GNU Linux-libre 4.14.266-gnu1
[releases.git] / kernel / kexec_file.c
1 /*
2  * kexec: kexec_file_load system call
3  *
4  * Copyright (C) 2014 Red Hat Inc.
5  * Authors:
6  *      Vivek Goyal <vgoyal@redhat.com>
7  *
8  * This source code is licensed under the GNU General Public License,
9  * Version 2.  See the file COPYING for more details.
10  */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/capability.h>
15 #include <linux/mm.h>
16 #include <linux/file.h>
17 #include <linux/slab.h>
18 #include <linux/kexec.h>
19 #include <linux/mutex.h>
20 #include <linux/list.h>
21 #include <linux/fs.h>
22 #include <linux/ima.h>
23 #include <crypto/hash.h>
24 #include <crypto/sha.h>
25 #include <linux/syscalls.h>
26 #include <linux/vmalloc.h>
27 #include "kexec_internal.h"
28
29 static int kexec_calculate_store_digests(struct kimage *image);
30
31 /* Architectures can provide this probe function */
32 int __weak arch_kexec_kernel_image_probe(struct kimage *image, void *buf,
33                                          unsigned long buf_len)
34 {
35         return -ENOEXEC;
36 }
37
38 void * __weak arch_kexec_kernel_image_load(struct kimage *image)
39 {
40         return ERR_PTR(-ENOEXEC);
41 }
42
43 int __weak arch_kimage_file_post_load_cleanup(struct kimage *image)
44 {
45         return -EINVAL;
46 }
47
48 #ifdef CONFIG_KEXEC_VERIFY_SIG
49 int __weak arch_kexec_kernel_verify_sig(struct kimage *image, void *buf,
50                                         unsigned long buf_len)
51 {
52         return -EKEYREJECTED;
53 }
54 #endif
55
56 /* Apply relocations of type RELA */
57 int __weak
58 arch_kexec_apply_relocations_add(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
59                                  unsigned int relsec)
60 {
61         pr_err("RELA relocation unsupported.\n");
62         return -ENOEXEC;
63 }
64
65 /* Apply relocations of type REL */
66 int __weak
67 arch_kexec_apply_relocations(const Elf_Ehdr *ehdr, Elf_Shdr *sechdrs,
68                              unsigned int relsec)
69 {
70         pr_err("REL relocation unsupported.\n");
71         return -ENOEXEC;
72 }
73
74 /*
75  * Free up memory used by kernel, initrd, and command line. This is temporary
76  * memory allocation which is not needed any more after these buffers have
77  * been loaded into separate segments and have been copied elsewhere.
78  */
79 void kimage_file_post_load_cleanup(struct kimage *image)
80 {
81         struct purgatory_info *pi = &image->purgatory_info;
82
83         vfree(image->kernel_buf);
84         image->kernel_buf = NULL;
85
86         vfree(image->initrd_buf);
87         image->initrd_buf = NULL;
88
89         kfree(image->cmdline_buf);
90         image->cmdline_buf = NULL;
91
92         vfree(pi->purgatory_buf);
93         pi->purgatory_buf = NULL;
94
95         vfree(pi->sechdrs);
96         pi->sechdrs = NULL;
97
98 #ifdef CONFIG_IMA_KEXEC
99         vfree(image->ima_buffer);
100         image->ima_buffer = NULL;
101 #endif /* CONFIG_IMA_KEXEC */
102
103         /* See if architecture has anything to cleanup post load */
104         arch_kimage_file_post_load_cleanup(image);
105
106         /*
107          * Above call should have called into bootloader to free up
108          * any data stored in kimage->image_loader_data. It should
109          * be ok now to free it up.
110          */
111         kfree(image->image_loader_data);
112         image->image_loader_data = NULL;
113 }
114
115 /*
116  * In file mode list of segments is prepared by kernel. Copy relevant
117  * data from user space, do error checking, prepare segment list
118  */
119 static int
120 kimage_file_prepare_segments(struct kimage *image, int kernel_fd, int initrd_fd,
121                              const char __user *cmdline_ptr,
122                              unsigned long cmdline_len, unsigned flags)
123 {
124         int ret = 0;
125         void *ldata;
126         loff_t size;
127
128         ret = kernel_read_file_from_fd(kernel_fd, &image->kernel_buf,
129                                        &size, INT_MAX, READING_KEXEC_IMAGE);
130         if (ret)
131                 return ret;
132         image->kernel_buf_len = size;
133
134         /* IMA needs to pass the measurement list to the next kernel. */
135         ima_add_kexec_buffer(image);
136
137         /* Call arch image probe handlers */
138         ret = arch_kexec_kernel_image_probe(image, image->kernel_buf,
139                                             image->kernel_buf_len);
140         if (ret)
141                 goto out;
142
143 #ifdef CONFIG_KEXEC_VERIFY_SIG
144         ret = arch_kexec_kernel_verify_sig(image, image->kernel_buf,
145                                            image->kernel_buf_len);
146         if (ret) {
147                 pr_debug("kernel signature verification failed.\n");
148                 goto out;
149         }
150         pr_debug("kernel signature verification successful.\n");
151 #endif
152         /* It is possible that there no initramfs is being loaded */
153         if (!(flags & KEXEC_FILE_NO_INITRAMFS)) {
154                 ret = kernel_read_file_from_fd(initrd_fd, &image->initrd_buf,
155                                                &size, INT_MAX,
156                                                READING_KEXEC_INITRAMFS);
157                 if (ret)
158                         goto out;
159                 image->initrd_buf_len = size;
160         }
161
162         if (cmdline_len) {
163                 image->cmdline_buf = memdup_user(cmdline_ptr, cmdline_len);
164                 if (IS_ERR(image->cmdline_buf)) {
165                         ret = PTR_ERR(image->cmdline_buf);
166                         image->cmdline_buf = NULL;
167                         goto out;
168                 }
169
170                 image->cmdline_buf_len = cmdline_len;
171
172                 /* command line should be a string with last byte null */
173                 if (image->cmdline_buf[cmdline_len - 1] != '\0') {
174                         ret = -EINVAL;
175                         goto out;
176                 }
177         }
178
179         /* Call arch image load handlers */
180         ldata = arch_kexec_kernel_image_load(image);
181
182         if (IS_ERR(ldata)) {
183                 ret = PTR_ERR(ldata);
184                 goto out;
185         }
186
187         image->image_loader_data = ldata;
188 out:
189         /* In case of error, free up all allocated memory in this function */
190         if (ret)
191                 kimage_file_post_load_cleanup(image);
192         return ret;
193 }
194
195 static int
196 kimage_file_alloc_init(struct kimage **rimage, int kernel_fd,
197                        int initrd_fd, const char __user *cmdline_ptr,
198                        unsigned long cmdline_len, unsigned long flags)
199 {
200         int ret;
201         struct kimage *image;
202         bool kexec_on_panic = flags & KEXEC_FILE_ON_CRASH;
203
204         image = do_kimage_alloc_init();
205         if (!image)
206                 return -ENOMEM;
207
208         image->file_mode = 1;
209
210         if (kexec_on_panic) {
211                 /* Enable special crash kernel control page alloc policy. */
212                 image->control_page = crashk_res.start;
213                 image->type = KEXEC_TYPE_CRASH;
214         }
215
216         ret = kimage_file_prepare_segments(image, kernel_fd, initrd_fd,
217                                            cmdline_ptr, cmdline_len, flags);
218         if (ret)
219                 goto out_free_image;
220
221         ret = sanity_check_segment_list(image);
222         if (ret)
223                 goto out_free_post_load_bufs;
224
225         ret = -ENOMEM;
226         image->control_code_page = kimage_alloc_control_pages(image,
227                                            get_order(KEXEC_CONTROL_PAGE_SIZE));
228         if (!image->control_code_page) {
229                 pr_err("Could not allocate control_code_buffer\n");
230                 goto out_free_post_load_bufs;
231         }
232
233         if (!kexec_on_panic) {
234                 image->swap_page = kimage_alloc_control_pages(image, 0);
235                 if (!image->swap_page) {
236                         pr_err("Could not allocate swap buffer\n");
237                         goto out_free_control_pages;
238                 }
239         }
240
241         *rimage = image;
242         return 0;
243 out_free_control_pages:
244         kimage_free_page_list(&image->control_pages);
245 out_free_post_load_bufs:
246         kimage_file_post_load_cleanup(image);
247 out_free_image:
248         kfree(image);
249         return ret;
250 }
251
252 SYSCALL_DEFINE5(kexec_file_load, int, kernel_fd, int, initrd_fd,
253                 unsigned long, cmdline_len, const char __user *, cmdline_ptr,
254                 unsigned long, flags)
255 {
256         int ret = 0, i;
257         struct kimage **dest_image, *image;
258
259         /* We only trust the superuser with rebooting the system. */
260         if (!capable(CAP_SYS_BOOT) || kexec_load_disabled)
261                 return -EPERM;
262
263         /* Make sure we have a legal set of flags */
264         if (flags != (flags & KEXEC_FILE_FLAGS))
265                 return -EINVAL;
266
267         image = NULL;
268
269         if (!mutex_trylock(&kexec_mutex))
270                 return -EBUSY;
271
272         dest_image = &kexec_image;
273         if (flags & KEXEC_FILE_ON_CRASH) {
274                 dest_image = &kexec_crash_image;
275                 if (kexec_crash_image)
276                         arch_kexec_unprotect_crashkres();
277         }
278
279         if (flags & KEXEC_FILE_UNLOAD)
280                 goto exchange;
281
282         /*
283          * In case of crash, new kernel gets loaded in reserved region. It is
284          * same memory where old crash kernel might be loaded. Free any
285          * current crash dump kernel before we corrupt it.
286          */
287         if (flags & KEXEC_FILE_ON_CRASH)
288                 kimage_free(xchg(&kexec_crash_image, NULL));
289
290         ret = kimage_file_alloc_init(&image, kernel_fd, initrd_fd, cmdline_ptr,
291                                      cmdline_len, flags);
292         if (ret)
293                 goto out;
294
295         ret = machine_kexec_prepare(image);
296         if (ret)
297                 goto out;
298
299         /*
300          * Some architecture(like S390) may touch the crash memory before
301          * machine_kexec_prepare(), we must copy vmcoreinfo data after it.
302          */
303         ret = kimage_crash_copy_vmcoreinfo(image);
304         if (ret)
305                 goto out;
306
307         ret = kexec_calculate_store_digests(image);
308         if (ret)
309                 goto out;
310
311         for (i = 0; i < image->nr_segments; i++) {
312                 struct kexec_segment *ksegment;
313
314                 ksegment = &image->segment[i];
315                 pr_debug("Loading segment %d: buf=0x%p bufsz=0x%zx mem=0x%lx memsz=0x%zx\n",
316                          i, ksegment->buf, ksegment->bufsz, ksegment->mem,
317                          ksegment->memsz);
318
319                 ret = kimage_load_segment(image, &image->segment[i]);
320                 if (ret)
321                         goto out;
322         }
323
324         kimage_terminate(image);
325
326         /*
327          * Free up any temporary buffers allocated which are not needed
328          * after image has been loaded
329          */
330         kimage_file_post_load_cleanup(image);
331 exchange:
332         image = xchg(dest_image, image);
333 out:
334         if ((flags & KEXEC_FILE_ON_CRASH) && kexec_crash_image)
335                 arch_kexec_protect_crashkres();
336
337         mutex_unlock(&kexec_mutex);
338         kimage_free(image);
339         return ret;
340 }
341
342 static int locate_mem_hole_top_down(unsigned long start, unsigned long end,
343                                     struct kexec_buf *kbuf)
344 {
345         struct kimage *image = kbuf->image;
346         unsigned long temp_start, temp_end;
347
348         temp_end = min(end, kbuf->buf_max);
349         temp_start = temp_end - kbuf->memsz;
350
351         do {
352                 /* align down start */
353                 temp_start = temp_start & (~(kbuf->buf_align - 1));
354
355                 if (temp_start < start || temp_start < kbuf->buf_min)
356                         return 0;
357
358                 temp_end = temp_start + kbuf->memsz - 1;
359
360                 /*
361                  * Make sure this does not conflict with any of existing
362                  * segments
363                  */
364                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
365                         temp_start = temp_start - PAGE_SIZE;
366                         continue;
367                 }
368
369                 /* We found a suitable memory range */
370                 break;
371         } while (1);
372
373         /* If we are here, we found a suitable memory range */
374         kbuf->mem = temp_start;
375
376         /* Success, stop navigating through remaining System RAM ranges */
377         return 1;
378 }
379
380 static int locate_mem_hole_bottom_up(unsigned long start, unsigned long end,
381                                      struct kexec_buf *kbuf)
382 {
383         struct kimage *image = kbuf->image;
384         unsigned long temp_start, temp_end;
385
386         temp_start = max(start, kbuf->buf_min);
387
388         do {
389                 temp_start = ALIGN(temp_start, kbuf->buf_align);
390                 temp_end = temp_start + kbuf->memsz - 1;
391
392                 if (temp_end > end || temp_end > kbuf->buf_max)
393                         return 0;
394                 /*
395                  * Make sure this does not conflict with any of existing
396                  * segments
397                  */
398                 if (kimage_is_destination_range(image, temp_start, temp_end)) {
399                         temp_start = temp_start + PAGE_SIZE;
400                         continue;
401                 }
402
403                 /* We found a suitable memory range */
404                 break;
405         } while (1);
406
407         /* If we are here, we found a suitable memory range */
408         kbuf->mem = temp_start;
409
410         /* Success, stop navigating through remaining System RAM ranges */
411         return 1;
412 }
413
414 static int locate_mem_hole_callback(u64 start, u64 end, void *arg)
415 {
416         struct kexec_buf *kbuf = (struct kexec_buf *)arg;
417         unsigned long sz = end - start + 1;
418
419         /* Returning 0 will take to next memory range */
420         if (sz < kbuf->memsz)
421                 return 0;
422
423         if (end < kbuf->buf_min || start > kbuf->buf_max)
424                 return 0;
425
426         /*
427          * Allocate memory top down with-in ram range. Otherwise bottom up
428          * allocation.
429          */
430         if (kbuf->top_down)
431                 return locate_mem_hole_top_down(start, end, kbuf);
432         return locate_mem_hole_bottom_up(start, end, kbuf);
433 }
434
435 /**
436  * arch_kexec_walk_mem - call func(data) on free memory regions
437  * @kbuf:       Context info for the search. Also passed to @func.
438  * @func:       Function to call for each memory region.
439  *
440  * Return: The memory walk will stop when func returns a non-zero value
441  * and that value will be returned. If all free regions are visited without
442  * func returning non-zero, then zero will be returned.
443  */
444 int __weak arch_kexec_walk_mem(struct kexec_buf *kbuf,
445                                int (*func)(u64, u64, void *))
446 {
447         if (kbuf->image->type == KEXEC_TYPE_CRASH)
448                 return walk_iomem_res_desc(crashk_res.desc,
449                                            IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY,
450                                            crashk_res.start, crashk_res.end,
451                                            kbuf, func);
452         else
453                 return walk_system_ram_res(0, ULONG_MAX, kbuf, func);
454 }
455
456 /**
457  * kexec_locate_mem_hole - find free memory for the purgatory or the next kernel
458  * @kbuf:       Parameters for the memory search.
459  *
460  * On success, kbuf->mem will have the start address of the memory region found.
461  *
462  * Return: 0 on success, negative errno on error.
463  */
464 int kexec_locate_mem_hole(struct kexec_buf *kbuf)
465 {
466         int ret;
467
468         ret = arch_kexec_walk_mem(kbuf, locate_mem_hole_callback);
469
470         return ret == 1 ? 0 : -EADDRNOTAVAIL;
471 }
472
473 /**
474  * kexec_add_buffer - place a buffer in a kexec segment
475  * @kbuf:       Buffer contents and memory parameters.
476  *
477  * This function assumes that kexec_mutex is held.
478  * On successful return, @kbuf->mem will have the physical address of
479  * the buffer in memory.
480  *
481  * Return: 0 on success, negative errno on error.
482  */
483 int kexec_add_buffer(struct kexec_buf *kbuf)
484 {
485
486         struct kexec_segment *ksegment;
487         int ret;
488
489         /* Currently adding segment this way is allowed only in file mode */
490         if (!kbuf->image->file_mode)
491                 return -EINVAL;
492
493         if (kbuf->image->nr_segments >= KEXEC_SEGMENT_MAX)
494                 return -EINVAL;
495
496         /*
497          * Make sure we are not trying to add buffer after allocating
498          * control pages. All segments need to be placed first before
499          * any control pages are allocated. As control page allocation
500          * logic goes through list of segments to make sure there are
501          * no destination overlaps.
502          */
503         if (!list_empty(&kbuf->image->control_pages)) {
504                 WARN_ON(1);
505                 return -EINVAL;
506         }
507
508         /* Ensure minimum alignment needed for segments. */
509         kbuf->memsz = ALIGN(kbuf->memsz, PAGE_SIZE);
510         kbuf->buf_align = max(kbuf->buf_align, PAGE_SIZE);
511
512         /* Walk the RAM ranges and allocate a suitable range for the buffer */
513         ret = kexec_locate_mem_hole(kbuf);
514         if (ret)
515                 return ret;
516
517         /* Found a suitable memory range */
518         ksegment = &kbuf->image->segment[kbuf->image->nr_segments];
519         ksegment->kbuf = kbuf->buffer;
520         ksegment->bufsz = kbuf->bufsz;
521         ksegment->mem = kbuf->mem;
522         ksegment->memsz = kbuf->memsz;
523         kbuf->image->nr_segments++;
524         return 0;
525 }
526
527 /* Calculate and store the digest of segments */
528 static int kexec_calculate_store_digests(struct kimage *image)
529 {
530         struct crypto_shash *tfm;
531         struct shash_desc *desc;
532         int ret = 0, i, j, zero_buf_sz, sha_region_sz;
533         size_t desc_size, nullsz;
534         char *digest;
535         void *zero_buf;
536         struct kexec_sha_region *sha_regions;
537         struct purgatory_info *pi = &image->purgatory_info;
538
539         zero_buf = __va(page_to_pfn(ZERO_PAGE(0)) << PAGE_SHIFT);
540         zero_buf_sz = PAGE_SIZE;
541
542         tfm = crypto_alloc_shash("sha256", 0, 0);
543         if (IS_ERR(tfm)) {
544                 ret = PTR_ERR(tfm);
545                 goto out;
546         }
547
548         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
549         desc = kzalloc(desc_size, GFP_KERNEL);
550         if (!desc) {
551                 ret = -ENOMEM;
552                 goto out_free_tfm;
553         }
554
555         sha_region_sz = KEXEC_SEGMENT_MAX * sizeof(struct kexec_sha_region);
556         sha_regions = vzalloc(sha_region_sz);
557         if (!sha_regions) {
558                 ret = -ENOMEM;
559                 goto out_free_desc;
560         }
561
562         desc->tfm   = tfm;
563         desc->flags = 0;
564
565         ret = crypto_shash_init(desc);
566         if (ret < 0)
567                 goto out_free_sha_regions;
568
569         digest = kzalloc(SHA256_DIGEST_SIZE, GFP_KERNEL);
570         if (!digest) {
571                 ret = -ENOMEM;
572                 goto out_free_sha_regions;
573         }
574
575         for (j = i = 0; i < image->nr_segments; i++) {
576                 struct kexec_segment *ksegment;
577
578                 ksegment = &image->segment[i];
579                 /*
580                  * Skip purgatory as it will be modified once we put digest
581                  * info in purgatory.
582                  */
583                 if (ksegment->kbuf == pi->purgatory_buf)
584                         continue;
585
586                 ret = crypto_shash_update(desc, ksegment->kbuf,
587                                           ksegment->bufsz);
588                 if (ret)
589                         break;
590
591                 /*
592                  * Assume rest of the buffer is filled with zero and
593                  * update digest accordingly.
594                  */
595                 nullsz = ksegment->memsz - ksegment->bufsz;
596                 while (nullsz) {
597                         unsigned long bytes = nullsz;
598
599                         if (bytes > zero_buf_sz)
600                                 bytes = zero_buf_sz;
601                         ret = crypto_shash_update(desc, zero_buf, bytes);
602                         if (ret)
603                                 break;
604                         nullsz -= bytes;
605                 }
606
607                 if (ret)
608                         break;
609
610                 sha_regions[j].start = ksegment->mem;
611                 sha_regions[j].len = ksegment->memsz;
612                 j++;
613         }
614
615         if (!ret) {
616                 ret = crypto_shash_final(desc, digest);
617                 if (ret)
618                         goto out_free_digest;
619                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha_regions",
620                                                      sha_regions, sha_region_sz, 0);
621                 if (ret)
622                         goto out_free_digest;
623
624                 ret = kexec_purgatory_get_set_symbol(image, "purgatory_sha256_digest",
625                                                      digest, SHA256_DIGEST_SIZE, 0);
626                 if (ret)
627                         goto out_free_digest;
628         }
629
630 out_free_digest:
631         kfree(digest);
632 out_free_sha_regions:
633         vfree(sha_regions);
634 out_free_desc:
635         kfree(desc);
636 out_free_tfm:
637         kfree(tfm);
638 out:
639         return ret;
640 }
641
642 /* Actually load purgatory. Lot of code taken from kexec-tools */
643 static int __kexec_load_purgatory(struct kimage *image, unsigned long min,
644                                   unsigned long max, int top_down)
645 {
646         struct purgatory_info *pi = &image->purgatory_info;
647         unsigned long align, bss_align, bss_sz, bss_pad;
648         unsigned long entry, load_addr, curr_load_addr, bss_addr, offset;
649         unsigned char *buf_addr, *src;
650         int i, ret = 0, entry_sidx = -1;
651         const Elf_Shdr *sechdrs_c;
652         Elf_Shdr *sechdrs = NULL;
653         struct kexec_buf kbuf = { .image = image, .bufsz = 0, .buf_align = 1,
654                                   .buf_min = min, .buf_max = max,
655                                   .top_down = top_down };
656
657         /*
658          * sechdrs_c points to section headers in purgatory and are read
659          * only. No modifications allowed.
660          */
661         sechdrs_c = (void *)pi->ehdr + pi->ehdr->e_shoff;
662
663         /*
664          * We can not modify sechdrs_c[] and its fields. It is read only.
665          * Copy it over to a local copy where one can store some temporary
666          * data and free it at the end. We need to modify ->sh_addr and
667          * ->sh_offset fields to keep track of permanent and temporary
668          * locations of sections.
669          */
670         sechdrs = vzalloc(pi->ehdr->e_shnum * sizeof(Elf_Shdr));
671         if (!sechdrs)
672                 return -ENOMEM;
673
674         memcpy(sechdrs, sechdrs_c, pi->ehdr->e_shnum * sizeof(Elf_Shdr));
675
676         /*
677          * We seem to have multiple copies of sections. First copy is which
678          * is embedded in kernel in read only section. Some of these sections
679          * will be copied to a temporary buffer and relocated. And these
680          * sections will finally be copied to their final destination at
681          * segment load time.
682          *
683          * Use ->sh_offset to reflect section address in memory. It will
684          * point to original read only copy if section is not allocatable.
685          * Otherwise it will point to temporary copy which will be relocated.
686          *
687          * Use ->sh_addr to contain final address of the section where it
688          * will go during execution time.
689          */
690         for (i = 0; i < pi->ehdr->e_shnum; i++) {
691                 if (sechdrs[i].sh_type == SHT_NOBITS)
692                         continue;
693
694                 sechdrs[i].sh_offset = (unsigned long)pi->ehdr +
695                                                 sechdrs[i].sh_offset;
696         }
697
698         /*
699          * Identify entry point section and make entry relative to section
700          * start.
701          */
702         entry = pi->ehdr->e_entry;
703         for (i = 0; i < pi->ehdr->e_shnum; i++) {
704                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
705                         continue;
706
707                 if (!(sechdrs[i].sh_flags & SHF_EXECINSTR))
708                         continue;
709
710                 /* Make entry section relative */
711                 if (sechdrs[i].sh_addr <= pi->ehdr->e_entry &&
712                     ((sechdrs[i].sh_addr + sechdrs[i].sh_size) >
713                      pi->ehdr->e_entry)) {
714                         entry_sidx = i;
715                         entry -= sechdrs[i].sh_addr;
716                         break;
717                 }
718         }
719
720         /* Determine how much memory is needed to load relocatable object. */
721         bss_align = 1;
722         bss_sz = 0;
723
724         for (i = 0; i < pi->ehdr->e_shnum; i++) {
725                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
726                         continue;
727
728                 align = sechdrs[i].sh_addralign;
729                 if (sechdrs[i].sh_type != SHT_NOBITS) {
730                         if (kbuf.buf_align < align)
731                                 kbuf.buf_align = align;
732                         kbuf.bufsz = ALIGN(kbuf.bufsz, align);
733                         kbuf.bufsz += sechdrs[i].sh_size;
734                 } else {
735                         /* bss section */
736                         if (bss_align < align)
737                                 bss_align = align;
738                         bss_sz = ALIGN(bss_sz, align);
739                         bss_sz += sechdrs[i].sh_size;
740                 }
741         }
742
743         /* Determine the bss padding required to align bss properly */
744         bss_pad = 0;
745         if (kbuf.bufsz & (bss_align - 1))
746                 bss_pad = bss_align - (kbuf.bufsz & (bss_align - 1));
747
748         kbuf.memsz = kbuf.bufsz + bss_pad + bss_sz;
749
750         /* Allocate buffer for purgatory */
751         kbuf.buffer = vzalloc(kbuf.bufsz);
752         if (!kbuf.buffer) {
753                 ret = -ENOMEM;
754                 goto out;
755         }
756
757         if (kbuf.buf_align < bss_align)
758                 kbuf.buf_align = bss_align;
759
760         /* Add buffer to segment list */
761         ret = kexec_add_buffer(&kbuf);
762         if (ret)
763                 goto out;
764         pi->purgatory_load_addr = kbuf.mem;
765
766         /* Load SHF_ALLOC sections */
767         buf_addr = kbuf.buffer;
768         load_addr = curr_load_addr = pi->purgatory_load_addr;
769         bss_addr = load_addr + kbuf.bufsz + bss_pad;
770
771         for (i = 0; i < pi->ehdr->e_shnum; i++) {
772                 if (!(sechdrs[i].sh_flags & SHF_ALLOC))
773                         continue;
774
775                 align = sechdrs[i].sh_addralign;
776                 if (sechdrs[i].sh_type != SHT_NOBITS) {
777                         curr_load_addr = ALIGN(curr_load_addr, align);
778                         offset = curr_load_addr - load_addr;
779                         /* We already modifed ->sh_offset to keep src addr */
780                         src = (char *) sechdrs[i].sh_offset;
781                         memcpy(buf_addr + offset, src, sechdrs[i].sh_size);
782
783                         /* Store load address and source address of section */
784                         sechdrs[i].sh_addr = curr_load_addr;
785
786                         /*
787                          * This section got copied to temporary buffer. Update
788                          * ->sh_offset accordingly.
789                          */
790                         sechdrs[i].sh_offset = (unsigned long)(buf_addr + offset);
791
792                         /* Advance to the next address */
793                         curr_load_addr += sechdrs[i].sh_size;
794                 } else {
795                         bss_addr = ALIGN(bss_addr, align);
796                         sechdrs[i].sh_addr = bss_addr;
797                         bss_addr += sechdrs[i].sh_size;
798                 }
799         }
800
801         /* Update entry point based on load address of text section */
802         if (entry_sidx >= 0)
803                 entry += sechdrs[entry_sidx].sh_addr;
804
805         /* Make kernel jump to purgatory after shutdown */
806         image->start = entry;
807
808         /* Used later to get/set symbol values */
809         pi->sechdrs = sechdrs;
810
811         /*
812          * Used later to identify which section is purgatory and skip it
813          * from checksumming.
814          */
815         pi->purgatory_buf = kbuf.buffer;
816         return ret;
817 out:
818         vfree(sechdrs);
819         vfree(kbuf.buffer);
820         return ret;
821 }
822
823 static int kexec_apply_relocations(struct kimage *image)
824 {
825         int i, ret;
826         struct purgatory_info *pi = &image->purgatory_info;
827         Elf_Shdr *sechdrs = pi->sechdrs;
828
829         /* Apply relocations */
830         for (i = 0; i < pi->ehdr->e_shnum; i++) {
831                 Elf_Shdr *section, *symtab;
832
833                 if (sechdrs[i].sh_type != SHT_RELA &&
834                     sechdrs[i].sh_type != SHT_REL)
835                         continue;
836
837                 /*
838                  * For section of type SHT_RELA/SHT_REL,
839                  * ->sh_link contains section header index of associated
840                  * symbol table. And ->sh_info contains section header
841                  * index of section to which relocations apply.
842                  */
843                 if (sechdrs[i].sh_info >= pi->ehdr->e_shnum ||
844                     sechdrs[i].sh_link >= pi->ehdr->e_shnum)
845                         return -ENOEXEC;
846
847                 section = &sechdrs[sechdrs[i].sh_info];
848                 symtab = &sechdrs[sechdrs[i].sh_link];
849
850                 if (!(section->sh_flags & SHF_ALLOC))
851                         continue;
852
853                 /*
854                  * symtab->sh_link contain section header index of associated
855                  * string table.
856                  */
857                 if (symtab->sh_link >= pi->ehdr->e_shnum)
858                         /* Invalid section number? */
859                         continue;
860
861                 /*
862                  * Respective architecture needs to provide support for applying
863                  * relocations of type SHT_RELA/SHT_REL.
864                  */
865                 if (sechdrs[i].sh_type == SHT_RELA)
866                         ret = arch_kexec_apply_relocations_add(pi->ehdr,
867                                                                sechdrs, i);
868                 else if (sechdrs[i].sh_type == SHT_REL)
869                         ret = arch_kexec_apply_relocations(pi->ehdr,
870                                                            sechdrs, i);
871                 if (ret)
872                         return ret;
873         }
874
875         return 0;
876 }
877
878 /* Load relocatable purgatory object and relocate it appropriately */
879 int kexec_load_purgatory(struct kimage *image, unsigned long min,
880                          unsigned long max, int top_down,
881                          unsigned long *load_addr)
882 {
883         struct purgatory_info *pi = &image->purgatory_info;
884         int ret;
885
886         if (kexec_purgatory_size <= 0)
887                 return -EINVAL;
888
889         if (kexec_purgatory_size < sizeof(Elf_Ehdr))
890                 return -ENOEXEC;
891
892         pi->ehdr = (Elf_Ehdr *)kexec_purgatory;
893
894         if (memcmp(pi->ehdr->e_ident, ELFMAG, SELFMAG) != 0
895             || pi->ehdr->e_type != ET_REL
896             || !elf_check_arch(pi->ehdr)
897             || pi->ehdr->e_shentsize != sizeof(Elf_Shdr))
898                 return -ENOEXEC;
899
900         if (pi->ehdr->e_shoff >= kexec_purgatory_size
901             || (pi->ehdr->e_shnum * sizeof(Elf_Shdr) >
902             kexec_purgatory_size - pi->ehdr->e_shoff))
903                 return -ENOEXEC;
904
905         ret = __kexec_load_purgatory(image, min, max, top_down);
906         if (ret)
907                 return ret;
908
909         ret = kexec_apply_relocations(image);
910         if (ret)
911                 goto out;
912
913         *load_addr = pi->purgatory_load_addr;
914         return 0;
915 out:
916         vfree(pi->sechdrs);
917         pi->sechdrs = NULL;
918
919         vfree(pi->purgatory_buf);
920         pi->purgatory_buf = NULL;
921         return ret;
922 }
923
924 static Elf_Sym *kexec_purgatory_find_symbol(struct purgatory_info *pi,
925                                             const char *name)
926 {
927         Elf_Sym *syms;
928         Elf_Shdr *sechdrs;
929         Elf_Ehdr *ehdr;
930         int i, k;
931         const char *strtab;
932
933         if (!pi->sechdrs || !pi->ehdr)
934                 return NULL;
935
936         sechdrs = pi->sechdrs;
937         ehdr = pi->ehdr;
938
939         for (i = 0; i < ehdr->e_shnum; i++) {
940                 if (sechdrs[i].sh_type != SHT_SYMTAB)
941                         continue;
942
943                 if (sechdrs[i].sh_link >= ehdr->e_shnum)
944                         /* Invalid strtab section number */
945                         continue;
946                 strtab = (char *)sechdrs[sechdrs[i].sh_link].sh_offset;
947                 syms = (Elf_Sym *)sechdrs[i].sh_offset;
948
949                 /* Go through symbols for a match */
950                 for (k = 0; k < sechdrs[i].sh_size/sizeof(Elf_Sym); k++) {
951                         if (ELF_ST_BIND(syms[k].st_info) != STB_GLOBAL)
952                                 continue;
953
954                         if (strcmp(strtab + syms[k].st_name, name) != 0)
955                                 continue;
956
957                         if (syms[k].st_shndx == SHN_UNDEF ||
958                             syms[k].st_shndx >= ehdr->e_shnum) {
959                                 pr_debug("Symbol: %s has bad section index %d.\n",
960                                                 name, syms[k].st_shndx);
961                                 return NULL;
962                         }
963
964                         /* Found the symbol we are looking for */
965                         return &syms[k];
966                 }
967         }
968
969         return NULL;
970 }
971
972 void *kexec_purgatory_get_symbol_addr(struct kimage *image, const char *name)
973 {
974         struct purgatory_info *pi = &image->purgatory_info;
975         Elf_Sym *sym;
976         Elf_Shdr *sechdr;
977
978         sym = kexec_purgatory_find_symbol(pi, name);
979         if (!sym)
980                 return ERR_PTR(-EINVAL);
981
982         sechdr = &pi->sechdrs[sym->st_shndx];
983
984         /*
985          * Returns the address where symbol will finally be loaded after
986          * kexec_load_segment()
987          */
988         return (void *)(sechdr->sh_addr + sym->st_value);
989 }
990
991 /*
992  * Get or set value of a symbol. If "get_value" is true, symbol value is
993  * returned in buf otherwise symbol value is set based on value in buf.
994  */
995 int kexec_purgatory_get_set_symbol(struct kimage *image, const char *name,
996                                    void *buf, unsigned int size, bool get_value)
997 {
998         Elf_Sym *sym;
999         Elf_Shdr *sechdrs;
1000         struct purgatory_info *pi = &image->purgatory_info;
1001         char *sym_buf;
1002
1003         sym = kexec_purgatory_find_symbol(pi, name);
1004         if (!sym)
1005                 return -EINVAL;
1006
1007         if (sym->st_size != size) {
1008                 pr_err("symbol %s size mismatch: expected %lu actual %u\n",
1009                        name, (unsigned long)sym->st_size, size);
1010                 return -EINVAL;
1011         }
1012
1013         sechdrs = pi->sechdrs;
1014
1015         if (sechdrs[sym->st_shndx].sh_type == SHT_NOBITS) {
1016                 pr_err("symbol %s is in a bss section. Cannot %s\n", name,
1017                        get_value ? "get" : "set");
1018                 return -EINVAL;
1019         }
1020
1021         sym_buf = (unsigned char *)sechdrs[sym->st_shndx].sh_offset +
1022                                         sym->st_value;
1023
1024         if (get_value)
1025                 memcpy((void *)buf, sym_buf, size);
1026         else
1027                 memcpy((void *)sym_buf, buf, size);
1028
1029         return 0;
1030 }