GNU Linux-libre 4.19.264-gnu1
[releases.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>         /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h>         /* try_to_free_swap */
36 #include <linux/ptrace.h>       /* user_enable_single_step */
37 #include <linux/kdebug.h>       /* notifier mechanism */
38 #include "../../mm/internal.h"  /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN        0
66
67 struct uprobe {
68         struct rb_node          rb_node;        /* node in the rb tree */
69         atomic_t                ref;
70         struct rw_semaphore     register_rwsem;
71         struct rw_semaphore     consumer_rwsem;
72         struct list_head        pending_list;
73         struct uprobe_consumer  *consumers;
74         struct inode            *inode;         /* Also hold a ref to inode */
75         loff_t                  offset;
76         unsigned long           flags;
77
78         /*
79          * The generic code assumes that it has two members of unknown type
80          * owned by the arch-specific code:
81          *
82          *      insn -  copy_insn() saves the original instruction here for
83          *              arch_uprobe_analyze_insn().
84          *
85          *      ixol -  potentially modified instruction to execute out of
86          *              line, copied to xol_area by xol_get_insn_slot().
87          */
88         struct arch_uprobe      arch;
89 };
90
91 /*
92  * Execute out of line area: anonymous executable mapping installed
93  * by the probed task to execute the copy of the original instruction
94  * mangled by set_swbp().
95  *
96  * On a breakpoint hit, thread contests for a slot.  It frees the
97  * slot after singlestep. Currently a fixed number of slots are
98  * allocated.
99  */
100 struct xol_area {
101         wait_queue_head_t               wq;             /* if all slots are busy */
102         atomic_t                        slot_count;     /* number of in-use slots */
103         unsigned long                   *bitmap;        /* 0 = free slot */
104
105         struct vm_special_mapping       xol_mapping;
106         struct page                     *pages[2];
107         /*
108          * We keep the vma's vm_start rather than a pointer to the vma
109          * itself.  The probed process or a naughty kernel module could make
110          * the vma go away, and we must handle that reasonably gracefully.
111          */
112         unsigned long                   vaddr;          /* Page(s) of instruction slots */
113 };
114
115 /*
116  * valid_vma: Verify if the specified vma is an executable vma
117  * Relax restrictions while unregistering: vm_flags might have
118  * changed after breakpoint was inserted.
119  *      - is_register: indicates if we are in register context.
120  *      - Return 1 if the specified virtual address is in an
121  *        executable vma.
122  */
123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126
127         if (is_register)
128                 flags |= VM_WRITE;
129
130         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132
133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137
138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142
143 /**
144  * __replace_page - replace page in vma by new page.
145  * based on replace_page in mm/ksm.c
146  *
147  * @vma:      vma that holds the pte pointing to page
148  * @addr:     address the old @page is mapped at
149  * @page:     the cowed page we are replacing by kpage
150  * @kpage:    the modified page we replace page by
151  *
152  * Returns 0 on success, -EFAULT on failure.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = old_page,
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         /* For mmu_notifiers */
165         const unsigned long mmun_start = addr;
166         const unsigned long mmun_end   = addr + PAGE_SIZE;
167         struct mem_cgroup *memcg;
168
169         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
170
171         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
172                         false);
173         if (err)
174                 return err;
175
176         /* For try_to_free_swap() and munlock_vma_page() below */
177         lock_page(old_page);
178
179         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180         err = -EAGAIN;
181         if (!page_vma_mapped_walk(&pvmw)) {
182                 mem_cgroup_cancel_charge(new_page, memcg, false);
183                 goto unlock;
184         }
185         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
186
187         get_page(new_page);
188         page_add_new_anon_rmap(new_page, vma, addr, false);
189         mem_cgroup_commit_charge(new_page, memcg, false, false);
190         lru_cache_add_active_or_unevictable(new_page, vma);
191
192         if (!PageAnon(old_page)) {
193                 dec_mm_counter(mm, mm_counter_file(old_page));
194                 inc_mm_counter(mm, MM_ANONPAGES);
195         }
196
197         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198         ptep_clear_flush_notify(vma, addr, pvmw.pte);
199         set_pte_at_notify(mm, addr, pvmw.pte,
200                         mk_pte(new_page, vma->vm_page_prot));
201
202         page_remove_rmap(old_page, false);
203         if (!page_mapped(old_page))
204                 try_to_free_swap(old_page);
205         page_vma_mapped_walk_done(&pvmw);
206
207         if (vma->vm_flags & VM_LOCKED)
208                 munlock_vma_page(old_page);
209         put_page(old_page);
210
211         err = 0;
212  unlock:
213         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
214         unlock_page(old_page);
215         return err;
216 }
217
218 /**
219  * is_swbp_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_swbp_insn
222  * Returns true if @insn is a breakpoint instruction.
223  */
224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226         return *insn == UPROBE_SWBP_INSN;
227 }
228
229 /**
230  * is_trap_insn - check if instruction is breakpoint instruction.
231  * @insn: instruction to be checked.
232  * Default implementation of is_trap_insn
233  * Returns true if @insn is a breakpoint instruction.
234  *
235  * This function is needed for the case where an architecture has multiple
236  * trap instructions (like powerpc).
237  */
238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240         return is_swbp_insn(insn);
241 }
242
243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245         void *kaddr = kmap_atomic(page);
246         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247         kunmap_atomic(kaddr);
248 }
249
250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252         void *kaddr = kmap_atomic(page);
253         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254         kunmap_atomic(kaddr);
255 }
256
257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259         uprobe_opcode_t old_opcode;
260         bool is_swbp;
261
262         /*
263          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264          * We do not check if it is any other 'trap variant' which could
265          * be conditional trap instruction such as the one powerpc supports.
266          *
267          * The logic is that we do not care if the underlying instruction
268          * is a trap variant; uprobes always wins over any other (gdb)
269          * breakpoint.
270          */
271         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272         is_swbp = is_swbp_insn(&old_opcode);
273
274         if (is_swbp_insn(new_opcode)) {
275                 if (is_swbp)            /* register: already installed? */
276                         return 0;
277         } else {
278                 if (!is_swbp)           /* unregister: was it changed by us? */
279                         return 0;
280         }
281
282         return 1;
283 }
284
285 /*
286  * NOTE:
287  * Expect the breakpoint instruction to be the smallest size instruction for
288  * the architecture. If an arch has variable length instruction and the
289  * breakpoint instruction is not of the smallest length instruction
290  * supported by that architecture then we need to modify is_trap_at_addr and
291  * uprobe_write_opcode accordingly. This would never be a problem for archs
292  * that have fixed length instructions.
293  *
294  * uprobe_write_opcode - write the opcode at a given virtual address.
295  * @mm: the probed process address space.
296  * @vaddr: the virtual address to store the opcode.
297  * @opcode: opcode to be written at @vaddr.
298  *
299  * Called with mm->mmap_sem held for write.
300  * Return 0 (success) or a negative errno.
301  */
302 int uprobe_write_opcode(struct arch_uprobe *auprobe, struct mm_struct *mm,
303                         unsigned long vaddr, uprobe_opcode_t opcode)
304 {
305         struct page *old_page, *new_page;
306         struct vm_area_struct *vma;
307         int ret;
308
309 retry:
310         /* Read the page with vaddr into memory */
311         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
312                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
313         if (ret <= 0)
314                 return ret;
315
316         ret = verify_opcode(old_page, vaddr, &opcode);
317         if (ret <= 0)
318                 goto put_old;
319
320         ret = anon_vma_prepare(vma);
321         if (ret)
322                 goto put_old;
323
324         ret = -ENOMEM;
325         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
326         if (!new_page)
327                 goto put_old;
328
329         __SetPageUptodate(new_page);
330         copy_highpage(new_page, old_page);
331         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
332
333         ret = __replace_page(vma, vaddr, old_page, new_page);
334         put_page(new_page);
335 put_old:
336         put_page(old_page);
337
338         if (unlikely(ret == -EAGAIN))
339                 goto retry;
340         return ret;
341 }
342
343 /**
344  * set_swbp - store breakpoint at a given address.
345  * @auprobe: arch specific probepoint information.
346  * @mm: the probed process address space.
347  * @vaddr: the virtual address to insert the opcode.
348  *
349  * For mm @mm, store the breakpoint instruction at @vaddr.
350  * Return 0 (success) or a negative errno.
351  */
352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
353 {
354         return uprobe_write_opcode(auprobe, mm, vaddr, UPROBE_SWBP_INSN);
355 }
356
357 /**
358  * set_orig_insn - Restore the original instruction.
359  * @mm: the probed process address space.
360  * @auprobe: arch specific probepoint information.
361  * @vaddr: the virtual address to insert the opcode.
362  *
363  * For mm @mm, restore the original opcode (opcode) at @vaddr.
364  * Return 0 (success) or a negative errno.
365  */
366 int __weak
367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
368 {
369         return uprobe_write_opcode(auprobe, mm, vaddr,
370                         *(uprobe_opcode_t *)&auprobe->insn);
371 }
372
373 static struct uprobe *get_uprobe(struct uprobe *uprobe)
374 {
375         atomic_inc(&uprobe->ref);
376         return uprobe;
377 }
378
379 static void put_uprobe(struct uprobe *uprobe)
380 {
381         if (atomic_dec_and_test(&uprobe->ref))
382                 kfree(uprobe);
383 }
384
385 static int match_uprobe(struct uprobe *l, struct uprobe *r)
386 {
387         if (l->inode < r->inode)
388                 return -1;
389
390         if (l->inode > r->inode)
391                 return 1;
392
393         if (l->offset < r->offset)
394                 return -1;
395
396         if (l->offset > r->offset)
397                 return 1;
398
399         return 0;
400 }
401
402 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
403 {
404         struct uprobe u = { .inode = inode, .offset = offset };
405         struct rb_node *n = uprobes_tree.rb_node;
406         struct uprobe *uprobe;
407         int match;
408
409         while (n) {
410                 uprobe = rb_entry(n, struct uprobe, rb_node);
411                 match = match_uprobe(&u, uprobe);
412                 if (!match)
413                         return get_uprobe(uprobe);
414
415                 if (match < 0)
416                         n = n->rb_left;
417                 else
418                         n = n->rb_right;
419         }
420         return NULL;
421 }
422
423 /*
424  * Find a uprobe corresponding to a given inode:offset
425  * Acquires uprobes_treelock
426  */
427 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
428 {
429         struct uprobe *uprobe;
430
431         spin_lock(&uprobes_treelock);
432         uprobe = __find_uprobe(inode, offset);
433         spin_unlock(&uprobes_treelock);
434
435         return uprobe;
436 }
437
438 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
439 {
440         struct rb_node **p = &uprobes_tree.rb_node;
441         struct rb_node *parent = NULL;
442         struct uprobe *u;
443         int match;
444
445         while (*p) {
446                 parent = *p;
447                 u = rb_entry(parent, struct uprobe, rb_node);
448                 match = match_uprobe(uprobe, u);
449                 if (!match)
450                         return get_uprobe(u);
451
452                 if (match < 0)
453                         p = &parent->rb_left;
454                 else
455                         p = &parent->rb_right;
456
457         }
458
459         u = NULL;
460         rb_link_node(&uprobe->rb_node, parent, p);
461         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
462         /* get access + creation ref */
463         atomic_set(&uprobe->ref, 2);
464
465         return u;
466 }
467
468 /*
469  * Acquire uprobes_treelock.
470  * Matching uprobe already exists in rbtree;
471  *      increment (access refcount) and return the matching uprobe.
472  *
473  * No matching uprobe; insert the uprobe in rb_tree;
474  *      get a double refcount (access + creation) and return NULL.
475  */
476 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
477 {
478         struct uprobe *u;
479
480         spin_lock(&uprobes_treelock);
481         u = __insert_uprobe(uprobe);
482         spin_unlock(&uprobes_treelock);
483
484         return u;
485 }
486
487 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
488 {
489         struct uprobe *uprobe, *cur_uprobe;
490
491         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
492         if (!uprobe)
493                 return NULL;
494
495         uprobe->inode = inode;
496         uprobe->offset = offset;
497         init_rwsem(&uprobe->register_rwsem);
498         init_rwsem(&uprobe->consumer_rwsem);
499
500         /* add to uprobes_tree, sorted on inode:offset */
501         cur_uprobe = insert_uprobe(uprobe);
502         /* a uprobe exists for this inode:offset combination */
503         if (cur_uprobe) {
504                 kfree(uprobe);
505                 uprobe = cur_uprobe;
506         }
507
508         return uprobe;
509 }
510
511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 {
513         down_write(&uprobe->consumer_rwsem);
514         uc->next = uprobe->consumers;
515         uprobe->consumers = uc;
516         up_write(&uprobe->consumer_rwsem);
517 }
518
519 /*
520  * For uprobe @uprobe, delete the consumer @uc.
521  * Return true if the @uc is deleted successfully
522  * or return false.
523  */
524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 {
526         struct uprobe_consumer **con;
527         bool ret = false;
528
529         down_write(&uprobe->consumer_rwsem);
530         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
531                 if (*con == uc) {
532                         *con = uc->next;
533                         ret = true;
534                         break;
535                 }
536         }
537         up_write(&uprobe->consumer_rwsem);
538
539         return ret;
540 }
541
542 static int __copy_insn(struct address_space *mapping, struct file *filp,
543                         void *insn, int nbytes, loff_t offset)
544 {
545         struct page *page;
546         /*
547          * Ensure that the page that has the original instruction is populated
548          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549          * see uprobe_register().
550          */
551         if (mapping->a_ops->readpage)
552                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
553         else
554                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
555         if (IS_ERR(page))
556                 return PTR_ERR(page);
557
558         copy_from_page(page, offset, insn, nbytes);
559         put_page(page);
560
561         return 0;
562 }
563
564 static int copy_insn(struct uprobe *uprobe, struct file *filp)
565 {
566         struct address_space *mapping = uprobe->inode->i_mapping;
567         loff_t offs = uprobe->offset;
568         void *insn = &uprobe->arch.insn;
569         int size = sizeof(uprobe->arch.insn);
570         int len, err = -EIO;
571
572         /* Copy only available bytes, -EIO if nothing was read */
573         do {
574                 if (offs >= i_size_read(uprobe->inode))
575                         break;
576
577                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
578                 err = __copy_insn(mapping, filp, insn, len, offs);
579                 if (err)
580                         break;
581
582                 insn += len;
583                 offs += len;
584                 size -= len;
585         } while (size);
586
587         return err;
588 }
589
590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
591                                 struct mm_struct *mm, unsigned long vaddr)
592 {
593         int ret = 0;
594
595         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596                 return ret;
597
598         /* TODO: move this into _register, until then we abuse this sem. */
599         down_write(&uprobe->consumer_rwsem);
600         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601                 goto out;
602
603         ret = copy_insn(uprobe, file);
604         if (ret)
605                 goto out;
606
607         ret = -ENOTSUPP;
608         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609                 goto out;
610
611         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
612         if (ret)
613                 goto out;
614
615         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
616         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
617
618  out:
619         up_write(&uprobe->consumer_rwsem);
620
621         return ret;
622 }
623
624 static inline bool consumer_filter(struct uprobe_consumer *uc,
625                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627         return !uc->filter || uc->filter(uc, ctx, mm);
628 }
629
630 static bool filter_chain(struct uprobe *uprobe,
631                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
632 {
633         struct uprobe_consumer *uc;
634         bool ret = false;
635
636         down_read(&uprobe->consumer_rwsem);
637         for (uc = uprobe->consumers; uc; uc = uc->next) {
638                 ret = consumer_filter(uc, ctx, mm);
639                 if (ret)
640                         break;
641         }
642         up_read(&uprobe->consumer_rwsem);
643
644         return ret;
645 }
646
647 static int
648 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
649                         struct vm_area_struct *vma, unsigned long vaddr)
650 {
651         bool first_uprobe;
652         int ret;
653
654         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
655         if (ret)
656                 return ret;
657
658         /*
659          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
660          * the task can hit this breakpoint right after __replace_page().
661          */
662         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
663         if (first_uprobe)
664                 set_bit(MMF_HAS_UPROBES, &mm->flags);
665
666         ret = set_swbp(&uprobe->arch, mm, vaddr);
667         if (!ret)
668                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
669         else if (first_uprobe)
670                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
671
672         return ret;
673 }
674
675 static int
676 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
677 {
678         set_bit(MMF_RECALC_UPROBES, &mm->flags);
679         return set_orig_insn(&uprobe->arch, mm, vaddr);
680 }
681
682 static inline bool uprobe_is_active(struct uprobe *uprobe)
683 {
684         return !RB_EMPTY_NODE(&uprobe->rb_node);
685 }
686 /*
687  * There could be threads that have already hit the breakpoint. They
688  * will recheck the current insn and restart if find_uprobe() fails.
689  * See find_active_uprobe().
690  */
691 static void delete_uprobe(struct uprobe *uprobe)
692 {
693         if (WARN_ON(!uprobe_is_active(uprobe)))
694                 return;
695
696         spin_lock(&uprobes_treelock);
697         rb_erase(&uprobe->rb_node, &uprobes_tree);
698         spin_unlock(&uprobes_treelock);
699         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
700         put_uprobe(uprobe);
701 }
702
703 struct map_info {
704         struct map_info *next;
705         struct mm_struct *mm;
706         unsigned long vaddr;
707 };
708
709 static inline struct map_info *free_map_info(struct map_info *info)
710 {
711         struct map_info *next = info->next;
712         kfree(info);
713         return next;
714 }
715
716 static struct map_info *
717 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
718 {
719         unsigned long pgoff = offset >> PAGE_SHIFT;
720         struct vm_area_struct *vma;
721         struct map_info *curr = NULL;
722         struct map_info *prev = NULL;
723         struct map_info *info;
724         int more = 0;
725
726  again:
727         i_mmap_lock_read(mapping);
728         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
729                 if (!valid_vma(vma, is_register))
730                         continue;
731
732                 if (!prev && !more) {
733                         /*
734                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
735                          * reclaim. This is optimistic, no harm done if it fails.
736                          */
737                         prev = kmalloc(sizeof(struct map_info),
738                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
739                         if (prev)
740                                 prev->next = NULL;
741                 }
742                 if (!prev) {
743                         more++;
744                         continue;
745                 }
746
747                 if (!mmget_not_zero(vma->vm_mm))
748                         continue;
749
750                 info = prev;
751                 prev = prev->next;
752                 info->next = curr;
753                 curr = info;
754
755                 info->mm = vma->vm_mm;
756                 info->vaddr = offset_to_vaddr(vma, offset);
757         }
758         i_mmap_unlock_read(mapping);
759
760         if (!more)
761                 goto out;
762
763         prev = curr;
764         while (curr) {
765                 mmput(curr->mm);
766                 curr = curr->next;
767         }
768
769         do {
770                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
771                 if (!info) {
772                         curr = ERR_PTR(-ENOMEM);
773                         goto out;
774                 }
775                 info->next = prev;
776                 prev = info;
777         } while (--more);
778
779         goto again;
780  out:
781         while (prev)
782                 prev = free_map_info(prev);
783         return curr;
784 }
785
786 static int
787 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
788 {
789         bool is_register = !!new;
790         struct map_info *info;
791         int err = 0;
792
793         percpu_down_write(&dup_mmap_sem);
794         info = build_map_info(uprobe->inode->i_mapping,
795                                         uprobe->offset, is_register);
796         if (IS_ERR(info)) {
797                 err = PTR_ERR(info);
798                 goto out;
799         }
800
801         while (info) {
802                 struct mm_struct *mm = info->mm;
803                 struct vm_area_struct *vma;
804
805                 if (err && is_register)
806                         goto free;
807
808                 down_write(&mm->mmap_sem);
809                 vma = find_vma(mm, info->vaddr);
810                 if (!vma || !valid_vma(vma, is_register) ||
811                     file_inode(vma->vm_file) != uprobe->inode)
812                         goto unlock;
813
814                 if (vma->vm_start > info->vaddr ||
815                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
816                         goto unlock;
817
818                 if (is_register) {
819                         /* consult only the "caller", new consumer. */
820                         if (consumer_filter(new,
821                                         UPROBE_FILTER_REGISTER, mm))
822                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
823                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
824                         if (!filter_chain(uprobe,
825                                         UPROBE_FILTER_UNREGISTER, mm))
826                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
827                 }
828
829  unlock:
830                 up_write(&mm->mmap_sem);
831  free:
832                 mmput(mm);
833                 info = free_map_info(info);
834         }
835  out:
836         percpu_up_write(&dup_mmap_sem);
837         return err;
838 }
839
840 static void
841 __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843         int err;
844
845         if (WARN_ON(!consumer_del(uprobe, uc)))
846                 return;
847
848         err = register_for_each_vma(uprobe, NULL);
849         /* TODO : cant unregister? schedule a worker thread */
850         if (!uprobe->consumers && !err)
851                 delete_uprobe(uprobe);
852 }
853
854 /*
855  * uprobe_unregister - unregister an already registered probe.
856  * @inode: the file in which the probe has to be removed.
857  * @offset: offset from the start of the file.
858  * @uc: identify which probe if multiple probes are colocated.
859  */
860 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
861 {
862         struct uprobe *uprobe;
863
864         uprobe = find_uprobe(inode, offset);
865         if (WARN_ON(!uprobe))
866                 return;
867
868         down_write(&uprobe->register_rwsem);
869         __uprobe_unregister(uprobe, uc);
870         up_write(&uprobe->register_rwsem);
871         put_uprobe(uprobe);
872 }
873 EXPORT_SYMBOL_GPL(uprobe_unregister);
874
875 /*
876  * __uprobe_register - register a probe
877  * @inode: the file in which the probe has to be placed.
878  * @offset: offset from the start of the file.
879  * @uc: information on howto handle the probe..
880  *
881  * Apart from the access refcount, __uprobe_register() takes a creation
882  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
883  * inserted into the rbtree (i.e first consumer for a @inode:@offset
884  * tuple).  Creation refcount stops uprobe_unregister from freeing the
885  * @uprobe even before the register operation is complete. Creation
886  * refcount is released when the last @uc for the @uprobe
887  * unregisters. Caller of __uprobe_register() is required to keep @inode
888  * (and the containing mount) referenced.
889  *
890  * Return errno if it cannot successully install probes
891  * else return 0 (success)
892  */
893 static int __uprobe_register(struct inode *inode, loff_t offset,
894                              struct uprobe_consumer *uc)
895 {
896         struct uprobe *uprobe;
897         int ret;
898
899         /* Uprobe must have at least one set consumer */
900         if (!uc->handler && !uc->ret_handler)
901                 return -EINVAL;
902
903         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
904         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
905                 return -EIO;
906         /* Racy, just to catch the obvious mistakes */
907         if (offset > i_size_read(inode))
908                 return -EINVAL;
909
910         /*
911          * This ensures that copy_from_page() and copy_to_page()
912          * can't cross page boundary.
913          */
914         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
915                 return -EINVAL;
916
917  retry:
918         uprobe = alloc_uprobe(inode, offset);
919         if (!uprobe)
920                 return -ENOMEM;
921         /*
922          * We can race with uprobe_unregister()->delete_uprobe().
923          * Check uprobe_is_active() and retry if it is false.
924          */
925         down_write(&uprobe->register_rwsem);
926         ret = -EAGAIN;
927         if (likely(uprobe_is_active(uprobe))) {
928                 consumer_add(uprobe, uc);
929                 ret = register_for_each_vma(uprobe, uc);
930                 if (ret)
931                         __uprobe_unregister(uprobe, uc);
932         }
933         up_write(&uprobe->register_rwsem);
934         put_uprobe(uprobe);
935
936         if (unlikely(ret == -EAGAIN))
937                 goto retry;
938         return ret;
939 }
940
941 int uprobe_register(struct inode *inode, loff_t offset,
942                     struct uprobe_consumer *uc)
943 {
944         return __uprobe_register(inode, offset, uc);
945 }
946 EXPORT_SYMBOL_GPL(uprobe_register);
947
948 /*
949  * uprobe_apply - unregister an already registered probe.
950  * @inode: the file in which the probe has to be removed.
951  * @offset: offset from the start of the file.
952  * @uc: consumer which wants to add more or remove some breakpoints
953  * @add: add or remove the breakpoints
954  */
955 int uprobe_apply(struct inode *inode, loff_t offset,
956                         struct uprobe_consumer *uc, bool add)
957 {
958         struct uprobe *uprobe;
959         struct uprobe_consumer *con;
960         int ret = -ENOENT;
961
962         uprobe = find_uprobe(inode, offset);
963         if (WARN_ON(!uprobe))
964                 return ret;
965
966         down_write(&uprobe->register_rwsem);
967         for (con = uprobe->consumers; con && con != uc ; con = con->next)
968                 ;
969         if (con)
970                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
971         up_write(&uprobe->register_rwsem);
972         put_uprobe(uprobe);
973
974         return ret;
975 }
976
977 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
978 {
979         struct vm_area_struct *vma;
980         int err = 0;
981
982         down_read(&mm->mmap_sem);
983         for (vma = mm->mmap; vma; vma = vma->vm_next) {
984                 unsigned long vaddr;
985                 loff_t offset;
986
987                 if (!valid_vma(vma, false) ||
988                     file_inode(vma->vm_file) != uprobe->inode)
989                         continue;
990
991                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
992                 if (uprobe->offset <  offset ||
993                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
994                         continue;
995
996                 vaddr = offset_to_vaddr(vma, uprobe->offset);
997                 err |= remove_breakpoint(uprobe, mm, vaddr);
998         }
999         up_read(&mm->mmap_sem);
1000
1001         return err;
1002 }
1003
1004 static struct rb_node *
1005 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1006 {
1007         struct rb_node *n = uprobes_tree.rb_node;
1008
1009         while (n) {
1010                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1011
1012                 if (inode < u->inode) {
1013                         n = n->rb_left;
1014                 } else if (inode > u->inode) {
1015                         n = n->rb_right;
1016                 } else {
1017                         if (max < u->offset)
1018                                 n = n->rb_left;
1019                         else if (min > u->offset)
1020                                 n = n->rb_right;
1021                         else
1022                                 break;
1023                 }
1024         }
1025
1026         return n;
1027 }
1028
1029 /*
1030  * For a given range in vma, build a list of probes that need to be inserted.
1031  */
1032 static void build_probe_list(struct inode *inode,
1033                                 struct vm_area_struct *vma,
1034                                 unsigned long start, unsigned long end,
1035                                 struct list_head *head)
1036 {
1037         loff_t min, max;
1038         struct rb_node *n, *t;
1039         struct uprobe *u;
1040
1041         INIT_LIST_HEAD(head);
1042         min = vaddr_to_offset(vma, start);
1043         max = min + (end - start) - 1;
1044
1045         spin_lock(&uprobes_treelock);
1046         n = find_node_in_range(inode, min, max);
1047         if (n) {
1048                 for (t = n; t; t = rb_prev(t)) {
1049                         u = rb_entry(t, struct uprobe, rb_node);
1050                         if (u->inode != inode || u->offset < min)
1051                                 break;
1052                         list_add(&u->pending_list, head);
1053                         get_uprobe(u);
1054                 }
1055                 for (t = n; (t = rb_next(t)); ) {
1056                         u = rb_entry(t, struct uprobe, rb_node);
1057                         if (u->inode != inode || u->offset > max)
1058                                 break;
1059                         list_add(&u->pending_list, head);
1060                         get_uprobe(u);
1061                 }
1062         }
1063         spin_unlock(&uprobes_treelock);
1064 }
1065
1066 /*
1067  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1068  *
1069  * Currently we ignore all errors and always return 0, the callers
1070  * can't handle the failure anyway.
1071  */
1072 int uprobe_mmap(struct vm_area_struct *vma)
1073 {
1074         struct list_head tmp_list;
1075         struct uprobe *uprobe, *u;
1076         struct inode *inode;
1077
1078         if (no_uprobe_events() || !valid_vma(vma, true))
1079                 return 0;
1080
1081         inode = file_inode(vma->vm_file);
1082         if (!inode)
1083                 return 0;
1084
1085         mutex_lock(uprobes_mmap_hash(inode));
1086         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1087         /*
1088          * We can race with uprobe_unregister(), this uprobe can be already
1089          * removed. But in this case filter_chain() must return false, all
1090          * consumers have gone away.
1091          */
1092         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1093                 if (!fatal_signal_pending(current) &&
1094                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1095                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1096                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1097                 }
1098                 put_uprobe(uprobe);
1099         }
1100         mutex_unlock(uprobes_mmap_hash(inode));
1101
1102         return 0;
1103 }
1104
1105 static bool
1106 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1107 {
1108         loff_t min, max;
1109         struct inode *inode;
1110         struct rb_node *n;
1111
1112         inode = file_inode(vma->vm_file);
1113
1114         min = vaddr_to_offset(vma, start);
1115         max = min + (end - start) - 1;
1116
1117         spin_lock(&uprobes_treelock);
1118         n = find_node_in_range(inode, min, max);
1119         spin_unlock(&uprobes_treelock);
1120
1121         return !!n;
1122 }
1123
1124 /*
1125  * Called in context of a munmap of a vma.
1126  */
1127 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1128 {
1129         if (no_uprobe_events() || !valid_vma(vma, false))
1130                 return;
1131
1132         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1133                 return;
1134
1135         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1136              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1137                 return;
1138
1139         if (vma_has_uprobes(vma, start, end))
1140                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1141 }
1142
1143 /* Slot allocation for XOL */
1144 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1145 {
1146         struct vm_area_struct *vma;
1147         int ret;
1148
1149         if (down_write_killable(&mm->mmap_sem))
1150                 return -EINTR;
1151
1152         if (mm->uprobes_state.xol_area) {
1153                 ret = -EALREADY;
1154                 goto fail;
1155         }
1156
1157         if (!area->vaddr) {
1158                 /* Try to map as high as possible, this is only a hint. */
1159                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1160                                                 PAGE_SIZE, 0, 0);
1161                 if (area->vaddr & ~PAGE_MASK) {
1162                         ret = area->vaddr;
1163                         goto fail;
1164                 }
1165         }
1166
1167         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1168                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1169                                 &area->xol_mapping);
1170         if (IS_ERR(vma)) {
1171                 ret = PTR_ERR(vma);
1172                 goto fail;
1173         }
1174
1175         ret = 0;
1176         /* pairs with get_xol_area() */
1177         smp_store_release(&mm->uprobes_state.xol_area, area); /* ^^^ */
1178  fail:
1179         up_write(&mm->mmap_sem);
1180
1181         return ret;
1182 }
1183
1184 static struct xol_area *__create_xol_area(unsigned long vaddr)
1185 {
1186         struct mm_struct *mm = current->mm;
1187         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1188         struct xol_area *area;
1189
1190         area = kmalloc(sizeof(*area), GFP_KERNEL);
1191         if (unlikely(!area))
1192                 goto out;
1193
1194         area->bitmap = kcalloc(BITS_TO_LONGS(UINSNS_PER_PAGE), sizeof(long),
1195                                GFP_KERNEL);
1196         if (!area->bitmap)
1197                 goto free_area;
1198
1199         area->xol_mapping.name = "[uprobes]";
1200         area->xol_mapping.fault = NULL;
1201         area->xol_mapping.pages = area->pages;
1202         area->pages[0] = alloc_page(GFP_HIGHUSER);
1203         if (!area->pages[0])
1204                 goto free_bitmap;
1205         area->pages[1] = NULL;
1206
1207         area->vaddr = vaddr;
1208         init_waitqueue_head(&area->wq);
1209         /* Reserve the 1st slot for get_trampoline_vaddr() */
1210         set_bit(0, area->bitmap);
1211         atomic_set(&area->slot_count, 1);
1212         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1213
1214         if (!xol_add_vma(mm, area))
1215                 return area;
1216
1217         __free_page(area->pages[0]);
1218  free_bitmap:
1219         kfree(area->bitmap);
1220  free_area:
1221         kfree(area);
1222  out:
1223         return NULL;
1224 }
1225
1226 /*
1227  * get_xol_area - Allocate process's xol_area if necessary.
1228  * This area will be used for storing instructions for execution out of line.
1229  *
1230  * Returns the allocated area or NULL.
1231  */
1232 static struct xol_area *get_xol_area(void)
1233 {
1234         struct mm_struct *mm = current->mm;
1235         struct xol_area *area;
1236
1237         if (!mm->uprobes_state.xol_area)
1238                 __create_xol_area(0);
1239
1240         /* Pairs with xol_add_vma() smp_store_release() */
1241         area = READ_ONCE(mm->uprobes_state.xol_area); /* ^^^ */
1242         return area;
1243 }
1244
1245 /*
1246  * uprobe_clear_state - Free the area allocated for slots.
1247  */
1248 void uprobe_clear_state(struct mm_struct *mm)
1249 {
1250         struct xol_area *area = mm->uprobes_state.xol_area;
1251
1252         if (!area)
1253                 return;
1254
1255         put_page(area->pages[0]);
1256         kfree(area->bitmap);
1257         kfree(area);
1258 }
1259
1260 void uprobe_start_dup_mmap(void)
1261 {
1262         percpu_down_read(&dup_mmap_sem);
1263 }
1264
1265 void uprobe_end_dup_mmap(void)
1266 {
1267         percpu_up_read(&dup_mmap_sem);
1268 }
1269
1270 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1271 {
1272         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1273                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1274                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1275                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1276         }
1277 }
1278
1279 /*
1280  *  - search for a free slot.
1281  */
1282 static unsigned long xol_take_insn_slot(struct xol_area *area)
1283 {
1284         unsigned long slot_addr;
1285         int slot_nr;
1286
1287         do {
1288                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1289                 if (slot_nr < UINSNS_PER_PAGE) {
1290                         if (!test_and_set_bit(slot_nr, area->bitmap))
1291                                 break;
1292
1293                         slot_nr = UINSNS_PER_PAGE;
1294                         continue;
1295                 }
1296                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1297         } while (slot_nr >= UINSNS_PER_PAGE);
1298
1299         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1300         atomic_inc(&area->slot_count);
1301
1302         return slot_addr;
1303 }
1304
1305 /*
1306  * xol_get_insn_slot - allocate a slot for xol.
1307  * Returns the allocated slot address or 0.
1308  */
1309 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1310 {
1311         struct xol_area *area;
1312         unsigned long xol_vaddr;
1313
1314         area = get_xol_area();
1315         if (!area)
1316                 return 0;
1317
1318         xol_vaddr = xol_take_insn_slot(area);
1319         if (unlikely(!xol_vaddr))
1320                 return 0;
1321
1322         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1323                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1324
1325         return xol_vaddr;
1326 }
1327
1328 /*
1329  * xol_free_insn_slot - If slot was earlier allocated by
1330  * @xol_get_insn_slot(), make the slot available for
1331  * subsequent requests.
1332  */
1333 static void xol_free_insn_slot(struct task_struct *tsk)
1334 {
1335         struct xol_area *area;
1336         unsigned long vma_end;
1337         unsigned long slot_addr;
1338
1339         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1340                 return;
1341
1342         slot_addr = tsk->utask->xol_vaddr;
1343         if (unlikely(!slot_addr))
1344                 return;
1345
1346         area = tsk->mm->uprobes_state.xol_area;
1347         vma_end = area->vaddr + PAGE_SIZE;
1348         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1349                 unsigned long offset;
1350                 int slot_nr;
1351
1352                 offset = slot_addr - area->vaddr;
1353                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1354                 if (slot_nr >= UINSNS_PER_PAGE)
1355                         return;
1356
1357                 clear_bit(slot_nr, area->bitmap);
1358                 atomic_dec(&area->slot_count);
1359                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1360                 if (waitqueue_active(&area->wq))
1361                         wake_up(&area->wq);
1362
1363                 tsk->utask->xol_vaddr = 0;
1364         }
1365 }
1366
1367 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1368                                   void *src, unsigned long len)
1369 {
1370         /* Initialize the slot */
1371         copy_to_page(page, vaddr, src, len);
1372
1373         /*
1374          * We probably need flush_icache_user_range() but it needs vma.
1375          * This should work on most of architectures by default. If
1376          * architecture needs to do something different it can define
1377          * its own version of the function.
1378          */
1379         flush_dcache_page(page);
1380 }
1381
1382 /**
1383  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1384  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1385  * instruction.
1386  * Return the address of the breakpoint instruction.
1387  */
1388 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1389 {
1390         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1391 }
1392
1393 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1394 {
1395         struct uprobe_task *utask = current->utask;
1396
1397         if (unlikely(utask && utask->active_uprobe))
1398                 return utask->vaddr;
1399
1400         return instruction_pointer(regs);
1401 }
1402
1403 static struct return_instance *free_ret_instance(struct return_instance *ri)
1404 {
1405         struct return_instance *next = ri->next;
1406         put_uprobe(ri->uprobe);
1407         kfree(ri);
1408         return next;
1409 }
1410
1411 /*
1412  * Called with no locks held.
1413  * Called in context of an exiting or an exec-ing thread.
1414  */
1415 void uprobe_free_utask(struct task_struct *t)
1416 {
1417         struct uprobe_task *utask = t->utask;
1418         struct return_instance *ri;
1419
1420         if (!utask)
1421                 return;
1422
1423         if (utask->active_uprobe)
1424                 put_uprobe(utask->active_uprobe);
1425
1426         ri = utask->return_instances;
1427         while (ri)
1428                 ri = free_ret_instance(ri);
1429
1430         xol_free_insn_slot(t);
1431         kfree(utask);
1432         t->utask = NULL;
1433 }
1434
1435 /*
1436  * Allocate a uprobe_task object for the task if if necessary.
1437  * Called when the thread hits a breakpoint.
1438  *
1439  * Returns:
1440  * - pointer to new uprobe_task on success
1441  * - NULL otherwise
1442  */
1443 static struct uprobe_task *get_utask(void)
1444 {
1445         if (!current->utask)
1446                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1447         return current->utask;
1448 }
1449
1450 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1451 {
1452         struct uprobe_task *n_utask;
1453         struct return_instance **p, *o, *n;
1454
1455         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1456         if (!n_utask)
1457                 return -ENOMEM;
1458         t->utask = n_utask;
1459
1460         p = &n_utask->return_instances;
1461         for (o = o_utask->return_instances; o; o = o->next) {
1462                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1463                 if (!n)
1464                         return -ENOMEM;
1465
1466                 *n = *o;
1467                 get_uprobe(n->uprobe);
1468                 n->next = NULL;
1469
1470                 *p = n;
1471                 p = &n->next;
1472                 n_utask->depth++;
1473         }
1474
1475         return 0;
1476 }
1477
1478 static void uprobe_warn(struct task_struct *t, const char *msg)
1479 {
1480         pr_warn("uprobe: %s:%d failed to %s\n",
1481                         current->comm, current->pid, msg);
1482 }
1483
1484 static void dup_xol_work(struct callback_head *work)
1485 {
1486         if (current->flags & PF_EXITING)
1487                 return;
1488
1489         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1490                         !fatal_signal_pending(current))
1491                 uprobe_warn(current, "dup xol area");
1492 }
1493
1494 /*
1495  * Called in context of a new clone/fork from copy_process.
1496  */
1497 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1498 {
1499         struct uprobe_task *utask = current->utask;
1500         struct mm_struct *mm = current->mm;
1501         struct xol_area *area;
1502
1503         t->utask = NULL;
1504
1505         if (!utask || !utask->return_instances)
1506                 return;
1507
1508         if (mm == t->mm && !(flags & CLONE_VFORK))
1509                 return;
1510
1511         if (dup_utask(t, utask))
1512                 return uprobe_warn(t, "dup ret instances");
1513
1514         /* The task can fork() after dup_xol_work() fails */
1515         area = mm->uprobes_state.xol_area;
1516         if (!area)
1517                 return uprobe_warn(t, "dup xol area");
1518
1519         if (mm == t->mm)
1520                 return;
1521
1522         t->utask->dup_xol_addr = area->vaddr;
1523         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1524         task_work_add(t, &t->utask->dup_xol_work, true);
1525 }
1526
1527 /*
1528  * Current area->vaddr notion assume the trampoline address is always
1529  * equal area->vaddr.
1530  *
1531  * Returns -1 in case the xol_area is not allocated.
1532  */
1533 static unsigned long get_trampoline_vaddr(void)
1534 {
1535         struct xol_area *area;
1536         unsigned long trampoline_vaddr = -1;
1537
1538         /* Pairs with xol_add_vma() smp_store_release() */
1539         area = READ_ONCE(current->mm->uprobes_state.xol_area); /* ^^^ */
1540         if (area)
1541                 trampoline_vaddr = area->vaddr;
1542
1543         return trampoline_vaddr;
1544 }
1545
1546 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1547                                         struct pt_regs *regs)
1548 {
1549         struct return_instance *ri = utask->return_instances;
1550         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1551
1552         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1553                 ri = free_ret_instance(ri);
1554                 utask->depth--;
1555         }
1556         utask->return_instances = ri;
1557 }
1558
1559 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1560 {
1561         struct return_instance *ri;
1562         struct uprobe_task *utask;
1563         unsigned long orig_ret_vaddr, trampoline_vaddr;
1564         bool chained;
1565
1566         if (!get_xol_area())
1567                 return;
1568
1569         utask = get_utask();
1570         if (!utask)
1571                 return;
1572
1573         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1574                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1575                                 " nestedness limit pid/tgid=%d/%d\n",
1576                                 current->pid, current->tgid);
1577                 return;
1578         }
1579
1580         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1581         if (!ri)
1582                 return;
1583
1584         trampoline_vaddr = get_trampoline_vaddr();
1585         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1586         if (orig_ret_vaddr == -1)
1587                 goto fail;
1588
1589         /* drop the entries invalidated by longjmp() */
1590         chained = (orig_ret_vaddr == trampoline_vaddr);
1591         cleanup_return_instances(utask, chained, regs);
1592
1593         /*
1594          * We don't want to keep trampoline address in stack, rather keep the
1595          * original return address of first caller thru all the consequent
1596          * instances. This also makes breakpoint unwrapping easier.
1597          */
1598         if (chained) {
1599                 if (!utask->return_instances) {
1600                         /*
1601                          * This situation is not possible. Likely we have an
1602                          * attack from user-space.
1603                          */
1604                         uprobe_warn(current, "handle tail call");
1605                         goto fail;
1606                 }
1607                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1608         }
1609
1610         ri->uprobe = get_uprobe(uprobe);
1611         ri->func = instruction_pointer(regs);
1612         ri->stack = user_stack_pointer(regs);
1613         ri->orig_ret_vaddr = orig_ret_vaddr;
1614         ri->chained = chained;
1615
1616         utask->depth++;
1617         ri->next = utask->return_instances;
1618         utask->return_instances = ri;
1619
1620         return;
1621  fail:
1622         kfree(ri);
1623 }
1624
1625 /* Prepare to single-step probed instruction out of line. */
1626 static int
1627 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1628 {
1629         struct uprobe_task *utask;
1630         unsigned long xol_vaddr;
1631         int err;
1632
1633         utask = get_utask();
1634         if (!utask)
1635                 return -ENOMEM;
1636
1637         xol_vaddr = xol_get_insn_slot(uprobe);
1638         if (!xol_vaddr)
1639                 return -ENOMEM;
1640
1641         utask->xol_vaddr = xol_vaddr;
1642         utask->vaddr = bp_vaddr;
1643
1644         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1645         if (unlikely(err)) {
1646                 xol_free_insn_slot(current);
1647                 return err;
1648         }
1649
1650         utask->active_uprobe = uprobe;
1651         utask->state = UTASK_SSTEP;
1652         return 0;
1653 }
1654
1655 /*
1656  * If we are singlestepping, then ensure this thread is not connected to
1657  * non-fatal signals until completion of singlestep.  When xol insn itself
1658  * triggers the signal,  restart the original insn even if the task is
1659  * already SIGKILL'ed (since coredump should report the correct ip).  This
1660  * is even more important if the task has a handler for SIGSEGV/etc, The
1661  * _same_ instruction should be repeated again after return from the signal
1662  * handler, and SSTEP can never finish in this case.
1663  */
1664 bool uprobe_deny_signal(void)
1665 {
1666         struct task_struct *t = current;
1667         struct uprobe_task *utask = t->utask;
1668
1669         if (likely(!utask || !utask->active_uprobe))
1670                 return false;
1671
1672         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1673
1674         if (signal_pending(t)) {
1675                 spin_lock_irq(&t->sighand->siglock);
1676                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1677                 spin_unlock_irq(&t->sighand->siglock);
1678
1679                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1680                         utask->state = UTASK_SSTEP_TRAPPED;
1681                         set_tsk_thread_flag(t, TIF_UPROBE);
1682                 }
1683         }
1684
1685         return true;
1686 }
1687
1688 static void mmf_recalc_uprobes(struct mm_struct *mm)
1689 {
1690         struct vm_area_struct *vma;
1691
1692         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1693                 if (!valid_vma(vma, false))
1694                         continue;
1695                 /*
1696                  * This is not strictly accurate, we can race with
1697                  * uprobe_unregister() and see the already removed
1698                  * uprobe if delete_uprobe() was not yet called.
1699                  * Or this uprobe can be filtered out.
1700                  */
1701                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1702                         return;
1703         }
1704
1705         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1706 }
1707
1708 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1709 {
1710         struct page *page;
1711         uprobe_opcode_t opcode;
1712         int result;
1713
1714         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
1715                 return -EINVAL;
1716
1717         pagefault_disable();
1718         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1719         pagefault_enable();
1720
1721         if (likely(result == 0))
1722                 goto out;
1723
1724         /*
1725          * The NULL 'tsk' here ensures that any faults that occur here
1726          * will not be accounted to the task.  'mm' *is* current->mm,
1727          * but we treat this as a 'remote' access since it is
1728          * essentially a kernel access to the memory.
1729          */
1730         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1731                         NULL, NULL);
1732         if (result < 0)
1733                 return result;
1734
1735         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1736         put_page(page);
1737  out:
1738         /* This needs to return true for any variant of the trap insn */
1739         return is_trap_insn(&opcode);
1740 }
1741
1742 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1743 {
1744         struct mm_struct *mm = current->mm;
1745         struct uprobe *uprobe = NULL;
1746         struct vm_area_struct *vma;
1747
1748         down_read(&mm->mmap_sem);
1749         vma = find_vma(mm, bp_vaddr);
1750         if (vma && vma->vm_start <= bp_vaddr) {
1751                 if (valid_vma(vma, false)) {
1752                         struct inode *inode = file_inode(vma->vm_file);
1753                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1754
1755                         uprobe = find_uprobe(inode, offset);
1756                 }
1757
1758                 if (!uprobe)
1759                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1760         } else {
1761                 *is_swbp = -EFAULT;
1762         }
1763
1764         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1765                 mmf_recalc_uprobes(mm);
1766         up_read(&mm->mmap_sem);
1767
1768         return uprobe;
1769 }
1770
1771 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1772 {
1773         struct uprobe_consumer *uc;
1774         int remove = UPROBE_HANDLER_REMOVE;
1775         bool need_prep = false; /* prepare return uprobe, when needed */
1776
1777         down_read(&uprobe->register_rwsem);
1778         for (uc = uprobe->consumers; uc; uc = uc->next) {
1779                 int rc = 0;
1780
1781                 if (uc->handler) {
1782                         rc = uc->handler(uc, regs);
1783                         WARN(rc & ~UPROBE_HANDLER_MASK,
1784                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1785                 }
1786
1787                 if (uc->ret_handler)
1788                         need_prep = true;
1789
1790                 remove &= rc;
1791         }
1792
1793         if (need_prep && !remove)
1794                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1795
1796         if (remove && uprobe->consumers) {
1797                 WARN_ON(!uprobe_is_active(uprobe));
1798                 unapply_uprobe(uprobe, current->mm);
1799         }
1800         up_read(&uprobe->register_rwsem);
1801 }
1802
1803 static void
1804 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1805 {
1806         struct uprobe *uprobe = ri->uprobe;
1807         struct uprobe_consumer *uc;
1808
1809         down_read(&uprobe->register_rwsem);
1810         for (uc = uprobe->consumers; uc; uc = uc->next) {
1811                 if (uc->ret_handler)
1812                         uc->ret_handler(uc, ri->func, regs);
1813         }
1814         up_read(&uprobe->register_rwsem);
1815 }
1816
1817 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1818 {
1819         bool chained;
1820
1821         do {
1822                 chained = ri->chained;
1823                 ri = ri->next;  /* can't be NULL if chained */
1824         } while (chained);
1825
1826         return ri;
1827 }
1828
1829 static void handle_trampoline(struct pt_regs *regs)
1830 {
1831         struct uprobe_task *utask;
1832         struct return_instance *ri, *next;
1833         bool valid;
1834
1835         utask = current->utask;
1836         if (!utask)
1837                 goto sigill;
1838
1839         ri = utask->return_instances;
1840         if (!ri)
1841                 goto sigill;
1842
1843         do {
1844                 /*
1845                  * We should throw out the frames invalidated by longjmp().
1846                  * If this chain is valid, then the next one should be alive
1847                  * or NULL; the latter case means that nobody but ri->func
1848                  * could hit this trampoline on return. TODO: sigaltstack().
1849                  */
1850                 next = find_next_ret_chain(ri);
1851                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1852
1853                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1854                 do {
1855                         if (valid)
1856                                 handle_uretprobe_chain(ri, regs);
1857                         ri = free_ret_instance(ri);
1858                         utask->depth--;
1859                 } while (ri != next);
1860         } while (!valid);
1861
1862         utask->return_instances = ri;
1863         return;
1864
1865  sigill:
1866         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1867         force_sig(SIGILL, current);
1868
1869 }
1870
1871 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1872 {
1873         return false;
1874 }
1875
1876 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1877                                         struct pt_regs *regs)
1878 {
1879         return true;
1880 }
1881
1882 /*
1883  * Run handler and ask thread to singlestep.
1884  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1885  */
1886 static void handle_swbp(struct pt_regs *regs)
1887 {
1888         struct uprobe *uprobe;
1889         unsigned long bp_vaddr;
1890         int uninitialized_var(is_swbp);
1891
1892         bp_vaddr = uprobe_get_swbp_addr(regs);
1893         if (bp_vaddr == get_trampoline_vaddr())
1894                 return handle_trampoline(regs);
1895
1896         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1897         if (!uprobe) {
1898                 if (is_swbp > 0) {
1899                         /* No matching uprobe; signal SIGTRAP. */
1900                         force_sig(SIGTRAP, current);
1901                 } else {
1902                         /*
1903                          * Either we raced with uprobe_unregister() or we can't
1904                          * access this memory. The latter is only possible if
1905                          * another thread plays with our ->mm. In both cases
1906                          * we can simply restart. If this vma was unmapped we
1907                          * can pretend this insn was not executed yet and get
1908                          * the (correct) SIGSEGV after restart.
1909                          */
1910                         instruction_pointer_set(regs, bp_vaddr);
1911                 }
1912                 return;
1913         }
1914
1915         /* change it in advance for ->handler() and restart */
1916         instruction_pointer_set(regs, bp_vaddr);
1917
1918         /*
1919          * TODO: move copy_insn/etc into _register and remove this hack.
1920          * After we hit the bp, _unregister + _register can install the
1921          * new and not-yet-analyzed uprobe at the same address, restart.
1922          */
1923         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1924                 goto out;
1925
1926         /*
1927          * Pairs with the smp_wmb() in prepare_uprobe().
1928          *
1929          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
1930          * we must also see the stores to &uprobe->arch performed by the
1931          * prepare_uprobe() call.
1932          */
1933         smp_rmb();
1934
1935         /* Tracing handlers use ->utask to communicate with fetch methods */
1936         if (!get_utask())
1937                 goto out;
1938
1939         if (arch_uprobe_ignore(&uprobe->arch, regs))
1940                 goto out;
1941
1942         handler_chain(uprobe, regs);
1943
1944         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1945                 goto out;
1946
1947         if (!pre_ssout(uprobe, regs, bp_vaddr))
1948                 return;
1949
1950         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1951 out:
1952         put_uprobe(uprobe);
1953 }
1954
1955 /*
1956  * Perform required fix-ups and disable singlestep.
1957  * Allow pending signals to take effect.
1958  */
1959 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1960 {
1961         struct uprobe *uprobe;
1962         int err = 0;
1963
1964         uprobe = utask->active_uprobe;
1965         if (utask->state == UTASK_SSTEP_ACK)
1966                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1967         else if (utask->state == UTASK_SSTEP_TRAPPED)
1968                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1969         else
1970                 WARN_ON_ONCE(1);
1971
1972         put_uprobe(uprobe);
1973         utask->active_uprobe = NULL;
1974         utask->state = UTASK_RUNNING;
1975         xol_free_insn_slot(current);
1976
1977         spin_lock_irq(&current->sighand->siglock);
1978         recalc_sigpending(); /* see uprobe_deny_signal() */
1979         spin_unlock_irq(&current->sighand->siglock);
1980
1981         if (unlikely(err)) {
1982                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1983                 force_sig(SIGILL, current);
1984         }
1985 }
1986
1987 /*
1988  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1989  * allows the thread to return from interrupt. After that handle_swbp()
1990  * sets utask->active_uprobe.
1991  *
1992  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1993  * and allows the thread to return from interrupt.
1994  *
1995  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1996  * uprobe_notify_resume().
1997  */
1998 void uprobe_notify_resume(struct pt_regs *regs)
1999 {
2000         struct uprobe_task *utask;
2001
2002         clear_thread_flag(TIF_UPROBE);
2003
2004         utask = current->utask;
2005         if (utask && utask->active_uprobe)
2006                 handle_singlestep(utask, regs);
2007         else
2008                 handle_swbp(regs);
2009 }
2010
2011 /*
2012  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2013  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2014  */
2015 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2016 {
2017         if (!current->mm)
2018                 return 0;
2019
2020         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2021             (!current->utask || !current->utask->return_instances))
2022                 return 0;
2023
2024         set_thread_flag(TIF_UPROBE);
2025         return 1;
2026 }
2027
2028 /*
2029  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2030  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2031  */
2032 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2033 {
2034         struct uprobe_task *utask = current->utask;
2035
2036         if (!current->mm || !utask || !utask->active_uprobe)
2037                 /* task is currently not uprobed */
2038                 return 0;
2039
2040         utask->state = UTASK_SSTEP_ACK;
2041         set_thread_flag(TIF_UPROBE);
2042         return 1;
2043 }
2044
2045 static struct notifier_block uprobe_exception_nb = {
2046         .notifier_call          = arch_uprobe_exception_notify,
2047         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2048 };
2049
2050 static int __init init_uprobes(void)
2051 {
2052         int i;
2053
2054         for (i = 0; i < UPROBES_HASH_SZ; i++)
2055                 mutex_init(&uprobes_mmap_mutex[i]);
2056
2057         if (percpu_init_rwsem(&dup_mmap_sem))
2058                 return -ENOMEM;
2059
2060         return register_die_notifier(&uprobe_exception_nb);
2061 }
2062 __initcall(init_uprobes);