GNU Linux-libre 4.4.284-gnu1
[releases.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/export.h>
31 #include <linux/rmap.h>         /* anon_vma_prepare */
32 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
33 #include <linux/swap.h>         /* try_to_free_swap */
34 #include <linux/ptrace.h>       /* user_enable_single_step */
35 #include <linux/kdebug.h>       /* notifier mechanism */
36 #include "../../mm/internal.h"  /* munlock_vma_page */
37 #include <linux/percpu-rwsem.h>
38 #include <linux/task_work.h>
39 #include <linux/shmem_fs.h>
40
41 #include <linux/uprobes.h>
42
43 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
44 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
45
46 static struct rb_root uprobes_tree = RB_ROOT;
47 /*
48  * allows us to skip the uprobe_mmap if there are no uprobe events active
49  * at this time.  Probably a fine grained per inode count is better?
50  */
51 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
52
53 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
54
55 #define UPROBES_HASH_SZ 13
56 /* serialize uprobe->pending_list */
57 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
58 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
59
60 static struct percpu_rw_semaphore dup_mmap_sem;
61
62 /* Have a copy of original instruction */
63 #define UPROBE_COPY_INSN        0
64
65 struct uprobe {
66         struct rb_node          rb_node;        /* node in the rb tree */
67         atomic_t                ref;
68         struct rw_semaphore     register_rwsem;
69         struct rw_semaphore     consumer_rwsem;
70         struct list_head        pending_list;
71         struct uprobe_consumer  *consumers;
72         struct inode            *inode;         /* Also hold a ref to inode */
73         loff_t                  offset;
74         unsigned long           flags;
75
76         /*
77          * The generic code assumes that it has two members of unknown type
78          * owned by the arch-specific code:
79          *
80          *      insn -  copy_insn() saves the original instruction here for
81          *              arch_uprobe_analyze_insn().
82          *
83          *      ixol -  potentially modified instruction to execute out of
84          *              line, copied to xol_area by xol_get_insn_slot().
85          */
86         struct arch_uprobe      arch;
87 };
88
89 /*
90  * Execute out of line area: anonymous executable mapping installed
91  * by the probed task to execute the copy of the original instruction
92  * mangled by set_swbp().
93  *
94  * On a breakpoint hit, thread contests for a slot.  It frees the
95  * slot after singlestep. Currently a fixed number of slots are
96  * allocated.
97  */
98 struct xol_area {
99         wait_queue_head_t               wq;             /* if all slots are busy */
100         atomic_t                        slot_count;     /* number of in-use slots */
101         unsigned long                   *bitmap;        /* 0 = free slot */
102
103         struct vm_special_mapping       xol_mapping;
104         struct page                     *pages[2];
105         /*
106          * We keep the vma's vm_start rather than a pointer to the vma
107          * itself.  The probed process or a naughty kernel module could make
108          * the vma go away, and we must handle that reasonably gracefully.
109          */
110         unsigned long                   vaddr;          /* Page(s) of instruction slots */
111 };
112
113 /*
114  * valid_vma: Verify if the specified vma is an executable vma
115  * Relax restrictions while unregistering: vm_flags might have
116  * changed after breakpoint was inserted.
117  *      - is_register: indicates if we are in register context.
118  *      - Return 1 if the specified virtual address is in an
119  *        executable vma.
120  */
121 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
122 {
123         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
124
125         if (is_register)
126                 flags |= VM_WRITE;
127
128         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
129 }
130
131 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
132 {
133         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
134 }
135
136 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
137 {
138         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
139 }
140
141 /**
142  * __replace_page - replace page in vma by new page.
143  * based on replace_page in mm/ksm.c
144  *
145  * @vma:      vma that holds the pte pointing to page
146  * @addr:     address the old @page is mapped at
147  * @page:     the cowed page we are replacing by kpage
148  * @kpage:    the modified page we replace page by
149  *
150  * Returns 0 on success, -EFAULT on failure.
151  */
152 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
153                                 struct page *page, struct page *kpage)
154 {
155         struct mm_struct *mm = vma->vm_mm;
156         spinlock_t *ptl;
157         pte_t *ptep;
158         int err;
159         /* For mmu_notifiers */
160         const unsigned long mmun_start = addr;
161         const unsigned long mmun_end   = addr + PAGE_SIZE;
162         struct mem_cgroup *memcg;
163
164         err = mem_cgroup_try_charge(kpage, vma->vm_mm, GFP_KERNEL, &memcg);
165         if (err)
166                 return err;
167
168         /* For try_to_free_swap() and munlock_vma_page() below */
169         lock_page(page);
170
171         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
172         err = -EAGAIN;
173         ptep = page_check_address(page, mm, addr, &ptl, 0);
174         if (!ptep) {
175                 mem_cgroup_cancel_charge(kpage, memcg);
176                 goto unlock;
177         }
178
179         get_page(kpage);
180         page_add_new_anon_rmap(kpage, vma, addr);
181         mem_cgroup_commit_charge(kpage, memcg, false);
182         lru_cache_add_active_or_unevictable(kpage, vma);
183
184         if (!PageAnon(page)) {
185                 dec_mm_counter(mm, MM_FILEPAGES);
186                 inc_mm_counter(mm, MM_ANONPAGES);
187         }
188
189         flush_cache_page(vma, addr, pte_pfn(*ptep));
190         ptep_clear_flush_notify(vma, addr, ptep);
191         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
192
193         page_remove_rmap(page);
194         if (!page_mapped(page))
195                 try_to_free_swap(page);
196         pte_unmap_unlock(ptep, ptl);
197
198         if (vma->vm_flags & VM_LOCKED)
199                 munlock_vma_page(page);
200         put_page(page);
201
202         err = 0;
203  unlock:
204         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
205         unlock_page(page);
206         return err;
207 }
208
209 /**
210  * is_swbp_insn - check if instruction is breakpoint instruction.
211  * @insn: instruction to be checked.
212  * Default implementation of is_swbp_insn
213  * Returns true if @insn is a breakpoint instruction.
214  */
215 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
216 {
217         return *insn == UPROBE_SWBP_INSN;
218 }
219
220 /**
221  * is_trap_insn - check if instruction is breakpoint instruction.
222  * @insn: instruction to be checked.
223  * Default implementation of is_trap_insn
224  * Returns true if @insn is a breakpoint instruction.
225  *
226  * This function is needed for the case where an architecture has multiple
227  * trap instructions (like powerpc).
228  */
229 bool __weak is_trap_insn(uprobe_opcode_t *insn)
230 {
231         return is_swbp_insn(insn);
232 }
233
234 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
235 {
236         void *kaddr = kmap_atomic(page);
237         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
238         kunmap_atomic(kaddr);
239 }
240
241 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
242 {
243         void *kaddr = kmap_atomic(page);
244         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
245         kunmap_atomic(kaddr);
246 }
247
248 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
249 {
250         uprobe_opcode_t old_opcode;
251         bool is_swbp;
252
253         /*
254          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
255          * We do not check if it is any other 'trap variant' which could
256          * be conditional trap instruction such as the one powerpc supports.
257          *
258          * The logic is that we do not care if the underlying instruction
259          * is a trap variant; uprobes always wins over any other (gdb)
260          * breakpoint.
261          */
262         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
263         is_swbp = is_swbp_insn(&old_opcode);
264
265         if (is_swbp_insn(new_opcode)) {
266                 if (is_swbp)            /* register: already installed? */
267                         return 0;
268         } else {
269                 if (!is_swbp)           /* unregister: was it changed by us? */
270                         return 0;
271         }
272
273         return 1;
274 }
275
276 /*
277  * NOTE:
278  * Expect the breakpoint instruction to be the smallest size instruction for
279  * the architecture. If an arch has variable length instruction and the
280  * breakpoint instruction is not of the smallest length instruction
281  * supported by that architecture then we need to modify is_trap_at_addr and
282  * uprobe_write_opcode accordingly. This would never be a problem for archs
283  * that have fixed length instructions.
284  *
285  * uprobe_write_opcode - write the opcode at a given virtual address.
286  * @mm: the probed process address space.
287  * @vaddr: the virtual address to store the opcode.
288  * @opcode: opcode to be written at @vaddr.
289  *
290  * Called with mm->mmap_sem held for write.
291  * Return 0 (success) or a negative errno.
292  */
293 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
294                         uprobe_opcode_t opcode)
295 {
296         struct page *old_page, *new_page;
297         struct vm_area_struct *vma;
298         int ret;
299
300 retry:
301         /* Read the page with vaddr into memory */
302         ret = get_user_pages(NULL, mm, vaddr, 1, FOLL_FORCE, &old_page, &vma);
303         if (ret <= 0)
304                 return ret;
305
306         ret = verify_opcode(old_page, vaddr, &opcode);
307         if (ret <= 0)
308                 goto put_old;
309
310         ret = anon_vma_prepare(vma);
311         if (ret)
312                 goto put_old;
313
314         ret = -ENOMEM;
315         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
316         if (!new_page)
317                 goto put_old;
318
319         __SetPageUptodate(new_page);
320         copy_highpage(new_page, old_page);
321         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
322
323         ret = __replace_page(vma, vaddr, old_page, new_page);
324         page_cache_release(new_page);
325 put_old:
326         put_page(old_page);
327
328         if (unlikely(ret == -EAGAIN))
329                 goto retry;
330         return ret;
331 }
332
333 /**
334  * set_swbp - store breakpoint at a given address.
335  * @auprobe: arch specific probepoint information.
336  * @mm: the probed process address space.
337  * @vaddr: the virtual address to insert the opcode.
338  *
339  * For mm @mm, store the breakpoint instruction at @vaddr.
340  * Return 0 (success) or a negative errno.
341  */
342 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
343 {
344         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
345 }
346
347 /**
348  * set_orig_insn - Restore the original instruction.
349  * @mm: the probed process address space.
350  * @auprobe: arch specific probepoint information.
351  * @vaddr: the virtual address to insert the opcode.
352  *
353  * For mm @mm, restore the original opcode (opcode) at @vaddr.
354  * Return 0 (success) or a negative errno.
355  */
356 int __weak
357 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
358 {
359         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
360 }
361
362 static struct uprobe *get_uprobe(struct uprobe *uprobe)
363 {
364         atomic_inc(&uprobe->ref);
365         return uprobe;
366 }
367
368 static void put_uprobe(struct uprobe *uprobe)
369 {
370         if (atomic_dec_and_test(&uprobe->ref))
371                 kfree(uprobe);
372 }
373
374 static int match_uprobe(struct uprobe *l, struct uprobe *r)
375 {
376         if (l->inode < r->inode)
377                 return -1;
378
379         if (l->inode > r->inode)
380                 return 1;
381
382         if (l->offset < r->offset)
383                 return -1;
384
385         if (l->offset > r->offset)
386                 return 1;
387
388         return 0;
389 }
390
391 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
392 {
393         struct uprobe u = { .inode = inode, .offset = offset };
394         struct rb_node *n = uprobes_tree.rb_node;
395         struct uprobe *uprobe;
396         int match;
397
398         while (n) {
399                 uprobe = rb_entry(n, struct uprobe, rb_node);
400                 match = match_uprobe(&u, uprobe);
401                 if (!match)
402                         return get_uprobe(uprobe);
403
404                 if (match < 0)
405                         n = n->rb_left;
406                 else
407                         n = n->rb_right;
408         }
409         return NULL;
410 }
411
412 /*
413  * Find a uprobe corresponding to a given inode:offset
414  * Acquires uprobes_treelock
415  */
416 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
417 {
418         struct uprobe *uprobe;
419
420         spin_lock(&uprobes_treelock);
421         uprobe = __find_uprobe(inode, offset);
422         spin_unlock(&uprobes_treelock);
423
424         return uprobe;
425 }
426
427 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
428 {
429         struct rb_node **p = &uprobes_tree.rb_node;
430         struct rb_node *parent = NULL;
431         struct uprobe *u;
432         int match;
433
434         while (*p) {
435                 parent = *p;
436                 u = rb_entry(parent, struct uprobe, rb_node);
437                 match = match_uprobe(uprobe, u);
438                 if (!match)
439                         return get_uprobe(u);
440
441                 if (match < 0)
442                         p = &parent->rb_left;
443                 else
444                         p = &parent->rb_right;
445
446         }
447
448         u = NULL;
449         rb_link_node(&uprobe->rb_node, parent, p);
450         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
451         /* get access + creation ref */
452         atomic_set(&uprobe->ref, 2);
453
454         return u;
455 }
456
457 /*
458  * Acquire uprobes_treelock.
459  * Matching uprobe already exists in rbtree;
460  *      increment (access refcount) and return the matching uprobe.
461  *
462  * No matching uprobe; insert the uprobe in rb_tree;
463  *      get a double refcount (access + creation) and return NULL.
464  */
465 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
466 {
467         struct uprobe *u;
468
469         spin_lock(&uprobes_treelock);
470         u = __insert_uprobe(uprobe);
471         spin_unlock(&uprobes_treelock);
472
473         return u;
474 }
475
476 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
477 {
478         struct uprobe *uprobe, *cur_uprobe;
479
480         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
481         if (!uprobe)
482                 return NULL;
483
484         uprobe->inode = igrab(inode);
485         uprobe->offset = offset;
486         init_rwsem(&uprobe->register_rwsem);
487         init_rwsem(&uprobe->consumer_rwsem);
488
489         /* add to uprobes_tree, sorted on inode:offset */
490         cur_uprobe = insert_uprobe(uprobe);
491         /* a uprobe exists for this inode:offset combination */
492         if (cur_uprobe) {
493                 kfree(uprobe);
494                 uprobe = cur_uprobe;
495                 iput(inode);
496         }
497
498         return uprobe;
499 }
500
501 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
502 {
503         down_write(&uprobe->consumer_rwsem);
504         uc->next = uprobe->consumers;
505         uprobe->consumers = uc;
506         up_write(&uprobe->consumer_rwsem);
507 }
508
509 /*
510  * For uprobe @uprobe, delete the consumer @uc.
511  * Return true if the @uc is deleted successfully
512  * or return false.
513  */
514 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
515 {
516         struct uprobe_consumer **con;
517         bool ret = false;
518
519         down_write(&uprobe->consumer_rwsem);
520         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
521                 if (*con == uc) {
522                         *con = uc->next;
523                         ret = true;
524                         break;
525                 }
526         }
527         up_write(&uprobe->consumer_rwsem);
528
529         return ret;
530 }
531
532 static int __copy_insn(struct address_space *mapping, struct file *filp,
533                         void *insn, int nbytes, loff_t offset)
534 {
535         struct page *page;
536         /*
537          * Ensure that the page that has the original instruction is populated
538          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
539          * see uprobe_register().
540          */
541         if (mapping->a_ops->readpage)
542                 page = read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT, filp);
543         else
544                 page = shmem_read_mapping_page(mapping, offset >> PAGE_CACHE_SHIFT);
545         if (IS_ERR(page))
546                 return PTR_ERR(page);
547
548         copy_from_page(page, offset, insn, nbytes);
549         page_cache_release(page);
550
551         return 0;
552 }
553
554 static int copy_insn(struct uprobe *uprobe, struct file *filp)
555 {
556         struct address_space *mapping = uprobe->inode->i_mapping;
557         loff_t offs = uprobe->offset;
558         void *insn = &uprobe->arch.insn;
559         int size = sizeof(uprobe->arch.insn);
560         int len, err = -EIO;
561
562         /* Copy only available bytes, -EIO if nothing was read */
563         do {
564                 if (offs >= i_size_read(uprobe->inode))
565                         break;
566
567                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
568                 err = __copy_insn(mapping, filp, insn, len, offs);
569                 if (err)
570                         break;
571
572                 insn += len;
573                 offs += len;
574                 size -= len;
575         } while (size);
576
577         return err;
578 }
579
580 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
581                                 struct mm_struct *mm, unsigned long vaddr)
582 {
583         int ret = 0;
584
585         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
586                 return ret;
587
588         /* TODO: move this into _register, until then we abuse this sem. */
589         down_write(&uprobe->consumer_rwsem);
590         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
591                 goto out;
592
593         ret = copy_insn(uprobe, file);
594         if (ret)
595                 goto out;
596
597         ret = -ENOTSUPP;
598         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
599                 goto out;
600
601         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
602         if (ret)
603                 goto out;
604
605         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
606         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
607
608  out:
609         up_write(&uprobe->consumer_rwsem);
610
611         return ret;
612 }
613
614 static inline bool consumer_filter(struct uprobe_consumer *uc,
615                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
616 {
617         return !uc->filter || uc->filter(uc, ctx, mm);
618 }
619
620 static bool filter_chain(struct uprobe *uprobe,
621                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
622 {
623         struct uprobe_consumer *uc;
624         bool ret = false;
625
626         down_read(&uprobe->consumer_rwsem);
627         for (uc = uprobe->consumers; uc; uc = uc->next) {
628                 ret = consumer_filter(uc, ctx, mm);
629                 if (ret)
630                         break;
631         }
632         up_read(&uprobe->consumer_rwsem);
633
634         return ret;
635 }
636
637 static int
638 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
639                         struct vm_area_struct *vma, unsigned long vaddr)
640 {
641         bool first_uprobe;
642         int ret;
643
644         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
645         if (ret)
646                 return ret;
647
648         /*
649          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
650          * the task can hit this breakpoint right after __replace_page().
651          */
652         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
653         if (first_uprobe)
654                 set_bit(MMF_HAS_UPROBES, &mm->flags);
655
656         ret = set_swbp(&uprobe->arch, mm, vaddr);
657         if (!ret)
658                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
659         else if (first_uprobe)
660                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
661
662         return ret;
663 }
664
665 static int
666 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
667 {
668         set_bit(MMF_RECALC_UPROBES, &mm->flags);
669         return set_orig_insn(&uprobe->arch, mm, vaddr);
670 }
671
672 static inline bool uprobe_is_active(struct uprobe *uprobe)
673 {
674         return !RB_EMPTY_NODE(&uprobe->rb_node);
675 }
676 /*
677  * There could be threads that have already hit the breakpoint. They
678  * will recheck the current insn and restart if find_uprobe() fails.
679  * See find_active_uprobe().
680  */
681 static void delete_uprobe(struct uprobe *uprobe)
682 {
683         if (WARN_ON(!uprobe_is_active(uprobe)))
684                 return;
685
686         spin_lock(&uprobes_treelock);
687         rb_erase(&uprobe->rb_node, &uprobes_tree);
688         spin_unlock(&uprobes_treelock);
689         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
690         iput(uprobe->inode);
691         put_uprobe(uprobe);
692 }
693
694 struct map_info {
695         struct map_info *next;
696         struct mm_struct *mm;
697         unsigned long vaddr;
698 };
699
700 static inline struct map_info *free_map_info(struct map_info *info)
701 {
702         struct map_info *next = info->next;
703         kfree(info);
704         return next;
705 }
706
707 static struct map_info *
708 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
709 {
710         unsigned long pgoff = offset >> PAGE_SHIFT;
711         struct vm_area_struct *vma;
712         struct map_info *curr = NULL;
713         struct map_info *prev = NULL;
714         struct map_info *info;
715         int more = 0;
716
717  again:
718         i_mmap_lock_read(mapping);
719         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
720                 if (!valid_vma(vma, is_register))
721                         continue;
722
723                 if (!prev && !more) {
724                         /*
725                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
726                          * reclaim. This is optimistic, no harm done if it fails.
727                          */
728                         prev = kmalloc(sizeof(struct map_info),
729                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
730                         if (prev)
731                                 prev->next = NULL;
732                 }
733                 if (!prev) {
734                         more++;
735                         continue;
736                 }
737
738                 if (!atomic_inc_not_zero(&vma->vm_mm->mm_users))
739                         continue;
740
741                 info = prev;
742                 prev = prev->next;
743                 info->next = curr;
744                 curr = info;
745
746                 info->mm = vma->vm_mm;
747                 info->vaddr = offset_to_vaddr(vma, offset);
748         }
749         i_mmap_unlock_read(mapping);
750
751         if (!more)
752                 goto out;
753
754         prev = curr;
755         while (curr) {
756                 mmput(curr->mm);
757                 curr = curr->next;
758         }
759
760         do {
761                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
762                 if (!info) {
763                         curr = ERR_PTR(-ENOMEM);
764                         goto out;
765                 }
766                 info->next = prev;
767                 prev = info;
768         } while (--more);
769
770         goto again;
771  out:
772         while (prev)
773                 prev = free_map_info(prev);
774         return curr;
775 }
776
777 static int
778 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
779 {
780         bool is_register = !!new;
781         struct map_info *info;
782         int err = 0;
783
784         percpu_down_write(&dup_mmap_sem);
785         info = build_map_info(uprobe->inode->i_mapping,
786                                         uprobe->offset, is_register);
787         if (IS_ERR(info)) {
788                 err = PTR_ERR(info);
789                 goto out;
790         }
791
792         while (info) {
793                 struct mm_struct *mm = info->mm;
794                 struct vm_area_struct *vma;
795
796                 if (err && is_register)
797                         goto free;
798
799                 down_write(&mm->mmap_sem);
800                 vma = find_vma(mm, info->vaddr);
801                 if (!vma || !valid_vma(vma, is_register) ||
802                     file_inode(vma->vm_file) != uprobe->inode)
803                         goto unlock;
804
805                 if (vma->vm_start > info->vaddr ||
806                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
807                         goto unlock;
808
809                 if (is_register) {
810                         /* consult only the "caller", new consumer. */
811                         if (consumer_filter(new,
812                                         UPROBE_FILTER_REGISTER, mm))
813                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
814                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
815                         if (!filter_chain(uprobe,
816                                         UPROBE_FILTER_UNREGISTER, mm))
817                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
818                 }
819
820  unlock:
821                 up_write(&mm->mmap_sem);
822  free:
823                 mmput(mm);
824                 info = free_map_info(info);
825         }
826  out:
827         percpu_up_write(&dup_mmap_sem);
828         return err;
829 }
830
831 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
832 {
833         consumer_add(uprobe, uc);
834         return register_for_each_vma(uprobe, uc);
835 }
836
837 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
838 {
839         int err;
840
841         if (WARN_ON(!consumer_del(uprobe, uc)))
842                 return;
843
844         err = register_for_each_vma(uprobe, NULL);
845         /* TODO : cant unregister? schedule a worker thread */
846         if (!uprobe->consumers && !err)
847                 delete_uprobe(uprobe);
848 }
849
850 /*
851  * uprobe_register - register a probe
852  * @inode: the file in which the probe has to be placed.
853  * @offset: offset from the start of the file.
854  * @uc: information on howto handle the probe..
855  *
856  * Apart from the access refcount, uprobe_register() takes a creation
857  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
858  * inserted into the rbtree (i.e first consumer for a @inode:@offset
859  * tuple).  Creation refcount stops uprobe_unregister from freeing the
860  * @uprobe even before the register operation is complete. Creation
861  * refcount is released when the last @uc for the @uprobe
862  * unregisters.
863  *
864  * Return errno if it cannot successully install probes
865  * else return 0 (success)
866  */
867 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
868 {
869         struct uprobe *uprobe;
870         int ret;
871
872         /* Uprobe must have at least one set consumer */
873         if (!uc->handler && !uc->ret_handler)
874                 return -EINVAL;
875
876         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
877         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
878                 return -EIO;
879         /* Racy, just to catch the obvious mistakes */
880         if (offset > i_size_read(inode))
881                 return -EINVAL;
882
883         /*
884          * This ensures that copy_from_page() and copy_to_page()
885          * can't cross page boundary.
886          */
887         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
888                 return -EINVAL;
889
890  retry:
891         uprobe = alloc_uprobe(inode, offset);
892         if (!uprobe)
893                 return -ENOMEM;
894         /*
895          * We can race with uprobe_unregister()->delete_uprobe().
896          * Check uprobe_is_active() and retry if it is false.
897          */
898         down_write(&uprobe->register_rwsem);
899         ret = -EAGAIN;
900         if (likely(uprobe_is_active(uprobe))) {
901                 ret = __uprobe_register(uprobe, uc);
902                 if (ret)
903                         __uprobe_unregister(uprobe, uc);
904         }
905         up_write(&uprobe->register_rwsem);
906         put_uprobe(uprobe);
907
908         if (unlikely(ret == -EAGAIN))
909                 goto retry;
910         return ret;
911 }
912 EXPORT_SYMBOL_GPL(uprobe_register);
913
914 /*
915  * uprobe_apply - unregister a already registered probe.
916  * @inode: the file in which the probe has to be removed.
917  * @offset: offset from the start of the file.
918  * @uc: consumer which wants to add more or remove some breakpoints
919  * @add: add or remove the breakpoints
920  */
921 int uprobe_apply(struct inode *inode, loff_t offset,
922                         struct uprobe_consumer *uc, bool add)
923 {
924         struct uprobe *uprobe;
925         struct uprobe_consumer *con;
926         int ret = -ENOENT;
927
928         uprobe = find_uprobe(inode, offset);
929         if (WARN_ON(!uprobe))
930                 return ret;
931
932         down_write(&uprobe->register_rwsem);
933         for (con = uprobe->consumers; con && con != uc ; con = con->next)
934                 ;
935         if (con)
936                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
937         up_write(&uprobe->register_rwsem);
938         put_uprobe(uprobe);
939
940         return ret;
941 }
942
943 /*
944  * uprobe_unregister - unregister a already registered probe.
945  * @inode: the file in which the probe has to be removed.
946  * @offset: offset from the start of the file.
947  * @uc: identify which probe if multiple probes are colocated.
948  */
949 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
950 {
951         struct uprobe *uprobe;
952
953         uprobe = find_uprobe(inode, offset);
954         if (WARN_ON(!uprobe))
955                 return;
956
957         down_write(&uprobe->register_rwsem);
958         __uprobe_unregister(uprobe, uc);
959         up_write(&uprobe->register_rwsem);
960         put_uprobe(uprobe);
961 }
962 EXPORT_SYMBOL_GPL(uprobe_unregister);
963
964 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
965 {
966         struct vm_area_struct *vma;
967         int err = 0;
968
969         down_read(&mm->mmap_sem);
970         for (vma = mm->mmap; vma; vma = vma->vm_next) {
971                 unsigned long vaddr;
972                 loff_t offset;
973
974                 if (!valid_vma(vma, false) ||
975                     file_inode(vma->vm_file) != uprobe->inode)
976                         continue;
977
978                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
979                 if (uprobe->offset <  offset ||
980                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
981                         continue;
982
983                 vaddr = offset_to_vaddr(vma, uprobe->offset);
984                 err |= remove_breakpoint(uprobe, mm, vaddr);
985         }
986         up_read(&mm->mmap_sem);
987
988         return err;
989 }
990
991 static struct rb_node *
992 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
993 {
994         struct rb_node *n = uprobes_tree.rb_node;
995
996         while (n) {
997                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
998
999                 if (inode < u->inode) {
1000                         n = n->rb_left;
1001                 } else if (inode > u->inode) {
1002                         n = n->rb_right;
1003                 } else {
1004                         if (max < u->offset)
1005                                 n = n->rb_left;
1006                         else if (min > u->offset)
1007                                 n = n->rb_right;
1008                         else
1009                                 break;
1010                 }
1011         }
1012
1013         return n;
1014 }
1015
1016 /*
1017  * For a given range in vma, build a list of probes that need to be inserted.
1018  */
1019 static void build_probe_list(struct inode *inode,
1020                                 struct vm_area_struct *vma,
1021                                 unsigned long start, unsigned long end,
1022                                 struct list_head *head)
1023 {
1024         loff_t min, max;
1025         struct rb_node *n, *t;
1026         struct uprobe *u;
1027
1028         INIT_LIST_HEAD(head);
1029         min = vaddr_to_offset(vma, start);
1030         max = min + (end - start) - 1;
1031
1032         spin_lock(&uprobes_treelock);
1033         n = find_node_in_range(inode, min, max);
1034         if (n) {
1035                 for (t = n; t; t = rb_prev(t)) {
1036                         u = rb_entry(t, struct uprobe, rb_node);
1037                         if (u->inode != inode || u->offset < min)
1038                                 break;
1039                         list_add(&u->pending_list, head);
1040                         get_uprobe(u);
1041                 }
1042                 for (t = n; (t = rb_next(t)); ) {
1043                         u = rb_entry(t, struct uprobe, rb_node);
1044                         if (u->inode != inode || u->offset > max)
1045                                 break;
1046                         list_add(&u->pending_list, head);
1047                         get_uprobe(u);
1048                 }
1049         }
1050         spin_unlock(&uprobes_treelock);
1051 }
1052
1053 /*
1054  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1055  *
1056  * Currently we ignore all errors and always return 0, the callers
1057  * can't handle the failure anyway.
1058  */
1059 int uprobe_mmap(struct vm_area_struct *vma)
1060 {
1061         struct list_head tmp_list;
1062         struct uprobe *uprobe, *u;
1063         struct inode *inode;
1064
1065         if (no_uprobe_events() || !valid_vma(vma, true))
1066                 return 0;
1067
1068         inode = file_inode(vma->vm_file);
1069         if (!inode)
1070                 return 0;
1071
1072         mutex_lock(uprobes_mmap_hash(inode));
1073         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1074         /*
1075          * We can race with uprobe_unregister(), this uprobe can be already
1076          * removed. But in this case filter_chain() must return false, all
1077          * consumers have gone away.
1078          */
1079         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1080                 if (!fatal_signal_pending(current) &&
1081                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1082                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1083                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1084                 }
1085                 put_uprobe(uprobe);
1086         }
1087         mutex_unlock(uprobes_mmap_hash(inode));
1088
1089         return 0;
1090 }
1091
1092 static bool
1093 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1094 {
1095         loff_t min, max;
1096         struct inode *inode;
1097         struct rb_node *n;
1098
1099         inode = file_inode(vma->vm_file);
1100
1101         min = vaddr_to_offset(vma, start);
1102         max = min + (end - start) - 1;
1103
1104         spin_lock(&uprobes_treelock);
1105         n = find_node_in_range(inode, min, max);
1106         spin_unlock(&uprobes_treelock);
1107
1108         return !!n;
1109 }
1110
1111 /*
1112  * Called in context of a munmap of a vma.
1113  */
1114 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1115 {
1116         if (no_uprobe_events() || !valid_vma(vma, false))
1117                 return;
1118
1119         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1120                 return;
1121
1122         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1123              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1124                 return;
1125
1126         if (vma_has_uprobes(vma, start, end))
1127                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1128 }
1129
1130 /* Slot allocation for XOL */
1131 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1132 {
1133         struct vm_area_struct *vma;
1134         int ret;
1135
1136         down_write(&mm->mmap_sem);
1137         if (mm->uprobes_state.xol_area) {
1138                 ret = -EALREADY;
1139                 goto fail;
1140         }
1141
1142         if (!area->vaddr) {
1143                 /* Try to map as high as possible, this is only a hint. */
1144                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1145                                                 PAGE_SIZE, 0, 0);
1146                 if (area->vaddr & ~PAGE_MASK) {
1147                         ret = area->vaddr;
1148                         goto fail;
1149                 }
1150         }
1151
1152         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1153                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1154                                 &area->xol_mapping);
1155         if (IS_ERR(vma)) {
1156                 ret = PTR_ERR(vma);
1157                 goto fail;
1158         }
1159
1160         ret = 0;
1161         smp_wmb();      /* pairs with get_xol_area() */
1162         mm->uprobes_state.xol_area = area;
1163  fail:
1164         up_write(&mm->mmap_sem);
1165
1166         return ret;
1167 }
1168
1169 static struct xol_area *__create_xol_area(unsigned long vaddr)
1170 {
1171         struct mm_struct *mm = current->mm;
1172         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1173         struct xol_area *area;
1174
1175         area = kmalloc(sizeof(*area), GFP_KERNEL);
1176         if (unlikely(!area))
1177                 goto out;
1178
1179         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1180         if (!area->bitmap)
1181                 goto free_area;
1182
1183         area->xol_mapping.name = "[uprobes]";
1184         area->xol_mapping.pages = area->pages;
1185         area->pages[0] = alloc_page(GFP_HIGHUSER);
1186         if (!area->pages[0])
1187                 goto free_bitmap;
1188         area->pages[1] = NULL;
1189
1190         area->vaddr = vaddr;
1191         init_waitqueue_head(&area->wq);
1192         /* Reserve the 1st slot for get_trampoline_vaddr() */
1193         set_bit(0, area->bitmap);
1194         atomic_set(&area->slot_count, 1);
1195         copy_to_page(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1196
1197         if (!xol_add_vma(mm, area))
1198                 return area;
1199
1200         __free_page(area->pages[0]);
1201  free_bitmap:
1202         kfree(area->bitmap);
1203  free_area:
1204         kfree(area);
1205  out:
1206         return NULL;
1207 }
1208
1209 /*
1210  * get_xol_area - Allocate process's xol_area if necessary.
1211  * This area will be used for storing instructions for execution out of line.
1212  *
1213  * Returns the allocated area or NULL.
1214  */
1215 static struct xol_area *get_xol_area(void)
1216 {
1217         struct mm_struct *mm = current->mm;
1218         struct xol_area *area;
1219
1220         if (!mm->uprobes_state.xol_area)
1221                 __create_xol_area(0);
1222
1223         area = mm->uprobes_state.xol_area;
1224         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1225         return area;
1226 }
1227
1228 /*
1229  * uprobe_clear_state - Free the area allocated for slots.
1230  */
1231 void uprobe_clear_state(struct mm_struct *mm)
1232 {
1233         struct xol_area *area = mm->uprobes_state.xol_area;
1234
1235         if (!area)
1236                 return;
1237
1238         put_page(area->pages[0]);
1239         kfree(area->bitmap);
1240         kfree(area);
1241 }
1242
1243 void uprobe_start_dup_mmap(void)
1244 {
1245         percpu_down_read(&dup_mmap_sem);
1246 }
1247
1248 void uprobe_end_dup_mmap(void)
1249 {
1250         percpu_up_read(&dup_mmap_sem);
1251 }
1252
1253 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1254 {
1255         newmm->uprobes_state.xol_area = NULL;
1256
1257         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1258                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1259                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1260                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1261         }
1262 }
1263
1264 /*
1265  *  - search for a free slot.
1266  */
1267 static unsigned long xol_take_insn_slot(struct xol_area *area)
1268 {
1269         unsigned long slot_addr;
1270         int slot_nr;
1271
1272         do {
1273                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1274                 if (slot_nr < UINSNS_PER_PAGE) {
1275                         if (!test_and_set_bit(slot_nr, area->bitmap))
1276                                 break;
1277
1278                         slot_nr = UINSNS_PER_PAGE;
1279                         continue;
1280                 }
1281                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1282         } while (slot_nr >= UINSNS_PER_PAGE);
1283
1284         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1285         atomic_inc(&area->slot_count);
1286
1287         return slot_addr;
1288 }
1289
1290 /*
1291  * xol_get_insn_slot - allocate a slot for xol.
1292  * Returns the allocated slot address or 0.
1293  */
1294 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1295 {
1296         struct xol_area *area;
1297         unsigned long xol_vaddr;
1298
1299         area = get_xol_area();
1300         if (!area)
1301                 return 0;
1302
1303         xol_vaddr = xol_take_insn_slot(area);
1304         if (unlikely(!xol_vaddr))
1305                 return 0;
1306
1307         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1308                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1309
1310         return xol_vaddr;
1311 }
1312
1313 /*
1314  * xol_free_insn_slot - If slot was earlier allocated by
1315  * @xol_get_insn_slot(), make the slot available for
1316  * subsequent requests.
1317  */
1318 static void xol_free_insn_slot(struct task_struct *tsk)
1319 {
1320         struct xol_area *area;
1321         unsigned long vma_end;
1322         unsigned long slot_addr;
1323
1324         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1325                 return;
1326
1327         slot_addr = tsk->utask->xol_vaddr;
1328         if (unlikely(!slot_addr))
1329                 return;
1330
1331         area = tsk->mm->uprobes_state.xol_area;
1332         vma_end = area->vaddr + PAGE_SIZE;
1333         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1334                 unsigned long offset;
1335                 int slot_nr;
1336
1337                 offset = slot_addr - area->vaddr;
1338                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1339                 if (slot_nr >= UINSNS_PER_PAGE)
1340                         return;
1341
1342                 clear_bit(slot_nr, area->bitmap);
1343                 atomic_dec(&area->slot_count);
1344                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1345                 if (waitqueue_active(&area->wq))
1346                         wake_up(&area->wq);
1347
1348                 tsk->utask->xol_vaddr = 0;
1349         }
1350 }
1351
1352 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1353                                   void *src, unsigned long len)
1354 {
1355         /* Initialize the slot */
1356         copy_to_page(page, vaddr, src, len);
1357
1358         /*
1359          * We probably need flush_icache_user_range() but it needs vma.
1360          * This should work on most of architectures by default. If
1361          * architecture needs to do something different it can define
1362          * its own version of the function.
1363          */
1364         flush_dcache_page(page);
1365 }
1366
1367 /**
1368  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1369  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1370  * instruction.
1371  * Return the address of the breakpoint instruction.
1372  */
1373 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1374 {
1375         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1376 }
1377
1378 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1379 {
1380         struct uprobe_task *utask = current->utask;
1381
1382         if (unlikely(utask && utask->active_uprobe))
1383                 return utask->vaddr;
1384
1385         return instruction_pointer(regs);
1386 }
1387
1388 static struct return_instance *free_ret_instance(struct return_instance *ri)
1389 {
1390         struct return_instance *next = ri->next;
1391         put_uprobe(ri->uprobe);
1392         kfree(ri);
1393         return next;
1394 }
1395
1396 /*
1397  * Called with no locks held.
1398  * Called in context of a exiting or a exec-ing thread.
1399  */
1400 void uprobe_free_utask(struct task_struct *t)
1401 {
1402         struct uprobe_task *utask = t->utask;
1403         struct return_instance *ri;
1404
1405         if (!utask)
1406                 return;
1407
1408         if (utask->active_uprobe)
1409                 put_uprobe(utask->active_uprobe);
1410
1411         ri = utask->return_instances;
1412         while (ri)
1413                 ri = free_ret_instance(ri);
1414
1415         xol_free_insn_slot(t);
1416         kfree(utask);
1417         t->utask = NULL;
1418 }
1419
1420 /*
1421  * Allocate a uprobe_task object for the task if if necessary.
1422  * Called when the thread hits a breakpoint.
1423  *
1424  * Returns:
1425  * - pointer to new uprobe_task on success
1426  * - NULL otherwise
1427  */
1428 static struct uprobe_task *get_utask(void)
1429 {
1430         if (!current->utask)
1431                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1432         return current->utask;
1433 }
1434
1435 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1436 {
1437         struct uprobe_task *n_utask;
1438         struct return_instance **p, *o, *n;
1439
1440         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1441         if (!n_utask)
1442                 return -ENOMEM;
1443         t->utask = n_utask;
1444
1445         p = &n_utask->return_instances;
1446         for (o = o_utask->return_instances; o; o = o->next) {
1447                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1448                 if (!n)
1449                         return -ENOMEM;
1450
1451                 *n = *o;
1452                 get_uprobe(n->uprobe);
1453                 n->next = NULL;
1454
1455                 *p = n;
1456                 p = &n->next;
1457                 n_utask->depth++;
1458         }
1459
1460         return 0;
1461 }
1462
1463 static void uprobe_warn(struct task_struct *t, const char *msg)
1464 {
1465         pr_warn("uprobe: %s:%d failed to %s\n",
1466                         current->comm, current->pid, msg);
1467 }
1468
1469 static void dup_xol_work(struct callback_head *work)
1470 {
1471         if (current->flags & PF_EXITING)
1472                 return;
1473
1474         if (!__create_xol_area(current->utask->dup_xol_addr))
1475                 uprobe_warn(current, "dup xol area");
1476 }
1477
1478 /*
1479  * Called in context of a new clone/fork from copy_process.
1480  */
1481 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1482 {
1483         struct uprobe_task *utask = current->utask;
1484         struct mm_struct *mm = current->mm;
1485         struct xol_area *area;
1486
1487         t->utask = NULL;
1488
1489         if (!utask || !utask->return_instances)
1490                 return;
1491
1492         if (mm == t->mm && !(flags & CLONE_VFORK))
1493                 return;
1494
1495         if (dup_utask(t, utask))
1496                 return uprobe_warn(t, "dup ret instances");
1497
1498         /* The task can fork() after dup_xol_work() fails */
1499         area = mm->uprobes_state.xol_area;
1500         if (!area)
1501                 return uprobe_warn(t, "dup xol area");
1502
1503         if (mm == t->mm)
1504                 return;
1505
1506         t->utask->dup_xol_addr = area->vaddr;
1507         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1508         task_work_add(t, &t->utask->dup_xol_work, true);
1509 }
1510
1511 /*
1512  * Current area->vaddr notion assume the trampoline address is always
1513  * equal area->vaddr.
1514  *
1515  * Returns -1 in case the xol_area is not allocated.
1516  */
1517 static unsigned long get_trampoline_vaddr(void)
1518 {
1519         struct xol_area *area;
1520         unsigned long trampoline_vaddr = -1;
1521
1522         area = current->mm->uprobes_state.xol_area;
1523         smp_read_barrier_depends();
1524         if (area)
1525                 trampoline_vaddr = area->vaddr;
1526
1527         return trampoline_vaddr;
1528 }
1529
1530 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1531                                         struct pt_regs *regs)
1532 {
1533         struct return_instance *ri = utask->return_instances;
1534         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1535
1536         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1537                 ri = free_ret_instance(ri);
1538                 utask->depth--;
1539         }
1540         utask->return_instances = ri;
1541 }
1542
1543 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1544 {
1545         struct return_instance *ri;
1546         struct uprobe_task *utask;
1547         unsigned long orig_ret_vaddr, trampoline_vaddr;
1548         bool chained;
1549
1550         if (!get_xol_area())
1551                 return;
1552
1553         utask = get_utask();
1554         if (!utask)
1555                 return;
1556
1557         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1558                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1559                                 " nestedness limit pid/tgid=%d/%d\n",
1560                                 current->pid, current->tgid);
1561                 return;
1562         }
1563
1564         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1565         if (!ri)
1566                 return;
1567
1568         trampoline_vaddr = get_trampoline_vaddr();
1569         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1570         if (orig_ret_vaddr == -1)
1571                 goto fail;
1572
1573         /* drop the entries invalidated by longjmp() */
1574         chained = (orig_ret_vaddr == trampoline_vaddr);
1575         cleanup_return_instances(utask, chained, regs);
1576
1577         /*
1578          * We don't want to keep trampoline address in stack, rather keep the
1579          * original return address of first caller thru all the consequent
1580          * instances. This also makes breakpoint unwrapping easier.
1581          */
1582         if (chained) {
1583                 if (!utask->return_instances) {
1584                         /*
1585                          * This situation is not possible. Likely we have an
1586                          * attack from user-space.
1587                          */
1588                         uprobe_warn(current, "handle tail call");
1589                         goto fail;
1590                 }
1591                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1592         }
1593
1594         ri->uprobe = get_uprobe(uprobe);
1595         ri->func = instruction_pointer(regs);
1596         ri->stack = user_stack_pointer(regs);
1597         ri->orig_ret_vaddr = orig_ret_vaddr;
1598         ri->chained = chained;
1599
1600         utask->depth++;
1601         ri->next = utask->return_instances;
1602         utask->return_instances = ri;
1603
1604         return;
1605  fail:
1606         kfree(ri);
1607 }
1608
1609 /* Prepare to single-step probed instruction out of line. */
1610 static int
1611 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1612 {
1613         struct uprobe_task *utask;
1614         unsigned long xol_vaddr;
1615         int err;
1616
1617         utask = get_utask();
1618         if (!utask)
1619                 return -ENOMEM;
1620
1621         xol_vaddr = xol_get_insn_slot(uprobe);
1622         if (!xol_vaddr)
1623                 return -ENOMEM;
1624
1625         utask->xol_vaddr = xol_vaddr;
1626         utask->vaddr = bp_vaddr;
1627
1628         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1629         if (unlikely(err)) {
1630                 xol_free_insn_slot(current);
1631                 return err;
1632         }
1633
1634         utask->active_uprobe = uprobe;
1635         utask->state = UTASK_SSTEP;
1636         return 0;
1637 }
1638
1639 /*
1640  * If we are singlestepping, then ensure this thread is not connected to
1641  * non-fatal signals until completion of singlestep.  When xol insn itself
1642  * triggers the signal,  restart the original insn even if the task is
1643  * already SIGKILL'ed (since coredump should report the correct ip).  This
1644  * is even more important if the task has a handler for SIGSEGV/etc, The
1645  * _same_ instruction should be repeated again after return from the signal
1646  * handler, and SSTEP can never finish in this case.
1647  */
1648 bool uprobe_deny_signal(void)
1649 {
1650         struct task_struct *t = current;
1651         struct uprobe_task *utask = t->utask;
1652
1653         if (likely(!utask || !utask->active_uprobe))
1654                 return false;
1655
1656         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1657
1658         if (signal_pending(t)) {
1659                 spin_lock_irq(&t->sighand->siglock);
1660                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1661                 spin_unlock_irq(&t->sighand->siglock);
1662
1663                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1664                         utask->state = UTASK_SSTEP_TRAPPED;
1665                         set_tsk_thread_flag(t, TIF_UPROBE);
1666                 }
1667         }
1668
1669         return true;
1670 }
1671
1672 static void mmf_recalc_uprobes(struct mm_struct *mm)
1673 {
1674         struct vm_area_struct *vma;
1675
1676         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1677                 if (!valid_vma(vma, false))
1678                         continue;
1679                 /*
1680                  * This is not strictly accurate, we can race with
1681                  * uprobe_unregister() and see the already removed
1682                  * uprobe if delete_uprobe() was not yet called.
1683                  * Or this uprobe can be filtered out.
1684                  */
1685                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1686                         return;
1687         }
1688
1689         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1690 }
1691
1692 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1693 {
1694         struct page *page;
1695         uprobe_opcode_t opcode;
1696         int result;
1697
1698         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
1699                 return -EINVAL;
1700
1701         pagefault_disable();
1702         result = __copy_from_user_inatomic(&opcode, (void __user*)vaddr,
1703                                                         sizeof(opcode));
1704         pagefault_enable();
1705
1706         if (likely(result == 0))
1707                 goto out;
1708
1709         result = get_user_pages(NULL, mm, vaddr, 1, FOLL_FORCE, &page, NULL);
1710         if (result < 0)
1711                 return result;
1712
1713         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1714         put_page(page);
1715  out:
1716         /* This needs to return true for any variant of the trap insn */
1717         return is_trap_insn(&opcode);
1718 }
1719
1720 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1721 {
1722         struct mm_struct *mm = current->mm;
1723         struct uprobe *uprobe = NULL;
1724         struct vm_area_struct *vma;
1725
1726         down_read(&mm->mmap_sem);
1727         vma = find_vma(mm, bp_vaddr);
1728         if (vma && vma->vm_start <= bp_vaddr) {
1729                 if (valid_vma(vma, false)) {
1730                         struct inode *inode = file_inode(vma->vm_file);
1731                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1732
1733                         uprobe = find_uprobe(inode, offset);
1734                 }
1735
1736                 if (!uprobe)
1737                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1738         } else {
1739                 *is_swbp = -EFAULT;
1740         }
1741
1742         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1743                 mmf_recalc_uprobes(mm);
1744         up_read(&mm->mmap_sem);
1745
1746         return uprobe;
1747 }
1748
1749 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1750 {
1751         struct uprobe_consumer *uc;
1752         int remove = UPROBE_HANDLER_REMOVE;
1753         bool need_prep = false; /* prepare return uprobe, when needed */
1754
1755         down_read(&uprobe->register_rwsem);
1756         for (uc = uprobe->consumers; uc; uc = uc->next) {
1757                 int rc = 0;
1758
1759                 if (uc->handler) {
1760                         rc = uc->handler(uc, regs);
1761                         WARN(rc & ~UPROBE_HANDLER_MASK,
1762                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1763                 }
1764
1765                 if (uc->ret_handler)
1766                         need_prep = true;
1767
1768                 remove &= rc;
1769         }
1770
1771         if (need_prep && !remove)
1772                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1773
1774         if (remove && uprobe->consumers) {
1775                 WARN_ON(!uprobe_is_active(uprobe));
1776                 unapply_uprobe(uprobe, current->mm);
1777         }
1778         up_read(&uprobe->register_rwsem);
1779 }
1780
1781 static void
1782 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1783 {
1784         struct uprobe *uprobe = ri->uprobe;
1785         struct uprobe_consumer *uc;
1786
1787         down_read(&uprobe->register_rwsem);
1788         for (uc = uprobe->consumers; uc; uc = uc->next) {
1789                 if (uc->ret_handler)
1790                         uc->ret_handler(uc, ri->func, regs);
1791         }
1792         up_read(&uprobe->register_rwsem);
1793 }
1794
1795 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1796 {
1797         bool chained;
1798
1799         do {
1800                 chained = ri->chained;
1801                 ri = ri->next;  /* can't be NULL if chained */
1802         } while (chained);
1803
1804         return ri;
1805 }
1806
1807 static void handle_trampoline(struct pt_regs *regs)
1808 {
1809         struct uprobe_task *utask;
1810         struct return_instance *ri, *next;
1811         bool valid;
1812
1813         utask = current->utask;
1814         if (!utask)
1815                 goto sigill;
1816
1817         ri = utask->return_instances;
1818         if (!ri)
1819                 goto sigill;
1820
1821         do {
1822                 /*
1823                  * We should throw out the frames invalidated by longjmp().
1824                  * If this chain is valid, then the next one should be alive
1825                  * or NULL; the latter case means that nobody but ri->func
1826                  * could hit this trampoline on return. TODO: sigaltstack().
1827                  */
1828                 next = find_next_ret_chain(ri);
1829                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1830
1831                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1832                 do {
1833                         if (valid)
1834                                 handle_uretprobe_chain(ri, regs);
1835                         ri = free_ret_instance(ri);
1836                         utask->depth--;
1837                 } while (ri != next);
1838         } while (!valid);
1839
1840         utask->return_instances = ri;
1841         return;
1842
1843  sigill:
1844         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1845         force_sig(SIGILL, current);
1846
1847 }
1848
1849 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1850 {
1851         return false;
1852 }
1853
1854 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1855                                         struct pt_regs *regs)
1856 {
1857         return true;
1858 }
1859
1860 /*
1861  * Run handler and ask thread to singlestep.
1862  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1863  */
1864 static void handle_swbp(struct pt_regs *regs)
1865 {
1866         struct uprobe *uprobe;
1867         unsigned long bp_vaddr;
1868         int uninitialized_var(is_swbp);
1869
1870         bp_vaddr = uprobe_get_swbp_addr(regs);
1871         if (bp_vaddr == get_trampoline_vaddr())
1872                 return handle_trampoline(regs);
1873
1874         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1875         if (!uprobe) {
1876                 if (is_swbp > 0) {
1877                         /* No matching uprobe; signal SIGTRAP. */
1878                         force_sig(SIGTRAP, current);
1879                 } else {
1880                         /*
1881                          * Either we raced with uprobe_unregister() or we can't
1882                          * access this memory. The latter is only possible if
1883                          * another thread plays with our ->mm. In both cases
1884                          * we can simply restart. If this vma was unmapped we
1885                          * can pretend this insn was not executed yet and get
1886                          * the (correct) SIGSEGV after restart.
1887                          */
1888                         instruction_pointer_set(regs, bp_vaddr);
1889                 }
1890                 return;
1891         }
1892
1893         /* change it in advance for ->handler() and restart */
1894         instruction_pointer_set(regs, bp_vaddr);
1895
1896         /*
1897          * TODO: move copy_insn/etc into _register and remove this hack.
1898          * After we hit the bp, _unregister + _register can install the
1899          * new and not-yet-analyzed uprobe at the same address, restart.
1900          */
1901         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1902                 goto out;
1903
1904         /*
1905          * Pairs with the smp_wmb() in prepare_uprobe().
1906          *
1907          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
1908          * we must also see the stores to &uprobe->arch performed by the
1909          * prepare_uprobe() call.
1910          */
1911         smp_rmb();
1912
1913         /* Tracing handlers use ->utask to communicate with fetch methods */
1914         if (!get_utask())
1915                 goto out;
1916
1917         if (arch_uprobe_ignore(&uprobe->arch, regs))
1918                 goto out;
1919
1920         handler_chain(uprobe, regs);
1921
1922         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1923                 goto out;
1924
1925         if (!pre_ssout(uprobe, regs, bp_vaddr))
1926                 return;
1927
1928         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1929 out:
1930         put_uprobe(uprobe);
1931 }
1932
1933 /*
1934  * Perform required fix-ups and disable singlestep.
1935  * Allow pending signals to take effect.
1936  */
1937 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1938 {
1939         struct uprobe *uprobe;
1940         int err = 0;
1941
1942         uprobe = utask->active_uprobe;
1943         if (utask->state == UTASK_SSTEP_ACK)
1944                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1945         else if (utask->state == UTASK_SSTEP_TRAPPED)
1946                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1947         else
1948                 WARN_ON_ONCE(1);
1949
1950         put_uprobe(uprobe);
1951         utask->active_uprobe = NULL;
1952         utask->state = UTASK_RUNNING;
1953         xol_free_insn_slot(current);
1954
1955         spin_lock_irq(&current->sighand->siglock);
1956         recalc_sigpending(); /* see uprobe_deny_signal() */
1957         spin_unlock_irq(&current->sighand->siglock);
1958
1959         if (unlikely(err)) {
1960                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1961                 force_sig(SIGILL, current);
1962         }
1963 }
1964
1965 /*
1966  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1967  * allows the thread to return from interrupt. After that handle_swbp()
1968  * sets utask->active_uprobe.
1969  *
1970  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1971  * and allows the thread to return from interrupt.
1972  *
1973  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1974  * uprobe_notify_resume().
1975  */
1976 void uprobe_notify_resume(struct pt_regs *regs)
1977 {
1978         struct uprobe_task *utask;
1979
1980         clear_thread_flag(TIF_UPROBE);
1981
1982         utask = current->utask;
1983         if (utask && utask->active_uprobe)
1984                 handle_singlestep(utask, regs);
1985         else
1986                 handle_swbp(regs);
1987 }
1988
1989 /*
1990  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
1991  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
1992  */
1993 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
1994 {
1995         if (!current->mm)
1996                 return 0;
1997
1998         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
1999             (!current->utask || !current->utask->return_instances))
2000                 return 0;
2001
2002         set_thread_flag(TIF_UPROBE);
2003         return 1;
2004 }
2005
2006 /*
2007  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2008  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2009  */
2010 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2011 {
2012         struct uprobe_task *utask = current->utask;
2013
2014         if (!current->mm || !utask || !utask->active_uprobe)
2015                 /* task is currently not uprobed */
2016                 return 0;
2017
2018         utask->state = UTASK_SSTEP_ACK;
2019         set_thread_flag(TIF_UPROBE);
2020         return 1;
2021 }
2022
2023 static struct notifier_block uprobe_exception_nb = {
2024         .notifier_call          = arch_uprobe_exception_notify,
2025         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2026 };
2027
2028 static int __init init_uprobes(void)
2029 {
2030         int i;
2031
2032         for (i = 0; i < UPROBES_HASH_SZ; i++)
2033                 mutex_init(&uprobes_mmap_mutex[i]);
2034
2035         if (percpu_init_rwsem(&dup_mmap_sem))
2036                 return -ENOMEM;
2037
2038         return register_die_notifier(&uprobe_exception_nb);
2039 }
2040 __initcall(init_uprobes);