GNU Linux-libre 4.14.266-gnu1
[releases.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 static void *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true(!0) if the kprobe is disarmed. Note: p must be on hash list */
422 static inline int kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         lockdep_assert_held(&text_mutex);
487         /*
488          * The optimization/unoptimization refers online_cpus via
489          * stop_machine() and cpu-hotplug modifies online_cpus.
490          * And same time, text_mutex will be held in cpu-hotplug and here.
491          * This combination can cause a deadlock (cpu-hotplug try to lock
492          * text_mutex but stop_machine can not be done because online_cpus
493          * has been changed)
494          * To avoid this deadlock, caller must have locked cpu hotplug
495          * for preventing cpu-hotplug outside of text_mutex locking.
496          */
497         lockdep_assert_cpus_held();
498
499         /* Optimization never be done when disarmed */
500         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501             list_empty(&optimizing_list))
502                 return;
503
504         arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
511 static void do_unoptimize_kprobes(void)
512 {
513         struct optimized_kprobe *op, *tmp;
514
515         lockdep_assert_held(&text_mutex);
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Switching from detour code to origin */
527                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528                 /* Disarm probes if marked disabled */
529                 if (kprobe_disabled(&op->kp))
530                         arch_disarm_kprobe(&op->kp);
531                 if (kprobe_unused(&op->kp)) {
532                         /*
533                          * Remove unused probes from hash list. After waiting
534                          * for synchronization, these probes are reclaimed.
535                          * (reclaiming is done by do_free_cleaned_kprobes.)
536                          */
537                         hlist_del_rcu(&op->kp.hlist);
538                 } else
539                         list_del_init(&op->list);
540         }
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 list_del_init(&op->list);
550                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551                         /*
552                          * This must not happen, but if there is a kprobe
553                          * still in use, keep it on kprobes hash list.
554                          */
555                         continue;
556                 }
557                 free_aggr_kprobe(&op->kp);
558         }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570         mutex_lock(&kprobe_mutex);
571         cpus_read_lock();
572         mutex_lock(&text_mutex);
573         /* Lock modules while optimizing kprobes */
574         mutex_lock(&module_mutex);
575
576         /*
577          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578          * kprobes before waiting for quiesence period.
579          */
580         do_unoptimize_kprobes();
581
582         /*
583          * Step 2: Wait for quiesence period to ensure all potentially
584          * preempted tasks to have normally scheduled. Because optprobe
585          * may modify multiple instructions, there is a chance that Nth
586          * instruction is preempted. In that case, such tasks can return
587          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588          * Note that on non-preemptive kernel, this is transparently converted
589          * to synchronoze_sched() to wait for all interrupts to have completed.
590          */
591         synchronize_rcu_tasks();
592
593         /* Step 3: Optimize kprobes after quiesence period */
594         do_optimize_kprobes();
595
596         /* Step 4: Free cleaned kprobes after quiesence period */
597         do_free_cleaned_kprobes();
598
599         mutex_unlock(&module_mutex);
600         mutex_unlock(&text_mutex);
601         cpus_read_unlock();
602
603         /* Step 5: Kick optimizer again if needed */
604         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
605                 kick_kprobe_optimizer();
606
607         mutex_unlock(&kprobe_mutex);
608 }
609
610 /* Wait for completing optimization and unoptimization */
611 void wait_for_kprobe_optimizer(void)
612 {
613         mutex_lock(&kprobe_mutex);
614
615         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
616                 mutex_unlock(&kprobe_mutex);
617
618                 /* this will also make optimizing_work execute immmediately */
619                 flush_delayed_work(&optimizing_work);
620                 /* @optimizing_work might not have been queued yet, relax */
621                 cpu_relax();
622
623                 mutex_lock(&kprobe_mutex);
624         }
625
626         mutex_unlock(&kprobe_mutex);
627 }
628
629 static bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 {
631         struct optimized_kprobe *_op;
632
633         list_for_each_entry(_op, &unoptimizing_list, list) {
634                 if (op == _op)
635                         return true;
636         }
637
638         return false;
639 }
640
641 /* Optimize kprobe if p is ready to be optimized */
642 static void optimize_kprobe(struct kprobe *p)
643 {
644         struct optimized_kprobe *op;
645
646         /* Check if the kprobe is disabled or not ready for optimization. */
647         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
648             (kprobe_disabled(p) || kprobes_all_disarmed))
649                 return;
650
651         /* Both of break_handler and post_handler are not supported. */
652         if (p->break_handler || p->post_handler)
653                 return;
654
655         op = container_of(p, struct optimized_kprobe, kp);
656
657         /* Check there is no other kprobes at the optimized instructions */
658         if (arch_check_optimized_kprobe(op) < 0)
659                 return;
660
661         /* Check if it is already optimized. */
662         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
663                 if (optprobe_queued_unopt(op)) {
664                         /* This is under unoptimizing. Just dequeue the probe */
665                         list_del_init(&op->list);
666                 }
667                 return;
668         }
669         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670
671         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
672         if (WARN_ON_ONCE(!list_empty(&op->list)))
673                 return;
674
675         list_add(&op->list, &optimizing_list);
676         kick_kprobe_optimizer();
677 }
678
679 /* Short cut to direct unoptimizing */
680 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 {
682         lockdep_assert_cpus_held();
683         arch_unoptimize_kprobe(op);
684         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685         if (kprobe_disabled(&op->kp))
686                 arch_disarm_kprobe(&op->kp);
687 }
688
689 /* Unoptimize a kprobe if p is optimized */
690 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 {
692         struct optimized_kprobe *op;
693
694         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
695                 return; /* This is not an optprobe nor optimized */
696
697         op = container_of(p, struct optimized_kprobe, kp);
698         if (!kprobe_optimized(p))
699                 return;
700
701         if (!list_empty(&op->list)) {
702                 if (optprobe_queued_unopt(op)) {
703                         /* Queued in unoptimizing queue */
704                         if (force) {
705                                 /*
706                                  * Forcibly unoptimize the kprobe here, and queue it
707                                  * in the freeing list for release afterwards.
708                                  */
709                                 force_unoptimize_kprobe(op);
710                                 list_move(&op->list, &freeing_list);
711                         }
712                 } else {
713                         /* Dequeue from the optimizing queue */
714                         list_del_init(&op->list);
715                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716                 }
717                 return;
718         }
719
720         /* Optimized kprobe case */
721         if (force) {
722                 /* Forcibly update the code: this is a special case */
723                 force_unoptimize_kprobe(op);
724         } else {
725                 list_add(&op->list, &unoptimizing_list);
726                 kick_kprobe_optimizer();
727         }
728 }
729
730 /* Cancel unoptimizing for reusing */
731 static int reuse_unused_kprobe(struct kprobe *ap)
732 {
733         struct optimized_kprobe *op;
734
735         BUG_ON(!kprobe_unused(ap));
736         /*
737          * Unused kprobe MUST be on the way of delayed unoptimizing (means
738          * there is still a relative jump) and disabled.
739          */
740         op = container_of(ap, struct optimized_kprobe, kp);
741         if (unlikely(list_empty(&op->list)))
742                 printk(KERN_WARNING "Warning: found a stray unused "
743                         "aggrprobe@%p\n", ap->addr);
744         /* Enable the probe again */
745         ap->flags &= ~KPROBE_FLAG_DISABLED;
746         /* Optimize it again (remove from op->list) */
747         if (!kprobe_optready(ap))
748                 return -EINVAL;
749
750         optimize_kprobe(ap);
751         return 0;
752 }
753
754 /* Remove optimized instructions */
755 static void kill_optimized_kprobe(struct kprobe *p)
756 {
757         struct optimized_kprobe *op;
758
759         op = container_of(p, struct optimized_kprobe, kp);
760         if (!list_empty(&op->list))
761                 /* Dequeue from the (un)optimization queue */
762                 list_del_init(&op->list);
763         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
764
765         if (kprobe_unused(p)) {
766                 /* Enqueue if it is unused */
767                 list_add(&op->list, &freeing_list);
768                 /*
769                  * Remove unused probes from the hash list. After waiting
770                  * for synchronization, this probe is reclaimed.
771                  * (reclaiming is done by do_free_cleaned_kprobes().)
772                  */
773                 hlist_del_rcu(&op->kp.hlist);
774         }
775
776         /* Don't touch the code, because it is already freed. */
777         arch_remove_optimized_kprobe(op);
778 }
779
780 static inline
781 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
782 {
783         if (!kprobe_ftrace(p))
784                 arch_prepare_optimized_kprobe(op, p);
785 }
786
787 /* Try to prepare optimized instructions */
788 static void prepare_optimized_kprobe(struct kprobe *p)
789 {
790         struct optimized_kprobe *op;
791
792         op = container_of(p, struct optimized_kprobe, kp);
793         __prepare_optimized_kprobe(op, p);
794 }
795
796 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
797 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
798 {
799         struct optimized_kprobe *op;
800
801         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
802         if (!op)
803                 return NULL;
804
805         INIT_LIST_HEAD(&op->list);
806         op->kp.addr = p->addr;
807         __prepare_optimized_kprobe(op, p);
808
809         return &op->kp;
810 }
811
812 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
813
814 /*
815  * Prepare an optimized_kprobe and optimize it
816  * NOTE: p must be a normal registered kprobe
817  */
818 static void try_to_optimize_kprobe(struct kprobe *p)
819 {
820         struct kprobe *ap;
821         struct optimized_kprobe *op;
822
823         /* Impossible to optimize ftrace-based kprobe */
824         if (kprobe_ftrace(p))
825                 return;
826
827         /* For preparing optimization, jump_label_text_reserved() is called */
828         cpus_read_lock();
829         jump_label_lock();
830         mutex_lock(&text_mutex);
831
832         ap = alloc_aggr_kprobe(p);
833         if (!ap)
834                 goto out;
835
836         op = container_of(ap, struct optimized_kprobe, kp);
837         if (!arch_prepared_optinsn(&op->optinsn)) {
838                 /* If failed to setup optimizing, fallback to kprobe */
839                 arch_remove_optimized_kprobe(op);
840                 kfree(op);
841                 goto out;
842         }
843
844         init_aggr_kprobe(ap, p);
845         optimize_kprobe(ap);    /* This just kicks optimizer thread */
846
847 out:
848         mutex_unlock(&text_mutex);
849         jump_label_unlock();
850         cpus_read_unlock();
851 }
852
853 #ifdef CONFIG_SYSCTL
854 static void optimize_all_kprobes(void)
855 {
856         struct hlist_head *head;
857         struct kprobe *p;
858         unsigned int i;
859
860         mutex_lock(&kprobe_mutex);
861         /* If optimization is already allowed, just return */
862         if (kprobes_allow_optimization)
863                 goto out;
864
865         cpus_read_lock();
866         kprobes_allow_optimization = true;
867         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
868                 head = &kprobe_table[i];
869                 hlist_for_each_entry_rcu(p, head, hlist)
870                         if (!kprobe_disabled(p))
871                                 optimize_kprobe(p);
872         }
873         cpus_read_unlock();
874         printk(KERN_INFO "Kprobes globally optimized\n");
875 out:
876         mutex_unlock(&kprobe_mutex);
877 }
878
879 static void unoptimize_all_kprobes(void)
880 {
881         struct hlist_head *head;
882         struct kprobe *p;
883         unsigned int i;
884
885         mutex_lock(&kprobe_mutex);
886         /* If optimization is already prohibited, just return */
887         if (!kprobes_allow_optimization) {
888                 mutex_unlock(&kprobe_mutex);
889                 return;
890         }
891
892         cpus_read_lock();
893         kprobes_allow_optimization = false;
894         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
895                 head = &kprobe_table[i];
896                 hlist_for_each_entry_rcu(p, head, hlist) {
897                         if (!kprobe_disabled(p))
898                                 unoptimize_kprobe(p, false);
899                 }
900         }
901         cpus_read_unlock();
902         mutex_unlock(&kprobe_mutex);
903
904         /* Wait for unoptimizing completion */
905         wait_for_kprobe_optimizer();
906         printk(KERN_INFO "Kprobes globally unoptimized\n");
907 }
908
909 static DEFINE_MUTEX(kprobe_sysctl_mutex);
910 int sysctl_kprobes_optimization;
911 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
912                                       void __user *buffer, size_t *length,
913                                       loff_t *ppos)
914 {
915         int ret;
916
917         mutex_lock(&kprobe_sysctl_mutex);
918         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
919         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
920
921         if (sysctl_kprobes_optimization)
922                 optimize_all_kprobes();
923         else
924                 unoptimize_all_kprobes();
925         mutex_unlock(&kprobe_sysctl_mutex);
926
927         return ret;
928 }
929 #endif /* CONFIG_SYSCTL */
930
931 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
932 static void __arm_kprobe(struct kprobe *p)
933 {
934         struct kprobe *_p;
935
936         /* Check collision with other optimized kprobes */
937         _p = get_optimized_kprobe((unsigned long)p->addr);
938         if (unlikely(_p))
939                 /* Fallback to unoptimized kprobe */
940                 unoptimize_kprobe(_p, true);
941
942         arch_arm_kprobe(p);
943         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
944 }
945
946 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
947 static void __disarm_kprobe(struct kprobe *p, bool reopt)
948 {
949         struct kprobe *_p;
950
951         /* Try to unoptimize */
952         unoptimize_kprobe(p, kprobes_all_disarmed);
953
954         if (!kprobe_queued(p)) {
955                 arch_disarm_kprobe(p);
956                 /* If another kprobe was blocked, optimize it. */
957                 _p = get_optimized_kprobe((unsigned long)p->addr);
958                 if (unlikely(_p) && reopt)
959                         optimize_kprobe(_p);
960         }
961         /* TODO: reoptimize others after unoptimized this probe */
962 }
963
964 #else /* !CONFIG_OPTPROBES */
965
966 #define optimize_kprobe(p)                      do {} while (0)
967 #define unoptimize_kprobe(p, f)                 do {} while (0)
968 #define kill_optimized_kprobe(p)                do {} while (0)
969 #define prepare_optimized_kprobe(p)             do {} while (0)
970 #define try_to_optimize_kprobe(p)               do {} while (0)
971 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
972 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
973 #define kprobe_disarmed(p)                      kprobe_disabled(p)
974 #define wait_for_kprobe_optimizer()             do {} while (0)
975
976 static int reuse_unused_kprobe(struct kprobe *ap)
977 {
978         /*
979          * If the optimized kprobe is NOT supported, the aggr kprobe is
980          * released at the same time that the last aggregated kprobe is
981          * unregistered.
982          * Thus there should be no chance to reuse unused kprobe.
983          */
984         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
985         return -EINVAL;
986 }
987
988 static void free_aggr_kprobe(struct kprobe *p)
989 {
990         arch_remove_kprobe(p);
991         kfree(p);
992 }
993
994 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
995 {
996         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
997 }
998 #endif /* CONFIG_OPTPROBES */
999
1000 #ifdef CONFIG_KPROBES_ON_FTRACE
1001 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1002         .func = kprobe_ftrace_handler,
1003         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1004 };
1005 static int kprobe_ftrace_enabled;
1006
1007 /* Must ensure p->addr is really on ftrace */
1008 static int prepare_kprobe(struct kprobe *p)
1009 {
1010         if (!kprobe_ftrace(p))
1011                 return arch_prepare_kprobe(p);
1012
1013         return arch_prepare_kprobe_ftrace(p);
1014 }
1015
1016 /* Caller must lock kprobe_mutex */
1017 static void arm_kprobe_ftrace(struct kprobe *p)
1018 {
1019         int ret;
1020
1021         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1022                                    (unsigned long)p->addr, 0, 0);
1023         WARN(ret < 0, "Failed to arm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1024         kprobe_ftrace_enabled++;
1025         if (kprobe_ftrace_enabled == 1) {
1026                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1027                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1028         }
1029 }
1030
1031 /* Caller must lock kprobe_mutex */
1032 static void disarm_kprobe_ftrace(struct kprobe *p)
1033 {
1034         int ret;
1035
1036         kprobe_ftrace_enabled--;
1037         if (kprobe_ftrace_enabled == 0) {
1038                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1039                 WARN(ret < 0, "Failed to init kprobe-ftrace (%d)\n", ret);
1040         }
1041         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1042                            (unsigned long)p->addr, 1, 0);
1043         WARN(ret < 0, "Failed to disarm kprobe-ftrace at %p (%d)\n", p->addr, ret);
1044 }
1045 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1046 #define prepare_kprobe(p)       arch_prepare_kprobe(p)
1047 #define arm_kprobe_ftrace(p)    do {} while (0)
1048 #define disarm_kprobe_ftrace(p) do {} while (0)
1049 #endif
1050
1051 /* Arm a kprobe with text_mutex */
1052 static void arm_kprobe(struct kprobe *kp)
1053 {
1054         if (unlikely(kprobe_ftrace(kp))) {
1055                 arm_kprobe_ftrace(kp);
1056                 return;
1057         }
1058         cpus_read_lock();
1059         mutex_lock(&text_mutex);
1060         __arm_kprobe(kp);
1061         mutex_unlock(&text_mutex);
1062         cpus_read_unlock();
1063 }
1064
1065 /* Disarm a kprobe with text_mutex */
1066 static void disarm_kprobe(struct kprobe *kp, bool reopt)
1067 {
1068         if (unlikely(kprobe_ftrace(kp))) {
1069                 disarm_kprobe_ftrace(kp);
1070                 return;
1071         }
1072
1073         cpus_read_lock();
1074         mutex_lock(&text_mutex);
1075         __disarm_kprobe(kp, reopt);
1076         mutex_unlock(&text_mutex);
1077         cpus_read_unlock();
1078 }
1079
1080 /*
1081  * Aggregate handlers for multiple kprobes support - these handlers
1082  * take care of invoking the individual kprobe handlers on p->list
1083  */
1084 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1085 {
1086         struct kprobe *kp;
1087
1088         list_for_each_entry_rcu(kp, &p->list, list) {
1089                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1090                         set_kprobe_instance(kp);
1091                         if (kp->pre_handler(kp, regs))
1092                                 return 1;
1093                 }
1094                 reset_kprobe_instance();
1095         }
1096         return 0;
1097 }
1098 NOKPROBE_SYMBOL(aggr_pre_handler);
1099
1100 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1101                               unsigned long flags)
1102 {
1103         struct kprobe *kp;
1104
1105         list_for_each_entry_rcu(kp, &p->list, list) {
1106                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1107                         set_kprobe_instance(kp);
1108                         kp->post_handler(kp, regs, flags);
1109                         reset_kprobe_instance();
1110                 }
1111         }
1112 }
1113 NOKPROBE_SYMBOL(aggr_post_handler);
1114
1115 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1116                               int trapnr)
1117 {
1118         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1119
1120         /*
1121          * if we faulted "during" the execution of a user specified
1122          * probe handler, invoke just that probe's fault handler
1123          */
1124         if (cur && cur->fault_handler) {
1125                 if (cur->fault_handler(cur, regs, trapnr))
1126                         return 1;
1127         }
1128         return 0;
1129 }
1130 NOKPROBE_SYMBOL(aggr_fault_handler);
1131
1132 static int aggr_break_handler(struct kprobe *p, struct pt_regs *regs)
1133 {
1134         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1135         int ret = 0;
1136
1137         if (cur && cur->break_handler) {
1138                 if (cur->break_handler(cur, regs))
1139                         ret = 1;
1140         }
1141         reset_kprobe_instance();
1142         return ret;
1143 }
1144 NOKPROBE_SYMBOL(aggr_break_handler);
1145
1146 /* Walks the list and increments nmissed count for multiprobe case */
1147 void kprobes_inc_nmissed_count(struct kprobe *p)
1148 {
1149         struct kprobe *kp;
1150         if (!kprobe_aggrprobe(p)) {
1151                 p->nmissed++;
1152         } else {
1153                 list_for_each_entry_rcu(kp, &p->list, list)
1154                         kp->nmissed++;
1155         }
1156         return;
1157 }
1158 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1159
1160 void recycle_rp_inst(struct kretprobe_instance *ri,
1161                      struct hlist_head *head)
1162 {
1163         struct kretprobe *rp = ri->rp;
1164
1165         /* remove rp inst off the rprobe_inst_table */
1166         hlist_del(&ri->hlist);
1167         INIT_HLIST_NODE(&ri->hlist);
1168         if (likely(rp)) {
1169                 raw_spin_lock(&rp->lock);
1170                 hlist_add_head(&ri->hlist, &rp->free_instances);
1171                 raw_spin_unlock(&rp->lock);
1172         } else
1173                 /* Unregistering */
1174                 hlist_add_head(&ri->hlist, head);
1175 }
1176 NOKPROBE_SYMBOL(recycle_rp_inst);
1177
1178 void kretprobe_hash_lock(struct task_struct *tsk,
1179                          struct hlist_head **head, unsigned long *flags)
1180 __acquires(hlist_lock)
1181 {
1182         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1183         raw_spinlock_t *hlist_lock;
1184
1185         *head = &kretprobe_inst_table[hash];
1186         hlist_lock = kretprobe_table_lock_ptr(hash);
1187         raw_spin_lock_irqsave(hlist_lock, *flags);
1188 }
1189 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1190
1191 static void kretprobe_table_lock(unsigned long hash,
1192                                  unsigned long *flags)
1193 __acquires(hlist_lock)
1194 {
1195         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1196         raw_spin_lock_irqsave(hlist_lock, *flags);
1197 }
1198 NOKPROBE_SYMBOL(kretprobe_table_lock);
1199
1200 void kretprobe_hash_unlock(struct task_struct *tsk,
1201                            unsigned long *flags)
1202 __releases(hlist_lock)
1203 {
1204         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1205         raw_spinlock_t *hlist_lock;
1206
1207         hlist_lock = kretprobe_table_lock_ptr(hash);
1208         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1209 }
1210 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1211
1212 static void kretprobe_table_unlock(unsigned long hash,
1213                                    unsigned long *flags)
1214 __releases(hlist_lock)
1215 {
1216         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1217         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1218 }
1219 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1220
1221 struct kprobe kprobe_busy = {
1222         .addr = (void *) get_kprobe,
1223 };
1224
1225 void kprobe_busy_begin(void)
1226 {
1227         struct kprobe_ctlblk *kcb;
1228
1229         preempt_disable();
1230         __this_cpu_write(current_kprobe, &kprobe_busy);
1231         kcb = get_kprobe_ctlblk();
1232         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1233 }
1234
1235 void kprobe_busy_end(void)
1236 {
1237         __this_cpu_write(current_kprobe, NULL);
1238         preempt_enable();
1239 }
1240
1241 /*
1242  * This function is called from finish_task_switch when task tk becomes dead,
1243  * so that we can recycle any function-return probe instances associated
1244  * with this task. These left over instances represent probed functions
1245  * that have been called but will never return.
1246  */
1247 void kprobe_flush_task(struct task_struct *tk)
1248 {
1249         struct kretprobe_instance *ri;
1250         struct hlist_head *head, empty_rp;
1251         struct hlist_node *tmp;
1252         unsigned long hash, flags = 0;
1253
1254         if (unlikely(!kprobes_initialized))
1255                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1256                 return;
1257
1258         kprobe_busy_begin();
1259
1260         INIT_HLIST_HEAD(&empty_rp);
1261         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1262         head = &kretprobe_inst_table[hash];
1263         kretprobe_table_lock(hash, &flags);
1264         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1265                 if (ri->task == tk)
1266                         recycle_rp_inst(ri, &empty_rp);
1267         }
1268         kretprobe_table_unlock(hash, &flags);
1269         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1270                 hlist_del(&ri->hlist);
1271                 kfree(ri);
1272         }
1273
1274         kprobe_busy_end();
1275 }
1276 NOKPROBE_SYMBOL(kprobe_flush_task);
1277
1278 static inline void free_rp_inst(struct kretprobe *rp)
1279 {
1280         struct kretprobe_instance *ri;
1281         struct hlist_node *next;
1282
1283         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1284                 hlist_del(&ri->hlist);
1285                 kfree(ri);
1286         }
1287 }
1288
1289 static void cleanup_rp_inst(struct kretprobe *rp)
1290 {
1291         unsigned long flags, hash;
1292         struct kretprobe_instance *ri;
1293         struct hlist_node *next;
1294         struct hlist_head *head;
1295
1296         /* No race here */
1297         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1298                 kretprobe_table_lock(hash, &flags);
1299                 head = &kretprobe_inst_table[hash];
1300                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1301                         if (ri->rp == rp)
1302                                 ri->rp = NULL;
1303                 }
1304                 kretprobe_table_unlock(hash, &flags);
1305         }
1306         free_rp_inst(rp);
1307 }
1308 NOKPROBE_SYMBOL(cleanup_rp_inst);
1309
1310 /*
1311 * Add the new probe to ap->list. Fail if this is the
1312 * second jprobe at the address - two jprobes can't coexist
1313 */
1314 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1315 {
1316         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1317
1318         if (p->break_handler || p->post_handler)
1319                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1320
1321         if (p->break_handler) {
1322                 if (ap->break_handler)
1323                         return -EEXIST;
1324                 list_add_tail_rcu(&p->list, &ap->list);
1325                 ap->break_handler = aggr_break_handler;
1326         } else
1327                 list_add_rcu(&p->list, &ap->list);
1328         if (p->post_handler && !ap->post_handler)
1329                 ap->post_handler = aggr_post_handler;
1330
1331         return 0;
1332 }
1333
1334 /*
1335  * Fill in the required fields of the "manager kprobe". Replace the
1336  * earlier kprobe in the hlist with the manager kprobe
1337  */
1338 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1339 {
1340         /* Copy p's insn slot to ap */
1341         copy_kprobe(p, ap);
1342         flush_insn_slot(ap);
1343         ap->addr = p->addr;
1344         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1345         ap->pre_handler = aggr_pre_handler;
1346         ap->fault_handler = aggr_fault_handler;
1347         /* We don't care the kprobe which has gone. */
1348         if (p->post_handler && !kprobe_gone(p))
1349                 ap->post_handler = aggr_post_handler;
1350         if (p->break_handler && !kprobe_gone(p))
1351                 ap->break_handler = aggr_break_handler;
1352
1353         INIT_LIST_HEAD(&ap->list);
1354         INIT_HLIST_NODE(&ap->hlist);
1355
1356         list_add_rcu(&p->list, &ap->list);
1357         hlist_replace_rcu(&p->hlist, &ap->hlist);
1358 }
1359
1360 /*
1361  * This is the second or subsequent kprobe at the address - handle
1362  * the intricacies
1363  */
1364 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1365 {
1366         int ret = 0;
1367         struct kprobe *ap = orig_p;
1368
1369         cpus_read_lock();
1370
1371         /* For preparing optimization, jump_label_text_reserved() is called */
1372         jump_label_lock();
1373         mutex_lock(&text_mutex);
1374
1375         if (!kprobe_aggrprobe(orig_p)) {
1376                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1377                 ap = alloc_aggr_kprobe(orig_p);
1378                 if (!ap) {
1379                         ret = -ENOMEM;
1380                         goto out;
1381                 }
1382                 init_aggr_kprobe(ap, orig_p);
1383         } else if (kprobe_unused(ap)) {
1384                 /* This probe is going to die. Rescue it */
1385                 ret = reuse_unused_kprobe(ap);
1386                 if (ret)
1387                         goto out;
1388         }
1389
1390         if (kprobe_gone(ap)) {
1391                 /*
1392                  * Attempting to insert new probe at the same location that
1393                  * had a probe in the module vaddr area which already
1394                  * freed. So, the instruction slot has already been
1395                  * released. We need a new slot for the new probe.
1396                  */
1397                 ret = arch_prepare_kprobe(ap);
1398                 if (ret)
1399                         /*
1400                          * Even if fail to allocate new slot, don't need to
1401                          * free aggr_probe. It will be used next time, or
1402                          * freed by unregister_kprobe.
1403                          */
1404                         goto out;
1405
1406                 /* Prepare optimized instructions if possible. */
1407                 prepare_optimized_kprobe(ap);
1408
1409                 /*
1410                  * Clear gone flag to prevent allocating new slot again, and
1411                  * set disabled flag because it is not armed yet.
1412                  */
1413                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1414                             | KPROBE_FLAG_DISABLED;
1415         }
1416
1417         /* Copy ap's insn slot to p */
1418         copy_kprobe(ap, p);
1419         ret = add_new_kprobe(ap, p);
1420
1421 out:
1422         mutex_unlock(&text_mutex);
1423         jump_label_unlock();
1424         cpus_read_unlock();
1425
1426         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1427                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1428                 if (!kprobes_all_disarmed)
1429                         /* Arm the breakpoint again. */
1430                         arm_kprobe(ap);
1431         }
1432         return ret;
1433 }
1434
1435 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1436 {
1437         /* The __kprobes marked functions and entry code must not be probed */
1438         return addr >= (unsigned long)__kprobes_text_start &&
1439                addr < (unsigned long)__kprobes_text_end;
1440 }
1441
1442 bool within_kprobe_blacklist(unsigned long addr)
1443 {
1444         struct kprobe_blacklist_entry *ent;
1445
1446         if (arch_within_kprobe_blacklist(addr))
1447                 return true;
1448         /*
1449          * If there exists a kprobe_blacklist, verify and
1450          * fail any probe registration in the prohibited area
1451          */
1452         list_for_each_entry(ent, &kprobe_blacklist, list) {
1453                 if (addr >= ent->start_addr && addr < ent->end_addr)
1454                         return true;
1455         }
1456
1457         return false;
1458 }
1459
1460 /*
1461  * If we have a symbol_name argument, look it up and add the offset field
1462  * to it. This way, we can specify a relative address to a symbol.
1463  * This returns encoded errors if it fails to look up symbol or invalid
1464  * combination of parameters.
1465  */
1466 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1467                         const char *symbol_name, unsigned int offset)
1468 {
1469         if ((symbol_name && addr) || (!symbol_name && !addr))
1470                 goto invalid;
1471
1472         if (symbol_name) {
1473                 addr = kprobe_lookup_name(symbol_name, offset);
1474                 if (!addr)
1475                         return ERR_PTR(-ENOENT);
1476         }
1477
1478         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1479         if (addr)
1480                 return addr;
1481
1482 invalid:
1483         return ERR_PTR(-EINVAL);
1484 }
1485
1486 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1487 {
1488         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1489 }
1490
1491 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1492 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1493 {
1494         struct kprobe *ap, *list_p;
1495
1496         ap = get_kprobe(p->addr);
1497         if (unlikely(!ap))
1498                 return NULL;
1499
1500         if (p != ap) {
1501                 list_for_each_entry_rcu(list_p, &ap->list, list)
1502                         if (list_p == p)
1503                         /* kprobe p is a valid probe */
1504                                 goto valid;
1505                 return NULL;
1506         }
1507 valid:
1508         return ap;
1509 }
1510
1511 /* Return error if the kprobe is being re-registered */
1512 static inline int check_kprobe_rereg(struct kprobe *p)
1513 {
1514         int ret = 0;
1515
1516         mutex_lock(&kprobe_mutex);
1517         if (__get_valid_kprobe(p))
1518                 ret = -EINVAL;
1519         mutex_unlock(&kprobe_mutex);
1520
1521         return ret;
1522 }
1523
1524 int __weak arch_check_ftrace_location(struct kprobe *p)
1525 {
1526         unsigned long ftrace_addr;
1527
1528         ftrace_addr = ftrace_location((unsigned long)p->addr);
1529         if (ftrace_addr) {
1530 #ifdef CONFIG_KPROBES_ON_FTRACE
1531                 /* Given address is not on the instruction boundary */
1532                 if ((unsigned long)p->addr != ftrace_addr)
1533                         return -EILSEQ;
1534                 p->flags |= KPROBE_FLAG_FTRACE;
1535 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1536                 return -EINVAL;
1537 #endif
1538         }
1539         return 0;
1540 }
1541
1542 static int check_kprobe_address_safe(struct kprobe *p,
1543                                      struct module **probed_mod)
1544 {
1545         int ret;
1546
1547         ret = arch_check_ftrace_location(p);
1548         if (ret)
1549                 return ret;
1550         jump_label_lock();
1551         preempt_disable();
1552
1553         /* Ensure it is not in reserved area nor out of text */
1554         if (!kernel_text_address((unsigned long) p->addr) ||
1555             within_kprobe_blacklist((unsigned long) p->addr) ||
1556             jump_label_text_reserved(p->addr, p->addr) ||
1557             find_bug((unsigned long)p->addr)) {
1558                 ret = -EINVAL;
1559                 goto out;
1560         }
1561
1562         /* Check if are we probing a module */
1563         *probed_mod = __module_text_address((unsigned long) p->addr);
1564         if (*probed_mod) {
1565                 /*
1566                  * We must hold a refcount of the probed module while updating
1567                  * its code to prohibit unexpected unloading.
1568                  */
1569                 if (unlikely(!try_module_get(*probed_mod))) {
1570                         ret = -ENOENT;
1571                         goto out;
1572                 }
1573
1574                 /*
1575                  * If the module freed .init.text, we couldn't insert
1576                  * kprobes in there.
1577                  */
1578                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1579                     (*probed_mod)->state != MODULE_STATE_COMING) {
1580                         module_put(*probed_mod);
1581                         *probed_mod = NULL;
1582                         ret = -ENOENT;
1583                 }
1584         }
1585 out:
1586         preempt_enable();
1587         jump_label_unlock();
1588
1589         return ret;
1590 }
1591
1592 int register_kprobe(struct kprobe *p)
1593 {
1594         int ret;
1595         struct kprobe *old_p;
1596         struct module *probed_mod;
1597         kprobe_opcode_t *addr;
1598
1599         /* Adjust probe address from symbol */
1600         addr = kprobe_addr(p);
1601         if (IS_ERR(addr))
1602                 return PTR_ERR(addr);
1603         p->addr = addr;
1604
1605         ret = check_kprobe_rereg(p);
1606         if (ret)
1607                 return ret;
1608
1609         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1610         p->flags &= KPROBE_FLAG_DISABLED;
1611         p->nmissed = 0;
1612         INIT_LIST_HEAD(&p->list);
1613
1614         ret = check_kprobe_address_safe(p, &probed_mod);
1615         if (ret)
1616                 return ret;
1617
1618         mutex_lock(&kprobe_mutex);
1619
1620         old_p = get_kprobe(p->addr);
1621         if (old_p) {
1622                 /* Since this may unoptimize old_p, locking text_mutex. */
1623                 ret = register_aggr_kprobe(old_p, p);
1624                 goto out;
1625         }
1626
1627         cpus_read_lock();
1628         /* Prevent text modification */
1629         mutex_lock(&text_mutex);
1630         ret = prepare_kprobe(p);
1631         mutex_unlock(&text_mutex);
1632         cpus_read_unlock();
1633         if (ret)
1634                 goto out;
1635
1636         INIT_HLIST_NODE(&p->hlist);
1637         hlist_add_head_rcu(&p->hlist,
1638                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1639
1640         if (!kprobes_all_disarmed && !kprobe_disabled(p))
1641                 arm_kprobe(p);
1642
1643         /* Try to optimize kprobe */
1644         try_to_optimize_kprobe(p);
1645 out:
1646         mutex_unlock(&kprobe_mutex);
1647
1648         if (probed_mod)
1649                 module_put(probed_mod);
1650
1651         return ret;
1652 }
1653 EXPORT_SYMBOL_GPL(register_kprobe);
1654
1655 /* Check if all probes on the aggrprobe are disabled */
1656 static int aggr_kprobe_disabled(struct kprobe *ap)
1657 {
1658         struct kprobe *kp;
1659
1660         list_for_each_entry_rcu(kp, &ap->list, list)
1661                 if (!kprobe_disabled(kp))
1662                         /*
1663                          * There is an active probe on the list.
1664                          * We can't disable this ap.
1665                          */
1666                         return 0;
1667
1668         return 1;
1669 }
1670
1671 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1672 static struct kprobe *__disable_kprobe(struct kprobe *p)
1673 {
1674         struct kprobe *orig_p;
1675
1676         /* Get an original kprobe for return */
1677         orig_p = __get_valid_kprobe(p);
1678         if (unlikely(orig_p == NULL))
1679                 return NULL;
1680
1681         if (!kprobe_disabled(p)) {
1682                 /* Disable probe if it is a child probe */
1683                 if (p != orig_p)
1684                         p->flags |= KPROBE_FLAG_DISABLED;
1685
1686                 /* Try to disarm and disable this/parent probe */
1687                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1688                         /*
1689                          * If kprobes_all_disarmed is set, orig_p
1690                          * should have already been disarmed, so
1691                          * skip unneed disarming process.
1692                          */
1693                         if (!kprobes_all_disarmed)
1694                                 disarm_kprobe(orig_p, true);
1695                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1696                 }
1697         }
1698
1699         return orig_p;
1700 }
1701
1702 /*
1703  * Unregister a kprobe without a scheduler synchronization.
1704  */
1705 static int __unregister_kprobe_top(struct kprobe *p)
1706 {
1707         struct kprobe *ap, *list_p;
1708
1709         /* Disable kprobe. This will disarm it if needed. */
1710         ap = __disable_kprobe(p);
1711         if (ap == NULL)
1712                 return -EINVAL;
1713
1714         if (ap == p)
1715                 /*
1716                  * This probe is an independent(and non-optimized) kprobe
1717                  * (not an aggrprobe). Remove from the hash list.
1718                  */
1719                 goto disarmed;
1720
1721         /* Following process expects this probe is an aggrprobe */
1722         WARN_ON(!kprobe_aggrprobe(ap));
1723
1724         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1725                 /*
1726                  * !disarmed could be happen if the probe is under delayed
1727                  * unoptimizing.
1728                  */
1729                 goto disarmed;
1730         else {
1731                 /* If disabling probe has special handlers, update aggrprobe */
1732                 if (p->break_handler && !kprobe_gone(p))
1733                         ap->break_handler = NULL;
1734                 if (p->post_handler && !kprobe_gone(p)) {
1735                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1736                                 if ((list_p != p) && (list_p->post_handler))
1737                                         goto noclean;
1738                         }
1739                         ap->post_handler = NULL;
1740                 }
1741 noclean:
1742                 /*
1743                  * Remove from the aggrprobe: this path will do nothing in
1744                  * __unregister_kprobe_bottom().
1745                  */
1746                 list_del_rcu(&p->list);
1747                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1748                         /*
1749                          * Try to optimize this probe again, because post
1750                          * handler may have been changed.
1751                          */
1752                         optimize_kprobe(ap);
1753         }
1754         return 0;
1755
1756 disarmed:
1757         BUG_ON(!kprobe_disarmed(ap));
1758         hlist_del_rcu(&ap->hlist);
1759         return 0;
1760 }
1761
1762 static void __unregister_kprobe_bottom(struct kprobe *p)
1763 {
1764         struct kprobe *ap;
1765
1766         if (list_empty(&p->list))
1767                 /* This is an independent kprobe */
1768                 arch_remove_kprobe(p);
1769         else if (list_is_singular(&p->list)) {
1770                 /* This is the last child of an aggrprobe */
1771                 ap = list_entry(p->list.next, struct kprobe, list);
1772                 list_del(&p->list);
1773                 free_aggr_kprobe(ap);
1774         }
1775         /* Otherwise, do nothing. */
1776 }
1777
1778 int register_kprobes(struct kprobe **kps, int num)
1779 {
1780         int i, ret = 0;
1781
1782         if (num <= 0)
1783                 return -EINVAL;
1784         for (i = 0; i < num; i++) {
1785                 ret = register_kprobe(kps[i]);
1786                 if (ret < 0) {
1787                         if (i > 0)
1788                                 unregister_kprobes(kps, i);
1789                         break;
1790                 }
1791         }
1792         return ret;
1793 }
1794 EXPORT_SYMBOL_GPL(register_kprobes);
1795
1796 void unregister_kprobe(struct kprobe *p)
1797 {
1798         unregister_kprobes(&p, 1);
1799 }
1800 EXPORT_SYMBOL_GPL(unregister_kprobe);
1801
1802 void unregister_kprobes(struct kprobe **kps, int num)
1803 {
1804         int i;
1805
1806         if (num <= 0)
1807                 return;
1808         mutex_lock(&kprobe_mutex);
1809         for (i = 0; i < num; i++)
1810                 if (__unregister_kprobe_top(kps[i]) < 0)
1811                         kps[i]->addr = NULL;
1812         mutex_unlock(&kprobe_mutex);
1813
1814         synchronize_sched();
1815         for (i = 0; i < num; i++)
1816                 if (kps[i]->addr)
1817                         __unregister_kprobe_bottom(kps[i]);
1818 }
1819 EXPORT_SYMBOL_GPL(unregister_kprobes);
1820
1821 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1822                                         unsigned long val, void *data)
1823 {
1824         return NOTIFY_DONE;
1825 }
1826 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1827
1828 static struct notifier_block kprobe_exceptions_nb = {
1829         .notifier_call = kprobe_exceptions_notify,
1830         .priority = 0x7fffffff /* we need to be notified first */
1831 };
1832
1833 unsigned long __weak arch_deref_entry_point(void *entry)
1834 {
1835         return (unsigned long)entry;
1836 }
1837
1838 int register_jprobes(struct jprobe **jps, int num)
1839 {
1840         int ret = 0, i;
1841
1842         if (num <= 0)
1843                 return -EINVAL;
1844
1845         for (i = 0; i < num; i++) {
1846                 ret = register_jprobe(jps[i]);
1847
1848                 if (ret < 0) {
1849                         if (i > 0)
1850                                 unregister_jprobes(jps, i);
1851                         break;
1852                 }
1853         }
1854
1855         return ret;
1856 }
1857 EXPORT_SYMBOL_GPL(register_jprobes);
1858
1859 int register_jprobe(struct jprobe *jp)
1860 {
1861         unsigned long addr, offset;
1862         struct kprobe *kp = &jp->kp;
1863
1864         /*
1865          * Verify probepoint as well as the jprobe handler are
1866          * valid function entry points.
1867          */
1868         addr = arch_deref_entry_point(jp->entry);
1869
1870         if (kallsyms_lookup_size_offset(addr, NULL, &offset) && offset == 0 &&
1871             kprobe_on_func_entry(kp->addr, kp->symbol_name, kp->offset)) {
1872                 kp->pre_handler = setjmp_pre_handler;
1873                 kp->break_handler = longjmp_break_handler;
1874                 return register_kprobe(kp);
1875         }
1876
1877         return -EINVAL;
1878 }
1879 EXPORT_SYMBOL_GPL(register_jprobe);
1880
1881 void unregister_jprobe(struct jprobe *jp)
1882 {
1883         unregister_jprobes(&jp, 1);
1884 }
1885 EXPORT_SYMBOL_GPL(unregister_jprobe);
1886
1887 void unregister_jprobes(struct jprobe **jps, int num)
1888 {
1889         int i;
1890
1891         if (num <= 0)
1892                 return;
1893         mutex_lock(&kprobe_mutex);
1894         for (i = 0; i < num; i++)
1895                 if (__unregister_kprobe_top(&jps[i]->kp) < 0)
1896                         jps[i]->kp.addr = NULL;
1897         mutex_unlock(&kprobe_mutex);
1898
1899         synchronize_sched();
1900         for (i = 0; i < num; i++) {
1901                 if (jps[i]->kp.addr)
1902                         __unregister_kprobe_bottom(&jps[i]->kp);
1903         }
1904 }
1905 EXPORT_SYMBOL_GPL(unregister_jprobes);
1906
1907 #ifdef CONFIG_KRETPROBES
1908 /*
1909  * This kprobe pre_handler is registered with every kretprobe. When probe
1910  * hits it will set up the return probe.
1911  */
1912 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1913 {
1914         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1915         unsigned long hash, flags = 0;
1916         struct kretprobe_instance *ri;
1917
1918         /*
1919          * To avoid deadlocks, prohibit return probing in NMI contexts,
1920          * just skip the probe and increase the (inexact) 'nmissed'
1921          * statistical counter, so that the user is informed that
1922          * something happened:
1923          */
1924         if (unlikely(in_nmi())) {
1925                 rp->nmissed++;
1926                 return 0;
1927         }
1928
1929         /* TODO: consider to only swap the RA after the last pre_handler fired */
1930         hash = hash_ptr(current, KPROBE_HASH_BITS);
1931         raw_spin_lock_irqsave(&rp->lock, flags);
1932         if (!hlist_empty(&rp->free_instances)) {
1933                 ri = hlist_entry(rp->free_instances.first,
1934                                 struct kretprobe_instance, hlist);
1935                 hlist_del(&ri->hlist);
1936                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1937
1938                 ri->rp = rp;
1939                 ri->task = current;
1940
1941                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1942                         raw_spin_lock_irqsave(&rp->lock, flags);
1943                         hlist_add_head(&ri->hlist, &rp->free_instances);
1944                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1945                         return 0;
1946                 }
1947
1948                 arch_prepare_kretprobe(ri, regs);
1949
1950                 /* XXX(hch): why is there no hlist_move_head? */
1951                 INIT_HLIST_NODE(&ri->hlist);
1952                 kretprobe_table_lock(hash, &flags);
1953                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1954                 kretprobe_table_unlock(hash, &flags);
1955         } else {
1956                 rp->nmissed++;
1957                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1958         }
1959         return 0;
1960 }
1961 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1962
1963 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1964 {
1965         return !offset;
1966 }
1967
1968 bool kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1969 {
1970         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1971
1972         if (IS_ERR(kp_addr))
1973                 return false;
1974
1975         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset) ||
1976                                                 !arch_kprobe_on_func_entry(offset))
1977                 return false;
1978
1979         return true;
1980 }
1981
1982 int register_kretprobe(struct kretprobe *rp)
1983 {
1984         int ret = 0;
1985         struct kretprobe_instance *inst;
1986         int i;
1987         void *addr;
1988
1989         if (!kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset))
1990                 return -EINVAL;
1991
1992         /* If only rp->kp.addr is specified, check reregistering kprobes */
1993         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1994                 return -EINVAL;
1995
1996         if (kretprobe_blacklist_size) {
1997                 addr = kprobe_addr(&rp->kp);
1998                 if (IS_ERR(addr))
1999                         return PTR_ERR(addr);
2000
2001                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2002                         if (kretprobe_blacklist[i].addr == addr)
2003                                 return -EINVAL;
2004                 }
2005         }
2006
2007         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
2008                 return -E2BIG;
2009
2010         rp->kp.pre_handler = pre_handler_kretprobe;
2011         rp->kp.post_handler = NULL;
2012         rp->kp.fault_handler = NULL;
2013         rp->kp.break_handler = NULL;
2014
2015         /* Pre-allocate memory for max kretprobe instances */
2016         if (rp->maxactive <= 0) {
2017 #ifdef CONFIG_PREEMPT
2018                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
2019 #else
2020                 rp->maxactive = num_possible_cpus();
2021 #endif
2022         }
2023         raw_spin_lock_init(&rp->lock);
2024         INIT_HLIST_HEAD(&rp->free_instances);
2025         for (i = 0; i < rp->maxactive; i++) {
2026                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2027                                rp->data_size, GFP_KERNEL);
2028                 if (inst == NULL) {
2029                         free_rp_inst(rp);
2030                         return -ENOMEM;
2031                 }
2032                 INIT_HLIST_NODE(&inst->hlist);
2033                 hlist_add_head(&inst->hlist, &rp->free_instances);
2034         }
2035
2036         rp->nmissed = 0;
2037         /* Establish function entry probe point */
2038         ret = register_kprobe(&rp->kp);
2039         if (ret != 0)
2040                 free_rp_inst(rp);
2041         return ret;
2042 }
2043 EXPORT_SYMBOL_GPL(register_kretprobe);
2044
2045 int register_kretprobes(struct kretprobe **rps, int num)
2046 {
2047         int ret = 0, i;
2048
2049         if (num <= 0)
2050                 return -EINVAL;
2051         for (i = 0; i < num; i++) {
2052                 ret = register_kretprobe(rps[i]);
2053                 if (ret < 0) {
2054                         if (i > 0)
2055                                 unregister_kretprobes(rps, i);
2056                         break;
2057                 }
2058         }
2059         return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(register_kretprobes);
2062
2063 void unregister_kretprobe(struct kretprobe *rp)
2064 {
2065         unregister_kretprobes(&rp, 1);
2066 }
2067 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2068
2069 void unregister_kretprobes(struct kretprobe **rps, int num)
2070 {
2071         int i;
2072
2073         if (num <= 0)
2074                 return;
2075         mutex_lock(&kprobe_mutex);
2076         for (i = 0; i < num; i++)
2077                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2078                         rps[i]->kp.addr = NULL;
2079         mutex_unlock(&kprobe_mutex);
2080
2081         synchronize_sched();
2082         for (i = 0; i < num; i++) {
2083                 if (rps[i]->kp.addr) {
2084                         __unregister_kprobe_bottom(&rps[i]->kp);
2085                         cleanup_rp_inst(rps[i]);
2086                 }
2087         }
2088 }
2089 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2090
2091 #else /* CONFIG_KRETPROBES */
2092 int register_kretprobe(struct kretprobe *rp)
2093 {
2094         return -ENOSYS;
2095 }
2096 EXPORT_SYMBOL_GPL(register_kretprobe);
2097
2098 int register_kretprobes(struct kretprobe **rps, int num)
2099 {
2100         return -ENOSYS;
2101 }
2102 EXPORT_SYMBOL_GPL(register_kretprobes);
2103
2104 void unregister_kretprobe(struct kretprobe *rp)
2105 {
2106 }
2107 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2108
2109 void unregister_kretprobes(struct kretprobe **rps, int num)
2110 {
2111 }
2112 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2113
2114 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2115 {
2116         return 0;
2117 }
2118 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2119
2120 #endif /* CONFIG_KRETPROBES */
2121
2122 /* Set the kprobe gone and remove its instruction buffer. */
2123 static void kill_kprobe(struct kprobe *p)
2124 {
2125         struct kprobe *kp;
2126
2127         if (WARN_ON_ONCE(kprobe_gone(p)))
2128                 return;
2129
2130         p->flags |= KPROBE_FLAG_GONE;
2131         if (kprobe_aggrprobe(p)) {
2132                 /*
2133                  * If this is an aggr_kprobe, we have to list all the
2134                  * chained probes and mark them GONE.
2135                  */
2136                 list_for_each_entry_rcu(kp, &p->list, list)
2137                         kp->flags |= KPROBE_FLAG_GONE;
2138                 p->post_handler = NULL;
2139                 p->break_handler = NULL;
2140                 kill_optimized_kprobe(p);
2141         }
2142         /*
2143          * Here, we can remove insn_slot safely, because no thread calls
2144          * the original probed function (which will be freed soon) any more.
2145          */
2146         arch_remove_kprobe(p);
2147
2148         /*
2149          * The module is going away. We should disarm the kprobe which
2150          * is using ftrace, because ftrace framework is still available at
2151          * MODULE_STATE_GOING notification.
2152          */
2153         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2154                 disarm_kprobe_ftrace(p);
2155 }
2156
2157 /* Disable one kprobe */
2158 int disable_kprobe(struct kprobe *kp)
2159 {
2160         int ret = 0;
2161
2162         mutex_lock(&kprobe_mutex);
2163
2164         /* Disable this kprobe */
2165         if (__disable_kprobe(kp) == NULL)
2166                 ret = -EINVAL;
2167
2168         mutex_unlock(&kprobe_mutex);
2169         return ret;
2170 }
2171 EXPORT_SYMBOL_GPL(disable_kprobe);
2172
2173 /* Enable one kprobe */
2174 int enable_kprobe(struct kprobe *kp)
2175 {
2176         int ret = 0;
2177         struct kprobe *p;
2178
2179         mutex_lock(&kprobe_mutex);
2180
2181         /* Check whether specified probe is valid. */
2182         p = __get_valid_kprobe(kp);
2183         if (unlikely(p == NULL)) {
2184                 ret = -EINVAL;
2185                 goto out;
2186         }
2187
2188         if (kprobe_gone(kp)) {
2189                 /* This kprobe has gone, we couldn't enable it. */
2190                 ret = -EINVAL;
2191                 goto out;
2192         }
2193
2194         if (p != kp)
2195                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2196
2197         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2198                 p->flags &= ~KPROBE_FLAG_DISABLED;
2199                 arm_kprobe(p);
2200         }
2201 out:
2202         mutex_unlock(&kprobe_mutex);
2203         return ret;
2204 }
2205 EXPORT_SYMBOL_GPL(enable_kprobe);
2206
2207 void dump_kprobe(struct kprobe *kp)
2208 {
2209         printk(KERN_WARNING "Dumping kprobe:\n");
2210         printk(KERN_WARNING "Name: %s\nAddress: %p\nOffset: %x\n",
2211                kp->symbol_name, kp->addr, kp->offset);
2212 }
2213 NOKPROBE_SYMBOL(dump_kprobe);
2214
2215 /*
2216  * Lookup and populate the kprobe_blacklist.
2217  *
2218  * Unlike the kretprobe blacklist, we'll need to determine
2219  * the range of addresses that belong to the said functions,
2220  * since a kprobe need not necessarily be at the beginning
2221  * of a function.
2222  */
2223 static int __init populate_kprobe_blacklist(unsigned long *start,
2224                                              unsigned long *end)
2225 {
2226         unsigned long *iter;
2227         struct kprobe_blacklist_entry *ent;
2228         unsigned long entry, offset = 0, size = 0;
2229
2230         for (iter = start; iter < end; iter++) {
2231                 entry = arch_deref_entry_point((void *)*iter);
2232
2233                 if (!kernel_text_address(entry) ||
2234                     !kallsyms_lookup_size_offset(entry, &size, &offset)) {
2235                         pr_err("Failed to find blacklist at %p\n",
2236                                 (void *)entry);
2237                         continue;
2238                 }
2239
2240                 ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2241                 if (!ent)
2242                         return -ENOMEM;
2243                 ent->start_addr = entry;
2244                 ent->end_addr = entry + size;
2245                 INIT_LIST_HEAD(&ent->list);
2246                 list_add_tail(&ent->list, &kprobe_blacklist);
2247         }
2248         return 0;
2249 }
2250
2251 /* Module notifier call back, checking kprobes on the module */
2252 static int kprobes_module_callback(struct notifier_block *nb,
2253                                    unsigned long val, void *data)
2254 {
2255         struct module *mod = data;
2256         struct hlist_head *head;
2257         struct kprobe *p;
2258         unsigned int i;
2259         int checkcore = (val == MODULE_STATE_GOING);
2260
2261         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2262                 return NOTIFY_DONE;
2263
2264         /*
2265          * When MODULE_STATE_GOING was notified, both of module .text and
2266          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2267          * notified, only .init.text section would be freed. We need to
2268          * disable kprobes which have been inserted in the sections.
2269          */
2270         mutex_lock(&kprobe_mutex);
2271         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2272                 head = &kprobe_table[i];
2273                 hlist_for_each_entry_rcu(p, head, hlist) {
2274                         if (kprobe_gone(p))
2275                                 continue;
2276
2277                         if (within_module_init((unsigned long)p->addr, mod) ||
2278                             (checkcore &&
2279                              within_module_core((unsigned long)p->addr, mod))) {
2280                                 /*
2281                                  * The vaddr this probe is installed will soon
2282                                  * be vfreed buy not synced to disk. Hence,
2283                                  * disarming the breakpoint isn't needed.
2284                                  *
2285                                  * Note, this will also move any optimized probes
2286                                  * that are pending to be removed from their
2287                                  * corresponding lists to the freeing_list and
2288                                  * will not be touched by the delayed
2289                                  * kprobe_optimizer work handler.
2290                                  */
2291                                 kill_kprobe(p);
2292                         }
2293                 }
2294         }
2295         mutex_unlock(&kprobe_mutex);
2296         return NOTIFY_DONE;
2297 }
2298
2299 static struct notifier_block kprobe_module_nb = {
2300         .notifier_call = kprobes_module_callback,
2301         .priority = 0
2302 };
2303
2304 /* Markers of _kprobe_blacklist section */
2305 extern unsigned long __start_kprobe_blacklist[];
2306 extern unsigned long __stop_kprobe_blacklist[];
2307
2308 static int __init init_kprobes(void)
2309 {
2310         int i, err = 0;
2311
2312         /* FIXME allocate the probe table, currently defined statically */
2313         /* initialize all list heads */
2314         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2315                 INIT_HLIST_HEAD(&kprobe_table[i]);
2316                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2317                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2318         }
2319
2320         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2321                                         __stop_kprobe_blacklist);
2322         if (err) {
2323                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2324                 pr_err("Please take care of using kprobes.\n");
2325         }
2326
2327         if (kretprobe_blacklist_size) {
2328                 /* lookup the function address from its name */
2329                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2330                         kretprobe_blacklist[i].addr =
2331                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2332                         if (!kretprobe_blacklist[i].addr)
2333                                 printk("kretprobe: lookup failed: %s\n",
2334                                        kretprobe_blacklist[i].name);
2335                 }
2336         }
2337
2338 #if defined(CONFIG_OPTPROBES)
2339 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2340         /* Init kprobe_optinsn_slots */
2341         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2342 #endif
2343         /* By default, kprobes can be optimized */
2344         kprobes_allow_optimization = true;
2345 #endif
2346
2347         /* By default, kprobes are armed */
2348         kprobes_all_disarmed = false;
2349
2350         err = arch_init_kprobes();
2351         if (!err)
2352                 err = register_die_notifier(&kprobe_exceptions_nb);
2353         if (!err)
2354                 err = register_module_notifier(&kprobe_module_nb);
2355
2356         kprobes_initialized = (err == 0);
2357
2358         if (!err)
2359                 init_test_probes();
2360         return err;
2361 }
2362
2363 #ifdef CONFIG_DEBUG_FS
2364 static void report_probe(struct seq_file *pi, struct kprobe *p,
2365                 const char *sym, int offset, char *modname, struct kprobe *pp)
2366 {
2367         char *kprobe_type;
2368
2369         if (p->pre_handler == pre_handler_kretprobe)
2370                 kprobe_type = "r";
2371         else if (p->pre_handler == setjmp_pre_handler)
2372                 kprobe_type = "j";
2373         else
2374                 kprobe_type = "k";
2375
2376         if (sym)
2377                 seq_printf(pi, "%p  %s  %s+0x%x  %s ",
2378                         p->addr, kprobe_type, sym, offset,
2379                         (modname ? modname : " "));
2380         else
2381                 seq_printf(pi, "%p  %s  %p ",
2382                         p->addr, kprobe_type, p->addr);
2383
2384         if (!pp)
2385                 pp = p;
2386         seq_printf(pi, "%s%s%s%s\n",
2387                 (kprobe_gone(p) ? "[GONE]" : ""),
2388                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2389                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2390                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2391 }
2392
2393 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2394 {
2395         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2396 }
2397
2398 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2399 {
2400         (*pos)++;
2401         if (*pos >= KPROBE_TABLE_SIZE)
2402                 return NULL;
2403         return pos;
2404 }
2405
2406 static void kprobe_seq_stop(struct seq_file *f, void *v)
2407 {
2408         /* Nothing to do */
2409 }
2410
2411 static int show_kprobe_addr(struct seq_file *pi, void *v)
2412 {
2413         struct hlist_head *head;
2414         struct kprobe *p, *kp;
2415         const char *sym = NULL;
2416         unsigned int i = *(loff_t *) v;
2417         unsigned long offset = 0;
2418         char *modname, namebuf[KSYM_NAME_LEN];
2419
2420         head = &kprobe_table[i];
2421         preempt_disable();
2422         hlist_for_each_entry_rcu(p, head, hlist) {
2423                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2424                                         &offset, &modname, namebuf);
2425                 if (kprobe_aggrprobe(p)) {
2426                         list_for_each_entry_rcu(kp, &p->list, list)
2427                                 report_probe(pi, kp, sym, offset, modname, p);
2428                 } else
2429                         report_probe(pi, p, sym, offset, modname, NULL);
2430         }
2431         preempt_enable();
2432         return 0;
2433 }
2434
2435 static const struct seq_operations kprobes_seq_ops = {
2436         .start = kprobe_seq_start,
2437         .next  = kprobe_seq_next,
2438         .stop  = kprobe_seq_stop,
2439         .show  = show_kprobe_addr
2440 };
2441
2442 static int kprobes_open(struct inode *inode, struct file *filp)
2443 {
2444         return seq_open(filp, &kprobes_seq_ops);
2445 }
2446
2447 static const struct file_operations debugfs_kprobes_operations = {
2448         .open           = kprobes_open,
2449         .read           = seq_read,
2450         .llseek         = seq_lseek,
2451         .release        = seq_release,
2452 };
2453
2454 /* kprobes/blacklist -- shows which functions can not be probed */
2455 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2456 {
2457         return seq_list_start(&kprobe_blacklist, *pos);
2458 }
2459
2460 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2461 {
2462         return seq_list_next(v, &kprobe_blacklist, pos);
2463 }
2464
2465 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2466 {
2467         struct kprobe_blacklist_entry *ent =
2468                 list_entry(v, struct kprobe_blacklist_entry, list);
2469
2470         seq_printf(m, "0x%p-0x%p\t%ps\n", (void *)ent->start_addr,
2471                    (void *)ent->end_addr, (void *)ent->start_addr);
2472         return 0;
2473 }
2474
2475 static const struct seq_operations kprobe_blacklist_seq_ops = {
2476         .start = kprobe_blacklist_seq_start,
2477         .next  = kprobe_blacklist_seq_next,
2478         .stop  = kprobe_seq_stop,       /* Reuse void function */
2479         .show  = kprobe_blacklist_seq_show,
2480 };
2481
2482 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2483 {
2484         return seq_open(filp, &kprobe_blacklist_seq_ops);
2485 }
2486
2487 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2488         .open           = kprobe_blacklist_open,
2489         .read           = seq_read,
2490         .llseek         = seq_lseek,
2491         .release        = seq_release,
2492 };
2493
2494 static void arm_all_kprobes(void)
2495 {
2496         struct hlist_head *head;
2497         struct kprobe *p;
2498         unsigned int i;
2499
2500         mutex_lock(&kprobe_mutex);
2501
2502         /* If kprobes are armed, just return */
2503         if (!kprobes_all_disarmed)
2504                 goto already_enabled;
2505
2506         /*
2507          * optimize_kprobe() called by arm_kprobe() checks
2508          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2509          * arm_kprobe.
2510          */
2511         kprobes_all_disarmed = false;
2512         /* Arming kprobes doesn't optimize kprobe itself */
2513         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2514                 head = &kprobe_table[i];
2515                 hlist_for_each_entry_rcu(p, head, hlist)
2516                         if (!kprobe_disabled(p))
2517                                 arm_kprobe(p);
2518         }
2519
2520         printk(KERN_INFO "Kprobes globally enabled\n");
2521
2522 already_enabled:
2523         mutex_unlock(&kprobe_mutex);
2524         return;
2525 }
2526
2527 static void disarm_all_kprobes(void)
2528 {
2529         struct hlist_head *head;
2530         struct kprobe *p;
2531         unsigned int i;
2532
2533         mutex_lock(&kprobe_mutex);
2534
2535         /* If kprobes are already disarmed, just return */
2536         if (kprobes_all_disarmed) {
2537                 mutex_unlock(&kprobe_mutex);
2538                 return;
2539         }
2540
2541         kprobes_all_disarmed = true;
2542         printk(KERN_INFO "Kprobes globally disabled\n");
2543
2544         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2545                 head = &kprobe_table[i];
2546                 hlist_for_each_entry_rcu(p, head, hlist) {
2547                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p))
2548                                 disarm_kprobe(p, false);
2549                 }
2550         }
2551         mutex_unlock(&kprobe_mutex);
2552
2553         /* Wait for disarming all kprobes by optimizer */
2554         wait_for_kprobe_optimizer();
2555 }
2556
2557 /*
2558  * XXX: The debugfs bool file interface doesn't allow for callbacks
2559  * when the bool state is switched. We can reuse that facility when
2560  * available
2561  */
2562 static ssize_t read_enabled_file_bool(struct file *file,
2563                char __user *user_buf, size_t count, loff_t *ppos)
2564 {
2565         char buf[3];
2566
2567         if (!kprobes_all_disarmed)
2568                 buf[0] = '1';
2569         else
2570                 buf[0] = '0';
2571         buf[1] = '\n';
2572         buf[2] = 0x00;
2573         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2574 }
2575
2576 static ssize_t write_enabled_file_bool(struct file *file,
2577                const char __user *user_buf, size_t count, loff_t *ppos)
2578 {
2579         char buf[32];
2580         size_t buf_size;
2581
2582         buf_size = min(count, (sizeof(buf)-1));
2583         if (copy_from_user(buf, user_buf, buf_size))
2584                 return -EFAULT;
2585
2586         buf[buf_size] = '\0';
2587         switch (buf[0]) {
2588         case 'y':
2589         case 'Y':
2590         case '1':
2591                 arm_all_kprobes();
2592                 break;
2593         case 'n':
2594         case 'N':
2595         case '0':
2596                 disarm_all_kprobes();
2597                 break;
2598         default:
2599                 return -EINVAL;
2600         }
2601
2602         return count;
2603 }
2604
2605 static const struct file_operations fops_kp = {
2606         .read =         read_enabled_file_bool,
2607         .write =        write_enabled_file_bool,
2608         .llseek =       default_llseek,
2609 };
2610
2611 static int __init debugfs_kprobe_init(void)
2612 {
2613         struct dentry *dir, *file;
2614         unsigned int value = 1;
2615
2616         dir = debugfs_create_dir("kprobes", NULL);
2617         if (!dir)
2618                 return -ENOMEM;
2619
2620         file = debugfs_create_file("list", 0400, dir, NULL,
2621                                 &debugfs_kprobes_operations);
2622         if (!file)
2623                 goto error;
2624
2625         file = debugfs_create_file("enabled", 0600, dir,
2626                                         &value, &fops_kp);
2627         if (!file)
2628                 goto error;
2629
2630         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2631                                 &debugfs_kprobe_blacklist_ops);
2632         if (!file)
2633                 goto error;
2634
2635         return 0;
2636
2637 error:
2638         debugfs_remove(dir);
2639         return -ENOMEM;
2640 }
2641
2642 late_initcall(debugfs_kprobe_init);
2643 #endif /* CONFIG_DEBUG_FS */
2644
2645 module_init(init_kprobes);
2646
2647 /* defined in arch/.../kernel/kprobes.c */
2648 EXPORT_SYMBOL_GPL(jprobe_return);