GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / events / core.c
1 /*
2  * Performance events core code:
3  *
4  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5  *  Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
6  *  Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
7  *  Copyright  ©  2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
8  *
9  * For licensing details see kernel-base/COPYING
10  */
11
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/tick.h>
22 #include <linux/sysfs.h>
23 #include <linux/dcache.h>
24 #include <linux/percpu.h>
25 #include <linux/ptrace.h>
26 #include <linux/reboot.h>
27 #include <linux/vmstat.h>
28 #include <linux/device.h>
29 #include <linux/export.h>
30 #include <linux/vmalloc.h>
31 #include <linux/hardirq.h>
32 #include <linux/rculist.h>
33 #include <linux/uaccess.h>
34 #include <linux/syscalls.h>
35 #include <linux/anon_inodes.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/cgroup.h>
38 #include <linux/perf_event.h>
39 #include <linux/trace_events.h>
40 #include <linux/hw_breakpoint.h>
41 #include <linux/mm_types.h>
42 #include <linux/module.h>
43 #include <linux/mman.h>
44 #include <linux/compat.h>
45 #include <linux/bpf.h>
46 #include <linux/filter.h>
47 #include <linux/namei.h>
48 #include <linux/parser.h>
49 #include <linux/sched/clock.h>
50 #include <linux/sched/mm.h>
51 #include <linux/proc_ns.h>
52 #include <linux/mount.h>
53
54 #include "internal.h"
55
56 #include <asm/irq_regs.h>
57
58 typedef int (*remote_function_f)(void *);
59
60 struct remote_function_call {
61         struct task_struct      *p;
62         remote_function_f       func;
63         void                    *info;
64         int                     ret;
65 };
66
67 static void remote_function(void *data)
68 {
69         struct remote_function_call *tfc = data;
70         struct task_struct *p = tfc->p;
71
72         if (p) {
73                 /* -EAGAIN */
74                 if (task_cpu(p) != smp_processor_id())
75                         return;
76
77                 /*
78                  * Now that we're on right CPU with IRQs disabled, we can test
79                  * if we hit the right task without races.
80                  */
81
82                 tfc->ret = -ESRCH; /* No such (running) process */
83                 if (p != current)
84                         return;
85         }
86
87         tfc->ret = tfc->func(tfc->info);
88 }
89
90 /**
91  * task_function_call - call a function on the cpu on which a task runs
92  * @p:          the task to evaluate
93  * @func:       the function to be called
94  * @info:       the function call argument
95  *
96  * Calls the function @func when the task is currently running. This might
97  * be on the current CPU, which just calls the function directly.  This will
98  * retry due to any failures in smp_call_function_single(), such as if the
99  * task_cpu() goes offline concurrently.
100  *
101  * returns @func return value or -ESRCH or -ENXIO when the process isn't running
102  */
103 static int
104 task_function_call(struct task_struct *p, remote_function_f func, void *info)
105 {
106         struct remote_function_call data = {
107                 .p      = p,
108                 .func   = func,
109                 .info   = info,
110                 .ret    = -EAGAIN,
111         };
112         int ret;
113
114         for (;;) {
115                 ret = smp_call_function_single(task_cpu(p), remote_function,
116                                                &data, 1);
117                 if (!ret)
118                         ret = data.ret;
119
120                 if (ret != -EAGAIN)
121                         break;
122
123                 cond_resched();
124         }
125
126         return ret;
127 }
128
129 /**
130  * cpu_function_call - call a function on the cpu
131  * @func:       the function to be called
132  * @info:       the function call argument
133  *
134  * Calls the function @func on the remote cpu.
135  *
136  * returns: @func return value or -ENXIO when the cpu is offline
137  */
138 static int cpu_function_call(int cpu, remote_function_f func, void *info)
139 {
140         struct remote_function_call data = {
141                 .p      = NULL,
142                 .func   = func,
143                 .info   = info,
144                 .ret    = -ENXIO, /* No such CPU */
145         };
146
147         smp_call_function_single(cpu, remote_function, &data, 1);
148
149         return data.ret;
150 }
151
152 static inline struct perf_cpu_context *
153 __get_cpu_context(struct perf_event_context *ctx)
154 {
155         return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
156 }
157
158 static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
159                           struct perf_event_context *ctx)
160 {
161         raw_spin_lock(&cpuctx->ctx.lock);
162         if (ctx)
163                 raw_spin_lock(&ctx->lock);
164 }
165
166 static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
167                             struct perf_event_context *ctx)
168 {
169         if (ctx)
170                 raw_spin_unlock(&ctx->lock);
171         raw_spin_unlock(&cpuctx->ctx.lock);
172 }
173
174 #define TASK_TOMBSTONE ((void *)-1L)
175
176 static bool is_kernel_event(struct perf_event *event)
177 {
178         return READ_ONCE(event->owner) == TASK_TOMBSTONE;
179 }
180
181 /*
182  * On task ctx scheduling...
183  *
184  * When !ctx->nr_events a task context will not be scheduled. This means
185  * we can disable the scheduler hooks (for performance) without leaving
186  * pending task ctx state.
187  *
188  * This however results in two special cases:
189  *
190  *  - removing the last event from a task ctx; this is relatively straight
191  *    forward and is done in __perf_remove_from_context.
192  *
193  *  - adding the first event to a task ctx; this is tricky because we cannot
194  *    rely on ctx->is_active and therefore cannot use event_function_call().
195  *    See perf_install_in_context().
196  *
197  * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
198  */
199
200 typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
201                         struct perf_event_context *, void *);
202
203 struct event_function_struct {
204         struct perf_event *event;
205         event_f func;
206         void *data;
207 };
208
209 static int event_function(void *info)
210 {
211         struct event_function_struct *efs = info;
212         struct perf_event *event = efs->event;
213         struct perf_event_context *ctx = event->ctx;
214         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
215         struct perf_event_context *task_ctx = cpuctx->task_ctx;
216         int ret = 0;
217
218         WARN_ON_ONCE(!irqs_disabled());
219
220         perf_ctx_lock(cpuctx, task_ctx);
221         /*
222          * Since we do the IPI call without holding ctx->lock things can have
223          * changed, double check we hit the task we set out to hit.
224          */
225         if (ctx->task) {
226                 if (ctx->task != current) {
227                         ret = -ESRCH;
228                         goto unlock;
229                 }
230
231                 /*
232                  * We only use event_function_call() on established contexts,
233                  * and event_function() is only ever called when active (or
234                  * rather, we'll have bailed in task_function_call() or the
235                  * above ctx->task != current test), therefore we must have
236                  * ctx->is_active here.
237                  */
238                 WARN_ON_ONCE(!ctx->is_active);
239                 /*
240                  * And since we have ctx->is_active, cpuctx->task_ctx must
241                  * match.
242                  */
243                 WARN_ON_ONCE(task_ctx != ctx);
244         } else {
245                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
246         }
247
248         efs->func(event, cpuctx, ctx, efs->data);
249 unlock:
250         perf_ctx_unlock(cpuctx, task_ctx);
251
252         return ret;
253 }
254
255 static void event_function_call(struct perf_event *event, event_f func, void *data)
256 {
257         struct perf_event_context *ctx = event->ctx;
258         struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
259         struct event_function_struct efs = {
260                 .event = event,
261                 .func = func,
262                 .data = data,
263         };
264
265         if (!event->parent) {
266                 /*
267                  * If this is a !child event, we must hold ctx::mutex to
268                  * stabilize the the event->ctx relation. See
269                  * perf_event_ctx_lock().
270                  */
271                 lockdep_assert_held(&ctx->mutex);
272         }
273
274         if (!task) {
275                 cpu_function_call(event->cpu, event_function, &efs);
276                 return;
277         }
278
279         if (task == TASK_TOMBSTONE)
280                 return;
281
282 again:
283         if (!task_function_call(task, event_function, &efs))
284                 return;
285
286         raw_spin_lock_irq(&ctx->lock);
287         /*
288          * Reload the task pointer, it might have been changed by
289          * a concurrent perf_event_context_sched_out().
290          */
291         task = ctx->task;
292         if (task == TASK_TOMBSTONE) {
293                 raw_spin_unlock_irq(&ctx->lock);
294                 return;
295         }
296         if (ctx->is_active) {
297                 raw_spin_unlock_irq(&ctx->lock);
298                 goto again;
299         }
300         func(event, NULL, ctx, data);
301         raw_spin_unlock_irq(&ctx->lock);
302 }
303
304 /*
305  * Similar to event_function_call() + event_function(), but hard assumes IRQs
306  * are already disabled and we're on the right CPU.
307  */
308 static void event_function_local(struct perf_event *event, event_f func, void *data)
309 {
310         struct perf_event_context *ctx = event->ctx;
311         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
312         struct task_struct *task = READ_ONCE(ctx->task);
313         struct perf_event_context *task_ctx = NULL;
314
315         WARN_ON_ONCE(!irqs_disabled());
316
317         if (task) {
318                 if (task == TASK_TOMBSTONE)
319                         return;
320
321                 task_ctx = ctx;
322         }
323
324         perf_ctx_lock(cpuctx, task_ctx);
325
326         task = ctx->task;
327         if (task == TASK_TOMBSTONE)
328                 goto unlock;
329
330         if (task) {
331                 /*
332                  * We must be either inactive or active and the right task,
333                  * otherwise we're screwed, since we cannot IPI to somewhere
334                  * else.
335                  */
336                 if (ctx->is_active) {
337                         if (WARN_ON_ONCE(task != current))
338                                 goto unlock;
339
340                         if (WARN_ON_ONCE(cpuctx->task_ctx != ctx))
341                                 goto unlock;
342                 }
343         } else {
344                 WARN_ON_ONCE(&cpuctx->ctx != ctx);
345         }
346
347         func(event, cpuctx, ctx, data);
348 unlock:
349         perf_ctx_unlock(cpuctx, task_ctx);
350 }
351
352 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
353                        PERF_FLAG_FD_OUTPUT  |\
354                        PERF_FLAG_PID_CGROUP |\
355                        PERF_FLAG_FD_CLOEXEC)
356
357 /*
358  * branch priv levels that need permission checks
359  */
360 #define PERF_SAMPLE_BRANCH_PERM_PLM \
361         (PERF_SAMPLE_BRANCH_KERNEL |\
362          PERF_SAMPLE_BRANCH_HV)
363
364 enum event_type_t {
365         EVENT_FLEXIBLE = 0x1,
366         EVENT_PINNED = 0x2,
367         EVENT_TIME = 0x4,
368         /* see ctx_resched() for details */
369         EVENT_CPU = 0x8,
370         EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
371 };
372
373 /*
374  * perf_sched_events : >0 events exist
375  * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
376  */
377
378 static void perf_sched_delayed(struct work_struct *work);
379 DEFINE_STATIC_KEY_FALSE(perf_sched_events);
380 static DECLARE_DELAYED_WORK(perf_sched_work, perf_sched_delayed);
381 static DEFINE_MUTEX(perf_sched_mutex);
382 static atomic_t perf_sched_count;
383
384 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
385 static DEFINE_PER_CPU(int, perf_sched_cb_usages);
386 static DEFINE_PER_CPU(struct pmu_event_list, pmu_sb_events);
387
388 static atomic_t nr_mmap_events __read_mostly;
389 static atomic_t nr_comm_events __read_mostly;
390 static atomic_t nr_namespaces_events __read_mostly;
391 static atomic_t nr_task_events __read_mostly;
392 static atomic_t nr_freq_events __read_mostly;
393 static atomic_t nr_switch_events __read_mostly;
394
395 static LIST_HEAD(pmus);
396 static DEFINE_MUTEX(pmus_lock);
397 static struct srcu_struct pmus_srcu;
398 static cpumask_var_t perf_online_mask;
399
400 /*
401  * perf event paranoia level:
402  *  -1 - not paranoid at all
403  *   0 - disallow raw tracepoint access for unpriv
404  *   1 - disallow cpu events for unpriv
405  *   2 - disallow kernel profiling for unpriv
406  */
407 int sysctl_perf_event_paranoid __read_mostly = 2;
408
409 /* Minimum for 512 kiB + 1 user control page */
410 int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
411
412 /*
413  * max perf event sample rate
414  */
415 #define DEFAULT_MAX_SAMPLE_RATE         100000
416 #define DEFAULT_SAMPLE_PERIOD_NS        (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
417 #define DEFAULT_CPU_TIME_MAX_PERCENT    25
418
419 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
420
421 static int max_samples_per_tick __read_mostly   = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
422 static int perf_sample_period_ns __read_mostly  = DEFAULT_SAMPLE_PERIOD_NS;
423
424 static int perf_sample_allowed_ns __read_mostly =
425         DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
426
427 static void update_perf_cpu_limits(void)
428 {
429         u64 tmp = perf_sample_period_ns;
430
431         tmp *= sysctl_perf_cpu_time_max_percent;
432         tmp = div_u64(tmp, 100);
433         if (!tmp)
434                 tmp = 1;
435
436         WRITE_ONCE(perf_sample_allowed_ns, tmp);
437 }
438
439 static int perf_rotate_context(struct perf_cpu_context *cpuctx);
440
441 int perf_proc_update_handler(struct ctl_table *table, int write,
442                 void __user *buffer, size_t *lenp,
443                 loff_t *ppos)
444 {
445         int ret;
446         int perf_cpu = sysctl_perf_cpu_time_max_percent;
447         /*
448          * If throttling is disabled don't allow the write:
449          */
450         if (write && (perf_cpu == 100 || perf_cpu == 0))
451                 return -EINVAL;
452
453         ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
454         if (ret || !write)
455                 return ret;
456
457         max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
458         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
459         update_perf_cpu_limits();
460
461         return 0;
462 }
463
464 int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
465
466 int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
467                                 void __user *buffer, size_t *lenp,
468                                 loff_t *ppos)
469 {
470         int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
471
472         if (ret || !write)
473                 return ret;
474
475         if (sysctl_perf_cpu_time_max_percent == 100 ||
476             sysctl_perf_cpu_time_max_percent == 0) {
477                 printk(KERN_WARNING
478                        "perf: Dynamic interrupt throttling disabled, can hang your system!\n");
479                 WRITE_ONCE(perf_sample_allowed_ns, 0);
480         } else {
481                 update_perf_cpu_limits();
482         }
483
484         return 0;
485 }
486
487 /*
488  * perf samples are done in some very critical code paths (NMIs).
489  * If they take too much CPU time, the system can lock up and not
490  * get any real work done.  This will drop the sample rate when
491  * we detect that events are taking too long.
492  */
493 #define NR_ACCUMULATED_SAMPLES 128
494 static DEFINE_PER_CPU(u64, running_sample_length);
495
496 static u64 __report_avg;
497 static u64 __report_allowed;
498
499 static void perf_duration_warn(struct irq_work *w)
500 {
501         printk_ratelimited(KERN_INFO
502                 "perf: interrupt took too long (%lld > %lld), lowering "
503                 "kernel.perf_event_max_sample_rate to %d\n",
504                 __report_avg, __report_allowed,
505                 sysctl_perf_event_sample_rate);
506 }
507
508 static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
509
510 void perf_sample_event_took(u64 sample_len_ns)
511 {
512         u64 max_len = READ_ONCE(perf_sample_allowed_ns);
513         u64 running_len;
514         u64 avg_len;
515         u32 max;
516
517         if (max_len == 0)
518                 return;
519
520         /* Decay the counter by 1 average sample. */
521         running_len = __this_cpu_read(running_sample_length);
522         running_len -= running_len/NR_ACCUMULATED_SAMPLES;
523         running_len += sample_len_ns;
524         __this_cpu_write(running_sample_length, running_len);
525
526         /*
527          * Note: this will be biased artifically low until we have
528          * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
529          * from having to maintain a count.
530          */
531         avg_len = running_len/NR_ACCUMULATED_SAMPLES;
532         if (avg_len <= max_len)
533                 return;
534
535         __report_avg = avg_len;
536         __report_allowed = max_len;
537
538         /*
539          * Compute a throttle threshold 25% below the current duration.
540          */
541         avg_len += avg_len / 4;
542         max = (TICK_NSEC / 100) * sysctl_perf_cpu_time_max_percent;
543         if (avg_len < max)
544                 max /= (u32)avg_len;
545         else
546                 max = 1;
547
548         WRITE_ONCE(perf_sample_allowed_ns, avg_len);
549         WRITE_ONCE(max_samples_per_tick, max);
550
551         sysctl_perf_event_sample_rate = max * HZ;
552         perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
553
554         if (!irq_work_queue(&perf_duration_work)) {
555                 early_printk("perf: interrupt took too long (%lld > %lld), lowering "
556                              "kernel.perf_event_max_sample_rate to %d\n",
557                              __report_avg, __report_allowed,
558                              sysctl_perf_event_sample_rate);
559         }
560 }
561
562 static atomic64_t perf_event_id;
563
564 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
565                               enum event_type_t event_type);
566
567 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
568                              enum event_type_t event_type,
569                              struct task_struct *task);
570
571 static void update_context_time(struct perf_event_context *ctx);
572 static u64 perf_event_time(struct perf_event *event);
573
574 void __weak perf_event_print_debug(void)        { }
575
576 extern __weak const char *perf_pmu_name(void)
577 {
578         return "pmu";
579 }
580
581 static inline u64 perf_clock(void)
582 {
583         return local_clock();
584 }
585
586 static inline u64 perf_event_clock(struct perf_event *event)
587 {
588         return event->clock();
589 }
590
591 #ifdef CONFIG_CGROUP_PERF
592
593 static inline bool
594 perf_cgroup_match(struct perf_event *event)
595 {
596         struct perf_event_context *ctx = event->ctx;
597         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
598
599         /* @event doesn't care about cgroup */
600         if (!event->cgrp)
601                 return true;
602
603         /* wants specific cgroup scope but @cpuctx isn't associated with any */
604         if (!cpuctx->cgrp)
605                 return false;
606
607         /*
608          * Cgroup scoping is recursive.  An event enabled for a cgroup is
609          * also enabled for all its descendant cgroups.  If @cpuctx's
610          * cgroup is a descendant of @event's (the test covers identity
611          * case), it's a match.
612          */
613         return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
614                                     event->cgrp->css.cgroup);
615 }
616
617 static inline void perf_detach_cgroup(struct perf_event *event)
618 {
619         css_put(&event->cgrp->css);
620         event->cgrp = NULL;
621 }
622
623 static inline int is_cgroup_event(struct perf_event *event)
624 {
625         return event->cgrp != NULL;
626 }
627
628 static inline u64 perf_cgroup_event_time(struct perf_event *event)
629 {
630         struct perf_cgroup_info *t;
631
632         t = per_cpu_ptr(event->cgrp->info, event->cpu);
633         return t->time;
634 }
635
636 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
637 {
638         struct perf_cgroup_info *info;
639         u64 now;
640
641         now = perf_clock();
642
643         info = this_cpu_ptr(cgrp->info);
644
645         info->time += now - info->timestamp;
646         info->timestamp = now;
647 }
648
649 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
650 {
651         struct perf_cgroup *cgrp = cpuctx->cgrp;
652         struct cgroup_subsys_state *css;
653
654         if (cgrp) {
655                 for (css = &cgrp->css; css; css = css->parent) {
656                         cgrp = container_of(css, struct perf_cgroup, css);
657                         __update_cgrp_time(cgrp);
658                 }
659         }
660 }
661
662 static inline void update_cgrp_time_from_event(struct perf_event *event)
663 {
664         struct perf_cgroup *cgrp;
665
666         /*
667          * ensure we access cgroup data only when needed and
668          * when we know the cgroup is pinned (css_get)
669          */
670         if (!is_cgroup_event(event))
671                 return;
672
673         cgrp = perf_cgroup_from_task(current, event->ctx);
674         /*
675          * Do not update time when cgroup is not active
676          */
677        if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
678                 __update_cgrp_time(event->cgrp);
679 }
680
681 static inline void
682 perf_cgroup_set_timestamp(struct task_struct *task,
683                           struct perf_event_context *ctx)
684 {
685         struct perf_cgroup *cgrp;
686         struct perf_cgroup_info *info;
687         struct cgroup_subsys_state *css;
688
689         /*
690          * ctx->lock held by caller
691          * ensure we do not access cgroup data
692          * unless we have the cgroup pinned (css_get)
693          */
694         if (!task || !ctx->nr_cgroups)
695                 return;
696
697         cgrp = perf_cgroup_from_task(task, ctx);
698
699         for (css = &cgrp->css; css; css = css->parent) {
700                 cgrp = container_of(css, struct perf_cgroup, css);
701                 info = this_cpu_ptr(cgrp->info);
702                 info->timestamp = ctx->timestamp;
703         }
704 }
705
706 static DEFINE_PER_CPU(struct list_head, cgrp_cpuctx_list);
707
708 #define PERF_CGROUP_SWOUT       0x1 /* cgroup switch out every event */
709 #define PERF_CGROUP_SWIN        0x2 /* cgroup switch in events based on task */
710
711 /*
712  * reschedule events based on the cgroup constraint of task.
713  *
714  * mode SWOUT : schedule out everything
715  * mode SWIN : schedule in based on cgroup for next
716  */
717 static void perf_cgroup_switch(struct task_struct *task, int mode)
718 {
719         struct perf_cpu_context *cpuctx, *tmp;
720         struct list_head *list;
721         unsigned long flags;
722
723         /*
724          * Disable interrupts and preemption to avoid this CPU's
725          * cgrp_cpuctx_entry to change under us.
726          */
727         local_irq_save(flags);
728
729         list = this_cpu_ptr(&cgrp_cpuctx_list);
730         list_for_each_entry_safe(cpuctx, tmp, list, cgrp_cpuctx_entry) {
731                 WARN_ON_ONCE(cpuctx->ctx.nr_cgroups == 0);
732
733                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
734                 perf_pmu_disable(cpuctx->ctx.pmu);
735
736                 if (mode & PERF_CGROUP_SWOUT) {
737                         cpu_ctx_sched_out(cpuctx, EVENT_ALL);
738                         /*
739                          * must not be done before ctxswout due
740                          * to event_filter_match() in event_sched_out()
741                          */
742                         cpuctx->cgrp = NULL;
743                 }
744
745                 if (mode & PERF_CGROUP_SWIN) {
746                         WARN_ON_ONCE(cpuctx->cgrp);
747                         /*
748                          * set cgrp before ctxsw in to allow
749                          * event_filter_match() to not have to pass
750                          * task around
751                          * we pass the cpuctx->ctx to perf_cgroup_from_task()
752                          * because cgorup events are only per-cpu
753                          */
754                         cpuctx->cgrp = perf_cgroup_from_task(task,
755                                                              &cpuctx->ctx);
756                         cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
757                 }
758                 perf_pmu_enable(cpuctx->ctx.pmu);
759                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
760         }
761
762         local_irq_restore(flags);
763 }
764
765 static inline void perf_cgroup_sched_out(struct task_struct *task,
766                                          struct task_struct *next)
767 {
768         struct perf_cgroup *cgrp1;
769         struct perf_cgroup *cgrp2 = NULL;
770
771         rcu_read_lock();
772         /*
773          * we come here when we know perf_cgroup_events > 0
774          * we do not need to pass the ctx here because we know
775          * we are holding the rcu lock
776          */
777         cgrp1 = perf_cgroup_from_task(task, NULL);
778         cgrp2 = perf_cgroup_from_task(next, NULL);
779
780         /*
781          * only schedule out current cgroup events if we know
782          * that we are switching to a different cgroup. Otherwise,
783          * do no touch the cgroup events.
784          */
785         if (cgrp1 != cgrp2)
786                 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
787
788         rcu_read_unlock();
789 }
790
791 static inline void perf_cgroup_sched_in(struct task_struct *prev,
792                                         struct task_struct *task)
793 {
794         struct perf_cgroup *cgrp1;
795         struct perf_cgroup *cgrp2 = NULL;
796
797         rcu_read_lock();
798         /*
799          * we come here when we know perf_cgroup_events > 0
800          * we do not need to pass the ctx here because we know
801          * we are holding the rcu lock
802          */
803         cgrp1 = perf_cgroup_from_task(task, NULL);
804         cgrp2 = perf_cgroup_from_task(prev, NULL);
805
806         /*
807          * only need to schedule in cgroup events if we are changing
808          * cgroup during ctxsw. Cgroup events were not scheduled
809          * out of ctxsw out if that was not the case.
810          */
811         if (cgrp1 != cgrp2)
812                 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
813
814         rcu_read_unlock();
815 }
816
817 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
818                                       struct perf_event_attr *attr,
819                                       struct perf_event *group_leader)
820 {
821         struct perf_cgroup *cgrp;
822         struct cgroup_subsys_state *css;
823         struct fd f = fdget(fd);
824         int ret = 0;
825
826         if (!f.file)
827                 return -EBADF;
828
829         css = css_tryget_online_from_dir(f.file->f_path.dentry,
830                                          &perf_event_cgrp_subsys);
831         if (IS_ERR(css)) {
832                 ret = PTR_ERR(css);
833                 goto out;
834         }
835
836         cgrp = container_of(css, struct perf_cgroup, css);
837         event->cgrp = cgrp;
838
839         /*
840          * all events in a group must monitor
841          * the same cgroup because a task belongs
842          * to only one perf cgroup at a time
843          */
844         if (group_leader && group_leader->cgrp != cgrp) {
845                 perf_detach_cgroup(event);
846                 ret = -EINVAL;
847         }
848 out:
849         fdput(f);
850         return ret;
851 }
852
853 static inline void
854 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
855 {
856         struct perf_cgroup_info *t;
857         t = per_cpu_ptr(event->cgrp->info, event->cpu);
858         event->shadow_ctx_time = now - t->timestamp;
859 }
860
861 static inline void
862 perf_cgroup_defer_enabled(struct perf_event *event)
863 {
864         /*
865          * when the current task's perf cgroup does not match
866          * the event's, we need to remember to call the
867          * perf_mark_enable() function the first time a task with
868          * a matching perf cgroup is scheduled in.
869          */
870         if (is_cgroup_event(event) && !perf_cgroup_match(event))
871                 event->cgrp_defer_enabled = 1;
872 }
873
874 static inline void
875 perf_cgroup_mark_enabled(struct perf_event *event,
876                          struct perf_event_context *ctx)
877 {
878         struct perf_event *sub;
879         u64 tstamp = perf_event_time(event);
880
881         if (!event->cgrp_defer_enabled)
882                 return;
883
884         event->cgrp_defer_enabled = 0;
885
886         event->tstamp_enabled = tstamp - event->total_time_enabled;
887         list_for_each_entry(sub, &event->sibling_list, group_entry) {
888                 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
889                         sub->tstamp_enabled = tstamp - sub->total_time_enabled;
890                         sub->cgrp_defer_enabled = 0;
891                 }
892         }
893 }
894
895 /*
896  * Update cpuctx->cgrp so that it is set when first cgroup event is added and
897  * cleared when last cgroup event is removed.
898  */
899 static inline void
900 list_update_cgroup_event(struct perf_event *event,
901                          struct perf_event_context *ctx, bool add)
902 {
903         struct perf_cpu_context *cpuctx;
904         struct list_head *cpuctx_entry;
905
906         if (!is_cgroup_event(event))
907                 return;
908
909         /*
910          * Because cgroup events are always per-cpu events,
911          * this will always be called from the right CPU.
912          */
913         cpuctx = __get_cpu_context(ctx);
914
915         /*
916          * Since setting cpuctx->cgrp is conditional on the current @cgrp
917          * matching the event's cgroup, we must do this for every new event,
918          * because if the first would mismatch, the second would not try again
919          * and we would leave cpuctx->cgrp unset.
920          */
921         if (add && !cpuctx->cgrp) {
922                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
923
924                 if (cgroup_is_descendant(cgrp->css.cgroup, event->cgrp->css.cgroup))
925                         cpuctx->cgrp = cgrp;
926         }
927
928         if (add && ctx->nr_cgroups++)
929                 return;
930         else if (!add && --ctx->nr_cgroups)
931                 return;
932
933         /* no cgroup running */
934         if (!add)
935                 cpuctx->cgrp = NULL;
936
937         cpuctx_entry = &cpuctx->cgrp_cpuctx_entry;
938         if (add)
939                 list_add(cpuctx_entry, this_cpu_ptr(&cgrp_cpuctx_list));
940         else
941                 list_del(cpuctx_entry);
942 }
943
944 #else /* !CONFIG_CGROUP_PERF */
945
946 static inline bool
947 perf_cgroup_match(struct perf_event *event)
948 {
949         return true;
950 }
951
952 static inline void perf_detach_cgroup(struct perf_event *event)
953 {}
954
955 static inline int is_cgroup_event(struct perf_event *event)
956 {
957         return 0;
958 }
959
960 static inline void update_cgrp_time_from_event(struct perf_event *event)
961 {
962 }
963
964 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
965 {
966 }
967
968 static inline void perf_cgroup_sched_out(struct task_struct *task,
969                                          struct task_struct *next)
970 {
971 }
972
973 static inline void perf_cgroup_sched_in(struct task_struct *prev,
974                                         struct task_struct *task)
975 {
976 }
977
978 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
979                                       struct perf_event_attr *attr,
980                                       struct perf_event *group_leader)
981 {
982         return -EINVAL;
983 }
984
985 static inline void
986 perf_cgroup_set_timestamp(struct task_struct *task,
987                           struct perf_event_context *ctx)
988 {
989 }
990
991 void
992 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
993 {
994 }
995
996 static inline void
997 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
998 {
999 }
1000
1001 static inline u64 perf_cgroup_event_time(struct perf_event *event)
1002 {
1003         return 0;
1004 }
1005
1006 static inline void
1007 perf_cgroup_defer_enabled(struct perf_event *event)
1008 {
1009 }
1010
1011 static inline void
1012 perf_cgroup_mark_enabled(struct perf_event *event,
1013                          struct perf_event_context *ctx)
1014 {
1015 }
1016
1017 static inline void
1018 list_update_cgroup_event(struct perf_event *event,
1019                          struct perf_event_context *ctx, bool add)
1020 {
1021 }
1022
1023 #endif
1024
1025 /*
1026  * set default to be dependent on timer tick just
1027  * like original code
1028  */
1029 #define PERF_CPU_HRTIMER (1000 / HZ)
1030 /*
1031  * function must be called with interrupts disabled
1032  */
1033 static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
1034 {
1035         struct perf_cpu_context *cpuctx;
1036         int rotations = 0;
1037
1038         WARN_ON(!irqs_disabled());
1039
1040         cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
1041         rotations = perf_rotate_context(cpuctx);
1042
1043         raw_spin_lock(&cpuctx->hrtimer_lock);
1044         if (rotations)
1045                 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
1046         else
1047                 cpuctx->hrtimer_active = 0;
1048         raw_spin_unlock(&cpuctx->hrtimer_lock);
1049
1050         return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
1051 }
1052
1053 static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
1054 {
1055         struct hrtimer *timer = &cpuctx->hrtimer;
1056         struct pmu *pmu = cpuctx->ctx.pmu;
1057         u64 interval;
1058
1059         /* no multiplexing needed for SW PMU */
1060         if (pmu->task_ctx_nr == perf_sw_context)
1061                 return;
1062
1063         /*
1064          * check default is sane, if not set then force to
1065          * default interval (1/tick)
1066          */
1067         interval = pmu->hrtimer_interval_ms;
1068         if (interval < 1)
1069                 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
1070
1071         cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
1072
1073         raw_spin_lock_init(&cpuctx->hrtimer_lock);
1074         hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
1075         timer->function = perf_mux_hrtimer_handler;
1076 }
1077
1078 static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
1079 {
1080         struct hrtimer *timer = &cpuctx->hrtimer;
1081         struct pmu *pmu = cpuctx->ctx.pmu;
1082         unsigned long flags;
1083
1084         /* not for SW PMU */
1085         if (pmu->task_ctx_nr == perf_sw_context)
1086                 return 0;
1087
1088         raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
1089         if (!cpuctx->hrtimer_active) {
1090                 cpuctx->hrtimer_active = 1;
1091                 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
1092                 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
1093         }
1094         raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
1095
1096         return 0;
1097 }
1098
1099 void perf_pmu_disable(struct pmu *pmu)
1100 {
1101         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1102         if (!(*count)++)
1103                 pmu->pmu_disable(pmu);
1104 }
1105
1106 void perf_pmu_enable(struct pmu *pmu)
1107 {
1108         int *count = this_cpu_ptr(pmu->pmu_disable_count);
1109         if (!--(*count))
1110                 pmu->pmu_enable(pmu);
1111 }
1112
1113 static DEFINE_PER_CPU(struct list_head, active_ctx_list);
1114
1115 /*
1116  * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
1117  * perf_event_task_tick() are fully serialized because they're strictly cpu
1118  * affine and perf_event_ctx{activate,deactivate} are called with IRQs
1119  * disabled, while perf_event_task_tick is called from IRQ context.
1120  */
1121 static void perf_event_ctx_activate(struct perf_event_context *ctx)
1122 {
1123         struct list_head *head = this_cpu_ptr(&active_ctx_list);
1124
1125         WARN_ON(!irqs_disabled());
1126
1127         WARN_ON(!list_empty(&ctx->active_ctx_list));
1128
1129         list_add(&ctx->active_ctx_list, head);
1130 }
1131
1132 static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1133 {
1134         WARN_ON(!irqs_disabled());
1135
1136         WARN_ON(list_empty(&ctx->active_ctx_list));
1137
1138         list_del_init(&ctx->active_ctx_list);
1139 }
1140
1141 static void get_ctx(struct perf_event_context *ctx)
1142 {
1143         WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
1144 }
1145
1146 static void free_ctx(struct rcu_head *head)
1147 {
1148         struct perf_event_context *ctx;
1149
1150         ctx = container_of(head, struct perf_event_context, rcu_head);
1151         kfree(ctx->task_ctx_data);
1152         kfree(ctx);
1153 }
1154
1155 static void put_ctx(struct perf_event_context *ctx)
1156 {
1157         if (atomic_dec_and_test(&ctx->refcount)) {
1158                 if (ctx->parent_ctx)
1159                         put_ctx(ctx->parent_ctx);
1160                 if (ctx->task && ctx->task != TASK_TOMBSTONE)
1161                         put_task_struct(ctx->task);
1162                 call_rcu(&ctx->rcu_head, free_ctx);
1163         }
1164 }
1165
1166 /*
1167  * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1168  * perf_pmu_migrate_context() we need some magic.
1169  *
1170  * Those places that change perf_event::ctx will hold both
1171  * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1172  *
1173  * Lock ordering is by mutex address. There are two other sites where
1174  * perf_event_context::mutex nests and those are:
1175  *
1176  *  - perf_event_exit_task_context()    [ child , 0 ]
1177  *      perf_event_exit_event()
1178  *        put_event()                   [ parent, 1 ]
1179  *
1180  *  - perf_event_init_context()         [ parent, 0 ]
1181  *      inherit_task_group()
1182  *        inherit_group()
1183  *          inherit_event()
1184  *            perf_event_alloc()
1185  *              perf_init_event()
1186  *                perf_try_init_event() [ child , 1 ]
1187  *
1188  * While it appears there is an obvious deadlock here -- the parent and child
1189  * nesting levels are inverted between the two. This is in fact safe because
1190  * life-time rules separate them. That is an exiting task cannot fork, and a
1191  * spawning task cannot (yet) exit.
1192  *
1193  * But remember that that these are parent<->child context relations, and
1194  * migration does not affect children, therefore these two orderings should not
1195  * interact.
1196  *
1197  * The change in perf_event::ctx does not affect children (as claimed above)
1198  * because the sys_perf_event_open() case will install a new event and break
1199  * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1200  * concerned with cpuctx and that doesn't have children.
1201  *
1202  * The places that change perf_event::ctx will issue:
1203  *
1204  *   perf_remove_from_context();
1205  *   synchronize_rcu();
1206  *   perf_install_in_context();
1207  *
1208  * to affect the change. The remove_from_context() + synchronize_rcu() should
1209  * quiesce the event, after which we can install it in the new location. This
1210  * means that only external vectors (perf_fops, prctl) can perturb the event
1211  * while in transit. Therefore all such accessors should also acquire
1212  * perf_event_context::mutex to serialize against this.
1213  *
1214  * However; because event->ctx can change while we're waiting to acquire
1215  * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1216  * function.
1217  *
1218  * Lock order:
1219  *    cred_guard_mutex
1220  *      task_struct::perf_event_mutex
1221  *        perf_event_context::mutex
1222  *          perf_event::child_mutex;
1223  *            perf_event_context::lock
1224  *          perf_event::mmap_mutex
1225  *          mmap_sem
1226  */
1227 static struct perf_event_context *
1228 perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
1229 {
1230         struct perf_event_context *ctx;
1231
1232 again:
1233         rcu_read_lock();
1234         ctx = ACCESS_ONCE(event->ctx);
1235         if (!atomic_inc_not_zero(&ctx->refcount)) {
1236                 rcu_read_unlock();
1237                 goto again;
1238         }
1239         rcu_read_unlock();
1240
1241         mutex_lock_nested(&ctx->mutex, nesting);
1242         if (event->ctx != ctx) {
1243                 mutex_unlock(&ctx->mutex);
1244                 put_ctx(ctx);
1245                 goto again;
1246         }
1247
1248         return ctx;
1249 }
1250
1251 static inline struct perf_event_context *
1252 perf_event_ctx_lock(struct perf_event *event)
1253 {
1254         return perf_event_ctx_lock_nested(event, 0);
1255 }
1256
1257 static void perf_event_ctx_unlock(struct perf_event *event,
1258                                   struct perf_event_context *ctx)
1259 {
1260         mutex_unlock(&ctx->mutex);
1261         put_ctx(ctx);
1262 }
1263
1264 /*
1265  * This must be done under the ctx->lock, such as to serialize against
1266  * context_equiv(), therefore we cannot call put_ctx() since that might end up
1267  * calling scheduler related locks and ctx->lock nests inside those.
1268  */
1269 static __must_check struct perf_event_context *
1270 unclone_ctx(struct perf_event_context *ctx)
1271 {
1272         struct perf_event_context *parent_ctx = ctx->parent_ctx;
1273
1274         lockdep_assert_held(&ctx->lock);
1275
1276         if (parent_ctx)
1277                 ctx->parent_ctx = NULL;
1278         ctx->generation++;
1279
1280         return parent_ctx;
1281 }
1282
1283 static u32 perf_event_pid_type(struct perf_event *event, struct task_struct *p,
1284                                 enum pid_type type)
1285 {
1286         u32 nr;
1287         /*
1288          * only top level events have the pid namespace they were created in
1289          */
1290         if (event->parent)
1291                 event = event->parent;
1292
1293         nr = __task_pid_nr_ns(p, type, event->ns);
1294         /* avoid -1 if it is idle thread or runs in another ns */
1295         if (!nr && !pid_alive(p))
1296                 nr = -1;
1297         return nr;
1298 }
1299
1300 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1301 {
1302         return perf_event_pid_type(event, p, __PIDTYPE_TGID);
1303 }
1304
1305 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1306 {
1307         return perf_event_pid_type(event, p, PIDTYPE_PID);
1308 }
1309
1310 /*
1311  * If we inherit events we want to return the parent event id
1312  * to userspace.
1313  */
1314 static u64 primary_event_id(struct perf_event *event)
1315 {
1316         u64 id = event->id;
1317
1318         if (event->parent)
1319                 id = event->parent->id;
1320
1321         return id;
1322 }
1323
1324 /*
1325  * Get the perf_event_context for a task and lock it.
1326  *
1327  * This has to cope with with the fact that until it is locked,
1328  * the context could get moved to another task.
1329  */
1330 static struct perf_event_context *
1331 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
1332 {
1333         struct perf_event_context *ctx;
1334
1335 retry:
1336         /*
1337          * One of the few rules of preemptible RCU is that one cannot do
1338          * rcu_read_unlock() while holding a scheduler (or nested) lock when
1339          * part of the read side critical section was irqs-enabled -- see
1340          * rcu_read_unlock_special().
1341          *
1342          * Since ctx->lock nests under rq->lock we must ensure the entire read
1343          * side critical section has interrupts disabled.
1344          */
1345         local_irq_save(*flags);
1346         rcu_read_lock();
1347         ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
1348         if (ctx) {
1349                 /*
1350                  * If this context is a clone of another, it might
1351                  * get swapped for another underneath us by
1352                  * perf_event_task_sched_out, though the
1353                  * rcu_read_lock() protects us from any context
1354                  * getting freed.  Lock the context and check if it
1355                  * got swapped before we could get the lock, and retry
1356                  * if so.  If we locked the right context, then it
1357                  * can't get swapped on us any more.
1358                  */
1359                 raw_spin_lock(&ctx->lock);
1360                 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
1361                         raw_spin_unlock(&ctx->lock);
1362                         rcu_read_unlock();
1363                         local_irq_restore(*flags);
1364                         goto retry;
1365                 }
1366
1367                 if (ctx->task == TASK_TOMBSTONE ||
1368                     !atomic_inc_not_zero(&ctx->refcount)) {
1369                         raw_spin_unlock(&ctx->lock);
1370                         ctx = NULL;
1371                 } else {
1372                         WARN_ON_ONCE(ctx->task != task);
1373                 }
1374         }
1375         rcu_read_unlock();
1376         if (!ctx)
1377                 local_irq_restore(*flags);
1378         return ctx;
1379 }
1380
1381 /*
1382  * Get the context for a task and increment its pin_count so it
1383  * can't get swapped to another task.  This also increments its
1384  * reference count so that the context can't get freed.
1385  */
1386 static struct perf_event_context *
1387 perf_pin_task_context(struct task_struct *task, int ctxn)
1388 {
1389         struct perf_event_context *ctx;
1390         unsigned long flags;
1391
1392         ctx = perf_lock_task_context(task, ctxn, &flags);
1393         if (ctx) {
1394                 ++ctx->pin_count;
1395                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1396         }
1397         return ctx;
1398 }
1399
1400 static void perf_unpin_context(struct perf_event_context *ctx)
1401 {
1402         unsigned long flags;
1403
1404         raw_spin_lock_irqsave(&ctx->lock, flags);
1405         --ctx->pin_count;
1406         raw_spin_unlock_irqrestore(&ctx->lock, flags);
1407 }
1408
1409 /*
1410  * Update the record of the current time in a context.
1411  */
1412 static void update_context_time(struct perf_event_context *ctx)
1413 {
1414         u64 now = perf_clock();
1415
1416         ctx->time += now - ctx->timestamp;
1417         ctx->timestamp = now;
1418 }
1419
1420 static u64 perf_event_time(struct perf_event *event)
1421 {
1422         struct perf_event_context *ctx = event->ctx;
1423
1424         if (is_cgroup_event(event))
1425                 return perf_cgroup_event_time(event);
1426
1427         return ctx ? ctx->time : 0;
1428 }
1429
1430 /*
1431  * Update the total_time_enabled and total_time_running fields for a event.
1432  */
1433 static void update_event_times(struct perf_event *event)
1434 {
1435         struct perf_event_context *ctx = event->ctx;
1436         u64 run_end;
1437
1438         lockdep_assert_held(&ctx->lock);
1439
1440         if (event->state < PERF_EVENT_STATE_INACTIVE ||
1441             event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1442                 return;
1443
1444         /*
1445          * in cgroup mode, time_enabled represents
1446          * the time the event was enabled AND active
1447          * tasks were in the monitored cgroup. This is
1448          * independent of the activity of the context as
1449          * there may be a mix of cgroup and non-cgroup events.
1450          *
1451          * That is why we treat cgroup events differently
1452          * here.
1453          */
1454         if (is_cgroup_event(event))
1455                 run_end = perf_cgroup_event_time(event);
1456         else if (ctx->is_active)
1457                 run_end = ctx->time;
1458         else
1459                 run_end = event->tstamp_stopped;
1460
1461         event->total_time_enabled = run_end - event->tstamp_enabled;
1462
1463         if (event->state == PERF_EVENT_STATE_INACTIVE)
1464                 run_end = event->tstamp_stopped;
1465         else
1466                 run_end = perf_event_time(event);
1467
1468         event->total_time_running = run_end - event->tstamp_running;
1469
1470 }
1471
1472 /*
1473  * Update total_time_enabled and total_time_running for all events in a group.
1474  */
1475 static void update_group_times(struct perf_event *leader)
1476 {
1477         struct perf_event *event;
1478
1479         update_event_times(leader);
1480         list_for_each_entry(event, &leader->sibling_list, group_entry)
1481                 update_event_times(event);
1482 }
1483
1484 static enum event_type_t get_event_type(struct perf_event *event)
1485 {
1486         struct perf_event_context *ctx = event->ctx;
1487         enum event_type_t event_type;
1488
1489         lockdep_assert_held(&ctx->lock);
1490
1491         /*
1492          * It's 'group type', really, because if our group leader is
1493          * pinned, so are we.
1494          */
1495         if (event->group_leader != event)
1496                 event = event->group_leader;
1497
1498         event_type = event->attr.pinned ? EVENT_PINNED : EVENT_FLEXIBLE;
1499         if (!ctx->task)
1500                 event_type |= EVENT_CPU;
1501
1502         return event_type;
1503 }
1504
1505 static struct list_head *
1506 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1507 {
1508         if (event->attr.pinned)
1509                 return &ctx->pinned_groups;
1510         else
1511                 return &ctx->flexible_groups;
1512 }
1513
1514 /*
1515  * Add a event from the lists for its context.
1516  * Must be called with ctx->mutex and ctx->lock held.
1517  */
1518 static void
1519 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
1520 {
1521         lockdep_assert_held(&ctx->lock);
1522
1523         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1524         event->attach_state |= PERF_ATTACH_CONTEXT;
1525
1526         /*
1527          * If we're a stand alone event or group leader, we go to the context
1528          * list, group events are kept attached to the group so that
1529          * perf_group_detach can, at all times, locate all siblings.
1530          */
1531         if (event->group_leader == event) {
1532                 struct list_head *list;
1533
1534                 event->group_caps = event->event_caps;
1535
1536                 list = ctx_group_list(event, ctx);
1537                 list_add_tail(&event->group_entry, list);
1538         }
1539
1540         list_update_cgroup_event(event, ctx, true);
1541
1542         list_add_rcu(&event->event_entry, &ctx->event_list);
1543         ctx->nr_events++;
1544         if (event->attr.inherit_stat)
1545                 ctx->nr_stat++;
1546
1547         ctx->generation++;
1548 }
1549
1550 /*
1551  * Initialize event state based on the perf_event_attr::disabled.
1552  */
1553 static inline void perf_event__state_init(struct perf_event *event)
1554 {
1555         event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1556                                               PERF_EVENT_STATE_INACTIVE;
1557 }
1558
1559 static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
1560 {
1561         int entry = sizeof(u64); /* value */
1562         int size = 0;
1563         int nr = 1;
1564
1565         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1566                 size += sizeof(u64);
1567
1568         if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1569                 size += sizeof(u64);
1570
1571         if (event->attr.read_format & PERF_FORMAT_ID)
1572                 entry += sizeof(u64);
1573
1574         if (event->attr.read_format & PERF_FORMAT_GROUP) {
1575                 nr += nr_siblings;
1576                 size += sizeof(u64);
1577         }
1578
1579         size += entry * nr;
1580         event->read_size = size;
1581 }
1582
1583 static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
1584 {
1585         struct perf_sample_data *data;
1586         u16 size = 0;
1587
1588         if (sample_type & PERF_SAMPLE_IP)
1589                 size += sizeof(data->ip);
1590
1591         if (sample_type & PERF_SAMPLE_ADDR)
1592                 size += sizeof(data->addr);
1593
1594         if (sample_type & PERF_SAMPLE_PERIOD)
1595                 size += sizeof(data->period);
1596
1597         if (sample_type & PERF_SAMPLE_WEIGHT)
1598                 size += sizeof(data->weight);
1599
1600         if (sample_type & PERF_SAMPLE_READ)
1601                 size += event->read_size;
1602
1603         if (sample_type & PERF_SAMPLE_DATA_SRC)
1604                 size += sizeof(data->data_src.val);
1605
1606         if (sample_type & PERF_SAMPLE_TRANSACTION)
1607                 size += sizeof(data->txn);
1608
1609         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
1610                 size += sizeof(data->phys_addr);
1611
1612         event->header_size = size;
1613 }
1614
1615 /*
1616  * Called at perf_event creation and when events are attached/detached from a
1617  * group.
1618  */
1619 static void perf_event__header_size(struct perf_event *event)
1620 {
1621         __perf_event_read_size(event,
1622                                event->group_leader->nr_siblings);
1623         __perf_event_header_size(event, event->attr.sample_type);
1624 }
1625
1626 static void perf_event__id_header_size(struct perf_event *event)
1627 {
1628         struct perf_sample_data *data;
1629         u64 sample_type = event->attr.sample_type;
1630         u16 size = 0;
1631
1632         if (sample_type & PERF_SAMPLE_TID)
1633                 size += sizeof(data->tid_entry);
1634
1635         if (sample_type & PERF_SAMPLE_TIME)
1636                 size += sizeof(data->time);
1637
1638         if (sample_type & PERF_SAMPLE_IDENTIFIER)
1639                 size += sizeof(data->id);
1640
1641         if (sample_type & PERF_SAMPLE_ID)
1642                 size += sizeof(data->id);
1643
1644         if (sample_type & PERF_SAMPLE_STREAM_ID)
1645                 size += sizeof(data->stream_id);
1646
1647         if (sample_type & PERF_SAMPLE_CPU)
1648                 size += sizeof(data->cpu_entry);
1649
1650         event->id_header_size = size;
1651 }
1652
1653 static bool perf_event_validate_size(struct perf_event *event)
1654 {
1655         /*
1656          * The values computed here will be over-written when we actually
1657          * attach the event.
1658          */
1659         __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1660         __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1661         perf_event__id_header_size(event);
1662
1663         /*
1664          * Sum the lot; should not exceed the 64k limit we have on records.
1665          * Conservative limit to allow for callchains and other variable fields.
1666          */
1667         if (event->read_size + event->header_size +
1668             event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1669                 return false;
1670
1671         return true;
1672 }
1673
1674 static void perf_group_attach(struct perf_event *event)
1675 {
1676         struct perf_event *group_leader = event->group_leader, *pos;
1677
1678         lockdep_assert_held(&event->ctx->lock);
1679
1680         /*
1681          * We can have double attach due to group movement in perf_event_open.
1682          */
1683         if (event->attach_state & PERF_ATTACH_GROUP)
1684                 return;
1685
1686         event->attach_state |= PERF_ATTACH_GROUP;
1687
1688         if (group_leader == event)
1689                 return;
1690
1691         WARN_ON_ONCE(group_leader->ctx != event->ctx);
1692
1693         group_leader->group_caps &= event->event_caps;
1694
1695         list_add_tail(&event->group_entry, &group_leader->sibling_list);
1696         group_leader->nr_siblings++;
1697
1698         perf_event__header_size(group_leader);
1699
1700         list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1701                 perf_event__header_size(pos);
1702 }
1703
1704 /*
1705  * Remove a event from the lists for its context.
1706  * Must be called with ctx->mutex and ctx->lock held.
1707  */
1708 static void
1709 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
1710 {
1711         WARN_ON_ONCE(event->ctx != ctx);
1712         lockdep_assert_held(&ctx->lock);
1713
1714         /*
1715          * We can have double detach due to exit/hot-unplug + close.
1716          */
1717         if (!(event->attach_state & PERF_ATTACH_CONTEXT))
1718                 return;
1719
1720         event->attach_state &= ~PERF_ATTACH_CONTEXT;
1721
1722         list_update_cgroup_event(event, ctx, false);
1723
1724         ctx->nr_events--;
1725         if (event->attr.inherit_stat)
1726                 ctx->nr_stat--;
1727
1728         list_del_rcu(&event->event_entry);
1729
1730         if (event->group_leader == event)
1731                 list_del_init(&event->group_entry);
1732
1733         update_group_times(event);
1734
1735         /*
1736          * If event was in error state, then keep it
1737          * that way, otherwise bogus counts will be
1738          * returned on read(). The only way to get out
1739          * of error state is by explicit re-enabling
1740          * of the event
1741          */
1742         if (event->state > PERF_EVENT_STATE_OFF)
1743                 event->state = PERF_EVENT_STATE_OFF;
1744
1745         ctx->generation++;
1746 }
1747
1748 static void perf_group_detach(struct perf_event *event)
1749 {
1750         struct perf_event *sibling, *tmp;
1751         struct list_head *list = NULL;
1752
1753         lockdep_assert_held(&event->ctx->lock);
1754
1755         /*
1756          * We can have double detach due to exit/hot-unplug + close.
1757          */
1758         if (!(event->attach_state & PERF_ATTACH_GROUP))
1759                 return;
1760
1761         event->attach_state &= ~PERF_ATTACH_GROUP;
1762
1763         /*
1764          * If this is a sibling, remove it from its group.
1765          */
1766         if (event->group_leader != event) {
1767                 list_del_init(&event->group_entry);
1768                 event->group_leader->nr_siblings--;
1769                 goto out;
1770         }
1771
1772         if (!list_empty(&event->group_entry))
1773                 list = &event->group_entry;
1774
1775         /*
1776          * If this was a group event with sibling events then
1777          * upgrade the siblings to singleton events by adding them
1778          * to whatever list we are on.
1779          */
1780         list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1781                 if (list)
1782                         list_move_tail(&sibling->group_entry, list);
1783                 sibling->group_leader = sibling;
1784
1785                 /* Inherit group flags from the previous leader */
1786                 sibling->group_caps = event->group_caps;
1787
1788                 WARN_ON_ONCE(sibling->ctx != event->ctx);
1789         }
1790
1791 out:
1792         perf_event__header_size(event->group_leader);
1793
1794         list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1795                 perf_event__header_size(tmp);
1796 }
1797
1798 static bool is_orphaned_event(struct perf_event *event)
1799 {
1800         return event->state == PERF_EVENT_STATE_DEAD;
1801 }
1802
1803 static inline int __pmu_filter_match(struct perf_event *event)
1804 {
1805         struct pmu *pmu = event->pmu;
1806         return pmu->filter_match ? pmu->filter_match(event) : 1;
1807 }
1808
1809 /*
1810  * Check whether we should attempt to schedule an event group based on
1811  * PMU-specific filtering. An event group can consist of HW and SW events,
1812  * potentially with a SW leader, so we must check all the filters, to
1813  * determine whether a group is schedulable:
1814  */
1815 static inline int pmu_filter_match(struct perf_event *event)
1816 {
1817         struct perf_event *child;
1818
1819         if (!__pmu_filter_match(event))
1820                 return 0;
1821
1822         list_for_each_entry(child, &event->sibling_list, group_entry) {
1823                 if (!__pmu_filter_match(child))
1824                         return 0;
1825         }
1826
1827         return 1;
1828 }
1829
1830 static inline int
1831 event_filter_match(struct perf_event *event)
1832 {
1833         return (event->cpu == -1 || event->cpu == smp_processor_id()) &&
1834                perf_cgroup_match(event) && pmu_filter_match(event);
1835 }
1836
1837 static void
1838 event_sched_out(struct perf_event *event,
1839                   struct perf_cpu_context *cpuctx,
1840                   struct perf_event_context *ctx)
1841 {
1842         u64 tstamp = perf_event_time(event);
1843         u64 delta;
1844
1845         WARN_ON_ONCE(event->ctx != ctx);
1846         lockdep_assert_held(&ctx->lock);
1847
1848         /*
1849          * An event which could not be activated because of
1850          * filter mismatch still needs to have its timings
1851          * maintained, otherwise bogus information is return
1852          * via read() for time_enabled, time_running:
1853          */
1854         if (event->state == PERF_EVENT_STATE_INACTIVE &&
1855             !event_filter_match(event)) {
1856                 delta = tstamp - event->tstamp_stopped;
1857                 event->tstamp_running += delta;
1858                 event->tstamp_stopped = tstamp;
1859         }
1860
1861         if (event->state != PERF_EVENT_STATE_ACTIVE)
1862                 return;
1863
1864         perf_pmu_disable(event->pmu);
1865
1866         event->tstamp_stopped = tstamp;
1867         event->pmu->del(event, 0);
1868         event->oncpu = -1;
1869         event->state = PERF_EVENT_STATE_INACTIVE;
1870         if (event->pending_disable) {
1871                 event->pending_disable = 0;
1872                 event->state = PERF_EVENT_STATE_OFF;
1873         }
1874
1875         if (!is_software_event(event))
1876                 cpuctx->active_oncpu--;
1877         if (!--ctx->nr_active)
1878                 perf_event_ctx_deactivate(ctx);
1879         if (event->attr.freq && event->attr.sample_freq)
1880                 ctx->nr_freq--;
1881         if (event->attr.exclusive || !cpuctx->active_oncpu)
1882                 cpuctx->exclusive = 0;
1883
1884         perf_pmu_enable(event->pmu);
1885 }
1886
1887 static void
1888 group_sched_out(struct perf_event *group_event,
1889                 struct perf_cpu_context *cpuctx,
1890                 struct perf_event_context *ctx)
1891 {
1892         struct perf_event *event;
1893         int state = group_event->state;
1894
1895         perf_pmu_disable(ctx->pmu);
1896
1897         event_sched_out(group_event, cpuctx, ctx);
1898
1899         /*
1900          * Schedule out siblings (if any):
1901          */
1902         list_for_each_entry(event, &group_event->sibling_list, group_entry)
1903                 event_sched_out(event, cpuctx, ctx);
1904
1905         perf_pmu_enable(ctx->pmu);
1906
1907         if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1908                 cpuctx->exclusive = 0;
1909 }
1910
1911 #define DETACH_GROUP    0x01UL
1912
1913 /*
1914  * Cross CPU call to remove a performance event
1915  *
1916  * We disable the event on the hardware level first. After that we
1917  * remove it from the context list.
1918  */
1919 static void
1920 __perf_remove_from_context(struct perf_event *event,
1921                            struct perf_cpu_context *cpuctx,
1922                            struct perf_event_context *ctx,
1923                            void *info)
1924 {
1925         unsigned long flags = (unsigned long)info;
1926
1927         event_sched_out(event, cpuctx, ctx);
1928         if (flags & DETACH_GROUP)
1929                 perf_group_detach(event);
1930         list_del_event(event, ctx);
1931
1932         if (!ctx->nr_events && ctx->is_active) {
1933                 ctx->is_active = 0;
1934                 if (ctx->task) {
1935                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1936                         cpuctx->task_ctx = NULL;
1937                 }
1938         }
1939 }
1940
1941 /*
1942  * Remove the event from a task's (or a CPU's) list of events.
1943  *
1944  * If event->ctx is a cloned context, callers must make sure that
1945  * every task struct that event->ctx->task could possibly point to
1946  * remains valid.  This is OK when called from perf_release since
1947  * that only calls us on the top-level context, which can't be a clone.
1948  * When called from perf_event_exit_task, it's OK because the
1949  * context has been detached from its task.
1950  */
1951 static void perf_remove_from_context(struct perf_event *event, unsigned long flags)
1952 {
1953         struct perf_event_context *ctx = event->ctx;
1954
1955         lockdep_assert_held(&ctx->mutex);
1956
1957         event_function_call(event, __perf_remove_from_context, (void *)flags);
1958
1959         /*
1960          * The above event_function_call() can NO-OP when it hits
1961          * TASK_TOMBSTONE. In that case we must already have been detached
1962          * from the context (by perf_event_exit_event()) but the grouping
1963          * might still be in-tact.
1964          */
1965         WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1966         if ((flags & DETACH_GROUP) &&
1967             (event->attach_state & PERF_ATTACH_GROUP)) {
1968                 /*
1969                  * Since in that case we cannot possibly be scheduled, simply
1970                  * detach now.
1971                  */
1972                 raw_spin_lock_irq(&ctx->lock);
1973                 perf_group_detach(event);
1974                 raw_spin_unlock_irq(&ctx->lock);
1975         }
1976 }
1977
1978 /*
1979  * Cross CPU call to disable a performance event
1980  */
1981 static void __perf_event_disable(struct perf_event *event,
1982                                  struct perf_cpu_context *cpuctx,
1983                                  struct perf_event_context *ctx,
1984                                  void *info)
1985 {
1986         if (event->state < PERF_EVENT_STATE_INACTIVE)
1987                 return;
1988
1989         update_context_time(ctx);
1990         update_cgrp_time_from_event(event);
1991         update_group_times(event);
1992         if (event == event->group_leader)
1993                 group_sched_out(event, cpuctx, ctx);
1994         else
1995                 event_sched_out(event, cpuctx, ctx);
1996         event->state = PERF_EVENT_STATE_OFF;
1997 }
1998
1999 /*
2000  * Disable a event.
2001  *
2002  * If event->ctx is a cloned context, callers must make sure that
2003  * every task struct that event->ctx->task could possibly point to
2004  * remains valid.  This condition is satisifed when called through
2005  * perf_event_for_each_child or perf_event_for_each because they
2006  * hold the top-level event's child_mutex, so any descendant that
2007  * goes to exit will block in perf_event_exit_event().
2008  *
2009  * When called from perf_pending_event it's OK because event->ctx
2010  * is the current context on this CPU and preemption is disabled,
2011  * hence we can't get into perf_event_task_sched_out for this context.
2012  */
2013 static void _perf_event_disable(struct perf_event *event)
2014 {
2015         struct perf_event_context *ctx = event->ctx;
2016
2017         raw_spin_lock_irq(&ctx->lock);
2018         if (event->state <= PERF_EVENT_STATE_OFF) {
2019                 raw_spin_unlock_irq(&ctx->lock);
2020                 return;
2021         }
2022         raw_spin_unlock_irq(&ctx->lock);
2023
2024         event_function_call(event, __perf_event_disable, NULL);
2025 }
2026
2027 void perf_event_disable_local(struct perf_event *event)
2028 {
2029         event_function_local(event, __perf_event_disable, NULL);
2030 }
2031
2032 /*
2033  * Strictly speaking kernel users cannot create groups and therefore this
2034  * interface does not need the perf_event_ctx_lock() magic.
2035  */
2036 void perf_event_disable(struct perf_event *event)
2037 {
2038         struct perf_event_context *ctx;
2039
2040         ctx = perf_event_ctx_lock(event);
2041         _perf_event_disable(event);
2042         perf_event_ctx_unlock(event, ctx);
2043 }
2044 EXPORT_SYMBOL_GPL(perf_event_disable);
2045
2046 void perf_event_disable_inatomic(struct perf_event *event)
2047 {
2048         event->pending_disable = 1;
2049         irq_work_queue(&event->pending);
2050 }
2051
2052 static void perf_set_shadow_time(struct perf_event *event,
2053                                  struct perf_event_context *ctx,
2054                                  u64 tstamp)
2055 {
2056         /*
2057          * use the correct time source for the time snapshot
2058          *
2059          * We could get by without this by leveraging the
2060          * fact that to get to this function, the caller
2061          * has most likely already called update_context_time()
2062          * and update_cgrp_time_xx() and thus both timestamp
2063          * are identical (or very close). Given that tstamp is,
2064          * already adjusted for cgroup, we could say that:
2065          *    tstamp - ctx->timestamp
2066          * is equivalent to
2067          *    tstamp - cgrp->timestamp.
2068          *
2069          * Then, in perf_output_read(), the calculation would
2070          * work with no changes because:
2071          * - event is guaranteed scheduled in
2072          * - no scheduled out in between
2073          * - thus the timestamp would be the same
2074          *
2075          * But this is a bit hairy.
2076          *
2077          * So instead, we have an explicit cgroup call to remain
2078          * within the time time source all along. We believe it
2079          * is cleaner and simpler to understand.
2080          */
2081         if (is_cgroup_event(event))
2082                 perf_cgroup_set_shadow_time(event, tstamp);
2083         else
2084                 event->shadow_ctx_time = tstamp - ctx->timestamp;
2085 }
2086
2087 #define MAX_INTERRUPTS (~0ULL)
2088
2089 static void perf_log_throttle(struct perf_event *event, int enable);
2090 static void perf_log_itrace_start(struct perf_event *event);
2091
2092 static int
2093 event_sched_in(struct perf_event *event,
2094                  struct perf_cpu_context *cpuctx,
2095                  struct perf_event_context *ctx)
2096 {
2097         u64 tstamp = perf_event_time(event);
2098         int ret = 0;
2099
2100         lockdep_assert_held(&ctx->lock);
2101
2102         if (event->state <= PERF_EVENT_STATE_OFF)
2103                 return 0;
2104
2105         WRITE_ONCE(event->oncpu, smp_processor_id());
2106         /*
2107          * Order event::oncpu write to happen before the ACTIVE state
2108          * is visible.
2109          */
2110         smp_wmb();
2111         WRITE_ONCE(event->state, PERF_EVENT_STATE_ACTIVE);
2112
2113         /*
2114          * Unthrottle events, since we scheduled we might have missed several
2115          * ticks already, also for a heavily scheduling task there is little
2116          * guarantee it'll get a tick in a timely manner.
2117          */
2118         if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
2119                 perf_log_throttle(event, 1);
2120                 event->hw.interrupts = 0;
2121         }
2122
2123         /*
2124          * The new state must be visible before we turn it on in the hardware:
2125          */
2126         smp_wmb();
2127
2128         perf_pmu_disable(event->pmu);
2129
2130         perf_set_shadow_time(event, ctx, tstamp);
2131
2132         perf_log_itrace_start(event);
2133
2134         if (event->pmu->add(event, PERF_EF_START)) {
2135                 event->state = PERF_EVENT_STATE_INACTIVE;
2136                 event->oncpu = -1;
2137                 ret = -EAGAIN;
2138                 goto out;
2139         }
2140
2141         event->tstamp_running += tstamp - event->tstamp_stopped;
2142
2143         if (!is_software_event(event))
2144                 cpuctx->active_oncpu++;
2145         if (!ctx->nr_active++)
2146                 perf_event_ctx_activate(ctx);
2147         if (event->attr.freq && event->attr.sample_freq)
2148                 ctx->nr_freq++;
2149
2150         if (event->attr.exclusive)
2151                 cpuctx->exclusive = 1;
2152
2153 out:
2154         perf_pmu_enable(event->pmu);
2155
2156         return ret;
2157 }
2158
2159 static int
2160 group_sched_in(struct perf_event *group_event,
2161                struct perf_cpu_context *cpuctx,
2162                struct perf_event_context *ctx)
2163 {
2164         struct perf_event *event, *partial_group = NULL;
2165         struct pmu *pmu = ctx->pmu;
2166         u64 now = ctx->time;
2167         bool simulate = false;
2168
2169         if (group_event->state == PERF_EVENT_STATE_OFF)
2170                 return 0;
2171
2172         pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
2173
2174         if (event_sched_in(group_event, cpuctx, ctx)) {
2175                 pmu->cancel_txn(pmu);
2176                 perf_mux_hrtimer_restart(cpuctx);
2177                 return -EAGAIN;
2178         }
2179
2180         /*
2181          * Schedule in siblings as one group (if any):
2182          */
2183         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2184                 if (event_sched_in(event, cpuctx, ctx)) {
2185                         partial_group = event;
2186                         goto group_error;
2187                 }
2188         }
2189
2190         if (!pmu->commit_txn(pmu))
2191                 return 0;
2192
2193 group_error:
2194         /*
2195          * Groups can be scheduled in as one unit only, so undo any
2196          * partial group before returning:
2197          * The events up to the failed event are scheduled out normally,
2198          * tstamp_stopped will be updated.
2199          *
2200          * The failed events and the remaining siblings need to have
2201          * their timings updated as if they had gone thru event_sched_in()
2202          * and event_sched_out(). This is required to get consistent timings
2203          * across the group. This also takes care of the case where the group
2204          * could never be scheduled by ensuring tstamp_stopped is set to mark
2205          * the time the event was actually stopped, such that time delta
2206          * calculation in update_event_times() is correct.
2207          */
2208         list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2209                 if (event == partial_group)
2210                         simulate = true;
2211
2212                 if (simulate) {
2213                         event->tstamp_running += now - event->tstamp_stopped;
2214                         event->tstamp_stopped = now;
2215                 } else {
2216                         event_sched_out(event, cpuctx, ctx);
2217                 }
2218         }
2219         event_sched_out(group_event, cpuctx, ctx);
2220
2221         pmu->cancel_txn(pmu);
2222
2223         perf_mux_hrtimer_restart(cpuctx);
2224
2225         return -EAGAIN;
2226 }
2227
2228 /*
2229  * Work out whether we can put this event group on the CPU now.
2230  */
2231 static int group_can_go_on(struct perf_event *event,
2232                            struct perf_cpu_context *cpuctx,
2233                            int can_add_hw)
2234 {
2235         /*
2236          * Groups consisting entirely of software events can always go on.
2237          */
2238         if (event->group_caps & PERF_EV_CAP_SOFTWARE)
2239                 return 1;
2240         /*
2241          * If an exclusive group is already on, no other hardware
2242          * events can go on.
2243          */
2244         if (cpuctx->exclusive)
2245                 return 0;
2246         /*
2247          * If this group is exclusive and there are already
2248          * events on the CPU, it can't go on.
2249          */
2250         if (event->attr.exclusive && cpuctx->active_oncpu)
2251                 return 0;
2252         /*
2253          * Otherwise, try to add it if all previous groups were able
2254          * to go on.
2255          */
2256         return can_add_hw;
2257 }
2258
2259 /*
2260  * Complement to update_event_times(). This computes the tstamp_* values to
2261  * continue 'enabled' state from @now, and effectively discards the time
2262  * between the prior tstamp_stopped and now (as we were in the OFF state, or
2263  * just switched (context) time base).
2264  *
2265  * This further assumes '@event->state == INACTIVE' (we just came from OFF) and
2266  * cannot have been scheduled in yet. And going into INACTIVE state means
2267  * '@event->tstamp_stopped = @now'.
2268  *
2269  * Thus given the rules of update_event_times():
2270  *
2271  *   total_time_enabled = tstamp_stopped - tstamp_enabled
2272  *   total_time_running = tstamp_stopped - tstamp_running
2273  *
2274  * We can insert 'tstamp_stopped == now' and reverse them to compute new
2275  * tstamp_* values.
2276  */
2277 static void __perf_event_enable_time(struct perf_event *event, u64 now)
2278 {
2279         WARN_ON_ONCE(event->state != PERF_EVENT_STATE_INACTIVE);
2280
2281         event->tstamp_stopped = now;
2282         event->tstamp_enabled = now - event->total_time_enabled;
2283         event->tstamp_running = now - event->total_time_running;
2284 }
2285
2286 static void add_event_to_ctx(struct perf_event *event,
2287                                struct perf_event_context *ctx)
2288 {
2289         u64 tstamp = perf_event_time(event);
2290
2291         list_add_event(event, ctx);
2292         perf_group_attach(event);
2293         /*
2294          * We can be called with event->state == STATE_OFF when we create with
2295          * .disabled = 1. In that case the IOC_ENABLE will call this function.
2296          */
2297         if (event->state == PERF_EVENT_STATE_INACTIVE)
2298                 __perf_event_enable_time(event, tstamp);
2299 }
2300
2301 static void ctx_sched_out(struct perf_event_context *ctx,
2302                           struct perf_cpu_context *cpuctx,
2303                           enum event_type_t event_type);
2304 static void
2305 ctx_sched_in(struct perf_event_context *ctx,
2306              struct perf_cpu_context *cpuctx,
2307              enum event_type_t event_type,
2308              struct task_struct *task);
2309
2310 static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2311                                struct perf_event_context *ctx,
2312                                enum event_type_t event_type)
2313 {
2314         if (!cpuctx->task_ctx)
2315                 return;
2316
2317         if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2318                 return;
2319
2320         ctx_sched_out(ctx, cpuctx, event_type);
2321 }
2322
2323 static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2324                                 struct perf_event_context *ctx,
2325                                 struct task_struct *task)
2326 {
2327         cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2328         if (ctx)
2329                 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2330         cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2331         if (ctx)
2332                 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2333 }
2334
2335 /*
2336  * We want to maintain the following priority of scheduling:
2337  *  - CPU pinned (EVENT_CPU | EVENT_PINNED)
2338  *  - task pinned (EVENT_PINNED)
2339  *  - CPU flexible (EVENT_CPU | EVENT_FLEXIBLE)
2340  *  - task flexible (EVENT_FLEXIBLE).
2341  *
2342  * In order to avoid unscheduling and scheduling back in everything every
2343  * time an event is added, only do it for the groups of equal priority and
2344  * below.
2345  *
2346  * This can be called after a batch operation on task events, in which case
2347  * event_type is a bit mask of the types of events involved. For CPU events,
2348  * event_type is only either EVENT_PINNED or EVENT_FLEXIBLE.
2349  */
2350 static void ctx_resched(struct perf_cpu_context *cpuctx,
2351                         struct perf_event_context *task_ctx,
2352                         enum event_type_t event_type)
2353 {
2354         enum event_type_t ctx_event_type;
2355         bool cpu_event = !!(event_type & EVENT_CPU);
2356
2357         /*
2358          * If pinned groups are involved, flexible groups also need to be
2359          * scheduled out.
2360          */
2361         if (event_type & EVENT_PINNED)
2362                 event_type |= EVENT_FLEXIBLE;
2363
2364         ctx_event_type = event_type & EVENT_ALL;
2365
2366         perf_pmu_disable(cpuctx->ctx.pmu);
2367         if (task_ctx)
2368                 task_ctx_sched_out(cpuctx, task_ctx, event_type);
2369
2370         /*
2371          * Decide which cpu ctx groups to schedule out based on the types
2372          * of events that caused rescheduling:
2373          *  - EVENT_CPU: schedule out corresponding groups;
2374          *  - EVENT_PINNED task events: schedule out EVENT_FLEXIBLE groups;
2375          *  - otherwise, do nothing more.
2376          */
2377         if (cpu_event)
2378                 cpu_ctx_sched_out(cpuctx, ctx_event_type);
2379         else if (ctx_event_type & EVENT_PINNED)
2380                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2381
2382         perf_event_sched_in(cpuctx, task_ctx, current);
2383         perf_pmu_enable(cpuctx->ctx.pmu);
2384 }
2385
2386 /*
2387  * Cross CPU call to install and enable a performance event
2388  *
2389  * Very similar to remote_function() + event_function() but cannot assume that
2390  * things like ctx->is_active and cpuctx->task_ctx are set.
2391  */
2392 static int  __perf_install_in_context(void *info)
2393 {
2394         struct perf_event *event = info;
2395         struct perf_event_context *ctx = event->ctx;
2396         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2397         struct perf_event_context *task_ctx = cpuctx->task_ctx;
2398         bool reprogram = true;
2399         int ret = 0;
2400
2401         raw_spin_lock(&cpuctx->ctx.lock);
2402         if (ctx->task) {
2403                 raw_spin_lock(&ctx->lock);
2404                 task_ctx = ctx;
2405
2406                 reprogram = (ctx->task == current);
2407
2408                 /*
2409                  * If the task is running, it must be running on this CPU,
2410                  * otherwise we cannot reprogram things.
2411                  *
2412                  * If its not running, we don't care, ctx->lock will
2413                  * serialize against it becoming runnable.
2414                  */
2415                 if (task_curr(ctx->task) && !reprogram) {
2416                         ret = -ESRCH;
2417                         goto unlock;
2418                 }
2419
2420                 WARN_ON_ONCE(reprogram && cpuctx->task_ctx && cpuctx->task_ctx != ctx);
2421         } else if (task_ctx) {
2422                 raw_spin_lock(&task_ctx->lock);
2423         }
2424
2425 #ifdef CONFIG_CGROUP_PERF
2426         if (is_cgroup_event(event)) {
2427                 /*
2428                  * If the current cgroup doesn't match the event's
2429                  * cgroup, we should not try to schedule it.
2430                  */
2431                 struct perf_cgroup *cgrp = perf_cgroup_from_task(current, ctx);
2432                 reprogram = cgroup_is_descendant(cgrp->css.cgroup,
2433                                         event->cgrp->css.cgroup);
2434         }
2435 #endif
2436
2437         if (reprogram) {
2438                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2439                 add_event_to_ctx(event, ctx);
2440                 ctx_resched(cpuctx, task_ctx, get_event_type(event));
2441         } else {
2442                 add_event_to_ctx(event, ctx);
2443         }
2444
2445 unlock:
2446         perf_ctx_unlock(cpuctx, task_ctx);
2447
2448         return ret;
2449 }
2450
2451 /*
2452  * Attach a performance event to a context.
2453  *
2454  * Very similar to event_function_call, see comment there.
2455  */
2456 static void
2457 perf_install_in_context(struct perf_event_context *ctx,
2458                         struct perf_event *event,
2459                         int cpu)
2460 {
2461         struct task_struct *task = READ_ONCE(ctx->task);
2462
2463         lockdep_assert_held(&ctx->mutex);
2464
2465         if (event->cpu != -1)
2466                 event->cpu = cpu;
2467
2468         /*
2469          * Ensures that if we can observe event->ctx, both the event and ctx
2470          * will be 'complete'. See perf_iterate_sb_cpu().
2471          */
2472         smp_store_release(&event->ctx, ctx);
2473
2474         if (!task) {
2475                 cpu_function_call(cpu, __perf_install_in_context, event);
2476                 return;
2477         }
2478
2479         /*
2480          * Should not happen, we validate the ctx is still alive before calling.
2481          */
2482         if (WARN_ON_ONCE(task == TASK_TOMBSTONE))
2483                 return;
2484
2485         /*
2486          * Installing events is tricky because we cannot rely on ctx->is_active
2487          * to be set in case this is the nr_events 0 -> 1 transition.
2488          *
2489          * Instead we use task_curr(), which tells us if the task is running.
2490          * However, since we use task_curr() outside of rq::lock, we can race
2491          * against the actual state. This means the result can be wrong.
2492          *
2493          * If we get a false positive, we retry, this is harmless.
2494          *
2495          * If we get a false negative, things are complicated. If we are after
2496          * perf_event_context_sched_in() ctx::lock will serialize us, and the
2497          * value must be correct. If we're before, it doesn't matter since
2498          * perf_event_context_sched_in() will program the counter.
2499          *
2500          * However, this hinges on the remote context switch having observed
2501          * our task->perf_event_ctxp[] store, such that it will in fact take
2502          * ctx::lock in perf_event_context_sched_in().
2503          *
2504          * We do this by task_function_call(), if the IPI fails to hit the task
2505          * we know any future context switch of task must see the
2506          * perf_event_ctpx[] store.
2507          */
2508
2509         /*
2510          * This smp_mb() orders the task->perf_event_ctxp[] store with the
2511          * task_cpu() load, such that if the IPI then does not find the task
2512          * running, a future context switch of that task must observe the
2513          * store.
2514          */
2515         smp_mb();
2516 again:
2517         if (!task_function_call(task, __perf_install_in_context, event))
2518                 return;
2519
2520         raw_spin_lock_irq(&ctx->lock);
2521         task = ctx->task;
2522         if (WARN_ON_ONCE(task == TASK_TOMBSTONE)) {
2523                 /*
2524                  * Cannot happen because we already checked above (which also
2525                  * cannot happen), and we hold ctx->mutex, which serializes us
2526                  * against perf_event_exit_task_context().
2527                  */
2528                 raw_spin_unlock_irq(&ctx->lock);
2529                 return;
2530         }
2531         /*
2532          * If the task is not running, ctx->lock will avoid it becoming so,
2533          * thus we can safely install the event.
2534          */
2535         if (task_curr(task)) {
2536                 raw_spin_unlock_irq(&ctx->lock);
2537                 goto again;
2538         }
2539         add_event_to_ctx(event, ctx);
2540         raw_spin_unlock_irq(&ctx->lock);
2541 }
2542
2543 /*
2544  * Put a event into inactive state and update time fields.
2545  * Enabling the leader of a group effectively enables all
2546  * the group members that aren't explicitly disabled, so we
2547  * have to update their ->tstamp_enabled also.
2548  * Note: this works for group members as well as group leaders
2549  * since the non-leader members' sibling_lists will be empty.
2550  */
2551 static void __perf_event_mark_enabled(struct perf_event *event)
2552 {
2553         struct perf_event *sub;
2554         u64 tstamp = perf_event_time(event);
2555
2556         event->state = PERF_EVENT_STATE_INACTIVE;
2557         __perf_event_enable_time(event, tstamp);
2558         list_for_each_entry(sub, &event->sibling_list, group_entry) {
2559                 /* XXX should not be > INACTIVE if event isn't */
2560                 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2561                         __perf_event_enable_time(sub, tstamp);
2562         }
2563 }
2564
2565 /*
2566  * Cross CPU call to enable a performance event
2567  */
2568 static void __perf_event_enable(struct perf_event *event,
2569                                 struct perf_cpu_context *cpuctx,
2570                                 struct perf_event_context *ctx,
2571                                 void *info)
2572 {
2573         struct perf_event *leader = event->group_leader;
2574         struct perf_event_context *task_ctx;
2575
2576         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2577             event->state <= PERF_EVENT_STATE_ERROR)
2578                 return;
2579
2580         if (ctx->is_active)
2581                 ctx_sched_out(ctx, cpuctx, EVENT_TIME);
2582
2583         __perf_event_mark_enabled(event);
2584
2585         if (!ctx->is_active)
2586                 return;
2587
2588         if (!event_filter_match(event)) {
2589                 if (is_cgroup_event(event))
2590                         perf_cgroup_defer_enabled(event);
2591                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2592                 return;
2593         }
2594
2595         /*
2596          * If the event is in a group and isn't the group leader,
2597          * then don't put it on unless the group is on.
2598          */
2599         if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE) {
2600                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
2601                 return;
2602         }
2603
2604         task_ctx = cpuctx->task_ctx;
2605         if (ctx->task)
2606                 WARN_ON_ONCE(task_ctx != ctx);
2607
2608         ctx_resched(cpuctx, task_ctx, get_event_type(event));
2609 }
2610
2611 /*
2612  * Enable a event.
2613  *
2614  * If event->ctx is a cloned context, callers must make sure that
2615  * every task struct that event->ctx->task could possibly point to
2616  * remains valid.  This condition is satisfied when called through
2617  * perf_event_for_each_child or perf_event_for_each as described
2618  * for perf_event_disable.
2619  */
2620 static void _perf_event_enable(struct perf_event *event)
2621 {
2622         struct perf_event_context *ctx = event->ctx;
2623
2624         raw_spin_lock_irq(&ctx->lock);
2625         if (event->state >= PERF_EVENT_STATE_INACTIVE ||
2626             event->state <  PERF_EVENT_STATE_ERROR) {
2627                 raw_spin_unlock_irq(&ctx->lock);
2628                 return;
2629         }
2630
2631         /*
2632          * If the event is in error state, clear that first.
2633          *
2634          * That way, if we see the event in error state below, we know that it
2635          * has gone back into error state, as distinct from the task having
2636          * been scheduled away before the cross-call arrived.
2637          */
2638         if (event->state == PERF_EVENT_STATE_ERROR)
2639                 event->state = PERF_EVENT_STATE_OFF;
2640         raw_spin_unlock_irq(&ctx->lock);
2641
2642         event_function_call(event, __perf_event_enable, NULL);
2643 }
2644
2645 /*
2646  * See perf_event_disable();
2647  */
2648 void perf_event_enable(struct perf_event *event)
2649 {
2650         struct perf_event_context *ctx;
2651
2652         ctx = perf_event_ctx_lock(event);
2653         _perf_event_enable(event);
2654         perf_event_ctx_unlock(event, ctx);
2655 }
2656 EXPORT_SYMBOL_GPL(perf_event_enable);
2657
2658 struct stop_event_data {
2659         struct perf_event       *event;
2660         unsigned int            restart;
2661 };
2662
2663 static int __perf_event_stop(void *info)
2664 {
2665         struct stop_event_data *sd = info;
2666         struct perf_event *event = sd->event;
2667
2668         /* if it's already INACTIVE, do nothing */
2669         if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2670                 return 0;
2671
2672         /* matches smp_wmb() in event_sched_in() */
2673         smp_rmb();
2674
2675         /*
2676          * There is a window with interrupts enabled before we get here,
2677          * so we need to check again lest we try to stop another CPU's event.
2678          */
2679         if (READ_ONCE(event->oncpu) != smp_processor_id())
2680                 return -EAGAIN;
2681
2682         event->pmu->stop(event, PERF_EF_UPDATE);
2683
2684         /*
2685          * May race with the actual stop (through perf_pmu_output_stop()),
2686          * but it is only used for events with AUX ring buffer, and such
2687          * events will refuse to restart because of rb::aux_mmap_count==0,
2688          * see comments in perf_aux_output_begin().
2689          *
2690          * Since this is happening on a event-local CPU, no trace is lost
2691          * while restarting.
2692          */
2693         if (sd->restart)
2694                 event->pmu->start(event, 0);
2695
2696         return 0;
2697 }
2698
2699 static int perf_event_stop(struct perf_event *event, int restart)
2700 {
2701         struct stop_event_data sd = {
2702                 .event          = event,
2703                 .restart        = restart,
2704         };
2705         int ret = 0;
2706
2707         do {
2708                 if (READ_ONCE(event->state) != PERF_EVENT_STATE_ACTIVE)
2709                         return 0;
2710
2711                 /* matches smp_wmb() in event_sched_in() */
2712                 smp_rmb();
2713
2714                 /*
2715                  * We only want to restart ACTIVE events, so if the event goes
2716                  * inactive here (event->oncpu==-1), there's nothing more to do;
2717                  * fall through with ret==-ENXIO.
2718                  */
2719                 ret = cpu_function_call(READ_ONCE(event->oncpu),
2720                                         __perf_event_stop, &sd);
2721         } while (ret == -EAGAIN);
2722
2723         return ret;
2724 }
2725
2726 /*
2727  * In order to contain the amount of racy and tricky in the address filter
2728  * configuration management, it is a two part process:
2729  *
2730  * (p1) when userspace mappings change as a result of (1) or (2) or (3) below,
2731  *      we update the addresses of corresponding vmas in
2732  *      event::addr_filters_offs array and bump the event::addr_filters_gen;
2733  * (p2) when an event is scheduled in (pmu::add), it calls
2734  *      perf_event_addr_filters_sync() which calls pmu::addr_filters_sync()
2735  *      if the generation has changed since the previous call.
2736  *
2737  * If (p1) happens while the event is active, we restart it to force (p2).
2738  *
2739  * (1) perf_addr_filters_apply(): adjusting filters' offsets based on
2740  *     pre-existing mappings, called once when new filters arrive via SET_FILTER
2741  *     ioctl;
2742  * (2) perf_addr_filters_adjust(): adjusting filters' offsets based on newly
2743  *     registered mapping, called for every new mmap(), with mm::mmap_sem down
2744  *     for reading;
2745  * (3) perf_event_addr_filters_exec(): clearing filters' offsets in the process
2746  *     of exec.
2747  */
2748 void perf_event_addr_filters_sync(struct perf_event *event)
2749 {
2750         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
2751
2752         if (!has_addr_filter(event))
2753                 return;
2754
2755         raw_spin_lock(&ifh->lock);
2756         if (event->addr_filters_gen != event->hw.addr_filters_gen) {
2757                 event->pmu->addr_filters_sync(event);
2758                 event->hw.addr_filters_gen = event->addr_filters_gen;
2759         }
2760         raw_spin_unlock(&ifh->lock);
2761 }
2762 EXPORT_SYMBOL_GPL(perf_event_addr_filters_sync);
2763
2764 static int _perf_event_refresh(struct perf_event *event, int refresh)
2765 {
2766         /*
2767          * not supported on inherited events
2768          */
2769         if (event->attr.inherit || !is_sampling_event(event))
2770                 return -EINVAL;
2771
2772         atomic_add(refresh, &event->event_limit);
2773         _perf_event_enable(event);
2774
2775         return 0;
2776 }
2777
2778 /*
2779  * See perf_event_disable()
2780  */
2781 int perf_event_refresh(struct perf_event *event, int refresh)
2782 {
2783         struct perf_event_context *ctx;
2784         int ret;
2785
2786         ctx = perf_event_ctx_lock(event);
2787         ret = _perf_event_refresh(event, refresh);
2788         perf_event_ctx_unlock(event, ctx);
2789
2790         return ret;
2791 }
2792 EXPORT_SYMBOL_GPL(perf_event_refresh);
2793
2794 static void ctx_sched_out(struct perf_event_context *ctx,
2795                           struct perf_cpu_context *cpuctx,
2796                           enum event_type_t event_type)
2797 {
2798         int is_active = ctx->is_active;
2799         struct perf_event *event;
2800
2801         lockdep_assert_held(&ctx->lock);
2802
2803         if (likely(!ctx->nr_events)) {
2804                 /*
2805                  * See __perf_remove_from_context().
2806                  */
2807                 WARN_ON_ONCE(ctx->is_active);
2808                 if (ctx->task)
2809                         WARN_ON_ONCE(cpuctx->task_ctx);
2810                 return;
2811         }
2812
2813         ctx->is_active &= ~event_type;
2814         if (!(ctx->is_active & EVENT_ALL))
2815                 ctx->is_active = 0;
2816
2817         if (ctx->task) {
2818                 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2819                 if (!ctx->is_active)
2820                         cpuctx->task_ctx = NULL;
2821         }
2822
2823         /*
2824          * Always update time if it was set; not only when it changes.
2825          * Otherwise we can 'forget' to update time for any but the last
2826          * context we sched out. For example:
2827          *
2828          *   ctx_sched_out(.event_type = EVENT_FLEXIBLE)
2829          *   ctx_sched_out(.event_type = EVENT_PINNED)
2830          *
2831          * would only update time for the pinned events.
2832          */
2833         if (is_active & EVENT_TIME) {
2834                 /* update (and stop) ctx time */
2835                 update_context_time(ctx);
2836                 update_cgrp_time_from_cpuctx(cpuctx);
2837         }
2838
2839         is_active ^= ctx->is_active; /* changed bits */
2840
2841         if (!ctx->nr_active || !(is_active & EVENT_ALL))
2842                 return;
2843
2844         perf_pmu_disable(ctx->pmu);
2845         if (is_active & EVENT_PINNED) {
2846                 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2847                         group_sched_out(event, cpuctx, ctx);
2848         }
2849
2850         if (is_active & EVENT_FLEXIBLE) {
2851                 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
2852                         group_sched_out(event, cpuctx, ctx);
2853         }
2854         perf_pmu_enable(ctx->pmu);
2855 }
2856
2857 /*
2858  * Test whether two contexts are equivalent, i.e. whether they have both been
2859  * cloned from the same version of the same context.
2860  *
2861  * Equivalence is measured using a generation number in the context that is
2862  * incremented on each modification to it; see unclone_ctx(), list_add_event()
2863  * and list_del_event().
2864  */
2865 static int context_equiv(struct perf_event_context *ctx1,
2866                          struct perf_event_context *ctx2)
2867 {
2868         lockdep_assert_held(&ctx1->lock);
2869         lockdep_assert_held(&ctx2->lock);
2870
2871         /* Pinning disables the swap optimization */
2872         if (ctx1->pin_count || ctx2->pin_count)
2873                 return 0;
2874
2875         /* If ctx1 is the parent of ctx2 */
2876         if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2877                 return 1;
2878
2879         /* If ctx2 is the parent of ctx1 */
2880         if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2881                 return 1;
2882
2883         /*
2884          * If ctx1 and ctx2 have the same parent; we flatten the parent
2885          * hierarchy, see perf_event_init_context().
2886          */
2887         if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2888                         ctx1->parent_gen == ctx2->parent_gen)
2889                 return 1;
2890
2891         /* Unmatched */
2892         return 0;
2893 }
2894
2895 static void __perf_event_sync_stat(struct perf_event *event,
2896                                      struct perf_event *next_event)
2897 {
2898         u64 value;
2899
2900         if (!event->attr.inherit_stat)
2901                 return;
2902
2903         /*
2904          * Update the event value, we cannot use perf_event_read()
2905          * because we're in the middle of a context switch and have IRQs
2906          * disabled, which upsets smp_call_function_single(), however
2907          * we know the event must be on the current CPU, therefore we
2908          * don't need to use it.
2909          */
2910         switch (event->state) {
2911         case PERF_EVENT_STATE_ACTIVE:
2912                 event->pmu->read(event);
2913                 /* fall-through */
2914
2915         case PERF_EVENT_STATE_INACTIVE:
2916                 update_event_times(event);
2917                 break;
2918
2919         default:
2920                 break;
2921         }
2922
2923         /*
2924          * In order to keep per-task stats reliable we need to flip the event
2925          * values when we flip the contexts.
2926          */
2927         value = local64_read(&next_event->count);
2928         value = local64_xchg(&event->count, value);
2929         local64_set(&next_event->count, value);
2930
2931         swap(event->total_time_enabled, next_event->total_time_enabled);
2932         swap(event->total_time_running, next_event->total_time_running);
2933
2934         /*
2935          * Since we swizzled the values, update the user visible data too.
2936          */
2937         perf_event_update_userpage(event);
2938         perf_event_update_userpage(next_event);
2939 }
2940
2941 static void perf_event_sync_stat(struct perf_event_context *ctx,
2942                                    struct perf_event_context *next_ctx)
2943 {
2944         struct perf_event *event, *next_event;
2945
2946         if (!ctx->nr_stat)
2947                 return;
2948
2949         update_context_time(ctx);
2950
2951         event = list_first_entry(&ctx->event_list,
2952                                    struct perf_event, event_entry);
2953
2954         next_event = list_first_entry(&next_ctx->event_list,
2955                                         struct perf_event, event_entry);
2956
2957         while (&event->event_entry != &ctx->event_list &&
2958                &next_event->event_entry != &next_ctx->event_list) {
2959
2960                 __perf_event_sync_stat(event, next_event);
2961
2962                 event = list_next_entry(event, event_entry);
2963                 next_event = list_next_entry(next_event, event_entry);
2964         }
2965 }
2966
2967 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2968                                          struct task_struct *next)
2969 {
2970         struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
2971         struct perf_event_context *next_ctx;
2972         struct perf_event_context *parent, *next_parent;
2973         struct perf_cpu_context *cpuctx;
2974         int do_switch = 1;
2975
2976         if (likely(!ctx))
2977                 return;
2978
2979         cpuctx = __get_cpu_context(ctx);
2980         if (!cpuctx->task_ctx)
2981                 return;
2982
2983         rcu_read_lock();
2984         next_ctx = next->perf_event_ctxp[ctxn];
2985         if (!next_ctx)
2986                 goto unlock;
2987
2988         parent = rcu_dereference(ctx->parent_ctx);
2989         next_parent = rcu_dereference(next_ctx->parent_ctx);
2990
2991         /* If neither context have a parent context; they cannot be clones. */
2992         if (!parent && !next_parent)
2993                 goto unlock;
2994
2995         if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
2996                 /*
2997                  * Looks like the two contexts are clones, so we might be
2998                  * able to optimize the context switch.  We lock both
2999                  * contexts and check that they are clones under the
3000                  * lock (including re-checking that neither has been
3001                  * uncloned in the meantime).  It doesn't matter which
3002                  * order we take the locks because no other cpu could
3003                  * be trying to lock both of these tasks.
3004                  */
3005                 raw_spin_lock(&ctx->lock);
3006                 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
3007                 if (context_equiv(ctx, next_ctx)) {
3008                         WRITE_ONCE(ctx->task, next);
3009                         WRITE_ONCE(next_ctx->task, task);
3010
3011                         swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
3012
3013                         /*
3014                          * RCU_INIT_POINTER here is safe because we've not
3015                          * modified the ctx and the above modification of
3016                          * ctx->task and ctx->task_ctx_data are immaterial
3017                          * since those values are always verified under
3018                          * ctx->lock which we're now holding.
3019                          */
3020                         RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
3021                         RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
3022
3023                         do_switch = 0;
3024
3025                         perf_event_sync_stat(ctx, next_ctx);
3026                 }
3027                 raw_spin_unlock(&next_ctx->lock);
3028                 raw_spin_unlock(&ctx->lock);
3029         }
3030 unlock:
3031         rcu_read_unlock();
3032
3033         if (do_switch) {
3034                 raw_spin_lock(&ctx->lock);
3035                 task_ctx_sched_out(cpuctx, ctx, EVENT_ALL);
3036                 raw_spin_unlock(&ctx->lock);
3037         }
3038 }
3039
3040 static DEFINE_PER_CPU(struct list_head, sched_cb_list);
3041
3042 void perf_sched_cb_dec(struct pmu *pmu)
3043 {
3044         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3045
3046         this_cpu_dec(perf_sched_cb_usages);
3047
3048         if (!--cpuctx->sched_cb_usage)
3049                 list_del(&cpuctx->sched_cb_entry);
3050 }
3051
3052
3053 void perf_sched_cb_inc(struct pmu *pmu)
3054 {
3055         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
3056
3057         if (!cpuctx->sched_cb_usage++)
3058                 list_add(&cpuctx->sched_cb_entry, this_cpu_ptr(&sched_cb_list));
3059
3060         this_cpu_inc(perf_sched_cb_usages);
3061 }
3062
3063 /*
3064  * This function provides the context switch callback to the lower code
3065  * layer. It is invoked ONLY when the context switch callback is enabled.
3066  *
3067  * This callback is relevant even to per-cpu events; for example multi event
3068  * PEBS requires this to provide PID/TID information. This requires we flush
3069  * all queued PEBS records before we context switch to a new task.
3070  */
3071 static void perf_pmu_sched_task(struct task_struct *prev,
3072                                 struct task_struct *next,
3073                                 bool sched_in)
3074 {
3075         struct perf_cpu_context *cpuctx;
3076         struct pmu *pmu;
3077
3078         if (prev == next)
3079                 return;
3080
3081         list_for_each_entry(cpuctx, this_cpu_ptr(&sched_cb_list), sched_cb_entry) {
3082                 pmu = cpuctx->ctx.pmu; /* software PMUs will not have sched_task */
3083
3084                 if (WARN_ON_ONCE(!pmu->sched_task))
3085                         continue;
3086
3087                 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3088                 perf_pmu_disable(pmu);
3089
3090                 pmu->sched_task(cpuctx->task_ctx, sched_in);
3091
3092                 perf_pmu_enable(pmu);
3093                 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3094         }
3095 }
3096
3097 static void perf_event_switch(struct task_struct *task,
3098                               struct task_struct *next_prev, bool sched_in);
3099
3100 #define for_each_task_context_nr(ctxn)                                  \
3101         for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
3102
3103 /*
3104  * Called from scheduler to remove the events of the current task,
3105  * with interrupts disabled.
3106  *
3107  * We stop each event and update the event value in event->count.
3108  *
3109  * This does not protect us against NMI, but disable()
3110  * sets the disabled bit in the control field of event _before_
3111  * accessing the event control register. If a NMI hits, then it will
3112  * not restart the event.
3113  */
3114 void __perf_event_task_sched_out(struct task_struct *task,
3115                                  struct task_struct *next)
3116 {
3117         int ctxn;
3118
3119         if (__this_cpu_read(perf_sched_cb_usages))
3120                 perf_pmu_sched_task(task, next, false);
3121
3122         if (atomic_read(&nr_switch_events))
3123                 perf_event_switch(task, next, false);
3124
3125         for_each_task_context_nr(ctxn)
3126                 perf_event_context_sched_out(task, ctxn, next);
3127
3128         /*
3129          * if cgroup events exist on this CPU, then we need
3130          * to check if we have to switch out PMU state.
3131          * cgroup event are system-wide mode only
3132          */
3133         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3134                 perf_cgroup_sched_out(task, next);
3135 }
3136
3137 /*
3138  * Called with IRQs disabled
3139  */
3140 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
3141                               enum event_type_t event_type)
3142 {
3143         ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
3144 }
3145
3146 static void
3147 ctx_pinned_sched_in(struct perf_event_context *ctx,
3148                     struct perf_cpu_context *cpuctx)
3149 {
3150         struct perf_event *event;
3151
3152         list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
3153                 if (event->state <= PERF_EVENT_STATE_OFF)
3154                         continue;
3155                 if (!event_filter_match(event))
3156                         continue;
3157
3158                 /* may need to reset tstamp_enabled */
3159                 if (is_cgroup_event(event))
3160                         perf_cgroup_mark_enabled(event, ctx);
3161
3162                 if (group_can_go_on(event, cpuctx, 1))
3163                         group_sched_in(event, cpuctx, ctx);
3164
3165                 /*
3166                  * If this pinned group hasn't been scheduled,
3167                  * put it in error state.
3168                  */
3169                 if (event->state == PERF_EVENT_STATE_INACTIVE) {
3170                         update_group_times(event);
3171                         event->state = PERF_EVENT_STATE_ERROR;
3172                 }
3173         }
3174 }
3175
3176 static void
3177 ctx_flexible_sched_in(struct perf_event_context *ctx,
3178                       struct perf_cpu_context *cpuctx)
3179 {
3180         struct perf_event *event;
3181         int can_add_hw = 1;
3182
3183         list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
3184                 /* Ignore events in OFF or ERROR state */
3185                 if (event->state <= PERF_EVENT_STATE_OFF)
3186                         continue;
3187                 /*
3188                  * Listen to the 'cpu' scheduling filter constraint
3189                  * of events:
3190                  */
3191                 if (!event_filter_match(event))
3192                         continue;
3193
3194                 /* may need to reset tstamp_enabled */
3195                 if (is_cgroup_event(event))
3196                         perf_cgroup_mark_enabled(event, ctx);
3197
3198                 if (group_can_go_on(event, cpuctx, can_add_hw)) {
3199                         if (group_sched_in(event, cpuctx, ctx))
3200                                 can_add_hw = 0;
3201                 }
3202         }
3203 }
3204
3205 static void
3206 ctx_sched_in(struct perf_event_context *ctx,
3207              struct perf_cpu_context *cpuctx,
3208              enum event_type_t event_type,
3209              struct task_struct *task)
3210 {
3211         int is_active = ctx->is_active;
3212         u64 now;
3213
3214         lockdep_assert_held(&ctx->lock);
3215
3216         if (likely(!ctx->nr_events))
3217                 return;
3218
3219         ctx->is_active |= (event_type | EVENT_TIME);
3220         if (ctx->task) {
3221                 if (!is_active)
3222                         cpuctx->task_ctx = ctx;
3223                 else
3224                         WARN_ON_ONCE(cpuctx->task_ctx != ctx);
3225         }
3226
3227         is_active ^= ctx->is_active; /* changed bits */
3228
3229         if (is_active & EVENT_TIME) {
3230                 /* start ctx time */
3231                 now = perf_clock();
3232                 ctx->timestamp = now;
3233                 perf_cgroup_set_timestamp(task, ctx);
3234         }
3235
3236         /*
3237          * First go through the list and put on any pinned groups
3238          * in order to give them the best chance of going on.
3239          */
3240         if (is_active & EVENT_PINNED)
3241                 ctx_pinned_sched_in(ctx, cpuctx);
3242
3243         /* Then walk through the lower prio flexible groups */
3244         if (is_active & EVENT_FLEXIBLE)
3245                 ctx_flexible_sched_in(ctx, cpuctx);
3246 }
3247
3248 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
3249                              enum event_type_t event_type,
3250                              struct task_struct *task)
3251 {
3252         struct perf_event_context *ctx = &cpuctx->ctx;
3253
3254         ctx_sched_in(ctx, cpuctx, event_type, task);
3255 }
3256
3257 static void perf_event_context_sched_in(struct perf_event_context *ctx,
3258                                         struct task_struct *task)
3259 {
3260         struct perf_cpu_context *cpuctx;
3261
3262         cpuctx = __get_cpu_context(ctx);
3263         if (cpuctx->task_ctx == ctx)
3264                 return;
3265
3266         perf_ctx_lock(cpuctx, ctx);
3267         /*
3268          * We must check ctx->nr_events while holding ctx->lock, such
3269          * that we serialize against perf_install_in_context().
3270          */
3271         if (!ctx->nr_events)
3272                 goto unlock;
3273
3274         perf_pmu_disable(ctx->pmu);
3275         /*
3276          * We want to keep the following priority order:
3277          * cpu pinned (that don't need to move), task pinned,
3278          * cpu flexible, task flexible.
3279          *
3280          * However, if task's ctx is not carrying any pinned
3281          * events, no need to flip the cpuctx's events around.
3282          */
3283         if (!list_empty(&ctx->pinned_groups))
3284                 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3285         perf_event_sched_in(cpuctx, ctx, task);
3286         perf_pmu_enable(ctx->pmu);
3287
3288 unlock:
3289         perf_ctx_unlock(cpuctx, ctx);
3290 }
3291
3292 /*
3293  * Called from scheduler to add the events of the current task
3294  * with interrupts disabled.
3295  *
3296  * We restore the event value and then enable it.
3297  *
3298  * This does not protect us against NMI, but enable()
3299  * sets the enabled bit in the control field of event _before_
3300  * accessing the event control register. If a NMI hits, then it will
3301  * keep the event running.
3302  */
3303 void __perf_event_task_sched_in(struct task_struct *prev,
3304                                 struct task_struct *task)
3305 {
3306         struct perf_event_context *ctx;
3307         int ctxn;
3308
3309         /*
3310          * If cgroup events exist on this CPU, then we need to check if we have
3311          * to switch in PMU state; cgroup event are system-wide mode only.
3312          *
3313          * Since cgroup events are CPU events, we must schedule these in before
3314          * we schedule in the task events.
3315          */
3316         if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
3317                 perf_cgroup_sched_in(prev, task);
3318
3319         for_each_task_context_nr(ctxn) {
3320                 ctx = task->perf_event_ctxp[ctxn];
3321                 if (likely(!ctx))
3322                         continue;
3323
3324                 perf_event_context_sched_in(ctx, task);
3325         }
3326
3327         if (atomic_read(&nr_switch_events))
3328                 perf_event_switch(task, prev, true);
3329
3330         if (__this_cpu_read(perf_sched_cb_usages))
3331                 perf_pmu_sched_task(prev, task, true);
3332 }
3333
3334 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
3335 {
3336         u64 frequency = event->attr.sample_freq;
3337         u64 sec = NSEC_PER_SEC;
3338         u64 divisor, dividend;
3339
3340         int count_fls, nsec_fls, frequency_fls, sec_fls;
3341
3342         count_fls = fls64(count);
3343         nsec_fls = fls64(nsec);
3344         frequency_fls = fls64(frequency);
3345         sec_fls = 30;
3346
3347         /*
3348          * We got @count in @nsec, with a target of sample_freq HZ
3349          * the target period becomes:
3350          *
3351          *             @count * 10^9
3352          * period = -------------------
3353          *          @nsec * sample_freq
3354          *
3355          */
3356
3357         /*
3358          * Reduce accuracy by one bit such that @a and @b converge
3359          * to a similar magnitude.
3360          */
3361 #define REDUCE_FLS(a, b)                \
3362 do {                                    \
3363         if (a##_fls > b##_fls) {        \
3364                 a >>= 1;                \
3365                 a##_fls--;              \
3366         } else {                        \
3367                 b >>= 1;                \
3368                 b##_fls--;              \
3369         }                               \
3370 } while (0)
3371
3372         /*
3373          * Reduce accuracy until either term fits in a u64, then proceed with
3374          * the other, so that finally we can do a u64/u64 division.
3375          */
3376         while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
3377                 REDUCE_FLS(nsec, frequency);
3378                 REDUCE_FLS(sec, count);
3379         }
3380
3381         if (count_fls + sec_fls > 64) {
3382                 divisor = nsec * frequency;
3383
3384                 while (count_fls + sec_fls > 64) {
3385                         REDUCE_FLS(count, sec);
3386                         divisor >>= 1;
3387                 }
3388
3389                 dividend = count * sec;
3390         } else {
3391                 dividend = count * sec;
3392
3393                 while (nsec_fls + frequency_fls > 64) {
3394                         REDUCE_FLS(nsec, frequency);
3395                         dividend >>= 1;
3396                 }
3397
3398                 divisor = nsec * frequency;
3399         }
3400
3401         if (!divisor)
3402                 return dividend;
3403
3404         return div64_u64(dividend, divisor);
3405 }
3406
3407 static DEFINE_PER_CPU(int, perf_throttled_count);
3408 static DEFINE_PER_CPU(u64, perf_throttled_seq);
3409
3410 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
3411 {
3412         struct hw_perf_event *hwc = &event->hw;
3413         s64 period, sample_period;
3414         s64 delta;
3415
3416         period = perf_calculate_period(event, nsec, count);
3417
3418         delta = (s64)(period - hwc->sample_period);
3419         delta = (delta + 7) / 8; /* low pass filter */
3420
3421         sample_period = hwc->sample_period + delta;
3422
3423         if (!sample_period)
3424                 sample_period = 1;
3425
3426         hwc->sample_period = sample_period;
3427
3428         if (local64_read(&hwc->period_left) > 8*sample_period) {
3429                 if (disable)
3430                         event->pmu->stop(event, PERF_EF_UPDATE);
3431
3432                 local64_set(&hwc->period_left, 0);
3433
3434                 if (disable)
3435                         event->pmu->start(event, PERF_EF_RELOAD);
3436         }
3437 }
3438
3439 /*
3440  * combine freq adjustment with unthrottling to avoid two passes over the
3441  * events. At the same time, make sure, having freq events does not change
3442  * the rate of unthrottling as that would introduce bias.
3443  */
3444 static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
3445                                            int needs_unthr)
3446 {
3447         struct perf_event *event;
3448         struct hw_perf_event *hwc;
3449         u64 now, period = TICK_NSEC;
3450         s64 delta;
3451
3452         /*
3453          * only need to iterate over all events iff:
3454          * - context have events in frequency mode (needs freq adjust)
3455          * - there are events to unthrottle on this cpu
3456          */
3457         if (!(ctx->nr_freq || needs_unthr))
3458                 return;
3459
3460         raw_spin_lock(&ctx->lock);
3461         perf_pmu_disable(ctx->pmu);
3462
3463         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3464                 if (event->state != PERF_EVENT_STATE_ACTIVE)
3465                         continue;
3466
3467                 if (!event_filter_match(event))
3468                         continue;
3469
3470                 perf_pmu_disable(event->pmu);
3471
3472                 hwc = &event->hw;
3473
3474                 if (hwc->interrupts == MAX_INTERRUPTS) {
3475                         hwc->interrupts = 0;
3476                         perf_log_throttle(event, 1);
3477                         event->pmu->start(event, 0);
3478                 }
3479
3480                 if (!event->attr.freq || !event->attr.sample_freq)
3481                         goto next;
3482
3483                 /*
3484                  * stop the event and update event->count
3485                  */
3486                 event->pmu->stop(event, PERF_EF_UPDATE);
3487
3488                 now = local64_read(&event->count);
3489                 delta = now - hwc->freq_count_stamp;
3490                 hwc->freq_count_stamp = now;
3491
3492                 /*
3493                  * restart the event
3494                  * reload only if value has changed
3495                  * we have stopped the event so tell that
3496                  * to perf_adjust_period() to avoid stopping it
3497                  * twice.
3498                  */
3499                 if (delta > 0)
3500                         perf_adjust_period(event, period, delta, false);
3501
3502                 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
3503         next:
3504                 perf_pmu_enable(event->pmu);
3505         }
3506
3507         perf_pmu_enable(ctx->pmu);
3508         raw_spin_unlock(&ctx->lock);
3509 }
3510
3511 /*
3512  * Round-robin a context's events:
3513  */
3514 static void rotate_ctx(struct perf_event_context *ctx)
3515 {
3516         /*
3517          * Rotate the first entry last of non-pinned groups. Rotation might be
3518          * disabled by the inheritance code.
3519          */
3520         if (!ctx->rotate_disable)
3521                 list_rotate_left(&ctx->flexible_groups);
3522 }
3523
3524 static int perf_rotate_context(struct perf_cpu_context *cpuctx)
3525 {
3526         struct perf_event_context *ctx = NULL;
3527         int rotate = 0;
3528
3529         if (cpuctx->ctx.nr_events) {
3530                 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3531                         rotate = 1;
3532         }
3533
3534         ctx = cpuctx->task_ctx;
3535         if (ctx && ctx->nr_events) {
3536                 if (ctx->nr_events != ctx->nr_active)
3537                         rotate = 1;
3538         }
3539
3540         if (!rotate)
3541                 goto done;
3542
3543         perf_ctx_lock(cpuctx, cpuctx->task_ctx);
3544         perf_pmu_disable(cpuctx->ctx.pmu);
3545
3546         cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3547         if (ctx)
3548                 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
3549
3550         rotate_ctx(&cpuctx->ctx);
3551         if (ctx)
3552                 rotate_ctx(ctx);
3553
3554         perf_event_sched_in(cpuctx, ctx, current);
3555
3556         perf_pmu_enable(cpuctx->ctx.pmu);
3557         perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
3558 done:
3559
3560         return rotate;
3561 }
3562
3563 void perf_event_task_tick(void)
3564 {
3565         struct list_head *head = this_cpu_ptr(&active_ctx_list);
3566         struct perf_event_context *ctx, *tmp;
3567         int throttled;
3568
3569         WARN_ON(!irqs_disabled());
3570
3571         __this_cpu_inc(perf_throttled_seq);
3572         throttled = __this_cpu_xchg(perf_throttled_count, 0);
3573         tick_dep_clear_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
3574
3575         list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
3576                 perf_adjust_freq_unthr_context(ctx, throttled);
3577 }
3578
3579 static int event_enable_on_exec(struct perf_event *event,
3580                                 struct perf_event_context *ctx)
3581 {
3582         if (!event->attr.enable_on_exec)
3583                 return 0;
3584
3585         event->attr.enable_on_exec = 0;
3586         if (event->state >= PERF_EVENT_STATE_INACTIVE)
3587                 return 0;
3588
3589         __perf_event_mark_enabled(event);
3590
3591         return 1;
3592 }
3593
3594 /*
3595  * Enable all of a task's events that have been marked enable-on-exec.
3596  * This expects task == current.
3597  */
3598 static void perf_event_enable_on_exec(int ctxn)
3599 {
3600         struct perf_event_context *ctx, *clone_ctx = NULL;
3601         enum event_type_t event_type = 0;
3602         struct perf_cpu_context *cpuctx;
3603         struct perf_event *event;
3604         unsigned long flags;
3605         int enabled = 0;
3606
3607         local_irq_save(flags);
3608         ctx = current->perf_event_ctxp[ctxn];
3609         if (!ctx || !ctx->nr_events)
3610                 goto out;
3611
3612         cpuctx = __get_cpu_context(ctx);
3613         perf_ctx_lock(cpuctx, ctx);
3614         ctx_sched_out(ctx, cpuctx, EVENT_TIME);
3615         list_for_each_entry(event, &ctx->event_list, event_entry) {
3616                 enabled |= event_enable_on_exec(event, ctx);
3617                 event_type |= get_event_type(event);
3618         }
3619
3620         /*
3621          * Unclone and reschedule this context if we enabled any event.
3622          */
3623         if (enabled) {
3624                 clone_ctx = unclone_ctx(ctx);
3625                 ctx_resched(cpuctx, ctx, event_type);
3626         } else {
3627                 ctx_sched_in(ctx, cpuctx, EVENT_TIME, current);
3628         }
3629         perf_ctx_unlock(cpuctx, ctx);
3630
3631 out:
3632         local_irq_restore(flags);
3633
3634         if (clone_ctx)
3635                 put_ctx(clone_ctx);
3636 }
3637
3638 struct perf_read_data {
3639         struct perf_event *event;
3640         bool group;
3641         int ret;
3642 };
3643
3644 static int __perf_event_read_cpu(struct perf_event *event, int event_cpu)
3645 {
3646         u16 local_pkg, event_pkg;
3647
3648         if (event->group_caps & PERF_EV_CAP_READ_ACTIVE_PKG) {
3649                 int local_cpu = smp_processor_id();
3650
3651                 event_pkg = topology_physical_package_id(event_cpu);
3652                 local_pkg = topology_physical_package_id(local_cpu);
3653
3654                 if (event_pkg == local_pkg)
3655                         return local_cpu;
3656         }
3657
3658         return event_cpu;
3659 }
3660
3661 /*
3662  * Cross CPU call to read the hardware event
3663  */
3664 static void __perf_event_read(void *info)
3665 {
3666         struct perf_read_data *data = info;
3667         struct perf_event *sub, *event = data->event;
3668         struct perf_event_context *ctx = event->ctx;
3669         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
3670         struct pmu *pmu = event->pmu;
3671
3672         /*
3673          * If this is a task context, we need to check whether it is
3674          * the current task context of this cpu.  If not it has been
3675          * scheduled out before the smp call arrived.  In that case
3676          * event->count would have been updated to a recent sample
3677          * when the event was scheduled out.
3678          */
3679         if (ctx->task && cpuctx->task_ctx != ctx)
3680                 return;
3681
3682         raw_spin_lock(&ctx->lock);
3683         if (ctx->is_active) {
3684                 update_context_time(ctx);
3685                 update_cgrp_time_from_event(event);
3686         }
3687
3688         update_event_times(event);
3689         if (event->state != PERF_EVENT_STATE_ACTIVE)
3690                 goto unlock;
3691
3692         if (!data->group) {
3693                 pmu->read(event);
3694                 data->ret = 0;
3695                 goto unlock;
3696         }
3697
3698         pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3699
3700         pmu->read(event);
3701
3702         list_for_each_entry(sub, &event->sibling_list, group_entry) {
3703                 update_event_times(sub);
3704                 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3705                         /*
3706                          * Use sibling's PMU rather than @event's since
3707                          * sibling could be on different (eg: software) PMU.
3708                          */
3709                         sub->pmu->read(sub);
3710                 }
3711         }
3712
3713         data->ret = pmu->commit_txn(pmu);
3714
3715 unlock:
3716         raw_spin_unlock(&ctx->lock);
3717 }
3718
3719 static inline u64 perf_event_count(struct perf_event *event)
3720 {
3721         return local64_read(&event->count) + atomic64_read(&event->child_count);
3722 }
3723
3724 /*
3725  * NMI-safe method to read a local event, that is an event that
3726  * is:
3727  *   - either for the current task, or for this CPU
3728  *   - does not have inherit set, for inherited task events
3729  *     will not be local and we cannot read them atomically
3730  *   - must not have a pmu::count method
3731  */
3732 int perf_event_read_local(struct perf_event *event, u64 *value)
3733 {
3734         unsigned long flags;
3735         int ret = 0;
3736
3737         /*
3738          * Disabling interrupts avoids all counter scheduling (context
3739          * switches, timer based rotation and IPIs).
3740          */
3741         local_irq_save(flags);
3742
3743         /*
3744          * It must not be an event with inherit set, we cannot read
3745          * all child counters from atomic context.
3746          */
3747         if (event->attr.inherit) {
3748                 ret = -EOPNOTSUPP;
3749                 goto out;
3750         }
3751
3752         /* If this is a per-task event, it must be for current */
3753         if ((event->attach_state & PERF_ATTACH_TASK) &&
3754             event->hw.target != current) {
3755                 ret = -EINVAL;
3756                 goto out;
3757         }
3758
3759         /* If this is a per-CPU event, it must be for this CPU */
3760         if (!(event->attach_state & PERF_ATTACH_TASK) &&
3761             event->cpu != smp_processor_id()) {
3762                 ret = -EINVAL;
3763                 goto out;
3764         }
3765
3766         /* If this is a pinned event it must be running on this CPU */
3767         if (event->attr.pinned && event->oncpu != smp_processor_id()) {
3768                 ret = -EBUSY;
3769                 goto out;
3770         }
3771
3772         /*
3773          * If the event is currently on this CPU, its either a per-task event,
3774          * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3775          * oncpu == -1).
3776          */
3777         if (event->oncpu == smp_processor_id())
3778                 event->pmu->read(event);
3779
3780         *value = local64_read(&event->count);
3781 out:
3782         local_irq_restore(flags);
3783
3784         return ret;
3785 }
3786
3787 static int perf_event_read(struct perf_event *event, bool group)
3788 {
3789         int event_cpu, ret = 0;
3790
3791         /*
3792          * If event is enabled and currently active on a CPU, update the
3793          * value in the event structure:
3794          */
3795         if (event->state == PERF_EVENT_STATE_ACTIVE) {
3796                 struct perf_read_data data = {
3797                         .event = event,
3798                         .group = group,
3799                         .ret = 0,
3800                 };
3801
3802                 event_cpu = READ_ONCE(event->oncpu);
3803                 if ((unsigned)event_cpu >= nr_cpu_ids)
3804                         return 0;
3805
3806                 preempt_disable();
3807                 event_cpu = __perf_event_read_cpu(event, event_cpu);
3808
3809                 /*
3810                  * Purposely ignore the smp_call_function_single() return
3811                  * value.
3812                  *
3813                  * If event_cpu isn't a valid CPU it means the event got
3814                  * scheduled out and that will have updated the event count.
3815                  *
3816                  * Therefore, either way, we'll have an up-to-date event count
3817                  * after this.
3818                  */
3819                 (void)smp_call_function_single(event_cpu, __perf_event_read, &data, 1);
3820                 preempt_enable();
3821                 ret = data.ret;
3822         } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
3823                 struct perf_event_context *ctx = event->ctx;
3824                 unsigned long flags;
3825
3826                 raw_spin_lock_irqsave(&ctx->lock, flags);
3827                 /*
3828                  * may read while context is not active
3829                  * (e.g., thread is blocked), in that case
3830                  * we cannot update context time
3831                  */
3832                 if (ctx->is_active) {
3833                         update_context_time(ctx);
3834                         update_cgrp_time_from_event(event);
3835                 }
3836                 if (group)
3837                         update_group_times(event);
3838                 else
3839                         update_event_times(event);
3840                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3841         }
3842
3843         return ret;
3844 }
3845
3846 /*
3847  * Initialize the perf_event context in a task_struct:
3848  */
3849 static void __perf_event_init_context(struct perf_event_context *ctx)
3850 {
3851         raw_spin_lock_init(&ctx->lock);
3852         mutex_init(&ctx->mutex);
3853         INIT_LIST_HEAD(&ctx->active_ctx_list);
3854         INIT_LIST_HEAD(&ctx->pinned_groups);
3855         INIT_LIST_HEAD(&ctx->flexible_groups);
3856         INIT_LIST_HEAD(&ctx->event_list);
3857         atomic_set(&ctx->refcount, 1);
3858 }
3859
3860 static struct perf_event_context *
3861 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3862 {
3863         struct perf_event_context *ctx;
3864
3865         ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3866         if (!ctx)
3867                 return NULL;
3868
3869         __perf_event_init_context(ctx);
3870         if (task) {
3871                 ctx->task = task;
3872                 get_task_struct(task);
3873         }
3874         ctx->pmu = pmu;
3875
3876         return ctx;
3877 }
3878
3879 static struct task_struct *
3880 find_lively_task_by_vpid(pid_t vpid)
3881 {
3882         struct task_struct *task;
3883
3884         rcu_read_lock();
3885         if (!vpid)
3886                 task = current;
3887         else
3888                 task = find_task_by_vpid(vpid);
3889         if (task)
3890                 get_task_struct(task);
3891         rcu_read_unlock();
3892
3893         if (!task)
3894                 return ERR_PTR(-ESRCH);
3895
3896         return task;
3897 }
3898
3899 /*
3900  * Returns a matching context with refcount and pincount.
3901  */
3902 static struct perf_event_context *
3903 find_get_context(struct pmu *pmu, struct task_struct *task,
3904                 struct perf_event *event)
3905 {
3906         struct perf_event_context *ctx, *clone_ctx = NULL;
3907         struct perf_cpu_context *cpuctx;
3908         void *task_ctx_data = NULL;
3909         unsigned long flags;
3910         int ctxn, err;
3911         int cpu = event->cpu;
3912
3913         if (!task) {
3914                 /* Must be root to operate on a CPU event: */
3915                 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
3916                         return ERR_PTR(-EACCES);
3917
3918                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
3919                 ctx = &cpuctx->ctx;
3920                 get_ctx(ctx);
3921                 raw_spin_lock_irqsave(&ctx->lock, flags);
3922                 ++ctx->pin_count;
3923                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3924
3925                 return ctx;
3926         }
3927
3928         err = -EINVAL;
3929         ctxn = pmu->task_ctx_nr;
3930         if (ctxn < 0)
3931                 goto errout;
3932
3933         if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3934                 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3935                 if (!task_ctx_data) {
3936                         err = -ENOMEM;
3937                         goto errout;
3938                 }
3939         }
3940
3941 retry:
3942         ctx = perf_lock_task_context(task, ctxn, &flags);
3943         if (ctx) {
3944                 clone_ctx = unclone_ctx(ctx);
3945                 ++ctx->pin_count;
3946
3947                 if (task_ctx_data && !ctx->task_ctx_data) {
3948                         ctx->task_ctx_data = task_ctx_data;
3949                         task_ctx_data = NULL;
3950                 }
3951                 raw_spin_unlock_irqrestore(&ctx->lock, flags);
3952
3953                 if (clone_ctx)
3954                         put_ctx(clone_ctx);
3955         } else {
3956                 ctx = alloc_perf_context(pmu, task);
3957                 err = -ENOMEM;
3958                 if (!ctx)
3959                         goto errout;
3960
3961                 if (task_ctx_data) {
3962                         ctx->task_ctx_data = task_ctx_data;
3963                         task_ctx_data = NULL;
3964                 }
3965
3966                 err = 0;
3967                 mutex_lock(&task->perf_event_mutex);
3968                 /*
3969                  * If it has already passed perf_event_exit_task().
3970                  * we must see PF_EXITING, it takes this mutex too.
3971                  */
3972                 if (task->flags & PF_EXITING)
3973                         err = -ESRCH;
3974                 else if (task->perf_event_ctxp[ctxn])
3975                         err = -EAGAIN;
3976                 else {
3977                         get_ctx(ctx);
3978                         ++ctx->pin_count;
3979                         rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
3980                 }
3981                 mutex_unlock(&task->perf_event_mutex);
3982
3983                 if (unlikely(err)) {
3984                         put_ctx(ctx);
3985
3986                         if (err == -EAGAIN)
3987                                 goto retry;
3988                         goto errout;
3989                 }
3990         }
3991
3992         kfree(task_ctx_data);
3993         return ctx;
3994
3995 errout:
3996         kfree(task_ctx_data);
3997         return ERR_PTR(err);
3998 }
3999
4000 static void perf_event_free_filter(struct perf_event *event);
4001 static void perf_event_free_bpf_prog(struct perf_event *event);
4002
4003 static void free_event_rcu(struct rcu_head *head)
4004 {
4005         struct perf_event *event;
4006
4007         event = container_of(head, struct perf_event, rcu_head);
4008         if (event->ns)
4009                 put_pid_ns(event->ns);
4010         perf_event_free_filter(event);
4011         kfree(event);
4012 }
4013
4014 static void ring_buffer_attach(struct perf_event *event,
4015                                struct ring_buffer *rb);
4016
4017 static void detach_sb_event(struct perf_event *event)
4018 {
4019         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
4020
4021         raw_spin_lock(&pel->lock);
4022         list_del_rcu(&event->sb_list);
4023         raw_spin_unlock(&pel->lock);
4024 }
4025
4026 static bool is_sb_event(struct perf_event *event)
4027 {
4028         struct perf_event_attr *attr = &event->attr;
4029
4030         if (event->parent)
4031                 return false;
4032
4033         if (event->attach_state & PERF_ATTACH_TASK)
4034                 return false;
4035
4036         if (attr->mmap || attr->mmap_data || attr->mmap2 ||
4037             attr->comm || attr->comm_exec ||
4038             attr->task ||
4039             attr->context_switch)
4040                 return true;
4041         return false;
4042 }
4043
4044 static void unaccount_pmu_sb_event(struct perf_event *event)
4045 {
4046         if (is_sb_event(event))
4047                 detach_sb_event(event);
4048 }
4049
4050 static void unaccount_event_cpu(struct perf_event *event, int cpu)
4051 {
4052         if (event->parent)
4053                 return;
4054
4055         if (is_cgroup_event(event))
4056                 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
4057 }
4058
4059 #ifdef CONFIG_NO_HZ_FULL
4060 static DEFINE_SPINLOCK(nr_freq_lock);
4061 #endif
4062
4063 static void unaccount_freq_event_nohz(void)
4064 {
4065 #ifdef CONFIG_NO_HZ_FULL
4066         spin_lock(&nr_freq_lock);
4067         if (atomic_dec_and_test(&nr_freq_events))
4068                 tick_nohz_dep_clear(TICK_DEP_BIT_PERF_EVENTS);
4069         spin_unlock(&nr_freq_lock);
4070 #endif
4071 }
4072
4073 static void unaccount_freq_event(void)
4074 {
4075         if (tick_nohz_full_enabled())
4076                 unaccount_freq_event_nohz();
4077         else
4078                 atomic_dec(&nr_freq_events);
4079 }
4080
4081 static void unaccount_event(struct perf_event *event)
4082 {
4083         bool dec = false;
4084
4085         if (event->parent)
4086                 return;
4087
4088         if (event->attach_state & PERF_ATTACH_TASK)
4089                 dec = true;
4090         if (event->attr.mmap || event->attr.mmap_data)
4091                 atomic_dec(&nr_mmap_events);
4092         if (event->attr.comm)
4093                 atomic_dec(&nr_comm_events);
4094         if (event->attr.namespaces)
4095                 atomic_dec(&nr_namespaces_events);
4096         if (event->attr.task)
4097                 atomic_dec(&nr_task_events);
4098         if (event->attr.freq)
4099                 unaccount_freq_event();
4100         if (event->attr.context_switch) {
4101                 dec = true;
4102                 atomic_dec(&nr_switch_events);
4103         }
4104         if (is_cgroup_event(event))
4105                 dec = true;
4106         if (has_branch_stack(event))
4107                 dec = true;
4108
4109         if (dec) {
4110                 if (!atomic_add_unless(&perf_sched_count, -1, 1))
4111                         schedule_delayed_work(&perf_sched_work, HZ);
4112         }
4113
4114         unaccount_event_cpu(event, event->cpu);
4115
4116         unaccount_pmu_sb_event(event);
4117 }
4118
4119 static void perf_sched_delayed(struct work_struct *work)
4120 {
4121         mutex_lock(&perf_sched_mutex);
4122         if (atomic_dec_and_test(&perf_sched_count))
4123                 static_branch_disable(&perf_sched_events);
4124         mutex_unlock(&perf_sched_mutex);
4125 }
4126
4127 /*
4128  * The following implement mutual exclusion of events on "exclusive" pmus
4129  * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
4130  * at a time, so we disallow creating events that might conflict, namely:
4131  *
4132  *  1) cpu-wide events in the presence of per-task events,
4133  *  2) per-task events in the presence of cpu-wide events,
4134  *  3) two matching events on the same context.
4135  *
4136  * The former two cases are handled in the allocation path (perf_event_alloc(),
4137  * _free_event()), the latter -- before the first perf_install_in_context().
4138  */
4139 static int exclusive_event_init(struct perf_event *event)
4140 {
4141         struct pmu *pmu = event->pmu;
4142
4143         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4144                 return 0;
4145
4146         /*
4147          * Prevent co-existence of per-task and cpu-wide events on the
4148          * same exclusive pmu.
4149          *
4150          * Negative pmu::exclusive_cnt means there are cpu-wide
4151          * events on this "exclusive" pmu, positive means there are
4152          * per-task events.
4153          *
4154          * Since this is called in perf_event_alloc() path, event::ctx
4155          * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
4156          * to mean "per-task event", because unlike other attach states it
4157          * never gets cleared.
4158          */
4159         if (event->attach_state & PERF_ATTACH_TASK) {
4160                 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
4161                         return -EBUSY;
4162         } else {
4163                 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
4164                         return -EBUSY;
4165         }
4166
4167         return 0;
4168 }
4169
4170 static void exclusive_event_destroy(struct perf_event *event)
4171 {
4172         struct pmu *pmu = event->pmu;
4173
4174         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4175                 return;
4176
4177         /* see comment in exclusive_event_init() */
4178         if (event->attach_state & PERF_ATTACH_TASK)
4179                 atomic_dec(&pmu->exclusive_cnt);
4180         else
4181                 atomic_inc(&pmu->exclusive_cnt);
4182 }
4183
4184 static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
4185 {
4186         if ((e1->pmu == e2->pmu) &&
4187             (e1->cpu == e2->cpu ||
4188              e1->cpu == -1 ||
4189              e2->cpu == -1))
4190                 return true;
4191         return false;
4192 }
4193
4194 /* Called under the same ctx::mutex as perf_install_in_context() */
4195 static bool exclusive_event_installable(struct perf_event *event,
4196                                         struct perf_event_context *ctx)
4197 {
4198         struct perf_event *iter_event;
4199         struct pmu *pmu = event->pmu;
4200
4201         if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
4202                 return true;
4203
4204         list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
4205                 if (exclusive_event_match(iter_event, event))
4206                         return false;
4207         }
4208
4209         return true;
4210 }
4211
4212 static void perf_addr_filters_splice(struct perf_event *event,
4213                                        struct list_head *head);
4214
4215 static void _free_event(struct perf_event *event)
4216 {
4217         irq_work_sync(&event->pending);
4218
4219         unaccount_event(event);
4220
4221         if (event->rb) {
4222                 /*
4223                  * Can happen when we close an event with re-directed output.
4224                  *
4225                  * Since we have a 0 refcount, perf_mmap_close() will skip
4226                  * over us; possibly making our ring_buffer_put() the last.
4227                  */
4228                 mutex_lock(&event->mmap_mutex);
4229                 ring_buffer_attach(event, NULL);
4230                 mutex_unlock(&event->mmap_mutex);
4231         }
4232
4233         if (is_cgroup_event(event))
4234                 perf_detach_cgroup(event);
4235
4236         if (!event->parent) {
4237                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
4238                         put_callchain_buffers();
4239         }
4240
4241         perf_event_free_bpf_prog(event);
4242         perf_addr_filters_splice(event, NULL);
4243         kfree(event->addr_filters_offs);
4244
4245         if (event->destroy)
4246                 event->destroy(event);
4247
4248         if (event->ctx)
4249                 put_ctx(event->ctx);
4250
4251         if (event->hw.target)
4252                 put_task_struct(event->hw.target);
4253
4254         exclusive_event_destroy(event);
4255         module_put(event->pmu->module);
4256
4257         call_rcu(&event->rcu_head, free_event_rcu);
4258 }
4259
4260 /*
4261  * Used to free events which have a known refcount of 1, such as in error paths
4262  * where the event isn't exposed yet and inherited events.
4263  */
4264 static void free_event(struct perf_event *event)
4265 {
4266         if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
4267                                 "unexpected event refcount: %ld; ptr=%p\n",
4268                                 atomic_long_read(&event->refcount), event)) {
4269                 /* leak to avoid use-after-free */
4270                 return;
4271         }
4272
4273         _free_event(event);
4274 }
4275
4276 /*
4277  * Remove user event from the owner task.
4278  */
4279 static void perf_remove_from_owner(struct perf_event *event)
4280 {
4281         struct task_struct *owner;
4282
4283         rcu_read_lock();
4284         /*
4285          * Matches the smp_store_release() in perf_event_exit_task(). If we
4286          * observe !owner it means the list deletion is complete and we can
4287          * indeed free this event, otherwise we need to serialize on
4288          * owner->perf_event_mutex.
4289          */
4290         owner = READ_ONCE(event->owner);
4291         if (owner) {
4292                 /*
4293                  * Since delayed_put_task_struct() also drops the last
4294                  * task reference we can safely take a new reference
4295                  * while holding the rcu_read_lock().
4296                  */
4297                 get_task_struct(owner);
4298         }
4299         rcu_read_unlock();
4300
4301         if (owner) {
4302                 /*
4303                  * If we're here through perf_event_exit_task() we're already
4304                  * holding ctx->mutex which would be an inversion wrt. the
4305                  * normal lock order.
4306                  *
4307                  * However we can safely take this lock because its the child
4308                  * ctx->mutex.
4309                  */
4310                 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
4311
4312                 /*
4313                  * We have to re-check the event->owner field, if it is cleared
4314                  * we raced with perf_event_exit_task(), acquiring the mutex
4315                  * ensured they're done, and we can proceed with freeing the
4316                  * event.
4317                  */
4318                 if (event->owner) {
4319                         list_del_init(&event->owner_entry);
4320                         smp_store_release(&event->owner, NULL);
4321                 }
4322                 mutex_unlock(&owner->perf_event_mutex);
4323                 put_task_struct(owner);
4324         }
4325 }
4326
4327 static void put_event(struct perf_event *event)
4328 {
4329         if (!atomic_long_dec_and_test(&event->refcount))
4330                 return;
4331
4332         _free_event(event);
4333 }
4334
4335 /*
4336  * Kill an event dead; while event:refcount will preserve the event
4337  * object, it will not preserve its functionality. Once the last 'user'
4338  * gives up the object, we'll destroy the thing.
4339  */
4340 int perf_event_release_kernel(struct perf_event *event)
4341 {
4342         struct perf_event_context *ctx = event->ctx;
4343         struct perf_event *child, *tmp;
4344
4345         /*
4346          * If we got here through err_file: fput(event_file); we will not have
4347          * attached to a context yet.
4348          */
4349         if (!ctx) {
4350                 WARN_ON_ONCE(event->attach_state &
4351                                 (PERF_ATTACH_CONTEXT|PERF_ATTACH_GROUP));
4352                 goto no_ctx;
4353         }
4354
4355         if (!is_kernel_event(event))
4356                 perf_remove_from_owner(event);
4357
4358         ctx = perf_event_ctx_lock(event);
4359         WARN_ON_ONCE(ctx->parent_ctx);
4360         perf_remove_from_context(event, DETACH_GROUP);
4361
4362         raw_spin_lock_irq(&ctx->lock);
4363         /*
4364          * Mark this event as STATE_DEAD, there is no external reference to it
4365          * anymore.
4366          *
4367          * Anybody acquiring event->child_mutex after the below loop _must_
4368          * also see this, most importantly inherit_event() which will avoid
4369          * placing more children on the list.
4370          *
4371          * Thus this guarantees that we will in fact observe and kill _ALL_
4372          * child events.
4373          */
4374         event->state = PERF_EVENT_STATE_DEAD;
4375         raw_spin_unlock_irq(&ctx->lock);
4376
4377         perf_event_ctx_unlock(event, ctx);
4378
4379 again:
4380         mutex_lock(&event->child_mutex);
4381         list_for_each_entry(child, &event->child_list, child_list) {
4382
4383                 /*
4384                  * Cannot change, child events are not migrated, see the
4385                  * comment with perf_event_ctx_lock_nested().
4386                  */
4387                 ctx = READ_ONCE(child->ctx);
4388                 /*
4389                  * Since child_mutex nests inside ctx::mutex, we must jump
4390                  * through hoops. We start by grabbing a reference on the ctx.
4391                  *
4392                  * Since the event cannot get freed while we hold the
4393                  * child_mutex, the context must also exist and have a !0
4394                  * reference count.
4395                  */
4396                 get_ctx(ctx);
4397
4398                 /*
4399                  * Now that we have a ctx ref, we can drop child_mutex, and
4400                  * acquire ctx::mutex without fear of it going away. Then we
4401                  * can re-acquire child_mutex.
4402                  */
4403                 mutex_unlock(&event->child_mutex);
4404                 mutex_lock(&ctx->mutex);
4405                 mutex_lock(&event->child_mutex);
4406
4407                 /*
4408                  * Now that we hold ctx::mutex and child_mutex, revalidate our
4409                  * state, if child is still the first entry, it didn't get freed
4410                  * and we can continue doing so.
4411                  */
4412                 tmp = list_first_entry_or_null(&event->child_list,
4413                                                struct perf_event, child_list);
4414                 if (tmp == child) {
4415                         perf_remove_from_context(child, DETACH_GROUP);
4416                         list_del(&child->child_list);
4417                         free_event(child);
4418                         /*
4419                          * This matches the refcount bump in inherit_event();
4420                          * this can't be the last reference.
4421                          */
4422                         put_event(event);
4423                 }
4424
4425                 mutex_unlock(&event->child_mutex);
4426                 mutex_unlock(&ctx->mutex);
4427                 put_ctx(ctx);
4428                 goto again;
4429         }
4430         mutex_unlock(&event->child_mutex);
4431
4432 no_ctx:
4433         put_event(event); /* Must be the 'last' reference */
4434         return 0;
4435 }
4436 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
4437
4438 /*
4439  * Called when the last reference to the file is gone.
4440  */
4441 static int perf_release(struct inode *inode, struct file *file)
4442 {
4443         perf_event_release_kernel(file->private_data);
4444         return 0;
4445 }
4446
4447 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
4448 {
4449         struct perf_event *child;
4450         u64 total = 0;
4451
4452         *enabled = 0;
4453         *running = 0;
4454
4455         mutex_lock(&event->child_mutex);
4456
4457         (void)perf_event_read(event, false);
4458         total += perf_event_count(event);
4459
4460         *enabled += event->total_time_enabled +
4461                         atomic64_read(&event->child_total_time_enabled);
4462         *running += event->total_time_running +
4463                         atomic64_read(&event->child_total_time_running);
4464
4465         list_for_each_entry(child, &event->child_list, child_list) {
4466                 (void)perf_event_read(child, false);
4467                 total += perf_event_count(child);
4468                 *enabled += child->total_time_enabled;
4469                 *running += child->total_time_running;
4470         }
4471         mutex_unlock(&event->child_mutex);
4472
4473         return total;
4474 }
4475 EXPORT_SYMBOL_GPL(perf_event_read_value);
4476
4477 static int __perf_read_group_add(struct perf_event *leader,
4478                                         u64 read_format, u64 *values)
4479 {
4480         struct perf_event_context *ctx = leader->ctx;
4481         struct perf_event *sub;
4482         unsigned long flags;
4483         int n = 1; /* skip @nr */
4484         int ret;
4485
4486         ret = perf_event_read(leader, true);
4487         if (ret)
4488                 return ret;
4489
4490         raw_spin_lock_irqsave(&ctx->lock, flags);
4491
4492         /*
4493          * Since we co-schedule groups, {enabled,running} times of siblings
4494          * will be identical to those of the leader, so we only publish one
4495          * set.
4496          */
4497         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4498                 values[n++] += leader->total_time_enabled +
4499                         atomic64_read(&leader->child_total_time_enabled);
4500         }
4501
4502         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4503                 values[n++] += leader->total_time_running +
4504                         atomic64_read(&leader->child_total_time_running);
4505         }
4506
4507         /*
4508          * Write {count,id} tuples for every sibling.
4509          */
4510         values[n++] += perf_event_count(leader);
4511         if (read_format & PERF_FORMAT_ID)
4512                 values[n++] = primary_event_id(leader);
4513
4514         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4515                 values[n++] += perf_event_count(sub);
4516                 if (read_format & PERF_FORMAT_ID)
4517                         values[n++] = primary_event_id(sub);
4518         }
4519
4520         raw_spin_unlock_irqrestore(&ctx->lock, flags);
4521         return 0;
4522 }
4523
4524 static int perf_read_group(struct perf_event *event,
4525                                    u64 read_format, char __user *buf)
4526 {
4527         struct perf_event *leader = event->group_leader, *child;
4528         struct perf_event_context *ctx = leader->ctx;
4529         int ret;
4530         u64 *values;
4531
4532         lockdep_assert_held(&ctx->mutex);
4533
4534         values = kzalloc(event->read_size, GFP_KERNEL);
4535         if (!values)
4536                 return -ENOMEM;
4537
4538         values[0] = 1 + leader->nr_siblings;
4539
4540         /*
4541          * By locking the child_mutex of the leader we effectively
4542          * lock the child list of all siblings.. XXX explain how.
4543          */
4544         mutex_lock(&leader->child_mutex);
4545
4546         ret = __perf_read_group_add(leader, read_format, values);
4547         if (ret)
4548                 goto unlock;
4549
4550         list_for_each_entry(child, &leader->child_list, child_list) {
4551                 ret = __perf_read_group_add(child, read_format, values);
4552                 if (ret)
4553                         goto unlock;
4554         }
4555
4556         mutex_unlock(&leader->child_mutex);
4557
4558         ret = event->read_size;
4559         if (copy_to_user(buf, values, event->read_size))
4560                 ret = -EFAULT;
4561         goto out;
4562
4563 unlock:
4564         mutex_unlock(&leader->child_mutex);
4565 out:
4566         kfree(values);
4567         return ret;
4568 }
4569
4570 static int perf_read_one(struct perf_event *event,
4571                                  u64 read_format, char __user *buf)
4572 {
4573         u64 enabled, running;
4574         u64 values[4];
4575         int n = 0;
4576
4577         values[n++] = perf_event_read_value(event, &enabled, &running);
4578         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4579                 values[n++] = enabled;
4580         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4581                 values[n++] = running;
4582         if (read_format & PERF_FORMAT_ID)
4583                 values[n++] = primary_event_id(event);
4584
4585         if (copy_to_user(buf, values, n * sizeof(u64)))
4586                 return -EFAULT;
4587
4588         return n * sizeof(u64);
4589 }
4590
4591 static bool is_event_hup(struct perf_event *event)
4592 {
4593         bool no_children;
4594
4595         if (event->state > PERF_EVENT_STATE_EXIT)
4596                 return false;
4597
4598         mutex_lock(&event->child_mutex);
4599         no_children = list_empty(&event->child_list);
4600         mutex_unlock(&event->child_mutex);
4601         return no_children;
4602 }
4603
4604 /*
4605  * Read the performance event - simple non blocking version for now
4606  */
4607 static ssize_t
4608 __perf_read(struct perf_event *event, char __user *buf, size_t count)
4609 {
4610         u64 read_format = event->attr.read_format;
4611         int ret;
4612
4613         /*
4614          * Return end-of-file for a read on a event that is in
4615          * error state (i.e. because it was pinned but it couldn't be
4616          * scheduled on to the CPU at some point).
4617          */
4618         if (event->state == PERF_EVENT_STATE_ERROR)
4619                 return 0;
4620
4621         if (count < event->read_size)
4622                 return -ENOSPC;
4623
4624         WARN_ON_ONCE(event->ctx->parent_ctx);
4625         if (read_format & PERF_FORMAT_GROUP)
4626                 ret = perf_read_group(event, read_format, buf);
4627         else
4628                 ret = perf_read_one(event, read_format, buf);
4629
4630         return ret;
4631 }
4632
4633 static ssize_t
4634 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4635 {
4636         struct perf_event *event = file->private_data;
4637         struct perf_event_context *ctx;
4638         int ret;
4639
4640         ctx = perf_event_ctx_lock(event);
4641         ret = __perf_read(event, buf, count);
4642         perf_event_ctx_unlock(event, ctx);
4643
4644         return ret;
4645 }
4646
4647 static unsigned int perf_poll(struct file *file, poll_table *wait)
4648 {
4649         struct perf_event *event = file->private_data;
4650         struct ring_buffer *rb;
4651         unsigned int events = POLLHUP;
4652
4653         poll_wait(file, &event->waitq, wait);
4654
4655         if (is_event_hup(event))
4656                 return events;
4657
4658         /*
4659          * Pin the event->rb by taking event->mmap_mutex; otherwise
4660          * perf_event_set_output() can swizzle our rb and make us miss wakeups.
4661          */
4662         mutex_lock(&event->mmap_mutex);
4663         rb = event->rb;
4664         if (rb)
4665                 events = atomic_xchg(&rb->poll, 0);
4666         mutex_unlock(&event->mmap_mutex);
4667         return events;
4668 }
4669
4670 static void _perf_event_reset(struct perf_event *event)
4671 {
4672         (void)perf_event_read(event, false);
4673         local64_set(&event->count, 0);
4674         perf_event_update_userpage(event);
4675 }
4676
4677 /*
4678  * Holding the top-level event's child_mutex means that any
4679  * descendant process that has inherited this event will block
4680  * in perf_event_exit_event() if it goes to exit, thus satisfying the
4681  * task existence requirements of perf_event_enable/disable.
4682  */
4683 static void perf_event_for_each_child(struct perf_event *event,
4684                                         void (*func)(struct perf_event *))
4685 {
4686         struct perf_event *child;
4687
4688         WARN_ON_ONCE(event->ctx->parent_ctx);
4689
4690         mutex_lock(&event->child_mutex);
4691         func(event);
4692         list_for_each_entry(child, &event->child_list, child_list)
4693                 func(child);
4694         mutex_unlock(&event->child_mutex);
4695 }
4696
4697 static void perf_event_for_each(struct perf_event *event,
4698                                   void (*func)(struct perf_event *))
4699 {
4700         struct perf_event_context *ctx = event->ctx;
4701         struct perf_event *sibling;
4702
4703         lockdep_assert_held(&ctx->mutex);
4704
4705         event = event->group_leader;
4706
4707         perf_event_for_each_child(event, func);
4708         list_for_each_entry(sibling, &event->sibling_list, group_entry)
4709                 perf_event_for_each_child(sibling, func);
4710 }
4711
4712 static void __perf_event_period(struct perf_event *event,
4713                                 struct perf_cpu_context *cpuctx,
4714                                 struct perf_event_context *ctx,
4715                                 void *info)
4716 {
4717         u64 value = *((u64 *)info);
4718         bool active;
4719
4720         if (event->attr.freq) {
4721                 event->attr.sample_freq = value;
4722         } else {
4723                 event->attr.sample_period = value;
4724                 event->hw.sample_period = value;
4725         }
4726
4727         active = (event->state == PERF_EVENT_STATE_ACTIVE);
4728         if (active) {
4729                 perf_pmu_disable(ctx->pmu);
4730                 /*
4731                  * We could be throttled; unthrottle now to avoid the tick
4732                  * trying to unthrottle while we already re-started the event.
4733                  */
4734                 if (event->hw.interrupts == MAX_INTERRUPTS) {
4735                         event->hw.interrupts = 0;
4736                         perf_log_throttle(event, 1);
4737                 }
4738                 event->pmu->stop(event, PERF_EF_UPDATE);
4739         }
4740
4741         local64_set(&event->hw.period_left, 0);
4742
4743         if (active) {
4744                 event->pmu->start(event, PERF_EF_RELOAD);
4745                 perf_pmu_enable(ctx->pmu);
4746         }
4747 }
4748
4749 static int perf_event_check_period(struct perf_event *event, u64 value)
4750 {
4751         return event->pmu->check_period(event, value);
4752 }
4753
4754 static int perf_event_period(struct perf_event *event, u64 __user *arg)
4755 {
4756         u64 value;
4757
4758         if (!is_sampling_event(event))
4759                 return -EINVAL;
4760
4761         if (copy_from_user(&value, arg, sizeof(value)))
4762                 return -EFAULT;
4763
4764         if (!value)
4765                 return -EINVAL;
4766
4767         if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4768                 return -EINVAL;
4769
4770         if (perf_event_check_period(event, value))
4771                 return -EINVAL;
4772
4773         if (!event->attr.freq && (value & (1ULL << 63)))
4774                 return -EINVAL;
4775
4776         event_function_call(event, __perf_event_period, &value);
4777
4778         return 0;
4779 }
4780
4781 static const struct file_operations perf_fops;
4782
4783 static inline int perf_fget_light(int fd, struct fd *p)
4784 {
4785         struct fd f = fdget(fd);
4786         if (!f.file)
4787                 return -EBADF;
4788
4789         if (f.file->f_op != &perf_fops) {
4790                 fdput(f);
4791                 return -EBADF;
4792         }
4793         *p = f;
4794         return 0;
4795 }
4796
4797 static int perf_event_set_output(struct perf_event *event,
4798                                  struct perf_event *output_event);
4799 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
4800 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
4801
4802 static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
4803 {
4804         void (*func)(struct perf_event *);
4805         u32 flags = arg;
4806
4807         switch (cmd) {
4808         case PERF_EVENT_IOC_ENABLE:
4809                 func = _perf_event_enable;
4810                 break;
4811         case PERF_EVENT_IOC_DISABLE:
4812                 func = _perf_event_disable;
4813                 break;
4814         case PERF_EVENT_IOC_RESET:
4815                 func = _perf_event_reset;
4816                 break;
4817
4818         case PERF_EVENT_IOC_REFRESH:
4819                 return _perf_event_refresh(event, arg);
4820
4821         case PERF_EVENT_IOC_PERIOD:
4822                 return perf_event_period(event, (u64 __user *)arg);
4823
4824         case PERF_EVENT_IOC_ID:
4825         {
4826                 u64 id = primary_event_id(event);
4827
4828                 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4829                         return -EFAULT;
4830                 return 0;
4831         }
4832
4833         case PERF_EVENT_IOC_SET_OUTPUT:
4834         {
4835                 int ret;
4836                 if (arg != -1) {
4837                         struct perf_event *output_event;
4838                         struct fd output;
4839                         ret = perf_fget_light(arg, &output);
4840                         if (ret)
4841                                 return ret;
4842                         output_event = output.file->private_data;
4843                         ret = perf_event_set_output(event, output_event);
4844                         fdput(output);
4845                 } else {
4846                         ret = perf_event_set_output(event, NULL);
4847                 }
4848                 return ret;
4849         }
4850
4851         case PERF_EVENT_IOC_SET_FILTER:
4852                 return perf_event_set_filter(event, (void __user *)arg);
4853
4854         case PERF_EVENT_IOC_SET_BPF:
4855                 return perf_event_set_bpf_prog(event, arg);
4856
4857         case PERF_EVENT_IOC_PAUSE_OUTPUT: {
4858                 struct ring_buffer *rb;
4859
4860                 rcu_read_lock();
4861                 rb = rcu_dereference(event->rb);
4862                 if (!rb || !rb->nr_pages) {
4863                         rcu_read_unlock();
4864                         return -EINVAL;
4865                 }
4866                 rb_toggle_paused(rb, !!arg);
4867                 rcu_read_unlock();
4868                 return 0;
4869         }
4870         default:
4871                 return -ENOTTY;
4872         }
4873
4874         if (flags & PERF_IOC_FLAG_GROUP)
4875                 perf_event_for_each(event, func);
4876         else
4877                 perf_event_for_each_child(event, func);
4878
4879         return 0;
4880 }
4881
4882 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4883 {
4884         struct perf_event *event = file->private_data;
4885         struct perf_event_context *ctx;
4886         long ret;
4887
4888         ctx = perf_event_ctx_lock(event);
4889         ret = _perf_ioctl(event, cmd, arg);
4890         perf_event_ctx_unlock(event, ctx);
4891
4892         return ret;
4893 }
4894
4895 #ifdef CONFIG_COMPAT
4896 static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4897                                 unsigned long arg)
4898 {
4899         switch (_IOC_NR(cmd)) {
4900         case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4901         case _IOC_NR(PERF_EVENT_IOC_ID):
4902                 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4903                 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4904                         cmd &= ~IOCSIZE_MASK;
4905                         cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4906                 }
4907                 break;
4908         }
4909         return perf_ioctl(file, cmd, arg);
4910 }
4911 #else
4912 # define perf_compat_ioctl NULL
4913 #endif
4914
4915 int perf_event_task_enable(void)
4916 {
4917         struct perf_event_context *ctx;
4918         struct perf_event *event;
4919
4920         mutex_lock(&current->perf_event_mutex);
4921         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4922                 ctx = perf_event_ctx_lock(event);
4923                 perf_event_for_each_child(event, _perf_event_enable);
4924                 perf_event_ctx_unlock(event, ctx);
4925         }
4926         mutex_unlock(&current->perf_event_mutex);
4927
4928         return 0;
4929 }
4930
4931 int perf_event_task_disable(void)
4932 {
4933         struct perf_event_context *ctx;
4934         struct perf_event *event;
4935
4936         mutex_lock(&current->perf_event_mutex);
4937         list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4938                 ctx = perf_event_ctx_lock(event);
4939                 perf_event_for_each_child(event, _perf_event_disable);
4940                 perf_event_ctx_unlock(event, ctx);
4941         }
4942         mutex_unlock(&current->perf_event_mutex);
4943
4944         return 0;
4945 }
4946
4947 static int perf_event_index(struct perf_event *event)
4948 {
4949         if (event->hw.state & PERF_HES_STOPPED)
4950                 return 0;
4951
4952         if (event->state != PERF_EVENT_STATE_ACTIVE)
4953                 return 0;
4954
4955         return event->pmu->event_idx(event);
4956 }
4957
4958 static void calc_timer_values(struct perf_event *event,
4959                                 u64 *now,
4960                                 u64 *enabled,
4961                                 u64 *running)
4962 {
4963         u64 ctx_time;
4964
4965         *now = perf_clock();
4966         ctx_time = event->shadow_ctx_time + *now;
4967         *enabled = ctx_time - event->tstamp_enabled;
4968         *running = ctx_time - event->tstamp_running;
4969 }
4970
4971 static void perf_event_init_userpage(struct perf_event *event)
4972 {
4973         struct perf_event_mmap_page *userpg;
4974         struct ring_buffer *rb;
4975
4976         rcu_read_lock();
4977         rb = rcu_dereference(event->rb);
4978         if (!rb)
4979                 goto unlock;
4980
4981         userpg = rb->user_page;
4982
4983         /* Allow new userspace to detect that bit 0 is deprecated */
4984         userpg->cap_bit0_is_deprecated = 1;
4985         userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
4986         userpg->data_offset = PAGE_SIZE;
4987         userpg->data_size = perf_data_size(rb);
4988
4989 unlock:
4990         rcu_read_unlock();
4991 }
4992
4993 void __weak arch_perf_update_userpage(
4994         struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
4995 {
4996 }
4997
4998 /*
4999  * Callers need to ensure there can be no nesting of this function, otherwise
5000  * the seqlock logic goes bad. We can not serialize this because the arch
5001  * code calls this from NMI context.
5002  */
5003 void perf_event_update_userpage(struct perf_event *event)
5004 {
5005         struct perf_event_mmap_page *userpg;
5006         struct ring_buffer *rb;
5007         u64 enabled, running, now;
5008
5009         rcu_read_lock();
5010         rb = rcu_dereference(event->rb);
5011         if (!rb)
5012                 goto unlock;
5013
5014         /*
5015          * compute total_time_enabled, total_time_running
5016          * based on snapshot values taken when the event
5017          * was last scheduled in.
5018          *
5019          * we cannot simply called update_context_time()
5020          * because of locking issue as we can be called in
5021          * NMI context
5022          */
5023         calc_timer_values(event, &now, &enabled, &running);
5024
5025         userpg = rb->user_page;
5026         /*
5027          * Disable preemption so as to not let the corresponding user-space
5028          * spin too long if we get preempted.
5029          */
5030         preempt_disable();
5031         ++userpg->lock;
5032         barrier();
5033         userpg->index = perf_event_index(event);
5034         userpg->offset = perf_event_count(event);
5035         if (userpg->index)
5036                 userpg->offset -= local64_read(&event->hw.prev_count);
5037
5038         userpg->time_enabled = enabled +
5039                         atomic64_read(&event->child_total_time_enabled);
5040
5041         userpg->time_running = running +
5042                         atomic64_read(&event->child_total_time_running);
5043
5044         arch_perf_update_userpage(event, userpg, now);
5045
5046         barrier();
5047         ++userpg->lock;
5048         preempt_enable();
5049 unlock:
5050         rcu_read_unlock();
5051 }
5052
5053 static int perf_mmap_fault(struct vm_fault *vmf)
5054 {
5055         struct perf_event *event = vmf->vma->vm_file->private_data;
5056         struct ring_buffer *rb;
5057         int ret = VM_FAULT_SIGBUS;
5058
5059         if (vmf->flags & FAULT_FLAG_MKWRITE) {
5060                 if (vmf->pgoff == 0)
5061                         ret = 0;
5062                 return ret;
5063         }
5064
5065         rcu_read_lock();
5066         rb = rcu_dereference(event->rb);
5067         if (!rb)
5068                 goto unlock;
5069
5070         if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
5071                 goto unlock;
5072
5073         vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
5074         if (!vmf->page)
5075                 goto unlock;
5076
5077         get_page(vmf->page);
5078         vmf->page->mapping = vmf->vma->vm_file->f_mapping;
5079         vmf->page->index   = vmf->pgoff;
5080
5081         ret = 0;
5082 unlock:
5083         rcu_read_unlock();
5084
5085         return ret;
5086 }
5087
5088 static void ring_buffer_attach(struct perf_event *event,
5089                                struct ring_buffer *rb)
5090 {
5091         struct ring_buffer *old_rb = NULL;
5092         unsigned long flags;
5093
5094         if (event->rb) {
5095                 /*
5096                  * Should be impossible, we set this when removing
5097                  * event->rb_entry and wait/clear when adding event->rb_entry.
5098                  */
5099                 WARN_ON_ONCE(event->rcu_pending);
5100
5101                 old_rb = event->rb;
5102                 spin_lock_irqsave(&old_rb->event_lock, flags);
5103                 list_del_rcu(&event->rb_entry);
5104                 spin_unlock_irqrestore(&old_rb->event_lock, flags);
5105
5106                 event->rcu_batches = get_state_synchronize_rcu();
5107                 event->rcu_pending = 1;
5108         }
5109
5110         if (rb) {
5111                 if (event->rcu_pending) {
5112                         cond_synchronize_rcu(event->rcu_batches);
5113                         event->rcu_pending = 0;
5114                 }
5115
5116                 spin_lock_irqsave(&rb->event_lock, flags);
5117                 list_add_rcu(&event->rb_entry, &rb->event_list);
5118                 spin_unlock_irqrestore(&rb->event_lock, flags);
5119         }
5120
5121         /*
5122          * Avoid racing with perf_mmap_close(AUX): stop the event
5123          * before swizzling the event::rb pointer; if it's getting
5124          * unmapped, its aux_mmap_count will be 0 and it won't
5125          * restart. See the comment in __perf_pmu_output_stop().
5126          *
5127          * Data will inevitably be lost when set_output is done in
5128          * mid-air, but then again, whoever does it like this is
5129          * not in for the data anyway.
5130          */
5131         if (has_aux(event))
5132                 perf_event_stop(event, 0);
5133
5134         rcu_assign_pointer(event->rb, rb);
5135
5136         if (old_rb) {
5137                 ring_buffer_put(old_rb);
5138                 /*
5139                  * Since we detached before setting the new rb, so that we
5140                  * could attach the new rb, we could have missed a wakeup.
5141                  * Provide it now.
5142                  */
5143                 wake_up_all(&event->waitq);
5144         }
5145 }
5146
5147 static void ring_buffer_wakeup(struct perf_event *event)
5148 {
5149         struct ring_buffer *rb;
5150
5151         rcu_read_lock();
5152         rb = rcu_dereference(event->rb);
5153         if (rb) {
5154                 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
5155                         wake_up_all(&event->waitq);
5156         }
5157         rcu_read_unlock();
5158 }
5159
5160 struct ring_buffer *ring_buffer_get(struct perf_event *event)
5161 {
5162         struct ring_buffer *rb;
5163
5164         rcu_read_lock();
5165         rb = rcu_dereference(event->rb);
5166         if (rb) {
5167                 if (!atomic_inc_not_zero(&rb->refcount))
5168                         rb = NULL;
5169         }
5170         rcu_read_unlock();
5171
5172         return rb;
5173 }
5174
5175 void ring_buffer_put(struct ring_buffer *rb)
5176 {
5177         if (!atomic_dec_and_test(&rb->refcount))
5178                 return;
5179
5180         WARN_ON_ONCE(!list_empty(&rb->event_list));
5181
5182         call_rcu(&rb->rcu_head, rb_free_rcu);
5183 }
5184
5185 static void perf_mmap_open(struct vm_area_struct *vma)
5186 {
5187         struct perf_event *event = vma->vm_file->private_data;
5188
5189         atomic_inc(&event->mmap_count);
5190         atomic_inc(&event->rb->mmap_count);
5191
5192         if (vma->vm_pgoff)
5193                 atomic_inc(&event->rb->aux_mmap_count);
5194
5195         if (event->pmu->event_mapped)
5196                 event->pmu->event_mapped(event, vma->vm_mm);
5197 }
5198
5199 static void perf_pmu_output_stop(struct perf_event *event);
5200
5201 /*
5202  * A buffer can be mmap()ed multiple times; either directly through the same
5203  * event, or through other events by use of perf_event_set_output().
5204  *
5205  * In order to undo the VM accounting done by perf_mmap() we need to destroy
5206  * the buffer here, where we still have a VM context. This means we need
5207  * to detach all events redirecting to us.
5208  */
5209 static void perf_mmap_close(struct vm_area_struct *vma)
5210 {
5211         struct perf_event *event = vma->vm_file->private_data;
5212         struct ring_buffer *rb = ring_buffer_get(event);
5213         struct user_struct *mmap_user = rb->mmap_user;
5214         int mmap_locked = rb->mmap_locked;
5215         unsigned long size = perf_data_size(rb);
5216         bool detach_rest = false;
5217
5218         if (event->pmu->event_unmapped)
5219                 event->pmu->event_unmapped(event, vma->vm_mm);
5220
5221         /*
5222          * rb->aux_mmap_count will always drop before rb->mmap_count and
5223          * event->mmap_count, so it is ok to use event->mmap_mutex to
5224          * serialize with perf_mmap here.
5225          */
5226         if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
5227             atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
5228                 /*
5229                  * Stop all AUX events that are writing to this buffer,
5230                  * so that we can free its AUX pages and corresponding PMU
5231                  * data. Note that after rb::aux_mmap_count dropped to zero,
5232                  * they won't start any more (see perf_aux_output_begin()).
5233                  */
5234                 perf_pmu_output_stop(event);
5235
5236                 /* now it's safe to free the pages */
5237                 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
5238                 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
5239
5240                 /* this has to be the last one */
5241                 rb_free_aux(rb);
5242                 WARN_ON_ONCE(atomic_read(&rb->aux_refcount));
5243
5244                 mutex_unlock(&event->mmap_mutex);
5245         }
5246
5247         if (atomic_dec_and_test(&rb->mmap_count))
5248                 detach_rest = true;
5249
5250         if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
5251                 goto out_put;
5252
5253         ring_buffer_attach(event, NULL);
5254         mutex_unlock(&event->mmap_mutex);
5255
5256         /* If there's still other mmap()s of this buffer, we're done. */
5257         if (!detach_rest)
5258                 goto out_put;
5259
5260         /*
5261          * No other mmap()s, detach from all other events that might redirect
5262          * into the now unreachable buffer. Somewhat complicated by the
5263          * fact that rb::event_lock otherwise nests inside mmap_mutex.
5264          */
5265 again:
5266         rcu_read_lock();
5267         list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
5268                 if (!atomic_long_inc_not_zero(&event->refcount)) {
5269                         /*
5270                          * This event is en-route to free_event() which will
5271                          * detach it and remove it from the list.
5272                          */
5273                         continue;
5274                 }
5275                 rcu_read_unlock();
5276
5277                 mutex_lock(&event->mmap_mutex);
5278                 /*
5279                  * Check we didn't race with perf_event_set_output() which can
5280                  * swizzle the rb from under us while we were waiting to
5281                  * acquire mmap_mutex.
5282                  *
5283                  * If we find a different rb; ignore this event, a next
5284                  * iteration will no longer find it on the list. We have to
5285                  * still restart the iteration to make sure we're not now
5286                  * iterating the wrong list.
5287                  */
5288                 if (event->rb == rb)
5289                         ring_buffer_attach(event, NULL);
5290
5291                 mutex_unlock(&event->mmap_mutex);
5292                 put_event(event);
5293
5294                 /*
5295                  * Restart the iteration; either we're on the wrong list or
5296                  * destroyed its integrity by doing a deletion.
5297                  */
5298                 goto again;
5299         }
5300         rcu_read_unlock();
5301
5302         /*
5303          * It could be there's still a few 0-ref events on the list; they'll
5304          * get cleaned up by free_event() -- they'll also still have their
5305          * ref on the rb and will free it whenever they are done with it.
5306          *
5307          * Aside from that, this buffer is 'fully' detached and unmapped,
5308          * undo the VM accounting.
5309          */
5310
5311         atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
5312         vma->vm_mm->pinned_vm -= mmap_locked;
5313         free_uid(mmap_user);
5314
5315 out_put:
5316         ring_buffer_put(rb); /* could be last */
5317 }
5318
5319 static const struct vm_operations_struct perf_mmap_vmops = {
5320         .open           = perf_mmap_open,
5321         .close          = perf_mmap_close, /* non mergable */
5322         .fault          = perf_mmap_fault,
5323         .page_mkwrite   = perf_mmap_fault,
5324 };
5325
5326 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
5327 {
5328         struct perf_event *event = file->private_data;
5329         unsigned long user_locked, user_lock_limit;
5330         struct user_struct *user = current_user();
5331         unsigned long locked, lock_limit;
5332         struct ring_buffer *rb = NULL;
5333         unsigned long vma_size;
5334         unsigned long nr_pages;
5335         long user_extra = 0, extra = 0;
5336         int ret = 0, flags = 0;
5337
5338         /*
5339          * Don't allow mmap() of inherited per-task counters. This would
5340          * create a performance issue due to all children writing to the
5341          * same rb.
5342          */
5343         if (event->cpu == -1 && event->attr.inherit)
5344                 return -EINVAL;
5345
5346         if (!(vma->vm_flags & VM_SHARED))
5347                 return -EINVAL;
5348
5349         vma_size = vma->vm_end - vma->vm_start;
5350
5351         if (vma->vm_pgoff == 0) {
5352                 nr_pages = (vma_size / PAGE_SIZE) - 1;
5353         } else {
5354                 /*
5355                  * AUX area mapping: if rb->aux_nr_pages != 0, it's already
5356                  * mapped, all subsequent mappings should have the same size
5357                  * and offset. Must be above the normal perf buffer.
5358                  */
5359                 u64 aux_offset, aux_size;
5360
5361                 if (!event->rb)
5362                         return -EINVAL;
5363
5364                 nr_pages = vma_size / PAGE_SIZE;
5365
5366                 mutex_lock(&event->mmap_mutex);
5367                 ret = -EINVAL;
5368
5369                 rb = event->rb;
5370                 if (!rb)
5371                         goto aux_unlock;
5372
5373                 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
5374                 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
5375
5376                 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
5377                         goto aux_unlock;
5378
5379                 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
5380                         goto aux_unlock;
5381
5382                 /* already mapped with a different offset */
5383                 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
5384                         goto aux_unlock;
5385
5386                 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
5387                         goto aux_unlock;
5388
5389                 /* already mapped with a different size */
5390                 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
5391                         goto aux_unlock;
5392
5393                 if (!is_power_of_2(nr_pages))
5394                         goto aux_unlock;
5395
5396                 if (!atomic_inc_not_zero(&rb->mmap_count))
5397                         goto aux_unlock;
5398
5399                 if (rb_has_aux(rb)) {
5400                         atomic_inc(&rb->aux_mmap_count);
5401                         ret = 0;
5402                         goto unlock;
5403                 }
5404
5405                 atomic_set(&rb->aux_mmap_count, 1);
5406                 user_extra = nr_pages;
5407
5408                 goto accounting;
5409         }
5410
5411         /*
5412          * If we have rb pages ensure they're a power-of-two number, so we
5413          * can do bitmasks instead of modulo.
5414          */
5415         if (nr_pages != 0 && !is_power_of_2(nr_pages))
5416                 return -EINVAL;
5417
5418         if (vma_size != PAGE_SIZE * (1 + nr_pages))
5419                 return -EINVAL;
5420
5421         WARN_ON_ONCE(event->ctx->parent_ctx);
5422 again:
5423         mutex_lock(&event->mmap_mutex);
5424         if (event->rb) {
5425                 if (event->rb->nr_pages != nr_pages) {
5426                         ret = -EINVAL;
5427                         goto unlock;
5428                 }
5429
5430                 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
5431                         /*
5432                          * Raced against perf_mmap_close(); remove the
5433                          * event and try again.
5434                          */
5435                         ring_buffer_attach(event, NULL);
5436                         mutex_unlock(&event->mmap_mutex);
5437                         goto again;
5438                 }
5439
5440                 goto unlock;
5441         }
5442
5443         user_extra = nr_pages + 1;
5444
5445 accounting:
5446         user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
5447
5448         /*
5449          * Increase the limit linearly with more CPUs:
5450          */
5451         user_lock_limit *= num_online_cpus();
5452
5453         user_locked = atomic_long_read(&user->locked_vm);
5454
5455         /*
5456          * sysctl_perf_event_mlock may have changed, so that
5457          *     user->locked_vm > user_lock_limit
5458          */
5459         if (user_locked > user_lock_limit)
5460                 user_locked = user_lock_limit;
5461         user_locked += user_extra;
5462
5463         if (user_locked > user_lock_limit)
5464                 extra = user_locked - user_lock_limit;
5465
5466         lock_limit = rlimit(RLIMIT_MEMLOCK);
5467         lock_limit >>= PAGE_SHIFT;
5468         locked = vma->vm_mm->pinned_vm + extra;
5469
5470         if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
5471                 !capable(CAP_IPC_LOCK)) {
5472                 ret = -EPERM;
5473                 goto unlock;
5474         }
5475
5476         WARN_ON(!rb && event->rb);
5477
5478         if (vma->vm_flags & VM_WRITE)
5479                 flags |= RING_BUFFER_WRITABLE;
5480
5481         if (!rb) {
5482                 rb = rb_alloc(nr_pages,
5483                               event->attr.watermark ? event->attr.wakeup_watermark : 0,
5484                               event->cpu, flags);
5485
5486                 if (!rb) {
5487                         ret = -ENOMEM;
5488                         goto unlock;
5489                 }
5490
5491                 atomic_set(&rb->mmap_count, 1);
5492                 rb->mmap_user = get_current_user();
5493                 rb->mmap_locked = extra;
5494
5495                 ring_buffer_attach(event, rb);
5496
5497                 perf_event_init_userpage(event);
5498                 perf_event_update_userpage(event);
5499         } else {
5500                 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
5501                                    event->attr.aux_watermark, flags);
5502                 if (!ret)
5503                         rb->aux_mmap_locked = extra;
5504         }
5505
5506 unlock:
5507         if (!ret) {
5508                 atomic_long_add(user_extra, &user->locked_vm);
5509                 vma->vm_mm->pinned_vm += extra;
5510
5511                 atomic_inc(&event->mmap_count);
5512         } else if (rb) {
5513                 atomic_dec(&rb->mmap_count);
5514         }
5515 aux_unlock:
5516         mutex_unlock(&event->mmap_mutex);
5517
5518         /*
5519          * Since pinned accounting is per vm we cannot allow fork() to copy our
5520          * vma.
5521          */
5522         vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
5523         vma->vm_ops = &perf_mmap_vmops;
5524
5525         if (event->pmu->event_mapped)
5526                 event->pmu->event_mapped(event, vma->vm_mm);
5527
5528         return ret;
5529 }
5530
5531 static int perf_fasync(int fd, struct file *filp, int on)
5532 {
5533         struct inode *inode = file_inode(filp);
5534         struct perf_event *event = filp->private_data;
5535         int retval;
5536
5537         inode_lock(inode);
5538         retval = fasync_helper(fd, filp, on, &event->fasync);
5539         inode_unlock(inode);
5540
5541         if (retval < 0)
5542                 return retval;
5543
5544         return 0;
5545 }
5546
5547 static const struct file_operations perf_fops = {
5548         .llseek                 = no_llseek,
5549         .release                = perf_release,
5550         .read                   = perf_read,
5551         .poll                   = perf_poll,
5552         .unlocked_ioctl         = perf_ioctl,
5553         .compat_ioctl           = perf_compat_ioctl,
5554         .mmap                   = perf_mmap,
5555         .fasync                 = perf_fasync,
5556 };
5557
5558 /*
5559  * Perf event wakeup
5560  *
5561  * If there's data, ensure we set the poll() state and publish everything
5562  * to user-space before waking everybody up.
5563  */
5564
5565 static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
5566 {
5567         /* only the parent has fasync state */
5568         if (event->parent)
5569                 event = event->parent;
5570         return &event->fasync;
5571 }
5572
5573 void perf_event_wakeup(struct perf_event *event)
5574 {
5575         ring_buffer_wakeup(event);
5576
5577         if (event->pending_kill) {
5578                 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
5579                 event->pending_kill = 0;
5580         }
5581 }
5582
5583 static void perf_pending_event(struct irq_work *entry)
5584 {
5585         struct perf_event *event = container_of(entry,
5586                         struct perf_event, pending);
5587         int rctx;
5588
5589         rctx = perf_swevent_get_recursion_context();
5590         /*
5591          * If we 'fail' here, that's OK, it means recursion is already disabled
5592          * and we won't recurse 'further'.
5593          */
5594
5595         if (event->pending_disable) {
5596                 event->pending_disable = 0;
5597                 perf_event_disable_local(event);
5598         }
5599
5600         if (event->pending_wakeup) {
5601                 event->pending_wakeup = 0;
5602                 perf_event_wakeup(event);
5603         }
5604
5605         if (rctx >= 0)
5606                 perf_swevent_put_recursion_context(rctx);
5607 }
5608
5609 /*
5610  * We assume there is only KVM supporting the callbacks.
5611  * Later on, we might change it to a list if there is
5612  * another virtualization implementation supporting the callbacks.
5613  */
5614 struct perf_guest_info_callbacks *perf_guest_cbs;
5615
5616 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5617 {
5618         perf_guest_cbs = cbs;
5619         return 0;
5620 }
5621 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
5622
5623 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
5624 {
5625         perf_guest_cbs = NULL;
5626         return 0;
5627 }
5628 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
5629
5630 static void
5631 perf_output_sample_regs(struct perf_output_handle *handle,
5632                         struct pt_regs *regs, u64 mask)
5633 {
5634         int bit;
5635         DECLARE_BITMAP(_mask, 64);
5636
5637         bitmap_from_u64(_mask, mask);
5638         for_each_set_bit(bit, _mask, sizeof(mask) * BITS_PER_BYTE) {
5639                 u64 val;
5640
5641                 val = perf_reg_value(regs, bit);
5642                 perf_output_put(handle, val);
5643         }
5644 }
5645
5646 static void perf_sample_regs_user(struct perf_regs *regs_user,
5647                                   struct pt_regs *regs,
5648                                   struct pt_regs *regs_user_copy)
5649 {
5650         if (user_mode(regs)) {
5651                 regs_user->abi = perf_reg_abi(current);
5652                 regs_user->regs = regs;
5653         } else if (!(current->flags & PF_KTHREAD)) {
5654                 perf_get_regs_user(regs_user, regs, regs_user_copy);
5655         } else {
5656                 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
5657                 regs_user->regs = NULL;
5658         }
5659 }
5660
5661 static void perf_sample_regs_intr(struct perf_regs *regs_intr,
5662                                   struct pt_regs *regs)
5663 {
5664         regs_intr->regs = regs;
5665         regs_intr->abi  = perf_reg_abi(current);
5666 }
5667
5668
5669 /*
5670  * Get remaining task size from user stack pointer.
5671  *
5672  * It'd be better to take stack vma map and limit this more
5673  * precisly, but there's no way to get it safely under interrupt,
5674  * so using TASK_SIZE as limit.
5675  */
5676 static u64 perf_ustack_task_size(struct pt_regs *regs)
5677 {
5678         unsigned long addr = perf_user_stack_pointer(regs);
5679
5680         if (!addr || addr >= TASK_SIZE)
5681                 return 0;
5682
5683         return TASK_SIZE - addr;
5684 }
5685
5686 static u16
5687 perf_sample_ustack_size(u16 stack_size, u16 header_size,
5688                         struct pt_regs *regs)
5689 {
5690         u64 task_size;
5691
5692         /* No regs, no stack pointer, no dump. */
5693         if (!regs)
5694                 return 0;
5695
5696         /*
5697          * Check if we fit in with the requested stack size into the:
5698          * - TASK_SIZE
5699          *   If we don't, we limit the size to the TASK_SIZE.
5700          *
5701          * - remaining sample size
5702          *   If we don't, we customize the stack size to
5703          *   fit in to the remaining sample size.
5704          */
5705
5706         task_size  = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5707         stack_size = min(stack_size, (u16) task_size);
5708
5709         /* Current header size plus static size and dynamic size. */
5710         header_size += 2 * sizeof(u64);
5711
5712         /* Do we fit in with the current stack dump size? */
5713         if ((u16) (header_size + stack_size) < header_size) {
5714                 /*
5715                  * If we overflow the maximum size for the sample,
5716                  * we customize the stack dump size to fit in.
5717                  */
5718                 stack_size = USHRT_MAX - header_size - sizeof(u64);
5719                 stack_size = round_up(stack_size, sizeof(u64));
5720         }
5721
5722         return stack_size;
5723 }
5724
5725 static void
5726 perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5727                           struct pt_regs *regs)
5728 {
5729         /* Case of a kernel thread, nothing to dump */
5730         if (!regs) {
5731                 u64 size = 0;
5732                 perf_output_put(handle, size);
5733         } else {
5734                 unsigned long sp;
5735                 unsigned int rem;
5736                 u64 dyn_size;
5737                 mm_segment_t fs;
5738
5739                 /*
5740                  * We dump:
5741                  * static size
5742                  *   - the size requested by user or the best one we can fit
5743                  *     in to the sample max size
5744                  * data
5745                  *   - user stack dump data
5746                  * dynamic size
5747                  *   - the actual dumped size
5748                  */
5749
5750                 /* Static size. */
5751                 perf_output_put(handle, dump_size);
5752
5753                 /* Data. */
5754                 sp = perf_user_stack_pointer(regs);
5755                 fs = get_fs();
5756                 set_fs(USER_DS);
5757                 rem = __output_copy_user(handle, (void *) sp, dump_size);
5758                 set_fs(fs);
5759                 dyn_size = dump_size - rem;
5760
5761                 perf_output_skip(handle, rem);
5762
5763                 /* Dynamic size. */
5764                 perf_output_put(handle, dyn_size);
5765         }
5766 }
5767
5768 static void __perf_event_header__init_id(struct perf_event_header *header,
5769                                          struct perf_sample_data *data,
5770                                          struct perf_event *event)
5771 {
5772         u64 sample_type = event->attr.sample_type;
5773
5774         data->type = sample_type;
5775         header->size += event->id_header_size;
5776
5777         if (sample_type & PERF_SAMPLE_TID) {
5778                 /* namespace issues */
5779                 data->tid_entry.pid = perf_event_pid(event, current);
5780                 data->tid_entry.tid = perf_event_tid(event, current);
5781         }
5782
5783         if (sample_type & PERF_SAMPLE_TIME)
5784                 data->time = perf_event_clock(event);
5785
5786         if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
5787                 data->id = primary_event_id(event);
5788
5789         if (sample_type & PERF_SAMPLE_STREAM_ID)
5790                 data->stream_id = event->id;
5791
5792         if (sample_type & PERF_SAMPLE_CPU) {
5793                 data->cpu_entry.cpu      = raw_smp_processor_id();
5794                 data->cpu_entry.reserved = 0;
5795         }
5796 }
5797
5798 void perf_event_header__init_id(struct perf_event_header *header,
5799                                 struct perf_sample_data *data,
5800                                 struct perf_event *event)
5801 {
5802         if (event->attr.sample_id_all)
5803                 __perf_event_header__init_id(header, data, event);
5804 }
5805
5806 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5807                                            struct perf_sample_data *data)
5808 {
5809         u64 sample_type = data->type;
5810
5811         if (sample_type & PERF_SAMPLE_TID)
5812                 perf_output_put(handle, data->tid_entry);
5813
5814         if (sample_type & PERF_SAMPLE_TIME)
5815                 perf_output_put(handle, data->time);
5816
5817         if (sample_type & PERF_SAMPLE_ID)
5818                 perf_output_put(handle, data->id);
5819
5820         if (sample_type & PERF_SAMPLE_STREAM_ID)
5821                 perf_output_put(handle, data->stream_id);
5822
5823         if (sample_type & PERF_SAMPLE_CPU)
5824                 perf_output_put(handle, data->cpu_entry);
5825
5826         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5827                 perf_output_put(handle, data->id);
5828 }
5829
5830 void perf_event__output_id_sample(struct perf_event *event,
5831                                   struct perf_output_handle *handle,
5832                                   struct perf_sample_data *sample)
5833 {
5834         if (event->attr.sample_id_all)
5835                 __perf_event__output_id_sample(handle, sample);
5836 }
5837
5838 static void perf_output_read_one(struct perf_output_handle *handle,
5839                                  struct perf_event *event,
5840                                  u64 enabled, u64 running)
5841 {
5842         u64 read_format = event->attr.read_format;
5843         u64 values[4];
5844         int n = 0;
5845
5846         values[n++] = perf_event_count(event);
5847         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
5848                 values[n++] = enabled +
5849                         atomic64_read(&event->child_total_time_enabled);
5850         }
5851         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
5852                 values[n++] = running +
5853                         atomic64_read(&event->child_total_time_running);
5854         }
5855         if (read_format & PERF_FORMAT_ID)
5856                 values[n++] = primary_event_id(event);
5857
5858         __output_copy(handle, values, n * sizeof(u64));
5859 }
5860
5861 static void perf_output_read_group(struct perf_output_handle *handle,
5862                             struct perf_event *event,
5863                             u64 enabled, u64 running)
5864 {
5865         struct perf_event *leader = event->group_leader, *sub;
5866         u64 read_format = event->attr.read_format;
5867         u64 values[5];
5868         int n = 0;
5869
5870         values[n++] = 1 + leader->nr_siblings;
5871
5872         if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
5873                 values[n++] = enabled;
5874
5875         if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
5876                 values[n++] = running;
5877
5878         if ((leader != event) &&
5879             (leader->state == PERF_EVENT_STATE_ACTIVE))
5880                 leader->pmu->read(leader);
5881
5882         values[n++] = perf_event_count(leader);
5883         if (read_format & PERF_FORMAT_ID)
5884                 values[n++] = primary_event_id(leader);
5885
5886         __output_copy(handle, values, n * sizeof(u64));
5887
5888         list_for_each_entry(sub, &leader->sibling_list, group_entry) {
5889                 n = 0;
5890
5891                 if ((sub != event) &&
5892                     (sub->state == PERF_EVENT_STATE_ACTIVE))
5893                         sub->pmu->read(sub);
5894
5895                 values[n++] = perf_event_count(sub);
5896                 if (read_format & PERF_FORMAT_ID)
5897                         values[n++] = primary_event_id(sub);
5898
5899                 __output_copy(handle, values, n * sizeof(u64));
5900         }
5901 }
5902
5903 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5904                                  PERF_FORMAT_TOTAL_TIME_RUNNING)
5905
5906 /*
5907  * XXX PERF_SAMPLE_READ vs inherited events seems difficult.
5908  *
5909  * The problem is that its both hard and excessively expensive to iterate the
5910  * child list, not to mention that its impossible to IPI the children running
5911  * on another CPU, from interrupt/NMI context.
5912  */
5913 static void perf_output_read(struct perf_output_handle *handle,
5914                              struct perf_event *event)
5915 {
5916         u64 enabled = 0, running = 0, now;
5917         u64 read_format = event->attr.read_format;
5918
5919         /*
5920          * compute total_time_enabled, total_time_running
5921          * based on snapshot values taken when the event
5922          * was last scheduled in.
5923          *
5924          * we cannot simply called update_context_time()
5925          * because of locking issue as we are called in
5926          * NMI context
5927          */
5928         if (read_format & PERF_FORMAT_TOTAL_TIMES)
5929                 calc_timer_values(event, &now, &enabled, &running);
5930
5931         if (event->attr.read_format & PERF_FORMAT_GROUP)
5932                 perf_output_read_group(handle, event, enabled, running);
5933         else
5934                 perf_output_read_one(handle, event, enabled, running);
5935 }
5936
5937 void perf_output_sample(struct perf_output_handle *handle,
5938                         struct perf_event_header *header,
5939                         struct perf_sample_data *data,
5940                         struct perf_event *event)
5941 {
5942         u64 sample_type = data->type;
5943
5944         perf_output_put(handle, *header);
5945
5946         if (sample_type & PERF_SAMPLE_IDENTIFIER)
5947                 perf_output_put(handle, data->id);
5948
5949         if (sample_type & PERF_SAMPLE_IP)
5950                 perf_output_put(handle, data->ip);
5951
5952         if (sample_type & PERF_SAMPLE_TID)
5953                 perf_output_put(handle, data->tid_entry);
5954
5955         if (sample_type & PERF_SAMPLE_TIME)
5956                 perf_output_put(handle, data->time);
5957
5958         if (sample_type & PERF_SAMPLE_ADDR)
5959                 perf_output_put(handle, data->addr);
5960
5961         if (sample_type & PERF_SAMPLE_ID)
5962                 perf_output_put(handle, data->id);
5963
5964         if (sample_type & PERF_SAMPLE_STREAM_ID)
5965                 perf_output_put(handle, data->stream_id);
5966
5967         if (sample_type & PERF_SAMPLE_CPU)
5968                 perf_output_put(handle, data->cpu_entry);
5969
5970         if (sample_type & PERF_SAMPLE_PERIOD)
5971                 perf_output_put(handle, data->period);
5972
5973         if (sample_type & PERF_SAMPLE_READ)
5974                 perf_output_read(handle, event);
5975
5976         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5977                 if (data->callchain) {
5978                         int size = 1;
5979
5980                         if (data->callchain)
5981                                 size += data->callchain->nr;
5982
5983                         size *= sizeof(u64);
5984
5985                         __output_copy(handle, data->callchain, size);
5986                 } else {
5987                         u64 nr = 0;
5988                         perf_output_put(handle, nr);
5989                 }
5990         }
5991
5992         if (sample_type & PERF_SAMPLE_RAW) {
5993                 struct perf_raw_record *raw = data->raw;
5994
5995                 if (raw) {
5996                         struct perf_raw_frag *frag = &raw->frag;
5997
5998                         perf_output_put(handle, raw->size);
5999                         do {
6000                                 if (frag->copy) {
6001                                         __output_custom(handle, frag->copy,
6002                                                         frag->data, frag->size);
6003                                 } else {
6004                                         __output_copy(handle, frag->data,
6005                                                       frag->size);
6006                                 }
6007                                 if (perf_raw_frag_last(frag))
6008                                         break;
6009                                 frag = frag->next;
6010                         } while (1);
6011                         if (frag->pad)
6012                                 __output_skip(handle, NULL, frag->pad);
6013                 } else {
6014                         struct {
6015                                 u32     size;
6016                                 u32     data;
6017                         } raw = {
6018                                 .size = sizeof(u32),
6019                                 .data = 0,
6020                         };
6021                         perf_output_put(handle, raw);
6022                 }
6023         }
6024
6025         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6026                 if (data->br_stack) {
6027                         size_t size;
6028
6029                         size = data->br_stack->nr
6030                              * sizeof(struct perf_branch_entry);
6031
6032                         perf_output_put(handle, data->br_stack->nr);
6033                         perf_output_copy(handle, data->br_stack->entries, size);
6034                 } else {
6035                         /*
6036                          * we always store at least the value of nr
6037                          */
6038                         u64 nr = 0;
6039                         perf_output_put(handle, nr);
6040                 }
6041         }
6042
6043         if (sample_type & PERF_SAMPLE_REGS_USER) {
6044                 u64 abi = data->regs_user.abi;
6045
6046                 /*
6047                  * If there are no regs to dump, notice it through
6048                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6049                  */
6050                 perf_output_put(handle, abi);
6051
6052                 if (abi) {
6053                         u64 mask = event->attr.sample_regs_user;
6054                         perf_output_sample_regs(handle,
6055                                                 data->regs_user.regs,
6056                                                 mask);
6057                 }
6058         }
6059
6060         if (sample_type & PERF_SAMPLE_STACK_USER) {
6061                 perf_output_sample_ustack(handle,
6062                                           data->stack_user_size,
6063                                           data->regs_user.regs);
6064         }
6065
6066         if (sample_type & PERF_SAMPLE_WEIGHT)
6067                 perf_output_put(handle, data->weight);
6068
6069         if (sample_type & PERF_SAMPLE_DATA_SRC)
6070                 perf_output_put(handle, data->data_src.val);
6071
6072         if (sample_type & PERF_SAMPLE_TRANSACTION)
6073                 perf_output_put(handle, data->txn);
6074
6075         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6076                 u64 abi = data->regs_intr.abi;
6077                 /*
6078                  * If there are no regs to dump, notice it through
6079                  * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
6080                  */
6081                 perf_output_put(handle, abi);
6082
6083                 if (abi) {
6084                         u64 mask = event->attr.sample_regs_intr;
6085
6086                         perf_output_sample_regs(handle,
6087                                                 data->regs_intr.regs,
6088                                                 mask);
6089                 }
6090         }
6091
6092         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6093                 perf_output_put(handle, data->phys_addr);
6094
6095         if (!event->attr.watermark) {
6096                 int wakeup_events = event->attr.wakeup_events;
6097
6098                 if (wakeup_events) {
6099                         struct ring_buffer *rb = handle->rb;
6100                         int events = local_inc_return(&rb->events);
6101
6102                         if (events >= wakeup_events) {
6103                                 local_sub(wakeup_events, &rb->events);
6104                                 local_inc(&rb->wakeup);
6105                         }
6106                 }
6107         }
6108 }
6109
6110 static u64 perf_virt_to_phys(u64 virt)
6111 {
6112         u64 phys_addr = 0;
6113
6114         if (!virt)
6115                 return 0;
6116
6117         if (virt >= TASK_SIZE) {
6118                 /* If it's vmalloc()d memory, leave phys_addr as 0 */
6119                 if (virt_addr_valid((void *)(uintptr_t)virt) &&
6120                     !(virt >= VMALLOC_START && virt < VMALLOC_END))
6121                         phys_addr = (u64)virt_to_phys((void *)(uintptr_t)virt);
6122         } else {
6123                 /*
6124                  * Walking the pages tables for user address.
6125                  * Interrupts are disabled, so it prevents any tear down
6126                  * of the page tables.
6127                  * Try IRQ-safe __get_user_pages_fast first.
6128                  * If failed, leave phys_addr as 0.
6129                  */
6130                 if (current->mm != NULL) {
6131                         struct page *p;
6132
6133                         pagefault_disable();
6134                         if (__get_user_pages_fast(virt, 1, 0, &p) == 1) {
6135                                 phys_addr = page_to_phys(p) + virt % PAGE_SIZE;
6136                                 put_page(p);
6137                         }
6138                         pagefault_enable();
6139                 }
6140         }
6141
6142         return phys_addr;
6143 }
6144
6145 void perf_prepare_sample(struct perf_event_header *header,
6146                          struct perf_sample_data *data,
6147                          struct perf_event *event,
6148                          struct pt_regs *regs)
6149 {
6150         u64 sample_type = event->attr.sample_type;
6151
6152         header->type = PERF_RECORD_SAMPLE;
6153         header->size = sizeof(*header) + event->header_size;
6154
6155         header->misc = 0;
6156         header->misc |= perf_misc_flags(regs);
6157
6158         __perf_event_header__init_id(header, data, event);
6159
6160         if (sample_type & PERF_SAMPLE_IP)
6161                 data->ip = perf_instruction_pointer(regs);
6162
6163         if (sample_type & PERF_SAMPLE_CALLCHAIN) {
6164                 int size = 1;
6165
6166                 data->callchain = perf_callchain(event, regs);
6167
6168                 if (data->callchain)
6169                         size += data->callchain->nr;
6170
6171                 header->size += size * sizeof(u64);
6172         }
6173
6174         if (sample_type & PERF_SAMPLE_RAW) {
6175                 struct perf_raw_record *raw = data->raw;
6176                 int size;
6177
6178                 if (raw) {
6179                         struct perf_raw_frag *frag = &raw->frag;
6180                         u32 sum = 0;
6181
6182                         do {
6183                                 sum += frag->size;
6184                                 if (perf_raw_frag_last(frag))
6185                                         break;
6186                                 frag = frag->next;
6187                         } while (1);
6188
6189                         size = round_up(sum + sizeof(u32), sizeof(u64));
6190                         raw->size = size - sizeof(u32);
6191                         frag->pad = raw->size - sum;
6192                 } else {
6193                         size = sizeof(u64);
6194                 }
6195
6196                 header->size += size;
6197         }
6198
6199         if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
6200                 int size = sizeof(u64); /* nr */
6201                 if (data->br_stack) {
6202                         size += data->br_stack->nr
6203                               * sizeof(struct perf_branch_entry);
6204                 }
6205                 header->size += size;
6206         }
6207
6208         if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
6209                 perf_sample_regs_user(&data->regs_user, regs,
6210                                       &data->regs_user_copy);
6211
6212         if (sample_type & PERF_SAMPLE_REGS_USER) {
6213                 /* regs dump ABI info */
6214                 int size = sizeof(u64);
6215
6216                 if (data->regs_user.regs) {
6217                         u64 mask = event->attr.sample_regs_user;
6218                         size += hweight64(mask) * sizeof(u64);
6219                 }
6220
6221                 header->size += size;
6222         }
6223
6224         if (sample_type & PERF_SAMPLE_STACK_USER) {
6225                 /*
6226                  * Either we need PERF_SAMPLE_STACK_USER bit to be allways
6227                  * processed as the last one or have additional check added
6228                  * in case new sample type is added, because we could eat
6229                  * up the rest of the sample size.
6230                  */
6231                 u16 stack_size = event->attr.sample_stack_user;
6232                 u16 size = sizeof(u64);
6233
6234                 stack_size = perf_sample_ustack_size(stack_size, header->size,
6235                                                      data->regs_user.regs);
6236
6237                 /*
6238                  * If there is something to dump, add space for the dump
6239                  * itself and for the field that tells the dynamic size,
6240                  * which is how many have been actually dumped.
6241                  */
6242                 if (stack_size)
6243                         size += sizeof(u64) + stack_size;
6244
6245                 data->stack_user_size = stack_size;
6246                 header->size += size;
6247         }
6248
6249         if (sample_type & PERF_SAMPLE_REGS_INTR) {
6250                 /* regs dump ABI info */
6251                 int size = sizeof(u64);
6252
6253                 perf_sample_regs_intr(&data->regs_intr, regs);
6254
6255                 if (data->regs_intr.regs) {
6256                         u64 mask = event->attr.sample_regs_intr;
6257
6258                         size += hweight64(mask) * sizeof(u64);
6259                 }
6260
6261                 header->size += size;
6262         }
6263
6264         if (sample_type & PERF_SAMPLE_PHYS_ADDR)
6265                 data->phys_addr = perf_virt_to_phys(data->addr);
6266 }
6267
6268 static void __always_inline
6269 __perf_event_output(struct perf_event *event,
6270                     struct perf_sample_data *data,
6271                     struct pt_regs *regs,
6272                     int (*output_begin)(struct perf_output_handle *,
6273                                         struct perf_event *,
6274                                         unsigned int))
6275 {
6276         struct perf_output_handle handle;
6277         struct perf_event_header header;
6278
6279         /* protect the callchain buffers */
6280         rcu_read_lock();
6281
6282         perf_prepare_sample(&header, data, event, regs);
6283
6284         if (output_begin(&handle, event, header.size))
6285                 goto exit;
6286
6287         perf_output_sample(&handle, &header, data, event);
6288
6289         perf_output_end(&handle);
6290
6291 exit:
6292         rcu_read_unlock();
6293 }
6294
6295 void
6296 perf_event_output_forward(struct perf_event *event,
6297                          struct perf_sample_data *data,
6298                          struct pt_regs *regs)
6299 {
6300         __perf_event_output(event, data, regs, perf_output_begin_forward);
6301 }
6302
6303 void
6304 perf_event_output_backward(struct perf_event *event,
6305                            struct perf_sample_data *data,
6306                            struct pt_regs *regs)
6307 {
6308         __perf_event_output(event, data, regs, perf_output_begin_backward);
6309 }
6310
6311 void
6312 perf_event_output(struct perf_event *event,
6313                   struct perf_sample_data *data,
6314                   struct pt_regs *regs)
6315 {
6316         __perf_event_output(event, data, regs, perf_output_begin);
6317 }
6318
6319 /*
6320  * read event_id
6321  */
6322
6323 struct perf_read_event {
6324         struct perf_event_header        header;
6325
6326         u32                             pid;
6327         u32                             tid;
6328 };
6329
6330 static void
6331 perf_event_read_event(struct perf_event *event,
6332                         struct task_struct *task)
6333 {
6334         struct perf_output_handle handle;
6335         struct perf_sample_data sample;
6336         struct perf_read_event read_event = {
6337                 .header = {
6338                         .type = PERF_RECORD_READ,
6339                         .misc = 0,
6340                         .size = sizeof(read_event) + event->read_size,
6341                 },
6342                 .pid = perf_event_pid(event, task),
6343                 .tid = perf_event_tid(event, task),
6344         };
6345         int ret;
6346
6347         perf_event_header__init_id(&read_event.header, &sample, event);
6348         ret = perf_output_begin(&handle, event, read_event.header.size);
6349         if (ret)
6350                 return;
6351
6352         perf_output_put(&handle, read_event);
6353         perf_output_read(&handle, event);
6354         perf_event__output_id_sample(event, &handle, &sample);
6355
6356         perf_output_end(&handle);
6357 }
6358
6359 typedef void (perf_iterate_f)(struct perf_event *event, void *data);
6360
6361 static void
6362 perf_iterate_ctx(struct perf_event_context *ctx,
6363                    perf_iterate_f output,
6364                    void *data, bool all)
6365 {
6366         struct perf_event *event;
6367
6368         list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6369                 if (!all) {
6370                         if (event->state < PERF_EVENT_STATE_INACTIVE)
6371                                 continue;
6372                         if (!event_filter_match(event))
6373                                 continue;
6374                 }
6375
6376                 output(event, data);
6377         }
6378 }
6379
6380 static void perf_iterate_sb_cpu(perf_iterate_f output, void *data)
6381 {
6382         struct pmu_event_list *pel = this_cpu_ptr(&pmu_sb_events);
6383         struct perf_event *event;
6384
6385         list_for_each_entry_rcu(event, &pel->list, sb_list) {
6386                 /*
6387                  * Skip events that are not fully formed yet; ensure that
6388                  * if we observe event->ctx, both event and ctx will be
6389                  * complete enough. See perf_install_in_context().
6390                  */
6391                 if (!smp_load_acquire(&event->ctx))
6392                         continue;
6393
6394                 if (event->state < PERF_EVENT_STATE_INACTIVE)
6395                         continue;
6396                 if (!event_filter_match(event))
6397                         continue;
6398                 output(event, data);
6399         }
6400 }
6401
6402 /*
6403  * Iterate all events that need to receive side-band events.
6404  *
6405  * For new callers; ensure that account_pmu_sb_event() includes
6406  * your event, otherwise it might not get delivered.
6407  */
6408 static void
6409 perf_iterate_sb(perf_iterate_f output, void *data,
6410                struct perf_event_context *task_ctx)
6411 {
6412         struct perf_event_context *ctx;
6413         int ctxn;
6414
6415         rcu_read_lock();
6416         preempt_disable();
6417
6418         /*
6419          * If we have task_ctx != NULL we only notify the task context itself.
6420          * The task_ctx is set only for EXIT events before releasing task
6421          * context.
6422          */
6423         if (task_ctx) {
6424                 perf_iterate_ctx(task_ctx, output, data, false);
6425                 goto done;
6426         }
6427
6428         perf_iterate_sb_cpu(output, data);
6429
6430         for_each_task_context_nr(ctxn) {
6431                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
6432                 if (ctx)
6433                         perf_iterate_ctx(ctx, output, data, false);
6434         }
6435 done:
6436         preempt_enable();
6437         rcu_read_unlock();
6438 }
6439
6440 /*
6441  * Clear all file-based filters at exec, they'll have to be
6442  * re-instated when/if these objects are mmapped again.
6443  */
6444 static void perf_event_addr_filters_exec(struct perf_event *event, void *data)
6445 {
6446         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
6447         struct perf_addr_filter *filter;
6448         unsigned int restart = 0, count = 0;
6449         unsigned long flags;
6450
6451         if (!has_addr_filter(event))
6452                 return;
6453
6454         raw_spin_lock_irqsave(&ifh->lock, flags);
6455         list_for_each_entry(filter, &ifh->list, entry) {
6456                 if (filter->path.dentry) {
6457                         event->addr_filters_offs[count] = 0;
6458                         restart++;
6459                 }
6460
6461                 count++;
6462         }
6463
6464         if (restart)
6465                 event->addr_filters_gen++;
6466         raw_spin_unlock_irqrestore(&ifh->lock, flags);
6467
6468         if (restart)
6469                 perf_event_stop(event, 1);
6470 }
6471
6472 void perf_event_exec(void)
6473 {
6474         struct perf_event_context *ctx;
6475         int ctxn;
6476
6477         rcu_read_lock();
6478         for_each_task_context_nr(ctxn) {
6479                 ctx = current->perf_event_ctxp[ctxn];
6480                 if (!ctx)
6481                         continue;
6482
6483                 perf_event_enable_on_exec(ctxn);
6484
6485                 perf_iterate_ctx(ctx, perf_event_addr_filters_exec, NULL,
6486                                    true);
6487         }
6488         rcu_read_unlock();
6489 }
6490
6491 struct remote_output {
6492         struct ring_buffer      *rb;
6493         int                     err;
6494 };
6495
6496 static void __perf_event_output_stop(struct perf_event *event, void *data)
6497 {
6498         struct perf_event *parent = event->parent;
6499         struct remote_output *ro = data;
6500         struct ring_buffer *rb = ro->rb;
6501         struct stop_event_data sd = {
6502                 .event  = event,
6503         };
6504
6505         if (!has_aux(event))
6506                 return;
6507
6508         if (!parent)
6509                 parent = event;
6510
6511         /*
6512          * In case of inheritance, it will be the parent that links to the
6513          * ring-buffer, but it will be the child that's actually using it.
6514          *
6515          * We are using event::rb to determine if the event should be stopped,
6516          * however this may race with ring_buffer_attach() (through set_output),
6517          * which will make us skip the event that actually needs to be stopped.
6518          * So ring_buffer_attach() has to stop an aux event before re-assigning
6519          * its rb pointer.
6520          */
6521         if (rcu_dereference(parent->rb) == rb)
6522                 ro->err = __perf_event_stop(&sd);
6523 }
6524
6525 static int __perf_pmu_output_stop(void *info)
6526 {
6527         struct perf_event *event = info;
6528         struct pmu *pmu = event->pmu;
6529         struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6530         struct remote_output ro = {
6531                 .rb     = event->rb,
6532         };
6533
6534         rcu_read_lock();
6535         perf_iterate_ctx(&cpuctx->ctx, __perf_event_output_stop, &ro, false);
6536         if (cpuctx->task_ctx)
6537                 perf_iterate_ctx(cpuctx->task_ctx, __perf_event_output_stop,
6538                                    &ro, false);
6539         rcu_read_unlock();
6540
6541         return ro.err;
6542 }
6543
6544 static void perf_pmu_output_stop(struct perf_event *event)
6545 {
6546         struct perf_event *iter;
6547         int err, cpu;
6548
6549 restart:
6550         rcu_read_lock();
6551         list_for_each_entry_rcu(iter, &event->rb->event_list, rb_entry) {
6552                 /*
6553                  * For per-CPU events, we need to make sure that neither they
6554                  * nor their children are running; for cpu==-1 events it's
6555                  * sufficient to stop the event itself if it's active, since
6556                  * it can't have children.
6557                  */
6558                 cpu = iter->cpu;
6559                 if (cpu == -1)
6560                         cpu = READ_ONCE(iter->oncpu);
6561
6562                 if (cpu == -1)
6563                         continue;
6564
6565                 err = cpu_function_call(cpu, __perf_pmu_output_stop, event);
6566                 if (err == -EAGAIN) {
6567                         rcu_read_unlock();
6568                         goto restart;
6569                 }
6570         }
6571         rcu_read_unlock();
6572 }
6573
6574 /*
6575  * task tracking -- fork/exit
6576  *
6577  * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
6578  */
6579
6580 struct perf_task_event {
6581         struct task_struct              *task;
6582         struct perf_event_context       *task_ctx;
6583
6584         struct {
6585                 struct perf_event_header        header;
6586
6587                 u32                             pid;
6588                 u32                             ppid;
6589                 u32                             tid;
6590                 u32                             ptid;
6591                 u64                             time;
6592         } event_id;
6593 };
6594
6595 static int perf_event_task_match(struct perf_event *event)
6596 {
6597         return event->attr.comm  || event->attr.mmap ||
6598                event->attr.mmap2 || event->attr.mmap_data ||
6599                event->attr.task;
6600 }
6601
6602 static void perf_event_task_output(struct perf_event *event,
6603                                    void *data)
6604 {
6605         struct perf_task_event *task_event = data;
6606         struct perf_output_handle handle;
6607         struct perf_sample_data sample;
6608         struct task_struct *task = task_event->task;
6609         int ret, size = task_event->event_id.header.size;
6610
6611         if (!perf_event_task_match(event))
6612                 return;
6613
6614         perf_event_header__init_id(&task_event->event_id.header, &sample, event);
6615
6616         ret = perf_output_begin(&handle, event,
6617                                 task_event->event_id.header.size);
6618         if (ret)
6619                 goto out;
6620
6621         task_event->event_id.pid = perf_event_pid(event, task);
6622         task_event->event_id.tid = perf_event_tid(event, task);
6623
6624         if (task_event->event_id.header.type == PERF_RECORD_EXIT) {
6625                 task_event->event_id.ppid = perf_event_pid(event,
6626                                                         task->real_parent);
6627                 task_event->event_id.ptid = perf_event_pid(event,
6628                                                         task->real_parent);
6629         } else {  /* PERF_RECORD_FORK */
6630                 task_event->event_id.ppid = perf_event_pid(event, current);
6631                 task_event->event_id.ptid = perf_event_tid(event, current);
6632         }
6633
6634         task_event->event_id.time = perf_event_clock(event);
6635
6636         perf_output_put(&handle, task_event->event_id);
6637
6638         perf_event__output_id_sample(event, &handle, &sample);
6639
6640         perf_output_end(&handle);
6641 out:
6642         task_event->event_id.header.size = size;
6643 }
6644
6645 static void perf_event_task(struct task_struct *task,
6646                               struct perf_event_context *task_ctx,
6647                               int new)
6648 {
6649         struct perf_task_event task_event;
6650
6651         if (!atomic_read(&nr_comm_events) &&
6652             !atomic_read(&nr_mmap_events) &&
6653             !atomic_read(&nr_task_events))
6654                 return;
6655
6656         task_event = (struct perf_task_event){
6657                 .task     = task,
6658                 .task_ctx = task_ctx,
6659                 .event_id    = {
6660                         .header = {
6661                                 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
6662                                 .misc = 0,
6663                                 .size = sizeof(task_event.event_id),
6664                         },
6665                         /* .pid  */
6666                         /* .ppid */
6667                         /* .tid  */
6668                         /* .ptid */
6669                         /* .time */
6670                 },
6671         };
6672
6673         perf_iterate_sb(perf_event_task_output,
6674                        &task_event,
6675                        task_ctx);
6676 }
6677
6678 void perf_event_fork(struct task_struct *task)
6679 {
6680         perf_event_task(task, NULL, 1);
6681         perf_event_namespaces(task);
6682 }
6683
6684 /*
6685  * comm tracking
6686  */
6687
6688 struct perf_comm_event {
6689         struct task_struct      *task;
6690         char                    *comm;
6691         int                     comm_size;
6692
6693         struct {
6694                 struct perf_event_header        header;
6695
6696                 u32                             pid;
6697                 u32                             tid;
6698         } event_id;
6699 };
6700
6701 static int perf_event_comm_match(struct perf_event *event)
6702 {
6703         return event->attr.comm;
6704 }
6705
6706 static void perf_event_comm_output(struct perf_event *event,
6707                                    void *data)
6708 {
6709         struct perf_comm_event *comm_event = data;
6710         struct perf_output_handle handle;
6711         struct perf_sample_data sample;
6712         int size = comm_event->event_id.header.size;
6713         int ret;
6714
6715         if (!perf_event_comm_match(event))
6716                 return;
6717
6718         perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
6719         ret = perf_output_begin(&handle, event,
6720                                 comm_event->event_id.header.size);
6721
6722         if (ret)
6723                 goto out;
6724
6725         comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
6726         comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
6727
6728         perf_output_put(&handle, comm_event->event_id);
6729         __output_copy(&handle, comm_event->comm,
6730                                    comm_event->comm_size);
6731
6732         perf_event__output_id_sample(event, &handle, &sample);
6733
6734         perf_output_end(&handle);
6735 out:
6736         comm_event->event_id.header.size = size;
6737 }
6738
6739 static void perf_event_comm_event(struct perf_comm_event *comm_event)
6740 {
6741         char comm[TASK_COMM_LEN];
6742         unsigned int size;
6743
6744         memset(comm, 0, sizeof(comm));
6745         strlcpy(comm, comm_event->task->comm, sizeof(comm));
6746         size = ALIGN(strlen(comm)+1, sizeof(u64));
6747
6748         comm_event->comm = comm;
6749         comm_event->comm_size = size;
6750
6751         comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
6752
6753         perf_iterate_sb(perf_event_comm_output,
6754                        comm_event,
6755                        NULL);
6756 }
6757
6758 void perf_event_comm(struct task_struct *task, bool exec)
6759 {
6760         struct perf_comm_event comm_event;
6761
6762         if (!atomic_read(&nr_comm_events))
6763                 return;
6764
6765         comm_event = (struct perf_comm_event){
6766                 .task   = task,
6767                 /* .comm      */
6768                 /* .comm_size */
6769                 .event_id  = {
6770                         .header = {
6771                                 .type = PERF_RECORD_COMM,
6772                                 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
6773                                 /* .size */
6774                         },
6775                         /* .pid */
6776                         /* .tid */
6777                 },
6778         };
6779
6780         perf_event_comm_event(&comm_event);
6781 }
6782
6783 /*
6784  * namespaces tracking
6785  */
6786
6787 struct perf_namespaces_event {
6788         struct task_struct              *task;
6789
6790         struct {
6791                 struct perf_event_header        header;
6792
6793                 u32                             pid;
6794                 u32                             tid;
6795                 u64                             nr_namespaces;
6796                 struct perf_ns_link_info        link_info[NR_NAMESPACES];
6797         } event_id;
6798 };
6799
6800 static int perf_event_namespaces_match(struct perf_event *event)
6801 {
6802         return event->attr.namespaces;
6803 }
6804
6805 static void perf_event_namespaces_output(struct perf_event *event,
6806                                          void *data)
6807 {
6808         struct perf_namespaces_event *namespaces_event = data;
6809         struct perf_output_handle handle;
6810         struct perf_sample_data sample;
6811         u16 header_size = namespaces_event->event_id.header.size;
6812         int ret;
6813
6814         if (!perf_event_namespaces_match(event))
6815                 return;
6816
6817         perf_event_header__init_id(&namespaces_event->event_id.header,
6818                                    &sample, event);
6819         ret = perf_output_begin(&handle, event,
6820                                 namespaces_event->event_id.header.size);
6821         if (ret)
6822                 goto out;
6823
6824         namespaces_event->event_id.pid = perf_event_pid(event,
6825                                                         namespaces_event->task);
6826         namespaces_event->event_id.tid = perf_event_tid(event,
6827                                                         namespaces_event->task);
6828
6829         perf_output_put(&handle, namespaces_event->event_id);
6830
6831         perf_event__output_id_sample(event, &handle, &sample);
6832
6833         perf_output_end(&handle);
6834 out:
6835         namespaces_event->event_id.header.size = header_size;
6836 }
6837
6838 static void perf_fill_ns_link_info(struct perf_ns_link_info *ns_link_info,
6839                                    struct task_struct *task,
6840                                    const struct proc_ns_operations *ns_ops)
6841 {
6842         struct path ns_path;
6843         struct inode *ns_inode;
6844         void *error;
6845
6846         error = ns_get_path(&ns_path, task, ns_ops);
6847         if (!error) {
6848                 ns_inode = ns_path.dentry->d_inode;
6849                 ns_link_info->dev = new_encode_dev(ns_inode->i_sb->s_dev);
6850                 ns_link_info->ino = ns_inode->i_ino;
6851                 path_put(&ns_path);
6852         }
6853 }
6854
6855 void perf_event_namespaces(struct task_struct *task)
6856 {
6857         struct perf_namespaces_event namespaces_event;
6858         struct perf_ns_link_info *ns_link_info;
6859
6860         if (!atomic_read(&nr_namespaces_events))
6861                 return;
6862
6863         namespaces_event = (struct perf_namespaces_event){
6864                 .task   = task,
6865                 .event_id  = {
6866                         .header = {
6867                                 .type = PERF_RECORD_NAMESPACES,
6868                                 .misc = 0,
6869                                 .size = sizeof(namespaces_event.event_id),
6870                         },
6871                         /* .pid */
6872                         /* .tid */
6873                         .nr_namespaces = NR_NAMESPACES,
6874                         /* .link_info[NR_NAMESPACES] */
6875                 },
6876         };
6877
6878         ns_link_info = namespaces_event.event_id.link_info;
6879
6880         perf_fill_ns_link_info(&ns_link_info[MNT_NS_INDEX],
6881                                task, &mntns_operations);
6882
6883 #ifdef CONFIG_USER_NS
6884         perf_fill_ns_link_info(&ns_link_info[USER_NS_INDEX],
6885                                task, &userns_operations);
6886 #endif
6887 #ifdef CONFIG_NET_NS
6888         perf_fill_ns_link_info(&ns_link_info[NET_NS_INDEX],
6889                                task, &netns_operations);
6890 #endif
6891 #ifdef CONFIG_UTS_NS
6892         perf_fill_ns_link_info(&ns_link_info[UTS_NS_INDEX],
6893                                task, &utsns_operations);
6894 #endif
6895 #ifdef CONFIG_IPC_NS
6896         perf_fill_ns_link_info(&ns_link_info[IPC_NS_INDEX],
6897                                task, &ipcns_operations);
6898 #endif
6899 #ifdef CONFIG_PID_NS
6900         perf_fill_ns_link_info(&ns_link_info[PID_NS_INDEX],
6901                                task, &pidns_operations);
6902 #endif
6903 #ifdef CONFIG_CGROUPS
6904         perf_fill_ns_link_info(&ns_link_info[CGROUP_NS_INDEX],
6905                                task, &cgroupns_operations);
6906 #endif
6907
6908         perf_iterate_sb(perf_event_namespaces_output,
6909                         &namespaces_event,
6910                         NULL);
6911 }
6912
6913 /*
6914  * mmap tracking
6915  */
6916
6917 struct perf_mmap_event {
6918         struct vm_area_struct   *vma;
6919
6920         const char              *file_name;
6921         int                     file_size;
6922         int                     maj, min;
6923         u64                     ino;
6924         u64                     ino_generation;
6925         u32                     prot, flags;
6926
6927         struct {
6928                 struct perf_event_header        header;
6929
6930                 u32                             pid;
6931                 u32                             tid;
6932                 u64                             start;
6933                 u64                             len;
6934                 u64                             pgoff;
6935         } event_id;
6936 };
6937
6938 static int perf_event_mmap_match(struct perf_event *event,
6939                                  void *data)
6940 {
6941         struct perf_mmap_event *mmap_event = data;
6942         struct vm_area_struct *vma = mmap_event->vma;
6943         int executable = vma->vm_flags & VM_EXEC;
6944
6945         return (!executable && event->attr.mmap_data) ||
6946                (executable && (event->attr.mmap || event->attr.mmap2));
6947 }
6948
6949 static void perf_event_mmap_output(struct perf_event *event,
6950                                    void *data)
6951 {
6952         struct perf_mmap_event *mmap_event = data;
6953         struct perf_output_handle handle;
6954         struct perf_sample_data sample;
6955         int size = mmap_event->event_id.header.size;
6956         u32 type = mmap_event->event_id.header.type;
6957         int ret;
6958
6959         if (!perf_event_mmap_match(event, data))
6960                 return;
6961
6962         if (event->attr.mmap2) {
6963                 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
6964                 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
6965                 mmap_event->event_id.header.size += sizeof(mmap_event->min);
6966                 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
6967                 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
6968                 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
6969                 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
6970         }
6971
6972         perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
6973         ret = perf_output_begin(&handle, event,
6974                                 mmap_event->event_id.header.size);
6975         if (ret)
6976                 goto out;
6977
6978         mmap_event->event_id.pid = perf_event_pid(event, current);
6979         mmap_event->event_id.tid = perf_event_tid(event, current);
6980
6981         perf_output_put(&handle, mmap_event->event_id);
6982
6983         if (event->attr.mmap2) {
6984                 perf_output_put(&handle, mmap_event->maj);
6985                 perf_output_put(&handle, mmap_event->min);
6986                 perf_output_put(&handle, mmap_event->ino);
6987                 perf_output_put(&handle, mmap_event->ino_generation);
6988                 perf_output_put(&handle, mmap_event->prot);
6989                 perf_output_put(&handle, mmap_event->flags);
6990         }
6991
6992         __output_copy(&handle, mmap_event->file_name,
6993                                    mmap_event->file_size);
6994
6995         perf_event__output_id_sample(event, &handle, &sample);
6996
6997         perf_output_end(&handle);
6998 out:
6999         mmap_event->event_id.header.size = size;
7000         mmap_event->event_id.header.type = type;
7001 }
7002
7003 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
7004 {
7005         struct vm_area_struct *vma = mmap_event->vma;
7006         struct file *file = vma->vm_file;
7007         int maj = 0, min = 0;
7008         u64 ino = 0, gen = 0;
7009         u32 prot = 0, flags = 0;
7010         unsigned int size;
7011         char tmp[16];
7012         char *buf = NULL;
7013         char *name;
7014
7015         if (vma->vm_flags & VM_READ)
7016                 prot |= PROT_READ;
7017         if (vma->vm_flags & VM_WRITE)
7018                 prot |= PROT_WRITE;
7019         if (vma->vm_flags & VM_EXEC)
7020                 prot |= PROT_EXEC;
7021
7022         if (vma->vm_flags & VM_MAYSHARE)
7023                 flags = MAP_SHARED;
7024         else
7025                 flags = MAP_PRIVATE;
7026
7027         if (vma->vm_flags & VM_DENYWRITE)
7028                 flags |= MAP_DENYWRITE;
7029         if (vma->vm_flags & VM_MAYEXEC)
7030                 flags |= MAP_EXECUTABLE;
7031         if (vma->vm_flags & VM_LOCKED)
7032                 flags |= MAP_LOCKED;
7033         if (vma->vm_flags & VM_HUGETLB)
7034                 flags |= MAP_HUGETLB;
7035
7036         if (file) {
7037                 struct inode *inode;
7038                 dev_t dev;
7039
7040                 buf = kmalloc(PATH_MAX, GFP_KERNEL);
7041                 if (!buf) {
7042                         name = "//enomem";
7043                         goto cpy_name;
7044                 }
7045                 /*
7046                  * d_path() works from the end of the rb backwards, so we
7047                  * need to add enough zero bytes after the string to handle
7048                  * the 64bit alignment we do later.
7049                  */
7050                 name = file_path(file, buf, PATH_MAX - sizeof(u64));
7051                 if (IS_ERR(name)) {
7052                         name = "//toolong";
7053                         goto cpy_name;
7054                 }
7055                 inode = file_inode(vma->vm_file);
7056                 dev = inode->i_sb->s_dev;
7057                 ino = inode->i_ino;
7058                 gen = inode->i_generation;
7059                 maj = MAJOR(dev);
7060                 min = MINOR(dev);
7061
7062                 goto got_name;
7063         } else {
7064                 if (vma->vm_ops && vma->vm_ops->name) {
7065                         name = (char *) vma->vm_ops->name(vma);
7066                         if (name)
7067                                 goto cpy_name;
7068                 }
7069
7070                 name = (char *)arch_vma_name(vma);
7071                 if (name)
7072                         goto cpy_name;
7073
7074                 if (vma->vm_start <= vma->vm_mm->start_brk &&
7075                                 vma->vm_end >= vma->vm_mm->brk) {
7076                         name = "[heap]";
7077                         goto cpy_name;
7078                 }
7079                 if (vma->vm_start <= vma->vm_mm->start_stack &&
7080                                 vma->vm_end >= vma->vm_mm->start_stack) {
7081                         name = "[stack]";
7082                         goto cpy_name;
7083                 }
7084
7085                 name = "//anon";
7086                 goto cpy_name;
7087         }
7088
7089 cpy_name:
7090         strlcpy(tmp, name, sizeof(tmp));
7091         name = tmp;
7092 got_name:
7093         /*
7094          * Since our buffer works in 8 byte units we need to align our string
7095          * size to a multiple of 8. However, we must guarantee the tail end is
7096          * zero'd out to avoid leaking random bits to userspace.
7097          */
7098         size = strlen(name)+1;
7099         while (!IS_ALIGNED(size, sizeof(u64)))
7100                 name[size++] = '\0';
7101
7102         mmap_event->file_name = name;
7103         mmap_event->file_size = size;
7104         mmap_event->maj = maj;
7105         mmap_event->min = min;
7106         mmap_event->ino = ino;
7107         mmap_event->ino_generation = gen;
7108         mmap_event->prot = prot;
7109         mmap_event->flags = flags;
7110
7111         if (!(vma->vm_flags & VM_EXEC))
7112                 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
7113
7114         mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
7115
7116         perf_iterate_sb(perf_event_mmap_output,
7117                        mmap_event,
7118                        NULL);
7119
7120         kfree(buf);
7121 }
7122
7123 /*
7124  * Check whether inode and address range match filter criteria.
7125  */
7126 static bool perf_addr_filter_match(struct perf_addr_filter *filter,
7127                                      struct file *file, unsigned long offset,
7128                                      unsigned long size)
7129 {
7130         /* d_inode(NULL) won't be equal to any mapped user-space file */
7131         if (!filter->path.dentry)
7132                 return false;
7133
7134         if (d_inode(filter->path.dentry) != file_inode(file))
7135                 return false;
7136
7137         if (filter->offset > offset + size)
7138                 return false;
7139
7140         if (filter->offset + filter->size < offset)
7141                 return false;
7142
7143         return true;
7144 }
7145
7146 static void __perf_addr_filters_adjust(struct perf_event *event, void *data)
7147 {
7148         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
7149         struct vm_area_struct *vma = data;
7150         unsigned long off = vma->vm_pgoff << PAGE_SHIFT, flags;
7151         struct file *file = vma->vm_file;
7152         struct perf_addr_filter *filter;
7153         unsigned int restart = 0, count = 0;
7154
7155         if (!has_addr_filter(event))
7156                 return;
7157
7158         if (!file)
7159                 return;
7160
7161         raw_spin_lock_irqsave(&ifh->lock, flags);
7162         list_for_each_entry(filter, &ifh->list, entry) {
7163                 if (perf_addr_filter_match(filter, file, off,
7164                                              vma->vm_end - vma->vm_start)) {
7165                         event->addr_filters_offs[count] = vma->vm_start;
7166                         restart++;
7167                 }
7168
7169                 count++;
7170         }
7171
7172         if (restart)
7173                 event->addr_filters_gen++;
7174         raw_spin_unlock_irqrestore(&ifh->lock, flags);
7175
7176         if (restart)
7177                 perf_event_stop(event, 1);
7178 }
7179
7180 /*
7181  * Adjust all task's events' filters to the new vma
7182  */
7183 static void perf_addr_filters_adjust(struct vm_area_struct *vma)
7184 {
7185         struct perf_event_context *ctx;
7186         int ctxn;
7187
7188         /*
7189          * Data tracing isn't supported yet and as such there is no need
7190          * to keep track of anything that isn't related to executable code:
7191          */
7192         if (!(vma->vm_flags & VM_EXEC))
7193                 return;
7194
7195         rcu_read_lock();
7196         for_each_task_context_nr(ctxn) {
7197                 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
7198                 if (!ctx)
7199                         continue;
7200
7201                 perf_iterate_ctx(ctx, __perf_addr_filters_adjust, vma, true);
7202         }
7203         rcu_read_unlock();
7204 }
7205
7206 void perf_event_mmap(struct vm_area_struct *vma)
7207 {
7208         struct perf_mmap_event mmap_event;
7209
7210         if (!atomic_read(&nr_mmap_events))
7211                 return;
7212
7213         mmap_event = (struct perf_mmap_event){
7214                 .vma    = vma,
7215                 /* .file_name */
7216                 /* .file_size */
7217                 .event_id  = {
7218                         .header = {
7219                                 .type = PERF_RECORD_MMAP,
7220                                 .misc = PERF_RECORD_MISC_USER,
7221                                 /* .size */
7222                         },
7223                         /* .pid */
7224                         /* .tid */
7225                         .start  = vma->vm_start,
7226                         .len    = vma->vm_end - vma->vm_start,
7227                         .pgoff  = (u64)vma->vm_pgoff << PAGE_SHIFT,
7228                 },
7229                 /* .maj (attr_mmap2 only) */
7230                 /* .min (attr_mmap2 only) */
7231                 /* .ino (attr_mmap2 only) */
7232                 /* .ino_generation (attr_mmap2 only) */
7233                 /* .prot (attr_mmap2 only) */
7234                 /* .flags (attr_mmap2 only) */
7235         };
7236
7237         perf_addr_filters_adjust(vma);
7238         perf_event_mmap_event(&mmap_event);
7239 }
7240
7241 void perf_event_aux_event(struct perf_event *event, unsigned long head,
7242                           unsigned long size, u64 flags)
7243 {
7244         struct perf_output_handle handle;
7245         struct perf_sample_data sample;
7246         struct perf_aux_event {
7247                 struct perf_event_header        header;
7248                 u64                             offset;
7249                 u64                             size;
7250                 u64                             flags;
7251         } rec = {
7252                 .header = {
7253                         .type = PERF_RECORD_AUX,
7254                         .misc = 0,
7255                         .size = sizeof(rec),
7256                 },
7257                 .offset         = head,
7258                 .size           = size,
7259                 .flags          = flags,
7260         };
7261         int ret;
7262
7263         perf_event_header__init_id(&rec.header, &sample, event);
7264         ret = perf_output_begin(&handle, event, rec.header.size);
7265
7266         if (ret)
7267                 return;
7268
7269         perf_output_put(&handle, rec);
7270         perf_event__output_id_sample(event, &handle, &sample);
7271
7272         perf_output_end(&handle);
7273 }
7274
7275 /*
7276  * Lost/dropped samples logging
7277  */
7278 void perf_log_lost_samples(struct perf_event *event, u64 lost)
7279 {
7280         struct perf_output_handle handle;
7281         struct perf_sample_data sample;
7282         int ret;
7283
7284         struct {
7285                 struct perf_event_header        header;
7286                 u64                             lost;
7287         } lost_samples_event = {
7288                 .header = {
7289                         .type = PERF_RECORD_LOST_SAMPLES,
7290                         .misc = 0,
7291                         .size = sizeof(lost_samples_event),
7292                 },
7293                 .lost           = lost,
7294         };
7295
7296         perf_event_header__init_id(&lost_samples_event.header, &sample, event);
7297
7298         ret = perf_output_begin(&handle, event,
7299                                 lost_samples_event.header.size);
7300         if (ret)
7301                 return;
7302
7303         perf_output_put(&handle, lost_samples_event);
7304         perf_event__output_id_sample(event, &handle, &sample);
7305         perf_output_end(&handle);
7306 }
7307
7308 /*
7309  * context_switch tracking
7310  */
7311
7312 struct perf_switch_event {
7313         struct task_struct      *task;
7314         struct task_struct      *next_prev;
7315
7316         struct {
7317                 struct perf_event_header        header;
7318                 u32                             next_prev_pid;
7319                 u32                             next_prev_tid;
7320         } event_id;
7321 };
7322
7323 static int perf_event_switch_match(struct perf_event *event)
7324 {
7325         return event->attr.context_switch;
7326 }
7327
7328 static void perf_event_switch_output(struct perf_event *event, void *data)
7329 {
7330         struct perf_switch_event *se = data;
7331         struct perf_output_handle handle;
7332         struct perf_sample_data sample;
7333         int ret;
7334
7335         if (!perf_event_switch_match(event))
7336                 return;
7337
7338         /* Only CPU-wide events are allowed to see next/prev pid/tid */
7339         if (event->ctx->task) {
7340                 se->event_id.header.type = PERF_RECORD_SWITCH;
7341                 se->event_id.header.size = sizeof(se->event_id.header);
7342         } else {
7343                 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
7344                 se->event_id.header.size = sizeof(se->event_id);
7345                 se->event_id.next_prev_pid =
7346                                         perf_event_pid(event, se->next_prev);
7347                 se->event_id.next_prev_tid =
7348                                         perf_event_tid(event, se->next_prev);
7349         }
7350
7351         perf_event_header__init_id(&se->event_id.header, &sample, event);
7352
7353         ret = perf_output_begin(&handle, event, se->event_id.header.size);
7354         if (ret)
7355                 return;
7356
7357         if (event->ctx->task)
7358                 perf_output_put(&handle, se->event_id.header);
7359         else
7360                 perf_output_put(&handle, se->event_id);
7361
7362         perf_event__output_id_sample(event, &handle, &sample);
7363
7364         perf_output_end(&handle);
7365 }
7366
7367 static void perf_event_switch(struct task_struct *task,
7368                               struct task_struct *next_prev, bool sched_in)
7369 {
7370         struct perf_switch_event switch_event;
7371
7372         /* N.B. caller checks nr_switch_events != 0 */
7373
7374         switch_event = (struct perf_switch_event){
7375                 .task           = task,
7376                 .next_prev      = next_prev,
7377                 .event_id       = {
7378                         .header = {
7379                                 /* .type */
7380                                 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
7381                                 /* .size */
7382                         },
7383                         /* .next_prev_pid */
7384                         /* .next_prev_tid */
7385                 },
7386         };
7387
7388         perf_iterate_sb(perf_event_switch_output,
7389                        &switch_event,
7390                        NULL);
7391 }
7392
7393 /*
7394  * IRQ throttle logging
7395  */
7396
7397 static void perf_log_throttle(struct perf_event *event, int enable)
7398 {
7399         struct perf_output_handle handle;
7400         struct perf_sample_data sample;
7401         int ret;
7402
7403         struct {
7404                 struct perf_event_header        header;
7405                 u64                             time;
7406                 u64                             id;
7407                 u64                             stream_id;
7408         } throttle_event = {
7409                 .header = {
7410                         .type = PERF_RECORD_THROTTLE,
7411                         .misc = 0,
7412                         .size = sizeof(throttle_event),
7413                 },
7414                 .time           = perf_event_clock(event),
7415                 .id             = primary_event_id(event),
7416                 .stream_id      = event->id,
7417         };
7418
7419         if (enable)
7420                 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
7421
7422         perf_event_header__init_id(&throttle_event.header, &sample, event);
7423
7424         ret = perf_output_begin(&handle, event,
7425                                 throttle_event.header.size);
7426         if (ret)
7427                 return;
7428
7429         perf_output_put(&handle, throttle_event);
7430         perf_event__output_id_sample(event, &handle, &sample);
7431         perf_output_end(&handle);
7432 }
7433
7434 void perf_event_itrace_started(struct perf_event *event)
7435 {
7436         event->attach_state |= PERF_ATTACH_ITRACE;
7437 }
7438
7439 static void perf_log_itrace_start(struct perf_event *event)
7440 {
7441         struct perf_output_handle handle;
7442         struct perf_sample_data sample;
7443         struct perf_aux_event {
7444                 struct perf_event_header        header;
7445                 u32                             pid;
7446                 u32                             tid;
7447         } rec;
7448         int ret;
7449
7450         if (event->parent)
7451                 event = event->parent;
7452
7453         if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
7454             event->attach_state & PERF_ATTACH_ITRACE)
7455                 return;
7456
7457         rec.header.type = PERF_RECORD_ITRACE_START;
7458         rec.header.misc = 0;
7459         rec.header.size = sizeof(rec);
7460         rec.pid = perf_event_pid(event, current);
7461         rec.tid = perf_event_tid(event, current);
7462
7463         perf_event_header__init_id(&rec.header, &sample, event);
7464         ret = perf_output_begin(&handle, event, rec.header.size);
7465
7466         if (ret)
7467                 return;
7468
7469         perf_output_put(&handle, rec);
7470         perf_event__output_id_sample(event, &handle, &sample);
7471
7472         perf_output_end(&handle);
7473 }
7474
7475 static int
7476 __perf_event_account_interrupt(struct perf_event *event, int throttle)
7477 {
7478         struct hw_perf_event *hwc = &event->hw;
7479         int ret = 0;
7480         u64 seq;
7481
7482         seq = __this_cpu_read(perf_throttled_seq);
7483         if (seq != hwc->interrupts_seq) {
7484                 hwc->interrupts_seq = seq;
7485                 hwc->interrupts = 1;
7486         } else {
7487                 hwc->interrupts++;
7488                 if (unlikely(throttle
7489                              && hwc->interrupts >= max_samples_per_tick)) {
7490                         __this_cpu_inc(perf_throttled_count);
7491                         tick_dep_set_cpu(smp_processor_id(), TICK_DEP_BIT_PERF_EVENTS);
7492                         hwc->interrupts = MAX_INTERRUPTS;
7493                         perf_log_throttle(event, 0);
7494                         ret = 1;
7495                 }
7496         }
7497
7498         if (event->attr.freq) {
7499                 u64 now = perf_clock();
7500                 s64 delta = now - hwc->freq_time_stamp;
7501
7502                 hwc->freq_time_stamp = now;
7503
7504                 if (delta > 0 && delta < 2*TICK_NSEC)
7505                         perf_adjust_period(event, delta, hwc->last_period, true);
7506         }
7507
7508         return ret;
7509 }
7510
7511 int perf_event_account_interrupt(struct perf_event *event)
7512 {
7513         return __perf_event_account_interrupt(event, 1);
7514 }
7515
7516 /*
7517  * Generic event overflow handling, sampling.
7518  */
7519
7520 static int __perf_event_overflow(struct perf_event *event,
7521                                    int throttle, struct perf_sample_data *data,
7522                                    struct pt_regs *regs)
7523 {
7524         int events = atomic_read(&event->event_limit);
7525         int ret = 0;
7526
7527         /*
7528          * Non-sampling counters might still use the PMI to fold short
7529          * hardware counters, ignore those.
7530          */
7531         if (unlikely(!is_sampling_event(event)))
7532                 return 0;
7533
7534         ret = __perf_event_account_interrupt(event, throttle);
7535
7536         /*
7537          * XXX event_limit might not quite work as expected on inherited
7538          * events
7539          */
7540
7541         event->pending_kill = POLL_IN;
7542         if (events && atomic_dec_and_test(&event->event_limit)) {
7543                 ret = 1;
7544                 event->pending_kill = POLL_HUP;
7545
7546                 perf_event_disable_inatomic(event);
7547         }
7548
7549         READ_ONCE(event->overflow_handler)(event, data, regs);
7550
7551         if (*perf_event_fasync(event) && event->pending_kill) {
7552                 event->pending_wakeup = 1;
7553                 irq_work_queue(&event->pending);
7554         }
7555
7556         return ret;
7557 }
7558
7559 int perf_event_overflow(struct perf_event *event,
7560                           struct perf_sample_data *data,
7561                           struct pt_regs *regs)
7562 {
7563         return __perf_event_overflow(event, 1, data, regs);
7564 }
7565
7566 /*
7567  * Generic software event infrastructure
7568  */
7569
7570 struct swevent_htable {
7571         struct swevent_hlist            *swevent_hlist;
7572         struct mutex                    hlist_mutex;
7573         int                             hlist_refcount;
7574
7575         /* Recursion avoidance in each contexts */
7576         int                             recursion[PERF_NR_CONTEXTS];
7577 };
7578
7579 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
7580
7581 /*
7582  * We directly increment event->count and keep a second value in
7583  * event->hw.period_left to count intervals. This period event
7584  * is kept in the range [-sample_period, 0] so that we can use the
7585  * sign as trigger.
7586  */
7587
7588 u64 perf_swevent_set_period(struct perf_event *event)
7589 {
7590         struct hw_perf_event *hwc = &event->hw;
7591         u64 period = hwc->last_period;
7592         u64 nr, offset;
7593         s64 old, val;
7594
7595         hwc->last_period = hwc->sample_period;
7596
7597 again:
7598         old = val = local64_read(&hwc->period_left);
7599         if (val < 0)
7600                 return 0;
7601
7602         nr = div64_u64(period + val, period);
7603         offset = nr * period;
7604         val -= offset;
7605         if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7606                 goto again;
7607
7608         return nr;
7609 }
7610
7611 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
7612                                     struct perf_sample_data *data,
7613                                     struct pt_regs *regs)
7614 {
7615         struct hw_perf_event *hwc = &event->hw;
7616         int throttle = 0;
7617
7618         if (!overflow)
7619                 overflow = perf_swevent_set_period(event);
7620
7621         if (hwc->interrupts == MAX_INTERRUPTS)
7622                 return;
7623
7624         for (; overflow; overflow--) {
7625                 if (__perf_event_overflow(event, throttle,
7626                                             data, regs)) {
7627                         /*
7628                          * We inhibit the overflow from happening when
7629                          * hwc->interrupts == MAX_INTERRUPTS.
7630                          */
7631                         break;
7632                 }
7633                 throttle = 1;
7634         }
7635 }
7636
7637 static void perf_swevent_event(struct perf_event *event, u64 nr,
7638                                struct perf_sample_data *data,
7639                                struct pt_regs *regs)
7640 {
7641         struct hw_perf_event *hwc = &event->hw;
7642
7643         local64_add(nr, &event->count);
7644
7645         if (!regs)
7646                 return;
7647
7648         if (!is_sampling_event(event))
7649                 return;
7650
7651         if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
7652                 data->period = nr;
7653                 return perf_swevent_overflow(event, 1, data, regs);
7654         } else
7655                 data->period = event->hw.last_period;
7656
7657         if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
7658                 return perf_swevent_overflow(event, 1, data, regs);
7659
7660         if (local64_add_negative(nr, &hwc->period_left))
7661                 return;
7662
7663         perf_swevent_overflow(event, 0, data, regs);
7664 }
7665
7666 static int perf_exclude_event(struct perf_event *event,
7667                               struct pt_regs *regs)
7668 {
7669         if (event->hw.state & PERF_HES_STOPPED)
7670                 return 1;
7671
7672         if (regs) {
7673                 if (event->attr.exclude_user && user_mode(regs))
7674                         return 1;
7675
7676                 if (event->attr.exclude_kernel && !user_mode(regs))
7677                         return 1;
7678         }
7679
7680         return 0;
7681 }
7682
7683 static int perf_swevent_match(struct perf_event *event,
7684                                 enum perf_type_id type,
7685                                 u32 event_id,
7686                                 struct perf_sample_data *data,
7687                                 struct pt_regs *regs)
7688 {
7689         if (event->attr.type != type)
7690                 return 0;
7691
7692         if (event->attr.config != event_id)
7693                 return 0;
7694
7695         if (perf_exclude_event(event, regs))
7696                 return 0;
7697
7698         return 1;
7699 }
7700
7701 static inline u64 swevent_hash(u64 type, u32 event_id)
7702 {
7703         u64 val = event_id | (type << 32);
7704
7705         return hash_64(val, SWEVENT_HLIST_BITS);
7706 }
7707
7708 static inline struct hlist_head *
7709 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
7710 {
7711         u64 hash = swevent_hash(type, event_id);
7712
7713         return &hlist->heads[hash];
7714 }
7715
7716 /* For the read side: events when they trigger */
7717 static inline struct hlist_head *
7718 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
7719 {
7720         struct swevent_hlist *hlist;
7721
7722         hlist = rcu_dereference(swhash->swevent_hlist);
7723         if (!hlist)
7724                 return NULL;
7725
7726         return __find_swevent_head(hlist, type, event_id);
7727 }
7728
7729 /* For the event head insertion and removal in the hlist */
7730 static inline struct hlist_head *
7731 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
7732 {
7733         struct swevent_hlist *hlist;
7734         u32 event_id = event->attr.config;
7735         u64 type = event->attr.type;
7736
7737         /*
7738          * Event scheduling is always serialized against hlist allocation
7739          * and release. Which makes the protected version suitable here.
7740          * The context lock guarantees that.
7741          */
7742         hlist = rcu_dereference_protected(swhash->swevent_hlist,
7743                                           lockdep_is_held(&event->ctx->lock));
7744         if (!hlist)
7745                 return NULL;
7746
7747         return __find_swevent_head(hlist, type, event_id);
7748 }
7749
7750 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
7751                                     u64 nr,
7752                                     struct perf_sample_data *data,
7753                                     struct pt_regs *regs)
7754 {
7755         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7756         struct perf_event *event;
7757         struct hlist_head *head;
7758
7759         rcu_read_lock();
7760         head = find_swevent_head_rcu(swhash, type, event_id);
7761         if (!head)
7762                 goto end;
7763
7764         hlist_for_each_entry_rcu(event, head, hlist_entry) {
7765                 if (perf_swevent_match(event, type, event_id, data, regs))
7766                         perf_swevent_event(event, nr, data, regs);
7767         }
7768 end:
7769         rcu_read_unlock();
7770 }
7771
7772 DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
7773
7774 int perf_swevent_get_recursion_context(void)
7775 {
7776         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7777
7778         return get_recursion_context(swhash->recursion);
7779 }
7780 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
7781
7782 void perf_swevent_put_recursion_context(int rctx)
7783 {
7784         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7785
7786         put_recursion_context(swhash->recursion, rctx);
7787 }
7788
7789 void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7790 {
7791         struct perf_sample_data data;
7792
7793         if (WARN_ON_ONCE(!regs))
7794                 return;
7795
7796         perf_sample_data_init(&data, addr, 0);
7797         do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
7798 }
7799
7800 void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
7801 {
7802         int rctx;
7803
7804         preempt_disable_notrace();
7805         rctx = perf_swevent_get_recursion_context();
7806         if (unlikely(rctx < 0))
7807                 goto fail;
7808
7809         ___perf_sw_event(event_id, nr, regs, addr);
7810
7811         perf_swevent_put_recursion_context(rctx);
7812 fail:
7813         preempt_enable_notrace();
7814 }
7815
7816 static void perf_swevent_read(struct perf_event *event)
7817 {
7818 }
7819
7820 static int perf_swevent_add(struct perf_event *event, int flags)
7821 {
7822         struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
7823         struct hw_perf_event *hwc = &event->hw;
7824         struct hlist_head *head;
7825
7826         if (is_sampling_event(event)) {
7827                 hwc->last_period = hwc->sample_period;
7828                 perf_swevent_set_period(event);
7829         }
7830
7831         hwc->state = !(flags & PERF_EF_START);
7832
7833         head = find_swevent_head(swhash, event);
7834         if (WARN_ON_ONCE(!head))
7835                 return -EINVAL;
7836
7837         hlist_add_head_rcu(&event->hlist_entry, head);
7838         perf_event_update_userpage(event);
7839
7840         return 0;
7841 }
7842
7843 static void perf_swevent_del(struct perf_event *event, int flags)
7844 {
7845         hlist_del_rcu(&event->hlist_entry);
7846 }
7847
7848 static void perf_swevent_start(struct perf_event *event, int flags)
7849 {
7850         event->hw.state = 0;
7851 }
7852
7853 static void perf_swevent_stop(struct perf_event *event, int flags)
7854 {
7855         event->hw.state = PERF_HES_STOPPED;
7856 }
7857
7858 /* Deref the hlist from the update side */
7859 static inline struct swevent_hlist *
7860 swevent_hlist_deref(struct swevent_htable *swhash)
7861 {
7862         return rcu_dereference_protected(swhash->swevent_hlist,
7863                                          lockdep_is_held(&swhash->hlist_mutex));
7864 }
7865
7866 static void swevent_hlist_release(struct swevent_htable *swhash)
7867 {
7868         struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
7869
7870         if (!hlist)
7871                 return;
7872
7873         RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
7874         kfree_rcu(hlist, rcu_head);
7875 }
7876
7877 static void swevent_hlist_put_cpu(int cpu)
7878 {
7879         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7880
7881         mutex_lock(&swhash->hlist_mutex);
7882
7883         if (!--swhash->hlist_refcount)
7884                 swevent_hlist_release(swhash);
7885
7886         mutex_unlock(&swhash->hlist_mutex);
7887 }
7888
7889 static void swevent_hlist_put(void)
7890 {
7891         int cpu;
7892
7893         for_each_possible_cpu(cpu)
7894                 swevent_hlist_put_cpu(cpu);
7895 }
7896
7897 static int swevent_hlist_get_cpu(int cpu)
7898 {
7899         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7900         int err = 0;
7901
7902         mutex_lock(&swhash->hlist_mutex);
7903         if (!swevent_hlist_deref(swhash) &&
7904             cpumask_test_cpu(cpu, perf_online_mask)) {
7905                 struct swevent_hlist *hlist;
7906
7907                 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
7908                 if (!hlist) {
7909                         err = -ENOMEM;
7910                         goto exit;
7911                 }
7912                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7913         }
7914         swhash->hlist_refcount++;
7915 exit:
7916         mutex_unlock(&swhash->hlist_mutex);
7917
7918         return err;
7919 }
7920
7921 static int swevent_hlist_get(void)
7922 {
7923         int err, cpu, failed_cpu;
7924
7925         mutex_lock(&pmus_lock);
7926         for_each_possible_cpu(cpu) {
7927                 err = swevent_hlist_get_cpu(cpu);
7928                 if (err) {
7929                         failed_cpu = cpu;
7930                         goto fail;
7931                 }
7932         }
7933         mutex_unlock(&pmus_lock);
7934         return 0;
7935 fail:
7936         for_each_possible_cpu(cpu) {
7937                 if (cpu == failed_cpu)
7938                         break;
7939                 swevent_hlist_put_cpu(cpu);
7940         }
7941         mutex_unlock(&pmus_lock);
7942         return err;
7943 }
7944
7945 struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
7946
7947 static void sw_perf_event_destroy(struct perf_event *event)
7948 {
7949         u64 event_id = event->attr.config;
7950
7951         WARN_ON(event->parent);
7952
7953         static_key_slow_dec(&perf_swevent_enabled[event_id]);
7954         swevent_hlist_put();
7955 }
7956
7957 static int perf_swevent_init(struct perf_event *event)
7958 {
7959         u64 event_id = event->attr.config;
7960
7961         if (event->attr.type != PERF_TYPE_SOFTWARE)
7962                 return -ENOENT;
7963
7964         /*
7965          * no branch sampling for software events
7966          */
7967         if (has_branch_stack(event))
7968                 return -EOPNOTSUPP;
7969
7970         switch (event_id) {
7971         case PERF_COUNT_SW_CPU_CLOCK:
7972         case PERF_COUNT_SW_TASK_CLOCK:
7973                 return -ENOENT;
7974
7975         default:
7976                 break;
7977         }
7978
7979         if (event_id >= PERF_COUNT_SW_MAX)
7980                 return -ENOENT;
7981
7982         if (!event->parent) {
7983                 int err;
7984
7985                 err = swevent_hlist_get();
7986                 if (err)
7987                         return err;
7988
7989                 static_key_slow_inc(&perf_swevent_enabled[event_id]);
7990                 event->destroy = sw_perf_event_destroy;
7991         }
7992
7993         return 0;
7994 }
7995
7996 static struct pmu perf_swevent = {
7997         .task_ctx_nr    = perf_sw_context,
7998
7999         .capabilities   = PERF_PMU_CAP_NO_NMI,
8000
8001         .event_init     = perf_swevent_init,
8002         .add            = perf_swevent_add,
8003         .del            = perf_swevent_del,
8004         .start          = perf_swevent_start,
8005         .stop           = perf_swevent_stop,
8006         .read           = perf_swevent_read,
8007 };
8008
8009 #ifdef CONFIG_EVENT_TRACING
8010
8011 static int perf_tp_filter_match(struct perf_event *event,
8012                                 struct perf_sample_data *data)
8013 {
8014         void *record = data->raw->frag.data;
8015
8016         /* only top level events have filters set */
8017         if (event->parent)
8018                 event = event->parent;
8019
8020         if (likely(!event->filter) || filter_match_preds(event->filter, record))
8021                 return 1;
8022         return 0;
8023 }
8024
8025 static int perf_tp_event_match(struct perf_event *event,
8026                                 struct perf_sample_data *data,
8027                                 struct pt_regs *regs)
8028 {
8029         if (event->hw.state & PERF_HES_STOPPED)
8030                 return 0;
8031         /*
8032          * All tracepoints are from kernel-space.
8033          */
8034         if (event->attr.exclude_kernel)
8035                 return 0;
8036
8037         if (!perf_tp_filter_match(event, data))
8038                 return 0;
8039
8040         return 1;
8041 }
8042
8043 void perf_trace_run_bpf_submit(void *raw_data, int size, int rctx,
8044                                struct trace_event_call *call, u64 count,
8045                                struct pt_regs *regs, struct hlist_head *head,
8046                                struct task_struct *task)
8047 {
8048         struct bpf_prog *prog = call->prog;
8049
8050         if (prog) {
8051                 *(struct pt_regs **)raw_data = regs;
8052                 if (!trace_call_bpf(prog, raw_data) || hlist_empty(head)) {
8053                         perf_swevent_put_recursion_context(rctx);
8054                         return;
8055                 }
8056         }
8057         perf_tp_event(call->event.type, count, raw_data, size, regs, head,
8058                       rctx, task, NULL);
8059 }
8060 EXPORT_SYMBOL_GPL(perf_trace_run_bpf_submit);
8061
8062 void perf_tp_event(u16 event_type, u64 count, void *record, int entry_size,
8063                    struct pt_regs *regs, struct hlist_head *head, int rctx,
8064                    struct task_struct *task, struct perf_event *event)
8065 {
8066         struct perf_sample_data data;
8067
8068         struct perf_raw_record raw = {
8069                 .frag = {
8070                         .size = entry_size,
8071                         .data = record,
8072                 },
8073         };
8074
8075         perf_sample_data_init(&data, 0, 0);
8076         data.raw = &raw;
8077
8078         perf_trace_buf_update(record, event_type);
8079
8080         /* Use the given event instead of the hlist */
8081         if (event) {
8082                 if (perf_tp_event_match(event, &data, regs))
8083                         perf_swevent_event(event, count, &data, regs);
8084         } else {
8085                 hlist_for_each_entry_rcu(event, head, hlist_entry) {
8086                         if (perf_tp_event_match(event, &data, regs))
8087                                 perf_swevent_event(event, count, &data, regs);
8088                 }
8089         }
8090
8091         /*
8092          * If we got specified a target task, also iterate its context and
8093          * deliver this event there too.
8094          */
8095         if (task && task != current) {
8096                 struct perf_event_context *ctx;
8097                 struct trace_entry *entry = record;
8098
8099                 rcu_read_lock();
8100                 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
8101                 if (!ctx)
8102                         goto unlock;
8103
8104                 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
8105                         if (event->cpu != smp_processor_id())
8106                                 continue;
8107                         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8108                                 continue;
8109                         if (event->attr.config != entry->type)
8110                                 continue;
8111                         if (perf_tp_event_match(event, &data, regs))
8112                                 perf_swevent_event(event, count, &data, regs);
8113                 }
8114 unlock:
8115                 rcu_read_unlock();
8116         }
8117
8118         perf_swevent_put_recursion_context(rctx);
8119 }
8120 EXPORT_SYMBOL_GPL(perf_tp_event);
8121
8122 static void tp_perf_event_destroy(struct perf_event *event)
8123 {
8124         perf_trace_destroy(event);
8125 }
8126
8127 static int perf_tp_event_init(struct perf_event *event)
8128 {
8129         int err;
8130
8131         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8132                 return -ENOENT;
8133
8134         /*
8135          * no branch sampling for tracepoint events
8136          */
8137         if (has_branch_stack(event))
8138                 return -EOPNOTSUPP;
8139
8140         err = perf_trace_init(event);
8141         if (err)
8142                 return err;
8143
8144         event->destroy = tp_perf_event_destroy;
8145
8146         return 0;
8147 }
8148
8149 static struct pmu perf_tracepoint = {
8150         .task_ctx_nr    = perf_sw_context,
8151
8152         .event_init     = perf_tp_event_init,
8153         .add            = perf_trace_add,
8154         .del            = perf_trace_del,
8155         .start          = perf_swevent_start,
8156         .stop           = perf_swevent_stop,
8157         .read           = perf_swevent_read,
8158 };
8159
8160 static inline void perf_tp_register(void)
8161 {
8162         perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
8163 }
8164
8165 static void perf_event_free_filter(struct perf_event *event)
8166 {
8167         ftrace_profile_free_filter(event);
8168 }
8169
8170 #ifdef CONFIG_BPF_SYSCALL
8171 static void bpf_overflow_handler(struct perf_event *event,
8172                                  struct perf_sample_data *data,
8173                                  struct pt_regs *regs)
8174 {
8175         struct bpf_perf_event_data_kern ctx = {
8176                 .data = data,
8177                 .regs = regs,
8178         };
8179         int ret = 0;
8180
8181         preempt_disable();
8182         if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1))
8183                 goto out;
8184         rcu_read_lock();
8185         ret = BPF_PROG_RUN(event->prog, &ctx);
8186         rcu_read_unlock();
8187 out:
8188         __this_cpu_dec(bpf_prog_active);
8189         preempt_enable();
8190         if (!ret)
8191                 return;
8192
8193         event->orig_overflow_handler(event, data, regs);
8194 }
8195
8196 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8197 {
8198         struct bpf_prog *prog;
8199
8200         if (event->overflow_handler_context)
8201                 /* hw breakpoint or kernel counter */
8202                 return -EINVAL;
8203
8204         if (event->prog)
8205                 return -EEXIST;
8206
8207         prog = bpf_prog_get_type(prog_fd, BPF_PROG_TYPE_PERF_EVENT);
8208         if (IS_ERR(prog))
8209                 return PTR_ERR(prog);
8210
8211         event->prog = prog;
8212         event->orig_overflow_handler = READ_ONCE(event->overflow_handler);
8213         WRITE_ONCE(event->overflow_handler, bpf_overflow_handler);
8214         return 0;
8215 }
8216
8217 static void perf_event_free_bpf_handler(struct perf_event *event)
8218 {
8219         struct bpf_prog *prog = event->prog;
8220
8221         if (!prog)
8222                 return;
8223
8224         WRITE_ONCE(event->overflow_handler, event->orig_overflow_handler);
8225         event->prog = NULL;
8226         bpf_prog_put(prog);
8227 }
8228 #else
8229 static int perf_event_set_bpf_handler(struct perf_event *event, u32 prog_fd)
8230 {
8231         return -EOPNOTSUPP;
8232 }
8233 static void perf_event_free_bpf_handler(struct perf_event *event)
8234 {
8235 }
8236 #endif
8237
8238 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8239 {
8240         bool is_kprobe, is_tracepoint, is_syscall_tp;
8241         struct bpf_prog *prog;
8242
8243         if (event->attr.type != PERF_TYPE_TRACEPOINT)
8244                 return perf_event_set_bpf_handler(event, prog_fd);
8245
8246         if (event->tp_event->prog)
8247                 return -EEXIST;
8248
8249         is_kprobe = event->tp_event->flags & TRACE_EVENT_FL_UKPROBE;
8250         is_tracepoint = event->tp_event->flags & TRACE_EVENT_FL_TRACEPOINT;
8251         is_syscall_tp = is_syscall_trace_event(event->tp_event);
8252         if (!is_kprobe && !is_tracepoint && !is_syscall_tp)
8253                 /* bpf programs can only be attached to u/kprobe or tracepoint */
8254                 return -EINVAL;
8255
8256         prog = bpf_prog_get(prog_fd);
8257         if (IS_ERR(prog))
8258                 return PTR_ERR(prog);
8259
8260         if ((is_kprobe && prog->type != BPF_PROG_TYPE_KPROBE) ||
8261             (is_tracepoint && prog->type != BPF_PROG_TYPE_TRACEPOINT) ||
8262             (is_syscall_tp && prog->type != BPF_PROG_TYPE_TRACEPOINT)) {
8263                 /* valid fd, but invalid bpf program type */
8264                 bpf_prog_put(prog);
8265                 return -EINVAL;
8266         }
8267
8268         if (is_tracepoint || is_syscall_tp) {
8269                 int off = trace_event_get_offsets(event->tp_event);
8270
8271                 if (prog->aux->max_ctx_offset > off) {
8272                         bpf_prog_put(prog);
8273                         return -EACCES;
8274                 }
8275         }
8276         event->tp_event->prog = prog;
8277         event->tp_event->bpf_prog_owner = event;
8278
8279         return 0;
8280 }
8281
8282 static void perf_event_free_bpf_prog(struct perf_event *event)
8283 {
8284         struct bpf_prog *prog;
8285
8286         perf_event_free_bpf_handler(event);
8287
8288         if (!event->tp_event)
8289                 return;
8290
8291         prog = event->tp_event->prog;
8292         if (prog && event->tp_event->bpf_prog_owner == event) {
8293                 event->tp_event->prog = NULL;
8294                 bpf_prog_put(prog);
8295         }
8296 }
8297
8298 #else
8299
8300 static inline void perf_tp_register(void)
8301 {
8302 }
8303
8304 static void perf_event_free_filter(struct perf_event *event)
8305 {
8306 }
8307
8308 static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
8309 {
8310         return -ENOENT;
8311 }
8312
8313 static void perf_event_free_bpf_prog(struct perf_event *event)
8314 {
8315 }
8316 #endif /* CONFIG_EVENT_TRACING */
8317
8318 #ifdef CONFIG_HAVE_HW_BREAKPOINT
8319 void perf_bp_event(struct perf_event *bp, void *data)
8320 {
8321         struct perf_sample_data sample;
8322         struct pt_regs *regs = data;
8323
8324         perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
8325
8326         if (!bp->hw.state && !perf_exclude_event(bp, regs))
8327                 perf_swevent_event(bp, 1, &sample, regs);
8328 }
8329 #endif
8330
8331 /*
8332  * Allocate a new address filter
8333  */
8334 static struct perf_addr_filter *
8335 perf_addr_filter_new(struct perf_event *event, struct list_head *filters)
8336 {
8337         int node = cpu_to_node(event->cpu == -1 ? 0 : event->cpu);
8338         struct perf_addr_filter *filter;
8339
8340         filter = kzalloc_node(sizeof(*filter), GFP_KERNEL, node);
8341         if (!filter)
8342                 return NULL;
8343
8344         INIT_LIST_HEAD(&filter->entry);
8345         list_add_tail(&filter->entry, filters);
8346
8347         return filter;
8348 }
8349
8350 static void free_filters_list(struct list_head *filters)
8351 {
8352         struct perf_addr_filter *filter, *iter;
8353
8354         list_for_each_entry_safe(filter, iter, filters, entry) {
8355                 path_put(&filter->path);
8356                 list_del(&filter->entry);
8357                 kfree(filter);
8358         }
8359 }
8360
8361 /*
8362  * Free existing address filters and optionally install new ones
8363  */
8364 static void perf_addr_filters_splice(struct perf_event *event,
8365                                      struct list_head *head)
8366 {
8367         unsigned long flags;
8368         LIST_HEAD(list);
8369
8370         if (!has_addr_filter(event))
8371                 return;
8372
8373         /* don't bother with children, they don't have their own filters */
8374         if (event->parent)
8375                 return;
8376
8377         raw_spin_lock_irqsave(&event->addr_filters.lock, flags);
8378
8379         list_splice_init(&event->addr_filters.list, &list);
8380         if (head)
8381                 list_splice(head, &event->addr_filters.list);
8382
8383         raw_spin_unlock_irqrestore(&event->addr_filters.lock, flags);
8384
8385         free_filters_list(&list);
8386 }
8387
8388 /*
8389  * Scan through mm's vmas and see if one of them matches the
8390  * @filter; if so, adjust filter's address range.
8391  * Called with mm::mmap_sem down for reading.
8392  */
8393 static unsigned long perf_addr_filter_apply(struct perf_addr_filter *filter,
8394                                             struct mm_struct *mm)
8395 {
8396         struct vm_area_struct *vma;
8397
8398         for (vma = mm->mmap; vma; vma = vma->vm_next) {
8399                 struct file *file = vma->vm_file;
8400                 unsigned long off = vma->vm_pgoff << PAGE_SHIFT;
8401                 unsigned long vma_size = vma->vm_end - vma->vm_start;
8402
8403                 if (!file)
8404                         continue;
8405
8406                 if (!perf_addr_filter_match(filter, file, off, vma_size))
8407                         continue;
8408
8409                 return vma->vm_start;
8410         }
8411
8412         return 0;
8413 }
8414
8415 /*
8416  * Update event's address range filters based on the
8417  * task's existing mappings, if any.
8418  */
8419 static void perf_event_addr_filters_apply(struct perf_event *event)
8420 {
8421         struct perf_addr_filters_head *ifh = perf_event_addr_filters(event);
8422         struct task_struct *task = READ_ONCE(event->ctx->task);
8423         struct perf_addr_filter *filter;
8424         struct mm_struct *mm = NULL;
8425         unsigned int count = 0;
8426         unsigned long flags;
8427
8428         /*
8429          * We may observe TASK_TOMBSTONE, which means that the event tear-down
8430          * will stop on the parent's child_mutex that our caller is also holding
8431          */
8432         if (task == TASK_TOMBSTONE)
8433                 return;
8434
8435         if (!ifh->nr_file_filters)
8436                 return;
8437
8438         mm = get_task_mm(task);
8439         if (!mm)
8440                 goto restart;
8441
8442         down_read(&mm->mmap_sem);
8443
8444         raw_spin_lock_irqsave(&ifh->lock, flags);
8445         list_for_each_entry(filter, &ifh->list, entry) {
8446                 event->addr_filters_offs[count] = 0;
8447
8448                 /*
8449                  * Adjust base offset if the filter is associated to a binary
8450                  * that needs to be mapped:
8451                  */
8452                 if (filter->path.dentry)
8453                         event->addr_filters_offs[count] =
8454                                 perf_addr_filter_apply(filter, mm);
8455
8456                 count++;
8457         }
8458
8459         event->addr_filters_gen++;
8460         raw_spin_unlock_irqrestore(&ifh->lock, flags);
8461
8462         up_read(&mm->mmap_sem);
8463
8464         mmput(mm);
8465
8466 restart:
8467         perf_event_stop(event, 1);
8468 }
8469
8470 /*
8471  * Address range filtering: limiting the data to certain
8472  * instruction address ranges. Filters are ioctl()ed to us from
8473  * userspace as ascii strings.
8474  *
8475  * Filter string format:
8476  *
8477  * ACTION RANGE_SPEC
8478  * where ACTION is one of the
8479  *  * "filter": limit the trace to this region
8480  *  * "start": start tracing from this address
8481  *  * "stop": stop tracing at this address/region;
8482  * RANGE_SPEC is
8483  *  * for kernel addresses: <start address>[/<size>]
8484  *  * for object files:     <start address>[/<size>]@</path/to/object/file>
8485  *
8486  * if <size> is not specified, the range is treated as a single address.
8487  */
8488 enum {
8489         IF_ACT_NONE = -1,
8490         IF_ACT_FILTER,
8491         IF_ACT_START,
8492         IF_ACT_STOP,
8493         IF_SRC_FILE,
8494         IF_SRC_KERNEL,
8495         IF_SRC_FILEADDR,
8496         IF_SRC_KERNELADDR,
8497 };
8498
8499 enum {
8500         IF_STATE_ACTION = 0,
8501         IF_STATE_SOURCE,
8502         IF_STATE_END,
8503 };
8504
8505 static const match_table_t if_tokens = {
8506         { IF_ACT_FILTER,        "filter" },
8507         { IF_ACT_START,         "start" },
8508         { IF_ACT_STOP,          "stop" },
8509         { IF_SRC_FILE,          "%u/%u@%s" },
8510         { IF_SRC_KERNEL,        "%u/%u" },
8511         { IF_SRC_FILEADDR,      "%u@%s" },
8512         { IF_SRC_KERNELADDR,    "%u" },
8513         { IF_ACT_NONE,          NULL },
8514 };
8515
8516 /*
8517  * Address filter string parser
8518  */
8519 static int
8520 perf_event_parse_addr_filter(struct perf_event *event, char *fstr,
8521                              struct list_head *filters)
8522 {
8523         struct perf_addr_filter *filter = NULL;
8524         char *start, *orig, *filename = NULL;
8525         substring_t args[MAX_OPT_ARGS];
8526         int state = IF_STATE_ACTION, token;
8527         unsigned int kernel = 0;
8528         int ret = -EINVAL;
8529
8530         orig = fstr = kstrdup(fstr, GFP_KERNEL);
8531         if (!fstr)
8532                 return -ENOMEM;
8533
8534         while ((start = strsep(&fstr, " ,\n")) != NULL) {
8535                 ret = -EINVAL;
8536
8537                 if (!*start)
8538                         continue;
8539
8540                 /* filter definition begins */
8541                 if (state == IF_STATE_ACTION) {
8542                         filter = perf_addr_filter_new(event, filters);
8543                         if (!filter)
8544                                 goto fail;
8545                 }
8546
8547                 token = match_token(start, if_tokens, args);
8548                 switch (token) {
8549                 case IF_ACT_FILTER:
8550                 case IF_ACT_START:
8551                         filter->filter = 1;
8552
8553                 case IF_ACT_STOP:
8554                         if (state != IF_STATE_ACTION)
8555                                 goto fail;
8556
8557                         state = IF_STATE_SOURCE;
8558                         break;
8559
8560                 case IF_SRC_KERNELADDR:
8561                 case IF_SRC_KERNEL:
8562                         kernel = 1;
8563
8564                 case IF_SRC_FILEADDR:
8565                 case IF_SRC_FILE:
8566                         if (state != IF_STATE_SOURCE)
8567                                 goto fail;
8568
8569                         if (token == IF_SRC_FILE || token == IF_SRC_KERNEL)
8570                                 filter->range = 1;
8571
8572                         *args[0].to = 0;
8573                         ret = kstrtoul(args[0].from, 0, &filter->offset);
8574                         if (ret)
8575                                 goto fail;
8576
8577                         if (filter->range) {
8578                                 *args[1].to = 0;
8579                                 ret = kstrtoul(args[1].from, 0, &filter->size);
8580                                 if (ret)
8581                                         goto fail;
8582                         }
8583
8584                         if (token == IF_SRC_FILE || token == IF_SRC_FILEADDR) {
8585                                 int fpos = filter->range ? 2 : 1;
8586
8587                                 kfree(filename);
8588                                 filename = match_strdup(&args[fpos]);
8589                                 if (!filename) {
8590                                         ret = -ENOMEM;
8591                                         goto fail;
8592                                 }
8593                         }
8594
8595                         state = IF_STATE_END;
8596                         break;
8597
8598                 default:
8599                         goto fail;
8600                 }
8601
8602                 /*
8603                  * Filter definition is fully parsed, validate and install it.
8604                  * Make sure that it doesn't contradict itself or the event's
8605                  * attribute.
8606                  */
8607                 if (state == IF_STATE_END) {
8608                         ret = -EINVAL;
8609                         if (kernel && event->attr.exclude_kernel)
8610                                 goto fail;
8611
8612                         if (!kernel) {
8613                                 if (!filename)
8614                                         goto fail;
8615
8616                                 /*
8617                                  * For now, we only support file-based filters
8618                                  * in per-task events; doing so for CPU-wide
8619                                  * events requires additional context switching
8620                                  * trickery, since same object code will be
8621                                  * mapped at different virtual addresses in
8622                                  * different processes.
8623                                  */
8624                                 ret = -EOPNOTSUPP;
8625                                 if (!event->ctx->task)
8626                                         goto fail;
8627
8628                                 /* look up the path and grab its inode */
8629                                 ret = kern_path(filename, LOOKUP_FOLLOW,
8630                                                 &filter->path);
8631                                 if (ret)
8632                                         goto fail;
8633
8634                                 ret = -EINVAL;
8635                                 if (!filter->path.dentry ||
8636                                     !S_ISREG(d_inode(filter->path.dentry)
8637                                              ->i_mode))
8638                                         goto fail;
8639
8640                                 event->addr_filters.nr_file_filters++;
8641                         }
8642
8643                         /* ready to consume more filters */
8644                         kfree(filename);
8645                         filename = NULL;
8646                         state = IF_STATE_ACTION;
8647                         filter = NULL;
8648                         kernel = 0;
8649                 }
8650         }
8651
8652         if (state != IF_STATE_ACTION)
8653                 goto fail;
8654
8655         kfree(filename);
8656         kfree(orig);
8657
8658         return 0;
8659
8660 fail:
8661         kfree(filename);
8662         free_filters_list(filters);
8663         kfree(orig);
8664
8665         return ret;
8666 }
8667
8668 static int
8669 perf_event_set_addr_filter(struct perf_event *event, char *filter_str)
8670 {
8671         LIST_HEAD(filters);
8672         int ret;
8673
8674         /*
8675          * Since this is called in perf_ioctl() path, we're already holding
8676          * ctx::mutex.
8677          */
8678         lockdep_assert_held(&event->ctx->mutex);
8679
8680         if (WARN_ON_ONCE(event->parent))
8681                 return -EINVAL;
8682
8683         ret = perf_event_parse_addr_filter(event, filter_str, &filters);
8684         if (ret)
8685                 goto fail_clear_files;
8686
8687         ret = event->pmu->addr_filters_validate(&filters);
8688         if (ret)
8689                 goto fail_free_filters;
8690
8691         /* remove existing filters, if any */
8692         perf_addr_filters_splice(event, &filters);
8693
8694         /* install new filters */
8695         perf_event_for_each_child(event, perf_event_addr_filters_apply);
8696
8697         return ret;
8698
8699 fail_free_filters:
8700         free_filters_list(&filters);
8701
8702 fail_clear_files:
8703         event->addr_filters.nr_file_filters = 0;
8704
8705         return ret;
8706 }
8707
8708 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
8709 {
8710         char *filter_str;
8711         int ret = -EINVAL;
8712
8713         if ((event->attr.type != PERF_TYPE_TRACEPOINT ||
8714             !IS_ENABLED(CONFIG_EVENT_TRACING)) &&
8715             !has_addr_filter(event))
8716                 return -EINVAL;
8717
8718         filter_str = strndup_user(arg, PAGE_SIZE);
8719         if (IS_ERR(filter_str))
8720                 return PTR_ERR(filter_str);
8721
8722         if (IS_ENABLED(CONFIG_EVENT_TRACING) &&
8723             event->attr.type == PERF_TYPE_TRACEPOINT)
8724                 ret = ftrace_profile_set_filter(event, event->attr.config,
8725                                                 filter_str);
8726         else if (has_addr_filter(event))
8727                 ret = perf_event_set_addr_filter(event, filter_str);
8728
8729         kfree(filter_str);
8730         return ret;
8731 }
8732
8733 /*
8734  * hrtimer based swevent callback
8735  */
8736
8737 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
8738 {
8739         enum hrtimer_restart ret = HRTIMER_RESTART;
8740         struct perf_sample_data data;
8741         struct pt_regs *regs;
8742         struct perf_event *event;
8743         u64 period;
8744
8745         event = container_of(hrtimer, struct perf_event, hw.hrtimer);
8746
8747         if (event->state != PERF_EVENT_STATE_ACTIVE)
8748                 return HRTIMER_NORESTART;
8749
8750         event->pmu->read(event);
8751
8752         perf_sample_data_init(&data, 0, event->hw.last_period);
8753         regs = get_irq_regs();
8754
8755         if (regs && !perf_exclude_event(event, regs)) {
8756                 if (!(event->attr.exclude_idle && is_idle_task(current)))
8757                         if (__perf_event_overflow(event, 1, &data, regs))
8758                                 ret = HRTIMER_NORESTART;
8759         }
8760
8761         period = max_t(u64, 10000, event->hw.sample_period);
8762         hrtimer_forward_now(hrtimer, ns_to_ktime(period));
8763
8764         return ret;
8765 }
8766
8767 static void perf_swevent_start_hrtimer(struct perf_event *event)
8768 {
8769         struct hw_perf_event *hwc = &event->hw;
8770         s64 period;
8771
8772         if (!is_sampling_event(event))
8773                 return;
8774
8775         period = local64_read(&hwc->period_left);
8776         if (period) {
8777                 if (period < 0)
8778                         period = 10000;
8779
8780                 local64_set(&hwc->period_left, 0);
8781         } else {
8782                 period = max_t(u64, 10000, hwc->sample_period);
8783         }
8784         hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
8785                       HRTIMER_MODE_REL_PINNED);
8786 }
8787
8788 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
8789 {
8790         struct hw_perf_event *hwc = &event->hw;
8791
8792         if (is_sampling_event(event)) {
8793                 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
8794                 local64_set(&hwc->period_left, ktime_to_ns(remaining));
8795
8796                 hrtimer_cancel(&hwc->hrtimer);
8797         }
8798 }
8799
8800 static void perf_swevent_init_hrtimer(struct perf_event *event)
8801 {
8802         struct hw_perf_event *hwc = &event->hw;
8803
8804         if (!is_sampling_event(event))
8805                 return;
8806
8807         hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
8808         hwc->hrtimer.function = perf_swevent_hrtimer;
8809
8810         /*
8811          * Since hrtimers have a fixed rate, we can do a static freq->period
8812          * mapping and avoid the whole period adjust feedback stuff.
8813          */
8814         if (event->attr.freq) {
8815                 long freq = event->attr.sample_freq;
8816
8817                 event->attr.sample_period = NSEC_PER_SEC / freq;
8818                 hwc->sample_period = event->attr.sample_period;
8819                 local64_set(&hwc->period_left, hwc->sample_period);
8820                 hwc->last_period = hwc->sample_period;
8821                 event->attr.freq = 0;
8822         }
8823 }
8824
8825 /*
8826  * Software event: cpu wall time clock
8827  */
8828
8829 static void cpu_clock_event_update(struct perf_event *event)
8830 {
8831         s64 prev;
8832         u64 now;
8833
8834         now = local_clock();
8835         prev = local64_xchg(&event->hw.prev_count, now);
8836         local64_add(now - prev, &event->count);
8837 }
8838
8839 static void cpu_clock_event_start(struct perf_event *event, int flags)
8840 {
8841         local64_set(&event->hw.prev_count, local_clock());
8842         perf_swevent_start_hrtimer(event);
8843 }
8844
8845 static void cpu_clock_event_stop(struct perf_event *event, int flags)
8846 {
8847         perf_swevent_cancel_hrtimer(event);
8848         cpu_clock_event_update(event);
8849 }
8850
8851 static int cpu_clock_event_add(struct perf_event *event, int flags)
8852 {
8853         if (flags & PERF_EF_START)
8854                 cpu_clock_event_start(event, flags);
8855         perf_event_update_userpage(event);
8856
8857         return 0;
8858 }
8859
8860 static void cpu_clock_event_del(struct perf_event *event, int flags)
8861 {
8862         cpu_clock_event_stop(event, flags);
8863 }
8864
8865 static void cpu_clock_event_read(struct perf_event *event)
8866 {
8867         cpu_clock_event_update(event);
8868 }
8869
8870 static int cpu_clock_event_init(struct perf_event *event)
8871 {
8872         if (event->attr.type != PERF_TYPE_SOFTWARE)
8873                 return -ENOENT;
8874
8875         if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
8876                 return -ENOENT;
8877
8878         /*
8879          * no branch sampling for software events
8880          */
8881         if (has_branch_stack(event))
8882                 return -EOPNOTSUPP;
8883
8884         perf_swevent_init_hrtimer(event);
8885
8886         return 0;
8887 }
8888
8889 static struct pmu perf_cpu_clock = {
8890         .task_ctx_nr    = perf_sw_context,
8891
8892         .capabilities   = PERF_PMU_CAP_NO_NMI,
8893
8894         .event_init     = cpu_clock_event_init,
8895         .add            = cpu_clock_event_add,
8896         .del            = cpu_clock_event_del,
8897         .start          = cpu_clock_event_start,
8898         .stop           = cpu_clock_event_stop,
8899         .read           = cpu_clock_event_read,
8900 };
8901
8902 /*
8903  * Software event: task time clock
8904  */
8905
8906 static void task_clock_event_update(struct perf_event *event, u64 now)
8907 {
8908         u64 prev;
8909         s64 delta;
8910
8911         prev = local64_xchg(&event->hw.prev_count, now);
8912         delta = now - prev;
8913         local64_add(delta, &event->count);
8914 }
8915
8916 static void task_clock_event_start(struct perf_event *event, int flags)
8917 {
8918         local64_set(&event->hw.prev_count, event->ctx->time);
8919         perf_swevent_start_hrtimer(event);
8920 }
8921
8922 static void task_clock_event_stop(struct perf_event *event, int flags)
8923 {
8924         perf_swevent_cancel_hrtimer(event);
8925         task_clock_event_update(event, event->ctx->time);
8926 }
8927
8928 static int task_clock_event_add(struct perf_event *event, int flags)
8929 {
8930         if (flags & PERF_EF_START)
8931                 task_clock_event_start(event, flags);
8932         perf_event_update_userpage(event);
8933
8934         return 0;
8935 }
8936
8937 static void task_clock_event_del(struct perf_event *event, int flags)
8938 {
8939         task_clock_event_stop(event, PERF_EF_UPDATE);
8940 }
8941
8942 static void task_clock_event_read(struct perf_event *event)
8943 {
8944         u64 now = perf_clock();
8945         u64 delta = now - event->ctx->timestamp;
8946         u64 time = event->ctx->time + delta;
8947
8948         task_clock_event_update(event, time);
8949 }
8950
8951 static int task_clock_event_init(struct perf_event *event)
8952 {
8953         if (event->attr.type != PERF_TYPE_SOFTWARE)
8954                 return -ENOENT;
8955
8956         if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
8957                 return -ENOENT;
8958
8959         /*
8960          * no branch sampling for software events
8961          */
8962         if (has_branch_stack(event))
8963                 return -EOPNOTSUPP;
8964
8965         perf_swevent_init_hrtimer(event);
8966
8967         return 0;
8968 }
8969
8970 static struct pmu perf_task_clock = {
8971         .task_ctx_nr    = perf_sw_context,
8972
8973         .capabilities   = PERF_PMU_CAP_NO_NMI,
8974
8975         .event_init     = task_clock_event_init,
8976         .add            = task_clock_event_add,
8977         .del            = task_clock_event_del,
8978         .start          = task_clock_event_start,
8979         .stop           = task_clock_event_stop,
8980         .read           = task_clock_event_read,
8981 };
8982
8983 static void perf_pmu_nop_void(struct pmu *pmu)
8984 {
8985 }
8986
8987 static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
8988 {
8989 }
8990
8991 static int perf_pmu_nop_int(struct pmu *pmu)
8992 {
8993         return 0;
8994 }
8995
8996 static int perf_event_nop_int(struct perf_event *event, u64 value)
8997 {
8998         return 0;
8999 }
9000
9001 static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
9002
9003 static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
9004 {
9005         __this_cpu_write(nop_txn_flags, flags);
9006
9007         if (flags & ~PERF_PMU_TXN_ADD)
9008                 return;
9009
9010         perf_pmu_disable(pmu);
9011 }
9012
9013 static int perf_pmu_commit_txn(struct pmu *pmu)
9014 {
9015         unsigned int flags = __this_cpu_read(nop_txn_flags);
9016
9017         __this_cpu_write(nop_txn_flags, 0);
9018
9019         if (flags & ~PERF_PMU_TXN_ADD)
9020                 return 0;
9021
9022         perf_pmu_enable(pmu);
9023         return 0;
9024 }
9025
9026 static void perf_pmu_cancel_txn(struct pmu *pmu)
9027 {
9028         unsigned int flags =  __this_cpu_read(nop_txn_flags);
9029
9030         __this_cpu_write(nop_txn_flags, 0);
9031
9032         if (flags & ~PERF_PMU_TXN_ADD)
9033                 return;
9034
9035         perf_pmu_enable(pmu);
9036 }
9037
9038 static int perf_event_idx_default(struct perf_event *event)
9039 {
9040         return 0;
9041 }
9042
9043 /*
9044  * Ensures all contexts with the same task_ctx_nr have the same
9045  * pmu_cpu_context too.
9046  */
9047 static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
9048 {
9049         struct pmu *pmu;
9050
9051         if (ctxn < 0)
9052                 return NULL;
9053
9054         list_for_each_entry(pmu, &pmus, entry) {
9055                 if (pmu->task_ctx_nr == ctxn)
9056                         return pmu->pmu_cpu_context;
9057         }
9058
9059         return NULL;
9060 }
9061
9062 static void free_pmu_context(struct pmu *pmu)
9063 {
9064         /*
9065          * Static contexts such as perf_sw_context have a global lifetime
9066          * and may be shared between different PMUs. Avoid freeing them
9067          * when a single PMU is going away.
9068          */
9069         if (pmu->task_ctx_nr > perf_invalid_context)
9070                 return;
9071
9072         free_percpu(pmu->pmu_cpu_context);
9073 }
9074
9075 /*
9076  * Let userspace know that this PMU supports address range filtering:
9077  */
9078 static ssize_t nr_addr_filters_show(struct device *dev,
9079                                     struct device_attribute *attr,
9080                                     char *page)
9081 {
9082         struct pmu *pmu = dev_get_drvdata(dev);
9083
9084         return snprintf(page, PAGE_SIZE - 1, "%d\n", pmu->nr_addr_filters);
9085 }
9086 DEVICE_ATTR_RO(nr_addr_filters);
9087
9088 static struct idr pmu_idr;
9089
9090 static ssize_t
9091 type_show(struct device *dev, struct device_attribute *attr, char *page)
9092 {
9093         struct pmu *pmu = dev_get_drvdata(dev);
9094
9095         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
9096 }
9097 static DEVICE_ATTR_RO(type);
9098
9099 static ssize_t
9100 perf_event_mux_interval_ms_show(struct device *dev,
9101                                 struct device_attribute *attr,
9102                                 char *page)
9103 {
9104         struct pmu *pmu = dev_get_drvdata(dev);
9105
9106         return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
9107 }
9108
9109 static DEFINE_MUTEX(mux_interval_mutex);
9110
9111 static ssize_t
9112 perf_event_mux_interval_ms_store(struct device *dev,
9113                                  struct device_attribute *attr,
9114                                  const char *buf, size_t count)
9115 {
9116         struct pmu *pmu = dev_get_drvdata(dev);
9117         int timer, cpu, ret;
9118
9119         ret = kstrtoint(buf, 0, &timer);
9120         if (ret)
9121                 return ret;
9122
9123         if (timer < 1)
9124                 return -EINVAL;
9125
9126         /* same value, noting to do */
9127         if (timer == pmu->hrtimer_interval_ms)
9128                 return count;
9129
9130         mutex_lock(&mux_interval_mutex);
9131         pmu->hrtimer_interval_ms = timer;
9132
9133         /* update all cpuctx for this PMU */
9134         cpus_read_lock();
9135         for_each_online_cpu(cpu) {
9136                 struct perf_cpu_context *cpuctx;
9137                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9138                 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
9139
9140                 cpu_function_call(cpu,
9141                         (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
9142         }
9143         cpus_read_unlock();
9144         mutex_unlock(&mux_interval_mutex);
9145
9146         return count;
9147 }
9148 static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
9149
9150 static struct attribute *pmu_dev_attrs[] = {
9151         &dev_attr_type.attr,
9152         &dev_attr_perf_event_mux_interval_ms.attr,
9153         NULL,
9154 };
9155 ATTRIBUTE_GROUPS(pmu_dev);
9156
9157 static int pmu_bus_running;
9158 static struct bus_type pmu_bus = {
9159         .name           = "event_source",
9160         .dev_groups     = pmu_dev_groups,
9161 };
9162
9163 static void pmu_dev_release(struct device *dev)
9164 {
9165         kfree(dev);
9166 }
9167
9168 static int pmu_dev_alloc(struct pmu *pmu)
9169 {
9170         int ret = -ENOMEM;
9171
9172         pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
9173         if (!pmu->dev)
9174                 goto out;
9175
9176         pmu->dev->groups = pmu->attr_groups;
9177         device_initialize(pmu->dev);
9178         ret = dev_set_name(pmu->dev, "%s", pmu->name);
9179         if (ret)
9180                 goto free_dev;
9181
9182         dev_set_drvdata(pmu->dev, pmu);
9183         pmu->dev->bus = &pmu_bus;
9184         pmu->dev->release = pmu_dev_release;
9185         ret = device_add(pmu->dev);
9186         if (ret)
9187                 goto free_dev;
9188
9189         /* For PMUs with address filters, throw in an extra attribute: */
9190         if (pmu->nr_addr_filters)
9191                 ret = device_create_file(pmu->dev, &dev_attr_nr_addr_filters);
9192
9193         if (ret)
9194                 goto del_dev;
9195
9196 out:
9197         return ret;
9198
9199 del_dev:
9200         device_del(pmu->dev);
9201
9202 free_dev:
9203         put_device(pmu->dev);
9204         goto out;
9205 }
9206
9207 static struct lock_class_key cpuctx_mutex;
9208 static struct lock_class_key cpuctx_lock;
9209
9210 int perf_pmu_register(struct pmu *pmu, const char *name, int type)
9211 {
9212         int cpu, ret;
9213
9214         mutex_lock(&pmus_lock);
9215         ret = -ENOMEM;
9216         pmu->pmu_disable_count = alloc_percpu(int);
9217         if (!pmu->pmu_disable_count)
9218                 goto unlock;
9219
9220         pmu->type = -1;
9221         if (!name)
9222                 goto skip_type;
9223         pmu->name = name;
9224
9225         if (type < 0) {
9226                 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
9227                 if (type < 0) {
9228                         ret = type;
9229                         goto free_pdc;
9230                 }
9231         }
9232         pmu->type = type;
9233
9234         if (pmu_bus_running) {
9235                 ret = pmu_dev_alloc(pmu);
9236                 if (ret)
9237                         goto free_idr;
9238         }
9239
9240 skip_type:
9241         if (pmu->task_ctx_nr == perf_hw_context) {
9242                 static int hw_context_taken = 0;
9243
9244                 /*
9245                  * Other than systems with heterogeneous CPUs, it never makes
9246                  * sense for two PMUs to share perf_hw_context. PMUs which are
9247                  * uncore must use perf_invalid_context.
9248                  */
9249                 if (WARN_ON_ONCE(hw_context_taken &&
9250                     !(pmu->capabilities & PERF_PMU_CAP_HETEROGENEOUS_CPUS)))
9251                         pmu->task_ctx_nr = perf_invalid_context;
9252
9253                 hw_context_taken = 1;
9254         }
9255
9256         pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
9257         if (pmu->pmu_cpu_context)
9258                 goto got_cpu_context;
9259
9260         ret = -ENOMEM;
9261         pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
9262         if (!pmu->pmu_cpu_context)
9263                 goto free_dev;
9264
9265         for_each_possible_cpu(cpu) {
9266                 struct perf_cpu_context *cpuctx;
9267
9268                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
9269                 __perf_event_init_context(&cpuctx->ctx);
9270                 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
9271                 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
9272                 cpuctx->ctx.pmu = pmu;
9273                 cpuctx->online = cpumask_test_cpu(cpu, perf_online_mask);
9274
9275                 __perf_mux_hrtimer_init(cpuctx, cpu);
9276         }
9277
9278 got_cpu_context:
9279         if (!pmu->start_txn) {
9280                 if (pmu->pmu_enable) {
9281                         /*
9282                          * If we have pmu_enable/pmu_disable calls, install
9283                          * transaction stubs that use that to try and batch
9284                          * hardware accesses.
9285                          */
9286                         pmu->start_txn  = perf_pmu_start_txn;
9287                         pmu->commit_txn = perf_pmu_commit_txn;
9288                         pmu->cancel_txn = perf_pmu_cancel_txn;
9289                 } else {
9290                         pmu->start_txn  = perf_pmu_nop_txn;
9291                         pmu->commit_txn = perf_pmu_nop_int;
9292                         pmu->cancel_txn = perf_pmu_nop_void;
9293                 }
9294         }
9295
9296         if (!pmu->pmu_enable) {
9297                 pmu->pmu_enable  = perf_pmu_nop_void;
9298                 pmu->pmu_disable = perf_pmu_nop_void;
9299         }
9300
9301         if (!pmu->check_period)
9302                 pmu->check_period = perf_event_nop_int;
9303
9304         if (!pmu->event_idx)
9305                 pmu->event_idx = perf_event_idx_default;
9306
9307         list_add_rcu(&pmu->entry, &pmus);
9308         atomic_set(&pmu->exclusive_cnt, 0);
9309         ret = 0;
9310 unlock:
9311         mutex_unlock(&pmus_lock);
9312
9313         return ret;
9314
9315 free_dev:
9316         device_del(pmu->dev);
9317         put_device(pmu->dev);
9318
9319 free_idr:
9320         if (pmu->type >= PERF_TYPE_MAX)
9321                 idr_remove(&pmu_idr, pmu->type);
9322
9323 free_pdc:
9324         free_percpu(pmu->pmu_disable_count);
9325         goto unlock;
9326 }
9327 EXPORT_SYMBOL_GPL(perf_pmu_register);
9328
9329 void perf_pmu_unregister(struct pmu *pmu)
9330 {
9331         mutex_lock(&pmus_lock);
9332         list_del_rcu(&pmu->entry);
9333
9334         /*
9335          * We dereference the pmu list under both SRCU and regular RCU, so
9336          * synchronize against both of those.
9337          */
9338         synchronize_srcu(&pmus_srcu);
9339         synchronize_rcu();
9340
9341         free_percpu(pmu->pmu_disable_count);
9342         if (pmu->type >= PERF_TYPE_MAX)
9343                 idr_remove(&pmu_idr, pmu->type);
9344         if (pmu_bus_running) {
9345                 if (pmu->nr_addr_filters)
9346                         device_remove_file(pmu->dev, &dev_attr_nr_addr_filters);
9347                 device_del(pmu->dev);
9348                 put_device(pmu->dev);
9349         }
9350         free_pmu_context(pmu);
9351         mutex_unlock(&pmus_lock);
9352 }
9353 EXPORT_SYMBOL_GPL(perf_pmu_unregister);
9354
9355 static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
9356 {
9357         struct perf_event_context *ctx = NULL;
9358         int ret;
9359
9360         if (!try_module_get(pmu->module))
9361                 return -ENODEV;
9362
9363         if (event->group_leader != event) {
9364                 /*
9365                  * This ctx->mutex can nest when we're called through
9366                  * inheritance. See the perf_event_ctx_lock_nested() comment.
9367                  */
9368                 ctx = perf_event_ctx_lock_nested(event->group_leader,
9369                                                  SINGLE_DEPTH_NESTING);
9370                 BUG_ON(!ctx);
9371         }
9372
9373         event->pmu = pmu;
9374         ret = pmu->event_init(event);
9375
9376         if (ctx)
9377                 perf_event_ctx_unlock(event->group_leader, ctx);
9378
9379         if (ret)
9380                 module_put(pmu->module);
9381
9382         return ret;
9383 }
9384
9385 static struct pmu *perf_init_event(struct perf_event *event)
9386 {
9387         struct pmu *pmu;
9388         int idx;
9389         int ret;
9390
9391         idx = srcu_read_lock(&pmus_srcu);
9392
9393         /* Try parent's PMU first: */
9394         if (event->parent && event->parent->pmu) {
9395                 pmu = event->parent->pmu;
9396                 ret = perf_try_init_event(pmu, event);
9397                 if (!ret)
9398                         goto unlock;
9399         }
9400
9401         rcu_read_lock();
9402         pmu = idr_find(&pmu_idr, event->attr.type);
9403         rcu_read_unlock();
9404         if (pmu) {
9405                 ret = perf_try_init_event(pmu, event);
9406                 if (ret)
9407                         pmu = ERR_PTR(ret);
9408                 goto unlock;
9409         }
9410
9411         list_for_each_entry_rcu(pmu, &pmus, entry) {
9412                 ret = perf_try_init_event(pmu, event);
9413                 if (!ret)
9414                         goto unlock;
9415
9416                 if (ret != -ENOENT) {
9417                         pmu = ERR_PTR(ret);
9418                         goto unlock;
9419                 }
9420         }
9421         pmu = ERR_PTR(-ENOENT);
9422 unlock:
9423         srcu_read_unlock(&pmus_srcu, idx);
9424
9425         return pmu;
9426 }
9427
9428 static void attach_sb_event(struct perf_event *event)
9429 {
9430         struct pmu_event_list *pel = per_cpu_ptr(&pmu_sb_events, event->cpu);
9431
9432         raw_spin_lock(&pel->lock);
9433         list_add_rcu(&event->sb_list, &pel->list);
9434         raw_spin_unlock(&pel->lock);
9435 }
9436
9437 /*
9438  * We keep a list of all !task (and therefore per-cpu) events
9439  * that need to receive side-band records.
9440  *
9441  * This avoids having to scan all the various PMU per-cpu contexts
9442  * looking for them.
9443  */
9444 static void account_pmu_sb_event(struct perf_event *event)
9445 {
9446         if (is_sb_event(event))
9447                 attach_sb_event(event);
9448 }
9449
9450 static void account_event_cpu(struct perf_event *event, int cpu)
9451 {
9452         if (event->parent)
9453                 return;
9454
9455         if (is_cgroup_event(event))
9456                 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
9457 }
9458
9459 /* Freq events need the tick to stay alive (see perf_event_task_tick). */
9460 static void account_freq_event_nohz(void)
9461 {
9462 #ifdef CONFIG_NO_HZ_FULL
9463         /* Lock so we don't race with concurrent unaccount */
9464         spin_lock(&nr_freq_lock);
9465         if (atomic_inc_return(&nr_freq_events) == 1)
9466                 tick_nohz_dep_set(TICK_DEP_BIT_PERF_EVENTS);
9467         spin_unlock(&nr_freq_lock);
9468 #endif
9469 }
9470
9471 static void account_freq_event(void)
9472 {
9473         if (tick_nohz_full_enabled())
9474                 account_freq_event_nohz();
9475         else
9476                 atomic_inc(&nr_freq_events);
9477 }
9478
9479
9480 static void account_event(struct perf_event *event)
9481 {
9482         bool inc = false;
9483
9484         if (event->parent)
9485                 return;
9486
9487         if (event->attach_state & PERF_ATTACH_TASK)
9488                 inc = true;
9489         if (event->attr.mmap || event->attr.mmap_data)
9490                 atomic_inc(&nr_mmap_events);
9491         if (event->attr.comm)
9492                 atomic_inc(&nr_comm_events);
9493         if (event->attr.namespaces)
9494                 atomic_inc(&nr_namespaces_events);
9495         if (event->attr.task)
9496                 atomic_inc(&nr_task_events);
9497         if (event->attr.freq)
9498                 account_freq_event();
9499         if (event->attr.context_switch) {
9500                 atomic_inc(&nr_switch_events);
9501                 inc = true;
9502         }
9503         if (has_branch_stack(event))
9504                 inc = true;
9505         if (is_cgroup_event(event))
9506                 inc = true;
9507
9508         if (inc) {
9509                 if (atomic_inc_not_zero(&perf_sched_count))
9510                         goto enabled;
9511
9512                 mutex_lock(&perf_sched_mutex);
9513                 if (!atomic_read(&perf_sched_count)) {
9514                         static_branch_enable(&perf_sched_events);
9515                         /*
9516                          * Guarantee that all CPUs observe they key change and
9517                          * call the perf scheduling hooks before proceeding to
9518                          * install events that need them.
9519                          */
9520                         synchronize_sched();
9521                 }
9522                 /*
9523                  * Now that we have waited for the sync_sched(), allow further
9524                  * increments to by-pass the mutex.
9525                  */
9526                 atomic_inc(&perf_sched_count);
9527                 mutex_unlock(&perf_sched_mutex);
9528         }
9529 enabled:
9530
9531         account_event_cpu(event, event->cpu);
9532
9533         account_pmu_sb_event(event);
9534 }
9535
9536 /*
9537  * Allocate and initialize a event structure
9538  */
9539 static struct perf_event *
9540 perf_event_alloc(struct perf_event_attr *attr, int cpu,
9541                  struct task_struct *task,
9542                  struct perf_event *group_leader,
9543                  struct perf_event *parent_event,
9544                  perf_overflow_handler_t overflow_handler,
9545                  void *context, int cgroup_fd)
9546 {
9547         struct pmu *pmu;
9548         struct perf_event *event;
9549         struct hw_perf_event *hwc;
9550         long err = -EINVAL;
9551
9552         if ((unsigned)cpu >= nr_cpu_ids) {
9553                 if (!task || cpu != -1)
9554                         return ERR_PTR(-EINVAL);
9555         }
9556
9557         event = kzalloc(sizeof(*event), GFP_KERNEL);
9558         if (!event)
9559                 return ERR_PTR(-ENOMEM);
9560
9561         /*
9562          * Single events are their own group leaders, with an
9563          * empty sibling list:
9564          */
9565         if (!group_leader)
9566                 group_leader = event;
9567
9568         mutex_init(&event->child_mutex);
9569         INIT_LIST_HEAD(&event->child_list);
9570
9571         INIT_LIST_HEAD(&event->group_entry);
9572         INIT_LIST_HEAD(&event->event_entry);
9573         INIT_LIST_HEAD(&event->sibling_list);
9574         INIT_LIST_HEAD(&event->rb_entry);
9575         INIT_LIST_HEAD(&event->active_entry);
9576         INIT_LIST_HEAD(&event->addr_filters.list);
9577         INIT_HLIST_NODE(&event->hlist_entry);
9578
9579
9580         init_waitqueue_head(&event->waitq);
9581         init_irq_work(&event->pending, perf_pending_event);
9582
9583         mutex_init(&event->mmap_mutex);
9584         raw_spin_lock_init(&event->addr_filters.lock);
9585
9586         atomic_long_set(&event->refcount, 1);
9587         event->cpu              = cpu;
9588         event->attr             = *attr;
9589         event->group_leader     = group_leader;
9590         event->pmu              = NULL;
9591         event->oncpu            = -1;
9592
9593         event->parent           = parent_event;
9594
9595         event->ns               = get_pid_ns(task_active_pid_ns(current));
9596         event->id               = atomic64_inc_return(&perf_event_id);
9597
9598         event->state            = PERF_EVENT_STATE_INACTIVE;
9599
9600         if (task) {
9601                 event->attach_state = PERF_ATTACH_TASK;
9602                 /*
9603                  * XXX pmu::event_init needs to know what task to account to
9604                  * and we cannot use the ctx information because we need the
9605                  * pmu before we get a ctx.
9606                  */
9607                 get_task_struct(task);
9608                 event->hw.target = task;
9609         }
9610
9611         event->clock = &local_clock;
9612         if (parent_event)
9613                 event->clock = parent_event->clock;
9614
9615         if (!overflow_handler && parent_event) {
9616                 overflow_handler = parent_event->overflow_handler;
9617                 context = parent_event->overflow_handler_context;
9618 #if defined(CONFIG_BPF_SYSCALL) && defined(CONFIG_EVENT_TRACING)
9619                 if (overflow_handler == bpf_overflow_handler) {
9620                         struct bpf_prog *prog = bpf_prog_inc(parent_event->prog);
9621
9622                         if (IS_ERR(prog)) {
9623                                 err = PTR_ERR(prog);
9624                                 goto err_ns;
9625                         }
9626                         event->prog = prog;
9627                         event->orig_overflow_handler =
9628                                 parent_event->orig_overflow_handler;
9629                 }
9630 #endif
9631         }
9632
9633         if (overflow_handler) {
9634                 event->overflow_handler = overflow_handler;
9635                 event->overflow_handler_context = context;
9636         } else if (is_write_backward(event)){
9637                 event->overflow_handler = perf_event_output_backward;
9638                 event->overflow_handler_context = NULL;
9639         } else {
9640                 event->overflow_handler = perf_event_output_forward;
9641                 event->overflow_handler_context = NULL;
9642         }
9643
9644         perf_event__state_init(event);
9645
9646         pmu = NULL;
9647
9648         hwc = &event->hw;
9649         hwc->sample_period = attr->sample_period;
9650         if (attr->freq && attr->sample_freq)
9651                 hwc->sample_period = 1;
9652         hwc->last_period = hwc->sample_period;
9653
9654         local64_set(&hwc->period_left, hwc->sample_period);
9655
9656         /*
9657          * We currently do not support PERF_SAMPLE_READ on inherited events.
9658          * See perf_output_read().
9659          */
9660         if (attr->inherit && (attr->sample_type & PERF_SAMPLE_READ))
9661                 goto err_ns;
9662
9663         if (!has_branch_stack(event))
9664                 event->attr.branch_sample_type = 0;
9665
9666         if (cgroup_fd != -1) {
9667                 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
9668                 if (err)
9669                         goto err_ns;
9670         }
9671
9672         pmu = perf_init_event(event);
9673         if (IS_ERR(pmu)) {
9674                 err = PTR_ERR(pmu);
9675                 goto err_ns;
9676         }
9677
9678         err = exclusive_event_init(event);
9679         if (err)
9680                 goto err_pmu;
9681
9682         if (has_addr_filter(event)) {
9683                 event->addr_filters_offs = kcalloc(pmu->nr_addr_filters,
9684                                                    sizeof(unsigned long),
9685                                                    GFP_KERNEL);
9686                 if (!event->addr_filters_offs) {
9687                         err = -ENOMEM;
9688                         goto err_per_task;
9689                 }
9690
9691                 /* force hw sync on the address filters */
9692                 event->addr_filters_gen = 1;
9693         }
9694
9695         if (!event->parent) {
9696                 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
9697                         err = get_callchain_buffers(attr->sample_max_stack);
9698                         if (err)
9699                                 goto err_addr_filters;
9700                 }
9701         }
9702
9703         /* symmetric to unaccount_event() in _free_event() */
9704         account_event(event);
9705
9706         return event;
9707
9708 err_addr_filters:
9709         kfree(event->addr_filters_offs);
9710
9711 err_per_task:
9712         exclusive_event_destroy(event);
9713
9714 err_pmu:
9715         if (event->destroy)
9716                 event->destroy(event);
9717         module_put(pmu->module);
9718 err_ns:
9719         if (is_cgroup_event(event))
9720                 perf_detach_cgroup(event);
9721         if (event->ns)
9722                 put_pid_ns(event->ns);
9723         if (event->hw.target)
9724                 put_task_struct(event->hw.target);
9725         kfree(event);
9726
9727         return ERR_PTR(err);
9728 }
9729
9730 static int perf_copy_attr(struct perf_event_attr __user *uattr,
9731                           struct perf_event_attr *attr)
9732 {
9733         u32 size;
9734         int ret;
9735
9736         if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
9737                 return -EFAULT;
9738
9739         /*
9740          * zero the full structure, so that a short copy will be nice.
9741          */
9742         memset(attr, 0, sizeof(*attr));
9743
9744         ret = get_user(size, &uattr->size);
9745         if (ret)
9746                 return ret;
9747
9748         if (size > PAGE_SIZE)   /* silly large */
9749                 goto err_size;
9750
9751         if (!size)              /* abi compat */
9752                 size = PERF_ATTR_SIZE_VER0;
9753
9754         if (size < PERF_ATTR_SIZE_VER0)
9755                 goto err_size;
9756
9757         /*
9758          * If we're handed a bigger struct than we know of,
9759          * ensure all the unknown bits are 0 - i.e. new
9760          * user-space does not rely on any kernel feature
9761          * extensions we dont know about yet.
9762          */
9763         if (size > sizeof(*attr)) {
9764                 unsigned char __user *addr;
9765                 unsigned char __user *end;
9766                 unsigned char val;
9767
9768                 addr = (void __user *)uattr + sizeof(*attr);
9769                 end  = (void __user *)uattr + size;
9770
9771                 for (; addr < end; addr++) {
9772                         ret = get_user(val, addr);
9773                         if (ret)
9774                                 return ret;
9775                         if (val)
9776                                 goto err_size;
9777                 }
9778                 size = sizeof(*attr);
9779         }
9780
9781         ret = copy_from_user(attr, uattr, size);
9782         if (ret)
9783                 return -EFAULT;
9784
9785         attr->size = size;
9786
9787         if (attr->__reserved_1)
9788                 return -EINVAL;
9789
9790         if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
9791                 return -EINVAL;
9792
9793         if (attr->read_format & ~(PERF_FORMAT_MAX-1))
9794                 return -EINVAL;
9795
9796         if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
9797                 u64 mask = attr->branch_sample_type;
9798
9799                 /* only using defined bits */
9800                 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
9801                         return -EINVAL;
9802
9803                 /* at least one branch bit must be set */
9804                 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
9805                         return -EINVAL;
9806
9807                 /* propagate priv level, when not set for branch */
9808                 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
9809
9810                         /* exclude_kernel checked on syscall entry */
9811                         if (!attr->exclude_kernel)
9812                                 mask |= PERF_SAMPLE_BRANCH_KERNEL;
9813
9814                         if (!attr->exclude_user)
9815                                 mask |= PERF_SAMPLE_BRANCH_USER;
9816
9817                         if (!attr->exclude_hv)
9818                                 mask |= PERF_SAMPLE_BRANCH_HV;
9819                         /*
9820                          * adjust user setting (for HW filter setup)
9821                          */
9822                         attr->branch_sample_type = mask;
9823                 }
9824                 /* privileged levels capture (kernel, hv): check permissions */
9825                 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
9826                     && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
9827                         return -EACCES;
9828         }
9829
9830         if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
9831                 ret = perf_reg_validate(attr->sample_regs_user);
9832                 if (ret)
9833                         return ret;
9834         }
9835
9836         if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
9837                 if (!arch_perf_have_user_stack_dump())
9838                         return -ENOSYS;
9839
9840                 /*
9841                  * We have __u32 type for the size, but so far
9842                  * we can only use __u16 as maximum due to the
9843                  * __u16 sample size limit.
9844                  */
9845                 if (attr->sample_stack_user >= USHRT_MAX)
9846                         return -EINVAL;
9847                 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
9848                         return -EINVAL;
9849         }
9850
9851         if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
9852                 ret = perf_reg_validate(attr->sample_regs_intr);
9853 out:
9854         return ret;
9855
9856 err_size:
9857         put_user(sizeof(*attr), &uattr->size);
9858         ret = -E2BIG;
9859         goto out;
9860 }
9861
9862 static void mutex_lock_double(struct mutex *a, struct mutex *b)
9863 {
9864         if (b < a)
9865                 swap(a, b);
9866
9867         mutex_lock(a);
9868         mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
9869 }
9870
9871 static int
9872 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
9873 {
9874         struct ring_buffer *rb = NULL;
9875         int ret = -EINVAL;
9876
9877         if (!output_event) {
9878                 mutex_lock(&event->mmap_mutex);
9879                 goto set;
9880         }
9881
9882         /* don't allow circular references */
9883         if (event == output_event)
9884                 goto out;
9885
9886         /*
9887          * Don't allow cross-cpu buffers
9888          */
9889         if (output_event->cpu != event->cpu)
9890                 goto out;
9891
9892         /*
9893          * If its not a per-cpu rb, it must be the same task.
9894          */
9895         if (output_event->cpu == -1 && output_event->ctx != event->ctx)
9896                 goto out;
9897
9898         /*
9899          * Mixing clocks in the same buffer is trouble you don't need.
9900          */
9901         if (output_event->clock != event->clock)
9902                 goto out;
9903
9904         /*
9905          * Either writing ring buffer from beginning or from end.
9906          * Mixing is not allowed.
9907          */
9908         if (is_write_backward(output_event) != is_write_backward(event))
9909                 goto out;
9910
9911         /*
9912          * If both events generate aux data, they must be on the same PMU
9913          */
9914         if (has_aux(event) && has_aux(output_event) &&
9915             event->pmu != output_event->pmu)
9916                 goto out;
9917
9918         /*
9919          * Hold both mmap_mutex to serialize against perf_mmap_close().  Since
9920          * output_event is already on rb->event_list, and the list iteration
9921          * restarts after every removal, it is guaranteed this new event is
9922          * observed *OR* if output_event is already removed, it's guaranteed we
9923          * observe !rb->mmap_count.
9924          */
9925         mutex_lock_double(&event->mmap_mutex, &output_event->mmap_mutex);
9926 set:
9927         /* Can't redirect output if we've got an active mmap() */
9928         if (atomic_read(&event->mmap_count))
9929                 goto unlock;
9930
9931         if (output_event) {
9932                 /* get the rb we want to redirect to */
9933                 rb = ring_buffer_get(output_event);
9934                 if (!rb)
9935                         goto unlock;
9936
9937                 /* did we race against perf_mmap_close() */
9938                 if (!atomic_read(&rb->mmap_count)) {
9939                         ring_buffer_put(rb);
9940                         goto unlock;
9941                 }
9942         }
9943
9944         ring_buffer_attach(event, rb);
9945
9946         ret = 0;
9947 unlock:
9948         mutex_unlock(&event->mmap_mutex);
9949         if (output_event)
9950                 mutex_unlock(&output_event->mmap_mutex);
9951
9952 out:
9953         return ret;
9954 }
9955
9956 static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
9957 {
9958         bool nmi_safe = false;
9959
9960         switch (clk_id) {
9961         case CLOCK_MONOTONIC:
9962                 event->clock = &ktime_get_mono_fast_ns;
9963                 nmi_safe = true;
9964                 break;
9965
9966         case CLOCK_MONOTONIC_RAW:
9967                 event->clock = &ktime_get_raw_fast_ns;
9968                 nmi_safe = true;
9969                 break;
9970
9971         case CLOCK_REALTIME:
9972                 event->clock = &ktime_get_real_ns;
9973                 break;
9974
9975         case CLOCK_BOOTTIME:
9976                 event->clock = &ktime_get_boot_ns;
9977                 break;
9978
9979         case CLOCK_TAI:
9980                 event->clock = &ktime_get_tai_ns;
9981                 break;
9982
9983         default:
9984                 return -EINVAL;
9985         }
9986
9987         if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
9988                 return -EINVAL;
9989
9990         return 0;
9991 }
9992
9993 /*
9994  * Variation on perf_event_ctx_lock_nested(), except we take two context
9995  * mutexes.
9996  */
9997 static struct perf_event_context *
9998 __perf_event_ctx_lock_double(struct perf_event *group_leader,
9999                              struct perf_event_context *ctx)
10000 {
10001         struct perf_event_context *gctx;
10002
10003 again:
10004         rcu_read_lock();
10005         gctx = READ_ONCE(group_leader->ctx);
10006         if (!atomic_inc_not_zero(&gctx->refcount)) {
10007                 rcu_read_unlock();
10008                 goto again;
10009         }
10010         rcu_read_unlock();
10011
10012         mutex_lock_double(&gctx->mutex, &ctx->mutex);
10013
10014         if (group_leader->ctx != gctx) {
10015                 mutex_unlock(&ctx->mutex);
10016                 mutex_unlock(&gctx->mutex);
10017                 put_ctx(gctx);
10018                 goto again;
10019         }
10020
10021         return gctx;
10022 }
10023
10024 /**
10025  * sys_perf_event_open - open a performance event, associate it to a task/cpu
10026  *
10027  * @attr_uptr:  event_id type attributes for monitoring/sampling
10028  * @pid:                target pid
10029  * @cpu:                target cpu
10030  * @group_fd:           group leader event fd
10031  */
10032 SYSCALL_DEFINE5(perf_event_open,
10033                 struct perf_event_attr __user *, attr_uptr,
10034                 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
10035 {
10036         struct perf_event *group_leader = NULL, *output_event = NULL;
10037         struct perf_event *event, *sibling;
10038         struct perf_event_attr attr;
10039         struct perf_event_context *ctx, *uninitialized_var(gctx);
10040         struct file *event_file = NULL;
10041         struct fd group = {NULL, 0};
10042         struct task_struct *task = NULL;
10043         struct pmu *pmu;
10044         int event_fd;
10045         int move_group = 0;
10046         int err;
10047         int f_flags = O_RDWR;
10048         int cgroup_fd = -1;
10049
10050         /* for future expandability... */
10051         if (flags & ~PERF_FLAG_ALL)
10052                 return -EINVAL;
10053
10054         err = perf_copy_attr(attr_uptr, &attr);
10055         if (err)
10056                 return err;
10057
10058         if (!attr.exclude_kernel) {
10059                 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10060                         return -EACCES;
10061         }
10062
10063         if (attr.namespaces) {
10064                 if (!capable(CAP_SYS_ADMIN))
10065                         return -EACCES;
10066         }
10067
10068         if (attr.freq) {
10069                 if (attr.sample_freq > sysctl_perf_event_sample_rate)
10070                         return -EINVAL;
10071         } else {
10072                 if (attr.sample_period & (1ULL << 63))
10073                         return -EINVAL;
10074         }
10075
10076         /* Only privileged users can get physical addresses */
10077         if ((attr.sample_type & PERF_SAMPLE_PHYS_ADDR) &&
10078             perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
10079                 return -EACCES;
10080
10081         if (!attr.sample_max_stack)
10082                 attr.sample_max_stack = sysctl_perf_event_max_stack;
10083
10084         /*
10085          * In cgroup mode, the pid argument is used to pass the fd
10086          * opened to the cgroup directory in cgroupfs. The cpu argument
10087          * designates the cpu on which to monitor threads from that
10088          * cgroup.
10089          */
10090         if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
10091                 return -EINVAL;
10092
10093         if (flags & PERF_FLAG_FD_CLOEXEC)
10094                 f_flags |= O_CLOEXEC;
10095
10096         event_fd = get_unused_fd_flags(f_flags);
10097         if (event_fd < 0)
10098                 return event_fd;
10099
10100         if (group_fd != -1) {
10101                 err = perf_fget_light(group_fd, &group);
10102                 if (err)
10103                         goto err_fd;
10104                 group_leader = group.file->private_data;
10105                 if (flags & PERF_FLAG_FD_OUTPUT)
10106                         output_event = group_leader;
10107                 if (flags & PERF_FLAG_FD_NO_GROUP)
10108                         group_leader = NULL;
10109         }
10110
10111         if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
10112                 task = find_lively_task_by_vpid(pid);
10113                 if (IS_ERR(task)) {
10114                         err = PTR_ERR(task);
10115                         goto err_group_fd;
10116                 }
10117         }
10118
10119         if (task && group_leader &&
10120             group_leader->attr.inherit != attr.inherit) {
10121                 err = -EINVAL;
10122                 goto err_task;
10123         }
10124
10125         if (task) {
10126                 err = mutex_lock_interruptible(&task->signal->cred_guard_mutex);
10127                 if (err)
10128                         goto err_task;
10129
10130                 /*
10131                  * Reuse ptrace permission checks for now.
10132                  *
10133                  * We must hold cred_guard_mutex across this and any potential
10134                  * perf_install_in_context() call for this new event to
10135                  * serialize against exec() altering our credentials (and the
10136                  * perf_event_exit_task() that could imply).
10137                  */
10138                 err = -EACCES;
10139                 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS))
10140                         goto err_cred;
10141         }
10142
10143         if (flags & PERF_FLAG_PID_CGROUP)
10144                 cgroup_fd = pid;
10145
10146         event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
10147                                  NULL, NULL, cgroup_fd);
10148         if (IS_ERR(event)) {
10149                 err = PTR_ERR(event);
10150                 goto err_cred;
10151         }
10152
10153         if (is_sampling_event(event)) {
10154                 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
10155                         err = -EOPNOTSUPP;
10156                         goto err_alloc;
10157                 }
10158         }
10159
10160         /*
10161          * Special case software events and allow them to be part of
10162          * any hardware group.
10163          */
10164         pmu = event->pmu;
10165
10166         if (attr.use_clockid) {
10167                 err = perf_event_set_clock(event, attr.clockid);
10168                 if (err)
10169                         goto err_alloc;
10170         }
10171
10172         if (pmu->task_ctx_nr == perf_sw_context)
10173                 event->event_caps |= PERF_EV_CAP_SOFTWARE;
10174
10175         if (group_leader &&
10176             (is_software_event(event) != is_software_event(group_leader))) {
10177                 if (is_software_event(event)) {
10178                         /*
10179                          * If event and group_leader are not both a software
10180                          * event, and event is, then group leader is not.
10181                          *
10182                          * Allow the addition of software events to !software
10183                          * groups, this is safe because software events never
10184                          * fail to schedule.
10185                          */
10186                         pmu = group_leader->pmu;
10187                 } else if (is_software_event(group_leader) &&
10188                            (group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10189                         /*
10190                          * In case the group is a pure software group, and we
10191                          * try to add a hardware event, move the whole group to
10192                          * the hardware context.
10193                          */
10194                         move_group = 1;
10195                 }
10196         }
10197
10198         /*
10199          * Get the target context (task or percpu):
10200          */
10201         ctx = find_get_context(pmu, task, event);
10202         if (IS_ERR(ctx)) {
10203                 err = PTR_ERR(ctx);
10204                 goto err_alloc;
10205         }
10206
10207         if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
10208                 err = -EBUSY;
10209                 goto err_context;
10210         }
10211
10212         /*
10213          * Look up the group leader (we will attach this event to it):
10214          */
10215         if (group_leader) {
10216                 err = -EINVAL;
10217
10218                 /*
10219                  * Do not allow a recursive hierarchy (this new sibling
10220                  * becoming part of another group-sibling):
10221                  */
10222                 if (group_leader->group_leader != group_leader)
10223                         goto err_context;
10224
10225                 /* All events in a group should have the same clock */
10226                 if (group_leader->clock != event->clock)
10227                         goto err_context;
10228
10229                 /*
10230                  * Make sure we're both events for the same CPU;
10231                  * grouping events for different CPUs is broken; since
10232                  * you can never concurrently schedule them anyhow.
10233                  */
10234                 if (group_leader->cpu != event->cpu)
10235                         goto err_context;
10236
10237                 /*
10238                  * Make sure we're both on the same task, or both
10239                  * per-CPU events.
10240                  */
10241                 if (group_leader->ctx->task != ctx->task)
10242                         goto err_context;
10243
10244                 /*
10245                  * Do not allow to attach to a group in a different task
10246                  * or CPU context. If we're moving SW events, we'll fix
10247                  * this up later, so allow that.
10248                  *
10249                  * Racy, not holding group_leader->ctx->mutex, see comment with
10250                  * perf_event_ctx_lock().
10251                  */
10252                 if (!move_group && group_leader->ctx != ctx)
10253                         goto err_context;
10254
10255                 /*
10256                  * Only a group leader can be exclusive or pinned
10257                  */
10258                 if (attr.exclusive || attr.pinned)
10259                         goto err_context;
10260         }
10261
10262         if (output_event) {
10263                 err = perf_event_set_output(event, output_event);
10264                 if (err)
10265                         goto err_context;
10266         }
10267
10268         event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
10269                                         f_flags);
10270         if (IS_ERR(event_file)) {
10271                 err = PTR_ERR(event_file);
10272                 event_file = NULL;
10273                 goto err_context;
10274         }
10275
10276         if (move_group) {
10277                 gctx = __perf_event_ctx_lock_double(group_leader, ctx);
10278
10279                 if (gctx->task == TASK_TOMBSTONE) {
10280                         err = -ESRCH;
10281                         goto err_locked;
10282                 }
10283
10284                 /*
10285                  * Check if we raced against another sys_perf_event_open() call
10286                  * moving the software group underneath us.
10287                  */
10288                 if (!(group_leader->group_caps & PERF_EV_CAP_SOFTWARE)) {
10289                         /*
10290                          * If someone moved the group out from under us, check
10291                          * if this new event wound up on the same ctx, if so
10292                          * its the regular !move_group case, otherwise fail.
10293                          */
10294                         if (gctx != ctx) {
10295                                 err = -EINVAL;
10296                                 goto err_locked;
10297                         } else {
10298                                 perf_event_ctx_unlock(group_leader, gctx);
10299                                 move_group = 0;
10300                                 goto not_move_group;
10301                         }
10302                 }
10303         } else {
10304                 mutex_lock(&ctx->mutex);
10305
10306                 /*
10307                  * Now that we hold ctx->lock, (re)validate group_leader->ctx == ctx,
10308                  * see the group_leader && !move_group test earlier.
10309                  */
10310                 if (group_leader && group_leader->ctx != ctx) {
10311                         err = -EINVAL;
10312                         goto err_locked;
10313                 }
10314         }
10315 not_move_group:
10316
10317         if (ctx->task == TASK_TOMBSTONE) {
10318                 err = -ESRCH;
10319                 goto err_locked;
10320         }
10321
10322         if (!perf_event_validate_size(event)) {
10323                 err = -E2BIG;
10324                 goto err_locked;
10325         }
10326
10327         if (!task) {
10328                 /*
10329                  * Check if the @cpu we're creating an event for is online.
10330                  *
10331                  * We use the perf_cpu_context::ctx::mutex to serialize against
10332                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10333                  */
10334                 struct perf_cpu_context *cpuctx =
10335                         container_of(ctx, struct perf_cpu_context, ctx);
10336
10337                 if (!cpuctx->online) {
10338                         err = -ENODEV;
10339                         goto err_locked;
10340                 }
10341         }
10342
10343
10344         /*
10345          * Must be under the same ctx::mutex as perf_install_in_context(),
10346          * because we need to serialize with concurrent event creation.
10347          */
10348         if (!exclusive_event_installable(event, ctx)) {
10349                 /* exclusive and group stuff are assumed mutually exclusive */
10350                 WARN_ON_ONCE(move_group);
10351
10352                 err = -EBUSY;
10353                 goto err_locked;
10354         }
10355
10356         WARN_ON_ONCE(ctx->parent_ctx);
10357
10358         /*
10359          * This is the point on no return; we cannot fail hereafter. This is
10360          * where we start modifying current state.
10361          */
10362
10363         if (move_group) {
10364                 /*
10365                  * See perf_event_ctx_lock() for comments on the details
10366                  * of swizzling perf_event::ctx.
10367                  */
10368                 perf_remove_from_context(group_leader, 0);
10369                 put_ctx(gctx);
10370
10371                 list_for_each_entry(sibling, &group_leader->sibling_list,
10372                                     group_entry) {
10373                         perf_remove_from_context(sibling, 0);
10374                         put_ctx(gctx);
10375                 }
10376
10377                 /*
10378                  * Wait for everybody to stop referencing the events through
10379                  * the old lists, before installing it on new lists.
10380                  */
10381                 synchronize_rcu();
10382
10383                 /*
10384                  * Install the group siblings before the group leader.
10385                  *
10386                  * Because a group leader will try and install the entire group
10387                  * (through the sibling list, which is still in-tact), we can
10388                  * end up with siblings installed in the wrong context.
10389                  *
10390                  * By installing siblings first we NO-OP because they're not
10391                  * reachable through the group lists.
10392                  */
10393                 list_for_each_entry(sibling, &group_leader->sibling_list,
10394                                     group_entry) {
10395                         perf_event__state_init(sibling);
10396                         perf_install_in_context(ctx, sibling, sibling->cpu);
10397                         get_ctx(ctx);
10398                 }
10399
10400                 /*
10401                  * Removing from the context ends up with disabled
10402                  * event. What we want here is event in the initial
10403                  * startup state, ready to be add into new context.
10404                  */
10405                 perf_event__state_init(group_leader);
10406                 perf_install_in_context(ctx, group_leader, group_leader->cpu);
10407                 get_ctx(ctx);
10408         }
10409
10410         /*
10411          * Precalculate sample_data sizes; do while holding ctx::mutex such
10412          * that we're serialized against further additions and before
10413          * perf_install_in_context() which is the point the event is active and
10414          * can use these values.
10415          */
10416         perf_event__header_size(event);
10417         perf_event__id_header_size(event);
10418
10419         event->owner = current;
10420
10421         perf_install_in_context(ctx, event, event->cpu);
10422         perf_unpin_context(ctx);
10423
10424         if (move_group)
10425                 perf_event_ctx_unlock(group_leader, gctx);
10426         mutex_unlock(&ctx->mutex);
10427
10428         if (task) {
10429                 mutex_unlock(&task->signal->cred_guard_mutex);
10430                 put_task_struct(task);
10431         }
10432
10433         mutex_lock(&current->perf_event_mutex);
10434         list_add_tail(&event->owner_entry, &current->perf_event_list);
10435         mutex_unlock(&current->perf_event_mutex);
10436
10437         /*
10438          * Drop the reference on the group_event after placing the
10439          * new event on the sibling_list. This ensures destruction
10440          * of the group leader will find the pointer to itself in
10441          * perf_group_detach().
10442          */
10443         fdput(group);
10444         fd_install(event_fd, event_file);
10445         return event_fd;
10446
10447 err_locked:
10448         if (move_group)
10449                 perf_event_ctx_unlock(group_leader, gctx);
10450         mutex_unlock(&ctx->mutex);
10451 /* err_file: */
10452         fput(event_file);
10453 err_context:
10454         perf_unpin_context(ctx);
10455         put_ctx(ctx);
10456 err_alloc:
10457         /*
10458          * If event_file is set, the fput() above will have called ->release()
10459          * and that will take care of freeing the event.
10460          */
10461         if (!event_file)
10462                 free_event(event);
10463 err_cred:
10464         if (task)
10465                 mutex_unlock(&task->signal->cred_guard_mutex);
10466 err_task:
10467         if (task)
10468                 put_task_struct(task);
10469 err_group_fd:
10470         fdput(group);
10471 err_fd:
10472         put_unused_fd(event_fd);
10473         return err;
10474 }
10475
10476 /**
10477  * perf_event_create_kernel_counter
10478  *
10479  * @attr: attributes of the counter to create
10480  * @cpu: cpu in which the counter is bound
10481  * @task: task to profile (NULL for percpu)
10482  */
10483 struct perf_event *
10484 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
10485                                  struct task_struct *task,
10486                                  perf_overflow_handler_t overflow_handler,
10487                                  void *context)
10488 {
10489         struct perf_event_context *ctx;
10490         struct perf_event *event;
10491         int err;
10492
10493         /*
10494          * Get the target context (task or percpu):
10495          */
10496
10497         event = perf_event_alloc(attr, cpu, task, NULL, NULL,
10498                                  overflow_handler, context, -1);
10499         if (IS_ERR(event)) {
10500                 err = PTR_ERR(event);
10501                 goto err;
10502         }
10503
10504         /* Mark owner so we could distinguish it from user events. */
10505         event->owner = TASK_TOMBSTONE;
10506
10507         ctx = find_get_context(event->pmu, task, event);
10508         if (IS_ERR(ctx)) {
10509                 err = PTR_ERR(ctx);
10510                 goto err_free;
10511         }
10512
10513         WARN_ON_ONCE(ctx->parent_ctx);
10514         mutex_lock(&ctx->mutex);
10515         if (ctx->task == TASK_TOMBSTONE) {
10516                 err = -ESRCH;
10517                 goto err_unlock;
10518         }
10519
10520         if (!task) {
10521                 /*
10522                  * Check if the @cpu we're creating an event for is online.
10523                  *
10524                  * We use the perf_cpu_context::ctx::mutex to serialize against
10525                  * the hotplug notifiers. See perf_event_{init,exit}_cpu().
10526                  */
10527                 struct perf_cpu_context *cpuctx =
10528                         container_of(ctx, struct perf_cpu_context, ctx);
10529                 if (!cpuctx->online) {
10530                         err = -ENODEV;
10531                         goto err_unlock;
10532                 }
10533         }
10534
10535         if (!exclusive_event_installable(event, ctx)) {
10536                 err = -EBUSY;
10537                 goto err_unlock;
10538         }
10539
10540         perf_install_in_context(ctx, event, event->cpu);
10541         perf_unpin_context(ctx);
10542         mutex_unlock(&ctx->mutex);
10543
10544         return event;
10545
10546 err_unlock:
10547         mutex_unlock(&ctx->mutex);
10548         perf_unpin_context(ctx);
10549         put_ctx(ctx);
10550 err_free:
10551         free_event(event);
10552 err:
10553         return ERR_PTR(err);
10554 }
10555 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
10556
10557 void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
10558 {
10559         struct perf_event_context *src_ctx;
10560         struct perf_event_context *dst_ctx;
10561         struct perf_event *event, *tmp;
10562         LIST_HEAD(events);
10563
10564         src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
10565         dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
10566
10567         /*
10568          * See perf_event_ctx_lock() for comments on the details
10569          * of swizzling perf_event::ctx.
10570          */
10571         mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
10572         list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
10573                                  event_entry) {
10574                 perf_remove_from_context(event, 0);
10575                 unaccount_event_cpu(event, src_cpu);
10576                 put_ctx(src_ctx);
10577                 list_add(&event->migrate_entry, &events);
10578         }
10579
10580         /*
10581          * Wait for the events to quiesce before re-instating them.
10582          */
10583         synchronize_rcu();
10584
10585         /*
10586          * Re-instate events in 2 passes.
10587          *
10588          * Skip over group leaders and only install siblings on this first
10589          * pass, siblings will not get enabled without a leader, however a
10590          * leader will enable its siblings, even if those are still on the old
10591          * context.
10592          */
10593         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10594                 if (event->group_leader == event)
10595                         continue;
10596
10597                 list_del(&event->migrate_entry);
10598                 if (event->state >= PERF_EVENT_STATE_OFF)
10599                         event->state = PERF_EVENT_STATE_INACTIVE;
10600                 account_event_cpu(event, dst_cpu);
10601                 perf_install_in_context(dst_ctx, event, dst_cpu);
10602                 get_ctx(dst_ctx);
10603         }
10604
10605         /*
10606          * Once all the siblings are setup properly, install the group leaders
10607          * to make it go.
10608          */
10609         list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
10610                 list_del(&event->migrate_entry);
10611                 if (event->state >= PERF_EVENT_STATE_OFF)
10612                         event->state = PERF_EVENT_STATE_INACTIVE;
10613                 account_event_cpu(event, dst_cpu);
10614                 perf_install_in_context(dst_ctx, event, dst_cpu);
10615                 get_ctx(dst_ctx);
10616         }
10617         mutex_unlock(&dst_ctx->mutex);
10618         mutex_unlock(&src_ctx->mutex);
10619 }
10620 EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
10621
10622 static void sync_child_event(struct perf_event *child_event,
10623                                struct task_struct *child)
10624 {
10625         struct perf_event *parent_event = child_event->parent;
10626         u64 child_val;
10627
10628         if (child_event->attr.inherit_stat)
10629                 perf_event_read_event(child_event, child);
10630
10631         child_val = perf_event_count(child_event);
10632
10633         /*
10634          * Add back the child's count to the parent's count:
10635          */
10636         atomic64_add(child_val, &parent_event->child_count);
10637         atomic64_add(child_event->total_time_enabled,
10638                      &parent_event->child_total_time_enabled);
10639         atomic64_add(child_event->total_time_running,
10640                      &parent_event->child_total_time_running);
10641 }
10642
10643 static void
10644 perf_event_exit_event(struct perf_event *child_event,
10645                       struct perf_event_context *child_ctx,
10646                       struct task_struct *child)
10647 {
10648         struct perf_event *parent_event = child_event->parent;
10649
10650         /*
10651          * Do not destroy the 'original' grouping; because of the context
10652          * switch optimization the original events could've ended up in a
10653          * random child task.
10654          *
10655          * If we were to destroy the original group, all group related
10656          * operations would cease to function properly after this random
10657          * child dies.
10658          *
10659          * Do destroy all inherited groups, we don't care about those
10660          * and being thorough is better.
10661          */
10662         raw_spin_lock_irq(&child_ctx->lock);
10663         WARN_ON_ONCE(child_ctx->is_active);
10664
10665         if (parent_event)
10666                 perf_group_detach(child_event);
10667         list_del_event(child_event, child_ctx);
10668         child_event->state = PERF_EVENT_STATE_EXIT; /* is_event_hup() */
10669         raw_spin_unlock_irq(&child_ctx->lock);
10670
10671         /*
10672          * Parent events are governed by their filedesc, retain them.
10673          */
10674         if (!parent_event) {
10675                 perf_event_wakeup(child_event);
10676                 return;
10677         }
10678         /*
10679          * Child events can be cleaned up.
10680          */
10681
10682         sync_child_event(child_event, child);
10683
10684         /*
10685          * Remove this event from the parent's list
10686          */
10687         WARN_ON_ONCE(parent_event->ctx->parent_ctx);
10688         mutex_lock(&parent_event->child_mutex);
10689         list_del_init(&child_event->child_list);
10690         mutex_unlock(&parent_event->child_mutex);
10691
10692         /*
10693          * Kick perf_poll() for is_event_hup().
10694          */
10695         perf_event_wakeup(parent_event);
10696         free_event(child_event);
10697         put_event(parent_event);
10698 }
10699
10700 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
10701 {
10702         struct perf_event_context *child_ctx, *clone_ctx = NULL;
10703         struct perf_event *child_event, *next;
10704
10705         WARN_ON_ONCE(child != current);
10706
10707         child_ctx = perf_pin_task_context(child, ctxn);
10708         if (!child_ctx)
10709                 return;
10710
10711         /*
10712          * In order to reduce the amount of tricky in ctx tear-down, we hold
10713          * ctx::mutex over the entire thing. This serializes against almost
10714          * everything that wants to access the ctx.
10715          *
10716          * The exception is sys_perf_event_open() /
10717          * perf_event_create_kernel_count() which does find_get_context()
10718          * without ctx::mutex (it cannot because of the move_group double mutex
10719          * lock thing). See the comments in perf_install_in_context().
10720          */
10721         mutex_lock(&child_ctx->mutex);
10722
10723         /*
10724          * In a single ctx::lock section, de-schedule the events and detach the
10725          * context from the task such that we cannot ever get it scheduled back
10726          * in.
10727          */
10728         raw_spin_lock_irq(&child_ctx->lock);
10729         task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx, EVENT_ALL);
10730
10731         /*
10732          * Now that the context is inactive, destroy the task <-> ctx relation
10733          * and mark the context dead.
10734          */
10735         RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
10736         put_ctx(child_ctx); /* cannot be last */
10737         WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
10738         put_task_struct(current); /* cannot be last */
10739
10740         clone_ctx = unclone_ctx(child_ctx);
10741         raw_spin_unlock_irq(&child_ctx->lock);
10742
10743         if (clone_ctx)
10744                 put_ctx(clone_ctx);
10745
10746         /*
10747          * Report the task dead after unscheduling the events so that we
10748          * won't get any samples after PERF_RECORD_EXIT. We can however still
10749          * get a few PERF_RECORD_READ events.
10750          */
10751         perf_event_task(child, child_ctx, 0);
10752
10753         list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
10754                 perf_event_exit_event(child_event, child_ctx, child);
10755
10756         mutex_unlock(&child_ctx->mutex);
10757
10758         put_ctx(child_ctx);
10759 }
10760
10761 /*
10762  * When a child task exits, feed back event values to parent events.
10763  *
10764  * Can be called with cred_guard_mutex held when called from
10765  * install_exec_creds().
10766  */
10767 void perf_event_exit_task(struct task_struct *child)
10768 {
10769         struct perf_event *event, *tmp;
10770         int ctxn;
10771
10772         mutex_lock(&child->perf_event_mutex);
10773         list_for_each_entry_safe(event, tmp, &child->perf_event_list,
10774                                  owner_entry) {
10775                 list_del_init(&event->owner_entry);
10776
10777                 /*
10778                  * Ensure the list deletion is visible before we clear
10779                  * the owner, closes a race against perf_release() where
10780                  * we need to serialize on the owner->perf_event_mutex.
10781                  */
10782                 smp_store_release(&event->owner, NULL);
10783         }
10784         mutex_unlock(&child->perf_event_mutex);
10785
10786         for_each_task_context_nr(ctxn)
10787                 perf_event_exit_task_context(child, ctxn);
10788
10789         /*
10790          * The perf_event_exit_task_context calls perf_event_task
10791          * with child's task_ctx, which generates EXIT events for
10792          * child contexts and sets child->perf_event_ctxp[] to NULL.
10793          * At this point we need to send EXIT events to cpu contexts.
10794          */
10795         perf_event_task(child, NULL, 0);
10796 }
10797
10798 static void perf_free_event(struct perf_event *event,
10799                             struct perf_event_context *ctx)
10800 {
10801         struct perf_event *parent = event->parent;
10802
10803         if (WARN_ON_ONCE(!parent))
10804                 return;
10805
10806         mutex_lock(&parent->child_mutex);
10807         list_del_init(&event->child_list);
10808         mutex_unlock(&parent->child_mutex);
10809
10810         put_event(parent);
10811
10812         raw_spin_lock_irq(&ctx->lock);
10813         perf_group_detach(event);
10814         list_del_event(event, ctx);
10815         raw_spin_unlock_irq(&ctx->lock);
10816         free_event(event);
10817 }
10818
10819 /*
10820  * Free an unexposed, unused context as created by inheritance by
10821  * perf_event_init_task below, used by fork() in case of fail.
10822  *
10823  * Not all locks are strictly required, but take them anyway to be nice and
10824  * help out with the lockdep assertions.
10825  */
10826 void perf_event_free_task(struct task_struct *task)
10827 {
10828         struct perf_event_context *ctx;
10829         struct perf_event *event, *tmp;
10830         int ctxn;
10831
10832         for_each_task_context_nr(ctxn) {
10833                 ctx = task->perf_event_ctxp[ctxn];
10834                 if (!ctx)
10835                         continue;
10836
10837                 mutex_lock(&ctx->mutex);
10838                 raw_spin_lock_irq(&ctx->lock);
10839                 /*
10840                  * Destroy the task <-> ctx relation and mark the context dead.
10841                  *
10842                  * This is important because even though the task hasn't been
10843                  * exposed yet the context has been (through child_list).
10844                  */
10845                 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], NULL);
10846                 WRITE_ONCE(ctx->task, TASK_TOMBSTONE);
10847                 put_task_struct(task); /* cannot be last */
10848                 raw_spin_unlock_irq(&ctx->lock);
10849
10850                 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry)
10851                         perf_free_event(event, ctx);
10852
10853                 mutex_unlock(&ctx->mutex);
10854                 put_ctx(ctx);
10855         }
10856 }
10857
10858 void perf_event_delayed_put(struct task_struct *task)
10859 {
10860         int ctxn;
10861
10862         for_each_task_context_nr(ctxn)
10863                 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
10864 }
10865
10866 struct file *perf_event_get(unsigned int fd)
10867 {
10868         struct file *file;
10869
10870         file = fget_raw(fd);
10871         if (!file)
10872                 return ERR_PTR(-EBADF);
10873
10874         if (file->f_op != &perf_fops) {
10875                 fput(file);
10876                 return ERR_PTR(-EBADF);
10877         }
10878
10879         return file;
10880 }
10881
10882 const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
10883 {
10884         if (!event)
10885                 return ERR_PTR(-EINVAL);
10886
10887         return &event->attr;
10888 }
10889
10890 /*
10891  * Inherit a event from parent task to child task.
10892  *
10893  * Returns:
10894  *  - valid pointer on success
10895  *  - NULL for orphaned events
10896  *  - IS_ERR() on error
10897  */
10898 static struct perf_event *
10899 inherit_event(struct perf_event *parent_event,
10900               struct task_struct *parent,
10901               struct perf_event_context *parent_ctx,
10902               struct task_struct *child,
10903               struct perf_event *group_leader,
10904               struct perf_event_context *child_ctx)
10905 {
10906         enum perf_event_active_state parent_state = parent_event->state;
10907         struct perf_event *child_event;
10908         unsigned long flags;
10909
10910         /*
10911          * Instead of creating recursive hierarchies of events,
10912          * we link inherited events back to the original parent,
10913          * which has a filp for sure, which we use as the reference
10914          * count:
10915          */
10916         if (parent_event->parent)
10917                 parent_event = parent_event->parent;
10918
10919         child_event = perf_event_alloc(&parent_event->attr,
10920                                            parent_event->cpu,
10921                                            child,
10922                                            group_leader, parent_event,
10923                                            NULL, NULL, -1);
10924         if (IS_ERR(child_event))
10925                 return child_event;
10926
10927         /*
10928          * is_orphaned_event() and list_add_tail(&parent_event->child_list)
10929          * must be under the same lock in order to serialize against
10930          * perf_event_release_kernel(), such that either we must observe
10931          * is_orphaned_event() or they will observe us on the child_list.
10932          */
10933         mutex_lock(&parent_event->child_mutex);
10934         if (is_orphaned_event(parent_event) ||
10935             !atomic_long_inc_not_zero(&parent_event->refcount)) {
10936                 mutex_unlock(&parent_event->child_mutex);
10937                 free_event(child_event);
10938                 return NULL;
10939         }
10940
10941         get_ctx(child_ctx);
10942
10943         /*
10944          * Make the child state follow the state of the parent event,
10945          * not its attr.disabled bit.  We hold the parent's mutex,
10946          * so we won't race with perf_event_{en, dis}able_family.
10947          */
10948         if (parent_state >= PERF_EVENT_STATE_INACTIVE)
10949                 child_event->state = PERF_EVENT_STATE_INACTIVE;
10950         else
10951                 child_event->state = PERF_EVENT_STATE_OFF;
10952
10953         if (parent_event->attr.freq) {
10954                 u64 sample_period = parent_event->hw.sample_period;
10955                 struct hw_perf_event *hwc = &child_event->hw;
10956
10957                 hwc->sample_period = sample_period;
10958                 hwc->last_period   = sample_period;
10959
10960                 local64_set(&hwc->period_left, sample_period);
10961         }
10962
10963         child_event->ctx = child_ctx;
10964         child_event->overflow_handler = parent_event->overflow_handler;
10965         child_event->overflow_handler_context
10966                 = parent_event->overflow_handler_context;
10967
10968         /*
10969          * Precalculate sample_data sizes
10970          */
10971         perf_event__header_size(child_event);
10972         perf_event__id_header_size(child_event);
10973
10974         /*
10975          * Link it up in the child's context:
10976          */
10977         raw_spin_lock_irqsave(&child_ctx->lock, flags);
10978         add_event_to_ctx(child_event, child_ctx);
10979         raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
10980
10981         /*
10982          * Link this into the parent event's child list
10983          */
10984         list_add_tail(&child_event->child_list, &parent_event->child_list);
10985         mutex_unlock(&parent_event->child_mutex);
10986
10987         return child_event;
10988 }
10989
10990 /*
10991  * Inherits an event group.
10992  *
10993  * This will quietly suppress orphaned events; !inherit_event() is not an error.
10994  * This matches with perf_event_release_kernel() removing all child events.
10995  *
10996  * Returns:
10997  *  - 0 on success
10998  *  - <0 on error
10999  */
11000 static int inherit_group(struct perf_event *parent_event,
11001               struct task_struct *parent,
11002               struct perf_event_context *parent_ctx,
11003               struct task_struct *child,
11004               struct perf_event_context *child_ctx)
11005 {
11006         struct perf_event *leader;
11007         struct perf_event *sub;
11008         struct perf_event *child_ctr;
11009
11010         leader = inherit_event(parent_event, parent, parent_ctx,
11011                                  child, NULL, child_ctx);
11012         if (IS_ERR(leader))
11013                 return PTR_ERR(leader);
11014         /*
11015          * @leader can be NULL here because of is_orphaned_event(). In this
11016          * case inherit_event() will create individual events, similar to what
11017          * perf_group_detach() would do anyway.
11018          */
11019         list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
11020                 child_ctr = inherit_event(sub, parent, parent_ctx,
11021                                             child, leader, child_ctx);
11022                 if (IS_ERR(child_ctr))
11023                         return PTR_ERR(child_ctr);
11024         }
11025         return 0;
11026 }
11027
11028 /*
11029  * Creates the child task context and tries to inherit the event-group.
11030  *
11031  * Clears @inherited_all on !attr.inherited or error. Note that we'll leave
11032  * inherited_all set when we 'fail' to inherit an orphaned event; this is
11033  * consistent with perf_event_release_kernel() removing all child events.
11034  *
11035  * Returns:
11036  *  - 0 on success
11037  *  - <0 on error
11038  */
11039 static int
11040 inherit_task_group(struct perf_event *event, struct task_struct *parent,
11041                    struct perf_event_context *parent_ctx,
11042                    struct task_struct *child, int ctxn,
11043                    int *inherited_all)
11044 {
11045         int ret;
11046         struct perf_event_context *child_ctx;
11047
11048         if (!event->attr.inherit) {
11049                 *inherited_all = 0;
11050                 return 0;
11051         }
11052
11053         child_ctx = child->perf_event_ctxp[ctxn];
11054         if (!child_ctx) {
11055                 /*
11056                  * This is executed from the parent task context, so
11057                  * inherit events that have been marked for cloning.
11058                  * First allocate and initialize a context for the
11059                  * child.
11060                  */
11061                 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
11062                 if (!child_ctx)
11063                         return -ENOMEM;
11064
11065                 child->perf_event_ctxp[ctxn] = child_ctx;
11066         }
11067
11068         ret = inherit_group(event, parent, parent_ctx,
11069                             child, child_ctx);
11070
11071         if (ret)
11072                 *inherited_all = 0;
11073
11074         return ret;
11075 }
11076
11077 /*
11078  * Initialize the perf_event context in task_struct
11079  */
11080 static int perf_event_init_context(struct task_struct *child, int ctxn)
11081 {
11082         struct perf_event_context *child_ctx, *parent_ctx;
11083         struct perf_event_context *cloned_ctx;
11084         struct perf_event *event;
11085         struct task_struct *parent = current;
11086         int inherited_all = 1;
11087         unsigned long flags;
11088         int ret = 0;
11089
11090         if (likely(!parent->perf_event_ctxp[ctxn]))
11091                 return 0;
11092
11093         /*
11094          * If the parent's context is a clone, pin it so it won't get
11095          * swapped under us.
11096          */
11097         parent_ctx = perf_pin_task_context(parent, ctxn);
11098         if (!parent_ctx)
11099                 return 0;
11100
11101         /*
11102          * No need to check if parent_ctx != NULL here; since we saw
11103          * it non-NULL earlier, the only reason for it to become NULL
11104          * is if we exit, and since we're currently in the middle of
11105          * a fork we can't be exiting at the same time.
11106          */
11107
11108         /*
11109          * Lock the parent list. No need to lock the child - not PID
11110          * hashed yet and not running, so nobody can access it.
11111          */
11112         mutex_lock(&parent_ctx->mutex);
11113
11114         /*
11115          * We dont have to disable NMIs - we are only looking at
11116          * the list, not manipulating it:
11117          */
11118         list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
11119                 ret = inherit_task_group(event, parent, parent_ctx,
11120                                          child, ctxn, &inherited_all);
11121                 if (ret)
11122                         goto out_unlock;
11123         }
11124
11125         /*
11126          * We can't hold ctx->lock when iterating the ->flexible_group list due
11127          * to allocations, but we need to prevent rotation because
11128          * rotate_ctx() will change the list from interrupt context.
11129          */
11130         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11131         parent_ctx->rotate_disable = 1;
11132         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11133
11134         list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
11135                 ret = inherit_task_group(event, parent, parent_ctx,
11136                                          child, ctxn, &inherited_all);
11137                 if (ret)
11138                         goto out_unlock;
11139         }
11140
11141         raw_spin_lock_irqsave(&parent_ctx->lock, flags);
11142         parent_ctx->rotate_disable = 0;
11143
11144         child_ctx = child->perf_event_ctxp[ctxn];
11145
11146         if (child_ctx && inherited_all) {
11147                 /*
11148                  * Mark the child context as a clone of the parent
11149                  * context, or of whatever the parent is a clone of.
11150                  *
11151                  * Note that if the parent is a clone, the holding of
11152                  * parent_ctx->lock avoids it from being uncloned.
11153                  */
11154                 cloned_ctx = parent_ctx->parent_ctx;
11155                 if (cloned_ctx) {
11156                         child_ctx->parent_ctx = cloned_ctx;
11157                         child_ctx->parent_gen = parent_ctx->parent_gen;
11158                 } else {
11159                         child_ctx->parent_ctx = parent_ctx;
11160                         child_ctx->parent_gen = parent_ctx->generation;
11161                 }
11162                 get_ctx(child_ctx->parent_ctx);
11163         }
11164
11165         raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
11166 out_unlock:
11167         mutex_unlock(&parent_ctx->mutex);
11168
11169         perf_unpin_context(parent_ctx);
11170         put_ctx(parent_ctx);
11171
11172         return ret;
11173 }
11174
11175 /*
11176  * Initialize the perf_event context in task_struct
11177  */
11178 int perf_event_init_task(struct task_struct *child)
11179 {
11180         int ctxn, ret;
11181
11182         memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
11183         mutex_init(&child->perf_event_mutex);
11184         INIT_LIST_HEAD(&child->perf_event_list);
11185
11186         for_each_task_context_nr(ctxn) {
11187                 ret = perf_event_init_context(child, ctxn);
11188                 if (ret) {
11189                         perf_event_free_task(child);
11190                         return ret;
11191                 }
11192         }
11193
11194         return 0;
11195 }
11196
11197 static void __init perf_event_init_all_cpus(void)
11198 {
11199         struct swevent_htable *swhash;
11200         int cpu;
11201
11202         zalloc_cpumask_var(&perf_online_mask, GFP_KERNEL);
11203
11204         for_each_possible_cpu(cpu) {
11205                 swhash = &per_cpu(swevent_htable, cpu);
11206                 mutex_init(&swhash->hlist_mutex);
11207                 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
11208
11209                 INIT_LIST_HEAD(&per_cpu(pmu_sb_events.list, cpu));
11210                 raw_spin_lock_init(&per_cpu(pmu_sb_events.lock, cpu));
11211
11212 #ifdef CONFIG_CGROUP_PERF
11213                 INIT_LIST_HEAD(&per_cpu(cgrp_cpuctx_list, cpu));
11214 #endif
11215                 INIT_LIST_HEAD(&per_cpu(sched_cb_list, cpu));
11216         }
11217 }
11218
11219 void perf_swevent_init_cpu(unsigned int cpu)
11220 {
11221         struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
11222
11223         mutex_lock(&swhash->hlist_mutex);
11224         if (swhash->hlist_refcount > 0 && !swevent_hlist_deref(swhash)) {
11225                 struct swevent_hlist *hlist;
11226
11227                 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
11228                 WARN_ON(!hlist);
11229                 rcu_assign_pointer(swhash->swevent_hlist, hlist);
11230         }
11231         mutex_unlock(&swhash->hlist_mutex);
11232 }
11233
11234 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
11235 static void __perf_event_exit_context(void *__info)
11236 {
11237         struct perf_event_context *ctx = __info;
11238         struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
11239         struct perf_event *event;
11240
11241         raw_spin_lock(&ctx->lock);
11242         list_for_each_entry(event, &ctx->event_list, event_entry)
11243                 __perf_remove_from_context(event, cpuctx, ctx, (void *)DETACH_GROUP);
11244         raw_spin_unlock(&ctx->lock);
11245 }
11246
11247 static void perf_event_exit_cpu_context(int cpu)
11248 {
11249         struct perf_cpu_context *cpuctx;
11250         struct perf_event_context *ctx;
11251         struct pmu *pmu;
11252
11253         mutex_lock(&pmus_lock);
11254         list_for_each_entry(pmu, &pmus, entry) {
11255                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11256                 ctx = &cpuctx->ctx;
11257
11258                 mutex_lock(&ctx->mutex);
11259                 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
11260                 cpuctx->online = 0;
11261                 mutex_unlock(&ctx->mutex);
11262         }
11263         cpumask_clear_cpu(cpu, perf_online_mask);
11264         mutex_unlock(&pmus_lock);
11265 }
11266 #else
11267
11268 static void perf_event_exit_cpu_context(int cpu) { }
11269
11270 #endif
11271
11272 int perf_event_init_cpu(unsigned int cpu)
11273 {
11274         struct perf_cpu_context *cpuctx;
11275         struct perf_event_context *ctx;
11276         struct pmu *pmu;
11277
11278         perf_swevent_init_cpu(cpu);
11279
11280         mutex_lock(&pmus_lock);
11281         cpumask_set_cpu(cpu, perf_online_mask);
11282         list_for_each_entry(pmu, &pmus, entry) {
11283                 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
11284                 ctx = &cpuctx->ctx;
11285
11286                 mutex_lock(&ctx->mutex);
11287                 cpuctx->online = 1;
11288                 mutex_unlock(&ctx->mutex);
11289         }
11290         mutex_unlock(&pmus_lock);
11291
11292         return 0;
11293 }
11294
11295 int perf_event_exit_cpu(unsigned int cpu)
11296 {
11297         perf_event_exit_cpu_context(cpu);
11298         return 0;
11299 }
11300
11301 static int
11302 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
11303 {
11304         int cpu;
11305
11306         for_each_online_cpu(cpu)
11307                 perf_event_exit_cpu(cpu);
11308
11309         return NOTIFY_OK;
11310 }
11311
11312 /*
11313  * Run the perf reboot notifier at the very last possible moment so that
11314  * the generic watchdog code runs as long as possible.
11315  */
11316 static struct notifier_block perf_reboot_notifier = {
11317         .notifier_call = perf_reboot,
11318         .priority = INT_MIN,
11319 };
11320
11321 void __init perf_event_init(void)
11322 {
11323         int ret;
11324
11325         idr_init(&pmu_idr);
11326
11327         perf_event_init_all_cpus();
11328         init_srcu_struct(&pmus_srcu);
11329         perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
11330         perf_pmu_register(&perf_cpu_clock, NULL, -1);
11331         perf_pmu_register(&perf_task_clock, NULL, -1);
11332         perf_tp_register();
11333         perf_event_init_cpu(smp_processor_id());
11334         register_reboot_notifier(&perf_reboot_notifier);
11335
11336         ret = init_hw_breakpoint();
11337         WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
11338
11339         /*
11340          * Build time assertion that we keep the data_head at the intended
11341          * location.  IOW, validation we got the __reserved[] size right.
11342          */
11343         BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
11344                      != 1024);
11345 }
11346
11347 ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
11348                               char *page)
11349 {
11350         struct perf_pmu_events_attr *pmu_attr =
11351                 container_of(attr, struct perf_pmu_events_attr, attr);
11352
11353         if (pmu_attr->event_str)
11354                 return sprintf(page, "%s\n", pmu_attr->event_str);
11355
11356         return 0;
11357 }
11358 EXPORT_SYMBOL_GPL(perf_event_sysfs_show);
11359
11360 static int __init perf_event_sysfs_init(void)
11361 {
11362         struct pmu *pmu;
11363         int ret;
11364
11365         mutex_lock(&pmus_lock);
11366
11367         ret = bus_register(&pmu_bus);
11368         if (ret)
11369                 goto unlock;
11370
11371         list_for_each_entry(pmu, &pmus, entry) {
11372                 if (!pmu->name || pmu->type < 0)
11373                         continue;
11374
11375                 ret = pmu_dev_alloc(pmu);
11376                 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
11377         }
11378         pmu_bus_running = 1;
11379         ret = 0;
11380
11381 unlock:
11382         mutex_unlock(&pmus_lock);
11383
11384         return ret;
11385 }
11386 device_initcall(perf_event_sysfs_init);
11387
11388 #ifdef CONFIG_CGROUP_PERF
11389 static struct cgroup_subsys_state *
11390 perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
11391 {
11392         struct perf_cgroup *jc;
11393
11394         jc = kzalloc(sizeof(*jc), GFP_KERNEL);
11395         if (!jc)
11396                 return ERR_PTR(-ENOMEM);
11397
11398         jc->info = alloc_percpu(struct perf_cgroup_info);
11399         if (!jc->info) {
11400                 kfree(jc);
11401                 return ERR_PTR(-ENOMEM);
11402         }
11403
11404         return &jc->css;
11405 }
11406
11407 static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
11408 {
11409         struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
11410
11411         free_percpu(jc->info);
11412         kfree(jc);
11413 }
11414
11415 static int __perf_cgroup_move(void *info)
11416 {
11417         struct task_struct *task = info;
11418         rcu_read_lock();
11419         perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
11420         rcu_read_unlock();
11421         return 0;
11422 }
11423
11424 static void perf_cgroup_attach(struct cgroup_taskset *tset)
11425 {
11426         struct task_struct *task;
11427         struct cgroup_subsys_state *css;
11428
11429         cgroup_taskset_for_each(task, css, tset)
11430                 task_function_call(task, __perf_cgroup_move, task);
11431 }
11432
11433 struct cgroup_subsys perf_event_cgrp_subsys = {
11434         .css_alloc      = perf_cgroup_css_alloc,
11435         .css_free       = perf_cgroup_css_free,
11436         .attach         = perf_cgroup_attach,
11437         /*
11438          * Implicitly enable on dfl hierarchy so that perf events can
11439          * always be filtered by cgroup2 path as long as perf_event
11440          * controller is not mounted on a legacy hierarchy.
11441          */
11442         .implicit_on_dfl = true,
11443         .threaded       = true,
11444 };
11445 #endif /* CONFIG_CGROUP_PERF */