2805          * in one of the syncing states, the current iclog is put into
2806          * DO_CALLBACK and the callbacks are deferred to the completion of the
2807          * earlier iclog. Walk the iclogs in order and make sure that no iclog
2808          * is in DO_CALLBACK unless an earlier iclog is in one of the syncing
2809          * states.
2810          *
2811          * Note that SYNCING|IOABORT is a valid state so we cannot just check
2812          * for ic_state == SYNCING.
2813          */
2814         if (funcdidcallbacks) {
2815                 first_iclog = iclog = log->l_iclog;
2816                 do {
2817                         ASSERT(iclog->ic_state != XLOG_STATE_DO_CALLBACK);
2818                         /*
2819                          * Terminate the loop if iclogs are found in states
2820                          * which will cause other threads to clean up iclogs.
2821                          *
2822                          * SYNCING - i/o completion will go through logs
2823                          * DONE_SYNC - interrupt thread should be waiting for
2824                          *              l_icloglock
2825                          * IOERROR - give up hope all ye who enter here
2826                          */
2827                         if (iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2828                             iclog->ic_state & XLOG_STATE_SYNCING ||
2829                             iclog->ic_state == XLOG_STATE_DONE_SYNC ||
2830                             iclog->ic_state == XLOG_STATE_IOERROR )
2831                                 break;
2832                         iclog = iclog->ic_next;
2833                 } while (first_iclog != iclog);
2834         }
2835 #endif
2836
2837         if (log->l_iclog->ic_state & (XLOG_STATE_ACTIVE|XLOG_STATE_IOERROR))
2838                 wake_up_all(&log->l_flush_wait);
2839
2840         spin_unlock(&log->l_icloglock);
2841 }
2842
2843
2844 /*
2845  * Finish transitioning this iclog to the dirty state.
2846  *
2847  * Make sure that we completely execute this routine only when this is
2848  * the last call to the iclog.  There is a good chance that iclog flushes,
2849  * when we reach the end of the physical log, get turned into 2 separate
2850  * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2851  * routine.  By using the reference count bwritecnt, we guarantee that only
2852  * the second completion goes through.
2853  *
2854  * Callbacks could take time, so they are done outside the scope of the
2855  * global state machine log lock.
2856  */
2857 STATIC void
2858 xlog_state_done_syncing(
2859         xlog_in_core_t  *iclog,
2860         int             aborted)
2861 {
2862         struct xlog        *log = iclog->ic_log;
2863
2864         spin_lock(&log->l_icloglock);
2865
2866         ASSERT(iclog->ic_state == XLOG_STATE_SYNCING ||
2867                iclog->ic_state == XLOG_STATE_IOERROR);
2868         ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2869         ASSERT(iclog->ic_bwritecnt == 1 || iclog->ic_bwritecnt == 2);
2870
2871
2872         /*
2873          * If we got an error, either on the first buffer, or in the case of
2874          * split log writes, on the second, we mark ALL iclogs STATE_IOERROR,
2875          * and none should ever be attempted to be written to disk
2876          * again.
2877          */
2878         if (iclog->ic_state != XLOG_STATE_IOERROR) {
2879                 if (--iclog->ic_bwritecnt == 1) {
2880                         spin_unlock(&log->l_icloglock);
2881                         return;
2882                 }
2883                 iclog->ic_state = XLOG_STATE_DONE_SYNC;
2884         }
2885
2886         /*
2887          * Someone could be sleeping prior to writing out the next
2888          * iclog buffer, we wake them all, one will get to do the
2889          * I/O, the others get to wait for the result.
2890          */
2891         wake_up_all(&iclog->ic_write_wait);
2892         spin_unlock(&log->l_icloglock);
2893         xlog_state_do_callback(log, aborted, iclog);    /* also cleans log */
2894 }       /* xlog_state_done_syncing */
2895
2896
2897 /*
2898  * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2899  * sleep.  We wait on the flush queue on the head iclog as that should be
2900  * the first iclog to complete flushing. Hence if all iclogs are syncing,
2901  * we will wait here and all new writes will sleep until a sync completes.
2902  *
2903  * The in-core logs are used in a circular fashion. They are not used
2904  * out-of-order even when an iclog past the head is free.
2905  *
2906  * return:
2907  *      * log_offset where xlog_write() can start writing into the in-core
2908  *              log's data space.
2909  *      * in-core log pointer to which xlog_write() should write.
2910  *      * boolean indicating this is a continued write to an in-core log.
2911  *              If this is the last write, then the in-core log's offset field
2912  *              needs to be incremented, depending on the amount of data which
2913  *              is copied.
2914  */
2915 STATIC int
2916 xlog_state_get_iclog_space(
2917         struct xlog             *log,
2918         int                     len,
2919         struct xlog_in_core     **iclogp,
2920         struct xlog_ticket      *ticket,
2921         int                     *continued_write,
2922         int                     *logoffsetp)
2923 {
2924         int               log_offset;
2925         xlog_rec_header_t *head;
2926         xlog_in_core_t    *iclog;
2927         int               error;
2928
2929 restart:
2930         spin_lock(&log->l_icloglock);
2931         if (XLOG_FORCED_SHUTDOWN(log)) {
2932                 spin_unlock(&log->l_icloglock);
2933                 return -EIO;
2934         }
2935
2936         iclog = log->l_iclog;
2937         if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2938                 XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2939
2940                 /* Wait for log writes to have flushed */
2941                 xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2942                 goto restart;
2943         }
2944
2945         head = &iclog->ic_header;
2946
2947         atomic_inc(&iclog->ic_refcnt);  /* prevents sync */
2948         log_offset = iclog->ic_offset;
2949
2950         /* On the 1st write to an iclog, figure out lsn.  This works
2951          * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2952          * committing to.  If the offset is set, that's how many blocks
2953          * must be written.
2954          */
2955         if (log_offset == 0) {
2956                 ticket->t_curr_res -= log->l_iclog_hsize;
2957                 xlog_tic_add_region(ticket,
2958                                     log->l_iclog_hsize,
2959                                     XLOG_REG_TYPE_LRHEADER);
2960                 head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2961                 head->h_lsn = cpu_to_be64(
2962                         xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2963                 ASSERT(log->l_curr_block >= 0);
2964         }
2965
2966         /* If there is enough room to write everything, then do it.  Otherwise,
2967          * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2968          * bit is on, so this will get flushed out.  Don't update ic_offset
2969          * until you know exactly how many bytes get copied.  Therefore, wait
2970          * until later to update ic_offset.
2971          *
2972          * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2973          * can fit into remaining data section.
2974          */
2975         if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2976                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2977
2978                 /*
2979                  * If I'm the only one writing to this iclog, sync it to disk.
2980                  * We need to do an atomic compare and decrement here to avoid
2981                  * racing with concurrent atomic_dec_and_lock() calls in
2982                  * xlog_state_release_iclog() when there is more than one
2983                  * reference to the iclog.
2984                  */
2985                 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) {
2986                         /* we are the only one */
2987                         spin_unlock(&log->l_icloglock);
2988                         error = xlog_state_release_iclog(log, iclog);
2989                         if (error)
2990                                 return error;
2991                 } else {
2992                         spin_unlock(&log->l_icloglock);
2993                 }
2994                 goto restart;
2995         }
2996
2997         /* Do we have enough room to write the full amount in the remainder
2998          * of this iclog?  Or must we continue a write on the next iclog and
2999          * mark this iclog as completely taken?  In the case where we switch
3000          * iclogs (to mark it taken), this particular iclog will release/sync
3001          * to disk in xlog_write().
3002          */
3003         if (len <= iclog->ic_size - iclog->ic_offset) {
3004                 *continued_write = 0;
3005                 iclog->ic_offset += len;
3006         } else {
3007                 *continued_write = 1;
3008                 xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
3009         }
3010         *iclogp = iclog;
3011
3012         ASSERT(iclog->ic_offset <= iclog->ic_size);
3013         spin_unlock(&log->l_icloglock);
3014
3015         *logoffsetp = log_offset;
3016         return 0;
3017 }       /* xlog_state_get_iclog_space */
3018
3019 /* The first cnt-1 times through here we don't need to
3020  * move the grant write head because the permanent
3021  * reservation has reserved cnt times the unit amount.
3022  * Release part of current permanent unit reservation and
3023  * reset current reservation to be one units worth.  Also
3024  * move grant reservation head forward.
3025  */
3026 STATIC void
3027 xlog_regrant_reserve_log_space(
3028         struct xlog             *log,
3029         struct xlog_ticket      *ticket)
3030 {
3031         trace_xfs_log_regrant_reserve_enter(log, ticket);
3032
3033         if (ticket->t_cnt > 0)
3034                 ticket->t_cnt--;
3035
3036         xlog_grant_sub_space(log, &log->l_reserve_head.grant,
3037                                         ticket->t_curr_res);
3038         xlog_grant_sub_space(log, &log->l_write_head.grant,
3039                                         ticket->t_curr_res);
3040         ticket->t_curr_res = ticket->t_unit_res;
3041         xlog_tic_reset_res(ticket);
3042
3043         trace_xfs_log_regrant_reserve_sub(log, ticket);
3044
3045         /* just return if we still have some of the pre-reserved space */
3046         if (ticket->t_cnt > 0)
3047                 return;
3048
3049         xlog_grant_add_space(log, &log->l_reserve_head.grant,
3050                                         ticket->t_unit_res);
3051
3052         trace_xfs_log_regrant_reserve_exit(log, ticket);
3053
3054         ticket->t_curr_res = ticket->t_unit_res;
3055         xlog_tic_reset_res(ticket);
3056 }       /* xlog_regrant_reserve_log_space */
3057
3058
3059 /*
3060  * Give back the space left from a reservation.
3061  *
3062  * All the information we need to make a correct determination of space left
3063  * is present.  For non-permanent reservations, things are quite easy.  The
3064  * count should have been decremented to zero.  We only need to deal with the
3065  * space remaining in the current reservation part of the ticket.  If the
3066  * ticket contains a permanent reservation, there may be left over space which
3067  * needs to be released.  A count of N means that N-1 refills of the current
3068  * reservation can be done before we need to ask for more space.  The first
3069  * one goes to fill up the first current reservation.  Once we run out of
3070  * space, the count will stay at zero and the only space remaining will be
3071  * in the current reservation field.
3072  */
3073 STATIC void
3074 xlog_ungrant_log_space(
3075         struct xlog             *log,
3076         struct xlog_ticket      *ticket)
3077 {
3078         int     bytes;
3079
3080         if (ticket->t_cnt > 0)
3081                 ticket->t_cnt--;
3082
3083         trace_xfs_log_ungrant_enter(log, ticket);
3084         trace_xfs_log_ungrant_sub(log, ticket);
3085
3086         /*
3087          * If this is a permanent reservation ticket, we may be able to free
3088          * up more space based on the remaining count.
3089          */
3090         bytes = ticket->t_curr_res;
3091         if (ticket->t_cnt > 0) {
3092                 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3093                 bytes += ticket->t_unit_res*ticket->t_cnt;
3094         }
3095
3096         xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3097         xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3098
3099         trace_xfs_log_ungrant_exit(log, ticket);
3100
3101         xfs_log_space_wake(log->l_mp);
3102 }
3103
3104 /*
3105  * Flush iclog to disk if this is the last reference to the given iclog and
3106  * the WANT_SYNC bit is set.
3107  *
3108  * When this function is entered, the iclog is not necessarily in the
3109  * WANT_SYNC state.  It may be sitting around waiting to get filled.
3110  *
3111  *
3112  */
3113 STATIC int
3114 xlog_state_release_iclog(
3115         struct xlog             *log,
3116         struct xlog_in_core     *iclog)
3117 {
3118         int             sync = 0;       /* do we sync? */
3119
3120         if (iclog->ic_state & XLOG_STATE_IOERROR)
3121                 return -EIO;
3122
3123         ASSERT(atomic_read(&iclog->ic_refcnt) > 0);
3124         if (!atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock))
3125                 return 0;
3126
3127         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3128                 spin_unlock(&log->l_icloglock);
3129                 return -EIO;
3130         }
3131         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE ||
3132                iclog->ic_state == XLOG_STATE_WANT_SYNC);
3133
3134         if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
3135                 /* update tail before writing to iclog */
3136                 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
3137                 sync++;
3138                 iclog->ic_state = XLOG_STATE_SYNCING;
3139                 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
3140                 xlog_verify_tail_lsn(log, iclog, tail_lsn);
3141                 /* cycle incremented when incrementing curr_block */
3142         }
3143         spin_unlock(&log->l_icloglock);
3144
3145         /*
3146          * We let the log lock go, so it's possible that we hit a log I/O
3147          * error or some other SHUTDOWN condition that marks the iclog
3148          * as XLOG_STATE_IOERROR before the bwrite. However, we know that
3149          * this iclog has consistent data, so we ignore IOERROR
3150          * flags after this point.
3151          */
3152         if (sync)
3153                 return xlog_sync(log, iclog);
3154         return 0;
3155 }       /* xlog_state_release_iclog */
3156
3157
3158 /*
3159  * This routine will mark the current iclog in the ring as WANT_SYNC
3160  * and move the current iclog pointer to the next iclog in the ring.
3161  * When this routine is called from xlog_state_get_iclog_space(), the
3162  * exact size of the iclog has not yet been determined.  All we know is
3163  * that every data block.  We have run out of space in this log record.
3164  */
3165 STATIC void
3166 xlog_state_switch_iclogs(
3167         struct xlog             *log,
3168         struct xlog_in_core     *iclog,
3169         int                     eventual_size)
3170 {
3171         ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3172         if (!eventual_size)
3173                 eventual_size = iclog->ic_offset;
3174         iclog->ic_state = XLOG_STATE_WANT_SYNC;
3175         iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3176         log->l_prev_block = log->l_curr_block;
3177         log->l_prev_cycle = log->l_curr_cycle;
3178
3179         /* roll log?: ic_offset changed later */
3180         log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3181
3182         /* Round up to next log-sunit */
3183         if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3184             log->l_mp->m_sb.sb_logsunit > 1) {
3185                 __uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3186                 log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3187         }
3188
3189         if (log->l_curr_block >= log->l_logBBsize) {
3190                 /*
3191                  * Rewind the current block before the cycle is bumped to make
3192                  * sure that the combined LSN never transiently moves forward
3193                  * when the log wraps to the next cycle. This is to support the
3194                  * unlocked sample of these fields from xlog_valid_lsn(). Most
3195                  * other cases should acquire l_icloglock.
3196                  */
3197                 log->l_curr_block -= log->l_logBBsize;
3198                 ASSERT(log->l_curr_block >= 0);
3199                 smp_wmb();
3200                 log->l_curr_cycle++;
3201                 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3202                         log->l_curr_cycle++;
3203         }
3204         ASSERT(iclog == log->l_iclog);
3205         log->l_iclog = iclog->ic_next;
3206 }       /* xlog_state_switch_iclogs */
3207
3208 /*
3209  * Write out all data in the in-core log as of this exact moment in time.
3210  *
3211  * Data may be written to the in-core log during this call.  However,
3212  * we don't guarantee this data will be written out.  A change from past
3213  * implementation means this routine will *not* write out zero length LRs.
3214  *
3215  * Basically, we try and perform an intelligent scan of the in-core logs.
3216  * If we determine there is no flushable data, we just return.  There is no
3217  * flushable data if:
3218  *
3219  *      1. the current iclog is active and has no data; the previous iclog
3220  *              is in the active or dirty state.
3221  *      2. the current iclog is drity, and the previous iclog is in the
3222  *              active or dirty state.
3223  *
3224  * We may sleep if:
3225  *
3226  *      1. the current iclog is not in the active nor dirty state.
3227  *      2. the current iclog dirty, and the previous iclog is not in the
3228  *              active nor dirty state.
3229  *      3. the current iclog is active, and there is another thread writing
3230  *              to this particular iclog.
3231  *      4. a) the current iclog is active and has no other writers
3232  *         b) when we return from flushing out this iclog, it is still
3233  *              not in the active nor dirty state.
3234  */
3235 int
3236 _xfs_log_force(
3237         struct xfs_mount        *mp,
3238         uint                    flags,
3239         int                     *log_flushed)
3240 {
3241         struct xlog             *log = mp->m_log;
3242         struct xlog_in_core     *iclog;
3243         xfs_lsn_t               lsn;
3244
3245         XFS_STATS_INC(mp, xs_log_force);
3246
3247         xlog_cil_force(log);
3248
3249         spin_lock(&log->l_icloglock);
3250
3251         iclog = log->l_iclog;
3252         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3253                 spin_unlock(&log->l_icloglock);
3254                 return -EIO;
3255         }
3256
3257         /* If the head iclog is not active nor dirty, we just attach
3258          * ourselves to the head and go to sleep.
3259          */
3260         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3261             iclog->ic_state == XLOG_STATE_DIRTY) {
3262                 /*
3263                  * If the head is dirty or (active and empty), then
3264                  * we need to look at the previous iclog.  If the previous
3265                  * iclog is active or dirty we are done.  There is nothing
3266                  * to sync out.  Otherwise, we attach ourselves to the
3267                  * previous iclog and go to sleep.
3268                  */
3269                 if (iclog->ic_state == XLOG_STATE_DIRTY ||
3270                     (atomic_read(&iclog->ic_refcnt) == 0
3271                      && iclog->ic_offset == 0)) {
3272                         iclog = iclog->ic_prev;
3273                         if (iclog->ic_state == XLOG_STATE_ACTIVE ||
3274                             iclog->ic_state == XLOG_STATE_DIRTY)
3275                                 goto no_sleep;
3276                         else
3277                                 goto maybe_sleep;
3278                 } else {
3279                         if (atomic_read(&iclog->ic_refcnt) == 0) {
3280                                 /* We are the only one with access to this
3281                                  * iclog.  Flush it out now.  There should
3282                                  * be a roundoff of zero to show that someone
3283                                  * has already taken care of the roundoff from
3284                                  * the previous sync.
3285                                  */
3286                                 atomic_inc(&iclog->ic_refcnt);
3287                                 lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3288                                 xlog_state_switch_iclogs(log, iclog, 0);
3289                                 spin_unlock(&log->l_icloglock);
3290
3291                                 if (xlog_state_release_iclog(log, iclog))
3292                                         return -EIO;
3293
3294                                 if (log_flushed)
3295                                         *log_flushed = 1;
3296                                 spin_lock(&log->l_icloglock);
3297                                 if (be64_to_cpu(iclog->ic_header.h_lsn) == lsn &&
3298                                     iclog->ic_state != XLOG_STATE_DIRTY)
3299                                         goto maybe_sleep;
3300                                 else
3301                                         goto no_sleep;
3302                         } else {
3303                                 /* Someone else is writing to this iclog.
3304                                  * Use its call to flush out the data.  However,
3305                                  * the other thread may not force out this LR,
3306                                  * so we mark it WANT_SYNC.
3307                                  */
3308                                 xlog_state_switch_iclogs(log, iclog, 0);
3309                                 goto maybe_sleep;
3310                         }
3311                 }
3312         }
3313
3314         /* By the time we come around again, the iclog could've been filled
3315          * which would give it another lsn.  If we have a new lsn, just
3316          * return because the relevant data has been flushed.
3317          */
3318 maybe_sleep:
3319         if (flags & XFS_LOG_SYNC) {
3320                 /*
3321                  * We must check if we're shutting down here, before
3322                  * we wait, while we're holding the l_icloglock.
3323                  * Then we check again after waking up, in case our
3324                  * sleep was disturbed by a bad news.
3325                  */
3326                 if (iclog->ic_state & XLOG_STATE_IOERROR) {
3327                         spin_unlock(&log->l_icloglock);
3328                         return -EIO;
3329                 }
3330                 XFS_STATS_INC(mp, xs_log_force_sleep);
3331                 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3332                 /*
3333                  * No need to grab the log lock here since we're
3334                  * only deciding whether or not to return EIO
3335                  * and the memory read should be atomic.
3336                  */
3337                 if (iclog->ic_state & XLOG_STATE_IOERROR)
3338                         return -EIO;
3339         } else {
3340
3341 no_sleep:
3342                 spin_unlock(&log->l_icloglock);
3343         }
3344         return 0;
3345 }
3346
3347 /*
3348  * Wrapper for _xfs_log_force(), to be used when caller doesn't care
3349  * about errors or whether the log was flushed or not. This is the normal
3350  * interface to use when trying to unpin items or move the log forward.
3351  */
3352 void
3353 xfs_log_force(
3354         xfs_mount_t     *mp,
3355         uint            flags)
3356 {
3357         trace_xfs_log_force(mp, 0, _RET_IP_);
3358         _xfs_log_force(mp, flags, NULL);
3359 }
3360
3361 /*
3362  * Force the in-core log to disk for a specific LSN.
3363  *
3364  * Find in-core log with lsn.
3365  *      If it is in the DIRTY state, just return.
3366  *      If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3367  *              state and go to sleep or return.
3368  *      If it is in any other state, go to sleep or return.
3369  *
3370  * Synchronous forces are implemented with a signal variable. All callers
3371  * to force a given lsn to disk will wait on a the sv attached to the
3372  * specific in-core log.  When given in-core log finally completes its
3373  * write to disk, that thread will wake up all threads waiting on the
3374  * sv.
3375  */
3376 int
3377 _xfs_log_force_lsn(
3378         struct xfs_mount        *mp,
3379         xfs_lsn_t               lsn,
3380         uint                    flags,
3381         int                     *log_flushed)
3382 {
3383         struct xlog             *log = mp->m_log;
3384         struct xlog_in_core     *iclog;
3385         int                     already_slept = 0;
3386
3387         ASSERT(lsn != 0);
3388
3389         XFS_STATS_INC(mp, xs_log_force);
3390
3391         lsn = xlog_cil_force_lsn(log, lsn);
3392         if (lsn == NULLCOMMITLSN)
3393                 return 0;
3394
3395 try_again:
3396         spin_lock(&log->l_icloglock);
3397         iclog = log->l_iclog;
3398         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3399                 spin_unlock(&log->l_icloglock);
3400                 return -EIO;
3401         }
3402
3403         do {
3404                 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3405                         iclog = iclog->ic_next;
3406                         continue;
3407                 }
3408
3409                 if (iclog->ic_state == XLOG_STATE_DIRTY) {
3410                         spin_unlock(&log->l_icloglock);
3411                         return 0;
3412                 }
3413
3414                 if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3415                         /*
3416                          * We sleep here if we haven't already slept (e.g.
3417                          * this is the first time we've looked at the correct
3418                          * iclog buf) and the buffer before us is going to
3419                          * be sync'ed. The reason for this is that if we
3420                          * are doing sync transactions here, by waiting for
3421                          * the previous I/O to complete, we can allow a few
3422                          * more transactions into this iclog before we close
3423                          * it down.
3424                          *
3425                          * Otherwise, we mark the buffer WANT_SYNC, and bump
3426                          * up the refcnt so we can release the log (which
3427                          * drops the ref count).  The state switch keeps new
3428                          * transaction commits from using this buffer.  When
3429                          * the current commits finish writing into the buffer,
3430                          * the refcount will drop to zero and the buffer will
3431                          * go out then.
3432                          */
3433                         if (!already_slept &&
3434                             (iclog->ic_prev->ic_state &
3435                              (XLOG_STATE_WANT_SYNC | XLOG_STATE_SYNCING))) {
3436                                 ASSERT(!(iclog->ic_state & XLOG_STATE_IOERROR));
3437
3438                                 XFS_STATS_INC(mp, xs_log_force_sleep);
3439
3440                                 xlog_wait(&iclog->ic_prev->ic_write_wait,
3441                                                         &log->l_icloglock);
3442                                 already_slept = 1;
3443                                 goto try_again;
3444                         }
3445                         atomic_inc(&iclog->ic_refcnt);
3446                         xlog_state_switch_iclogs(log, iclog, 0);
3447                         spin_unlock(&log->l_icloglock);
3448                         if (xlog_state_release_iclog(log, iclog))
3449                                 return -EIO;
3450                         if (log_flushed)
3451                                 *log_flushed = 1;
3452                         spin_lock(&log->l_icloglock);
3453                 }
3454
3455                 if ((flags & XFS_LOG_SYNC) && /* sleep */
3456                     !(iclog->ic_state &
3457                       (XLOG_STATE_ACTIVE | XLOG_STATE_DIRTY))) {
3458                         /*
3459                          * Don't wait on completion if we know that we've
3460                          * gotten a log write error.
3461                          */
3462                         if (iclog->ic_state & XLOG_STATE_IOERROR) {
3463                                 spin_unlock(&log->l_icloglock);
3464                                 return -EIO;
3465                         }
3466                         XFS_STATS_INC(mp, xs_log_force_sleep);
3467                         xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
3468                         /*
3469                          * No need to grab the log lock here since we're
3470                          * only deciding whether or not to return EIO
3471                          * and the memory read should be atomic.
3472                          */
3473                         if (iclog->ic_state & XLOG_STATE_IOERROR)
3474                                 return -EIO;
3475                 } else {                /* just return */
3476                         spin_unlock(&log->l_icloglock);
3477                 }
3478
3479                 return 0;
3480         } while (iclog != log->l_iclog);
3481
3482         spin_unlock(&log->l_icloglock);
3483         return 0;
3484 }
3485
3486 /*
3487  * Wrapper for _xfs_log_force_lsn(), to be used when caller doesn't care
3488  * about errors or whether the log was flushed or not. This is the normal
3489  * interface to use when trying to unpin items or move the log forward.
3490  */
3491 void
3492 xfs_log_force_lsn(
3493         xfs_mount_t     *mp,
3494         xfs_lsn_t       lsn,
3495         uint            flags)
3496 {
3497         trace_xfs_log_force(mp, lsn, _RET_IP_);
3498         _xfs_log_force_lsn(mp, lsn, flags, NULL);
3499 }
3500
3501 /*
3502  * Called when we want to mark the current iclog as being ready to sync to
3503  * disk.
3504  */
3505 STATIC void
3506 xlog_state_want_sync(
3507         struct xlog             *log,
3508         struct xlog_in_core     *iclog)
3509 {
3510         assert_spin_locked(&log->l_icloglock);
3511
3512         if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3513                 xlog_state_switch_iclogs(log, iclog, 0);
3514         } else {
3515                 ASSERT(iclog->ic_state &
3516                         (XLOG_STATE_WANT_SYNC|XLOG_STATE_IOERROR));
3517         }
3518 }
3519
3520
3521 /*****************************************************************************
3522  *
3523  *              TICKET functions
3524  *
3525  *****************************************************************************
3526  */
3527
3528 /*
3529  * Free a used ticket when its refcount falls to zero.
3530  */
3531 void
3532 xfs_log_ticket_put(
3533         xlog_ticket_t   *ticket)
3534 {
3535         ASSERT(atomic_read(&ticket->t_ref) > 0);
3536         if (atomic_dec_and_test(&ticket->t_ref))
3537                 kmem_zone_free(xfs_log_ticket_zone, ticket);
3538 }
3539
3540 xlog_ticket_t *
3541 xfs_log_ticket_get(
3542         xlog_ticket_t   *ticket)
3543 {
3544         ASSERT(atomic_read(&ticket->t_ref) > 0);
3545         atomic_inc(&ticket->t_ref);
3546         return ticket;
3547 }
3548
3549 /*
3550  * Figure out the total log space unit (in bytes) that would be
3551  * required for a log ticket.
3552  */
3553 int
3554 xfs_log_calc_unit_res(
3555         struct xfs_mount        *mp,
3556         int                     unit_bytes)
3557 {
3558         struct xlog             *log = mp->m_log;
3559         int                     iclog_space;
3560         uint                    num_headers;
3561
3562         /*
3563          * Permanent reservations have up to 'cnt'-1 active log operations
3564          * in the log.  A unit in this case is the amount of space for one
3565          * of these log operations.  Normal reservations have a cnt of 1
3566          * and their unit amount is the total amount of space required.
3567          *
3568          * The following lines of code account for non-transaction data
3569          * which occupy space in the on-disk log.
3570          *
3571          * Normal form of a transaction is:
3572          * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3573          * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3574          *
3575          * We need to account for all the leadup data and trailer data
3576          * around the transaction data.
3577          * And then we need to account for the worst case in terms of using
3578          * more space.
3579          * The worst case will happen if:
3580          * - the placement of the transaction happens to be such that the
3581          *   roundoff is at its maximum
3582          * - the transaction data is synced before the commit record is synced
3583          *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3584          *   Therefore the commit record is in its own Log Record.
3585          *   This can happen as the commit record is called with its
3586          *   own region to xlog_write().
3587          *   This then means that in the worst case, roundoff can happen for
3588          *   the commit-rec as well.
3589          *   The commit-rec is smaller than padding in this scenario and so it is
3590          *   not added separately.
3591          */
3592
3593         /* for trans header */
3594         unit_bytes += sizeof(xlog_op_header_t);
3595         unit_bytes += sizeof(xfs_trans_header_t);
3596
3597         /* for start-rec */
3598         unit_bytes += sizeof(xlog_op_header_t);
3599
3600         /*
3601          * for LR headers - the space for data in an iclog is the size minus
3602          * the space used for the headers. If we use the iclog size, then we
3603          * undercalculate the number of headers required.
3604          *
3605          * Furthermore - the addition of op headers for split-recs might
3606          * increase the space required enough to require more log and op
3607          * headers, so take that into account too.
3608          *
3609          * IMPORTANT: This reservation makes the assumption that if this
3610          * transaction is the first in an iclog and hence has the LR headers
3611          * accounted to it, then the remaining space in the iclog is
3612          * exclusively for this transaction.  i.e. if the transaction is larger
3613          * than the iclog, it will be the only thing in that iclog.
3614          * Fundamentally, this means we must pass the entire log vector to
3615          * xlog_write to guarantee this.
3616          */
3617         iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3618         num_headers = howmany(unit_bytes, iclog_space);
3619
3620         /* for split-recs - ophdrs added when data split over LRs */
3621         unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3622
3623         /* add extra header reservations if we overrun */
3624         while (!num_headers ||
3625                howmany(unit_bytes, iclog_space) > num_headers) {
3626                 unit_bytes += sizeof(xlog_op_header_t);
3627                 num_headers++;
3628         }
3629         unit_bytes += log->l_iclog_hsize * num_headers;
3630
3631         /* for commit-rec LR header - note: padding will subsume the ophdr */
3632         unit_bytes += log->l_iclog_hsize;
3633
3634         /* for roundoff padding for transaction data and one for commit record */
3635         if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3636                 /* log su roundoff */
3637                 unit_bytes += 2 * mp->m_sb.sb_logsunit;
3638         } else {
3639                 /* BB roundoff */
3640                 unit_bytes += 2 * BBSIZE;
3641         }
3642
3643         return unit_bytes;
3644 }
3645
3646 /*
3647  * Allocate and initialise a new log ticket.
3648  */
3649 struct xlog_ticket *
3650 xlog_ticket_alloc(
3651         struct xlog             *log,
3652         int                     unit_bytes,
3653         int                     cnt,
3654         char                    client,
3655         bool                    permanent,
3656         xfs_km_flags_t          alloc_flags)
3657 {
3658         struct xlog_ticket      *tic;
3659         int                     unit_res;
3660
3661         tic = kmem_zone_zalloc(xfs_log_ticket_zone, alloc_flags);
3662         if (!tic)
3663                 return NULL;
3664
3665         unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3666
3667         atomic_set(&tic->t_ref, 1);
3668         tic->t_task             = current;
3669         INIT_LIST_HEAD(&tic->t_queue);
3670         tic->t_unit_res         = unit_res;
3671         tic->t_curr_res         = unit_res;
3672         tic->t_cnt              = cnt;
3673         tic->t_ocnt             = cnt;
3674         tic->t_tid              = prandom_u32();
3675         tic->t_clientid         = client;
3676         tic->t_flags            = XLOG_TIC_INITED;
3677         if (permanent)
3678                 tic->t_flags |= XLOG_TIC_PERM_RESERV;
3679
3680         xlog_tic_reset_res(tic);
3681
3682         return tic;
3683 }
3684
3685
3686 /******************************************************************************
3687  *
3688  *              Log debug routines
3689  *
3690  ******************************************************************************
3691  */
3692 #if defined(DEBUG)
3693 /*
3694  * Make sure that the destination ptr is within the valid data region of
3695  * one of the iclogs.  This uses backup pointers stored in a different
3696  * part of the log in case we trash the log structure.
3697  */
3698 void
3699 xlog_verify_dest_ptr(
3700         struct xlog     *log,
3701         void            *ptr)
3702 {
3703         int i;
3704         int good_ptr = 0;
3705
3706         for (i = 0; i < log->l_iclog_bufs; i++) {
3707                 if (ptr >= log->l_iclog_bak[i] &&
3708                     ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3709                         good_ptr++;
3710         }
3711
3712         if (!good_ptr)
3713                 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3714 }
3715
3716 /*
3717  * Check to make sure the grant write head didn't just over lap the tail.  If
3718  * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3719  * the cycles differ by exactly one and check the byte count.
3720  *
3721  * This check is run unlocked, so can give false positives. Rather than assert
3722  * on failures, use a warn-once flag and a panic tag to allow the admin to
3723  * determine if they want to panic the machine when such an error occurs. For
3724  * debug kernels this will have the same effect as using an assert but, unlinke
3725  * an assert, it can be turned off at runtime.
3726  */
3727 STATIC void
3728 xlog_verify_grant_tail(
3729         struct xlog     *log)
3730 {
3731         int             tail_cycle, tail_blocks;
3732         int             cycle, space;
3733
3734         xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3735         xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3736         if (tail_cycle != cycle) {
3737                 if (cycle - 1 != tail_cycle &&
3738                     !(log->l_flags & XLOG_TAIL_WARN)) {
3739                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3740                                 "%s: cycle - 1 != tail_cycle", __func__);
3741                         log->l_flags |= XLOG_TAIL_WARN;
3742                 }
3743
3744                 if (space > BBTOB(tail_blocks) &&
3745                     !(log->l_flags & XLOG_TAIL_WARN)) {
3746                         xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3747                                 "%s: space > BBTOB(tail_blocks)", __func__);
3748                         log->l_flags |= XLOG_TAIL_WARN;
3749                 }
3750         }
3751 }
3752
3753 /* check if it will fit */
3754 STATIC void
3755 xlog_verify_tail_lsn(
3756         struct xlog             *log,
3757         struct xlog_in_core     *iclog,
3758         xfs_lsn_t               tail_lsn)
3759 {
3760     int blocks;
3761
3762     if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3763         blocks =
3764             log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3765         if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3766                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3767     } else {
3768         ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3769
3770         if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3771                 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3772
3773         blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3774         if (blocks < BTOBB(iclog->ic_offset) + 1)
3775                 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3776     }
3777 }       /* xlog_verify_tail_lsn */
3778
3779 /*
3780  * Perform a number of checks on the iclog before writing to disk.
3781  *
3782  * 1. Make sure the iclogs are still circular
3783  * 2. Make sure we have a good magic number
3784  * 3. Make sure we don't have magic numbers in the data
3785  * 4. Check fields of each log operation header for:
3786  *      A. Valid client identifier
3787  *      B. tid ptr value falls in valid ptr space (user space code)
3788  *      C. Length in log record header is correct according to the
3789  *              individual operation headers within record.
3790  * 5. When a bwrite will occur within 5 blocks of the front of the physical
3791  *      log, check the preceding blocks of the physical log to make sure all
3792  *      the cycle numbers agree with the current cycle number.
3793  */
3794 STATIC void
3795 xlog_verify_iclog(
3796         struct xlog             *log,
3797         struct xlog_in_core     *iclog,
3798         int                     count,
3799         bool                    syncing)
3800 {
3801         xlog_op_header_t        *ophead;
3802         xlog_in_core_t          *icptr;
3803         xlog_in_core_2_t        *xhdr;
3804         void                    *base_ptr, *ptr, *p;
3805         ptrdiff_t               field_offset;
3806         __uint8_t               clientid;
3807         int                     len, i, j, k, op_len;
3808         int                     idx;
3809
3810         /* check validity of iclog pointers */
3811         spin_lock(&log->l_icloglock);
3812         icptr = log->l_iclog;
3813         for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3814                 ASSERT(icptr);
3815
3816         if (icptr != log->l_iclog)
3817                 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3818         spin_unlock(&log->l_icloglock);
3819
3820         /* check log magic numbers */
3821         if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3822                 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3823
3824         base_ptr = ptr = &iclog->ic_header;
3825         p = &iclog->ic_header;
3826         for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3827                 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3828                         xfs_emerg(log->l_mp, "%s: unexpected magic num",
3829                                 __func__);
3830         }
3831
3832         /* check fields */
3833         len = be32_to_cpu(iclog->ic_header.h_num_logops);
3834         base_ptr = ptr = iclog->ic_datap;
3835         ophead = ptr;
3836         xhdr = iclog->ic_data;
3837         for (i = 0; i < len; i++) {
3838                 ophead = ptr;
3839
3840                 /* clientid is only 1 byte */
3841                 p = &ophead->oh_clientid;
3842                 field_offset = p - base_ptr;
3843                 if (!syncing || (field_offset & 0x1ff)) {
3844                         clientid = ophead->oh_clientid;
3845                 } else {
3846                         idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3847                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3848                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3849                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3850                                 clientid = xlog_get_client_id(
3851                                         xhdr[j].hic_xheader.xh_cycle_data[k]);
3852                         } else {
3853                                 clientid = xlog_get_client_id(
3854                                         iclog->ic_header.h_cycle_data[idx]);
3855                         }
3856                 }
3857                 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3858                         xfs_warn(log->l_mp,
3859                                 "%s: invalid clientid %d op 0x%p offset 0x%lx",
3860                                 __func__, clientid, ophead,
3861                                 (unsigned long)field_offset);
3862
3863                 /* check length */
3864                 p = &ophead->oh_len;
3865                 field_offset = p - base_ptr;
3866                 if (!syncing || (field_offset & 0x1ff)) {
3867                         op_len = be32_to_cpu(ophead->oh_len);
3868                 } else {
3869                         idx = BTOBBT((uintptr_t)&ophead->oh_len -
3870                                     (uintptr_t)iclog->ic_datap);
3871                         if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3872                                 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3873                                 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3874                                 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3875                         } else {
3876                                 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3877                         }
3878                 }
3879                 ptr += sizeof(xlog_op_header_t) + op_len;
3880         }
3881 }       /* xlog_verify_iclog */
3882 #endif
3883
3884 /*
3885  * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3886  */
3887 STATIC int
3888 xlog_state_ioerror(
3889         struct xlog     *log)
3890 {
3891         xlog_in_core_t  *iclog, *ic;
3892
3893         iclog = log->l_iclog;
3894         if (! (iclog->ic_state & XLOG_STATE_IOERROR)) {
3895                 /*
3896                  * Mark all the incore logs IOERROR.
3897                  * From now on, no log flushes will result.
3898                  */
3899                 ic = iclog;
3900                 do {
3901                         ic->ic_state = XLOG_STATE_IOERROR;
3902                         ic = ic->ic_next;
3903                 } while (ic != iclog);
3904                 return 0;
3905         }
3906         /*
3907          * Return non-zero, if state transition has already happened.
3908          */
3909         return 1;
3910 }
3911
3912 /*
3913  * This is called from xfs_force_shutdown, when we're forcibly
3914  * shutting down the filesystem, typically because of an IO error.
3915  * Our main objectives here are to make sure that:
3916  *      a. if !logerror, flush the logs to disk. Anything modified
3917  *         after this is ignored.
3918  *      b. the filesystem gets marked 'SHUTDOWN' for all interested
3919  *         parties to find out, 'atomically'.
3920  *      c. those who're sleeping on log reservations, pinned objects and
3921  *          other resources get woken up, and be told the bad news.
3922  *      d. nothing new gets queued up after (b) and (c) are done.
3923  *
3924  * Note: for the !logerror case we need to flush the regions held in memory out
3925  * to disk first. This needs to be done before the log is marked as shutdown,
3926  * otherwise the iclog writes will fail.
3927  */
3928 int
3929 xfs_log_force_umount(
3930         struct xfs_mount        *mp,
3931         int                     logerror)
3932 {
3933         struct xlog     *log;
3934         int             retval;
3935
3936         log = mp->m_log;
3937
3938         /*
3939          * If this happens during log recovery, don't worry about
3940          * locking; the log isn't open for business yet.
3941          */
3942         if (!log ||
3943             log->l_flags & XLOG_ACTIVE_RECOVERY) {
3944                 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3945                 if (mp->m_sb_bp)
3946                         mp->m_sb_bp->b_flags |= XBF_DONE;
3947                 return 0;
3948         }
3949
3950         /*
3951          * Somebody could've already done the hard work for us.
3952          * No need to get locks for this.
3953          */
3954         if (logerror && log->l_iclog->ic_state & XLOG_STATE_IOERROR) {
3955                 ASSERT(XLOG_FORCED_SHUTDOWN(log));
3956                 return 1;
3957         }
3958
3959         /*
3960          * Flush all the completed transactions to disk before marking the log
3961          * being shut down. We need to do it in this order to ensure that
3962          * completed operations are safely on disk before we shut down, and that
3963          * we don't have to issue any buffer IO after the shutdown flags are set
3964          * to guarantee this.
3965          */
3966         if (!logerror)
3967                 _xfs_log_force(mp, XFS_LOG_SYNC, NULL);
3968
3969         /*
3970          * mark the filesystem and the as in a shutdown state and wake
3971          * everybody up to tell them the bad news.
3972          */
3973         spin_lock(&log->l_icloglock);
3974         mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3975         if (mp->m_sb_bp)
3976                 mp->m_sb_bp->b_flags |= XBF_DONE;
3977
3978         /*
3979          * Mark the log and the iclogs with IO error flags to prevent any
3980          * further log IO from being issued or completed.
3981          */
3982         log->l_flags |= XLOG_IO_ERROR;
3983         retval = xlog_state_ioerror(log);
3984         spin_unlock(&log->l_icloglock);
3985
3986         /*
3987          * We don't want anybody waiting for log reservations after this. That
3988          * means we have to wake up everybody queued up on reserveq as well as
3989          * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3990          * we don't enqueue anything once the SHUTDOWN flag is set, and this
3991          * action is protected by the grant locks.
3992          */
3993         xlog_grant_head_wake_all(&log->l_reserve_head);
3994         xlog_grant_head_wake_all(&log->l_write_head);
3995
3996         /*
3997          * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3998          * as if the log writes were completed. The abort handling in the log
3999          * item committed callback functions will do this again under lock to
4000          * avoid races.
4001          */
4002         spin_lock(&log->l_cilp->xc_push_lock);
4003         wake_up_all(&log->l_cilp->xc_commit_wait);
4004         spin_unlock(&log->l_cilp->xc_push_lock);
4005         xlog_state_do_callback(log, XFS_LI_ABORTED, NULL);
4006
4007 #ifdef XFSERRORDEBUG
4008         {
4009                 xlog_in_core_t  *iclog;
4010
4011                 spin_lock(&log->l_icloglock);
4012                 iclog = log->l_iclog;
4013                 do {
4014                         ASSERT(iclog->ic_callback == 0);
4015                         iclog = iclog->ic_next;
4016                 } while (iclog != log->l_iclog);
4017                 spin_unlock(&log->l_icloglock);
4018         }
4019 #endif
4020         /* return non-zero if log IOERROR transition had already happened */
4021         return retval;
4022 }
4023
4024 STATIC int
4025 xlog_iclogs_empty(
4026         struct xlog     *log)
4027 {
4028         xlog_in_core_t  *iclog;
4029
4030         iclog = log->l_iclog;
4031         do {
4032                 /* endianness does not matter here, zero is zero in
4033                  * any language.
4034                  */
4035                 if (iclog->ic_header.h_num_logops)
4036                         return 0;
4037                 iclog = iclog->ic_next;
4038         } while (iclog != log->l_iclog);
4039         return 1;
4040 }
4041
4042 /*
4043  * Verify that an LSN stamped into a piece of metadata is valid. This is
4044  * intended for use in read verifiers on v5 superblocks.
4045  */
4046 bool
4047 xfs_log_check_lsn(
4048         struct xfs_mount        *mp,
4049         xfs_lsn_t               lsn)
4050 {
4051         struct xlog             *log = mp->m_log;
4052         bool                    valid;
4053
4054         /*
4055          * norecovery mode skips mount-time log processing and unconditionally
4056          * resets the in-core LSN. We can't validate in this mode, but
4057          * modifications are not allowed anyways so just return true.
4058          */
4059         if (mp->m_flags & XFS_MOUNT_NORECOVERY)
4060                 return true;
4061
4062         /*
4063          * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
4064          * handled by recovery and thus safe to ignore here.
4065          */
4066         if (lsn == NULLCOMMITLSN)
4067                 return true;
4068
4069         valid = xlog_valid_lsn(mp->m_log, lsn);
4070
4071         /* warn the user about what's gone wrong before verifier failure */
4072         if (!valid) {
4073                 spin_lock(&log->l_icloglock);
4074                 xfs_warn(mp,
4075 "Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
4076 "Please unmount and run xfs_repair (>= v4.3) to resolve.",
4077                          CYCLE_LSN(lsn), BLOCK_LSN(lsn),
4078                          log->l_curr_cycle, log->l_curr_block);
4079                 spin_unlock(&log->l_icloglock);
4080         }
4081
4082         return valid;
4083 }