GNU Linux-libre 4.19.286-gnu1
[releases.git] / kernel / kprobes.c
1 /*
2  *  Kernel Probes (KProbes)
3  *  kernel/kprobes.c
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18  *
19  * Copyright (C) IBM Corporation, 2002, 2004
20  *
21  * 2002-Oct     Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22  *              Probes initial implementation (includes suggestions from
23  *              Rusty Russell).
24  * 2004-Aug     Updated by Prasanna S Panchamukhi <prasanna@in.ibm.com> with
25  *              hlists and exceptions notifier as suggested by Andi Kleen.
26  * 2004-July    Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
27  *              interface to access function arguments.
28  * 2004-Sep     Prasanna S Panchamukhi <prasanna@in.ibm.com> Changed Kprobes
29  *              exceptions notifier to be first on the priority list.
30  * 2005-May     Hien Nguyen <hien@us.ibm.com>, Jim Keniston
31  *              <jkenisto@us.ibm.com> and Prasanna S Panchamukhi
32  *              <prasanna@in.ibm.com> added function-return probes.
33  */
34 #include <linux/kprobes.h>
35 #include <linux/hash.h>
36 #include <linux/init.h>
37 #include <linux/slab.h>
38 #include <linux/stddef.h>
39 #include <linux/export.h>
40 #include <linux/moduleloader.h>
41 #include <linux/kallsyms.h>
42 #include <linux/freezer.h>
43 #include <linux/seq_file.h>
44 #include <linux/debugfs.h>
45 #include <linux/sysctl.h>
46 #include <linux/kdebug.h>
47 #include <linux/memory.h>
48 #include <linux/ftrace.h>
49 #include <linux/cpu.h>
50 #include <linux/jump_label.h>
51
52 #include <asm/sections.h>
53 #include <asm/cacheflush.h>
54 #include <asm/errno.h>
55 #include <linux/uaccess.h>
56
57 #define KPROBE_HASH_BITS 6
58 #define KPROBE_TABLE_SIZE (1 << KPROBE_HASH_BITS)
59
60
61 static int kprobes_initialized;
62 static struct hlist_head kprobe_table[KPROBE_TABLE_SIZE];
63 static struct hlist_head kretprobe_inst_table[KPROBE_TABLE_SIZE];
64
65 /* NOTE: change this value only with kprobe_mutex held */
66 static bool kprobes_all_disarmed;
67
68 /* This protects kprobe_table and optimizing_list */
69 static DEFINE_MUTEX(kprobe_mutex);
70 static DEFINE_PER_CPU(struct kprobe *, kprobe_instance) = NULL;
71 static struct {
72         raw_spinlock_t lock ____cacheline_aligned_in_smp;
73 } kretprobe_table_locks[KPROBE_TABLE_SIZE];
74
75 kprobe_opcode_t * __weak kprobe_lookup_name(const char *name,
76                                         unsigned int __unused)
77 {
78         return ((kprobe_opcode_t *)(kallsyms_lookup_name(name)));
79 }
80
81 static raw_spinlock_t *kretprobe_table_lock_ptr(unsigned long hash)
82 {
83         return &(kretprobe_table_locks[hash].lock);
84 }
85
86 /* Blacklist -- list of struct kprobe_blacklist_entry */
87 static LIST_HEAD(kprobe_blacklist);
88
89 #ifdef __ARCH_WANT_KPROBES_INSN_SLOT
90 /*
91  * kprobe->ainsn.insn points to the copy of the instruction to be
92  * single-stepped. x86_64, POWER4 and above have no-exec support and
93  * stepping on the instruction on a vmalloced/kmalloced/data page
94  * is a recipe for disaster
95  */
96 struct kprobe_insn_page {
97         struct list_head list;
98         kprobe_opcode_t *insns;         /* Page of instruction slots */
99         struct kprobe_insn_cache *cache;
100         int nused;
101         int ngarbage;
102         char slot_used[];
103 };
104
105 #define KPROBE_INSN_PAGE_SIZE(slots)                    \
106         (offsetof(struct kprobe_insn_page, slot_used) + \
107          (sizeof(char) * (slots)))
108
109 static int slots_per_page(struct kprobe_insn_cache *c)
110 {
111         return PAGE_SIZE/(c->insn_size * sizeof(kprobe_opcode_t));
112 }
113
114 enum kprobe_slot_state {
115         SLOT_CLEAN = 0,
116         SLOT_DIRTY = 1,
117         SLOT_USED = 2,
118 };
119
120 void __weak *alloc_insn_page(void)
121 {
122         return module_alloc(PAGE_SIZE);
123 }
124
125 void __weak free_insn_page(void *page)
126 {
127         module_memfree(page);
128 }
129
130 struct kprobe_insn_cache kprobe_insn_slots = {
131         .mutex = __MUTEX_INITIALIZER(kprobe_insn_slots.mutex),
132         .alloc = alloc_insn_page,
133         .free = free_insn_page,
134         .pages = LIST_HEAD_INIT(kprobe_insn_slots.pages),
135         .insn_size = MAX_INSN_SIZE,
136         .nr_garbage = 0,
137 };
138 static int collect_garbage_slots(struct kprobe_insn_cache *c);
139
140 /**
141  * __get_insn_slot() - Find a slot on an executable page for an instruction.
142  * We allocate an executable page if there's no room on existing ones.
143  */
144 kprobe_opcode_t *__get_insn_slot(struct kprobe_insn_cache *c)
145 {
146         struct kprobe_insn_page *kip;
147         kprobe_opcode_t *slot = NULL;
148
149         /* Since the slot array is not protected by rcu, we need a mutex */
150         mutex_lock(&c->mutex);
151  retry:
152         rcu_read_lock();
153         list_for_each_entry_rcu(kip, &c->pages, list) {
154                 if (kip->nused < slots_per_page(c)) {
155                         int i;
156                         for (i = 0; i < slots_per_page(c); i++) {
157                                 if (kip->slot_used[i] == SLOT_CLEAN) {
158                                         kip->slot_used[i] = SLOT_USED;
159                                         kip->nused++;
160                                         slot = kip->insns + (i * c->insn_size);
161                                         rcu_read_unlock();
162                                         goto out;
163                                 }
164                         }
165                         /* kip->nused is broken. Fix it. */
166                         kip->nused = slots_per_page(c);
167                         WARN_ON(1);
168                 }
169         }
170         rcu_read_unlock();
171
172         /* If there are any garbage slots, collect it and try again. */
173         if (c->nr_garbage && collect_garbage_slots(c) == 0)
174                 goto retry;
175
176         /* All out of space.  Need to allocate a new page. */
177         kip = kmalloc(KPROBE_INSN_PAGE_SIZE(slots_per_page(c)), GFP_KERNEL);
178         if (!kip)
179                 goto out;
180
181         /*
182          * Use module_alloc so this page is within +/- 2GB of where the
183          * kernel image and loaded module images reside. This is required
184          * so x86_64 can correctly handle the %rip-relative fixups.
185          */
186         kip->insns = c->alloc();
187         if (!kip->insns) {
188                 kfree(kip);
189                 goto out;
190         }
191         INIT_LIST_HEAD(&kip->list);
192         memset(kip->slot_used, SLOT_CLEAN, slots_per_page(c));
193         kip->slot_used[0] = SLOT_USED;
194         kip->nused = 1;
195         kip->ngarbage = 0;
196         kip->cache = c;
197         list_add_rcu(&kip->list, &c->pages);
198         slot = kip->insns;
199 out:
200         mutex_unlock(&c->mutex);
201         return slot;
202 }
203
204 /* Return 1 if all garbages are collected, otherwise 0. */
205 static int collect_one_slot(struct kprobe_insn_page *kip, int idx)
206 {
207         kip->slot_used[idx] = SLOT_CLEAN;
208         kip->nused--;
209         if (kip->nused == 0) {
210                 /*
211                  * Page is no longer in use.  Free it unless
212                  * it's the last one.  We keep the last one
213                  * so as not to have to set it up again the
214                  * next time somebody inserts a probe.
215                  */
216                 if (!list_is_singular(&kip->list)) {
217                         list_del_rcu(&kip->list);
218                         synchronize_rcu();
219                         kip->cache->free(kip->insns);
220                         kfree(kip);
221                 }
222                 return 1;
223         }
224         return 0;
225 }
226
227 static int collect_garbage_slots(struct kprobe_insn_cache *c)
228 {
229         struct kprobe_insn_page *kip, *next;
230
231         /* Ensure no-one is interrupted on the garbages */
232         synchronize_sched();
233
234         list_for_each_entry_safe(kip, next, &c->pages, list) {
235                 int i;
236                 if (kip->ngarbage == 0)
237                         continue;
238                 kip->ngarbage = 0;      /* we will collect all garbages */
239                 for (i = 0; i < slots_per_page(c); i++) {
240                         if (kip->slot_used[i] == SLOT_DIRTY && collect_one_slot(kip, i))
241                                 break;
242                 }
243         }
244         c->nr_garbage = 0;
245         return 0;
246 }
247
248 void __free_insn_slot(struct kprobe_insn_cache *c,
249                       kprobe_opcode_t *slot, int dirty)
250 {
251         struct kprobe_insn_page *kip;
252         long idx;
253
254         mutex_lock(&c->mutex);
255         rcu_read_lock();
256         list_for_each_entry_rcu(kip, &c->pages, list) {
257                 idx = ((long)slot - (long)kip->insns) /
258                         (c->insn_size * sizeof(kprobe_opcode_t));
259                 if (idx >= 0 && idx < slots_per_page(c))
260                         goto out;
261         }
262         /* Could not find this slot. */
263         WARN_ON(1);
264         kip = NULL;
265 out:
266         rcu_read_unlock();
267         /* Mark and sweep: this may sleep */
268         if (kip) {
269                 /* Check double free */
270                 WARN_ON(kip->slot_used[idx] != SLOT_USED);
271                 if (dirty) {
272                         kip->slot_used[idx] = SLOT_DIRTY;
273                         kip->ngarbage++;
274                         if (++c->nr_garbage > slots_per_page(c))
275                                 collect_garbage_slots(c);
276                 } else {
277                         collect_one_slot(kip, idx);
278                 }
279         }
280         mutex_unlock(&c->mutex);
281 }
282
283 /*
284  * Check given address is on the page of kprobe instruction slots.
285  * This will be used for checking whether the address on a stack
286  * is on a text area or not.
287  */
288 bool __is_insn_slot_addr(struct kprobe_insn_cache *c, unsigned long addr)
289 {
290         struct kprobe_insn_page *kip;
291         bool ret = false;
292
293         rcu_read_lock();
294         list_for_each_entry_rcu(kip, &c->pages, list) {
295                 if (addr >= (unsigned long)kip->insns &&
296                     addr < (unsigned long)kip->insns + PAGE_SIZE) {
297                         ret = true;
298                         break;
299                 }
300         }
301         rcu_read_unlock();
302
303         return ret;
304 }
305
306 #ifdef CONFIG_OPTPROBES
307 /* For optimized_kprobe buffer */
308 struct kprobe_insn_cache kprobe_optinsn_slots = {
309         .mutex = __MUTEX_INITIALIZER(kprobe_optinsn_slots.mutex),
310         .alloc = alloc_insn_page,
311         .free = free_insn_page,
312         .pages = LIST_HEAD_INIT(kprobe_optinsn_slots.pages),
313         /* .insn_size is initialized later */
314         .nr_garbage = 0,
315 };
316 #endif
317 #endif
318
319 /* We have preemption disabled.. so it is safe to use __ versions */
320 static inline void set_kprobe_instance(struct kprobe *kp)
321 {
322         __this_cpu_write(kprobe_instance, kp);
323 }
324
325 static inline void reset_kprobe_instance(void)
326 {
327         __this_cpu_write(kprobe_instance, NULL);
328 }
329
330 /*
331  * This routine is called either:
332  *      - under the kprobe_mutex - during kprobe_[un]register()
333  *                              OR
334  *      - with preemption disabled - from arch/xxx/kernel/kprobes.c
335  */
336 struct kprobe *get_kprobe(void *addr)
337 {
338         struct hlist_head *head;
339         struct kprobe *p;
340
341         head = &kprobe_table[hash_ptr(addr, KPROBE_HASH_BITS)];
342         hlist_for_each_entry_rcu(p, head, hlist) {
343                 if (p->addr == addr)
344                         return p;
345         }
346
347         return NULL;
348 }
349 NOKPROBE_SYMBOL(get_kprobe);
350
351 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs);
352
353 /* Return true if the kprobe is an aggregator */
354 static inline int kprobe_aggrprobe(struct kprobe *p)
355 {
356         return p->pre_handler == aggr_pre_handler;
357 }
358
359 /* Return true(!0) if the kprobe is unused */
360 static inline int kprobe_unused(struct kprobe *p)
361 {
362         return kprobe_aggrprobe(p) && kprobe_disabled(p) &&
363                list_empty(&p->list);
364 }
365
366 /*
367  * Keep all fields in the kprobe consistent
368  */
369 static inline void copy_kprobe(struct kprobe *ap, struct kprobe *p)
370 {
371         memcpy(&p->opcode, &ap->opcode, sizeof(kprobe_opcode_t));
372         memcpy(&p->ainsn, &ap->ainsn, sizeof(struct arch_specific_insn));
373 }
374
375 #ifdef CONFIG_OPTPROBES
376 /* NOTE: change this value only with kprobe_mutex held */
377 static bool kprobes_allow_optimization;
378
379 /*
380  * Call all pre_handler on the list, but ignores its return value.
381  * This must be called from arch-dep optimized caller.
382  */
383 void opt_pre_handler(struct kprobe *p, struct pt_regs *regs)
384 {
385         struct kprobe *kp;
386
387         list_for_each_entry_rcu(kp, &p->list, list) {
388                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
389                         set_kprobe_instance(kp);
390                         kp->pre_handler(kp, regs);
391                 }
392                 reset_kprobe_instance();
393         }
394 }
395 NOKPROBE_SYMBOL(opt_pre_handler);
396
397 /* Free optimized instructions and optimized_kprobe */
398 static void free_aggr_kprobe(struct kprobe *p)
399 {
400         struct optimized_kprobe *op;
401
402         op = container_of(p, struct optimized_kprobe, kp);
403         arch_remove_optimized_kprobe(op);
404         arch_remove_kprobe(p);
405         kfree(op);
406 }
407
408 /* Return true(!0) if the kprobe is ready for optimization. */
409 static inline int kprobe_optready(struct kprobe *p)
410 {
411         struct optimized_kprobe *op;
412
413         if (kprobe_aggrprobe(p)) {
414                 op = container_of(p, struct optimized_kprobe, kp);
415                 return arch_prepared_optinsn(&op->optinsn);
416         }
417
418         return 0;
419 }
420
421 /* Return true if the kprobe is disarmed. Note: p must be on hash list */
422 bool kprobe_disarmed(struct kprobe *p)
423 {
424         struct optimized_kprobe *op;
425
426         /* If kprobe is not aggr/opt probe, just return kprobe is disabled */
427         if (!kprobe_aggrprobe(p))
428                 return kprobe_disabled(p);
429
430         op = container_of(p, struct optimized_kprobe, kp);
431
432         return kprobe_disabled(p) && list_empty(&op->list);
433 }
434
435 /* Return true(!0) if the probe is queued on (un)optimizing lists */
436 static int kprobe_queued(struct kprobe *p)
437 {
438         struct optimized_kprobe *op;
439
440         if (kprobe_aggrprobe(p)) {
441                 op = container_of(p, struct optimized_kprobe, kp);
442                 if (!list_empty(&op->list))
443                         return 1;
444         }
445         return 0;
446 }
447
448 /*
449  * Return an optimized kprobe whose optimizing code replaces
450  * instructions including addr (exclude breakpoint).
451  */
452 static struct kprobe *get_optimized_kprobe(unsigned long addr)
453 {
454         int i;
455         struct kprobe *p = NULL;
456         struct optimized_kprobe *op;
457
458         /* Don't check i == 0, since that is a breakpoint case. */
459         for (i = 1; !p && i < MAX_OPTIMIZED_LENGTH; i++)
460                 p = get_kprobe((void *)(addr - i));
461
462         if (p && kprobe_optready(p)) {
463                 op = container_of(p, struct optimized_kprobe, kp);
464                 if (arch_within_optimized_kprobe(op, addr))
465                         return p;
466         }
467
468         return NULL;
469 }
470
471 /* Optimization staging list, protected by kprobe_mutex */
472 static LIST_HEAD(optimizing_list);
473 static LIST_HEAD(unoptimizing_list);
474 static LIST_HEAD(freeing_list);
475
476 static void kprobe_optimizer(struct work_struct *work);
477 static DECLARE_DELAYED_WORK(optimizing_work, kprobe_optimizer);
478 #define OPTIMIZE_DELAY 5
479
480 /*
481  * Optimize (replace a breakpoint with a jump) kprobes listed on
482  * optimizing_list.
483  */
484 static void do_optimize_kprobes(void)
485 {
486         lockdep_assert_held(&text_mutex);
487         /*
488          * The optimization/unoptimization refers online_cpus via
489          * stop_machine() and cpu-hotplug modifies online_cpus.
490          * And same time, text_mutex will be held in cpu-hotplug and here.
491          * This combination can cause a deadlock (cpu-hotplug try to lock
492          * text_mutex but stop_machine can not be done because online_cpus
493          * has been changed)
494          * To avoid this deadlock, caller must have locked cpu hotplug
495          * for preventing cpu-hotplug outside of text_mutex locking.
496          */
497         lockdep_assert_cpus_held();
498
499         /* Optimization never be done when disarmed */
500         if (kprobes_all_disarmed || !kprobes_allow_optimization ||
501             list_empty(&optimizing_list))
502                 return;
503
504         arch_optimize_kprobes(&optimizing_list);
505 }
506
507 /*
508  * Unoptimize (replace a jump with a breakpoint and remove the breakpoint
509  * if need) kprobes listed on unoptimizing_list.
510  */
511 static void do_unoptimize_kprobes(void)
512 {
513         struct optimized_kprobe *op, *tmp;
514
515         lockdep_assert_held(&text_mutex);
516         /* See comment in do_optimize_kprobes() */
517         lockdep_assert_cpus_held();
518
519         /* Unoptimization must be done anytime */
520         if (list_empty(&unoptimizing_list))
521                 return;
522
523         arch_unoptimize_kprobes(&unoptimizing_list, &freeing_list);
524         /* Loop free_list for disarming */
525         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
526                 /* Switching from detour code to origin */
527                 op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
528                 /* Disarm probes if marked disabled */
529                 if (kprobe_disabled(&op->kp))
530                         arch_disarm_kprobe(&op->kp);
531                 if (kprobe_unused(&op->kp)) {
532                         /*
533                          * Remove unused probes from hash list. After waiting
534                          * for synchronization, these probes are reclaimed.
535                          * (reclaiming is done by do_free_cleaned_kprobes.)
536                          */
537                         hlist_del_rcu(&op->kp.hlist);
538                 } else
539                         list_del_init(&op->list);
540         }
541 }
542
543 /* Reclaim all kprobes on the free_list */
544 static void do_free_cleaned_kprobes(void)
545 {
546         struct optimized_kprobe *op, *tmp;
547
548         list_for_each_entry_safe(op, tmp, &freeing_list, list) {
549                 list_del_init(&op->list);
550                 if (WARN_ON_ONCE(!kprobe_unused(&op->kp))) {
551                         /*
552                          * This must not happen, but if there is a kprobe
553                          * still in use, keep it on kprobes hash list.
554                          */
555                         continue;
556                 }
557                 free_aggr_kprobe(&op->kp);
558         }
559 }
560
561 /* Start optimizer after OPTIMIZE_DELAY passed */
562 static void kick_kprobe_optimizer(void)
563 {
564         schedule_delayed_work(&optimizing_work, OPTIMIZE_DELAY);
565 }
566
567 /* Kprobe jump optimizer */
568 static void kprobe_optimizer(struct work_struct *work)
569 {
570         mutex_lock(&kprobe_mutex);
571         cpus_read_lock();
572         mutex_lock(&text_mutex);
573         /* Lock modules while optimizing kprobes */
574         mutex_lock(&module_mutex);
575
576         /*
577          * Step 1: Unoptimize kprobes and collect cleaned (unused and disarmed)
578          * kprobes before waiting for quiesence period.
579          */
580         do_unoptimize_kprobes();
581
582         /*
583          * Step 2: Wait for quiesence period to ensure all potentially
584          * preempted tasks to have normally scheduled. Because optprobe
585          * may modify multiple instructions, there is a chance that Nth
586          * instruction is preempted. In that case, such tasks can return
587          * to 2nd-Nth byte of jump instruction. This wait is for avoiding it.
588          * Note that on non-preemptive kernel, this is transparently converted
589          * to synchronoze_sched() to wait for all interrupts to have completed.
590          */
591         synchronize_rcu_tasks();
592
593         /* Step 3: Optimize kprobes after quiesence period */
594         do_optimize_kprobes();
595
596         /* Step 4: Free cleaned kprobes after quiesence period */
597         do_free_cleaned_kprobes();
598
599         mutex_unlock(&module_mutex);
600         mutex_unlock(&text_mutex);
601         cpus_read_unlock();
602
603         /* Step 5: Kick optimizer again if needed */
604         if (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list))
605                 kick_kprobe_optimizer();
606
607         mutex_unlock(&kprobe_mutex);
608 }
609
610 /* Wait for completing optimization and unoptimization */
611 void wait_for_kprobe_optimizer(void)
612 {
613         mutex_lock(&kprobe_mutex);
614
615         while (!list_empty(&optimizing_list) || !list_empty(&unoptimizing_list)) {
616                 mutex_unlock(&kprobe_mutex);
617
618                 /* this will also make optimizing_work execute immmediately */
619                 flush_delayed_work(&optimizing_work);
620                 /* @optimizing_work might not have been queued yet, relax */
621                 cpu_relax();
622
623                 mutex_lock(&kprobe_mutex);
624         }
625
626         mutex_unlock(&kprobe_mutex);
627 }
628
629 bool optprobe_queued_unopt(struct optimized_kprobe *op)
630 {
631         struct optimized_kprobe *_op;
632
633         list_for_each_entry(_op, &unoptimizing_list, list) {
634                 if (op == _op)
635                         return true;
636         }
637
638         return false;
639 }
640
641 /* Optimize kprobe if p is ready to be optimized */
642 static void optimize_kprobe(struct kprobe *p)
643 {
644         struct optimized_kprobe *op;
645
646         /* Check if the kprobe is disabled or not ready for optimization. */
647         if (!kprobe_optready(p) || !kprobes_allow_optimization ||
648             (kprobe_disabled(p) || kprobes_all_disarmed))
649                 return;
650
651         /* kprobes with post_handler can not be optimized */
652         if (p->post_handler)
653                 return;
654
655         op = container_of(p, struct optimized_kprobe, kp);
656
657         /* Check there is no other kprobes at the optimized instructions */
658         if (arch_check_optimized_kprobe(op) < 0)
659                 return;
660
661         /* Check if it is already optimized. */
662         if (op->kp.flags & KPROBE_FLAG_OPTIMIZED) {
663                 if (optprobe_queued_unopt(op)) {
664                         /* This is under unoptimizing. Just dequeue the probe */
665                         list_del_init(&op->list);
666                 }
667                 return;
668         }
669         op->kp.flags |= KPROBE_FLAG_OPTIMIZED;
670
671         /* On unoptimizing/optimizing_list, op must have OPTIMIZED flag */
672         if (WARN_ON_ONCE(!list_empty(&op->list)))
673                 return;
674
675         list_add(&op->list, &optimizing_list);
676         kick_kprobe_optimizer();
677 }
678
679 /* Short cut to direct unoptimizing */
680 static void force_unoptimize_kprobe(struct optimized_kprobe *op)
681 {
682         lockdep_assert_cpus_held();
683         arch_unoptimize_kprobe(op);
684         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
685         if (kprobe_disabled(&op->kp))
686                 arch_disarm_kprobe(&op->kp);
687 }
688
689 /* Unoptimize a kprobe if p is optimized */
690 static void unoptimize_kprobe(struct kprobe *p, bool force)
691 {
692         struct optimized_kprobe *op;
693
694         if (!kprobe_aggrprobe(p) || kprobe_disarmed(p))
695                 return; /* This is not an optprobe nor optimized */
696
697         op = container_of(p, struct optimized_kprobe, kp);
698         if (!kprobe_optimized(p))
699                 return;
700
701         if (!list_empty(&op->list)) {
702                 if (optprobe_queued_unopt(op)) {
703                         /* Queued in unoptimizing queue */
704                         if (force) {
705                                 /*
706                                  * Forcibly unoptimize the kprobe here, and queue it
707                                  * in the freeing list for release afterwards.
708                                  */
709                                 force_unoptimize_kprobe(op);
710                                 list_move(&op->list, &freeing_list);
711                         }
712                 } else {
713                         /* Dequeue from the optimizing queue */
714                         list_del_init(&op->list);
715                         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
716                 }
717                 return;
718         }
719
720         /* Optimized kprobe case */
721         if (force) {
722                 /* Forcibly update the code: this is a special case */
723                 force_unoptimize_kprobe(op);
724         } else {
725                 list_add(&op->list, &unoptimizing_list);
726                 kick_kprobe_optimizer();
727         }
728 }
729
730 /* Cancel unoptimizing for reusing */
731 static int reuse_unused_kprobe(struct kprobe *ap)
732 {
733         struct optimized_kprobe *op;
734
735         BUG_ON(!kprobe_unused(ap));
736         /*
737          * Unused kprobe MUST be on the way of delayed unoptimizing (means
738          * there is still a relative jump) and disabled.
739          */
740         op = container_of(ap, struct optimized_kprobe, kp);
741         WARN_ON_ONCE(list_empty(&op->list));
742         /* Enable the probe again */
743         ap->flags &= ~KPROBE_FLAG_DISABLED;
744         /* Optimize it again (remove from op->list) */
745         if (!kprobe_optready(ap))
746                 return -EINVAL;
747
748         optimize_kprobe(ap);
749         return 0;
750 }
751
752 /* Remove optimized instructions */
753 static void kill_optimized_kprobe(struct kprobe *p)
754 {
755         struct optimized_kprobe *op;
756
757         op = container_of(p, struct optimized_kprobe, kp);
758         if (!list_empty(&op->list))
759                 /* Dequeue from the (un)optimization queue */
760                 list_del_init(&op->list);
761         op->kp.flags &= ~KPROBE_FLAG_OPTIMIZED;
762
763         if (kprobe_unused(p)) {
764                 /* Enqueue if it is unused */
765                 list_add(&op->list, &freeing_list);
766                 /*
767                  * Remove unused probes from the hash list. After waiting
768                  * for synchronization, this probe is reclaimed.
769                  * (reclaiming is done by do_free_cleaned_kprobes().)
770                  */
771                 hlist_del_rcu(&op->kp.hlist);
772         }
773
774         /* Don't touch the code, because it is already freed. */
775         arch_remove_optimized_kprobe(op);
776 }
777
778 static inline
779 void __prepare_optimized_kprobe(struct optimized_kprobe *op, struct kprobe *p)
780 {
781         if (!kprobe_ftrace(p))
782                 arch_prepare_optimized_kprobe(op, p);
783 }
784
785 /* Try to prepare optimized instructions */
786 static void prepare_optimized_kprobe(struct kprobe *p)
787 {
788         struct optimized_kprobe *op;
789
790         op = container_of(p, struct optimized_kprobe, kp);
791         __prepare_optimized_kprobe(op, p);
792 }
793
794 /* Allocate new optimized_kprobe and try to prepare optimized instructions */
795 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
796 {
797         struct optimized_kprobe *op;
798
799         op = kzalloc(sizeof(struct optimized_kprobe), GFP_KERNEL);
800         if (!op)
801                 return NULL;
802
803         INIT_LIST_HEAD(&op->list);
804         op->kp.addr = p->addr;
805         __prepare_optimized_kprobe(op, p);
806
807         return &op->kp;
808 }
809
810 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p);
811
812 /*
813  * Prepare an optimized_kprobe and optimize it
814  * NOTE: p must be a normal registered kprobe
815  */
816 static void try_to_optimize_kprobe(struct kprobe *p)
817 {
818         struct kprobe *ap;
819         struct optimized_kprobe *op;
820
821         /* Impossible to optimize ftrace-based kprobe */
822         if (kprobe_ftrace(p))
823                 return;
824
825         /* For preparing optimization, jump_label_text_reserved() is called */
826         cpus_read_lock();
827         jump_label_lock();
828         mutex_lock(&text_mutex);
829
830         ap = alloc_aggr_kprobe(p);
831         if (!ap)
832                 goto out;
833
834         op = container_of(ap, struct optimized_kprobe, kp);
835         if (!arch_prepared_optinsn(&op->optinsn)) {
836                 /* If failed to setup optimizing, fallback to kprobe */
837                 arch_remove_optimized_kprobe(op);
838                 kfree(op);
839                 goto out;
840         }
841
842         init_aggr_kprobe(ap, p);
843         optimize_kprobe(ap);    /* This just kicks optimizer thread */
844
845 out:
846         mutex_unlock(&text_mutex);
847         jump_label_unlock();
848         cpus_read_unlock();
849 }
850
851 #ifdef CONFIG_SYSCTL
852 static void optimize_all_kprobes(void)
853 {
854         struct hlist_head *head;
855         struct kprobe *p;
856         unsigned int i;
857
858         mutex_lock(&kprobe_mutex);
859         /* If optimization is already allowed, just return */
860         if (kprobes_allow_optimization)
861                 goto out;
862
863         cpus_read_lock();
864         kprobes_allow_optimization = true;
865         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
866                 head = &kprobe_table[i];
867                 hlist_for_each_entry_rcu(p, head, hlist)
868                         if (!kprobe_disabled(p))
869                                 optimize_kprobe(p);
870         }
871         cpus_read_unlock();
872         printk(KERN_INFO "Kprobes globally optimized\n");
873 out:
874         mutex_unlock(&kprobe_mutex);
875 }
876
877 static void unoptimize_all_kprobes(void)
878 {
879         struct hlist_head *head;
880         struct kprobe *p;
881         unsigned int i;
882
883         mutex_lock(&kprobe_mutex);
884         /* If optimization is already prohibited, just return */
885         if (!kprobes_allow_optimization) {
886                 mutex_unlock(&kprobe_mutex);
887                 return;
888         }
889
890         cpus_read_lock();
891         kprobes_allow_optimization = false;
892         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
893                 head = &kprobe_table[i];
894                 hlist_for_each_entry_rcu(p, head, hlist) {
895                         if (!kprobe_disabled(p))
896                                 unoptimize_kprobe(p, false);
897                 }
898         }
899         cpus_read_unlock();
900         mutex_unlock(&kprobe_mutex);
901
902         /* Wait for unoptimizing completion */
903         wait_for_kprobe_optimizer();
904         printk(KERN_INFO "Kprobes globally unoptimized\n");
905 }
906
907 static DEFINE_MUTEX(kprobe_sysctl_mutex);
908 int sysctl_kprobes_optimization;
909 int proc_kprobes_optimization_handler(struct ctl_table *table, int write,
910                                       void __user *buffer, size_t *length,
911                                       loff_t *ppos)
912 {
913         int ret;
914
915         mutex_lock(&kprobe_sysctl_mutex);
916         sysctl_kprobes_optimization = kprobes_allow_optimization ? 1 : 0;
917         ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
918
919         if (sysctl_kprobes_optimization)
920                 optimize_all_kprobes();
921         else
922                 unoptimize_all_kprobes();
923         mutex_unlock(&kprobe_sysctl_mutex);
924
925         return ret;
926 }
927 #endif /* CONFIG_SYSCTL */
928
929 /* Put a breakpoint for a probe. Must be called with text_mutex locked */
930 static void __arm_kprobe(struct kprobe *p)
931 {
932         struct kprobe *_p;
933
934         /* Check collision with other optimized kprobes */
935         _p = get_optimized_kprobe((unsigned long)p->addr);
936         if (unlikely(_p))
937                 /* Fallback to unoptimized kprobe */
938                 unoptimize_kprobe(_p, true);
939
940         arch_arm_kprobe(p);
941         optimize_kprobe(p);     /* Try to optimize (add kprobe to a list) */
942 }
943
944 /* Remove the breakpoint of a probe. Must be called with text_mutex locked */
945 static void __disarm_kprobe(struct kprobe *p, bool reopt)
946 {
947         struct kprobe *_p;
948
949         /* Try to unoptimize */
950         unoptimize_kprobe(p, kprobes_all_disarmed);
951
952         if (!kprobe_queued(p)) {
953                 arch_disarm_kprobe(p);
954                 /* If another kprobe was blocked, optimize it. */
955                 _p = get_optimized_kprobe((unsigned long)p->addr);
956                 if (unlikely(_p) && reopt)
957                         optimize_kprobe(_p);
958         }
959         /* TODO: reoptimize others after unoptimized this probe */
960 }
961
962 #else /* !CONFIG_OPTPROBES */
963
964 #define optimize_kprobe(p)                      do {} while (0)
965 #define unoptimize_kprobe(p, f)                 do {} while (0)
966 #define kill_optimized_kprobe(p)                do {} while (0)
967 #define prepare_optimized_kprobe(p)             do {} while (0)
968 #define try_to_optimize_kprobe(p)               do {} while (0)
969 #define __arm_kprobe(p)                         arch_arm_kprobe(p)
970 #define __disarm_kprobe(p, o)                   arch_disarm_kprobe(p)
971 #define kprobe_disarmed(p)                      kprobe_disabled(p)
972 #define wait_for_kprobe_optimizer()             do {} while (0)
973
974 static int reuse_unused_kprobe(struct kprobe *ap)
975 {
976         /*
977          * If the optimized kprobe is NOT supported, the aggr kprobe is
978          * released at the same time that the last aggregated kprobe is
979          * unregistered.
980          * Thus there should be no chance to reuse unused kprobe.
981          */
982         printk(KERN_ERR "Error: There should be no unused kprobe here.\n");
983         return -EINVAL;
984 }
985
986 static void free_aggr_kprobe(struct kprobe *p)
987 {
988         arch_remove_kprobe(p);
989         kfree(p);
990 }
991
992 static struct kprobe *alloc_aggr_kprobe(struct kprobe *p)
993 {
994         return kzalloc(sizeof(struct kprobe), GFP_KERNEL);
995 }
996 #endif /* CONFIG_OPTPROBES */
997
998 #ifdef CONFIG_KPROBES_ON_FTRACE
999 static struct ftrace_ops kprobe_ftrace_ops __read_mostly = {
1000         .func = kprobe_ftrace_handler,
1001         .flags = FTRACE_OPS_FL_SAVE_REGS | FTRACE_OPS_FL_IPMODIFY,
1002 };
1003 static int kprobe_ftrace_enabled;
1004
1005 /* Must ensure p->addr is really on ftrace */
1006 static int prepare_kprobe(struct kprobe *p)
1007 {
1008         if (!kprobe_ftrace(p))
1009                 return arch_prepare_kprobe(p);
1010
1011         return arch_prepare_kprobe_ftrace(p);
1012 }
1013
1014 /* Caller must lock kprobe_mutex */
1015 static int arm_kprobe_ftrace(struct kprobe *p)
1016 {
1017         int ret = 0;
1018
1019         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1020                                    (unsigned long)p->addr, 0, 0);
1021         if (ret) {
1022                 pr_debug("Failed to arm kprobe-ftrace at %pS (%d)\n",
1023                          p->addr, ret);
1024                 return ret;
1025         }
1026
1027         if (kprobe_ftrace_enabled == 0) {
1028                 ret = register_ftrace_function(&kprobe_ftrace_ops);
1029                 if (ret) {
1030                         pr_debug("Failed to init kprobe-ftrace (%d)\n", ret);
1031                         goto err_ftrace;
1032                 }
1033         }
1034
1035         kprobe_ftrace_enabled++;
1036         return ret;
1037
1038 err_ftrace:
1039         /*
1040          * Note: Since kprobe_ftrace_ops has IPMODIFY set, and ftrace requires a
1041          * non-empty filter_hash for IPMODIFY ops, we're safe from an accidental
1042          * empty filter_hash which would undesirably trace all functions.
1043          */
1044         ftrace_set_filter_ip(&kprobe_ftrace_ops, (unsigned long)p->addr, 1, 0);
1045         return ret;
1046 }
1047
1048 /* Caller must lock kprobe_mutex */
1049 static int disarm_kprobe_ftrace(struct kprobe *p)
1050 {
1051         int ret = 0;
1052
1053         if (kprobe_ftrace_enabled == 1) {
1054                 ret = unregister_ftrace_function(&kprobe_ftrace_ops);
1055                 if (WARN(ret < 0, "Failed to unregister kprobe-ftrace (%d)\n", ret))
1056                         return ret;
1057         }
1058
1059         kprobe_ftrace_enabled--;
1060
1061         ret = ftrace_set_filter_ip(&kprobe_ftrace_ops,
1062                            (unsigned long)p->addr, 1, 0);
1063         WARN_ONCE(ret < 0, "Failed to disarm kprobe-ftrace at %pS (%d)\n",
1064                   p->addr, ret);
1065         return ret;
1066 }
1067 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1068 static inline int prepare_kprobe(struct kprobe *p)
1069 {
1070         return arch_prepare_kprobe(p);
1071 }
1072
1073 static inline int arm_kprobe_ftrace(struct kprobe *p)
1074 {
1075         return -ENODEV;
1076 }
1077
1078 static inline int disarm_kprobe_ftrace(struct kprobe *p)
1079 {
1080         return -ENODEV;
1081 }
1082 #endif
1083
1084 /* Arm a kprobe with text_mutex */
1085 static int arm_kprobe(struct kprobe *kp)
1086 {
1087         if (unlikely(kprobe_ftrace(kp)))
1088                 return arm_kprobe_ftrace(kp);
1089
1090         cpus_read_lock();
1091         mutex_lock(&text_mutex);
1092         __arm_kprobe(kp);
1093         mutex_unlock(&text_mutex);
1094         cpus_read_unlock();
1095
1096         return 0;
1097 }
1098
1099 /* Disarm a kprobe with text_mutex */
1100 static int disarm_kprobe(struct kprobe *kp, bool reopt)
1101 {
1102         if (unlikely(kprobe_ftrace(kp)))
1103                 return disarm_kprobe_ftrace(kp);
1104
1105         cpus_read_lock();
1106         mutex_lock(&text_mutex);
1107         __disarm_kprobe(kp, reopt);
1108         mutex_unlock(&text_mutex);
1109         cpus_read_unlock();
1110
1111         return 0;
1112 }
1113
1114 /*
1115  * Aggregate handlers for multiple kprobes support - these handlers
1116  * take care of invoking the individual kprobe handlers on p->list
1117  */
1118 static int aggr_pre_handler(struct kprobe *p, struct pt_regs *regs)
1119 {
1120         struct kprobe *kp;
1121
1122         list_for_each_entry_rcu(kp, &p->list, list) {
1123                 if (kp->pre_handler && likely(!kprobe_disabled(kp))) {
1124                         set_kprobe_instance(kp);
1125                         if (kp->pre_handler(kp, regs))
1126                                 return 1;
1127                 }
1128                 reset_kprobe_instance();
1129         }
1130         return 0;
1131 }
1132 NOKPROBE_SYMBOL(aggr_pre_handler);
1133
1134 static void aggr_post_handler(struct kprobe *p, struct pt_regs *regs,
1135                               unsigned long flags)
1136 {
1137         struct kprobe *kp;
1138
1139         list_for_each_entry_rcu(kp, &p->list, list) {
1140                 if (kp->post_handler && likely(!kprobe_disabled(kp))) {
1141                         set_kprobe_instance(kp);
1142                         kp->post_handler(kp, regs, flags);
1143                         reset_kprobe_instance();
1144                 }
1145         }
1146 }
1147 NOKPROBE_SYMBOL(aggr_post_handler);
1148
1149 static int aggr_fault_handler(struct kprobe *p, struct pt_regs *regs,
1150                               int trapnr)
1151 {
1152         struct kprobe *cur = __this_cpu_read(kprobe_instance);
1153
1154         /*
1155          * if we faulted "during" the execution of a user specified
1156          * probe handler, invoke just that probe's fault handler
1157          */
1158         if (cur && cur->fault_handler) {
1159                 if (cur->fault_handler(cur, regs, trapnr))
1160                         return 1;
1161         }
1162         return 0;
1163 }
1164 NOKPROBE_SYMBOL(aggr_fault_handler);
1165
1166 /* Walks the list and increments nmissed count for multiprobe case */
1167 void kprobes_inc_nmissed_count(struct kprobe *p)
1168 {
1169         struct kprobe *kp;
1170         if (!kprobe_aggrprobe(p)) {
1171                 p->nmissed++;
1172         } else {
1173                 list_for_each_entry_rcu(kp, &p->list, list)
1174                         kp->nmissed++;
1175         }
1176         return;
1177 }
1178 NOKPROBE_SYMBOL(kprobes_inc_nmissed_count);
1179
1180 void recycle_rp_inst(struct kretprobe_instance *ri,
1181                      struct hlist_head *head)
1182 {
1183         struct kretprobe *rp = ri->rp;
1184
1185         /* remove rp inst off the rprobe_inst_table */
1186         hlist_del(&ri->hlist);
1187         INIT_HLIST_NODE(&ri->hlist);
1188         if (likely(rp)) {
1189                 raw_spin_lock(&rp->lock);
1190                 hlist_add_head(&ri->hlist, &rp->free_instances);
1191                 raw_spin_unlock(&rp->lock);
1192         } else
1193                 /* Unregistering */
1194                 hlist_add_head(&ri->hlist, head);
1195 }
1196 NOKPROBE_SYMBOL(recycle_rp_inst);
1197
1198 void kretprobe_hash_lock(struct task_struct *tsk,
1199                          struct hlist_head **head, unsigned long *flags)
1200 __acquires(hlist_lock)
1201 {
1202         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1203         raw_spinlock_t *hlist_lock;
1204
1205         *head = &kretprobe_inst_table[hash];
1206         hlist_lock = kretprobe_table_lock_ptr(hash);
1207         raw_spin_lock_irqsave(hlist_lock, *flags);
1208 }
1209 NOKPROBE_SYMBOL(kretprobe_hash_lock);
1210
1211 static void kretprobe_table_lock(unsigned long hash,
1212                                  unsigned long *flags)
1213 __acquires(hlist_lock)
1214 {
1215         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1216         raw_spin_lock_irqsave(hlist_lock, *flags);
1217 }
1218 NOKPROBE_SYMBOL(kretprobe_table_lock);
1219
1220 void kretprobe_hash_unlock(struct task_struct *tsk,
1221                            unsigned long *flags)
1222 __releases(hlist_lock)
1223 {
1224         unsigned long hash = hash_ptr(tsk, KPROBE_HASH_BITS);
1225         raw_spinlock_t *hlist_lock;
1226
1227         hlist_lock = kretprobe_table_lock_ptr(hash);
1228         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1229 }
1230 NOKPROBE_SYMBOL(kretprobe_hash_unlock);
1231
1232 static void kretprobe_table_unlock(unsigned long hash,
1233                                    unsigned long *flags)
1234 __releases(hlist_lock)
1235 {
1236         raw_spinlock_t *hlist_lock = kretprobe_table_lock_ptr(hash);
1237         raw_spin_unlock_irqrestore(hlist_lock, *flags);
1238 }
1239 NOKPROBE_SYMBOL(kretprobe_table_unlock);
1240
1241 struct kprobe kprobe_busy = {
1242         .addr = (void *) get_kprobe,
1243 };
1244
1245 void kprobe_busy_begin(void)
1246 {
1247         struct kprobe_ctlblk *kcb;
1248
1249         preempt_disable();
1250         __this_cpu_write(current_kprobe, &kprobe_busy);
1251         kcb = get_kprobe_ctlblk();
1252         kcb->kprobe_status = KPROBE_HIT_ACTIVE;
1253 }
1254
1255 void kprobe_busy_end(void)
1256 {
1257         __this_cpu_write(current_kprobe, NULL);
1258         preempt_enable();
1259 }
1260
1261 /*
1262  * This function is called from finish_task_switch when task tk becomes dead,
1263  * so that we can recycle any function-return probe instances associated
1264  * with this task. These left over instances represent probed functions
1265  * that have been called but will never return.
1266  */
1267 void kprobe_flush_task(struct task_struct *tk)
1268 {
1269         struct kretprobe_instance *ri;
1270         struct hlist_head *head, empty_rp;
1271         struct hlist_node *tmp;
1272         unsigned long hash, flags = 0;
1273
1274         if (unlikely(!kprobes_initialized))
1275                 /* Early boot.  kretprobe_table_locks not yet initialized. */
1276                 return;
1277
1278         kprobe_busy_begin();
1279
1280         INIT_HLIST_HEAD(&empty_rp);
1281         hash = hash_ptr(tk, KPROBE_HASH_BITS);
1282         head = &kretprobe_inst_table[hash];
1283         kretprobe_table_lock(hash, &flags);
1284         hlist_for_each_entry_safe(ri, tmp, head, hlist) {
1285                 if (ri->task == tk)
1286                         recycle_rp_inst(ri, &empty_rp);
1287         }
1288         kretprobe_table_unlock(hash, &flags);
1289         hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
1290                 hlist_del(&ri->hlist);
1291                 kfree(ri);
1292         }
1293
1294         kprobe_busy_end();
1295 }
1296 NOKPROBE_SYMBOL(kprobe_flush_task);
1297
1298 static inline void free_rp_inst(struct kretprobe *rp)
1299 {
1300         struct kretprobe_instance *ri;
1301         struct hlist_node *next;
1302
1303         hlist_for_each_entry_safe(ri, next, &rp->free_instances, hlist) {
1304                 hlist_del(&ri->hlist);
1305                 kfree(ri);
1306         }
1307 }
1308
1309 static void cleanup_rp_inst(struct kretprobe *rp)
1310 {
1311         unsigned long flags, hash;
1312         struct kretprobe_instance *ri;
1313         struct hlist_node *next;
1314         struct hlist_head *head;
1315
1316         /* No race here */
1317         for (hash = 0; hash < KPROBE_TABLE_SIZE; hash++) {
1318                 kretprobe_table_lock(hash, &flags);
1319                 head = &kretprobe_inst_table[hash];
1320                 hlist_for_each_entry_safe(ri, next, head, hlist) {
1321                         if (ri->rp == rp)
1322                                 ri->rp = NULL;
1323                 }
1324                 kretprobe_table_unlock(hash, &flags);
1325         }
1326         free_rp_inst(rp);
1327 }
1328 NOKPROBE_SYMBOL(cleanup_rp_inst);
1329
1330 /* Add the new probe to ap->list */
1331 static int add_new_kprobe(struct kprobe *ap, struct kprobe *p)
1332 {
1333         BUG_ON(kprobe_gone(ap) || kprobe_gone(p));
1334
1335         if (p->post_handler)
1336                 unoptimize_kprobe(ap, true);    /* Fall back to normal kprobe */
1337
1338         list_add_rcu(&p->list, &ap->list);
1339         if (p->post_handler && !ap->post_handler)
1340                 ap->post_handler = aggr_post_handler;
1341
1342         return 0;
1343 }
1344
1345 /*
1346  * Fill in the required fields of the "manager kprobe". Replace the
1347  * earlier kprobe in the hlist with the manager kprobe
1348  */
1349 static void init_aggr_kprobe(struct kprobe *ap, struct kprobe *p)
1350 {
1351         /* Copy p's insn slot to ap */
1352         copy_kprobe(p, ap);
1353         flush_insn_slot(ap);
1354         ap->addr = p->addr;
1355         ap->flags = p->flags & ~KPROBE_FLAG_OPTIMIZED;
1356         ap->pre_handler = aggr_pre_handler;
1357         ap->fault_handler = aggr_fault_handler;
1358         /* We don't care the kprobe which has gone. */
1359         if (p->post_handler && !kprobe_gone(p))
1360                 ap->post_handler = aggr_post_handler;
1361
1362         INIT_LIST_HEAD(&ap->list);
1363         INIT_HLIST_NODE(&ap->hlist);
1364
1365         list_add_rcu(&p->list, &ap->list);
1366         hlist_replace_rcu(&p->hlist, &ap->hlist);
1367 }
1368
1369 /*
1370  * This is the second or subsequent kprobe at the address - handle
1371  * the intricacies
1372  */
1373 static int register_aggr_kprobe(struct kprobe *orig_p, struct kprobe *p)
1374 {
1375         int ret = 0;
1376         struct kprobe *ap = orig_p;
1377
1378         cpus_read_lock();
1379
1380         /* For preparing optimization, jump_label_text_reserved() is called */
1381         jump_label_lock();
1382         mutex_lock(&text_mutex);
1383
1384         if (!kprobe_aggrprobe(orig_p)) {
1385                 /* If orig_p is not an aggr_kprobe, create new aggr_kprobe. */
1386                 ap = alloc_aggr_kprobe(orig_p);
1387                 if (!ap) {
1388                         ret = -ENOMEM;
1389                         goto out;
1390                 }
1391                 init_aggr_kprobe(ap, orig_p);
1392         } else if (kprobe_unused(ap)) {
1393                 /* This probe is going to die. Rescue it */
1394                 ret = reuse_unused_kprobe(ap);
1395                 if (ret)
1396                         goto out;
1397         }
1398
1399         if (kprobe_gone(ap)) {
1400                 /*
1401                  * Attempting to insert new probe at the same location that
1402                  * had a probe in the module vaddr area which already
1403                  * freed. So, the instruction slot has already been
1404                  * released. We need a new slot for the new probe.
1405                  */
1406                 ret = arch_prepare_kprobe(ap);
1407                 if (ret)
1408                         /*
1409                          * Even if fail to allocate new slot, don't need to
1410                          * free aggr_probe. It will be used next time, or
1411                          * freed by unregister_kprobe.
1412                          */
1413                         goto out;
1414
1415                 /* Prepare optimized instructions if possible. */
1416                 prepare_optimized_kprobe(ap);
1417
1418                 /*
1419                  * Clear gone flag to prevent allocating new slot again, and
1420                  * set disabled flag because it is not armed yet.
1421                  */
1422                 ap->flags = (ap->flags & ~KPROBE_FLAG_GONE)
1423                             | KPROBE_FLAG_DISABLED;
1424         }
1425
1426         /* Copy ap's insn slot to p */
1427         copy_kprobe(ap, p);
1428         ret = add_new_kprobe(ap, p);
1429
1430 out:
1431         mutex_unlock(&text_mutex);
1432         jump_label_unlock();
1433         cpus_read_unlock();
1434
1435         if (ret == 0 && kprobe_disabled(ap) && !kprobe_disabled(p)) {
1436                 ap->flags &= ~KPROBE_FLAG_DISABLED;
1437                 if (!kprobes_all_disarmed) {
1438                         /* Arm the breakpoint again. */
1439                         ret = arm_kprobe(ap);
1440                         if (ret) {
1441                                 ap->flags |= KPROBE_FLAG_DISABLED;
1442                                 list_del_rcu(&p->list);
1443                                 synchronize_sched();
1444                         }
1445                 }
1446         }
1447         return ret;
1448 }
1449
1450 bool __weak arch_within_kprobe_blacklist(unsigned long addr)
1451 {
1452         /* The __kprobes marked functions and entry code must not be probed */
1453         return addr >= (unsigned long)__kprobes_text_start &&
1454                addr < (unsigned long)__kprobes_text_end;
1455 }
1456
1457 bool within_kprobe_blacklist(unsigned long addr)
1458 {
1459         struct kprobe_blacklist_entry *ent;
1460
1461         if (arch_within_kprobe_blacklist(addr))
1462                 return true;
1463         /*
1464          * If there exists a kprobe_blacklist, verify and
1465          * fail any probe registration in the prohibited area
1466          */
1467         list_for_each_entry(ent, &kprobe_blacklist, list) {
1468                 if (addr >= ent->start_addr && addr < ent->end_addr)
1469                         return true;
1470         }
1471
1472         return false;
1473 }
1474
1475 /*
1476  * If we have a symbol_name argument, look it up and add the offset field
1477  * to it. This way, we can specify a relative address to a symbol.
1478  * This returns encoded errors if it fails to look up symbol or invalid
1479  * combination of parameters.
1480  */
1481 static kprobe_opcode_t *_kprobe_addr(kprobe_opcode_t *addr,
1482                         const char *symbol_name, unsigned int offset)
1483 {
1484         if ((symbol_name && addr) || (!symbol_name && !addr))
1485                 goto invalid;
1486
1487         if (symbol_name) {
1488                 addr = kprobe_lookup_name(symbol_name, offset);
1489                 if (!addr)
1490                         return ERR_PTR(-ENOENT);
1491         }
1492
1493         addr = (kprobe_opcode_t *)(((char *)addr) + offset);
1494         if (addr)
1495                 return addr;
1496
1497 invalid:
1498         return ERR_PTR(-EINVAL);
1499 }
1500
1501 static kprobe_opcode_t *kprobe_addr(struct kprobe *p)
1502 {
1503         return _kprobe_addr(p->addr, p->symbol_name, p->offset);
1504 }
1505
1506 /* Check passed kprobe is valid and return kprobe in kprobe_table. */
1507 static struct kprobe *__get_valid_kprobe(struct kprobe *p)
1508 {
1509         struct kprobe *ap, *list_p;
1510
1511         ap = get_kprobe(p->addr);
1512         if (unlikely(!ap))
1513                 return NULL;
1514
1515         if (p != ap) {
1516                 list_for_each_entry_rcu(list_p, &ap->list, list)
1517                         if (list_p == p)
1518                         /* kprobe p is a valid probe */
1519                                 goto valid;
1520                 return NULL;
1521         }
1522 valid:
1523         return ap;
1524 }
1525
1526 /* Return error if the kprobe is being re-registered */
1527 static inline int check_kprobe_rereg(struct kprobe *p)
1528 {
1529         int ret = 0;
1530
1531         mutex_lock(&kprobe_mutex);
1532         if (__get_valid_kprobe(p))
1533                 ret = -EINVAL;
1534         mutex_unlock(&kprobe_mutex);
1535
1536         return ret;
1537 }
1538
1539 int __weak arch_check_ftrace_location(struct kprobe *p)
1540 {
1541         unsigned long ftrace_addr;
1542
1543         ftrace_addr = ftrace_location((unsigned long)p->addr);
1544         if (ftrace_addr) {
1545 #ifdef CONFIG_KPROBES_ON_FTRACE
1546                 /* Given address is not on the instruction boundary */
1547                 if ((unsigned long)p->addr != ftrace_addr)
1548                         return -EILSEQ;
1549                 p->flags |= KPROBE_FLAG_FTRACE;
1550 #else   /* !CONFIG_KPROBES_ON_FTRACE */
1551                 return -EINVAL;
1552 #endif
1553         }
1554         return 0;
1555 }
1556
1557 static int check_kprobe_address_safe(struct kprobe *p,
1558                                      struct module **probed_mod)
1559 {
1560         int ret;
1561
1562         ret = arch_check_ftrace_location(p);
1563         if (ret)
1564                 return ret;
1565         jump_label_lock();
1566         preempt_disable();
1567
1568         /* Ensure it is not in reserved area nor out of text */
1569         if (!(core_kernel_text((unsigned long) p->addr) ||
1570             is_module_text_address((unsigned long) p->addr)) ||
1571             in_gate_area_no_mm((unsigned long) p->addr) ||
1572             within_kprobe_blacklist((unsigned long) p->addr) ||
1573             jump_label_text_reserved(p->addr, p->addr) ||
1574             find_bug((unsigned long)p->addr)) {
1575                 ret = -EINVAL;
1576                 goto out;
1577         }
1578
1579         /* Check if are we probing a module */
1580         *probed_mod = __module_text_address((unsigned long) p->addr);
1581         if (*probed_mod) {
1582                 /*
1583                  * We must hold a refcount of the probed module while updating
1584                  * its code to prohibit unexpected unloading.
1585                  */
1586                 if (unlikely(!try_module_get(*probed_mod))) {
1587                         ret = -ENOENT;
1588                         goto out;
1589                 }
1590
1591                 /*
1592                  * If the module freed .init.text, we couldn't insert
1593                  * kprobes in there.
1594                  */
1595                 if (within_module_init((unsigned long)p->addr, *probed_mod) &&
1596                     (*probed_mod)->state != MODULE_STATE_COMING) {
1597                         module_put(*probed_mod);
1598                         *probed_mod = NULL;
1599                         ret = -ENOENT;
1600                 }
1601         }
1602 out:
1603         preempt_enable();
1604         jump_label_unlock();
1605
1606         return ret;
1607 }
1608
1609 int register_kprobe(struct kprobe *p)
1610 {
1611         int ret;
1612         struct kprobe *old_p;
1613         struct module *probed_mod;
1614         kprobe_opcode_t *addr;
1615
1616         /* Adjust probe address from symbol */
1617         addr = kprobe_addr(p);
1618         if (IS_ERR(addr))
1619                 return PTR_ERR(addr);
1620         p->addr = addr;
1621
1622         ret = check_kprobe_rereg(p);
1623         if (ret)
1624                 return ret;
1625
1626         /* User can pass only KPROBE_FLAG_DISABLED to register_kprobe */
1627         p->flags &= KPROBE_FLAG_DISABLED;
1628         p->nmissed = 0;
1629         INIT_LIST_HEAD(&p->list);
1630
1631         ret = check_kprobe_address_safe(p, &probed_mod);
1632         if (ret)
1633                 return ret;
1634
1635         mutex_lock(&kprobe_mutex);
1636
1637         old_p = get_kprobe(p->addr);
1638         if (old_p) {
1639                 /* Since this may unoptimize old_p, locking text_mutex. */
1640                 ret = register_aggr_kprobe(old_p, p);
1641                 goto out;
1642         }
1643
1644         cpus_read_lock();
1645         /* Prevent text modification */
1646         mutex_lock(&text_mutex);
1647         ret = prepare_kprobe(p);
1648         mutex_unlock(&text_mutex);
1649         cpus_read_unlock();
1650         if (ret)
1651                 goto out;
1652
1653         INIT_HLIST_NODE(&p->hlist);
1654         hlist_add_head_rcu(&p->hlist,
1655                        &kprobe_table[hash_ptr(p->addr, KPROBE_HASH_BITS)]);
1656
1657         if (!kprobes_all_disarmed && !kprobe_disabled(p)) {
1658                 ret = arm_kprobe(p);
1659                 if (ret) {
1660                         hlist_del_rcu(&p->hlist);
1661                         synchronize_sched();
1662                         goto out;
1663                 }
1664         }
1665
1666         /* Try to optimize kprobe */
1667         try_to_optimize_kprobe(p);
1668 out:
1669         mutex_unlock(&kprobe_mutex);
1670
1671         if (probed_mod)
1672                 module_put(probed_mod);
1673
1674         return ret;
1675 }
1676 EXPORT_SYMBOL_GPL(register_kprobe);
1677
1678 /* Check if all probes on the aggrprobe are disabled */
1679 static int aggr_kprobe_disabled(struct kprobe *ap)
1680 {
1681         struct kprobe *kp;
1682
1683         list_for_each_entry_rcu(kp, &ap->list, list)
1684                 if (!kprobe_disabled(kp))
1685                         /*
1686                          * There is an active probe on the list.
1687                          * We can't disable this ap.
1688                          */
1689                         return 0;
1690
1691         return 1;
1692 }
1693
1694 /* Disable one kprobe: Make sure called under kprobe_mutex is locked */
1695 static struct kprobe *__disable_kprobe(struct kprobe *p)
1696 {
1697         struct kprobe *orig_p;
1698         int ret;
1699
1700         /* Get an original kprobe for return */
1701         orig_p = __get_valid_kprobe(p);
1702         if (unlikely(orig_p == NULL))
1703                 return ERR_PTR(-EINVAL);
1704
1705         if (!kprobe_disabled(p)) {
1706                 /* Disable probe if it is a child probe */
1707                 if (p != orig_p)
1708                         p->flags |= KPROBE_FLAG_DISABLED;
1709
1710                 /* Try to disarm and disable this/parent probe */
1711                 if (p == orig_p || aggr_kprobe_disabled(orig_p)) {
1712                         /*
1713                          * Don't be lazy here.  Even if 'kprobes_all_disarmed'
1714                          * is false, 'orig_p' might not have been armed yet.
1715                          * Note arm_all_kprobes() __tries__ to arm all kprobes
1716                          * on the best effort basis.
1717                          */
1718                         if (!kprobes_all_disarmed && !kprobe_disabled(orig_p)) {
1719                                 ret = disarm_kprobe(orig_p, true);
1720                                 if (ret) {
1721                                         p->flags &= ~KPROBE_FLAG_DISABLED;
1722                                         return ERR_PTR(ret);
1723                                 }
1724                         }
1725                         orig_p->flags |= KPROBE_FLAG_DISABLED;
1726                 }
1727         }
1728
1729         return orig_p;
1730 }
1731
1732 /*
1733  * Unregister a kprobe without a scheduler synchronization.
1734  */
1735 static int __unregister_kprobe_top(struct kprobe *p)
1736 {
1737         struct kprobe *ap, *list_p;
1738
1739         /* Disable kprobe. This will disarm it if needed. */
1740         ap = __disable_kprobe(p);
1741         if (IS_ERR(ap))
1742                 return PTR_ERR(ap);
1743
1744         if (ap == p)
1745                 /*
1746                  * This probe is an independent(and non-optimized) kprobe
1747                  * (not an aggrprobe). Remove from the hash list.
1748                  */
1749                 goto disarmed;
1750
1751         /* Following process expects this probe is an aggrprobe */
1752         WARN_ON(!kprobe_aggrprobe(ap));
1753
1754         if (list_is_singular(&ap->list) && kprobe_disarmed(ap))
1755                 /*
1756                  * !disarmed could be happen if the probe is under delayed
1757                  * unoptimizing.
1758                  */
1759                 goto disarmed;
1760         else {
1761                 /* If disabling probe has special handlers, update aggrprobe */
1762                 if (p->post_handler && !kprobe_gone(p)) {
1763                         list_for_each_entry_rcu(list_p, &ap->list, list) {
1764                                 if ((list_p != p) && (list_p->post_handler))
1765                                         goto noclean;
1766                         }
1767                         ap->post_handler = NULL;
1768                 }
1769 noclean:
1770                 /*
1771                  * Remove from the aggrprobe: this path will do nothing in
1772                  * __unregister_kprobe_bottom().
1773                  */
1774                 list_del_rcu(&p->list);
1775                 if (!kprobe_disabled(ap) && !kprobes_all_disarmed)
1776                         /*
1777                          * Try to optimize this probe again, because post
1778                          * handler may have been changed.
1779                          */
1780                         optimize_kprobe(ap);
1781         }
1782         return 0;
1783
1784 disarmed:
1785         BUG_ON(!kprobe_disarmed(ap));
1786         hlist_del_rcu(&ap->hlist);
1787         return 0;
1788 }
1789
1790 static void __unregister_kprobe_bottom(struct kprobe *p)
1791 {
1792         struct kprobe *ap;
1793
1794         if (list_empty(&p->list))
1795                 /* This is an independent kprobe */
1796                 arch_remove_kprobe(p);
1797         else if (list_is_singular(&p->list)) {
1798                 /* This is the last child of an aggrprobe */
1799                 ap = list_entry(p->list.next, struct kprobe, list);
1800                 list_del(&p->list);
1801                 free_aggr_kprobe(ap);
1802         }
1803         /* Otherwise, do nothing. */
1804 }
1805
1806 int register_kprobes(struct kprobe **kps, int num)
1807 {
1808         int i, ret = 0;
1809
1810         if (num <= 0)
1811                 return -EINVAL;
1812         for (i = 0; i < num; i++) {
1813                 ret = register_kprobe(kps[i]);
1814                 if (ret < 0) {
1815                         if (i > 0)
1816                                 unregister_kprobes(kps, i);
1817                         break;
1818                 }
1819         }
1820         return ret;
1821 }
1822 EXPORT_SYMBOL_GPL(register_kprobes);
1823
1824 void unregister_kprobe(struct kprobe *p)
1825 {
1826         unregister_kprobes(&p, 1);
1827 }
1828 EXPORT_SYMBOL_GPL(unregister_kprobe);
1829
1830 void unregister_kprobes(struct kprobe **kps, int num)
1831 {
1832         int i;
1833
1834         if (num <= 0)
1835                 return;
1836         mutex_lock(&kprobe_mutex);
1837         for (i = 0; i < num; i++)
1838                 if (__unregister_kprobe_top(kps[i]) < 0)
1839                         kps[i]->addr = NULL;
1840         mutex_unlock(&kprobe_mutex);
1841
1842         synchronize_sched();
1843         for (i = 0; i < num; i++)
1844                 if (kps[i]->addr)
1845                         __unregister_kprobe_bottom(kps[i]);
1846 }
1847 EXPORT_SYMBOL_GPL(unregister_kprobes);
1848
1849 int __weak kprobe_exceptions_notify(struct notifier_block *self,
1850                                         unsigned long val, void *data)
1851 {
1852         return NOTIFY_DONE;
1853 }
1854 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
1855
1856 static struct notifier_block kprobe_exceptions_nb = {
1857         .notifier_call = kprobe_exceptions_notify,
1858         .priority = 0x7fffffff /* we need to be notified first */
1859 };
1860
1861 unsigned long __weak arch_deref_entry_point(void *entry)
1862 {
1863         return (unsigned long)entry;
1864 }
1865
1866 #ifdef CONFIG_KRETPROBES
1867 /*
1868  * This kprobe pre_handler is registered with every kretprobe. When probe
1869  * hits it will set up the return probe.
1870  */
1871 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
1872 {
1873         struct kretprobe *rp = container_of(p, struct kretprobe, kp);
1874         unsigned long hash, flags = 0;
1875         struct kretprobe_instance *ri;
1876
1877         /*
1878          * To avoid deadlocks, prohibit return probing in NMI contexts,
1879          * just skip the probe and increase the (inexact) 'nmissed'
1880          * statistical counter, so that the user is informed that
1881          * something happened:
1882          */
1883         if (unlikely(in_nmi())) {
1884                 rp->nmissed++;
1885                 return 0;
1886         }
1887
1888         /* TODO: consider to only swap the RA after the last pre_handler fired */
1889         hash = hash_ptr(current, KPROBE_HASH_BITS);
1890         raw_spin_lock_irqsave(&rp->lock, flags);
1891         if (!hlist_empty(&rp->free_instances)) {
1892                 ri = hlist_entry(rp->free_instances.first,
1893                                 struct kretprobe_instance, hlist);
1894                 hlist_del(&ri->hlist);
1895                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1896
1897                 ri->rp = rp;
1898                 ri->task = current;
1899
1900                 if (rp->entry_handler && rp->entry_handler(ri, regs)) {
1901                         raw_spin_lock_irqsave(&rp->lock, flags);
1902                         hlist_add_head(&ri->hlist, &rp->free_instances);
1903                         raw_spin_unlock_irqrestore(&rp->lock, flags);
1904                         return 0;
1905                 }
1906
1907                 arch_prepare_kretprobe(ri, regs);
1908
1909                 /* XXX(hch): why is there no hlist_move_head? */
1910                 INIT_HLIST_NODE(&ri->hlist);
1911                 kretprobe_table_lock(hash, &flags);
1912                 hlist_add_head(&ri->hlist, &kretprobe_inst_table[hash]);
1913                 kretprobe_table_unlock(hash, &flags);
1914         } else {
1915                 rp->nmissed++;
1916                 raw_spin_unlock_irqrestore(&rp->lock, flags);
1917         }
1918         return 0;
1919 }
1920 NOKPROBE_SYMBOL(pre_handler_kretprobe);
1921
1922 bool __weak arch_kprobe_on_func_entry(unsigned long offset)
1923 {
1924         return !offset;
1925 }
1926
1927 /**
1928  * kprobe_on_func_entry() -- check whether given address is function entry
1929  * @addr: Target address
1930  * @sym:  Target symbol name
1931  * @offset: The offset from the symbol or the address
1932  *
1933  * This checks whether the given @addr+@offset or @sym+@offset is on the
1934  * function entry address or not.
1935  * This returns 0 if it is the function entry, or -EINVAL if it is not.
1936  * And also it returns -ENOENT if it fails the symbol or address lookup.
1937  * Caller must pass @addr or @sym (either one must be NULL), or this
1938  * returns -EINVAL.
1939  */
1940 int kprobe_on_func_entry(kprobe_opcode_t *addr, const char *sym, unsigned long offset)
1941 {
1942         kprobe_opcode_t *kp_addr = _kprobe_addr(addr, sym, offset);
1943
1944         if (IS_ERR(kp_addr))
1945                 return PTR_ERR(kp_addr);
1946
1947         if (!kallsyms_lookup_size_offset((unsigned long)kp_addr, NULL, &offset))
1948                 return -ENOENT;
1949
1950         if (!arch_kprobe_on_func_entry(offset))
1951                 return -EINVAL;
1952
1953         return 0;
1954 }
1955
1956 int register_kretprobe(struct kretprobe *rp)
1957 {
1958         int ret;
1959         struct kretprobe_instance *inst;
1960         int i;
1961         void *addr;
1962
1963         ret = kprobe_on_func_entry(rp->kp.addr, rp->kp.symbol_name, rp->kp.offset);
1964         if (ret)
1965                 return ret;
1966
1967         /* If only rp->kp.addr is specified, check reregistering kprobes */
1968         if (rp->kp.addr && check_kprobe_rereg(&rp->kp))
1969                 return -EINVAL;
1970
1971         if (kretprobe_blacklist_size) {
1972                 addr = kprobe_addr(&rp->kp);
1973                 if (IS_ERR(addr))
1974                         return PTR_ERR(addr);
1975
1976                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
1977                         if (kretprobe_blacklist[i].addr == addr)
1978                                 return -EINVAL;
1979                 }
1980         }
1981
1982         if (rp->data_size > KRETPROBE_MAX_DATA_SIZE)
1983                 return -E2BIG;
1984
1985         rp->kp.pre_handler = pre_handler_kretprobe;
1986         rp->kp.post_handler = NULL;
1987         rp->kp.fault_handler = NULL;
1988
1989         /* Pre-allocate memory for max kretprobe instances */
1990         if (rp->maxactive <= 0) {
1991 #ifdef CONFIG_PREEMPT
1992                 rp->maxactive = max_t(unsigned int, 10, 2*num_possible_cpus());
1993 #else
1994                 rp->maxactive = num_possible_cpus();
1995 #endif
1996         }
1997         raw_spin_lock_init(&rp->lock);
1998         INIT_HLIST_HEAD(&rp->free_instances);
1999         for (i = 0; i < rp->maxactive; i++) {
2000                 inst = kmalloc(sizeof(struct kretprobe_instance) +
2001                                rp->data_size, GFP_KERNEL);
2002                 if (inst == NULL) {
2003                         free_rp_inst(rp);
2004                         return -ENOMEM;
2005                 }
2006                 INIT_HLIST_NODE(&inst->hlist);
2007                 hlist_add_head(&inst->hlist, &rp->free_instances);
2008         }
2009
2010         rp->nmissed = 0;
2011         /* Establish function entry probe point */
2012         ret = register_kprobe(&rp->kp);
2013         if (ret != 0)
2014                 free_rp_inst(rp);
2015         return ret;
2016 }
2017 EXPORT_SYMBOL_GPL(register_kretprobe);
2018
2019 int register_kretprobes(struct kretprobe **rps, int num)
2020 {
2021         int ret = 0, i;
2022
2023         if (num <= 0)
2024                 return -EINVAL;
2025         for (i = 0; i < num; i++) {
2026                 ret = register_kretprobe(rps[i]);
2027                 if (ret < 0) {
2028                         if (i > 0)
2029                                 unregister_kretprobes(rps, i);
2030                         break;
2031                 }
2032         }
2033         return ret;
2034 }
2035 EXPORT_SYMBOL_GPL(register_kretprobes);
2036
2037 void unregister_kretprobe(struct kretprobe *rp)
2038 {
2039         unregister_kretprobes(&rp, 1);
2040 }
2041 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2042
2043 void unregister_kretprobes(struct kretprobe **rps, int num)
2044 {
2045         int i;
2046
2047         if (num <= 0)
2048                 return;
2049         mutex_lock(&kprobe_mutex);
2050         for (i = 0; i < num; i++)
2051                 if (__unregister_kprobe_top(&rps[i]->kp) < 0)
2052                         rps[i]->kp.addr = NULL;
2053         mutex_unlock(&kprobe_mutex);
2054
2055         synchronize_sched();
2056         for (i = 0; i < num; i++) {
2057                 if (rps[i]->kp.addr) {
2058                         __unregister_kprobe_bottom(&rps[i]->kp);
2059                         cleanup_rp_inst(rps[i]);
2060                 }
2061         }
2062 }
2063 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2064
2065 #else /* CONFIG_KRETPROBES */
2066 int register_kretprobe(struct kretprobe *rp)
2067 {
2068         return -ENOSYS;
2069 }
2070 EXPORT_SYMBOL_GPL(register_kretprobe);
2071
2072 int register_kretprobes(struct kretprobe **rps, int num)
2073 {
2074         return -ENOSYS;
2075 }
2076 EXPORT_SYMBOL_GPL(register_kretprobes);
2077
2078 void unregister_kretprobe(struct kretprobe *rp)
2079 {
2080 }
2081 EXPORT_SYMBOL_GPL(unregister_kretprobe);
2082
2083 void unregister_kretprobes(struct kretprobe **rps, int num)
2084 {
2085 }
2086 EXPORT_SYMBOL_GPL(unregister_kretprobes);
2087
2088 static int pre_handler_kretprobe(struct kprobe *p, struct pt_regs *regs)
2089 {
2090         return 0;
2091 }
2092 NOKPROBE_SYMBOL(pre_handler_kretprobe);
2093
2094 #endif /* CONFIG_KRETPROBES */
2095
2096 /* Set the kprobe gone and remove its instruction buffer. */
2097 static void kill_kprobe(struct kprobe *p)
2098 {
2099         struct kprobe *kp;
2100
2101         if (WARN_ON_ONCE(kprobe_gone(p)))
2102                 return;
2103
2104         p->flags |= KPROBE_FLAG_GONE;
2105         if (kprobe_aggrprobe(p)) {
2106                 /*
2107                  * If this is an aggr_kprobe, we have to list all the
2108                  * chained probes and mark them GONE.
2109                  */
2110                 list_for_each_entry_rcu(kp, &p->list, list)
2111                         kp->flags |= KPROBE_FLAG_GONE;
2112                 p->post_handler = NULL;
2113                 kill_optimized_kprobe(p);
2114         }
2115         /*
2116          * Here, we can remove insn_slot safely, because no thread calls
2117          * the original probed function (which will be freed soon) any more.
2118          */
2119         arch_remove_kprobe(p);
2120
2121         /*
2122          * The module is going away. We should disarm the kprobe which
2123          * is using ftrace, because ftrace framework is still available at
2124          * MODULE_STATE_GOING notification.
2125          */
2126         if (kprobe_ftrace(p) && !kprobe_disabled(p) && !kprobes_all_disarmed)
2127                 disarm_kprobe_ftrace(p);
2128 }
2129
2130 /* Disable one kprobe */
2131 int disable_kprobe(struct kprobe *kp)
2132 {
2133         int ret = 0;
2134         struct kprobe *p;
2135
2136         mutex_lock(&kprobe_mutex);
2137
2138         /* Disable this kprobe */
2139         p = __disable_kprobe(kp);
2140         if (IS_ERR(p))
2141                 ret = PTR_ERR(p);
2142
2143         mutex_unlock(&kprobe_mutex);
2144         return ret;
2145 }
2146 EXPORT_SYMBOL_GPL(disable_kprobe);
2147
2148 /* Enable one kprobe */
2149 int enable_kprobe(struct kprobe *kp)
2150 {
2151         int ret = 0;
2152         struct kprobe *p;
2153
2154         mutex_lock(&kprobe_mutex);
2155
2156         /* Check whether specified probe is valid. */
2157         p = __get_valid_kprobe(kp);
2158         if (unlikely(p == NULL)) {
2159                 ret = -EINVAL;
2160                 goto out;
2161         }
2162
2163         if (kprobe_gone(kp)) {
2164                 /* This kprobe has gone, we couldn't enable it. */
2165                 ret = -EINVAL;
2166                 goto out;
2167         }
2168
2169         if (p != kp)
2170                 kp->flags &= ~KPROBE_FLAG_DISABLED;
2171
2172         if (!kprobes_all_disarmed && kprobe_disabled(p)) {
2173                 p->flags &= ~KPROBE_FLAG_DISABLED;
2174                 ret = arm_kprobe(p);
2175                 if (ret) {
2176                         p->flags |= KPROBE_FLAG_DISABLED;
2177                         if (p != kp)
2178                                 kp->flags |= KPROBE_FLAG_DISABLED;
2179                 }
2180         }
2181 out:
2182         mutex_unlock(&kprobe_mutex);
2183         return ret;
2184 }
2185 EXPORT_SYMBOL_GPL(enable_kprobe);
2186
2187 /* Caller must NOT call this in usual path. This is only for critical case */
2188 void dump_kprobe(struct kprobe *kp)
2189 {
2190         pr_err("Dumping kprobe:\n");
2191         pr_err("Name: %s\nOffset: %x\nAddress: %pS\n",
2192                kp->symbol_name, kp->offset, kp->addr);
2193 }
2194 NOKPROBE_SYMBOL(dump_kprobe);
2195
2196 int kprobe_add_ksym_blacklist(unsigned long entry)
2197 {
2198         struct kprobe_blacklist_entry *ent;
2199         unsigned long offset = 0, size = 0;
2200
2201         if (!kernel_text_address(entry) ||
2202             !kallsyms_lookup_size_offset(entry, &size, &offset))
2203                 return -EINVAL;
2204
2205         ent = kmalloc(sizeof(*ent), GFP_KERNEL);
2206         if (!ent)
2207                 return -ENOMEM;
2208         ent->start_addr = entry;
2209         ent->end_addr = entry + size;
2210         INIT_LIST_HEAD(&ent->list);
2211         list_add_tail(&ent->list, &kprobe_blacklist);
2212
2213         return (int)size;
2214 }
2215
2216 /* Add all symbols in given area into kprobe blacklist */
2217 int kprobe_add_area_blacklist(unsigned long start, unsigned long end)
2218 {
2219         unsigned long entry;
2220         int ret = 0;
2221
2222         for (entry = start; entry < end; entry += ret) {
2223                 ret = kprobe_add_ksym_blacklist(entry);
2224                 if (ret < 0)
2225                         return ret;
2226                 if (ret == 0)   /* In case of alias symbol */
2227                         ret = 1;
2228         }
2229         return 0;
2230 }
2231
2232 int __init __weak arch_populate_kprobe_blacklist(void)
2233 {
2234         return 0;
2235 }
2236
2237 /*
2238  * Lookup and populate the kprobe_blacklist.
2239  *
2240  * Unlike the kretprobe blacklist, we'll need to determine
2241  * the range of addresses that belong to the said functions,
2242  * since a kprobe need not necessarily be at the beginning
2243  * of a function.
2244  */
2245 static int __init populate_kprobe_blacklist(unsigned long *start,
2246                                              unsigned long *end)
2247 {
2248         unsigned long entry;
2249         unsigned long *iter;
2250         int ret;
2251
2252         for (iter = start; iter < end; iter++) {
2253                 entry = arch_deref_entry_point((void *)*iter);
2254                 ret = kprobe_add_ksym_blacklist(entry);
2255                 if (ret == -EINVAL)
2256                         continue;
2257                 if (ret < 0)
2258                         return ret;
2259         }
2260
2261         /* Symbols in __kprobes_text are blacklisted */
2262         ret = kprobe_add_area_blacklist((unsigned long)__kprobes_text_start,
2263                                         (unsigned long)__kprobes_text_end);
2264
2265         return ret ? : arch_populate_kprobe_blacklist();
2266 }
2267
2268 /* Module notifier call back, checking kprobes on the module */
2269 static int kprobes_module_callback(struct notifier_block *nb,
2270                                    unsigned long val, void *data)
2271 {
2272         struct module *mod = data;
2273         struct hlist_head *head;
2274         struct kprobe *p;
2275         unsigned int i;
2276         int checkcore = (val == MODULE_STATE_GOING);
2277
2278         if (val != MODULE_STATE_GOING && val != MODULE_STATE_LIVE)
2279                 return NOTIFY_DONE;
2280
2281         /*
2282          * When MODULE_STATE_GOING was notified, both of module .text and
2283          * .init.text sections would be freed. When MODULE_STATE_LIVE was
2284          * notified, only .init.text section would be freed. We need to
2285          * disable kprobes which have been inserted in the sections.
2286          */
2287         mutex_lock(&kprobe_mutex);
2288         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2289                 head = &kprobe_table[i];
2290                 hlist_for_each_entry_rcu(p, head, hlist) {
2291                         if (kprobe_gone(p))
2292                                 continue;
2293
2294                         if (within_module_init((unsigned long)p->addr, mod) ||
2295                             (checkcore &&
2296                              within_module_core((unsigned long)p->addr, mod))) {
2297                                 /*
2298                                  * The vaddr this probe is installed will soon
2299                                  * be vfreed buy not synced to disk. Hence,
2300                                  * disarming the breakpoint isn't needed.
2301                                  *
2302                                  * Note, this will also move any optimized probes
2303                                  * that are pending to be removed from their
2304                                  * corresponding lists to the freeing_list and
2305                                  * will not be touched by the delayed
2306                                  * kprobe_optimizer work handler.
2307                                  */
2308                                 kill_kprobe(p);
2309                         }
2310                 }
2311         }
2312         mutex_unlock(&kprobe_mutex);
2313         return NOTIFY_DONE;
2314 }
2315
2316 static struct notifier_block kprobe_module_nb = {
2317         .notifier_call = kprobes_module_callback,
2318         .priority = 0
2319 };
2320
2321 /* Markers of _kprobe_blacklist section */
2322 extern unsigned long __start_kprobe_blacklist[];
2323 extern unsigned long __stop_kprobe_blacklist[];
2324
2325 static int __init init_kprobes(void)
2326 {
2327         int i, err = 0;
2328
2329         /* FIXME allocate the probe table, currently defined statically */
2330         /* initialize all list heads */
2331         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2332                 INIT_HLIST_HEAD(&kprobe_table[i]);
2333                 INIT_HLIST_HEAD(&kretprobe_inst_table[i]);
2334                 raw_spin_lock_init(&(kretprobe_table_locks[i].lock));
2335         }
2336
2337         err = populate_kprobe_blacklist(__start_kprobe_blacklist,
2338                                         __stop_kprobe_blacklist);
2339         if (err) {
2340                 pr_err("kprobes: failed to populate blacklist: %d\n", err);
2341                 pr_err("Please take care of using kprobes.\n");
2342         }
2343
2344         if (kretprobe_blacklist_size) {
2345                 /* lookup the function address from its name */
2346                 for (i = 0; kretprobe_blacklist[i].name != NULL; i++) {
2347                         kretprobe_blacklist[i].addr =
2348                                 kprobe_lookup_name(kretprobe_blacklist[i].name, 0);
2349                         if (!kretprobe_blacklist[i].addr)
2350                                 printk("kretprobe: lookup failed: %s\n",
2351                                        kretprobe_blacklist[i].name);
2352                 }
2353         }
2354
2355 #if defined(CONFIG_OPTPROBES)
2356 #if defined(__ARCH_WANT_KPROBES_INSN_SLOT)
2357         /* Init kprobe_optinsn_slots */
2358         kprobe_optinsn_slots.insn_size = MAX_OPTINSN_SIZE;
2359 #endif
2360         /* By default, kprobes can be optimized */
2361         kprobes_allow_optimization = true;
2362 #endif
2363
2364         /* By default, kprobes are armed */
2365         kprobes_all_disarmed = false;
2366
2367         err = arch_init_kprobes();
2368         if (!err)
2369                 err = register_die_notifier(&kprobe_exceptions_nb);
2370         if (!err)
2371                 err = register_module_notifier(&kprobe_module_nb);
2372
2373         kprobes_initialized = (err == 0);
2374
2375         if (!err)
2376                 init_test_probes();
2377         return err;
2378 }
2379
2380 #ifdef CONFIG_DEBUG_FS
2381 static void report_probe(struct seq_file *pi, struct kprobe *p,
2382                 const char *sym, int offset, char *modname, struct kprobe *pp)
2383 {
2384         char *kprobe_type;
2385         void *addr = p->addr;
2386
2387         if (p->pre_handler == pre_handler_kretprobe)
2388                 kprobe_type = "r";
2389         else
2390                 kprobe_type = "k";
2391
2392         if (!kallsyms_show_value(pi->file->f_cred))
2393                 addr = NULL;
2394
2395         if (sym)
2396                 seq_printf(pi, "%px  %s  %s+0x%x  %s ",
2397                         addr, kprobe_type, sym, offset,
2398                         (modname ? modname : " "));
2399         else    /* try to use %pS */
2400                 seq_printf(pi, "%px  %s  %pS ",
2401                         addr, kprobe_type, p->addr);
2402
2403         if (!pp)
2404                 pp = p;
2405         seq_printf(pi, "%s%s%s%s\n",
2406                 (kprobe_gone(p) ? "[GONE]" : ""),
2407                 ((kprobe_disabled(p) && !kprobe_gone(p)) ?  "[DISABLED]" : ""),
2408                 (kprobe_optimized(pp) ? "[OPTIMIZED]" : ""),
2409                 (kprobe_ftrace(pp) ? "[FTRACE]" : ""));
2410 }
2411
2412 static void *kprobe_seq_start(struct seq_file *f, loff_t *pos)
2413 {
2414         return (*pos < KPROBE_TABLE_SIZE) ? pos : NULL;
2415 }
2416
2417 static void *kprobe_seq_next(struct seq_file *f, void *v, loff_t *pos)
2418 {
2419         (*pos)++;
2420         if (*pos >= KPROBE_TABLE_SIZE)
2421                 return NULL;
2422         return pos;
2423 }
2424
2425 static void kprobe_seq_stop(struct seq_file *f, void *v)
2426 {
2427         /* Nothing to do */
2428 }
2429
2430 static int show_kprobe_addr(struct seq_file *pi, void *v)
2431 {
2432         struct hlist_head *head;
2433         struct kprobe *p, *kp;
2434         const char *sym = NULL;
2435         unsigned int i = *(loff_t *) v;
2436         unsigned long offset = 0;
2437         char *modname, namebuf[KSYM_NAME_LEN];
2438
2439         head = &kprobe_table[i];
2440         preempt_disable();
2441         hlist_for_each_entry_rcu(p, head, hlist) {
2442                 sym = kallsyms_lookup((unsigned long)p->addr, NULL,
2443                                         &offset, &modname, namebuf);
2444                 if (kprobe_aggrprobe(p)) {
2445                         list_for_each_entry_rcu(kp, &p->list, list)
2446                                 report_probe(pi, kp, sym, offset, modname, p);
2447                 } else
2448                         report_probe(pi, p, sym, offset, modname, NULL);
2449         }
2450         preempt_enable();
2451         return 0;
2452 }
2453
2454 static const struct seq_operations kprobes_seq_ops = {
2455         .start = kprobe_seq_start,
2456         .next  = kprobe_seq_next,
2457         .stop  = kprobe_seq_stop,
2458         .show  = show_kprobe_addr
2459 };
2460
2461 static int kprobes_open(struct inode *inode, struct file *filp)
2462 {
2463         return seq_open(filp, &kprobes_seq_ops);
2464 }
2465
2466 static const struct file_operations debugfs_kprobes_operations = {
2467         .open           = kprobes_open,
2468         .read           = seq_read,
2469         .llseek         = seq_lseek,
2470         .release        = seq_release,
2471 };
2472
2473 /* kprobes/blacklist -- shows which functions can not be probed */
2474 static void *kprobe_blacklist_seq_start(struct seq_file *m, loff_t *pos)
2475 {
2476         return seq_list_start(&kprobe_blacklist, *pos);
2477 }
2478
2479 static void *kprobe_blacklist_seq_next(struct seq_file *m, void *v, loff_t *pos)
2480 {
2481         return seq_list_next(v, &kprobe_blacklist, pos);
2482 }
2483
2484 static int kprobe_blacklist_seq_show(struct seq_file *m, void *v)
2485 {
2486         struct kprobe_blacklist_entry *ent =
2487                 list_entry(v, struct kprobe_blacklist_entry, list);
2488
2489         /*
2490          * If /proc/kallsyms is not showing kernel address, we won't
2491          * show them here either.
2492          */
2493         if (!kallsyms_show_value(m->file->f_cred))
2494                 seq_printf(m, "0x%px-0x%px\t%ps\n", NULL, NULL,
2495                            (void *)ent->start_addr);
2496         else
2497                 seq_printf(m, "0x%px-0x%px\t%ps\n", (void *)ent->start_addr,
2498                            (void *)ent->end_addr, (void *)ent->start_addr);
2499         return 0;
2500 }
2501
2502 static const struct seq_operations kprobe_blacklist_seq_ops = {
2503         .start = kprobe_blacklist_seq_start,
2504         .next  = kprobe_blacklist_seq_next,
2505         .stop  = kprobe_seq_stop,       /* Reuse void function */
2506         .show  = kprobe_blacklist_seq_show,
2507 };
2508
2509 static int kprobe_blacklist_open(struct inode *inode, struct file *filp)
2510 {
2511         return seq_open(filp, &kprobe_blacklist_seq_ops);
2512 }
2513
2514 static const struct file_operations debugfs_kprobe_blacklist_ops = {
2515         .open           = kprobe_blacklist_open,
2516         .read           = seq_read,
2517         .llseek         = seq_lseek,
2518         .release        = seq_release,
2519 };
2520
2521 static int arm_all_kprobes(void)
2522 {
2523         struct hlist_head *head;
2524         struct kprobe *p;
2525         unsigned int i, total = 0, errors = 0;
2526         int err, ret = 0;
2527
2528         mutex_lock(&kprobe_mutex);
2529
2530         /* If kprobes are armed, just return */
2531         if (!kprobes_all_disarmed)
2532                 goto already_enabled;
2533
2534         /*
2535          * optimize_kprobe() called by arm_kprobe() checks
2536          * kprobes_all_disarmed, so set kprobes_all_disarmed before
2537          * arm_kprobe.
2538          */
2539         kprobes_all_disarmed = false;
2540         /* Arming kprobes doesn't optimize kprobe itself */
2541         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2542                 head = &kprobe_table[i];
2543                 /* Arm all kprobes on a best-effort basis */
2544                 hlist_for_each_entry_rcu(p, head, hlist) {
2545                         if (!kprobe_disabled(p)) {
2546                                 err = arm_kprobe(p);
2547                                 if (err)  {
2548                                         errors++;
2549                                         ret = err;
2550                                 }
2551                                 total++;
2552                         }
2553                 }
2554         }
2555
2556         if (errors)
2557                 pr_warn("Kprobes globally enabled, but failed to arm %d out of %d probes\n",
2558                         errors, total);
2559         else
2560                 pr_info("Kprobes globally enabled\n");
2561
2562 already_enabled:
2563         mutex_unlock(&kprobe_mutex);
2564         return ret;
2565 }
2566
2567 static int disarm_all_kprobes(void)
2568 {
2569         struct hlist_head *head;
2570         struct kprobe *p;
2571         unsigned int i, total = 0, errors = 0;
2572         int err, ret = 0;
2573
2574         mutex_lock(&kprobe_mutex);
2575
2576         /* If kprobes are already disarmed, just return */
2577         if (kprobes_all_disarmed) {
2578                 mutex_unlock(&kprobe_mutex);
2579                 return 0;
2580         }
2581
2582         kprobes_all_disarmed = true;
2583
2584         for (i = 0; i < KPROBE_TABLE_SIZE; i++) {
2585                 head = &kprobe_table[i];
2586                 /* Disarm all kprobes on a best-effort basis */
2587                 hlist_for_each_entry_rcu(p, head, hlist) {
2588                         if (!arch_trampoline_kprobe(p) && !kprobe_disabled(p)) {
2589                                 err = disarm_kprobe(p, false);
2590                                 if (err) {
2591                                         errors++;
2592                                         ret = err;
2593                                 }
2594                                 total++;
2595                         }
2596                 }
2597         }
2598
2599         if (errors)
2600                 pr_warn("Kprobes globally disabled, but failed to disarm %d out of %d probes\n",
2601                         errors, total);
2602         else
2603                 pr_info("Kprobes globally disabled\n");
2604
2605         mutex_unlock(&kprobe_mutex);
2606
2607         /* Wait for disarming all kprobes by optimizer */
2608         wait_for_kprobe_optimizer();
2609
2610         return ret;
2611 }
2612
2613 /*
2614  * XXX: The debugfs bool file interface doesn't allow for callbacks
2615  * when the bool state is switched. We can reuse that facility when
2616  * available
2617  */
2618 static ssize_t read_enabled_file_bool(struct file *file,
2619                char __user *user_buf, size_t count, loff_t *ppos)
2620 {
2621         char buf[3];
2622
2623         if (!kprobes_all_disarmed)
2624                 buf[0] = '1';
2625         else
2626                 buf[0] = '0';
2627         buf[1] = '\n';
2628         buf[2] = 0x00;
2629         return simple_read_from_buffer(user_buf, count, ppos, buf, 2);
2630 }
2631
2632 static ssize_t write_enabled_file_bool(struct file *file,
2633                const char __user *user_buf, size_t count, loff_t *ppos)
2634 {
2635         char buf[32];
2636         size_t buf_size;
2637         int ret = 0;
2638
2639         buf_size = min(count, (sizeof(buf)-1));
2640         if (copy_from_user(buf, user_buf, buf_size))
2641                 return -EFAULT;
2642
2643         buf[buf_size] = '\0';
2644         switch (buf[0]) {
2645         case 'y':
2646         case 'Y':
2647         case '1':
2648                 ret = arm_all_kprobes();
2649                 break;
2650         case 'n':
2651         case 'N':
2652         case '0':
2653                 ret = disarm_all_kprobes();
2654                 break;
2655         default:
2656                 return -EINVAL;
2657         }
2658
2659         if (ret)
2660                 return ret;
2661
2662         return count;
2663 }
2664
2665 static const struct file_operations fops_kp = {
2666         .read =         read_enabled_file_bool,
2667         .write =        write_enabled_file_bool,
2668         .llseek =       default_llseek,
2669 };
2670
2671 static int __init debugfs_kprobe_init(void)
2672 {
2673         struct dentry *dir, *file;
2674         unsigned int value = 1;
2675
2676         dir = debugfs_create_dir("kprobes", NULL);
2677         if (!dir)
2678                 return -ENOMEM;
2679
2680         file = debugfs_create_file("list", 0400, dir, NULL,
2681                                 &debugfs_kprobes_operations);
2682         if (!file)
2683                 goto error;
2684
2685         file = debugfs_create_file("enabled", 0600, dir,
2686                                         &value, &fops_kp);
2687         if (!file)
2688                 goto error;
2689
2690         file = debugfs_create_file("blacklist", 0400, dir, NULL,
2691                                 &debugfs_kprobe_blacklist_ops);
2692         if (!file)
2693                 goto error;
2694
2695         return 0;
2696
2697 error:
2698         debugfs_remove(dir);
2699         return -ENOMEM;
2700 }
2701
2702 late_initcall(debugfs_kprobe_init);
2703 #endif /* CONFIG_DEBUG_FS */
2704
2705 module_init(init_kprobes);