GNU Linux-libre 4.14.290-gnu1
[releases.git] / kernel / futex.c
1 /*
2  *  Fast Userspace Mutexes (which I call "Futexes!").
3  *  (C) Rusty Russell, IBM 2002
4  *
5  *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6  *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7  *
8  *  Removed page pinning, fix privately mapped COW pages and other cleanups
9  *  (C) Copyright 2003, 2004 Jamie Lokier
10  *
11  *  Robust futex support started by Ingo Molnar
12  *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13  *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14  *
15  *  PI-futex support started by Ingo Molnar and Thomas Gleixner
16  *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17  *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18  *
19  *  PRIVATE futexes by Eric Dumazet
20  *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21  *
22  *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23  *  Copyright (C) IBM Corporation, 2009
24  *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
25  *
26  *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27  *  enough at me, Linus for the original (flawed) idea, Matthew
28  *  Kirkwood for proof-of-concept implementation.
29  *
30  *  "The futexes are also cursed."
31  *  "But they come in a choice of three flavours!"
32  *
33  *  This program is free software; you can redistribute it and/or modify
34  *  it under the terms of the GNU General Public License as published by
35  *  the Free Software Foundation; either version 2 of the License, or
36  *  (at your option) any later version.
37  *
38  *  This program is distributed in the hope that it will be useful,
39  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
40  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
41  *  GNU General Public License for more details.
42  *
43  *  You should have received a copy of the GNU General Public License
44  *  along with this program; if not, write to the Free Software
45  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
46  */
47 #include <linux/compat.h>
48 #include <linux/slab.h>
49 #include <linux/poll.h>
50 #include <linux/fs.h>
51 #include <linux/file.h>
52 #include <linux/jhash.h>
53 #include <linux/init.h>
54 #include <linux/futex.h>
55 #include <linux/mount.h>
56 #include <linux/pagemap.h>
57 #include <linux/syscalls.h>
58 #include <linux/signal.h>
59 #include <linux/export.h>
60 #include <linux/magic.h>
61 #include <linux/pid.h>
62 #include <linux/nsproxy.h>
63 #include <linux/ptrace.h>
64 #include <linux/sched/rt.h>
65 #include <linux/sched/wake_q.h>
66 #include <linux/sched/mm.h>
67 #include <linux/hugetlb.h>
68 #include <linux/freezer.h>
69 #include <linux/bootmem.h>
70 #include <linux/fault-inject.h>
71
72 #include <asm/futex.h>
73
74 #include "locking/rtmutex_common.h"
75
76 /*
77  * READ this before attempting to hack on futexes!
78  *
79  * Basic futex operation and ordering guarantees
80  * =============================================
81  *
82  * The waiter reads the futex value in user space and calls
83  * futex_wait(). This function computes the hash bucket and acquires
84  * the hash bucket lock. After that it reads the futex user space value
85  * again and verifies that the data has not changed. If it has not changed
86  * it enqueues itself into the hash bucket, releases the hash bucket lock
87  * and schedules.
88  *
89  * The waker side modifies the user space value of the futex and calls
90  * futex_wake(). This function computes the hash bucket and acquires the
91  * hash bucket lock. Then it looks for waiters on that futex in the hash
92  * bucket and wakes them.
93  *
94  * In futex wake up scenarios where no tasks are blocked on a futex, taking
95  * the hb spinlock can be avoided and simply return. In order for this
96  * optimization to work, ordering guarantees must exist so that the waiter
97  * being added to the list is acknowledged when the list is concurrently being
98  * checked by the waker, avoiding scenarios like the following:
99  *
100  * CPU 0                               CPU 1
101  * val = *futex;
102  * sys_futex(WAIT, futex, val);
103  *   futex_wait(futex, val);
104  *   uval = *futex;
105  *                                     *futex = newval;
106  *                                     sys_futex(WAKE, futex);
107  *                                       futex_wake(futex);
108  *                                       if (queue_empty())
109  *                                         return;
110  *   if (uval == val)
111  *      lock(hash_bucket(futex));
112  *      queue();
113  *     unlock(hash_bucket(futex));
114  *     schedule();
115  *
116  * This would cause the waiter on CPU 0 to wait forever because it
117  * missed the transition of the user space value from val to newval
118  * and the waker did not find the waiter in the hash bucket queue.
119  *
120  * The correct serialization ensures that a waiter either observes
121  * the changed user space value before blocking or is woken by a
122  * concurrent waker:
123  *
124  * CPU 0                                 CPU 1
125  * val = *futex;
126  * sys_futex(WAIT, futex, val);
127  *   futex_wait(futex, val);
128  *
129  *   waiters++; (a)
130  *   smp_mb(); (A) <-- paired with -.
131  *                                  |
132  *   lock(hash_bucket(futex));      |
133  *                                  |
134  *   uval = *futex;                 |
135  *                                  |        *futex = newval;
136  *                                  |        sys_futex(WAKE, futex);
137  *                                  |          futex_wake(futex);
138  *                                  |
139  *                                  `--------> smp_mb(); (B)
140  *   if (uval == val)
141  *     queue();
142  *     unlock(hash_bucket(futex));
143  *     schedule();                         if (waiters)
144  *                                           lock(hash_bucket(futex));
145  *   else                                    wake_waiters(futex);
146  *     waiters--; (b)                        unlock(hash_bucket(futex));
147  *
148  * Where (A) orders the waiters increment and the futex value read through
149  * atomic operations (see hb_waiters_inc) and where (B) orders the write
150  * to futex and the waiters read -- this is done by the barriers for both
151  * shared and private futexes in get_futex_key_refs().
152  *
153  * This yields the following case (where X:=waiters, Y:=futex):
154  *
155  *      X = Y = 0
156  *
157  *      w[X]=1          w[Y]=1
158  *      MB              MB
159  *      r[Y]=y          r[X]=x
160  *
161  * Which guarantees that x==0 && y==0 is impossible; which translates back into
162  * the guarantee that we cannot both miss the futex variable change and the
163  * enqueue.
164  *
165  * Note that a new waiter is accounted for in (a) even when it is possible that
166  * the wait call can return error, in which case we backtrack from it in (b).
167  * Refer to the comment in queue_lock().
168  *
169  * Similarly, in order to account for waiters being requeued on another
170  * address we always increment the waiters for the destination bucket before
171  * acquiring the lock. It then decrements them again  after releasing it -
172  * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173  * will do the additional required waiter count housekeeping. This is done for
174  * double_lock_hb() and double_unlock_hb(), respectively.
175  */
176
177 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178 #define futex_cmpxchg_enabled 1
179 #else
180 static int  __read_mostly futex_cmpxchg_enabled;
181 #endif
182
183 /*
184  * Futex flags used to encode options to functions and preserve them across
185  * restarts.
186  */
187 #ifdef CONFIG_MMU
188 # define FLAGS_SHARED           0x01
189 #else
190 /*
191  * NOMMU does not have per process address space. Let the compiler optimize
192  * code away.
193  */
194 # define FLAGS_SHARED           0x00
195 #endif
196 #define FLAGS_CLOCKRT           0x02
197 #define FLAGS_HAS_TIMEOUT       0x04
198
199 /*
200  * Priority Inheritance state:
201  */
202 struct futex_pi_state {
203         /*
204          * list of 'owned' pi_state instances - these have to be
205          * cleaned up in do_exit() if the task exits prematurely:
206          */
207         struct list_head list;
208
209         /*
210          * The PI object:
211          */
212         struct rt_mutex pi_mutex;
213
214         struct task_struct *owner;
215         atomic_t refcount;
216
217         union futex_key key;
218 } __randomize_layout;
219
220 /**
221  * struct futex_q - The hashed futex queue entry, one per waiting task
222  * @list:               priority-sorted list of tasks waiting on this futex
223  * @task:               the task waiting on the futex
224  * @lock_ptr:           the hash bucket lock
225  * @key:                the key the futex is hashed on
226  * @pi_state:           optional priority inheritance state
227  * @rt_waiter:          rt_waiter storage for use with requeue_pi
228  * @requeue_pi_key:     the requeue_pi target futex key
229  * @bitset:             bitset for the optional bitmasked wakeup
230  *
231  * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
232  * we can wake only the relevant ones (hashed queues may be shared).
233  *
234  * A futex_q has a woken state, just like tasks have TASK_RUNNING.
235  * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
236  * The order of wakeup is always to make the first condition true, then
237  * the second.
238  *
239  * PI futexes are typically woken before they are removed from the hash list via
240  * the rt_mutex code. See unqueue_me_pi().
241  */
242 struct futex_q {
243         struct plist_node list;
244
245         struct task_struct *task;
246         spinlock_t *lock_ptr;
247         union futex_key key;
248         struct futex_pi_state *pi_state;
249         struct rt_mutex_waiter *rt_waiter;
250         union futex_key *requeue_pi_key;
251         u32 bitset;
252 } __randomize_layout;
253
254 static const struct futex_q futex_q_init = {
255         /* list gets initialized in queue_me()*/
256         .key = FUTEX_KEY_INIT,
257         .bitset = FUTEX_BITSET_MATCH_ANY
258 };
259
260 /*
261  * Hash buckets are shared by all the futex_keys that hash to the same
262  * location.  Each key may have multiple futex_q structures, one for each task
263  * waiting on a futex.
264  */
265 struct futex_hash_bucket {
266         atomic_t waiters;
267         spinlock_t lock;
268         struct plist_head chain;
269 } ____cacheline_aligned_in_smp;
270
271 /*
272  * The base of the bucket array and its size are always used together
273  * (after initialization only in hash_futex()), so ensure that they
274  * reside in the same cacheline.
275  */
276 static struct {
277         struct futex_hash_bucket *queues;
278         unsigned long            hashsize;
279 } __futex_data __read_mostly __aligned(2*sizeof(long));
280 #define futex_queues   (__futex_data.queues)
281 #define futex_hashsize (__futex_data.hashsize)
282
283
284 /*
285  * Fault injections for futexes.
286  */
287 #ifdef CONFIG_FAIL_FUTEX
288
289 static struct {
290         struct fault_attr attr;
291
292         bool ignore_private;
293 } fail_futex = {
294         .attr = FAULT_ATTR_INITIALIZER,
295         .ignore_private = false,
296 };
297
298 static int __init setup_fail_futex(char *str)
299 {
300         return setup_fault_attr(&fail_futex.attr, str);
301 }
302 __setup("fail_futex=", setup_fail_futex);
303
304 static bool should_fail_futex(bool fshared)
305 {
306         if (fail_futex.ignore_private && !fshared)
307                 return false;
308
309         return should_fail(&fail_futex.attr, 1);
310 }
311
312 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314 static int __init fail_futex_debugfs(void)
315 {
316         umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317         struct dentry *dir;
318
319         dir = fault_create_debugfs_attr("fail_futex", NULL,
320                                         &fail_futex.attr);
321         if (IS_ERR(dir))
322                 return PTR_ERR(dir);
323
324         if (!debugfs_create_bool("ignore-private", mode, dir,
325                                  &fail_futex.ignore_private)) {
326                 debugfs_remove_recursive(dir);
327                 return -ENOMEM;
328         }
329
330         return 0;
331 }
332
333 late_initcall(fail_futex_debugfs);
334
335 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337 #else
338 static inline bool should_fail_futex(bool fshared)
339 {
340         return false;
341 }
342 #endif /* CONFIG_FAIL_FUTEX */
343
344 #ifdef CONFIG_COMPAT
345 static void compat_exit_robust_list(struct task_struct *curr);
346 #else
347 static inline void compat_exit_robust_list(struct task_struct *curr) { }
348 #endif
349
350 static inline void futex_get_mm(union futex_key *key)
351 {
352         mmgrab(key->private.mm);
353         /*
354          * Ensure futex_get_mm() implies a full barrier such that
355          * get_futex_key() implies a full barrier. This is relied upon
356          * as smp_mb(); (B), see the ordering comment above.
357          */
358         smp_mb__after_atomic();
359 }
360
361 /*
362  * Reflects a new waiter being added to the waitqueue.
363  */
364 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
365 {
366 #ifdef CONFIG_SMP
367         atomic_inc(&hb->waiters);
368         /*
369          * Full barrier (A), see the ordering comment above.
370          */
371         smp_mb__after_atomic();
372 #endif
373 }
374
375 /*
376  * Reflects a waiter being removed from the waitqueue by wakeup
377  * paths.
378  */
379 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
380 {
381 #ifdef CONFIG_SMP
382         atomic_dec(&hb->waiters);
383 #endif
384 }
385
386 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
387 {
388 #ifdef CONFIG_SMP
389         return atomic_read(&hb->waiters);
390 #else
391         return 1;
392 #endif
393 }
394
395 /**
396  * hash_futex - Return the hash bucket in the global hash
397  * @key:        Pointer to the futex key for which the hash is calculated
398  *
399  * We hash on the keys returned from get_futex_key (see below) and return the
400  * corresponding hash bucket in the global hash.
401  */
402 static struct futex_hash_bucket *hash_futex(union futex_key *key)
403 {
404         u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
405                           key->both.offset);
406
407         return &futex_queues[hash & (futex_hashsize - 1)];
408 }
409
410
411 /**
412  * match_futex - Check whether two futex keys are equal
413  * @key1:       Pointer to key1
414  * @key2:       Pointer to key2
415  *
416  * Return 1 if two futex_keys are equal, 0 otherwise.
417  */
418 static inline int match_futex(union futex_key *key1, union futex_key *key2)
419 {
420         return (key1 && key2
421                 && key1->both.word == key2->both.word
422                 && key1->both.ptr == key2->both.ptr
423                 && key1->both.offset == key2->both.offset);
424 }
425
426 /*
427  * Take a reference to the resource addressed by a key.
428  * Can be called while holding spinlocks.
429  *
430  */
431 static void get_futex_key_refs(union futex_key *key)
432 {
433         if (!key->both.ptr)
434                 return;
435
436         /*
437          * On MMU less systems futexes are always "private" as there is no per
438          * process address space. We need the smp wmb nevertheless - yes,
439          * arch/blackfin has MMU less SMP ...
440          */
441         if (!IS_ENABLED(CONFIG_MMU)) {
442                 smp_mb(); /* explicit smp_mb(); (B) */
443                 return;
444         }
445
446         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
447         case FUT_OFF_INODE:
448                 smp_mb();               /* explicit smp_mb(); (B) */
449                 break;
450         case FUT_OFF_MMSHARED:
451                 futex_get_mm(key); /* implies smp_mb(); (B) */
452                 break;
453         default:
454                 /*
455                  * Private futexes do not hold reference on an inode or
456                  * mm, therefore the only purpose of calling get_futex_key_refs
457                  * is because we need the barrier for the lockless waiter check.
458                  */
459                 smp_mb(); /* explicit smp_mb(); (B) */
460         }
461 }
462
463 /*
464  * Drop a reference to the resource addressed by a key.
465  * The hash bucket spinlock must not be held. This is
466  * a no-op for private futexes, see comment in the get
467  * counterpart.
468  */
469 static void drop_futex_key_refs(union futex_key *key)
470 {
471         if (!key->both.ptr) {
472                 /* If we're here then we tried to put a key we failed to get */
473                 WARN_ON_ONCE(1);
474                 return;
475         }
476
477         if (!IS_ENABLED(CONFIG_MMU))
478                 return;
479
480         switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
481         case FUT_OFF_INODE:
482                 break;
483         case FUT_OFF_MMSHARED:
484                 mmdrop(key->private.mm);
485                 break;
486         }
487 }
488
489 /*
490  * Generate a machine wide unique identifier for this inode.
491  *
492  * This relies on u64 not wrapping in the life-time of the machine; which with
493  * 1ns resolution means almost 585 years.
494  *
495  * This further relies on the fact that a well formed program will not unmap
496  * the file while it has a (shared) futex waiting on it. This mapping will have
497  * a file reference which pins the mount and inode.
498  *
499  * If for some reason an inode gets evicted and read back in again, it will get
500  * a new sequence number and will _NOT_ match, even though it is the exact same
501  * file.
502  *
503  * It is important that match_futex() will never have a false-positive, esp.
504  * for PI futexes that can mess up the state. The above argues that false-negatives
505  * are only possible for malformed programs.
506  */
507 static u64 get_inode_sequence_number(struct inode *inode)
508 {
509         static atomic64_t i_seq;
510         u64 old;
511
512         /* Does the inode already have a sequence number? */
513         old = atomic64_read(&inode->i_sequence);
514         if (likely(old))
515                 return old;
516
517         for (;;) {
518                 u64 new = atomic64_add_return(1, &i_seq);
519                 if (WARN_ON_ONCE(!new))
520                         continue;
521
522                 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
523                 if (old)
524                         return old;
525                 return new;
526         }
527 }
528
529 /**
530  * get_futex_key() - Get parameters which are the keys for a futex
531  * @uaddr:      virtual address of the futex
532  * @fshared:    0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
533  * @key:        address where result is stored.
534  * @rw:         mapping needs to be read/write (values: VERIFY_READ,
535  *              VERIFY_WRITE)
536  *
537  * Return: a negative error code or 0
538  *
539  * The key words are stored in @key on success.
540  *
541  * For shared mappings (when @fshared), the key is:
542  *   ( inode->i_sequence, page->index, offset_within_page )
543  * [ also see get_inode_sequence_number() ]
544  *
545  * For private mappings (or when !@fshared), the key is:
546  *   ( current->mm, address, 0 )
547  *
548  * This allows (cross process, where applicable) identification of the futex
549  * without keeping the page pinned for the duration of the FUTEX_WAIT.
550  *
551  * lock_page() might sleep, the caller should not hold a spinlock.
552  */
553 static int
554 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
555 {
556         unsigned long address = (unsigned long)uaddr;
557         struct mm_struct *mm = current->mm;
558         struct page *page, *tail;
559         struct address_space *mapping;
560         int err, ro = 0;
561
562         /*
563          * The futex address must be "naturally" aligned.
564          */
565         key->both.offset = address % PAGE_SIZE;
566         if (unlikely((address % sizeof(u32)) != 0))
567                 return -EINVAL;
568         address -= key->both.offset;
569
570         if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
571                 return -EFAULT;
572
573         if (unlikely(should_fail_futex(fshared)))
574                 return -EFAULT;
575
576         /*
577          * PROCESS_PRIVATE futexes are fast.
578          * As the mm cannot disappear under us and the 'key' only needs
579          * virtual address, we dont even have to find the underlying vma.
580          * Note : We do have to check 'uaddr' is a valid user address,
581          *        but access_ok() should be faster than find_vma()
582          */
583         if (!fshared) {
584                 key->private.mm = mm;
585                 key->private.address = address;
586                 get_futex_key_refs(key);  /* implies smp_mb(); (B) */
587                 return 0;
588         }
589
590 again:
591         /* Ignore any VERIFY_READ mapping (futex common case) */
592         if (unlikely(should_fail_futex(fshared)))
593                 return -EFAULT;
594
595         err = get_user_pages_fast(address, 1, 1, &page);
596         /*
597          * If write access is not required (eg. FUTEX_WAIT), try
598          * and get read-only access.
599          */
600         if (err == -EFAULT && rw == VERIFY_READ) {
601                 err = get_user_pages_fast(address, 1, 0, &page);
602                 ro = 1;
603         }
604         if (err < 0)
605                 return err;
606         else
607                 err = 0;
608
609         /*
610          * The treatment of mapping from this point on is critical. The page
611          * lock protects many things but in this context the page lock
612          * stabilizes mapping, prevents inode freeing in the shared
613          * file-backed region case and guards against movement to swap cache.
614          *
615          * Strictly speaking the page lock is not needed in all cases being
616          * considered here and page lock forces unnecessarily serialization
617          * From this point on, mapping will be re-verified if necessary and
618          * page lock will be acquired only if it is unavoidable
619          *
620          * Mapping checks require the head page for any compound page so the
621          * head page and mapping is looked up now. For anonymous pages, it
622          * does not matter if the page splits in the future as the key is
623          * based on the address. For filesystem-backed pages, the tail is
624          * required as the index of the page determines the key. For
625          * base pages, there is no tail page and tail == page.
626          */
627         tail = page;
628         page = compound_head(page);
629         mapping = READ_ONCE(page->mapping);
630
631         /*
632          * If page->mapping is NULL, then it cannot be a PageAnon
633          * page; but it might be the ZERO_PAGE or in the gate area or
634          * in a special mapping (all cases which we are happy to fail);
635          * or it may have been a good file page when get_user_pages_fast
636          * found it, but truncated or holepunched or subjected to
637          * invalidate_complete_page2 before we got the page lock (also
638          * cases which we are happy to fail).  And we hold a reference,
639          * so refcount care in invalidate_complete_page's remove_mapping
640          * prevents drop_caches from setting mapping to NULL beneath us.
641          *
642          * The case we do have to guard against is when memory pressure made
643          * shmem_writepage move it from filecache to swapcache beneath us:
644          * an unlikely race, but we do need to retry for page->mapping.
645          */
646         if (unlikely(!mapping)) {
647                 int shmem_swizzled;
648
649                 /*
650                  * Page lock is required to identify which special case above
651                  * applies. If this is really a shmem page then the page lock
652                  * will prevent unexpected transitions.
653                  */
654                 lock_page(page);
655                 shmem_swizzled = PageSwapCache(page) || page->mapping;
656                 unlock_page(page);
657                 put_page(page);
658
659                 if (shmem_swizzled)
660                         goto again;
661
662                 return -EFAULT;
663         }
664
665         /*
666          * Private mappings are handled in a simple way.
667          *
668          * If the futex key is stored on an anonymous page, then the associated
669          * object is the mm which is implicitly pinned by the calling process.
670          *
671          * NOTE: When userspace waits on a MAP_SHARED mapping, even if
672          * it's a read-only handle, it's expected that futexes attach to
673          * the object not the particular process.
674          */
675         if (PageAnon(page)) {
676                 /*
677                  * A RO anonymous page will never change and thus doesn't make
678                  * sense for futex operations.
679                  */
680                 if (unlikely(should_fail_futex(fshared)) || ro) {
681                         err = -EFAULT;
682                         goto out;
683                 }
684
685                 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
686                 key->private.mm = mm;
687                 key->private.address = address;
688
689         } else {
690                 struct inode *inode;
691
692                 /*
693                  * The associated futex object in this case is the inode and
694                  * the page->mapping must be traversed. Ordinarily this should
695                  * be stabilised under page lock but it's not strictly
696                  * necessary in this case as we just want to pin the inode, not
697                  * update the radix tree or anything like that.
698                  *
699                  * The RCU read lock is taken as the inode is finally freed
700                  * under RCU. If the mapping still matches expectations then the
701                  * mapping->host can be safely accessed as being a valid inode.
702                  */
703                 rcu_read_lock();
704
705                 if (READ_ONCE(page->mapping) != mapping) {
706                         rcu_read_unlock();
707                         put_page(page);
708
709                         goto again;
710                 }
711
712                 inode = READ_ONCE(mapping->host);
713                 if (!inode) {
714                         rcu_read_unlock();
715                         put_page(page);
716
717                         goto again;
718                 }
719
720                 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
721                 key->shared.i_seq = get_inode_sequence_number(inode);
722                 key->shared.pgoff = page_to_pgoff(tail);
723                 rcu_read_unlock();
724         }
725
726         get_futex_key_refs(key); /* implies smp_mb(); (B) */
727
728 out:
729         put_page(page);
730         return err;
731 }
732
733 static inline void put_futex_key(union futex_key *key)
734 {
735         drop_futex_key_refs(key);
736 }
737
738 /**
739  * fault_in_user_writeable() - Fault in user address and verify RW access
740  * @uaddr:      pointer to faulting user space address
741  *
742  * Slow path to fixup the fault we just took in the atomic write
743  * access to @uaddr.
744  *
745  * We have no generic implementation of a non-destructive write to the
746  * user address. We know that we faulted in the atomic pagefault
747  * disabled section so we can as well avoid the #PF overhead by
748  * calling get_user_pages() right away.
749  */
750 static int fault_in_user_writeable(u32 __user *uaddr)
751 {
752         struct mm_struct *mm = current->mm;
753         int ret;
754
755         down_read(&mm->mmap_sem);
756         ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
757                                FAULT_FLAG_WRITE, NULL);
758         up_read(&mm->mmap_sem);
759
760         return ret < 0 ? ret : 0;
761 }
762
763 /**
764  * futex_top_waiter() - Return the highest priority waiter on a futex
765  * @hb:         the hash bucket the futex_q's reside in
766  * @key:        the futex key (to distinguish it from other futex futex_q's)
767  *
768  * Must be called with the hb lock held.
769  */
770 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
771                                         union futex_key *key)
772 {
773         struct futex_q *this;
774
775         plist_for_each_entry(this, &hb->chain, list) {
776                 if (match_futex(&this->key, key))
777                         return this;
778         }
779         return NULL;
780 }
781
782 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
783                                       u32 uval, u32 newval)
784 {
785         int ret;
786
787         pagefault_disable();
788         ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
789         pagefault_enable();
790
791         return ret;
792 }
793
794 static int get_futex_value_locked(u32 *dest, u32 __user *from)
795 {
796         int ret;
797
798         pagefault_disable();
799         ret = __get_user(*dest, from);
800         pagefault_enable();
801
802         return ret ? -EFAULT : 0;
803 }
804
805
806 /*
807  * PI code:
808  */
809 static int refill_pi_state_cache(void)
810 {
811         struct futex_pi_state *pi_state;
812
813         if (likely(current->pi_state_cache))
814                 return 0;
815
816         pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
817
818         if (!pi_state)
819                 return -ENOMEM;
820
821         INIT_LIST_HEAD(&pi_state->list);
822         /* pi_mutex gets initialized later */
823         pi_state->owner = NULL;
824         atomic_set(&pi_state->refcount, 1);
825         pi_state->key = FUTEX_KEY_INIT;
826
827         current->pi_state_cache = pi_state;
828
829         return 0;
830 }
831
832 static struct futex_pi_state *alloc_pi_state(void)
833 {
834         struct futex_pi_state *pi_state = current->pi_state_cache;
835
836         WARN_ON(!pi_state);
837         current->pi_state_cache = NULL;
838
839         return pi_state;
840 }
841
842 static void pi_state_update_owner(struct futex_pi_state *pi_state,
843                                   struct task_struct *new_owner)
844 {
845         struct task_struct *old_owner = pi_state->owner;
846
847         lockdep_assert_held(&pi_state->pi_mutex.wait_lock);
848
849         if (old_owner) {
850                 raw_spin_lock(&old_owner->pi_lock);
851                 WARN_ON(list_empty(&pi_state->list));
852                 list_del_init(&pi_state->list);
853                 raw_spin_unlock(&old_owner->pi_lock);
854         }
855
856         if (new_owner) {
857                 raw_spin_lock(&new_owner->pi_lock);
858                 WARN_ON(!list_empty(&pi_state->list));
859                 list_add(&pi_state->list, &new_owner->pi_state_list);
860                 pi_state->owner = new_owner;
861                 raw_spin_unlock(&new_owner->pi_lock);
862         }
863 }
864
865 static void get_pi_state(struct futex_pi_state *pi_state)
866 {
867         WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
868 }
869
870 /*
871  * Drops a reference to the pi_state object and frees or caches it
872  * when the last reference is gone.
873  */
874 static void put_pi_state(struct futex_pi_state *pi_state)
875 {
876         if (!pi_state)
877                 return;
878
879         if (!atomic_dec_and_test(&pi_state->refcount))
880                 return;
881
882         /*
883          * If pi_state->owner is NULL, the owner is most probably dying
884          * and has cleaned up the pi_state already
885          */
886         if (pi_state->owner) {
887                 unsigned long flags;
888
889                 raw_spin_lock_irqsave(&pi_state->pi_mutex.wait_lock, flags);
890                 pi_state_update_owner(pi_state, NULL);
891                 rt_mutex_proxy_unlock(&pi_state->pi_mutex);
892                 raw_spin_unlock_irqrestore(&pi_state->pi_mutex.wait_lock, flags);
893         }
894
895         if (current->pi_state_cache) {
896                 kfree(pi_state);
897         } else {
898                 /*
899                  * pi_state->list is already empty.
900                  * clear pi_state->owner.
901                  * refcount is at 0 - put it back to 1.
902                  */
903                 pi_state->owner = NULL;
904                 atomic_set(&pi_state->refcount, 1);
905                 current->pi_state_cache = pi_state;
906         }
907 }
908
909 /*
910  * Look up the task based on what TID userspace gave us.
911  * We dont trust it.
912  */
913 static struct task_struct *futex_find_get_task(pid_t pid)
914 {
915         struct task_struct *p;
916
917         rcu_read_lock();
918         p = find_task_by_vpid(pid);
919         if (p)
920                 get_task_struct(p);
921
922         rcu_read_unlock();
923
924         return p;
925 }
926
927 #ifdef CONFIG_FUTEX_PI
928
929 /*
930  * This task is holding PI mutexes at exit time => bad.
931  * Kernel cleans up PI-state, but userspace is likely hosed.
932  * (Robust-futex cleanup is separate and might save the day for userspace.)
933  */
934 static void exit_pi_state_list(struct task_struct *curr)
935 {
936         struct list_head *next, *head = &curr->pi_state_list;
937         struct futex_pi_state *pi_state;
938         struct futex_hash_bucket *hb;
939         union futex_key key = FUTEX_KEY_INIT;
940
941         if (!futex_cmpxchg_enabled)
942                 return;
943         /*
944          * We are a ZOMBIE and nobody can enqueue itself on
945          * pi_state_list anymore, but we have to be careful
946          * versus waiters unqueueing themselves:
947          */
948         raw_spin_lock_irq(&curr->pi_lock);
949         while (!list_empty(head)) {
950                 next = head->next;
951                 pi_state = list_entry(next, struct futex_pi_state, list);
952                 key = pi_state->key;
953                 hb = hash_futex(&key);
954
955                 /*
956                  * We can race against put_pi_state() removing itself from the
957                  * list (a waiter going away). put_pi_state() will first
958                  * decrement the reference count and then modify the list, so
959                  * its possible to see the list entry but fail this reference
960                  * acquire.
961                  *
962                  * In that case; drop the locks to let put_pi_state() make
963                  * progress and retry the loop.
964                  */
965                 if (!atomic_inc_not_zero(&pi_state->refcount)) {
966                         raw_spin_unlock_irq(&curr->pi_lock);
967                         cpu_relax();
968                         raw_spin_lock_irq(&curr->pi_lock);
969                         continue;
970                 }
971                 raw_spin_unlock_irq(&curr->pi_lock);
972
973                 spin_lock(&hb->lock);
974                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
975                 raw_spin_lock(&curr->pi_lock);
976                 /*
977                  * We dropped the pi-lock, so re-check whether this
978                  * task still owns the PI-state:
979                  */
980                 if (head->next != next) {
981                         /* retain curr->pi_lock for the loop invariant */
982                         raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
983                         spin_unlock(&hb->lock);
984                         put_pi_state(pi_state);
985                         continue;
986                 }
987
988                 WARN_ON(pi_state->owner != curr);
989                 WARN_ON(list_empty(&pi_state->list));
990                 list_del_init(&pi_state->list);
991                 pi_state->owner = NULL;
992
993                 raw_spin_unlock(&curr->pi_lock);
994                 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
995                 spin_unlock(&hb->lock);
996
997                 rt_mutex_futex_unlock(&pi_state->pi_mutex);
998                 put_pi_state(pi_state);
999
1000                 raw_spin_lock_irq(&curr->pi_lock);
1001         }
1002         raw_spin_unlock_irq(&curr->pi_lock);
1003 }
1004 #else
1005 static inline void exit_pi_state_list(struct task_struct *curr) { }
1006 #endif
1007
1008 /*
1009  * We need to check the following states:
1010  *
1011  *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
1012  *
1013  * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
1014  * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
1015  *
1016  * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
1017  *
1018  * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
1019  * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
1020  *
1021  * [6]  Found  | Found    | task      | 0         | 1      | Valid
1022  *
1023  * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
1024  *
1025  * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
1026  * [9]  Found  | Found    | task      | 0         | 0      | Invalid
1027  * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
1028  *
1029  * [1]  Indicates that the kernel can acquire the futex atomically. We
1030  *      came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
1031  *
1032  * [2]  Valid, if TID does not belong to a kernel thread. If no matching
1033  *      thread is found then it indicates that the owner TID has died.
1034  *
1035  * [3]  Invalid. The waiter is queued on a non PI futex
1036  *
1037  * [4]  Valid state after exit_robust_list(), which sets the user space
1038  *      value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1039  *
1040  * [5]  The user space value got manipulated between exit_robust_list()
1041  *      and exit_pi_state_list()
1042  *
1043  * [6]  Valid state after exit_pi_state_list() which sets the new owner in
1044  *      the pi_state but cannot access the user space value.
1045  *
1046  * [7]  pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1047  *
1048  * [8]  Owner and user space value match
1049  *
1050  * [9]  There is no transient state which sets the user space TID to 0
1051  *      except exit_robust_list(), but this is indicated by the
1052  *      FUTEX_OWNER_DIED bit. See [4]
1053  *
1054  * [10] There is no transient state which leaves owner and user space
1055  *      TID out of sync. Except one error case where the kernel is denied
1056  *      write access to the user address, see fixup_pi_state_owner().
1057  *
1058  *
1059  * Serialization and lifetime rules:
1060  *
1061  * hb->lock:
1062  *
1063  *      hb -> futex_q, relation
1064  *      futex_q -> pi_state, relation
1065  *
1066  *      (cannot be raw because hb can contain arbitrary amount
1067  *       of futex_q's)
1068  *
1069  * pi_mutex->wait_lock:
1070  *
1071  *      {uval, pi_state}
1072  *
1073  *      (and pi_mutex 'obviously')
1074  *
1075  * p->pi_lock:
1076  *
1077  *      p->pi_state_list -> pi_state->list, relation
1078  *
1079  * pi_state->refcount:
1080  *
1081  *      pi_state lifetime
1082  *
1083  *
1084  * Lock order:
1085  *
1086  *   hb->lock
1087  *     pi_mutex->wait_lock
1088  *       p->pi_lock
1089  *
1090  */
1091
1092 /*
1093  * Validate that the existing waiter has a pi_state and sanity check
1094  * the pi_state against the user space value. If correct, attach to
1095  * it.
1096  */
1097 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1098                               struct futex_pi_state *pi_state,
1099                               struct futex_pi_state **ps)
1100 {
1101         pid_t pid = uval & FUTEX_TID_MASK;
1102         u32 uval2;
1103         int ret;
1104
1105         /*
1106          * Userspace might have messed up non-PI and PI futexes [3]
1107          */
1108         if (unlikely(!pi_state))
1109                 return -EINVAL;
1110
1111         /*
1112          * We get here with hb->lock held, and having found a
1113          * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1114          * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1115          * which in turn means that futex_lock_pi() still has a reference on
1116          * our pi_state.
1117          *
1118          * The waiter holding a reference on @pi_state also protects against
1119          * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1120          * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1121          * free pi_state before we can take a reference ourselves.
1122          */
1123         WARN_ON(!atomic_read(&pi_state->refcount));
1124
1125         /*
1126          * Now that we have a pi_state, we can acquire wait_lock
1127          * and do the state validation.
1128          */
1129         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1130
1131         /*
1132          * Since {uval, pi_state} is serialized by wait_lock, and our current
1133          * uval was read without holding it, it can have changed. Verify it
1134          * still is what we expect it to be, otherwise retry the entire
1135          * operation.
1136          */
1137         if (get_futex_value_locked(&uval2, uaddr))
1138                 goto out_efault;
1139
1140         if (uval != uval2)
1141                 goto out_eagain;
1142
1143         /*
1144          * Handle the owner died case:
1145          */
1146         if (uval & FUTEX_OWNER_DIED) {
1147                 /*
1148                  * exit_pi_state_list sets owner to NULL and wakes the
1149                  * topmost waiter. The task which acquires the
1150                  * pi_state->rt_mutex will fixup owner.
1151                  */
1152                 if (!pi_state->owner) {
1153                         /*
1154                          * No pi state owner, but the user space TID
1155                          * is not 0. Inconsistent state. [5]
1156                          */
1157                         if (pid)
1158                                 goto out_einval;
1159                         /*
1160                          * Take a ref on the state and return success. [4]
1161                          */
1162                         goto out_attach;
1163                 }
1164
1165                 /*
1166                  * If TID is 0, then either the dying owner has not
1167                  * yet executed exit_pi_state_list() or some waiter
1168                  * acquired the rtmutex in the pi state, but did not
1169                  * yet fixup the TID in user space.
1170                  *
1171                  * Take a ref on the state and return success. [6]
1172                  */
1173                 if (!pid)
1174                         goto out_attach;
1175         } else {
1176                 /*
1177                  * If the owner died bit is not set, then the pi_state
1178                  * must have an owner. [7]
1179                  */
1180                 if (!pi_state->owner)
1181                         goto out_einval;
1182         }
1183
1184         /*
1185          * Bail out if user space manipulated the futex value. If pi
1186          * state exists then the owner TID must be the same as the
1187          * user space TID. [9/10]
1188          */
1189         if (pid != task_pid_vnr(pi_state->owner))
1190                 goto out_einval;
1191
1192 out_attach:
1193         get_pi_state(pi_state);
1194         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1195         *ps = pi_state;
1196         return 0;
1197
1198 out_einval:
1199         ret = -EINVAL;
1200         goto out_error;
1201
1202 out_eagain:
1203         ret = -EAGAIN;
1204         goto out_error;
1205
1206 out_efault:
1207         ret = -EFAULT;
1208         goto out_error;
1209
1210 out_error:
1211         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1212         return ret;
1213 }
1214
1215 /**
1216  * wait_for_owner_exiting - Block until the owner has exited
1217  * @exiting:    Pointer to the exiting task
1218  *
1219  * Caller must hold a refcount on @exiting.
1220  */
1221 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1222 {
1223         if (ret != -EBUSY) {
1224                 WARN_ON_ONCE(exiting);
1225                 return;
1226         }
1227
1228         if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1229                 return;
1230
1231         mutex_lock(&exiting->futex_exit_mutex);
1232         /*
1233          * No point in doing state checking here. If the waiter got here
1234          * while the task was in exec()->exec_futex_release() then it can
1235          * have any FUTEX_STATE_* value when the waiter has acquired the
1236          * mutex. OK, if running, EXITING or DEAD if it reached exit()
1237          * already. Highly unlikely and not a problem. Just one more round
1238          * through the futex maze.
1239          */
1240         mutex_unlock(&exiting->futex_exit_mutex);
1241
1242         put_task_struct(exiting);
1243 }
1244
1245 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1246                             struct task_struct *tsk)
1247 {
1248         u32 uval2;
1249
1250         /*
1251          * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1252          * caller that the alleged owner is busy.
1253          */
1254         if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1255                 return -EBUSY;
1256
1257         /*
1258          * Reread the user space value to handle the following situation:
1259          *
1260          * CPU0                         CPU1
1261          *
1262          * sys_exit()                   sys_futex()
1263          *  do_exit()                    futex_lock_pi()
1264          *                                futex_lock_pi_atomic()
1265          *   exit_signals(tsk)              No waiters:
1266          *    tsk->flags |= PF_EXITING;     *uaddr == 0x00000PID
1267          *  mm_release(tsk)                 Set waiter bit
1268          *   exit_robust_list(tsk) {        *uaddr = 0x80000PID;
1269          *      Set owner died              attach_to_pi_owner() {
1270          *    *uaddr = 0xC0000000;           tsk = get_task(PID);
1271          *   }                               if (!tsk->flags & PF_EXITING) {
1272          *  ...                                attach();
1273          *  tsk->futex_state =               } else {
1274          *      FUTEX_STATE_DEAD;              if (tsk->futex_state !=
1275          *                                        FUTEX_STATE_DEAD)
1276          *                                       return -EAGAIN;
1277          *                                     return -ESRCH; <--- FAIL
1278          *                                   }
1279          *
1280          * Returning ESRCH unconditionally is wrong here because the
1281          * user space value has been changed by the exiting task.
1282          *
1283          * The same logic applies to the case where the exiting task is
1284          * already gone.
1285          */
1286         if (get_futex_value_locked(&uval2, uaddr))
1287                 return -EFAULT;
1288
1289         /* If the user space value has changed, try again. */
1290         if (uval2 != uval)
1291                 return -EAGAIN;
1292
1293         /*
1294          * The exiting task did not have a robust list, the robust list was
1295          * corrupted or the user space value in *uaddr is simply bogus.
1296          * Give up and tell user space.
1297          */
1298         return -ESRCH;
1299 }
1300
1301 /*
1302  * Lookup the task for the TID provided from user space and attach to
1303  * it after doing proper sanity checks.
1304  */
1305 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1306                               struct futex_pi_state **ps,
1307                               struct task_struct **exiting)
1308 {
1309         pid_t pid = uval & FUTEX_TID_MASK;
1310         struct futex_pi_state *pi_state;
1311         struct task_struct *p;
1312
1313         /*
1314          * We are the first waiter - try to look up the real owner and attach
1315          * the new pi_state to it, but bail out when TID = 0 [1]
1316          *
1317          * The !pid check is paranoid. None of the call sites should end up
1318          * with pid == 0, but better safe than sorry. Let the caller retry
1319          */
1320         if (!pid)
1321                 return -EAGAIN;
1322         p = futex_find_get_task(pid);
1323         if (!p)
1324                 return handle_exit_race(uaddr, uval, NULL);
1325
1326         if (unlikely(p->flags & PF_KTHREAD)) {
1327                 put_task_struct(p);
1328                 return -EPERM;
1329         }
1330
1331         /*
1332          * We need to look at the task state to figure out, whether the
1333          * task is exiting. To protect against the change of the task state
1334          * in futex_exit_release(), we do this protected by p->pi_lock:
1335          */
1336         raw_spin_lock_irq(&p->pi_lock);
1337         if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1338                 /*
1339                  * The task is on the way out. When the futex state is
1340                  * FUTEX_STATE_DEAD, we know that the task has finished
1341                  * the cleanup:
1342                  */
1343                 int ret = handle_exit_race(uaddr, uval, p);
1344
1345                 raw_spin_unlock_irq(&p->pi_lock);
1346                 /*
1347                  * If the owner task is between FUTEX_STATE_EXITING and
1348                  * FUTEX_STATE_DEAD then store the task pointer and keep
1349                  * the reference on the task struct. The calling code will
1350                  * drop all locks, wait for the task to reach
1351                  * FUTEX_STATE_DEAD and then drop the refcount. This is
1352                  * required to prevent a live lock when the current task
1353                  * preempted the exiting task between the two states.
1354                  */
1355                 if (ret == -EBUSY)
1356                         *exiting = p;
1357                 else
1358                         put_task_struct(p);
1359                 return ret;
1360         }
1361
1362         /*
1363          * No existing pi state. First waiter. [2]
1364          *
1365          * This creates pi_state, we have hb->lock held, this means nothing can
1366          * observe this state, wait_lock is irrelevant.
1367          */
1368         pi_state = alloc_pi_state();
1369
1370         /*
1371          * Initialize the pi_mutex in locked state and make @p
1372          * the owner of it:
1373          */
1374         rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1375
1376         /* Store the key for possible exit cleanups: */
1377         pi_state->key = *key;
1378
1379         WARN_ON(!list_empty(&pi_state->list));
1380         list_add(&pi_state->list, &p->pi_state_list);
1381         /*
1382          * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1383          * because there is no concurrency as the object is not published yet.
1384          */
1385         pi_state->owner = p;
1386         raw_spin_unlock_irq(&p->pi_lock);
1387
1388         put_task_struct(p);
1389
1390         *ps = pi_state;
1391
1392         return 0;
1393 }
1394
1395 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1396                            struct futex_hash_bucket *hb,
1397                            union futex_key *key, struct futex_pi_state **ps,
1398                            struct task_struct **exiting)
1399 {
1400         struct futex_q *top_waiter = futex_top_waiter(hb, key);
1401
1402         /*
1403          * If there is a waiter on that futex, validate it and
1404          * attach to the pi_state when the validation succeeds.
1405          */
1406         if (top_waiter)
1407                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1408
1409         /*
1410          * We are the first waiter - try to look up the owner based on
1411          * @uval and attach to it.
1412          */
1413         return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1414 }
1415
1416 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1417 {
1418         int err;
1419         u32 uninitialized_var(curval);
1420
1421         if (unlikely(should_fail_futex(true)))
1422                 return -EFAULT;
1423
1424         err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1425         if (unlikely(err))
1426                 return err;
1427
1428         /* If user space value changed, let the caller retry */
1429         return curval != uval ? -EAGAIN : 0;
1430 }
1431
1432 /**
1433  * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1434  * @uaddr:              the pi futex user address
1435  * @hb:                 the pi futex hash bucket
1436  * @key:                the futex key associated with uaddr and hb
1437  * @ps:                 the pi_state pointer where we store the result of the
1438  *                      lookup
1439  * @task:               the task to perform the atomic lock work for.  This will
1440  *                      be "current" except in the case of requeue pi.
1441  * @exiting:            Pointer to store the task pointer of the owner task
1442  *                      which is in the middle of exiting
1443  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1444  *
1445  * Return:
1446  *  -  0 - ready to wait;
1447  *  -  1 - acquired the lock;
1448  *  - <0 - error
1449  *
1450  * The hb->lock and futex_key refs shall be held by the caller.
1451  *
1452  * @exiting is only set when the return value is -EBUSY. If so, this holds
1453  * a refcount on the exiting task on return and the caller needs to drop it
1454  * after waiting for the exit to complete.
1455  */
1456 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1457                                 union futex_key *key,
1458                                 struct futex_pi_state **ps,
1459                                 struct task_struct *task,
1460                                 struct task_struct **exiting,
1461                                 int set_waiters)
1462 {
1463         u32 uval, newval, vpid = task_pid_vnr(task);
1464         struct futex_q *top_waiter;
1465         int ret;
1466
1467         /*
1468          * Read the user space value first so we can validate a few
1469          * things before proceeding further.
1470          */
1471         if (get_futex_value_locked(&uval, uaddr))
1472                 return -EFAULT;
1473
1474         if (unlikely(should_fail_futex(true)))
1475                 return -EFAULT;
1476
1477         /*
1478          * Detect deadlocks.
1479          */
1480         if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1481                 return -EDEADLK;
1482
1483         if ((unlikely(should_fail_futex(true))))
1484                 return -EDEADLK;
1485
1486         /*
1487          * Lookup existing state first. If it exists, try to attach to
1488          * its pi_state.
1489          */
1490         top_waiter = futex_top_waiter(hb, key);
1491         if (top_waiter)
1492                 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1493
1494         /*
1495          * No waiter and user TID is 0. We are here because the
1496          * waiters or the owner died bit is set or called from
1497          * requeue_cmp_pi or for whatever reason something took the
1498          * syscall.
1499          */
1500         if (!(uval & FUTEX_TID_MASK)) {
1501                 /*
1502                  * We take over the futex. No other waiters and the user space
1503                  * TID is 0. We preserve the owner died bit.
1504                  */
1505                 newval = uval & FUTEX_OWNER_DIED;
1506                 newval |= vpid;
1507
1508                 /* The futex requeue_pi code can enforce the waiters bit */
1509                 if (set_waiters)
1510                         newval |= FUTEX_WAITERS;
1511
1512                 ret = lock_pi_update_atomic(uaddr, uval, newval);
1513                 /* If the take over worked, return 1 */
1514                 return ret < 0 ? ret : 1;
1515         }
1516
1517         /*
1518          * First waiter. Set the waiters bit before attaching ourself to
1519          * the owner. If owner tries to unlock, it will be forced into
1520          * the kernel and blocked on hb->lock.
1521          */
1522         newval = uval | FUTEX_WAITERS;
1523         ret = lock_pi_update_atomic(uaddr, uval, newval);
1524         if (ret)
1525                 return ret;
1526         /*
1527          * If the update of the user space value succeeded, we try to
1528          * attach to the owner. If that fails, no harm done, we only
1529          * set the FUTEX_WAITERS bit in the user space variable.
1530          */
1531         return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1532 }
1533
1534 /**
1535  * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1536  * @q:  The futex_q to unqueue
1537  *
1538  * The q->lock_ptr must not be NULL and must be held by the caller.
1539  */
1540 static void __unqueue_futex(struct futex_q *q)
1541 {
1542         struct futex_hash_bucket *hb;
1543
1544         if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1545             || WARN_ON(plist_node_empty(&q->list)))
1546                 return;
1547
1548         hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1549         plist_del(&q->list, &hb->chain);
1550         hb_waiters_dec(hb);
1551 }
1552
1553 /*
1554  * The hash bucket lock must be held when this is called.
1555  * Afterwards, the futex_q must not be accessed. Callers
1556  * must ensure to later call wake_up_q() for the actual
1557  * wakeups to occur.
1558  */
1559 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1560 {
1561         struct task_struct *p = q->task;
1562
1563         if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1564                 return;
1565
1566         get_task_struct(p);
1567         __unqueue_futex(q);
1568         /*
1569          * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1570          * is written, without taking any locks. This is possible in the event
1571          * of a spurious wakeup, for example. A memory barrier is required here
1572          * to prevent the following store to lock_ptr from getting ahead of the
1573          * plist_del in __unqueue_futex().
1574          */
1575         smp_store_release(&q->lock_ptr, NULL);
1576
1577         /*
1578          * Queue the task for later wakeup for after we've released
1579          * the hb->lock. wake_q_add() grabs reference to p.
1580          */
1581         wake_q_add(wake_q, p);
1582         put_task_struct(p);
1583 }
1584
1585 /*
1586  * Caller must hold a reference on @pi_state.
1587  */
1588 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1589 {
1590         u32 uninitialized_var(curval), newval;
1591         struct task_struct *new_owner;
1592         bool postunlock = false;
1593         DEFINE_WAKE_Q(wake_q);
1594         int ret = 0;
1595
1596         new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1597         if (WARN_ON_ONCE(!new_owner)) {
1598                 /*
1599                  * As per the comment in futex_unlock_pi() this should not happen.
1600                  *
1601                  * When this happens, give up our locks and try again, giving
1602                  * the futex_lock_pi() instance time to complete, either by
1603                  * waiting on the rtmutex or removing itself from the futex
1604                  * queue.
1605                  */
1606                 ret = -EAGAIN;
1607                 goto out_unlock;
1608         }
1609
1610         /*
1611          * We pass it to the next owner. The WAITERS bit is always kept
1612          * enabled while there is PI state around. We cleanup the owner
1613          * died bit, because we are the owner.
1614          */
1615         newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1616
1617         if (unlikely(should_fail_futex(true))) {
1618                 ret = -EFAULT;
1619                 goto out_unlock;
1620         }
1621
1622         ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1623         if (!ret && (curval != uval)) {
1624                 /*
1625                  * If a unconditional UNLOCK_PI operation (user space did not
1626                  * try the TID->0 transition) raced with a waiter setting the
1627                  * FUTEX_WAITERS flag between get_user() and locking the hash
1628                  * bucket lock, retry the operation.
1629                  */
1630                 if ((FUTEX_TID_MASK & curval) == uval)
1631                         ret = -EAGAIN;
1632                 else
1633                         ret = -EINVAL;
1634         }
1635
1636         if (!ret) {
1637                 /*
1638                  * This is a point of no return; once we modified the uval
1639                  * there is no going back and subsequent operations must
1640                  * not fail.
1641                  */
1642                 pi_state_update_owner(pi_state, new_owner);
1643                 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1644         }
1645
1646 out_unlock:
1647         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1648
1649         if (postunlock)
1650                 rt_mutex_postunlock(&wake_q);
1651
1652         return ret;
1653 }
1654
1655 /*
1656  * Express the locking dependencies for lockdep:
1657  */
1658 static inline void
1659 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1660 {
1661         if (hb1 <= hb2) {
1662                 spin_lock(&hb1->lock);
1663                 if (hb1 < hb2)
1664                         spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1665         } else { /* hb1 > hb2 */
1666                 spin_lock(&hb2->lock);
1667                 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1668         }
1669 }
1670
1671 static inline void
1672 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1673 {
1674         spin_unlock(&hb1->lock);
1675         if (hb1 != hb2)
1676                 spin_unlock(&hb2->lock);
1677 }
1678
1679 /*
1680  * Wake up waiters matching bitset queued on this futex (uaddr).
1681  */
1682 static int
1683 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1684 {
1685         struct futex_hash_bucket *hb;
1686         struct futex_q *this, *next;
1687         union futex_key key = FUTEX_KEY_INIT;
1688         int ret;
1689         DEFINE_WAKE_Q(wake_q);
1690
1691         if (!bitset)
1692                 return -EINVAL;
1693
1694         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1695         if (unlikely(ret != 0))
1696                 goto out;
1697
1698         hb = hash_futex(&key);
1699
1700         /* Make sure we really have tasks to wakeup */
1701         if (!hb_waiters_pending(hb))
1702                 goto out_put_key;
1703
1704         spin_lock(&hb->lock);
1705
1706         plist_for_each_entry_safe(this, next, &hb->chain, list) {
1707                 if (match_futex (&this->key, &key)) {
1708                         if (this->pi_state || this->rt_waiter) {
1709                                 ret = -EINVAL;
1710                                 break;
1711                         }
1712
1713                         /* Check if one of the bits is set in both bitsets */
1714                         if (!(this->bitset & bitset))
1715                                 continue;
1716
1717                         mark_wake_futex(&wake_q, this);
1718                         if (++ret >= nr_wake)
1719                                 break;
1720                 }
1721         }
1722
1723         spin_unlock(&hb->lock);
1724         wake_up_q(&wake_q);
1725 out_put_key:
1726         put_futex_key(&key);
1727 out:
1728         return ret;
1729 }
1730
1731 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1732 {
1733         unsigned int op =         (encoded_op & 0x70000000) >> 28;
1734         unsigned int cmp =        (encoded_op & 0x0f000000) >> 24;
1735         int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1736         int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1737         int oldval, ret;
1738
1739         if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1740                 if (oparg < 0 || oparg > 31) {
1741                         char comm[sizeof(current->comm)];
1742                         /*
1743                          * kill this print and return -EINVAL when userspace
1744                          * is sane again
1745                          */
1746                         pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1747                                         get_task_comm(comm, current), oparg);
1748                         oparg &= 31;
1749                 }
1750                 oparg = 1 << oparg;
1751         }
1752
1753         if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1754                 return -EFAULT;
1755
1756         ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1757         if (ret)
1758                 return ret;
1759
1760         switch (cmp) {
1761         case FUTEX_OP_CMP_EQ:
1762                 return oldval == cmparg;
1763         case FUTEX_OP_CMP_NE:
1764                 return oldval != cmparg;
1765         case FUTEX_OP_CMP_LT:
1766                 return oldval < cmparg;
1767         case FUTEX_OP_CMP_GE:
1768                 return oldval >= cmparg;
1769         case FUTEX_OP_CMP_LE:
1770                 return oldval <= cmparg;
1771         case FUTEX_OP_CMP_GT:
1772                 return oldval > cmparg;
1773         default:
1774                 return -ENOSYS;
1775         }
1776 }
1777
1778 /*
1779  * Wake up all waiters hashed on the physical page that is mapped
1780  * to this virtual address:
1781  */
1782 static int
1783 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1784               int nr_wake, int nr_wake2, int op)
1785 {
1786         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1787         struct futex_hash_bucket *hb1, *hb2;
1788         struct futex_q *this, *next;
1789         int ret, op_ret;
1790         DEFINE_WAKE_Q(wake_q);
1791
1792 retry:
1793         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1794         if (unlikely(ret != 0))
1795                 goto out;
1796         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1797         if (unlikely(ret != 0))
1798                 goto out_put_key1;
1799
1800         hb1 = hash_futex(&key1);
1801         hb2 = hash_futex(&key2);
1802
1803 retry_private:
1804         double_lock_hb(hb1, hb2);
1805         op_ret = futex_atomic_op_inuser(op, uaddr2);
1806         if (unlikely(op_ret < 0)) {
1807                 double_unlock_hb(hb1, hb2);
1808
1809                 if (!IS_ENABLED(CONFIG_MMU) ||
1810                     unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1811                         /*
1812                          * we don't get EFAULT from MMU faults if we don't have
1813                          * an MMU, but we might get them from range checking
1814                          */
1815                         ret = op_ret;
1816                         goto out_put_keys;
1817                 }
1818
1819                 if (op_ret == -EFAULT) {
1820                         ret = fault_in_user_writeable(uaddr2);
1821                         if (ret)
1822                                 goto out_put_keys;
1823                 }
1824
1825                 if (!(flags & FLAGS_SHARED)) {
1826                         cond_resched();
1827                         goto retry_private;
1828                 }
1829
1830                 put_futex_key(&key2);
1831                 put_futex_key(&key1);
1832                 cond_resched();
1833                 goto retry;
1834         }
1835
1836         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1837                 if (match_futex (&this->key, &key1)) {
1838                         if (this->pi_state || this->rt_waiter) {
1839                                 ret = -EINVAL;
1840                                 goto out_unlock;
1841                         }
1842                         mark_wake_futex(&wake_q, this);
1843                         if (++ret >= nr_wake)
1844                                 break;
1845                 }
1846         }
1847
1848         if (op_ret > 0) {
1849                 op_ret = 0;
1850                 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1851                         if (match_futex (&this->key, &key2)) {
1852                                 if (this->pi_state || this->rt_waiter) {
1853                                         ret = -EINVAL;
1854                                         goto out_unlock;
1855                                 }
1856                                 mark_wake_futex(&wake_q, this);
1857                                 if (++op_ret >= nr_wake2)
1858                                         break;
1859                         }
1860                 }
1861                 ret += op_ret;
1862         }
1863
1864 out_unlock:
1865         double_unlock_hb(hb1, hb2);
1866         wake_up_q(&wake_q);
1867 out_put_keys:
1868         put_futex_key(&key2);
1869 out_put_key1:
1870         put_futex_key(&key1);
1871 out:
1872         return ret;
1873 }
1874
1875 /**
1876  * requeue_futex() - Requeue a futex_q from one hb to another
1877  * @q:          the futex_q to requeue
1878  * @hb1:        the source hash_bucket
1879  * @hb2:        the target hash_bucket
1880  * @key2:       the new key for the requeued futex_q
1881  */
1882 static inline
1883 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1884                    struct futex_hash_bucket *hb2, union futex_key *key2)
1885 {
1886
1887         /*
1888          * If key1 and key2 hash to the same bucket, no need to
1889          * requeue.
1890          */
1891         if (likely(&hb1->chain != &hb2->chain)) {
1892                 plist_del(&q->list, &hb1->chain);
1893                 hb_waiters_dec(hb1);
1894                 hb_waiters_inc(hb2);
1895                 plist_add(&q->list, &hb2->chain);
1896                 q->lock_ptr = &hb2->lock;
1897         }
1898         get_futex_key_refs(key2);
1899         q->key = *key2;
1900 }
1901
1902 /**
1903  * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1904  * @q:          the futex_q
1905  * @key:        the key of the requeue target futex
1906  * @hb:         the hash_bucket of the requeue target futex
1907  *
1908  * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1909  * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1910  * to the requeue target futex so the waiter can detect the wakeup on the right
1911  * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1912  * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1913  * to protect access to the pi_state to fixup the owner later.  Must be called
1914  * with both q->lock_ptr and hb->lock held.
1915  */
1916 static inline
1917 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1918                            struct futex_hash_bucket *hb)
1919 {
1920         get_futex_key_refs(key);
1921         q->key = *key;
1922
1923         __unqueue_futex(q);
1924
1925         WARN_ON(!q->rt_waiter);
1926         q->rt_waiter = NULL;
1927
1928         q->lock_ptr = &hb->lock;
1929
1930         wake_up_state(q->task, TASK_NORMAL);
1931 }
1932
1933 /**
1934  * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1935  * @pifutex:            the user address of the to futex
1936  * @hb1:                the from futex hash bucket, must be locked by the caller
1937  * @hb2:                the to futex hash bucket, must be locked by the caller
1938  * @key1:               the from futex key
1939  * @key2:               the to futex key
1940  * @ps:                 address to store the pi_state pointer
1941  * @exiting:            Pointer to store the task pointer of the owner task
1942  *                      which is in the middle of exiting
1943  * @set_waiters:        force setting the FUTEX_WAITERS bit (1) or not (0)
1944  *
1945  * Try and get the lock on behalf of the top waiter if we can do it atomically.
1946  * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1947  * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1948  * hb1 and hb2 must be held by the caller.
1949  *
1950  * @exiting is only set when the return value is -EBUSY. If so, this holds
1951  * a refcount on the exiting task on return and the caller needs to drop it
1952  * after waiting for the exit to complete.
1953  *
1954  * Return:
1955  *  -  0 - failed to acquire the lock atomically;
1956  *  - >0 - acquired the lock, return value is vpid of the top_waiter
1957  *  - <0 - error
1958  */
1959 static int
1960 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1961                            struct futex_hash_bucket *hb2, union futex_key *key1,
1962                            union futex_key *key2, struct futex_pi_state **ps,
1963                            struct task_struct **exiting, int set_waiters)
1964 {
1965         struct futex_q *top_waiter = NULL;
1966         u32 curval;
1967         int ret, vpid;
1968
1969         if (get_futex_value_locked(&curval, pifutex))
1970                 return -EFAULT;
1971
1972         if (unlikely(should_fail_futex(true)))
1973                 return -EFAULT;
1974
1975         /*
1976          * Find the top_waiter and determine if there are additional waiters.
1977          * If the caller intends to requeue more than 1 waiter to pifutex,
1978          * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1979          * as we have means to handle the possible fault.  If not, don't set
1980          * the bit unecessarily as it will force the subsequent unlock to enter
1981          * the kernel.
1982          */
1983         top_waiter = futex_top_waiter(hb1, key1);
1984
1985         /* There are no waiters, nothing for us to do. */
1986         if (!top_waiter)
1987                 return 0;
1988
1989         /* Ensure we requeue to the expected futex. */
1990         if (!match_futex(top_waiter->requeue_pi_key, key2))
1991                 return -EINVAL;
1992
1993         /*
1994          * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1995          * the contended case or if set_waiters is 1.  The pi_state is returned
1996          * in ps in contended cases.
1997          */
1998         vpid = task_pid_vnr(top_waiter->task);
1999         ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
2000                                    exiting, set_waiters);
2001         if (ret == 1) {
2002                 requeue_pi_wake_futex(top_waiter, key2, hb2);
2003                 return vpid;
2004         }
2005         return ret;
2006 }
2007
2008 /**
2009  * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
2010  * @uaddr1:     source futex user address
2011  * @flags:      futex flags (FLAGS_SHARED, etc.)
2012  * @uaddr2:     target futex user address
2013  * @nr_wake:    number of waiters to wake (must be 1 for requeue_pi)
2014  * @nr_requeue: number of waiters to requeue (0-INT_MAX)
2015  * @cmpval:     @uaddr1 expected value (or %NULL)
2016  * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
2017  *              pi futex (pi to pi requeue is not supported)
2018  *
2019  * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
2020  * uaddr2 atomically on behalf of the top waiter.
2021  *
2022  * Return:
2023  *  - >=0 - on success, the number of tasks requeued or woken;
2024  *  -  <0 - on error
2025  */
2026 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
2027                          u32 __user *uaddr2, int nr_wake, int nr_requeue,
2028                          u32 *cmpval, int requeue_pi)
2029 {
2030         union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
2031         int drop_count = 0, task_count = 0, ret;
2032         struct futex_pi_state *pi_state = NULL;
2033         struct futex_hash_bucket *hb1, *hb2;
2034         struct futex_q *this, *next;
2035         DEFINE_WAKE_Q(wake_q);
2036
2037         if (nr_wake < 0 || nr_requeue < 0)
2038                 return -EINVAL;
2039
2040         /*
2041          * When PI not supported: return -ENOSYS if requeue_pi is true,
2042          * consequently the compiler knows requeue_pi is always false past
2043          * this point which will optimize away all the conditional code
2044          * further down.
2045          */
2046         if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
2047                 return -ENOSYS;
2048
2049         if (requeue_pi) {
2050                 /*
2051                  * Requeue PI only works on two distinct uaddrs. This
2052                  * check is only valid for private futexes. See below.
2053                  */
2054                 if (uaddr1 == uaddr2)
2055                         return -EINVAL;
2056
2057                 /*
2058                  * requeue_pi requires a pi_state, try to allocate it now
2059                  * without any locks in case it fails.
2060                  */
2061                 if (refill_pi_state_cache())
2062                         return -ENOMEM;
2063                 /*
2064                  * requeue_pi must wake as many tasks as it can, up to nr_wake
2065                  * + nr_requeue, since it acquires the rt_mutex prior to
2066                  * returning to userspace, so as to not leave the rt_mutex with
2067                  * waiters and no owner.  However, second and third wake-ups
2068                  * cannot be predicted as they involve race conditions with the
2069                  * first wake and a fault while looking up the pi_state.  Both
2070                  * pthread_cond_signal() and pthread_cond_broadcast() should
2071                  * use nr_wake=1.
2072                  */
2073                 if (nr_wake != 1)
2074                         return -EINVAL;
2075         }
2076
2077 retry:
2078         ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
2079         if (unlikely(ret != 0))
2080                 goto out;
2081         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
2082                             requeue_pi ? VERIFY_WRITE : VERIFY_READ);
2083         if (unlikely(ret != 0))
2084                 goto out_put_key1;
2085
2086         /*
2087          * The check above which compares uaddrs is not sufficient for
2088          * shared futexes. We need to compare the keys:
2089          */
2090         if (requeue_pi && match_futex(&key1, &key2)) {
2091                 ret = -EINVAL;
2092                 goto out_put_keys;
2093         }
2094
2095         hb1 = hash_futex(&key1);
2096         hb2 = hash_futex(&key2);
2097
2098 retry_private:
2099         hb_waiters_inc(hb2);
2100         double_lock_hb(hb1, hb2);
2101
2102         if (likely(cmpval != NULL)) {
2103                 u32 curval;
2104
2105                 ret = get_futex_value_locked(&curval, uaddr1);
2106
2107                 if (unlikely(ret)) {
2108                         double_unlock_hb(hb1, hb2);
2109                         hb_waiters_dec(hb2);
2110
2111                         ret = get_user(curval, uaddr1);
2112                         if (ret)
2113                                 goto out_put_keys;
2114
2115                         if (!(flags & FLAGS_SHARED))
2116                                 goto retry_private;
2117
2118                         put_futex_key(&key2);
2119                         put_futex_key(&key1);
2120                         goto retry;
2121                 }
2122                 if (curval != *cmpval) {
2123                         ret = -EAGAIN;
2124                         goto out_unlock;
2125                 }
2126         }
2127
2128         if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2129                 struct task_struct *exiting = NULL;
2130
2131                 /*
2132                  * Attempt to acquire uaddr2 and wake the top waiter. If we
2133                  * intend to requeue waiters, force setting the FUTEX_WAITERS
2134                  * bit.  We force this here where we are able to easily handle
2135                  * faults rather in the requeue loop below.
2136                  */
2137                 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2138                                                  &key2, &pi_state,
2139                                                  &exiting, nr_requeue);
2140
2141                 /*
2142                  * At this point the top_waiter has either taken uaddr2 or is
2143                  * waiting on it.  If the former, then the pi_state will not
2144                  * exist yet, look it up one more time to ensure we have a
2145                  * reference to it. If the lock was taken, ret contains the
2146                  * vpid of the top waiter task.
2147                  * If the lock was not taken, we have pi_state and an initial
2148                  * refcount on it. In case of an error we have nothing.
2149                  */
2150                 if (ret > 0) {
2151                         WARN_ON(pi_state);
2152                         drop_count++;
2153                         task_count++;
2154                         /*
2155                          * If we acquired the lock, then the user space value
2156                          * of uaddr2 should be vpid. It cannot be changed by
2157                          * the top waiter as it is blocked on hb2 lock if it
2158                          * tries to do so. If something fiddled with it behind
2159                          * our back the pi state lookup might unearth it. So
2160                          * we rather use the known value than rereading and
2161                          * handing potential crap to lookup_pi_state.
2162                          *
2163                          * If that call succeeds then we have pi_state and an
2164                          * initial refcount on it.
2165                          */
2166                         ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2167                                               &pi_state, &exiting);
2168                 }
2169
2170                 switch (ret) {
2171                 case 0:
2172                         /* We hold a reference on the pi state. */
2173                         break;
2174
2175                         /* If the above failed, then pi_state is NULL */
2176                 case -EFAULT:
2177                         double_unlock_hb(hb1, hb2);
2178                         hb_waiters_dec(hb2);
2179                         put_futex_key(&key2);
2180                         put_futex_key(&key1);
2181                         ret = fault_in_user_writeable(uaddr2);
2182                         if (!ret)
2183                                 goto retry;
2184                         goto out;
2185                 case -EBUSY:
2186                 case -EAGAIN:
2187                         /*
2188                          * Two reasons for this:
2189                          * - EBUSY: Owner is exiting and we just wait for the
2190                          *   exit to complete.
2191                          * - EAGAIN: The user space value changed.
2192                          */
2193                         double_unlock_hb(hb1, hb2);
2194                         hb_waiters_dec(hb2);
2195                         put_futex_key(&key2);
2196                         put_futex_key(&key1);
2197                         /*
2198                          * Handle the case where the owner is in the middle of
2199                          * exiting. Wait for the exit to complete otherwise
2200                          * this task might loop forever, aka. live lock.
2201                          */
2202                         wait_for_owner_exiting(ret, exiting);
2203                         cond_resched();
2204                         goto retry;
2205                 default:
2206                         goto out_unlock;
2207                 }
2208         }
2209
2210         plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2211                 if (task_count - nr_wake >= nr_requeue)
2212                         break;
2213
2214                 if (!match_futex(&this->key, &key1))
2215                         continue;
2216
2217                 /*
2218                  * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2219                  * be paired with each other and no other futex ops.
2220                  *
2221                  * We should never be requeueing a futex_q with a pi_state,
2222                  * which is awaiting a futex_unlock_pi().
2223                  */
2224                 if ((requeue_pi && !this->rt_waiter) ||
2225                     (!requeue_pi && this->rt_waiter) ||
2226                     this->pi_state) {
2227                         ret = -EINVAL;
2228                         break;
2229                 }
2230
2231                 /*
2232                  * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2233                  * lock, we already woke the top_waiter.  If not, it will be
2234                  * woken by futex_unlock_pi().
2235                  */
2236                 if (++task_count <= nr_wake && !requeue_pi) {
2237                         mark_wake_futex(&wake_q, this);
2238                         continue;
2239                 }
2240
2241                 /* Ensure we requeue to the expected futex for requeue_pi. */
2242                 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2243                         ret = -EINVAL;
2244                         break;
2245                 }
2246
2247                 /*
2248                  * Requeue nr_requeue waiters and possibly one more in the case
2249                  * of requeue_pi if we couldn't acquire the lock atomically.
2250                  */
2251                 if (requeue_pi) {
2252                         /*
2253                          * Prepare the waiter to take the rt_mutex. Take a
2254                          * refcount on the pi_state and store the pointer in
2255                          * the futex_q object of the waiter.
2256                          */
2257                         get_pi_state(pi_state);
2258                         this->pi_state = pi_state;
2259                         ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2260                                                         this->rt_waiter,
2261                                                         this->task);
2262                         if (ret == 1) {
2263                                 /*
2264                                  * We got the lock. We do neither drop the
2265                                  * refcount on pi_state nor clear
2266                                  * this->pi_state because the waiter needs the
2267                                  * pi_state for cleaning up the user space
2268                                  * value. It will drop the refcount after
2269                                  * doing so.
2270                                  */
2271                                 requeue_pi_wake_futex(this, &key2, hb2);
2272                                 drop_count++;
2273                                 continue;
2274                         } else if (ret) {
2275                                 /*
2276                                  * rt_mutex_start_proxy_lock() detected a
2277                                  * potential deadlock when we tried to queue
2278                                  * that waiter. Drop the pi_state reference
2279                                  * which we took above and remove the pointer
2280                                  * to the state from the waiters futex_q
2281                                  * object.
2282                                  */
2283                                 this->pi_state = NULL;
2284                                 put_pi_state(pi_state);
2285                                 /*
2286                                  * We stop queueing more waiters and let user
2287                                  * space deal with the mess.
2288                                  */
2289                                 break;
2290                         }
2291                 }
2292                 requeue_futex(this, hb1, hb2, &key2);
2293                 drop_count++;
2294         }
2295
2296         /*
2297          * We took an extra initial reference to the pi_state either
2298          * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2299          * need to drop it here again.
2300          */
2301         put_pi_state(pi_state);
2302
2303 out_unlock:
2304         double_unlock_hb(hb1, hb2);
2305         wake_up_q(&wake_q);
2306         hb_waiters_dec(hb2);
2307
2308         /*
2309          * drop_futex_key_refs() must be called outside the spinlocks. During
2310          * the requeue we moved futex_q's from the hash bucket at key1 to the
2311          * one at key2 and updated their key pointer.  We no longer need to
2312          * hold the references to key1.
2313          */
2314         while (--drop_count >= 0)
2315                 drop_futex_key_refs(&key1);
2316
2317 out_put_keys:
2318         put_futex_key(&key2);
2319 out_put_key1:
2320         put_futex_key(&key1);
2321 out:
2322         return ret ? ret : task_count;
2323 }
2324
2325 /* The key must be already stored in q->key. */
2326 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2327         __acquires(&hb->lock)
2328 {
2329         struct futex_hash_bucket *hb;
2330
2331         hb = hash_futex(&q->key);
2332
2333         /*
2334          * Increment the counter before taking the lock so that
2335          * a potential waker won't miss a to-be-slept task that is
2336          * waiting for the spinlock. This is safe as all queue_lock()
2337          * users end up calling queue_me(). Similarly, for housekeeping,
2338          * decrement the counter at queue_unlock() when some error has
2339          * occurred and we don't end up adding the task to the list.
2340          */
2341         hb_waiters_inc(hb);
2342
2343         q->lock_ptr = &hb->lock;
2344
2345         spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2346         return hb;
2347 }
2348
2349 static inline void
2350 queue_unlock(struct futex_hash_bucket *hb)
2351         __releases(&hb->lock)
2352 {
2353         spin_unlock(&hb->lock);
2354         hb_waiters_dec(hb);
2355 }
2356
2357 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2358 {
2359         int prio;
2360
2361         /*
2362          * The priority used to register this element is
2363          * - either the real thread-priority for the real-time threads
2364          * (i.e. threads with a priority lower than MAX_RT_PRIO)
2365          * - or MAX_RT_PRIO for non-RT threads.
2366          * Thus, all RT-threads are woken first in priority order, and
2367          * the others are woken last, in FIFO order.
2368          */
2369         prio = min(current->normal_prio, MAX_RT_PRIO);
2370
2371         plist_node_init(&q->list, prio);
2372         plist_add(&q->list, &hb->chain);
2373         q->task = current;
2374 }
2375
2376 /**
2377  * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2378  * @q:  The futex_q to enqueue
2379  * @hb: The destination hash bucket
2380  *
2381  * The hb->lock must be held by the caller, and is released here. A call to
2382  * queue_me() is typically paired with exactly one call to unqueue_me().  The
2383  * exceptions involve the PI related operations, which may use unqueue_me_pi()
2384  * or nothing if the unqueue is done as part of the wake process and the unqueue
2385  * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2386  * an example).
2387  */
2388 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2389         __releases(&hb->lock)
2390 {
2391         __queue_me(q, hb);
2392         spin_unlock(&hb->lock);
2393 }
2394
2395 /**
2396  * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2397  * @q:  The futex_q to unqueue
2398  *
2399  * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2400  * be paired with exactly one earlier call to queue_me().
2401  *
2402  * Return:
2403  *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2404  *  - 0 - if the futex_q was already removed by the waking thread
2405  */
2406 static int unqueue_me(struct futex_q *q)
2407 {
2408         spinlock_t *lock_ptr;
2409         int ret = 0;
2410
2411         /* In the common case we don't take the spinlock, which is nice. */
2412 retry:
2413         /*
2414          * q->lock_ptr can change between this read and the following spin_lock.
2415          * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2416          * optimizing lock_ptr out of the logic below.
2417          */
2418         lock_ptr = READ_ONCE(q->lock_ptr);
2419         if (lock_ptr != NULL) {
2420                 spin_lock(lock_ptr);
2421                 /*
2422                  * q->lock_ptr can change between reading it and
2423                  * spin_lock(), causing us to take the wrong lock.  This
2424                  * corrects the race condition.
2425                  *
2426                  * Reasoning goes like this: if we have the wrong lock,
2427                  * q->lock_ptr must have changed (maybe several times)
2428                  * between reading it and the spin_lock().  It can
2429                  * change again after the spin_lock() but only if it was
2430                  * already changed before the spin_lock().  It cannot,
2431                  * however, change back to the original value.  Therefore
2432                  * we can detect whether we acquired the correct lock.
2433                  */
2434                 if (unlikely(lock_ptr != q->lock_ptr)) {
2435                         spin_unlock(lock_ptr);
2436                         goto retry;
2437                 }
2438                 __unqueue_futex(q);
2439
2440                 BUG_ON(q->pi_state);
2441
2442                 spin_unlock(lock_ptr);
2443                 ret = 1;
2444         }
2445
2446         drop_futex_key_refs(&q->key);
2447         return ret;
2448 }
2449
2450 /*
2451  * PI futexes can not be requeued and must remove themself from the
2452  * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2453  * and dropped here.
2454  */
2455 static void unqueue_me_pi(struct futex_q *q)
2456         __releases(q->lock_ptr)
2457 {
2458         __unqueue_futex(q);
2459
2460         BUG_ON(!q->pi_state);
2461         put_pi_state(q->pi_state);
2462         q->pi_state = NULL;
2463
2464         spin_unlock(q->lock_ptr);
2465 }
2466
2467 static int __fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2468                                   struct task_struct *argowner)
2469 {
2470         u32 uval, uninitialized_var(curval), newval, newtid;
2471         struct futex_pi_state *pi_state = q->pi_state;
2472         struct task_struct *oldowner, *newowner;
2473         int err = 0;
2474
2475         oldowner = pi_state->owner;
2476
2477         /*
2478          * We are here because either:
2479          *
2480          *  - we stole the lock and pi_state->owner needs updating to reflect
2481          *    that (@argowner == current),
2482          *
2483          * or:
2484          *
2485          *  - someone stole our lock and we need to fix things to point to the
2486          *    new owner (@argowner == NULL).
2487          *
2488          * Either way, we have to replace the TID in the user space variable.
2489          * This must be atomic as we have to preserve the owner died bit here.
2490          *
2491          * Note: We write the user space value _before_ changing the pi_state
2492          * because we can fault here. Imagine swapped out pages or a fork
2493          * that marked all the anonymous memory readonly for cow.
2494          *
2495          * Modifying pi_state _before_ the user space value would leave the
2496          * pi_state in an inconsistent state when we fault here, because we
2497          * need to drop the locks to handle the fault. This might be observed
2498          * in the PID check in lookup_pi_state.
2499          */
2500 retry:
2501         if (!argowner) {
2502                 if (oldowner != current) {
2503                         /*
2504                          * We raced against a concurrent self; things are
2505                          * already fixed up. Nothing to do.
2506                          */
2507                         return 0;
2508                 }
2509
2510                 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2511                         /* We got the lock. pi_state is correct. Tell caller. */
2512                         return 1;
2513                 }
2514
2515                 /*
2516                  * The trylock just failed, so either there is an owner or
2517                  * there is a higher priority waiter than this one.
2518                  */
2519                 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2520                 /*
2521                  * If the higher priority waiter has not yet taken over the
2522                  * rtmutex then newowner is NULL. We can't return here with
2523                  * that state because it's inconsistent vs. the user space
2524                  * state. So drop the locks and try again. It's a valid
2525                  * situation and not any different from the other retry
2526                  * conditions.
2527                  */
2528                 if (unlikely(!newowner)) {
2529                         err = -EAGAIN;
2530                         goto handle_err;
2531                 }
2532         } else {
2533                 WARN_ON_ONCE(argowner != current);
2534                 if (oldowner == current) {
2535                         /*
2536                          * We raced against a concurrent self; things are
2537                          * already fixed up. Nothing to do.
2538                          */
2539                         return 1;
2540                 }
2541                 newowner = argowner;
2542         }
2543
2544         newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2545         /* Owner died? */
2546         if (!pi_state->owner)
2547                 newtid |= FUTEX_OWNER_DIED;
2548
2549         err = get_futex_value_locked(&uval, uaddr);
2550         if (err)
2551                 goto handle_err;
2552
2553         for (;;) {
2554                 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2555
2556                 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2557                 if (err)
2558                         goto handle_err;
2559
2560                 if (curval == uval)
2561                         break;
2562                 uval = curval;
2563         }
2564
2565         /*
2566          * We fixed up user space. Now we need to fix the pi_state
2567          * itself.
2568          */
2569         pi_state_update_owner(pi_state, newowner);
2570
2571         return argowner == current;
2572
2573         /*
2574          * In order to reschedule or handle a page fault, we need to drop the
2575          * locks here. In the case of a fault, this gives the other task
2576          * (either the highest priority waiter itself or the task which stole
2577          * the rtmutex) the chance to try the fixup of the pi_state. So once we
2578          * are back from handling the fault we need to check the pi_state after
2579          * reacquiring the locks and before trying to do another fixup. When
2580          * the fixup has been done already we simply return.
2581          *
2582          * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2583          * drop hb->lock since the caller owns the hb -> futex_q relation.
2584          * Dropping the pi_mutex->wait_lock requires the state revalidate.
2585          */
2586 handle_err:
2587         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2588         spin_unlock(q->lock_ptr);
2589
2590         switch (err) {
2591         case -EFAULT:
2592                 err = fault_in_user_writeable(uaddr);
2593                 break;
2594
2595         case -EAGAIN:
2596                 cond_resched();
2597                 err = 0;
2598                 break;
2599
2600         default:
2601                 WARN_ON_ONCE(1);
2602                 break;
2603         }
2604
2605         spin_lock(q->lock_ptr);
2606         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2607
2608         /*
2609          * Check if someone else fixed it for us:
2610          */
2611         if (pi_state->owner != oldowner)
2612                 return argowner == current;
2613
2614         /* Retry if err was -EAGAIN or the fault in succeeded */
2615         if (!err)
2616                 goto retry;
2617
2618         /*
2619          * fault_in_user_writeable() failed so user state is immutable. At
2620          * best we can make the kernel state consistent but user state will
2621          * be most likely hosed and any subsequent unlock operation will be
2622          * rejected due to PI futex rule [10].
2623          *
2624          * Ensure that the rtmutex owner is also the pi_state owner despite
2625          * the user space value claiming something different. There is no
2626          * point in unlocking the rtmutex if current is the owner as it
2627          * would need to wait until the next waiter has taken the rtmutex
2628          * to guarantee consistent state. Keep it simple. Userspace asked
2629          * for this wreckaged state.
2630          *
2631          * The rtmutex has an owner - either current or some other
2632          * task. See the EAGAIN loop above.
2633          */
2634         pi_state_update_owner(pi_state, rt_mutex_owner(&pi_state->pi_mutex));
2635
2636         return err;
2637 }
2638
2639 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2640                                 struct task_struct *argowner)
2641 {
2642         struct futex_pi_state *pi_state = q->pi_state;
2643         int ret;
2644
2645         lockdep_assert_held(q->lock_ptr);
2646
2647         raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2648         ret = __fixup_pi_state_owner(uaddr, q, argowner);
2649         raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2650         return ret;
2651 }
2652
2653 static long futex_wait_restart(struct restart_block *restart);
2654
2655 /**
2656  * fixup_owner() - Post lock pi_state and corner case management
2657  * @uaddr:      user address of the futex
2658  * @q:          futex_q (contains pi_state and access to the rt_mutex)
2659  * @locked:     if the attempt to take the rt_mutex succeeded (1) or not (0)
2660  *
2661  * After attempting to lock an rt_mutex, this function is called to cleanup
2662  * the pi_state owner as well as handle race conditions that may allow us to
2663  * acquire the lock. Must be called with the hb lock held.
2664  *
2665  * Return:
2666  *  -  1 - success, lock taken;
2667  *  -  0 - success, lock not taken;
2668  *  - <0 - on error (-EFAULT)
2669  */
2670 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2671 {
2672         if (locked) {
2673                 /*
2674                  * Got the lock. We might not be the anticipated owner if we
2675                  * did a lock-steal - fix up the PI-state in that case:
2676                  *
2677                  * Speculative pi_state->owner read (we don't hold wait_lock);
2678                  * since we own the lock pi_state->owner == current is the
2679                  * stable state, anything else needs more attention.
2680                  */
2681                 if (q->pi_state->owner != current)
2682                         return fixup_pi_state_owner(uaddr, q, current);
2683                 return 1;
2684         }
2685
2686         /*
2687          * If we didn't get the lock; check if anybody stole it from us. In
2688          * that case, we need to fix up the uval to point to them instead of
2689          * us, otherwise bad things happen. [10]
2690          *
2691          * Another speculative read; pi_state->owner == current is unstable
2692          * but needs our attention.
2693          */
2694         if (q->pi_state->owner == current)
2695                 return fixup_pi_state_owner(uaddr, q, NULL);
2696
2697         /*
2698          * Paranoia check. If we did not take the lock, then we should not be
2699          * the owner of the rt_mutex. Warn and establish consistent state.
2700          */
2701         if (WARN_ON_ONCE(rt_mutex_owner(&q->pi_state->pi_mutex) == current))
2702                 return fixup_pi_state_owner(uaddr, q, current);
2703
2704         return 0;
2705 }
2706
2707 /**
2708  * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2709  * @hb:         the futex hash bucket, must be locked by the caller
2710  * @q:          the futex_q to queue up on
2711  * @timeout:    the prepared hrtimer_sleeper, or null for no timeout
2712  */
2713 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2714                                 struct hrtimer_sleeper *timeout)
2715 {
2716         /*
2717          * The task state is guaranteed to be set before another task can
2718          * wake it. set_current_state() is implemented using smp_store_mb() and
2719          * queue_me() calls spin_unlock() upon completion, both serializing
2720          * access to the hash list and forcing another memory barrier.
2721          */
2722         set_current_state(TASK_INTERRUPTIBLE);
2723         queue_me(q, hb);
2724
2725         /* Arm the timer */
2726         if (timeout)
2727                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2728
2729         /*
2730          * If we have been removed from the hash list, then another task
2731          * has tried to wake us, and we can skip the call to schedule().
2732          */
2733         if (likely(!plist_node_empty(&q->list))) {
2734                 /*
2735                  * If the timer has already expired, current will already be
2736                  * flagged for rescheduling. Only call schedule if there
2737                  * is no timeout, or if it has yet to expire.
2738                  */
2739                 if (!timeout || timeout->task)
2740                         freezable_schedule();
2741         }
2742         __set_current_state(TASK_RUNNING);
2743 }
2744
2745 /**
2746  * futex_wait_setup() - Prepare to wait on a futex
2747  * @uaddr:      the futex userspace address
2748  * @val:        the expected value
2749  * @flags:      futex flags (FLAGS_SHARED, etc.)
2750  * @q:          the associated futex_q
2751  * @hb:         storage for hash_bucket pointer to be returned to caller
2752  *
2753  * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2754  * compare it with the expected value.  Handle atomic faults internally.
2755  * Return with the hb lock held and a q.key reference on success, and unlocked
2756  * with no q.key reference on failure.
2757  *
2758  * Return:
2759  *  -  0 - uaddr contains val and hb has been locked;
2760  *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2761  */
2762 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2763                            struct futex_q *q, struct futex_hash_bucket **hb)
2764 {
2765         u32 uval;
2766         int ret;
2767
2768         /*
2769          * Access the page AFTER the hash-bucket is locked.
2770          * Order is important:
2771          *
2772          *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2773          *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2774          *
2775          * The basic logical guarantee of a futex is that it blocks ONLY
2776          * if cond(var) is known to be true at the time of blocking, for
2777          * any cond.  If we locked the hash-bucket after testing *uaddr, that
2778          * would open a race condition where we could block indefinitely with
2779          * cond(var) false, which would violate the guarantee.
2780          *
2781          * On the other hand, we insert q and release the hash-bucket only
2782          * after testing *uaddr.  This guarantees that futex_wait() will NOT
2783          * absorb a wakeup if *uaddr does not match the desired values
2784          * while the syscall executes.
2785          */
2786 retry:
2787         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2788         if (unlikely(ret != 0))
2789                 return ret;
2790
2791 retry_private:
2792         *hb = queue_lock(q);
2793
2794         ret = get_futex_value_locked(&uval, uaddr);
2795
2796         if (ret) {
2797                 queue_unlock(*hb);
2798
2799                 ret = get_user(uval, uaddr);
2800                 if (ret)
2801                         goto out;
2802
2803                 if (!(flags & FLAGS_SHARED))
2804                         goto retry_private;
2805
2806                 put_futex_key(&q->key);
2807                 goto retry;
2808         }
2809
2810         if (uval != val) {
2811                 queue_unlock(*hb);
2812                 ret = -EWOULDBLOCK;
2813         }
2814
2815 out:
2816         if (ret)
2817                 put_futex_key(&q->key);
2818         return ret;
2819 }
2820
2821 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2822                       ktime_t *abs_time, u32 bitset)
2823 {
2824         struct hrtimer_sleeper timeout, *to = NULL;
2825         struct restart_block *restart;
2826         struct futex_hash_bucket *hb;
2827         struct futex_q q = futex_q_init;
2828         int ret;
2829
2830         if (!bitset)
2831                 return -EINVAL;
2832         q.bitset = bitset;
2833
2834         if (abs_time) {
2835                 to = &timeout;
2836
2837                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2838                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
2839                                       HRTIMER_MODE_ABS);
2840                 hrtimer_init_sleeper(to, current);
2841                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2842                                              current->timer_slack_ns);
2843         }
2844
2845 retry:
2846         /*
2847          * Prepare to wait on uaddr. On success, holds hb lock and increments
2848          * q.key refs.
2849          */
2850         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2851         if (ret)
2852                 goto out;
2853
2854         /* queue_me and wait for wakeup, timeout, or a signal. */
2855         futex_wait_queue_me(hb, &q, to);
2856
2857         /* If we were woken (and unqueued), we succeeded, whatever. */
2858         ret = 0;
2859         /* unqueue_me() drops q.key ref */
2860         if (!unqueue_me(&q))
2861                 goto out;
2862         ret = -ETIMEDOUT;
2863         if (to && !to->task)
2864                 goto out;
2865
2866         /*
2867          * We expect signal_pending(current), but we might be the
2868          * victim of a spurious wakeup as well.
2869          */
2870         if (!signal_pending(current))
2871                 goto retry;
2872
2873         ret = -ERESTARTSYS;
2874         if (!abs_time)
2875                 goto out;
2876
2877         restart = &current->restart_block;
2878         restart->futex.uaddr = uaddr;
2879         restart->futex.val = val;
2880         restart->futex.time = *abs_time;
2881         restart->futex.bitset = bitset;
2882         restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2883
2884         ret = set_restart_fn(restart, futex_wait_restart);
2885
2886 out:
2887         if (to) {
2888                 hrtimer_cancel(&to->timer);
2889                 destroy_hrtimer_on_stack(&to->timer);
2890         }
2891         return ret;
2892 }
2893
2894
2895 static long futex_wait_restart(struct restart_block *restart)
2896 {
2897         u32 __user *uaddr = restart->futex.uaddr;
2898         ktime_t t, *tp = NULL;
2899
2900         if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2901                 t = restart->futex.time;
2902                 tp = &t;
2903         }
2904         restart->fn = do_no_restart_syscall;
2905
2906         return (long)futex_wait(uaddr, restart->futex.flags,
2907                                 restart->futex.val, tp, restart->futex.bitset);
2908 }
2909
2910
2911 /*
2912  * Userspace tried a 0 -> TID atomic transition of the futex value
2913  * and failed. The kernel side here does the whole locking operation:
2914  * if there are waiters then it will block as a consequence of relying
2915  * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2916  * a 0 value of the futex too.).
2917  *
2918  * Also serves as futex trylock_pi()'ing, and due semantics.
2919  */
2920 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2921                          ktime_t *time, int trylock)
2922 {
2923         struct hrtimer_sleeper timeout, *to = NULL;
2924         struct task_struct *exiting = NULL;
2925         struct rt_mutex_waiter rt_waiter;
2926         struct futex_hash_bucket *hb;
2927         struct futex_q q = futex_q_init;
2928         int res, ret;
2929
2930         if (!IS_ENABLED(CONFIG_FUTEX_PI))
2931                 return -ENOSYS;
2932
2933         if (refill_pi_state_cache())
2934                 return -ENOMEM;
2935
2936         if (time) {
2937                 to = &timeout;
2938                 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2939                                       HRTIMER_MODE_ABS);
2940                 hrtimer_init_sleeper(to, current);
2941                 hrtimer_set_expires(&to->timer, *time);
2942         }
2943
2944 retry:
2945         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2946         if (unlikely(ret != 0))
2947                 goto out;
2948
2949 retry_private:
2950         hb = queue_lock(&q);
2951
2952         ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2953                                    &exiting, 0);
2954         if (unlikely(ret)) {
2955                 /*
2956                  * Atomic work succeeded and we got the lock,
2957                  * or failed. Either way, we do _not_ block.
2958                  */
2959                 switch (ret) {
2960                 case 1:
2961                         /* We got the lock. */
2962                         ret = 0;
2963                         goto out_unlock_put_key;
2964                 case -EFAULT:
2965                         goto uaddr_faulted;
2966                 case -EBUSY:
2967                 case -EAGAIN:
2968                         /*
2969                          * Two reasons for this:
2970                          * - EBUSY: Task is exiting and we just wait for the
2971                          *   exit to complete.
2972                          * - EAGAIN: The user space value changed.
2973                          */
2974                         queue_unlock(hb);
2975                         put_futex_key(&q.key);
2976                         /*
2977                          * Handle the case where the owner is in the middle of
2978                          * exiting. Wait for the exit to complete otherwise
2979                          * this task might loop forever, aka. live lock.
2980                          */
2981                         wait_for_owner_exiting(ret, exiting);
2982                         cond_resched();
2983                         goto retry;
2984                 default:
2985                         goto out_unlock_put_key;
2986                 }
2987         }
2988
2989         WARN_ON(!q.pi_state);
2990
2991         /*
2992          * Only actually queue now that the atomic ops are done:
2993          */
2994         __queue_me(&q, hb);
2995
2996         if (trylock) {
2997                 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2998                 /* Fixup the trylock return value: */
2999                 ret = ret ? 0 : -EWOULDBLOCK;
3000                 goto no_block;
3001         }
3002
3003         rt_mutex_init_waiter(&rt_waiter);
3004
3005         /*
3006          * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
3007          * hold it while doing rt_mutex_start_proxy(), because then it will
3008          * include hb->lock in the blocking chain, even through we'll not in
3009          * fact hold it while blocking. This will lead it to report -EDEADLK
3010          * and BUG when futex_unlock_pi() interleaves with this.
3011          *
3012          * Therefore acquire wait_lock while holding hb->lock, but drop the
3013          * latter before calling __rt_mutex_start_proxy_lock(). This
3014          * interleaves with futex_unlock_pi() -- which does a similar lock
3015          * handoff -- such that the latter can observe the futex_q::pi_state
3016          * before __rt_mutex_start_proxy_lock() is done.
3017          */
3018         raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
3019         spin_unlock(q.lock_ptr);
3020         /*
3021          * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
3022          * such that futex_unlock_pi() is guaranteed to observe the waiter when
3023          * it sees the futex_q::pi_state.
3024          */
3025         ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
3026         raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
3027
3028         if (ret) {
3029                 if (ret == 1)
3030                         ret = 0;
3031                 goto cleanup;
3032         }
3033
3034         if (unlikely(to))
3035                 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
3036
3037         ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
3038
3039 cleanup:
3040         spin_lock(q.lock_ptr);
3041         /*
3042          * If we failed to acquire the lock (deadlock/signal/timeout), we must
3043          * first acquire the hb->lock before removing the lock from the
3044          * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
3045          * lists consistent.
3046          *
3047          * In particular; it is important that futex_unlock_pi() can not
3048          * observe this inconsistency.
3049          */
3050         if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
3051                 ret = 0;
3052
3053 no_block:
3054         /*
3055          * Fixup the pi_state owner and possibly acquire the lock if we
3056          * haven't already.
3057          */
3058         res = fixup_owner(uaddr, &q, !ret);
3059         /*
3060          * If fixup_owner() returned an error, proprogate that.  If it acquired
3061          * the lock, clear our -ETIMEDOUT or -EINTR.
3062          */
3063         if (res)
3064                 ret = (res < 0) ? res : 0;
3065
3066         /* Unqueue and drop the lock */
3067         unqueue_me_pi(&q);
3068
3069         goto out_put_key;
3070
3071 out_unlock_put_key:
3072         queue_unlock(hb);
3073
3074 out_put_key:
3075         put_futex_key(&q.key);
3076 out:
3077         if (to) {
3078                 hrtimer_cancel(&to->timer);
3079                 destroy_hrtimer_on_stack(&to->timer);
3080         }
3081         return ret != -EINTR ? ret : -ERESTARTNOINTR;
3082
3083 uaddr_faulted:
3084         queue_unlock(hb);
3085
3086         ret = fault_in_user_writeable(uaddr);
3087         if (ret)
3088                 goto out_put_key;
3089
3090         if (!(flags & FLAGS_SHARED))
3091                 goto retry_private;
3092
3093         put_futex_key(&q.key);
3094         goto retry;
3095 }
3096
3097 /*
3098  * Userspace attempted a TID -> 0 atomic transition, and failed.
3099  * This is the in-kernel slowpath: we look up the PI state (if any),
3100  * and do the rt-mutex unlock.
3101  */
3102 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
3103 {
3104         u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3105         union futex_key key = FUTEX_KEY_INIT;
3106         struct futex_hash_bucket *hb;
3107         struct futex_q *top_waiter;
3108         int ret;
3109
3110         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3111                 return -ENOSYS;
3112
3113 retry:
3114         if (get_user(uval, uaddr))
3115                 return -EFAULT;
3116         /*
3117          * We release only a lock we actually own:
3118          */
3119         if ((uval & FUTEX_TID_MASK) != vpid)
3120                 return -EPERM;
3121
3122         ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
3123         if (ret)
3124                 return ret;
3125
3126         hb = hash_futex(&key);
3127         spin_lock(&hb->lock);
3128
3129         /*
3130          * Check waiters first. We do not trust user space values at
3131          * all and we at least want to know if user space fiddled
3132          * with the futex value instead of blindly unlocking.
3133          */
3134         top_waiter = futex_top_waiter(hb, &key);
3135         if (top_waiter) {
3136                 struct futex_pi_state *pi_state = top_waiter->pi_state;
3137
3138                 ret = -EINVAL;
3139                 if (!pi_state)
3140                         goto out_unlock;
3141
3142                 /*
3143                  * If current does not own the pi_state then the futex is
3144                  * inconsistent and user space fiddled with the futex value.
3145                  */
3146                 if (pi_state->owner != current)
3147                         goto out_unlock;
3148
3149                 get_pi_state(pi_state);
3150                 /*
3151                  * By taking wait_lock while still holding hb->lock, we ensure
3152                  * there is no point where we hold neither; and therefore
3153                  * wake_futex_pi() must observe a state consistent with what we
3154                  * observed.
3155                  *
3156                  * In particular; this forces __rt_mutex_start_proxy() to
3157                  * complete such that we're guaranteed to observe the
3158                  * rt_waiter. Also see the WARN in wake_futex_pi().
3159                  */
3160                 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3161                 spin_unlock(&hb->lock);
3162
3163                 /* drops pi_state->pi_mutex.wait_lock */
3164                 ret = wake_futex_pi(uaddr, uval, pi_state);
3165
3166                 put_pi_state(pi_state);
3167
3168                 /*
3169                  * Success, we're done! No tricky corner cases.
3170                  */
3171                 if (!ret)
3172                         goto out_putkey;
3173                 /*
3174                  * The atomic access to the futex value generated a
3175                  * pagefault, so retry the user-access and the wakeup:
3176                  */
3177                 if (ret == -EFAULT)
3178                         goto pi_faulted;
3179                 /*
3180                  * A unconditional UNLOCK_PI op raced against a waiter
3181                  * setting the FUTEX_WAITERS bit. Try again.
3182                  */
3183                 if (ret == -EAGAIN)
3184                         goto pi_retry;
3185                 /*
3186                  * wake_futex_pi has detected invalid state. Tell user
3187                  * space.
3188                  */
3189                 goto out_putkey;
3190         }
3191
3192         /*
3193          * We have no kernel internal state, i.e. no waiters in the
3194          * kernel. Waiters which are about to queue themselves are stuck
3195          * on hb->lock. So we can safely ignore them. We do neither
3196          * preserve the WAITERS bit not the OWNER_DIED one. We are the
3197          * owner.
3198          */
3199         if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3200                 spin_unlock(&hb->lock);
3201                 switch (ret) {
3202                 case -EFAULT:
3203                         goto pi_faulted;
3204
3205                 case -EAGAIN:
3206                         goto pi_retry;
3207
3208                 default:
3209                         WARN_ON_ONCE(1);
3210                         goto out_putkey;
3211                 }
3212         }
3213
3214         /*
3215          * If uval has changed, let user space handle it.
3216          */
3217         ret = (curval == uval) ? 0 : -EAGAIN;
3218
3219 out_unlock:
3220         spin_unlock(&hb->lock);
3221 out_putkey:
3222         put_futex_key(&key);
3223         return ret;
3224
3225 pi_retry:
3226         put_futex_key(&key);
3227         cond_resched();
3228         goto retry;
3229
3230 pi_faulted:
3231         put_futex_key(&key);
3232
3233         ret = fault_in_user_writeable(uaddr);
3234         if (!ret)
3235                 goto retry;
3236
3237         return ret;
3238 }
3239
3240 /**
3241  * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3242  * @hb:         the hash_bucket futex_q was original enqueued on
3243  * @q:          the futex_q woken while waiting to be requeued
3244  * @key2:       the futex_key of the requeue target futex
3245  * @timeout:    the timeout associated with the wait (NULL if none)
3246  *
3247  * Detect if the task was woken on the initial futex as opposed to the requeue
3248  * target futex.  If so, determine if it was a timeout or a signal that caused
3249  * the wakeup and return the appropriate error code to the caller.  Must be
3250  * called with the hb lock held.
3251  *
3252  * Return:
3253  *  -  0 = no early wakeup detected;
3254  *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3255  */
3256 static inline
3257 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3258                                    struct futex_q *q, union futex_key *key2,
3259                                    struct hrtimer_sleeper *timeout)
3260 {
3261         int ret = 0;
3262
3263         /*
3264          * With the hb lock held, we avoid races while we process the wakeup.
3265          * We only need to hold hb (and not hb2) to ensure atomicity as the
3266          * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3267          * It can't be requeued from uaddr2 to something else since we don't
3268          * support a PI aware source futex for requeue.
3269          */
3270         if (!match_futex(&q->key, key2)) {
3271                 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3272                 /*
3273                  * We were woken prior to requeue by a timeout or a signal.
3274                  * Unqueue the futex_q and determine which it was.
3275                  */
3276                 plist_del(&q->list, &hb->chain);
3277                 hb_waiters_dec(hb);
3278
3279                 /* Handle spurious wakeups gracefully */
3280                 ret = -EWOULDBLOCK;
3281                 if (timeout && !timeout->task)
3282                         ret = -ETIMEDOUT;
3283                 else if (signal_pending(current))
3284                         ret = -ERESTARTNOINTR;
3285         }
3286         return ret;
3287 }
3288
3289 /**
3290  * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3291  * @uaddr:      the futex we initially wait on (non-pi)
3292  * @flags:      futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3293  *              the same type, no requeueing from private to shared, etc.
3294  * @val:        the expected value of uaddr
3295  * @abs_time:   absolute timeout
3296  * @bitset:     32 bit wakeup bitset set by userspace, defaults to all
3297  * @uaddr2:     the pi futex we will take prior to returning to user-space
3298  *
3299  * The caller will wait on uaddr and will be requeued by futex_requeue() to
3300  * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3301  * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3302  * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3303  * without one, the pi logic would not know which task to boost/deboost, if
3304  * there was a need to.
3305  *
3306  * We call schedule in futex_wait_queue_me() when we enqueue and return there
3307  * via the following--
3308  * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3309  * 2) wakeup on uaddr2 after a requeue
3310  * 3) signal
3311  * 4) timeout
3312  *
3313  * If 3, cleanup and return -ERESTARTNOINTR.
3314  *
3315  * If 2, we may then block on trying to take the rt_mutex and return via:
3316  * 5) successful lock
3317  * 6) signal
3318  * 7) timeout
3319  * 8) other lock acquisition failure
3320  *
3321  * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3322  *
3323  * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3324  *
3325  * Return:
3326  *  -  0 - On success;
3327  *  - <0 - On error
3328  */
3329 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3330                                  u32 val, ktime_t *abs_time, u32 bitset,
3331                                  u32 __user *uaddr2)
3332 {
3333         struct hrtimer_sleeper timeout, *to = NULL;
3334         struct rt_mutex_waiter rt_waiter;
3335         struct futex_hash_bucket *hb;
3336         union futex_key key2 = FUTEX_KEY_INIT;
3337         struct futex_q q = futex_q_init;
3338         int res, ret;
3339
3340         if (!IS_ENABLED(CONFIG_FUTEX_PI))
3341                 return -ENOSYS;
3342
3343         if (uaddr == uaddr2)
3344                 return -EINVAL;
3345
3346         if (!bitset)
3347                 return -EINVAL;
3348
3349         if (abs_time) {
3350                 to = &timeout;
3351                 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3352                                       CLOCK_REALTIME : CLOCK_MONOTONIC,
3353                                       HRTIMER_MODE_ABS);
3354                 hrtimer_init_sleeper(to, current);
3355                 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3356                                              current->timer_slack_ns);
3357         }
3358
3359         /*
3360          * The waiter is allocated on our stack, manipulated by the requeue
3361          * code while we sleep on uaddr.
3362          */
3363         rt_mutex_init_waiter(&rt_waiter);
3364
3365         ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3366         if (unlikely(ret != 0))
3367                 goto out;
3368
3369         q.bitset = bitset;
3370         q.rt_waiter = &rt_waiter;
3371         q.requeue_pi_key = &key2;
3372
3373         /*
3374          * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3375          * count.
3376          */
3377         ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3378         if (ret)
3379                 goto out_key2;
3380
3381         /*
3382          * The check above which compares uaddrs is not sufficient for
3383          * shared futexes. We need to compare the keys:
3384          */
3385         if (match_futex(&q.key, &key2)) {
3386                 queue_unlock(hb);
3387                 ret = -EINVAL;
3388                 goto out_put_keys;
3389         }
3390
3391         /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3392         futex_wait_queue_me(hb, &q, to);
3393
3394         spin_lock(&hb->lock);
3395         ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3396         spin_unlock(&hb->lock);
3397         if (ret)
3398                 goto out_put_keys;
3399
3400         /*
3401          * In order for us to be here, we know our q.key == key2, and since
3402          * we took the hb->lock above, we also know that futex_requeue() has
3403          * completed and we no longer have to concern ourselves with a wakeup
3404          * race with the atomic proxy lock acquisition by the requeue code. The
3405          * futex_requeue dropped our key1 reference and incremented our key2
3406          * reference count.
3407          */
3408
3409         /* Check if the requeue code acquired the second futex for us. */
3410         if (!q.rt_waiter) {
3411                 /*
3412                  * Got the lock. We might not be the anticipated owner if we
3413                  * did a lock-steal - fix up the PI-state in that case.
3414                  */
3415                 if (q.pi_state && (q.pi_state->owner != current)) {
3416                         spin_lock(q.lock_ptr);
3417                         ret = fixup_pi_state_owner(uaddr2, &q, current);
3418                         /*
3419                          * Drop the reference to the pi state which
3420                          * the requeue_pi() code acquired for us.
3421                          */
3422                         put_pi_state(q.pi_state);
3423                         spin_unlock(q.lock_ptr);
3424                         /*
3425                          * Adjust the return value. It's either -EFAULT or
3426                          * success (1) but the caller expects 0 for success.
3427                          */
3428                         ret = ret < 0 ? ret : 0;
3429                 }
3430         } else {
3431                 struct rt_mutex *pi_mutex;
3432
3433                 /*
3434                  * We have been woken up by futex_unlock_pi(), a timeout, or a
3435                  * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3436                  * the pi_state.
3437                  */
3438                 WARN_ON(!q.pi_state);
3439                 pi_mutex = &q.pi_state->pi_mutex;
3440                 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3441
3442                 spin_lock(q.lock_ptr);
3443                 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3444                         ret = 0;
3445
3446                 debug_rt_mutex_free_waiter(&rt_waiter);
3447                 /*
3448                  * Fixup the pi_state owner and possibly acquire the lock if we
3449                  * haven't already.
3450                  */
3451                 res = fixup_owner(uaddr2, &q, !ret);
3452                 /*
3453                  * If fixup_owner() returned an error, proprogate that.  If it
3454                  * acquired the lock, clear -ETIMEDOUT or -EINTR.
3455                  */
3456                 if (res)
3457                         ret = (res < 0) ? res : 0;
3458
3459                 /* Unqueue and drop the lock. */
3460                 unqueue_me_pi(&q);
3461         }
3462
3463         if (ret == -EINTR) {
3464                 /*
3465                  * We've already been requeued, but cannot restart by calling
3466                  * futex_lock_pi() directly. We could restart this syscall, but
3467                  * it would detect that the user space "val" changed and return
3468                  * -EWOULDBLOCK.  Save the overhead of the restart and return
3469                  * -EWOULDBLOCK directly.
3470                  */
3471                 ret = -EWOULDBLOCK;
3472         }
3473
3474 out_put_keys:
3475         put_futex_key(&q.key);
3476 out_key2:
3477         put_futex_key(&key2);
3478
3479 out:
3480         if (to) {
3481                 hrtimer_cancel(&to->timer);
3482                 destroy_hrtimer_on_stack(&to->timer);
3483         }
3484         return ret;
3485 }
3486
3487 /*
3488  * Support for robust futexes: the kernel cleans up held futexes at
3489  * thread exit time.
3490  *
3491  * Implementation: user-space maintains a per-thread list of locks it
3492  * is holding. Upon do_exit(), the kernel carefully walks this list,
3493  * and marks all locks that are owned by this thread with the
3494  * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3495  * always manipulated with the lock held, so the list is private and
3496  * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3497  * field, to allow the kernel to clean up if the thread dies after
3498  * acquiring the lock, but just before it could have added itself to
3499  * the list. There can only be one such pending lock.
3500  */
3501
3502 /**
3503  * sys_set_robust_list() - Set the robust-futex list head of a task
3504  * @head:       pointer to the list-head
3505  * @len:        length of the list-head, as userspace expects
3506  */
3507 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3508                 size_t, len)
3509 {
3510         if (!futex_cmpxchg_enabled)
3511                 return -ENOSYS;
3512         /*
3513          * The kernel knows only one size for now:
3514          */
3515         if (unlikely(len != sizeof(*head)))
3516                 return -EINVAL;
3517
3518         current->robust_list = head;
3519
3520         return 0;
3521 }
3522
3523 /**
3524  * sys_get_robust_list() - Get the robust-futex list head of a task
3525  * @pid:        pid of the process [zero for current task]
3526  * @head_ptr:   pointer to a list-head pointer, the kernel fills it in
3527  * @len_ptr:    pointer to a length field, the kernel fills in the header size
3528  */
3529 SYSCALL_DEFINE3(get_robust_list, int, pid,
3530                 struct robust_list_head __user * __user *, head_ptr,
3531                 size_t __user *, len_ptr)
3532 {
3533         struct robust_list_head __user *head;
3534         unsigned long ret;
3535         struct task_struct *p;
3536
3537         if (!futex_cmpxchg_enabled)
3538                 return -ENOSYS;
3539
3540         rcu_read_lock();
3541
3542         ret = -ESRCH;
3543         if (!pid)
3544                 p = current;
3545         else {
3546                 p = find_task_by_vpid(pid);
3547                 if (!p)
3548                         goto err_unlock;
3549         }
3550
3551         ret = -EPERM;
3552         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3553                 goto err_unlock;
3554
3555         head = p->robust_list;
3556         rcu_read_unlock();
3557
3558         if (put_user(sizeof(*head), len_ptr))
3559                 return -EFAULT;
3560         return put_user(head, head_ptr);
3561
3562 err_unlock:
3563         rcu_read_unlock();
3564
3565         return ret;
3566 }
3567
3568 /* Constants for the pending_op argument of handle_futex_death */
3569 #define HANDLE_DEATH_PENDING    true
3570 #define HANDLE_DEATH_LIST       false
3571
3572 /*
3573  * Process a futex-list entry, check whether it's owned by the
3574  * dying task, and do notification if so:
3575  */
3576 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3577                               bool pi, bool pending_op)
3578 {
3579         u32 uval, uninitialized_var(nval), mval;
3580         int err;
3581
3582         /* Futex address must be 32bit aligned */
3583         if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3584                 return -1;
3585
3586 retry:
3587         if (get_user(uval, uaddr))
3588                 return -1;
3589
3590         /*
3591          * Special case for regular (non PI) futexes. The unlock path in
3592          * user space has two race scenarios:
3593          *
3594          * 1. The unlock path releases the user space futex value and
3595          *    before it can execute the futex() syscall to wake up
3596          *    waiters it is killed.
3597          *
3598          * 2. A woken up waiter is killed before it can acquire the
3599          *    futex in user space.
3600          *
3601          * In both cases the TID validation below prevents a wakeup of
3602          * potential waiters which can cause these waiters to block
3603          * forever.
3604          *
3605          * In both cases the following conditions are met:
3606          *
3607          *      1) task->robust_list->list_op_pending != NULL
3608          *         @pending_op == true
3609          *      2) User space futex value == 0
3610          *      3) Regular futex: @pi == false
3611          *
3612          * If these conditions are met, it is safe to attempt waking up a
3613          * potential waiter without touching the user space futex value and
3614          * trying to set the OWNER_DIED bit. The user space futex value is
3615          * uncontended and the rest of the user space mutex state is
3616          * consistent, so a woken waiter will just take over the
3617          * uncontended futex. Setting the OWNER_DIED bit would create
3618          * inconsistent state and malfunction of the user space owner died
3619          * handling.
3620          */
3621         if (pending_op && !pi && !uval) {
3622                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3623                 return 0;
3624         }
3625
3626         if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3627                 return 0;
3628
3629         /*
3630          * Ok, this dying thread is truly holding a futex
3631          * of interest. Set the OWNER_DIED bit atomically
3632          * via cmpxchg, and if the value had FUTEX_WAITERS
3633          * set, wake up a waiter (if any). (We have to do a
3634          * futex_wake() even if OWNER_DIED is already set -
3635          * to handle the rare but possible case of recursive
3636          * thread-death.) The rest of the cleanup is done in
3637          * userspace.
3638          */
3639         mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3640
3641         /*
3642          * We are not holding a lock here, but we want to have
3643          * the pagefault_disable/enable() protection because
3644          * we want to handle the fault gracefully. If the
3645          * access fails we try to fault in the futex with R/W
3646          * verification via get_user_pages. get_user() above
3647          * does not guarantee R/W access. If that fails we
3648          * give up and leave the futex locked.
3649          */
3650         if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3651                 switch (err) {
3652                 case -EFAULT:
3653                         if (fault_in_user_writeable(uaddr))
3654                                 return -1;
3655                         goto retry;
3656
3657                 case -EAGAIN:
3658                         cond_resched();
3659                         goto retry;
3660
3661                 default:
3662                         WARN_ON_ONCE(1);
3663                         return err;
3664                 }
3665         }
3666
3667         if (nval != uval)
3668                 goto retry;
3669
3670         /*
3671          * Wake robust non-PI futexes here. The wakeup of
3672          * PI futexes happens in exit_pi_state():
3673          */
3674         if (!pi && (uval & FUTEX_WAITERS))
3675                 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3676
3677         return 0;
3678 }
3679
3680 /*
3681  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3682  */
3683 static inline int fetch_robust_entry(struct robust_list __user **entry,
3684                                      struct robust_list __user * __user *head,
3685                                      unsigned int *pi)
3686 {
3687         unsigned long uentry;
3688
3689         if (get_user(uentry, (unsigned long __user *)head))
3690                 return -EFAULT;
3691
3692         *entry = (void __user *)(uentry & ~1UL);
3693         *pi = uentry & 1;
3694
3695         return 0;
3696 }
3697
3698 /*
3699  * Walk curr->robust_list (very carefully, it's a userspace list!)
3700  * and mark any locks found there dead, and notify any waiters.
3701  *
3702  * We silently return on any sign of list-walking problem.
3703  */
3704 static void exit_robust_list(struct task_struct *curr)
3705 {
3706         struct robust_list_head __user *head = curr->robust_list;
3707         struct robust_list __user *entry, *next_entry, *pending;
3708         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3709         unsigned int uninitialized_var(next_pi);
3710         unsigned long futex_offset;
3711         int rc;
3712
3713         if (!futex_cmpxchg_enabled)
3714                 return;
3715
3716         /*
3717          * Fetch the list head (which was registered earlier, via
3718          * sys_set_robust_list()):
3719          */
3720         if (fetch_robust_entry(&entry, &head->list.next, &pi))
3721                 return;
3722         /*
3723          * Fetch the relative futex offset:
3724          */
3725         if (get_user(futex_offset, &head->futex_offset))
3726                 return;
3727         /*
3728          * Fetch any possibly pending lock-add first, and handle it
3729          * if it exists:
3730          */
3731         if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3732                 return;
3733
3734         next_entry = NULL;      /* avoid warning with gcc */
3735         while (entry != &head->list) {
3736                 /*
3737                  * Fetch the next entry in the list before calling
3738                  * handle_futex_death:
3739                  */
3740                 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3741                 /*
3742                  * A pending lock might already be on the list, so
3743                  * don't process it twice:
3744                  */
3745                 if (entry != pending) {
3746                         if (handle_futex_death((void __user *)entry + futex_offset,
3747                                                 curr, pi, HANDLE_DEATH_LIST))
3748                                 return;
3749                 }
3750                 if (rc)
3751                         return;
3752                 entry = next_entry;
3753                 pi = next_pi;
3754                 /*
3755                  * Avoid excessively long or circular lists:
3756                  */
3757                 if (!--limit)
3758                         break;
3759
3760                 cond_resched();
3761         }
3762
3763         if (pending) {
3764                 handle_futex_death((void __user *)pending + futex_offset,
3765                                    curr, pip, HANDLE_DEATH_PENDING);
3766         }
3767 }
3768
3769 static void futex_cleanup(struct task_struct *tsk)
3770 {
3771         if (unlikely(tsk->robust_list)) {
3772                 exit_robust_list(tsk);
3773                 tsk->robust_list = NULL;
3774         }
3775
3776 #ifdef CONFIG_COMPAT
3777         if (unlikely(tsk->compat_robust_list)) {
3778                 compat_exit_robust_list(tsk);
3779                 tsk->compat_robust_list = NULL;
3780         }
3781 #endif
3782
3783         if (unlikely(!list_empty(&tsk->pi_state_list)))
3784                 exit_pi_state_list(tsk);
3785 }
3786
3787 /**
3788  * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3789  * @tsk:        task to set the state on
3790  *
3791  * Set the futex exit state of the task lockless. The futex waiter code
3792  * observes that state when a task is exiting and loops until the task has
3793  * actually finished the futex cleanup. The worst case for this is that the
3794  * waiter runs through the wait loop until the state becomes visible.
3795  *
3796  * This is called from the recursive fault handling path in do_exit().
3797  *
3798  * This is best effort. Either the futex exit code has run already or
3799  * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3800  * take it over. If not, the problem is pushed back to user space. If the
3801  * futex exit code did not run yet, then an already queued waiter might
3802  * block forever, but there is nothing which can be done about that.
3803  */
3804 void futex_exit_recursive(struct task_struct *tsk)
3805 {
3806         /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3807         if (tsk->futex_state == FUTEX_STATE_EXITING)
3808                 mutex_unlock(&tsk->futex_exit_mutex);
3809         tsk->futex_state = FUTEX_STATE_DEAD;
3810 }
3811
3812 static void futex_cleanup_begin(struct task_struct *tsk)
3813 {
3814         /*
3815          * Prevent various race issues against a concurrent incoming waiter
3816          * including live locks by forcing the waiter to block on
3817          * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3818          * attach_to_pi_owner().
3819          */
3820         mutex_lock(&tsk->futex_exit_mutex);
3821
3822         /*
3823          * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3824          *
3825          * This ensures that all subsequent checks of tsk->futex_state in
3826          * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3827          * tsk->pi_lock held.
3828          *
3829          * It guarantees also that a pi_state which was queued right before
3830          * the state change under tsk->pi_lock by a concurrent waiter must
3831          * be observed in exit_pi_state_list().
3832          */
3833         raw_spin_lock_irq(&tsk->pi_lock);
3834         tsk->futex_state = FUTEX_STATE_EXITING;
3835         raw_spin_unlock_irq(&tsk->pi_lock);
3836 }
3837
3838 static void futex_cleanup_end(struct task_struct *tsk, int state)
3839 {
3840         /*
3841          * Lockless store. The only side effect is that an observer might
3842          * take another loop until it becomes visible.
3843          */
3844         tsk->futex_state = state;
3845         /*
3846          * Drop the exit protection. This unblocks waiters which observed
3847          * FUTEX_STATE_EXITING to reevaluate the state.
3848          */
3849         mutex_unlock(&tsk->futex_exit_mutex);
3850 }
3851
3852 void futex_exec_release(struct task_struct *tsk)
3853 {
3854         /*
3855          * The state handling is done for consistency, but in the case of
3856          * exec() there is no way to prevent futher damage as the PID stays
3857          * the same. But for the unlikely and arguably buggy case that a
3858          * futex is held on exec(), this provides at least as much state
3859          * consistency protection which is possible.
3860          */
3861         futex_cleanup_begin(tsk);
3862         futex_cleanup(tsk);
3863         /*
3864          * Reset the state to FUTEX_STATE_OK. The task is alive and about
3865          * exec a new binary.
3866          */
3867         futex_cleanup_end(tsk, FUTEX_STATE_OK);
3868 }
3869
3870 void futex_exit_release(struct task_struct *tsk)
3871 {
3872         futex_cleanup_begin(tsk);
3873         futex_cleanup(tsk);
3874         futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3875 }
3876
3877 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3878                 u32 __user *uaddr2, u32 val2, u32 val3)
3879 {
3880         int cmd = op & FUTEX_CMD_MASK;
3881         unsigned int flags = 0;
3882
3883         if (!(op & FUTEX_PRIVATE_FLAG))
3884                 flags |= FLAGS_SHARED;
3885
3886         if (op & FUTEX_CLOCK_REALTIME) {
3887                 flags |= FLAGS_CLOCKRT;
3888                 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
3889                         return -ENOSYS;
3890         }
3891
3892         switch (cmd) {
3893         case FUTEX_LOCK_PI:
3894         case FUTEX_UNLOCK_PI:
3895         case FUTEX_TRYLOCK_PI:
3896         case FUTEX_WAIT_REQUEUE_PI:
3897         case FUTEX_CMP_REQUEUE_PI:
3898                 if (!futex_cmpxchg_enabled)
3899                         return -ENOSYS;
3900         }
3901
3902         switch (cmd) {
3903         case FUTEX_WAIT:
3904                 val3 = FUTEX_BITSET_MATCH_ANY;
3905         case FUTEX_WAIT_BITSET:
3906                 return futex_wait(uaddr, flags, val, timeout, val3);
3907         case FUTEX_WAKE:
3908                 val3 = FUTEX_BITSET_MATCH_ANY;
3909         case FUTEX_WAKE_BITSET:
3910                 return futex_wake(uaddr, flags, val, val3);
3911         case FUTEX_REQUEUE:
3912                 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3913         case FUTEX_CMP_REQUEUE:
3914                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3915         case FUTEX_WAKE_OP:
3916                 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3917         case FUTEX_LOCK_PI:
3918                 return futex_lock_pi(uaddr, flags, timeout, 0);
3919         case FUTEX_UNLOCK_PI:
3920                 return futex_unlock_pi(uaddr, flags);
3921         case FUTEX_TRYLOCK_PI:
3922                 return futex_lock_pi(uaddr, flags, NULL, 1);
3923         case FUTEX_WAIT_REQUEUE_PI:
3924                 val3 = FUTEX_BITSET_MATCH_ANY;
3925                 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3926                                              uaddr2);
3927         case FUTEX_CMP_REQUEUE_PI:
3928                 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3929         }
3930         return -ENOSYS;
3931 }
3932
3933
3934 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3935                 struct timespec __user *, utime, u32 __user *, uaddr2,
3936                 u32, val3)
3937 {
3938         struct timespec ts;
3939         ktime_t t, *tp = NULL;
3940         u32 val2 = 0;
3941         int cmd = op & FUTEX_CMD_MASK;
3942
3943         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3944                       cmd == FUTEX_WAIT_BITSET ||
3945                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
3946                 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3947                         return -EFAULT;
3948                 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3949                         return -EFAULT;
3950                 if (!timespec_valid(&ts))
3951                         return -EINVAL;
3952
3953                 t = timespec_to_ktime(ts);
3954                 if (cmd == FUTEX_WAIT)
3955                         t = ktime_add_safe(ktime_get(), t);
3956                 tp = &t;
3957         }
3958         /*
3959          * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3960          * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3961          */
3962         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3963             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3964                 val2 = (u32) (unsigned long) utime;
3965
3966         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3967 }
3968
3969 #ifdef CONFIG_COMPAT
3970 /*
3971  * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3972  */
3973 static inline int
3974 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3975                    compat_uptr_t __user *head, unsigned int *pi)
3976 {
3977         if (get_user(*uentry, head))
3978                 return -EFAULT;
3979
3980         *entry = compat_ptr((*uentry) & ~1);
3981         *pi = (unsigned int)(*uentry) & 1;
3982
3983         return 0;
3984 }
3985
3986 static void __user *futex_uaddr(struct robust_list __user *entry,
3987                                 compat_long_t futex_offset)
3988 {
3989         compat_uptr_t base = ptr_to_compat(entry);
3990         void __user *uaddr = compat_ptr(base + futex_offset);
3991
3992         return uaddr;
3993 }
3994
3995 /*
3996  * Walk curr->robust_list (very carefully, it's a userspace list!)
3997  * and mark any locks found there dead, and notify any waiters.
3998  *
3999  * We silently return on any sign of list-walking problem.
4000  */
4001 static void compat_exit_robust_list(struct task_struct *curr)
4002 {
4003         struct compat_robust_list_head __user *head = curr->compat_robust_list;
4004         struct robust_list __user *entry, *next_entry, *pending;
4005         unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
4006         unsigned int uninitialized_var(next_pi);
4007         compat_uptr_t uentry, next_uentry, upending;
4008         compat_long_t futex_offset;
4009         int rc;
4010
4011         if (!futex_cmpxchg_enabled)
4012                 return;
4013
4014         /*
4015          * Fetch the list head (which was registered earlier, via
4016          * sys_set_robust_list()):
4017          */
4018         if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
4019                 return;
4020         /*
4021          * Fetch the relative futex offset:
4022          */
4023         if (get_user(futex_offset, &head->futex_offset))
4024                 return;
4025         /*
4026          * Fetch any possibly pending lock-add first, and handle it
4027          * if it exists:
4028          */
4029         if (compat_fetch_robust_entry(&upending, &pending,
4030                                &head->list_op_pending, &pip))
4031                 return;
4032
4033         next_entry = NULL;      /* avoid warning with gcc */
4034         while (entry != (struct robust_list __user *) &head->list) {
4035                 /*
4036                  * Fetch the next entry in the list before calling
4037                  * handle_futex_death:
4038                  */
4039                 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
4040                         (compat_uptr_t __user *)&entry->next, &next_pi);
4041                 /*
4042                  * A pending lock might already be on the list, so
4043                  * dont process it twice:
4044                  */
4045                 if (entry != pending) {
4046                         void __user *uaddr = futex_uaddr(entry, futex_offset);
4047
4048                         if (handle_futex_death(uaddr, curr, pi,
4049                                                HANDLE_DEATH_LIST))
4050                                 return;
4051                 }
4052                 if (rc)
4053                         return;
4054                 uentry = next_uentry;
4055                 entry = next_entry;
4056                 pi = next_pi;
4057                 /*
4058                  * Avoid excessively long or circular lists:
4059                  */
4060                 if (!--limit)
4061                         break;
4062
4063                 cond_resched();
4064         }
4065         if (pending) {
4066                 void __user *uaddr = futex_uaddr(pending, futex_offset);
4067
4068                 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
4069         }
4070 }
4071
4072 COMPAT_SYSCALL_DEFINE2(set_robust_list,
4073                 struct compat_robust_list_head __user *, head,
4074                 compat_size_t, len)
4075 {
4076         if (!futex_cmpxchg_enabled)
4077                 return -ENOSYS;
4078
4079         if (unlikely(len != sizeof(*head)))
4080                 return -EINVAL;
4081
4082         current->compat_robust_list = head;
4083
4084         return 0;
4085 }
4086
4087 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
4088                         compat_uptr_t __user *, head_ptr,
4089                         compat_size_t __user *, len_ptr)
4090 {
4091         struct compat_robust_list_head __user *head;
4092         unsigned long ret;
4093         struct task_struct *p;
4094
4095         if (!futex_cmpxchg_enabled)
4096                 return -ENOSYS;
4097
4098         rcu_read_lock();
4099
4100         ret = -ESRCH;
4101         if (!pid)
4102                 p = current;
4103         else {
4104                 p = find_task_by_vpid(pid);
4105                 if (!p)
4106                         goto err_unlock;
4107         }
4108
4109         ret = -EPERM;
4110         if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4111                 goto err_unlock;
4112
4113         head = p->compat_robust_list;
4114         rcu_read_unlock();
4115
4116         if (put_user(sizeof(*head), len_ptr))
4117                 return -EFAULT;
4118         return put_user(ptr_to_compat(head), head_ptr);
4119
4120 err_unlock:
4121         rcu_read_unlock();
4122
4123         return ret;
4124 }
4125
4126 COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
4127                 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
4128                 u32, val3)
4129 {
4130         struct timespec ts;
4131         ktime_t t, *tp = NULL;
4132         int val2 = 0;
4133         int cmd = op & FUTEX_CMD_MASK;
4134
4135         if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4136                       cmd == FUTEX_WAIT_BITSET ||
4137                       cmd == FUTEX_WAIT_REQUEUE_PI)) {
4138                 if (compat_get_timespec(&ts, utime))
4139                         return -EFAULT;
4140                 if (!timespec_valid(&ts))
4141                         return -EINVAL;
4142
4143                 t = timespec_to_ktime(ts);
4144                 if (cmd == FUTEX_WAIT)
4145                         t = ktime_add_safe(ktime_get(), t);
4146                 tp = &t;
4147         }
4148         if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4149             cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4150                 val2 = (int) (unsigned long) utime;
4151
4152         return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4153 }
4154 #endif /* CONFIG_COMPAT */
4155
4156 static void __init futex_detect_cmpxchg(void)
4157 {
4158 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4159         u32 curval;
4160
4161         /*
4162          * This will fail and we want it. Some arch implementations do
4163          * runtime detection of the futex_atomic_cmpxchg_inatomic()
4164          * functionality. We want to know that before we call in any
4165          * of the complex code paths. Also we want to prevent
4166          * registration of robust lists in that case. NULL is
4167          * guaranteed to fault and we get -EFAULT on functional
4168          * implementation, the non-functional ones will return
4169          * -ENOSYS.
4170          */
4171         if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4172                 futex_cmpxchg_enabled = 1;
4173 #endif
4174 }
4175
4176 static int __init futex_init(void)
4177 {
4178         unsigned int futex_shift;
4179         unsigned long i;
4180
4181 #if CONFIG_BASE_SMALL
4182         futex_hashsize = 16;
4183 #else
4184         futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4185 #endif
4186
4187         futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4188                                                futex_hashsize, 0,
4189                                                futex_hashsize < 256 ? HASH_SMALL : 0,
4190                                                &futex_shift, NULL,
4191                                                futex_hashsize, futex_hashsize);
4192         futex_hashsize = 1UL << futex_shift;
4193
4194         futex_detect_cmpxchg();
4195
4196         for (i = 0; i < futex_hashsize; i++) {
4197                 atomic_set(&futex_queues[i].waiters, 0);
4198                 plist_head_init(&futex_queues[i].chain);
4199                 spin_lock_init(&futex_queues[i].lock);
4200         }
4201
4202         return 0;
4203 }
4204 core_initcall(futex_init);