GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / events / uprobes.c
1 /*
2  * User-space Probes (UProbes)
3  *
4  * This program is free software; you can redistribute it and/or modify
5  * it under the terms of the GNU General Public License as published by
6  * the Free Software Foundation; either version 2 of the License, or
7  * (at your option) any later version.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  *
14  * You should have received a copy of the GNU General Public License
15  * along with this program; if not, write to the Free Software
16  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17  *
18  * Copyright (C) IBM Corporation, 2008-2012
19  * Authors:
20  *      Srikar Dronamraju
21  *      Jim Keniston
22  * Copyright (C) 2011-2012 Red Hat, Inc., Peter Zijlstra
23  */
24
25 #include <linux/kernel.h>
26 #include <linux/highmem.h>
27 #include <linux/pagemap.h>      /* read_mapping_page */
28 #include <linux/slab.h>
29 #include <linux/sched.h>
30 #include <linux/sched/mm.h>
31 #include <linux/sched/coredump.h>
32 #include <linux/export.h>
33 #include <linux/rmap.h>         /* anon_vma_prepare */
34 #include <linux/mmu_notifier.h> /* set_pte_at_notify */
35 #include <linux/swap.h>         /* try_to_free_swap */
36 #include <linux/ptrace.h>       /* user_enable_single_step */
37 #include <linux/kdebug.h>       /* notifier mechanism */
38 #include "../../mm/internal.h"  /* munlock_vma_page */
39 #include <linux/percpu-rwsem.h>
40 #include <linux/task_work.h>
41 #include <linux/shmem_fs.h>
42
43 #include <linux/uprobes.h>
44
45 #define UINSNS_PER_PAGE                 (PAGE_SIZE/UPROBE_XOL_SLOT_BYTES)
46 #define MAX_UPROBE_XOL_SLOTS            UINSNS_PER_PAGE
47
48 static struct rb_root uprobes_tree = RB_ROOT;
49 /*
50  * allows us to skip the uprobe_mmap if there are no uprobe events active
51  * at this time.  Probably a fine grained per inode count is better?
52  */
53 #define no_uprobe_events()      RB_EMPTY_ROOT(&uprobes_tree)
54
55 static DEFINE_SPINLOCK(uprobes_treelock);       /* serialize rbtree access */
56
57 #define UPROBES_HASH_SZ 13
58 /* serialize uprobe->pending_list */
59 static struct mutex uprobes_mmap_mutex[UPROBES_HASH_SZ];
60 #define uprobes_mmap_hash(v)    (&uprobes_mmap_mutex[((unsigned long)(v)) % UPROBES_HASH_SZ])
61
62 static struct percpu_rw_semaphore dup_mmap_sem;
63
64 /* Have a copy of original instruction */
65 #define UPROBE_COPY_INSN        0
66
67 struct uprobe {
68         struct rb_node          rb_node;        /* node in the rb tree */
69         atomic_t                ref;
70         struct rw_semaphore     register_rwsem;
71         struct rw_semaphore     consumer_rwsem;
72         struct list_head        pending_list;
73         struct uprobe_consumer  *consumers;
74         struct inode            *inode;         /* Also hold a ref to inode */
75         loff_t                  offset;
76         unsigned long           flags;
77
78         /*
79          * The generic code assumes that it has two members of unknown type
80          * owned by the arch-specific code:
81          *
82          *      insn -  copy_insn() saves the original instruction here for
83          *              arch_uprobe_analyze_insn().
84          *
85          *      ixol -  potentially modified instruction to execute out of
86          *              line, copied to xol_area by xol_get_insn_slot().
87          */
88         struct arch_uprobe      arch;
89 };
90
91 /*
92  * Execute out of line area: anonymous executable mapping installed
93  * by the probed task to execute the copy of the original instruction
94  * mangled by set_swbp().
95  *
96  * On a breakpoint hit, thread contests for a slot.  It frees the
97  * slot after singlestep. Currently a fixed number of slots are
98  * allocated.
99  */
100 struct xol_area {
101         wait_queue_head_t               wq;             /* if all slots are busy */
102         atomic_t                        slot_count;     /* number of in-use slots */
103         unsigned long                   *bitmap;        /* 0 = free slot */
104
105         struct vm_special_mapping       xol_mapping;
106         struct page                     *pages[2];
107         /*
108          * We keep the vma's vm_start rather than a pointer to the vma
109          * itself.  The probed process or a naughty kernel module could make
110          * the vma go away, and we must handle that reasonably gracefully.
111          */
112         unsigned long                   vaddr;          /* Page(s) of instruction slots */
113 };
114
115 /*
116  * valid_vma: Verify if the specified vma is an executable vma
117  * Relax restrictions while unregistering: vm_flags might have
118  * changed after breakpoint was inserted.
119  *      - is_register: indicates if we are in register context.
120  *      - Return 1 if the specified virtual address is in an
121  *        executable vma.
122  */
123 static bool valid_vma(struct vm_area_struct *vma, bool is_register)
124 {
125         vm_flags_t flags = VM_HUGETLB | VM_MAYEXEC | VM_MAYSHARE;
126
127         if (is_register)
128                 flags |= VM_WRITE;
129
130         return vma->vm_file && (vma->vm_flags & flags) == VM_MAYEXEC;
131 }
132
133 static unsigned long offset_to_vaddr(struct vm_area_struct *vma, loff_t offset)
134 {
135         return vma->vm_start + offset - ((loff_t)vma->vm_pgoff << PAGE_SHIFT);
136 }
137
138 static loff_t vaddr_to_offset(struct vm_area_struct *vma, unsigned long vaddr)
139 {
140         return ((loff_t)vma->vm_pgoff << PAGE_SHIFT) + (vaddr - vma->vm_start);
141 }
142
143 /**
144  * __replace_page - replace page in vma by new page.
145  * based on replace_page in mm/ksm.c
146  *
147  * @vma:      vma that holds the pte pointing to page
148  * @addr:     address the old @page is mapped at
149  * @page:     the cowed page we are replacing by kpage
150  * @kpage:    the modified page we replace page by
151  *
152  * Returns 0 on success, -EFAULT on failure.
153  */
154 static int __replace_page(struct vm_area_struct *vma, unsigned long addr,
155                                 struct page *old_page, struct page *new_page)
156 {
157         struct mm_struct *mm = vma->vm_mm;
158         struct page_vma_mapped_walk pvmw = {
159                 .page = old_page,
160                 .vma = vma,
161                 .address = addr,
162         };
163         int err;
164         /* For mmu_notifiers */
165         const unsigned long mmun_start = addr;
166         const unsigned long mmun_end   = addr + PAGE_SIZE;
167         struct mem_cgroup *memcg;
168
169         VM_BUG_ON_PAGE(PageTransHuge(old_page), old_page);
170
171         err = mem_cgroup_try_charge(new_page, vma->vm_mm, GFP_KERNEL, &memcg,
172                         false);
173         if (err)
174                 return err;
175
176         /* For try_to_free_swap() and munlock_vma_page() below */
177         lock_page(old_page);
178
179         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
180         err = -EAGAIN;
181         if (!page_vma_mapped_walk(&pvmw)) {
182                 mem_cgroup_cancel_charge(new_page, memcg, false);
183                 goto unlock;
184         }
185         VM_BUG_ON_PAGE(addr != pvmw.address, old_page);
186
187         get_page(new_page);
188         page_add_new_anon_rmap(new_page, vma, addr, false);
189         mem_cgroup_commit_charge(new_page, memcg, false, false);
190         lru_cache_add_active_or_unevictable(new_page, vma);
191
192         if (!PageAnon(old_page)) {
193                 dec_mm_counter(mm, mm_counter_file(old_page));
194                 inc_mm_counter(mm, MM_ANONPAGES);
195         }
196
197         flush_cache_page(vma, addr, pte_pfn(*pvmw.pte));
198         ptep_clear_flush_notify(vma, addr, pvmw.pte);
199         set_pte_at_notify(mm, addr, pvmw.pte,
200                         mk_pte(new_page, vma->vm_page_prot));
201
202         page_remove_rmap(old_page, false);
203         if (!page_mapped(old_page))
204                 try_to_free_swap(old_page);
205         page_vma_mapped_walk_done(&pvmw);
206
207         if (vma->vm_flags & VM_LOCKED)
208                 munlock_vma_page(old_page);
209         put_page(old_page);
210
211         err = 0;
212  unlock:
213         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
214         unlock_page(old_page);
215         return err;
216 }
217
218 /**
219  * is_swbp_insn - check if instruction is breakpoint instruction.
220  * @insn: instruction to be checked.
221  * Default implementation of is_swbp_insn
222  * Returns true if @insn is a breakpoint instruction.
223  */
224 bool __weak is_swbp_insn(uprobe_opcode_t *insn)
225 {
226         return *insn == UPROBE_SWBP_INSN;
227 }
228
229 /**
230  * is_trap_insn - check if instruction is breakpoint instruction.
231  * @insn: instruction to be checked.
232  * Default implementation of is_trap_insn
233  * Returns true if @insn is a breakpoint instruction.
234  *
235  * This function is needed for the case where an architecture has multiple
236  * trap instructions (like powerpc).
237  */
238 bool __weak is_trap_insn(uprobe_opcode_t *insn)
239 {
240         return is_swbp_insn(insn);
241 }
242
243 static void copy_from_page(struct page *page, unsigned long vaddr, void *dst, int len)
244 {
245         void *kaddr = kmap_atomic(page);
246         memcpy(dst, kaddr + (vaddr & ~PAGE_MASK), len);
247         kunmap_atomic(kaddr);
248 }
249
250 static void copy_to_page(struct page *page, unsigned long vaddr, const void *src, int len)
251 {
252         void *kaddr = kmap_atomic(page);
253         memcpy(kaddr + (vaddr & ~PAGE_MASK), src, len);
254         kunmap_atomic(kaddr);
255 }
256
257 static int verify_opcode(struct page *page, unsigned long vaddr, uprobe_opcode_t *new_opcode)
258 {
259         uprobe_opcode_t old_opcode;
260         bool is_swbp;
261
262         /*
263          * Note: We only check if the old_opcode is UPROBE_SWBP_INSN here.
264          * We do not check if it is any other 'trap variant' which could
265          * be conditional trap instruction such as the one powerpc supports.
266          *
267          * The logic is that we do not care if the underlying instruction
268          * is a trap variant; uprobes always wins over any other (gdb)
269          * breakpoint.
270          */
271         copy_from_page(page, vaddr, &old_opcode, UPROBE_SWBP_INSN_SIZE);
272         is_swbp = is_swbp_insn(&old_opcode);
273
274         if (is_swbp_insn(new_opcode)) {
275                 if (is_swbp)            /* register: already installed? */
276                         return 0;
277         } else {
278                 if (!is_swbp)           /* unregister: was it changed by us? */
279                         return 0;
280         }
281
282         return 1;
283 }
284
285 /*
286  * NOTE:
287  * Expect the breakpoint instruction to be the smallest size instruction for
288  * the architecture. If an arch has variable length instruction and the
289  * breakpoint instruction is not of the smallest length instruction
290  * supported by that architecture then we need to modify is_trap_at_addr and
291  * uprobe_write_opcode accordingly. This would never be a problem for archs
292  * that have fixed length instructions.
293  *
294  * uprobe_write_opcode - write the opcode at a given virtual address.
295  * @mm: the probed process address space.
296  * @vaddr: the virtual address to store the opcode.
297  * @opcode: opcode to be written at @vaddr.
298  *
299  * Called with mm->mmap_sem held for write.
300  * Return 0 (success) or a negative errno.
301  */
302 int uprobe_write_opcode(struct mm_struct *mm, unsigned long vaddr,
303                         uprobe_opcode_t opcode)
304 {
305         struct page *old_page, *new_page;
306         struct vm_area_struct *vma;
307         int ret;
308
309 retry:
310         /* Read the page with vaddr into memory */
311         ret = get_user_pages_remote(NULL, mm, vaddr, 1,
312                         FOLL_FORCE | FOLL_SPLIT, &old_page, &vma, NULL);
313         if (ret <= 0)
314                 return ret;
315
316         ret = verify_opcode(old_page, vaddr, &opcode);
317         if (ret <= 0)
318                 goto put_old;
319
320         ret = anon_vma_prepare(vma);
321         if (ret)
322                 goto put_old;
323
324         ret = -ENOMEM;
325         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vaddr);
326         if (!new_page)
327                 goto put_old;
328
329         __SetPageUptodate(new_page);
330         copy_highpage(new_page, old_page);
331         copy_to_page(new_page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
332
333         ret = __replace_page(vma, vaddr, old_page, new_page);
334         put_page(new_page);
335 put_old:
336         put_page(old_page);
337
338         if (unlikely(ret == -EAGAIN))
339                 goto retry;
340         return ret;
341 }
342
343 /**
344  * set_swbp - store breakpoint at a given address.
345  * @auprobe: arch specific probepoint information.
346  * @mm: the probed process address space.
347  * @vaddr: the virtual address to insert the opcode.
348  *
349  * For mm @mm, store the breakpoint instruction at @vaddr.
350  * Return 0 (success) or a negative errno.
351  */
352 int __weak set_swbp(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
353 {
354         return uprobe_write_opcode(mm, vaddr, UPROBE_SWBP_INSN);
355 }
356
357 /**
358  * set_orig_insn - Restore the original instruction.
359  * @mm: the probed process address space.
360  * @auprobe: arch specific probepoint information.
361  * @vaddr: the virtual address to insert the opcode.
362  *
363  * For mm @mm, restore the original opcode (opcode) at @vaddr.
364  * Return 0 (success) or a negative errno.
365  */
366 int __weak
367 set_orig_insn(struct arch_uprobe *auprobe, struct mm_struct *mm, unsigned long vaddr)
368 {
369         return uprobe_write_opcode(mm, vaddr, *(uprobe_opcode_t *)&auprobe->insn);
370 }
371
372 static struct uprobe *get_uprobe(struct uprobe *uprobe)
373 {
374         atomic_inc(&uprobe->ref);
375         return uprobe;
376 }
377
378 static void put_uprobe(struct uprobe *uprobe)
379 {
380         if (atomic_dec_and_test(&uprobe->ref))
381                 kfree(uprobe);
382 }
383
384 static int match_uprobe(struct uprobe *l, struct uprobe *r)
385 {
386         if (l->inode < r->inode)
387                 return -1;
388
389         if (l->inode > r->inode)
390                 return 1;
391
392         if (l->offset < r->offset)
393                 return -1;
394
395         if (l->offset > r->offset)
396                 return 1;
397
398         return 0;
399 }
400
401 static struct uprobe *__find_uprobe(struct inode *inode, loff_t offset)
402 {
403         struct uprobe u = { .inode = inode, .offset = offset };
404         struct rb_node *n = uprobes_tree.rb_node;
405         struct uprobe *uprobe;
406         int match;
407
408         while (n) {
409                 uprobe = rb_entry(n, struct uprobe, rb_node);
410                 match = match_uprobe(&u, uprobe);
411                 if (!match)
412                         return get_uprobe(uprobe);
413
414                 if (match < 0)
415                         n = n->rb_left;
416                 else
417                         n = n->rb_right;
418         }
419         return NULL;
420 }
421
422 /*
423  * Find a uprobe corresponding to a given inode:offset
424  * Acquires uprobes_treelock
425  */
426 static struct uprobe *find_uprobe(struct inode *inode, loff_t offset)
427 {
428         struct uprobe *uprobe;
429
430         spin_lock(&uprobes_treelock);
431         uprobe = __find_uprobe(inode, offset);
432         spin_unlock(&uprobes_treelock);
433
434         return uprobe;
435 }
436
437 static struct uprobe *__insert_uprobe(struct uprobe *uprobe)
438 {
439         struct rb_node **p = &uprobes_tree.rb_node;
440         struct rb_node *parent = NULL;
441         struct uprobe *u;
442         int match;
443
444         while (*p) {
445                 parent = *p;
446                 u = rb_entry(parent, struct uprobe, rb_node);
447                 match = match_uprobe(uprobe, u);
448                 if (!match)
449                         return get_uprobe(u);
450
451                 if (match < 0)
452                         p = &parent->rb_left;
453                 else
454                         p = &parent->rb_right;
455
456         }
457
458         u = NULL;
459         rb_link_node(&uprobe->rb_node, parent, p);
460         rb_insert_color(&uprobe->rb_node, &uprobes_tree);
461         /* get access + creation ref */
462         atomic_set(&uprobe->ref, 2);
463
464         return u;
465 }
466
467 /*
468  * Acquire uprobes_treelock.
469  * Matching uprobe already exists in rbtree;
470  *      increment (access refcount) and return the matching uprobe.
471  *
472  * No matching uprobe; insert the uprobe in rb_tree;
473  *      get a double refcount (access + creation) and return NULL.
474  */
475 static struct uprobe *insert_uprobe(struct uprobe *uprobe)
476 {
477         struct uprobe *u;
478
479         spin_lock(&uprobes_treelock);
480         u = __insert_uprobe(uprobe);
481         spin_unlock(&uprobes_treelock);
482
483         return u;
484 }
485
486 static struct uprobe *alloc_uprobe(struct inode *inode, loff_t offset)
487 {
488         struct uprobe *uprobe, *cur_uprobe;
489
490         uprobe = kzalloc(sizeof(struct uprobe), GFP_KERNEL);
491         if (!uprobe)
492                 return NULL;
493
494         uprobe->inode = igrab(inode);
495         uprobe->offset = offset;
496         init_rwsem(&uprobe->register_rwsem);
497         init_rwsem(&uprobe->consumer_rwsem);
498
499         /* add to uprobes_tree, sorted on inode:offset */
500         cur_uprobe = insert_uprobe(uprobe);
501         /* a uprobe exists for this inode:offset combination */
502         if (cur_uprobe) {
503                 kfree(uprobe);
504                 uprobe = cur_uprobe;
505                 iput(inode);
506         }
507
508         return uprobe;
509 }
510
511 static void consumer_add(struct uprobe *uprobe, struct uprobe_consumer *uc)
512 {
513         down_write(&uprobe->consumer_rwsem);
514         uc->next = uprobe->consumers;
515         uprobe->consumers = uc;
516         up_write(&uprobe->consumer_rwsem);
517 }
518
519 /*
520  * For uprobe @uprobe, delete the consumer @uc.
521  * Return true if the @uc is deleted successfully
522  * or return false.
523  */
524 static bool consumer_del(struct uprobe *uprobe, struct uprobe_consumer *uc)
525 {
526         struct uprobe_consumer **con;
527         bool ret = false;
528
529         down_write(&uprobe->consumer_rwsem);
530         for (con = &uprobe->consumers; *con; con = &(*con)->next) {
531                 if (*con == uc) {
532                         *con = uc->next;
533                         ret = true;
534                         break;
535                 }
536         }
537         up_write(&uprobe->consumer_rwsem);
538
539         return ret;
540 }
541
542 static int __copy_insn(struct address_space *mapping, struct file *filp,
543                         void *insn, int nbytes, loff_t offset)
544 {
545         struct page *page;
546         /*
547          * Ensure that the page that has the original instruction is populated
548          * and in page-cache. If ->readpage == NULL it must be shmem_mapping(),
549          * see uprobe_register().
550          */
551         if (mapping->a_ops->readpage)
552                 page = read_mapping_page(mapping, offset >> PAGE_SHIFT, filp);
553         else
554                 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
555         if (IS_ERR(page))
556                 return PTR_ERR(page);
557
558         copy_from_page(page, offset, insn, nbytes);
559         put_page(page);
560
561         return 0;
562 }
563
564 static int copy_insn(struct uprobe *uprobe, struct file *filp)
565 {
566         struct address_space *mapping = uprobe->inode->i_mapping;
567         loff_t offs = uprobe->offset;
568         void *insn = &uprobe->arch.insn;
569         int size = sizeof(uprobe->arch.insn);
570         int len, err = -EIO;
571
572         /* Copy only available bytes, -EIO if nothing was read */
573         do {
574                 if (offs >= i_size_read(uprobe->inode))
575                         break;
576
577                 len = min_t(int, size, PAGE_SIZE - (offs & ~PAGE_MASK));
578                 err = __copy_insn(mapping, filp, insn, len, offs);
579                 if (err)
580                         break;
581
582                 insn += len;
583                 offs += len;
584                 size -= len;
585         } while (size);
586
587         return err;
588 }
589
590 static int prepare_uprobe(struct uprobe *uprobe, struct file *file,
591                                 struct mm_struct *mm, unsigned long vaddr)
592 {
593         int ret = 0;
594
595         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
596                 return ret;
597
598         /* TODO: move this into _register, until then we abuse this sem. */
599         down_write(&uprobe->consumer_rwsem);
600         if (test_bit(UPROBE_COPY_INSN, &uprobe->flags))
601                 goto out;
602
603         ret = copy_insn(uprobe, file);
604         if (ret)
605                 goto out;
606
607         ret = -ENOTSUPP;
608         if (is_trap_insn((uprobe_opcode_t *)&uprobe->arch.insn))
609                 goto out;
610
611         ret = arch_uprobe_analyze_insn(&uprobe->arch, mm, vaddr);
612         if (ret)
613                 goto out;
614
615         smp_wmb(); /* pairs with the smp_rmb() in handle_swbp() */
616         set_bit(UPROBE_COPY_INSN, &uprobe->flags);
617
618  out:
619         up_write(&uprobe->consumer_rwsem);
620
621         return ret;
622 }
623
624 static inline bool consumer_filter(struct uprobe_consumer *uc,
625                                    enum uprobe_filter_ctx ctx, struct mm_struct *mm)
626 {
627         return !uc->filter || uc->filter(uc, ctx, mm);
628 }
629
630 static bool filter_chain(struct uprobe *uprobe,
631                          enum uprobe_filter_ctx ctx, struct mm_struct *mm)
632 {
633         struct uprobe_consumer *uc;
634         bool ret = false;
635
636         down_read(&uprobe->consumer_rwsem);
637         for (uc = uprobe->consumers; uc; uc = uc->next) {
638                 ret = consumer_filter(uc, ctx, mm);
639                 if (ret)
640                         break;
641         }
642         up_read(&uprobe->consumer_rwsem);
643
644         return ret;
645 }
646
647 static int
648 install_breakpoint(struct uprobe *uprobe, struct mm_struct *mm,
649                         struct vm_area_struct *vma, unsigned long vaddr)
650 {
651         bool first_uprobe;
652         int ret;
653
654         ret = prepare_uprobe(uprobe, vma->vm_file, mm, vaddr);
655         if (ret)
656                 return ret;
657
658         /*
659          * set MMF_HAS_UPROBES in advance for uprobe_pre_sstep_notifier(),
660          * the task can hit this breakpoint right after __replace_page().
661          */
662         first_uprobe = !test_bit(MMF_HAS_UPROBES, &mm->flags);
663         if (first_uprobe)
664                 set_bit(MMF_HAS_UPROBES, &mm->flags);
665
666         ret = set_swbp(&uprobe->arch, mm, vaddr);
667         if (!ret)
668                 clear_bit(MMF_RECALC_UPROBES, &mm->flags);
669         else if (first_uprobe)
670                 clear_bit(MMF_HAS_UPROBES, &mm->flags);
671
672         return ret;
673 }
674
675 static int
676 remove_breakpoint(struct uprobe *uprobe, struct mm_struct *mm, unsigned long vaddr)
677 {
678         set_bit(MMF_RECALC_UPROBES, &mm->flags);
679         return set_orig_insn(&uprobe->arch, mm, vaddr);
680 }
681
682 static inline bool uprobe_is_active(struct uprobe *uprobe)
683 {
684         return !RB_EMPTY_NODE(&uprobe->rb_node);
685 }
686 /*
687  * There could be threads that have already hit the breakpoint. They
688  * will recheck the current insn and restart if find_uprobe() fails.
689  * See find_active_uprobe().
690  */
691 static void delete_uprobe(struct uprobe *uprobe)
692 {
693         if (WARN_ON(!uprobe_is_active(uprobe)))
694                 return;
695
696         spin_lock(&uprobes_treelock);
697         rb_erase(&uprobe->rb_node, &uprobes_tree);
698         spin_unlock(&uprobes_treelock);
699         RB_CLEAR_NODE(&uprobe->rb_node); /* for uprobe_is_active() */
700         iput(uprobe->inode);
701         put_uprobe(uprobe);
702 }
703
704 struct map_info {
705         struct map_info *next;
706         struct mm_struct *mm;
707         unsigned long vaddr;
708 };
709
710 static inline struct map_info *free_map_info(struct map_info *info)
711 {
712         struct map_info *next = info->next;
713         kfree(info);
714         return next;
715 }
716
717 static struct map_info *
718 build_map_info(struct address_space *mapping, loff_t offset, bool is_register)
719 {
720         unsigned long pgoff = offset >> PAGE_SHIFT;
721         struct vm_area_struct *vma;
722         struct map_info *curr = NULL;
723         struct map_info *prev = NULL;
724         struct map_info *info;
725         int more = 0;
726
727  again:
728         i_mmap_lock_read(mapping);
729         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
730                 if (!valid_vma(vma, is_register))
731                         continue;
732
733                 if (!prev && !more) {
734                         /*
735                          * Needs GFP_NOWAIT to avoid i_mmap_rwsem recursion through
736                          * reclaim. This is optimistic, no harm done if it fails.
737                          */
738                         prev = kmalloc(sizeof(struct map_info),
739                                         GFP_NOWAIT | __GFP_NOMEMALLOC | __GFP_NOWARN);
740                         if (prev)
741                                 prev->next = NULL;
742                 }
743                 if (!prev) {
744                         more++;
745                         continue;
746                 }
747
748                 if (!mmget_not_zero(vma->vm_mm))
749                         continue;
750
751                 info = prev;
752                 prev = prev->next;
753                 info->next = curr;
754                 curr = info;
755
756                 info->mm = vma->vm_mm;
757                 info->vaddr = offset_to_vaddr(vma, offset);
758         }
759         i_mmap_unlock_read(mapping);
760
761         if (!more)
762                 goto out;
763
764         prev = curr;
765         while (curr) {
766                 mmput(curr->mm);
767                 curr = curr->next;
768         }
769
770         do {
771                 info = kmalloc(sizeof(struct map_info), GFP_KERNEL);
772                 if (!info) {
773                         curr = ERR_PTR(-ENOMEM);
774                         goto out;
775                 }
776                 info->next = prev;
777                 prev = info;
778         } while (--more);
779
780         goto again;
781  out:
782         while (prev)
783                 prev = free_map_info(prev);
784         return curr;
785 }
786
787 static int
788 register_for_each_vma(struct uprobe *uprobe, struct uprobe_consumer *new)
789 {
790         bool is_register = !!new;
791         struct map_info *info;
792         int err = 0;
793
794         percpu_down_write(&dup_mmap_sem);
795         info = build_map_info(uprobe->inode->i_mapping,
796                                         uprobe->offset, is_register);
797         if (IS_ERR(info)) {
798                 err = PTR_ERR(info);
799                 goto out;
800         }
801
802         while (info) {
803                 struct mm_struct *mm = info->mm;
804                 struct vm_area_struct *vma;
805
806                 if (err && is_register)
807                         goto free;
808
809                 down_write(&mm->mmap_sem);
810                 vma = find_vma(mm, info->vaddr);
811                 if (!vma || !valid_vma(vma, is_register) ||
812                     file_inode(vma->vm_file) != uprobe->inode)
813                         goto unlock;
814
815                 if (vma->vm_start > info->vaddr ||
816                     vaddr_to_offset(vma, info->vaddr) != uprobe->offset)
817                         goto unlock;
818
819                 if (is_register) {
820                         /* consult only the "caller", new consumer. */
821                         if (consumer_filter(new,
822                                         UPROBE_FILTER_REGISTER, mm))
823                                 err = install_breakpoint(uprobe, mm, vma, info->vaddr);
824                 } else if (test_bit(MMF_HAS_UPROBES, &mm->flags)) {
825                         if (!filter_chain(uprobe,
826                                         UPROBE_FILTER_UNREGISTER, mm))
827                                 err |= remove_breakpoint(uprobe, mm, info->vaddr);
828                 }
829
830  unlock:
831                 up_write(&mm->mmap_sem);
832  free:
833                 mmput(mm);
834                 info = free_map_info(info);
835         }
836  out:
837         percpu_up_write(&dup_mmap_sem);
838         return err;
839 }
840
841 static int __uprobe_register(struct uprobe *uprobe, struct uprobe_consumer *uc)
842 {
843         consumer_add(uprobe, uc);
844         return register_for_each_vma(uprobe, uc);
845 }
846
847 static void __uprobe_unregister(struct uprobe *uprobe, struct uprobe_consumer *uc)
848 {
849         int err;
850
851         if (WARN_ON(!consumer_del(uprobe, uc)))
852                 return;
853
854         err = register_for_each_vma(uprobe, NULL);
855         /* TODO : cant unregister? schedule a worker thread */
856         if (!uprobe->consumers && !err)
857                 delete_uprobe(uprobe);
858 }
859
860 /*
861  * uprobe_register - register a probe
862  * @inode: the file in which the probe has to be placed.
863  * @offset: offset from the start of the file.
864  * @uc: information on howto handle the probe..
865  *
866  * Apart from the access refcount, uprobe_register() takes a creation
867  * refcount (thro alloc_uprobe) if and only if this @uprobe is getting
868  * inserted into the rbtree (i.e first consumer for a @inode:@offset
869  * tuple).  Creation refcount stops uprobe_unregister from freeing the
870  * @uprobe even before the register operation is complete. Creation
871  * refcount is released when the last @uc for the @uprobe
872  * unregisters.
873  *
874  * Return errno if it cannot successully install probes
875  * else return 0 (success)
876  */
877 int uprobe_register(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
878 {
879         struct uprobe *uprobe;
880         int ret;
881
882         /* Uprobe must have at least one set consumer */
883         if (!uc->handler && !uc->ret_handler)
884                 return -EINVAL;
885
886         /* copy_insn() uses read_mapping_page() or shmem_read_mapping_page() */
887         if (!inode->i_mapping->a_ops->readpage && !shmem_mapping(inode->i_mapping))
888                 return -EIO;
889         /* Racy, just to catch the obvious mistakes */
890         if (offset > i_size_read(inode))
891                 return -EINVAL;
892
893         /*
894          * This ensures that copy_from_page() and copy_to_page()
895          * can't cross page boundary.
896          */
897         if (!IS_ALIGNED(offset, UPROBE_SWBP_INSN_SIZE))
898                 return -EINVAL;
899
900  retry:
901         uprobe = alloc_uprobe(inode, offset);
902         if (!uprobe)
903                 return -ENOMEM;
904         /*
905          * We can race with uprobe_unregister()->delete_uprobe().
906          * Check uprobe_is_active() and retry if it is false.
907          */
908         down_write(&uprobe->register_rwsem);
909         ret = -EAGAIN;
910         if (likely(uprobe_is_active(uprobe))) {
911                 ret = __uprobe_register(uprobe, uc);
912                 if (ret)
913                         __uprobe_unregister(uprobe, uc);
914         }
915         up_write(&uprobe->register_rwsem);
916         put_uprobe(uprobe);
917
918         if (unlikely(ret == -EAGAIN))
919                 goto retry;
920         return ret;
921 }
922 EXPORT_SYMBOL_GPL(uprobe_register);
923
924 /*
925  * uprobe_apply - unregister a already registered probe.
926  * @inode: the file in which the probe has to be removed.
927  * @offset: offset from the start of the file.
928  * @uc: consumer which wants to add more or remove some breakpoints
929  * @add: add or remove the breakpoints
930  */
931 int uprobe_apply(struct inode *inode, loff_t offset,
932                         struct uprobe_consumer *uc, bool add)
933 {
934         struct uprobe *uprobe;
935         struct uprobe_consumer *con;
936         int ret = -ENOENT;
937
938         uprobe = find_uprobe(inode, offset);
939         if (WARN_ON(!uprobe))
940                 return ret;
941
942         down_write(&uprobe->register_rwsem);
943         for (con = uprobe->consumers; con && con != uc ; con = con->next)
944                 ;
945         if (con)
946                 ret = register_for_each_vma(uprobe, add ? uc : NULL);
947         up_write(&uprobe->register_rwsem);
948         put_uprobe(uprobe);
949
950         return ret;
951 }
952
953 /*
954  * uprobe_unregister - unregister a already registered probe.
955  * @inode: the file in which the probe has to be removed.
956  * @offset: offset from the start of the file.
957  * @uc: identify which probe if multiple probes are colocated.
958  */
959 void uprobe_unregister(struct inode *inode, loff_t offset, struct uprobe_consumer *uc)
960 {
961         struct uprobe *uprobe;
962
963         uprobe = find_uprobe(inode, offset);
964         if (WARN_ON(!uprobe))
965                 return;
966
967         down_write(&uprobe->register_rwsem);
968         __uprobe_unregister(uprobe, uc);
969         up_write(&uprobe->register_rwsem);
970         put_uprobe(uprobe);
971 }
972 EXPORT_SYMBOL_GPL(uprobe_unregister);
973
974 static int unapply_uprobe(struct uprobe *uprobe, struct mm_struct *mm)
975 {
976         struct vm_area_struct *vma;
977         int err = 0;
978
979         down_read(&mm->mmap_sem);
980         for (vma = mm->mmap; vma; vma = vma->vm_next) {
981                 unsigned long vaddr;
982                 loff_t offset;
983
984                 if (!valid_vma(vma, false) ||
985                     file_inode(vma->vm_file) != uprobe->inode)
986                         continue;
987
988                 offset = (loff_t)vma->vm_pgoff << PAGE_SHIFT;
989                 if (uprobe->offset <  offset ||
990                     uprobe->offset >= offset + vma->vm_end - vma->vm_start)
991                         continue;
992
993                 vaddr = offset_to_vaddr(vma, uprobe->offset);
994                 err |= remove_breakpoint(uprobe, mm, vaddr);
995         }
996         up_read(&mm->mmap_sem);
997
998         return err;
999 }
1000
1001 static struct rb_node *
1002 find_node_in_range(struct inode *inode, loff_t min, loff_t max)
1003 {
1004         struct rb_node *n = uprobes_tree.rb_node;
1005
1006         while (n) {
1007                 struct uprobe *u = rb_entry(n, struct uprobe, rb_node);
1008
1009                 if (inode < u->inode) {
1010                         n = n->rb_left;
1011                 } else if (inode > u->inode) {
1012                         n = n->rb_right;
1013                 } else {
1014                         if (max < u->offset)
1015                                 n = n->rb_left;
1016                         else if (min > u->offset)
1017                                 n = n->rb_right;
1018                         else
1019                                 break;
1020                 }
1021         }
1022
1023         return n;
1024 }
1025
1026 /*
1027  * For a given range in vma, build a list of probes that need to be inserted.
1028  */
1029 static void build_probe_list(struct inode *inode,
1030                                 struct vm_area_struct *vma,
1031                                 unsigned long start, unsigned long end,
1032                                 struct list_head *head)
1033 {
1034         loff_t min, max;
1035         struct rb_node *n, *t;
1036         struct uprobe *u;
1037
1038         INIT_LIST_HEAD(head);
1039         min = vaddr_to_offset(vma, start);
1040         max = min + (end - start) - 1;
1041
1042         spin_lock(&uprobes_treelock);
1043         n = find_node_in_range(inode, min, max);
1044         if (n) {
1045                 for (t = n; t; t = rb_prev(t)) {
1046                         u = rb_entry(t, struct uprobe, rb_node);
1047                         if (u->inode != inode || u->offset < min)
1048                                 break;
1049                         list_add(&u->pending_list, head);
1050                         get_uprobe(u);
1051                 }
1052                 for (t = n; (t = rb_next(t)); ) {
1053                         u = rb_entry(t, struct uprobe, rb_node);
1054                         if (u->inode != inode || u->offset > max)
1055                                 break;
1056                         list_add(&u->pending_list, head);
1057                         get_uprobe(u);
1058                 }
1059         }
1060         spin_unlock(&uprobes_treelock);
1061 }
1062
1063 /*
1064  * Called from mmap_region/vma_adjust with mm->mmap_sem acquired.
1065  *
1066  * Currently we ignore all errors and always return 0, the callers
1067  * can't handle the failure anyway.
1068  */
1069 int uprobe_mmap(struct vm_area_struct *vma)
1070 {
1071         struct list_head tmp_list;
1072         struct uprobe *uprobe, *u;
1073         struct inode *inode;
1074
1075         if (no_uprobe_events() || !valid_vma(vma, true))
1076                 return 0;
1077
1078         inode = file_inode(vma->vm_file);
1079         if (!inode)
1080                 return 0;
1081
1082         mutex_lock(uprobes_mmap_hash(inode));
1083         build_probe_list(inode, vma, vma->vm_start, vma->vm_end, &tmp_list);
1084         /*
1085          * We can race with uprobe_unregister(), this uprobe can be already
1086          * removed. But in this case filter_chain() must return false, all
1087          * consumers have gone away.
1088          */
1089         list_for_each_entry_safe(uprobe, u, &tmp_list, pending_list) {
1090                 if (!fatal_signal_pending(current) &&
1091                     filter_chain(uprobe, UPROBE_FILTER_MMAP, vma->vm_mm)) {
1092                         unsigned long vaddr = offset_to_vaddr(vma, uprobe->offset);
1093                         install_breakpoint(uprobe, vma->vm_mm, vma, vaddr);
1094                 }
1095                 put_uprobe(uprobe);
1096         }
1097         mutex_unlock(uprobes_mmap_hash(inode));
1098
1099         return 0;
1100 }
1101
1102 static bool
1103 vma_has_uprobes(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1104 {
1105         loff_t min, max;
1106         struct inode *inode;
1107         struct rb_node *n;
1108
1109         inode = file_inode(vma->vm_file);
1110
1111         min = vaddr_to_offset(vma, start);
1112         max = min + (end - start) - 1;
1113
1114         spin_lock(&uprobes_treelock);
1115         n = find_node_in_range(inode, min, max);
1116         spin_unlock(&uprobes_treelock);
1117
1118         return !!n;
1119 }
1120
1121 /*
1122  * Called in context of a munmap of a vma.
1123  */
1124 void uprobe_munmap(struct vm_area_struct *vma, unsigned long start, unsigned long end)
1125 {
1126         if (no_uprobe_events() || !valid_vma(vma, false))
1127                 return;
1128
1129         if (!atomic_read(&vma->vm_mm->mm_users)) /* called by mmput() ? */
1130                 return;
1131
1132         if (!test_bit(MMF_HAS_UPROBES, &vma->vm_mm->flags) ||
1133              test_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags))
1134                 return;
1135
1136         if (vma_has_uprobes(vma, start, end))
1137                 set_bit(MMF_RECALC_UPROBES, &vma->vm_mm->flags);
1138 }
1139
1140 /* Slot allocation for XOL */
1141 static int xol_add_vma(struct mm_struct *mm, struct xol_area *area)
1142 {
1143         struct vm_area_struct *vma;
1144         int ret;
1145
1146         if (down_write_killable(&mm->mmap_sem))
1147                 return -EINTR;
1148
1149         if (mm->uprobes_state.xol_area) {
1150                 ret = -EALREADY;
1151                 goto fail;
1152         }
1153
1154         if (!area->vaddr) {
1155                 /* Try to map as high as possible, this is only a hint. */
1156                 area->vaddr = get_unmapped_area(NULL, TASK_SIZE - PAGE_SIZE,
1157                                                 PAGE_SIZE, 0, 0);
1158                 if (area->vaddr & ~PAGE_MASK) {
1159                         ret = area->vaddr;
1160                         goto fail;
1161                 }
1162         }
1163
1164         vma = _install_special_mapping(mm, area->vaddr, PAGE_SIZE,
1165                                 VM_EXEC|VM_MAYEXEC|VM_DONTCOPY|VM_IO,
1166                                 &area->xol_mapping);
1167         if (IS_ERR(vma)) {
1168                 ret = PTR_ERR(vma);
1169                 goto fail;
1170         }
1171
1172         ret = 0;
1173         smp_wmb();      /* pairs with get_xol_area() */
1174         mm->uprobes_state.xol_area = area;
1175  fail:
1176         up_write(&mm->mmap_sem);
1177
1178         return ret;
1179 }
1180
1181 static struct xol_area *__create_xol_area(unsigned long vaddr)
1182 {
1183         struct mm_struct *mm = current->mm;
1184         uprobe_opcode_t insn = UPROBE_SWBP_INSN;
1185         struct xol_area *area;
1186
1187         area = kmalloc(sizeof(*area), GFP_KERNEL);
1188         if (unlikely(!area))
1189                 goto out;
1190
1191         area->bitmap = kzalloc(BITS_TO_LONGS(UINSNS_PER_PAGE) * sizeof(long), GFP_KERNEL);
1192         if (!area->bitmap)
1193                 goto free_area;
1194
1195         area->xol_mapping.name = "[uprobes]";
1196         area->xol_mapping.fault = NULL;
1197         area->xol_mapping.pages = area->pages;
1198         area->pages[0] = alloc_page(GFP_HIGHUSER);
1199         if (!area->pages[0])
1200                 goto free_bitmap;
1201         area->pages[1] = NULL;
1202
1203         area->vaddr = vaddr;
1204         init_waitqueue_head(&area->wq);
1205         /* Reserve the 1st slot for get_trampoline_vaddr() */
1206         set_bit(0, area->bitmap);
1207         atomic_set(&area->slot_count, 1);
1208         arch_uprobe_copy_ixol(area->pages[0], 0, &insn, UPROBE_SWBP_INSN_SIZE);
1209
1210         if (!xol_add_vma(mm, area))
1211                 return area;
1212
1213         __free_page(area->pages[0]);
1214  free_bitmap:
1215         kfree(area->bitmap);
1216  free_area:
1217         kfree(area);
1218  out:
1219         return NULL;
1220 }
1221
1222 /*
1223  * get_xol_area - Allocate process's xol_area if necessary.
1224  * This area will be used for storing instructions for execution out of line.
1225  *
1226  * Returns the allocated area or NULL.
1227  */
1228 static struct xol_area *get_xol_area(void)
1229 {
1230         struct mm_struct *mm = current->mm;
1231         struct xol_area *area;
1232
1233         if (!mm->uprobes_state.xol_area)
1234                 __create_xol_area(0);
1235
1236         area = mm->uprobes_state.xol_area;
1237         smp_read_barrier_depends();     /* pairs with wmb in xol_add_vma() */
1238         return area;
1239 }
1240
1241 /*
1242  * uprobe_clear_state - Free the area allocated for slots.
1243  */
1244 void uprobe_clear_state(struct mm_struct *mm)
1245 {
1246         struct xol_area *area = mm->uprobes_state.xol_area;
1247
1248         if (!area)
1249                 return;
1250
1251         put_page(area->pages[0]);
1252         kfree(area->bitmap);
1253         kfree(area);
1254 }
1255
1256 void uprobe_start_dup_mmap(void)
1257 {
1258         percpu_down_read(&dup_mmap_sem);
1259 }
1260
1261 void uprobe_end_dup_mmap(void)
1262 {
1263         percpu_up_read(&dup_mmap_sem);
1264 }
1265
1266 void uprobe_dup_mmap(struct mm_struct *oldmm, struct mm_struct *newmm)
1267 {
1268         if (test_bit(MMF_HAS_UPROBES, &oldmm->flags)) {
1269                 set_bit(MMF_HAS_UPROBES, &newmm->flags);
1270                 /* unconditionally, dup_mmap() skips VM_DONTCOPY vmas */
1271                 set_bit(MMF_RECALC_UPROBES, &newmm->flags);
1272         }
1273 }
1274
1275 /*
1276  *  - search for a free slot.
1277  */
1278 static unsigned long xol_take_insn_slot(struct xol_area *area)
1279 {
1280         unsigned long slot_addr;
1281         int slot_nr;
1282
1283         do {
1284                 slot_nr = find_first_zero_bit(area->bitmap, UINSNS_PER_PAGE);
1285                 if (slot_nr < UINSNS_PER_PAGE) {
1286                         if (!test_and_set_bit(slot_nr, area->bitmap))
1287                                 break;
1288
1289                         slot_nr = UINSNS_PER_PAGE;
1290                         continue;
1291                 }
1292                 wait_event(area->wq, (atomic_read(&area->slot_count) < UINSNS_PER_PAGE));
1293         } while (slot_nr >= UINSNS_PER_PAGE);
1294
1295         slot_addr = area->vaddr + (slot_nr * UPROBE_XOL_SLOT_BYTES);
1296         atomic_inc(&area->slot_count);
1297
1298         return slot_addr;
1299 }
1300
1301 /*
1302  * xol_get_insn_slot - allocate a slot for xol.
1303  * Returns the allocated slot address or 0.
1304  */
1305 static unsigned long xol_get_insn_slot(struct uprobe *uprobe)
1306 {
1307         struct xol_area *area;
1308         unsigned long xol_vaddr;
1309
1310         area = get_xol_area();
1311         if (!area)
1312                 return 0;
1313
1314         xol_vaddr = xol_take_insn_slot(area);
1315         if (unlikely(!xol_vaddr))
1316                 return 0;
1317
1318         arch_uprobe_copy_ixol(area->pages[0], xol_vaddr,
1319                               &uprobe->arch.ixol, sizeof(uprobe->arch.ixol));
1320
1321         return xol_vaddr;
1322 }
1323
1324 /*
1325  * xol_free_insn_slot - If slot was earlier allocated by
1326  * @xol_get_insn_slot(), make the slot available for
1327  * subsequent requests.
1328  */
1329 static void xol_free_insn_slot(struct task_struct *tsk)
1330 {
1331         struct xol_area *area;
1332         unsigned long vma_end;
1333         unsigned long slot_addr;
1334
1335         if (!tsk->mm || !tsk->mm->uprobes_state.xol_area || !tsk->utask)
1336                 return;
1337
1338         slot_addr = tsk->utask->xol_vaddr;
1339         if (unlikely(!slot_addr))
1340                 return;
1341
1342         area = tsk->mm->uprobes_state.xol_area;
1343         vma_end = area->vaddr + PAGE_SIZE;
1344         if (area->vaddr <= slot_addr && slot_addr < vma_end) {
1345                 unsigned long offset;
1346                 int slot_nr;
1347
1348                 offset = slot_addr - area->vaddr;
1349                 slot_nr = offset / UPROBE_XOL_SLOT_BYTES;
1350                 if (slot_nr >= UINSNS_PER_PAGE)
1351                         return;
1352
1353                 clear_bit(slot_nr, area->bitmap);
1354                 atomic_dec(&area->slot_count);
1355                 smp_mb__after_atomic(); /* pairs with prepare_to_wait() */
1356                 if (waitqueue_active(&area->wq))
1357                         wake_up(&area->wq);
1358
1359                 tsk->utask->xol_vaddr = 0;
1360         }
1361 }
1362
1363 void __weak arch_uprobe_copy_ixol(struct page *page, unsigned long vaddr,
1364                                   void *src, unsigned long len)
1365 {
1366         /* Initialize the slot */
1367         copy_to_page(page, vaddr, src, len);
1368
1369         /*
1370          * We probably need flush_icache_user_range() but it needs vma.
1371          * This should work on most of architectures by default. If
1372          * architecture needs to do something different it can define
1373          * its own version of the function.
1374          */
1375         flush_dcache_page(page);
1376 }
1377
1378 /**
1379  * uprobe_get_swbp_addr - compute address of swbp given post-swbp regs
1380  * @regs: Reflects the saved state of the task after it has hit a breakpoint
1381  * instruction.
1382  * Return the address of the breakpoint instruction.
1383  */
1384 unsigned long __weak uprobe_get_swbp_addr(struct pt_regs *regs)
1385 {
1386         return instruction_pointer(regs) - UPROBE_SWBP_INSN_SIZE;
1387 }
1388
1389 unsigned long uprobe_get_trap_addr(struct pt_regs *regs)
1390 {
1391         struct uprobe_task *utask = current->utask;
1392
1393         if (unlikely(utask && utask->active_uprobe))
1394                 return utask->vaddr;
1395
1396         return instruction_pointer(regs);
1397 }
1398
1399 static struct return_instance *free_ret_instance(struct return_instance *ri)
1400 {
1401         struct return_instance *next = ri->next;
1402         put_uprobe(ri->uprobe);
1403         kfree(ri);
1404         return next;
1405 }
1406
1407 /*
1408  * Called with no locks held.
1409  * Called in context of a exiting or a exec-ing thread.
1410  */
1411 void uprobe_free_utask(struct task_struct *t)
1412 {
1413         struct uprobe_task *utask = t->utask;
1414         struct return_instance *ri;
1415
1416         if (!utask)
1417                 return;
1418
1419         if (utask->active_uprobe)
1420                 put_uprobe(utask->active_uprobe);
1421
1422         ri = utask->return_instances;
1423         while (ri)
1424                 ri = free_ret_instance(ri);
1425
1426         xol_free_insn_slot(t);
1427         kfree(utask);
1428         t->utask = NULL;
1429 }
1430
1431 /*
1432  * Allocate a uprobe_task object for the task if if necessary.
1433  * Called when the thread hits a breakpoint.
1434  *
1435  * Returns:
1436  * - pointer to new uprobe_task on success
1437  * - NULL otherwise
1438  */
1439 static struct uprobe_task *get_utask(void)
1440 {
1441         if (!current->utask)
1442                 current->utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1443         return current->utask;
1444 }
1445
1446 static int dup_utask(struct task_struct *t, struct uprobe_task *o_utask)
1447 {
1448         struct uprobe_task *n_utask;
1449         struct return_instance **p, *o, *n;
1450
1451         n_utask = kzalloc(sizeof(struct uprobe_task), GFP_KERNEL);
1452         if (!n_utask)
1453                 return -ENOMEM;
1454         t->utask = n_utask;
1455
1456         p = &n_utask->return_instances;
1457         for (o = o_utask->return_instances; o; o = o->next) {
1458                 n = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1459                 if (!n)
1460                         return -ENOMEM;
1461
1462                 *n = *o;
1463                 get_uprobe(n->uprobe);
1464                 n->next = NULL;
1465
1466                 *p = n;
1467                 p = &n->next;
1468                 n_utask->depth++;
1469         }
1470
1471         return 0;
1472 }
1473
1474 static void uprobe_warn(struct task_struct *t, const char *msg)
1475 {
1476         pr_warn("uprobe: %s:%d failed to %s\n",
1477                         current->comm, current->pid, msg);
1478 }
1479
1480 static void dup_xol_work(struct callback_head *work)
1481 {
1482         if (current->flags & PF_EXITING)
1483                 return;
1484
1485         if (!__create_xol_area(current->utask->dup_xol_addr) &&
1486                         !fatal_signal_pending(current))
1487                 uprobe_warn(current, "dup xol area");
1488 }
1489
1490 /*
1491  * Called in context of a new clone/fork from copy_process.
1492  */
1493 void uprobe_copy_process(struct task_struct *t, unsigned long flags)
1494 {
1495         struct uprobe_task *utask = current->utask;
1496         struct mm_struct *mm = current->mm;
1497         struct xol_area *area;
1498
1499         t->utask = NULL;
1500
1501         if (!utask || !utask->return_instances)
1502                 return;
1503
1504         if (mm == t->mm && !(flags & CLONE_VFORK))
1505                 return;
1506
1507         if (dup_utask(t, utask))
1508                 return uprobe_warn(t, "dup ret instances");
1509
1510         /* The task can fork() after dup_xol_work() fails */
1511         area = mm->uprobes_state.xol_area;
1512         if (!area)
1513                 return uprobe_warn(t, "dup xol area");
1514
1515         if (mm == t->mm)
1516                 return;
1517
1518         t->utask->dup_xol_addr = area->vaddr;
1519         init_task_work(&t->utask->dup_xol_work, dup_xol_work);
1520         task_work_add(t, &t->utask->dup_xol_work, true);
1521 }
1522
1523 /*
1524  * Current area->vaddr notion assume the trampoline address is always
1525  * equal area->vaddr.
1526  *
1527  * Returns -1 in case the xol_area is not allocated.
1528  */
1529 static unsigned long get_trampoline_vaddr(void)
1530 {
1531         struct xol_area *area;
1532         unsigned long trampoline_vaddr = -1;
1533
1534         area = current->mm->uprobes_state.xol_area;
1535         smp_read_barrier_depends();
1536         if (area)
1537                 trampoline_vaddr = area->vaddr;
1538
1539         return trampoline_vaddr;
1540 }
1541
1542 static void cleanup_return_instances(struct uprobe_task *utask, bool chained,
1543                                         struct pt_regs *regs)
1544 {
1545         struct return_instance *ri = utask->return_instances;
1546         enum rp_check ctx = chained ? RP_CHECK_CHAIN_CALL : RP_CHECK_CALL;
1547
1548         while (ri && !arch_uretprobe_is_alive(ri, ctx, regs)) {
1549                 ri = free_ret_instance(ri);
1550                 utask->depth--;
1551         }
1552         utask->return_instances = ri;
1553 }
1554
1555 static void prepare_uretprobe(struct uprobe *uprobe, struct pt_regs *regs)
1556 {
1557         struct return_instance *ri;
1558         struct uprobe_task *utask;
1559         unsigned long orig_ret_vaddr, trampoline_vaddr;
1560         bool chained;
1561
1562         if (!get_xol_area())
1563                 return;
1564
1565         utask = get_utask();
1566         if (!utask)
1567                 return;
1568
1569         if (utask->depth >= MAX_URETPROBE_DEPTH) {
1570                 printk_ratelimited(KERN_INFO "uprobe: omit uretprobe due to"
1571                                 " nestedness limit pid/tgid=%d/%d\n",
1572                                 current->pid, current->tgid);
1573                 return;
1574         }
1575
1576         ri = kmalloc(sizeof(struct return_instance), GFP_KERNEL);
1577         if (!ri)
1578                 return;
1579
1580         trampoline_vaddr = get_trampoline_vaddr();
1581         orig_ret_vaddr = arch_uretprobe_hijack_return_addr(trampoline_vaddr, regs);
1582         if (orig_ret_vaddr == -1)
1583                 goto fail;
1584
1585         /* drop the entries invalidated by longjmp() */
1586         chained = (orig_ret_vaddr == trampoline_vaddr);
1587         cleanup_return_instances(utask, chained, regs);
1588
1589         /*
1590          * We don't want to keep trampoline address in stack, rather keep the
1591          * original return address of first caller thru all the consequent
1592          * instances. This also makes breakpoint unwrapping easier.
1593          */
1594         if (chained) {
1595                 if (!utask->return_instances) {
1596                         /*
1597                          * This situation is not possible. Likely we have an
1598                          * attack from user-space.
1599                          */
1600                         uprobe_warn(current, "handle tail call");
1601                         goto fail;
1602                 }
1603                 orig_ret_vaddr = utask->return_instances->orig_ret_vaddr;
1604         }
1605
1606         ri->uprobe = get_uprobe(uprobe);
1607         ri->func = instruction_pointer(regs);
1608         ri->stack = user_stack_pointer(regs);
1609         ri->orig_ret_vaddr = orig_ret_vaddr;
1610         ri->chained = chained;
1611
1612         utask->depth++;
1613         ri->next = utask->return_instances;
1614         utask->return_instances = ri;
1615
1616         return;
1617  fail:
1618         kfree(ri);
1619 }
1620
1621 /* Prepare to single-step probed instruction out of line. */
1622 static int
1623 pre_ssout(struct uprobe *uprobe, struct pt_regs *regs, unsigned long bp_vaddr)
1624 {
1625         struct uprobe_task *utask;
1626         unsigned long xol_vaddr;
1627         int err;
1628
1629         utask = get_utask();
1630         if (!utask)
1631                 return -ENOMEM;
1632
1633         xol_vaddr = xol_get_insn_slot(uprobe);
1634         if (!xol_vaddr)
1635                 return -ENOMEM;
1636
1637         utask->xol_vaddr = xol_vaddr;
1638         utask->vaddr = bp_vaddr;
1639
1640         err = arch_uprobe_pre_xol(&uprobe->arch, regs);
1641         if (unlikely(err)) {
1642                 xol_free_insn_slot(current);
1643                 return err;
1644         }
1645
1646         utask->active_uprobe = uprobe;
1647         utask->state = UTASK_SSTEP;
1648         return 0;
1649 }
1650
1651 /*
1652  * If we are singlestepping, then ensure this thread is not connected to
1653  * non-fatal signals until completion of singlestep.  When xol insn itself
1654  * triggers the signal,  restart the original insn even if the task is
1655  * already SIGKILL'ed (since coredump should report the correct ip).  This
1656  * is even more important if the task has a handler for SIGSEGV/etc, The
1657  * _same_ instruction should be repeated again after return from the signal
1658  * handler, and SSTEP can never finish in this case.
1659  */
1660 bool uprobe_deny_signal(void)
1661 {
1662         struct task_struct *t = current;
1663         struct uprobe_task *utask = t->utask;
1664
1665         if (likely(!utask || !utask->active_uprobe))
1666                 return false;
1667
1668         WARN_ON_ONCE(utask->state != UTASK_SSTEP);
1669
1670         if (signal_pending(t)) {
1671                 spin_lock_irq(&t->sighand->siglock);
1672                 clear_tsk_thread_flag(t, TIF_SIGPENDING);
1673                 spin_unlock_irq(&t->sighand->siglock);
1674
1675                 if (__fatal_signal_pending(t) || arch_uprobe_xol_was_trapped(t)) {
1676                         utask->state = UTASK_SSTEP_TRAPPED;
1677                         set_tsk_thread_flag(t, TIF_UPROBE);
1678                 }
1679         }
1680
1681         return true;
1682 }
1683
1684 static void mmf_recalc_uprobes(struct mm_struct *mm)
1685 {
1686         struct vm_area_struct *vma;
1687
1688         for (vma = mm->mmap; vma; vma = vma->vm_next) {
1689                 if (!valid_vma(vma, false))
1690                         continue;
1691                 /*
1692                  * This is not strictly accurate, we can race with
1693                  * uprobe_unregister() and see the already removed
1694                  * uprobe if delete_uprobe() was not yet called.
1695                  * Or this uprobe can be filtered out.
1696                  */
1697                 if (vma_has_uprobes(vma, vma->vm_start, vma->vm_end))
1698                         return;
1699         }
1700
1701         clear_bit(MMF_HAS_UPROBES, &mm->flags);
1702 }
1703
1704 static int is_trap_at_addr(struct mm_struct *mm, unsigned long vaddr)
1705 {
1706         struct page *page;
1707         uprobe_opcode_t opcode;
1708         int result;
1709
1710         if (WARN_ON_ONCE(!IS_ALIGNED(vaddr, UPROBE_SWBP_INSN_SIZE)))
1711                 return -EINVAL;
1712
1713         pagefault_disable();
1714         result = __get_user(opcode, (uprobe_opcode_t __user *)vaddr);
1715         pagefault_enable();
1716
1717         if (likely(result == 0))
1718                 goto out;
1719
1720         /*
1721          * The NULL 'tsk' here ensures that any faults that occur here
1722          * will not be accounted to the task.  'mm' *is* current->mm,
1723          * but we treat this as a 'remote' access since it is
1724          * essentially a kernel access to the memory.
1725          */
1726         result = get_user_pages_remote(NULL, mm, vaddr, 1, FOLL_FORCE, &page,
1727                         NULL, NULL);
1728         if (result < 0)
1729                 return result;
1730
1731         copy_from_page(page, vaddr, &opcode, UPROBE_SWBP_INSN_SIZE);
1732         put_page(page);
1733  out:
1734         /* This needs to return true for any variant of the trap insn */
1735         return is_trap_insn(&opcode);
1736 }
1737
1738 static struct uprobe *find_active_uprobe(unsigned long bp_vaddr, int *is_swbp)
1739 {
1740         struct mm_struct *mm = current->mm;
1741         struct uprobe *uprobe = NULL;
1742         struct vm_area_struct *vma;
1743
1744         down_read(&mm->mmap_sem);
1745         vma = find_vma(mm, bp_vaddr);
1746         if (vma && vma->vm_start <= bp_vaddr) {
1747                 if (valid_vma(vma, false)) {
1748                         struct inode *inode = file_inode(vma->vm_file);
1749                         loff_t offset = vaddr_to_offset(vma, bp_vaddr);
1750
1751                         uprobe = find_uprobe(inode, offset);
1752                 }
1753
1754                 if (!uprobe)
1755                         *is_swbp = is_trap_at_addr(mm, bp_vaddr);
1756         } else {
1757                 *is_swbp = -EFAULT;
1758         }
1759
1760         if (!uprobe && test_and_clear_bit(MMF_RECALC_UPROBES, &mm->flags))
1761                 mmf_recalc_uprobes(mm);
1762         up_read(&mm->mmap_sem);
1763
1764         return uprobe;
1765 }
1766
1767 static void handler_chain(struct uprobe *uprobe, struct pt_regs *regs)
1768 {
1769         struct uprobe_consumer *uc;
1770         int remove = UPROBE_HANDLER_REMOVE;
1771         bool need_prep = false; /* prepare return uprobe, when needed */
1772
1773         down_read(&uprobe->register_rwsem);
1774         for (uc = uprobe->consumers; uc; uc = uc->next) {
1775                 int rc = 0;
1776
1777                 if (uc->handler) {
1778                         rc = uc->handler(uc, regs);
1779                         WARN(rc & ~UPROBE_HANDLER_MASK,
1780                                 "bad rc=0x%x from %pf()\n", rc, uc->handler);
1781                 }
1782
1783                 if (uc->ret_handler)
1784                         need_prep = true;
1785
1786                 remove &= rc;
1787         }
1788
1789         if (need_prep && !remove)
1790                 prepare_uretprobe(uprobe, regs); /* put bp at return */
1791
1792         if (remove && uprobe->consumers) {
1793                 WARN_ON(!uprobe_is_active(uprobe));
1794                 unapply_uprobe(uprobe, current->mm);
1795         }
1796         up_read(&uprobe->register_rwsem);
1797 }
1798
1799 static void
1800 handle_uretprobe_chain(struct return_instance *ri, struct pt_regs *regs)
1801 {
1802         struct uprobe *uprobe = ri->uprobe;
1803         struct uprobe_consumer *uc;
1804
1805         down_read(&uprobe->register_rwsem);
1806         for (uc = uprobe->consumers; uc; uc = uc->next) {
1807                 if (uc->ret_handler)
1808                         uc->ret_handler(uc, ri->func, regs);
1809         }
1810         up_read(&uprobe->register_rwsem);
1811 }
1812
1813 static struct return_instance *find_next_ret_chain(struct return_instance *ri)
1814 {
1815         bool chained;
1816
1817         do {
1818                 chained = ri->chained;
1819                 ri = ri->next;  /* can't be NULL if chained */
1820         } while (chained);
1821
1822         return ri;
1823 }
1824
1825 static void handle_trampoline(struct pt_regs *regs)
1826 {
1827         struct uprobe_task *utask;
1828         struct return_instance *ri, *next;
1829         bool valid;
1830
1831         utask = current->utask;
1832         if (!utask)
1833                 goto sigill;
1834
1835         ri = utask->return_instances;
1836         if (!ri)
1837                 goto sigill;
1838
1839         do {
1840                 /*
1841                  * We should throw out the frames invalidated by longjmp().
1842                  * If this chain is valid, then the next one should be alive
1843                  * or NULL; the latter case means that nobody but ri->func
1844                  * could hit this trampoline on return. TODO: sigaltstack().
1845                  */
1846                 next = find_next_ret_chain(ri);
1847                 valid = !next || arch_uretprobe_is_alive(next, RP_CHECK_RET, regs);
1848
1849                 instruction_pointer_set(regs, ri->orig_ret_vaddr);
1850                 do {
1851                         if (valid)
1852                                 handle_uretprobe_chain(ri, regs);
1853                         ri = free_ret_instance(ri);
1854                         utask->depth--;
1855                 } while (ri != next);
1856         } while (!valid);
1857
1858         utask->return_instances = ri;
1859         return;
1860
1861  sigill:
1862         uprobe_warn(current, "handle uretprobe, sending SIGILL.");
1863         force_sig(SIGILL, current);
1864
1865 }
1866
1867 bool __weak arch_uprobe_ignore(struct arch_uprobe *aup, struct pt_regs *regs)
1868 {
1869         return false;
1870 }
1871
1872 bool __weak arch_uretprobe_is_alive(struct return_instance *ret, enum rp_check ctx,
1873                                         struct pt_regs *regs)
1874 {
1875         return true;
1876 }
1877
1878 /*
1879  * Run handler and ask thread to singlestep.
1880  * Ensure all non-fatal signals cannot interrupt thread while it singlesteps.
1881  */
1882 static void handle_swbp(struct pt_regs *regs)
1883 {
1884         struct uprobe *uprobe;
1885         unsigned long bp_vaddr;
1886         int uninitialized_var(is_swbp);
1887
1888         bp_vaddr = uprobe_get_swbp_addr(regs);
1889         if (bp_vaddr == get_trampoline_vaddr())
1890                 return handle_trampoline(regs);
1891
1892         uprobe = find_active_uprobe(bp_vaddr, &is_swbp);
1893         if (!uprobe) {
1894                 if (is_swbp > 0) {
1895                         /* No matching uprobe; signal SIGTRAP. */
1896                         force_sig(SIGTRAP, current);
1897                 } else {
1898                         /*
1899                          * Either we raced with uprobe_unregister() or we can't
1900                          * access this memory. The latter is only possible if
1901                          * another thread plays with our ->mm. In both cases
1902                          * we can simply restart. If this vma was unmapped we
1903                          * can pretend this insn was not executed yet and get
1904                          * the (correct) SIGSEGV after restart.
1905                          */
1906                         instruction_pointer_set(regs, bp_vaddr);
1907                 }
1908                 return;
1909         }
1910
1911         /* change it in advance for ->handler() and restart */
1912         instruction_pointer_set(regs, bp_vaddr);
1913
1914         /*
1915          * TODO: move copy_insn/etc into _register and remove this hack.
1916          * After we hit the bp, _unregister + _register can install the
1917          * new and not-yet-analyzed uprobe at the same address, restart.
1918          */
1919         if (unlikely(!test_bit(UPROBE_COPY_INSN, &uprobe->flags)))
1920                 goto out;
1921
1922         /*
1923          * Pairs with the smp_wmb() in prepare_uprobe().
1924          *
1925          * Guarantees that if we see the UPROBE_COPY_INSN bit set, then
1926          * we must also see the stores to &uprobe->arch performed by the
1927          * prepare_uprobe() call.
1928          */
1929         smp_rmb();
1930
1931         /* Tracing handlers use ->utask to communicate with fetch methods */
1932         if (!get_utask())
1933                 goto out;
1934
1935         if (arch_uprobe_ignore(&uprobe->arch, regs))
1936                 goto out;
1937
1938         handler_chain(uprobe, regs);
1939
1940         if (arch_uprobe_skip_sstep(&uprobe->arch, regs))
1941                 goto out;
1942
1943         if (!pre_ssout(uprobe, regs, bp_vaddr))
1944                 return;
1945
1946         /* arch_uprobe_skip_sstep() succeeded, or restart if can't singlestep */
1947 out:
1948         put_uprobe(uprobe);
1949 }
1950
1951 /*
1952  * Perform required fix-ups and disable singlestep.
1953  * Allow pending signals to take effect.
1954  */
1955 static void handle_singlestep(struct uprobe_task *utask, struct pt_regs *regs)
1956 {
1957         struct uprobe *uprobe;
1958         int err = 0;
1959
1960         uprobe = utask->active_uprobe;
1961         if (utask->state == UTASK_SSTEP_ACK)
1962                 err = arch_uprobe_post_xol(&uprobe->arch, regs);
1963         else if (utask->state == UTASK_SSTEP_TRAPPED)
1964                 arch_uprobe_abort_xol(&uprobe->arch, regs);
1965         else
1966                 WARN_ON_ONCE(1);
1967
1968         put_uprobe(uprobe);
1969         utask->active_uprobe = NULL;
1970         utask->state = UTASK_RUNNING;
1971         xol_free_insn_slot(current);
1972
1973         spin_lock_irq(&current->sighand->siglock);
1974         recalc_sigpending(); /* see uprobe_deny_signal() */
1975         spin_unlock_irq(&current->sighand->siglock);
1976
1977         if (unlikely(err)) {
1978                 uprobe_warn(current, "execute the probed insn, sending SIGILL.");
1979                 force_sig(SIGILL, current);
1980         }
1981 }
1982
1983 /*
1984  * On breakpoint hit, breakpoint notifier sets the TIF_UPROBE flag and
1985  * allows the thread to return from interrupt. After that handle_swbp()
1986  * sets utask->active_uprobe.
1987  *
1988  * On singlestep exception, singlestep notifier sets the TIF_UPROBE flag
1989  * and allows the thread to return from interrupt.
1990  *
1991  * While returning to userspace, thread notices the TIF_UPROBE flag and calls
1992  * uprobe_notify_resume().
1993  */
1994 void uprobe_notify_resume(struct pt_regs *regs)
1995 {
1996         struct uprobe_task *utask;
1997
1998         clear_thread_flag(TIF_UPROBE);
1999
2000         utask = current->utask;
2001         if (utask && utask->active_uprobe)
2002                 handle_singlestep(utask, regs);
2003         else
2004                 handle_swbp(regs);
2005 }
2006
2007 /*
2008  * uprobe_pre_sstep_notifier gets called from interrupt context as part of
2009  * notifier mechanism. Set TIF_UPROBE flag and indicate breakpoint hit.
2010  */
2011 int uprobe_pre_sstep_notifier(struct pt_regs *regs)
2012 {
2013         if (!current->mm)
2014                 return 0;
2015
2016         if (!test_bit(MMF_HAS_UPROBES, &current->mm->flags) &&
2017             (!current->utask || !current->utask->return_instances))
2018                 return 0;
2019
2020         set_thread_flag(TIF_UPROBE);
2021         return 1;
2022 }
2023
2024 /*
2025  * uprobe_post_sstep_notifier gets called in interrupt context as part of notifier
2026  * mechanism. Set TIF_UPROBE flag and indicate completion of singlestep.
2027  */
2028 int uprobe_post_sstep_notifier(struct pt_regs *regs)
2029 {
2030         struct uprobe_task *utask = current->utask;
2031
2032         if (!current->mm || !utask || !utask->active_uprobe)
2033                 /* task is currently not uprobed */
2034                 return 0;
2035
2036         utask->state = UTASK_SSTEP_ACK;
2037         set_thread_flag(TIF_UPROBE);
2038         return 1;
2039 }
2040
2041 static struct notifier_block uprobe_exception_nb = {
2042         .notifier_call          = arch_uprobe_exception_notify,
2043         .priority               = INT_MAX-1,    /* notified after kprobes, kgdb */
2044 };
2045
2046 static int __init init_uprobes(void)
2047 {
2048         int i;
2049
2050         for (i = 0; i < UPROBES_HASH_SZ; i++)
2051                 mutex_init(&uprobes_mmap_mutex[i]);
2052
2053         if (percpu_init_rwsem(&dup_mmap_sem))
2054                 return -ENOMEM;
2055
2056         return register_die_notifier(&uprobe_exception_nb);
2057 }
2058 __initcall(init_uprobes);