GNU Linux-libre 4.9-gnu1
[releases.git] / kernel / locking / rtmutex.c
1 /*
2  * RT-Mutexes: simple blocking mutual exclusion locks with PI support
3  *
4  * started by Ingo Molnar and Thomas Gleixner.
5  *
6  *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
7  *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
8  *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
9  *  Copyright (C) 2006 Esben Nielsen
10  *
11  *  See Documentation/locking/rt-mutex-design.txt for details.
12  */
13 #include <linux/spinlock.h>
14 #include <linux/export.h>
15 #include <linux/sched.h>
16 #include <linux/sched/rt.h>
17 #include <linux/sched/deadline.h>
18 #include <linux/timer.h>
19
20 #include "rtmutex_common.h"
21
22 /*
23  * lock->owner state tracking:
24  *
25  * lock->owner holds the task_struct pointer of the owner. Bit 0
26  * is used to keep track of the "lock has waiters" state.
27  *
28  * owner        bit0
29  * NULL         0       lock is free (fast acquire possible)
30  * NULL         1       lock is free and has waiters and the top waiter
31  *                              is going to take the lock*
32  * taskpointer  0       lock is held (fast release possible)
33  * taskpointer  1       lock is held and has waiters**
34  *
35  * The fast atomic compare exchange based acquire and release is only
36  * possible when bit 0 of lock->owner is 0.
37  *
38  * (*) It also can be a transitional state when grabbing the lock
39  * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
40  * we need to set the bit0 before looking at the lock, and the owner may be
41  * NULL in this small time, hence this can be a transitional state.
42  *
43  * (**) There is a small time when bit 0 is set but there are no
44  * waiters. This can happen when grabbing the lock in the slow path.
45  * To prevent a cmpxchg of the owner releasing the lock, we need to
46  * set this bit before looking at the lock.
47  */
48
49 static void
50 rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
51 {
52         unsigned long val = (unsigned long)owner;
53
54         if (rt_mutex_has_waiters(lock))
55                 val |= RT_MUTEX_HAS_WAITERS;
56
57         lock->owner = (struct task_struct *)val;
58 }
59
60 static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
61 {
62         lock->owner = (struct task_struct *)
63                         ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
64 }
65
66 static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
67 {
68         unsigned long owner, *p = (unsigned long *) &lock->owner;
69
70         if (rt_mutex_has_waiters(lock))
71                 return;
72
73         /*
74          * The rbtree has no waiters enqueued, now make sure that the
75          * lock->owner still has the waiters bit set, otherwise the
76          * following can happen:
77          *
78          * CPU 0        CPU 1           CPU2
79          * l->owner=T1
80          *              rt_mutex_lock(l)
81          *              lock(l->lock)
82          *              l->owner = T1 | HAS_WAITERS;
83          *              enqueue(T2)
84          *              boost()
85          *                unlock(l->lock)
86          *              block()
87          *
88          *                              rt_mutex_lock(l)
89          *                              lock(l->lock)
90          *                              l->owner = T1 | HAS_WAITERS;
91          *                              enqueue(T3)
92          *                              boost()
93          *                                unlock(l->lock)
94          *                              block()
95          *              signal(->T2)    signal(->T3)
96          *              lock(l->lock)
97          *              dequeue(T2)
98          *              deboost()
99          *                unlock(l->lock)
100          *                              lock(l->lock)
101          *                              dequeue(T3)
102          *                               ==> wait list is empty
103          *                              deboost()
104          *                               unlock(l->lock)
105          *              lock(l->lock)
106          *              fixup_rt_mutex_waiters()
107          *                if (wait_list_empty(l) {
108          *                  l->owner = owner
109          *                  owner = l->owner & ~HAS_WAITERS;
110          *                    ==> l->owner = T1
111          *                }
112          *                              lock(l->lock)
113          * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
114          *                                if (wait_list_empty(l) {
115          *                                  owner = l->owner & ~HAS_WAITERS;
116          * cmpxchg(l->owner, T1, NULL)
117          *  ===> Success (l->owner = NULL)
118          *
119          *                                  l->owner = owner
120          *                                    ==> l->owner = T1
121          *                                }
122          *
123          * With the check for the waiter bit in place T3 on CPU2 will not
124          * overwrite. All tasks fiddling with the waiters bit are
125          * serialized by l->lock, so nothing else can modify the waiters
126          * bit. If the bit is set then nothing can change l->owner either
127          * so the simple RMW is safe. The cmpxchg() will simply fail if it
128          * happens in the middle of the RMW because the waiters bit is
129          * still set.
130          */
131         owner = READ_ONCE(*p);
132         if (owner & RT_MUTEX_HAS_WAITERS)
133                 WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
134 }
135
136 /*
137  * We can speed up the acquire/release, if there's no debugging state to be
138  * set up.
139  */
140 #ifndef CONFIG_DEBUG_RT_MUTEXES
141 # define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
142 # define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
143 # define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
144
145 /*
146  * Callers must hold the ->wait_lock -- which is the whole purpose as we force
147  * all future threads that attempt to [Rmw] the lock to the slowpath. As such
148  * relaxed semantics suffice.
149  */
150 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
151 {
152         unsigned long owner, *p = (unsigned long *) &lock->owner;
153
154         do {
155                 owner = *p;
156         } while (cmpxchg_relaxed(p, owner,
157                                  owner | RT_MUTEX_HAS_WAITERS) != owner);
158 }
159
160 /*
161  * Safe fastpath aware unlock:
162  * 1) Clear the waiters bit
163  * 2) Drop lock->wait_lock
164  * 3) Try to unlock the lock with cmpxchg
165  */
166 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
167                                         unsigned long flags)
168         __releases(lock->wait_lock)
169 {
170         struct task_struct *owner = rt_mutex_owner(lock);
171
172         clear_rt_mutex_waiters(lock);
173         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
174         /*
175          * If a new waiter comes in between the unlock and the cmpxchg
176          * we have two situations:
177          *
178          * unlock(wait_lock);
179          *                                      lock(wait_lock);
180          * cmpxchg(p, owner, 0) == owner
181          *                                      mark_rt_mutex_waiters(lock);
182          *                                      acquire(lock);
183          * or:
184          *
185          * unlock(wait_lock);
186          *                                      lock(wait_lock);
187          *                                      mark_rt_mutex_waiters(lock);
188          *
189          * cmpxchg(p, owner, 0) != owner
190          *                                      enqueue_waiter();
191          *                                      unlock(wait_lock);
192          * lock(wait_lock);
193          * wake waiter();
194          * unlock(wait_lock);
195          *                                      lock(wait_lock);
196          *                                      acquire(lock);
197          */
198         return rt_mutex_cmpxchg_release(lock, owner, NULL);
199 }
200
201 #else
202 # define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
203 # define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
204 # define rt_mutex_cmpxchg_release(l,c,n)        (0)
205
206 static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
207 {
208         lock->owner = (struct task_struct *)
209                         ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
210 }
211
212 /*
213  * Simple slow path only version: lock->owner is protected by lock->wait_lock.
214  */
215 static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
216                                         unsigned long flags)
217         __releases(lock->wait_lock)
218 {
219         lock->owner = NULL;
220         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
221         return true;
222 }
223 #endif
224
225 static inline int
226 rt_mutex_waiter_less(struct rt_mutex_waiter *left,
227                      struct rt_mutex_waiter *right)
228 {
229         if (left->prio < right->prio)
230                 return 1;
231
232         /*
233          * If both waiters have dl_prio(), we check the deadlines of the
234          * associated tasks.
235          * If left waiter has a dl_prio(), and we didn't return 1 above,
236          * then right waiter has a dl_prio() too.
237          */
238         if (dl_prio(left->prio))
239                 return dl_time_before(left->task->dl.deadline,
240                                       right->task->dl.deadline);
241
242         return 0;
243 }
244
245 static void
246 rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
247 {
248         struct rb_node **link = &lock->waiters.rb_node;
249         struct rb_node *parent = NULL;
250         struct rt_mutex_waiter *entry;
251         int leftmost = 1;
252
253         while (*link) {
254                 parent = *link;
255                 entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
256                 if (rt_mutex_waiter_less(waiter, entry)) {
257                         link = &parent->rb_left;
258                 } else {
259                         link = &parent->rb_right;
260                         leftmost = 0;
261                 }
262         }
263
264         if (leftmost)
265                 lock->waiters_leftmost = &waiter->tree_entry;
266
267         rb_link_node(&waiter->tree_entry, parent, link);
268         rb_insert_color(&waiter->tree_entry, &lock->waiters);
269 }
270
271 static void
272 rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
273 {
274         if (RB_EMPTY_NODE(&waiter->tree_entry))
275                 return;
276
277         if (lock->waiters_leftmost == &waiter->tree_entry)
278                 lock->waiters_leftmost = rb_next(&waiter->tree_entry);
279
280         rb_erase(&waiter->tree_entry, &lock->waiters);
281         RB_CLEAR_NODE(&waiter->tree_entry);
282 }
283
284 static void
285 rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
286 {
287         struct rb_node **link = &task->pi_waiters.rb_node;
288         struct rb_node *parent = NULL;
289         struct rt_mutex_waiter *entry;
290         int leftmost = 1;
291
292         while (*link) {
293                 parent = *link;
294                 entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
295                 if (rt_mutex_waiter_less(waiter, entry)) {
296                         link = &parent->rb_left;
297                 } else {
298                         link = &parent->rb_right;
299                         leftmost = 0;
300                 }
301         }
302
303         if (leftmost)
304                 task->pi_waiters_leftmost = &waiter->pi_tree_entry;
305
306         rb_link_node(&waiter->pi_tree_entry, parent, link);
307         rb_insert_color(&waiter->pi_tree_entry, &task->pi_waiters);
308 }
309
310 static void
311 rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
312 {
313         if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
314                 return;
315
316         if (task->pi_waiters_leftmost == &waiter->pi_tree_entry)
317                 task->pi_waiters_leftmost = rb_next(&waiter->pi_tree_entry);
318
319         rb_erase(&waiter->pi_tree_entry, &task->pi_waiters);
320         RB_CLEAR_NODE(&waiter->pi_tree_entry);
321 }
322
323 /*
324  * Calculate task priority from the waiter tree priority
325  *
326  * Return task->normal_prio when the waiter tree is empty or when
327  * the waiter is not allowed to do priority boosting
328  */
329 int rt_mutex_getprio(struct task_struct *task)
330 {
331         if (likely(!task_has_pi_waiters(task)))
332                 return task->normal_prio;
333
334         return min(task_top_pi_waiter(task)->prio,
335                    task->normal_prio);
336 }
337
338 struct task_struct *rt_mutex_get_top_task(struct task_struct *task)
339 {
340         if (likely(!task_has_pi_waiters(task)))
341                 return NULL;
342
343         return task_top_pi_waiter(task)->task;
344 }
345
346 /*
347  * Called by sched_setscheduler() to get the priority which will be
348  * effective after the change.
349  */
350 int rt_mutex_get_effective_prio(struct task_struct *task, int newprio)
351 {
352         if (!task_has_pi_waiters(task))
353                 return newprio;
354
355         if (task_top_pi_waiter(task)->task->prio <= newprio)
356                 return task_top_pi_waiter(task)->task->prio;
357         return newprio;
358 }
359
360 /*
361  * Adjust the priority of a task, after its pi_waiters got modified.
362  *
363  * This can be both boosting and unboosting. task->pi_lock must be held.
364  */
365 static void __rt_mutex_adjust_prio(struct task_struct *task)
366 {
367         int prio = rt_mutex_getprio(task);
368
369         if (task->prio != prio || dl_prio(prio))
370                 rt_mutex_setprio(task, prio);
371 }
372
373 /*
374  * Adjust task priority (undo boosting). Called from the exit path of
375  * rt_mutex_slowunlock() and rt_mutex_slowlock().
376  *
377  * (Note: We do this outside of the protection of lock->wait_lock to
378  * allow the lock to be taken while or before we readjust the priority
379  * of task. We do not use the spin_xx_mutex() variants here as we are
380  * outside of the debug path.)
381  */
382 void rt_mutex_adjust_prio(struct task_struct *task)
383 {
384         unsigned long flags;
385
386         raw_spin_lock_irqsave(&task->pi_lock, flags);
387         __rt_mutex_adjust_prio(task);
388         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
389 }
390
391 /*
392  * Deadlock detection is conditional:
393  *
394  * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
395  * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
396  *
397  * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
398  * conducted independent of the detect argument.
399  *
400  * If the waiter argument is NULL this indicates the deboost path and
401  * deadlock detection is disabled independent of the detect argument
402  * and the config settings.
403  */
404 static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
405                                           enum rtmutex_chainwalk chwalk)
406 {
407         /*
408          * This is just a wrapper function for the following call,
409          * because debug_rt_mutex_detect_deadlock() smells like a magic
410          * debug feature and I wanted to keep the cond function in the
411          * main source file along with the comments instead of having
412          * two of the same in the headers.
413          */
414         return debug_rt_mutex_detect_deadlock(waiter, chwalk);
415 }
416
417 /*
418  * Max number of times we'll walk the boosting chain:
419  */
420 int max_lock_depth = 1024;
421
422 static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
423 {
424         return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
425 }
426
427 /*
428  * Adjust the priority chain. Also used for deadlock detection.
429  * Decreases task's usage by one - may thus free the task.
430  *
431  * @task:       the task owning the mutex (owner) for which a chain walk is
432  *              probably needed
433  * @chwalk:     do we have to carry out deadlock detection?
434  * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
435  *              things for a task that has just got its priority adjusted, and
436  *              is waiting on a mutex)
437  * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
438  *              we dropped its pi_lock. Is never dereferenced, only used for
439  *              comparison to detect lock chain changes.
440  * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
441  *              its priority to the mutex owner (can be NULL in the case
442  *              depicted above or if the top waiter is gone away and we are
443  *              actually deboosting the owner)
444  * @top_task:   the current top waiter
445  *
446  * Returns 0 or -EDEADLK.
447  *
448  * Chain walk basics and protection scope
449  *
450  * [R] refcount on task
451  * [P] task->pi_lock held
452  * [L] rtmutex->wait_lock held
453  *
454  * Step Description                             Protected by
455  *      function arguments:
456  *      @task                                   [R]
457  *      @orig_lock if != NULL                   @top_task is blocked on it
458  *      @next_lock                              Unprotected. Cannot be
459  *                                              dereferenced. Only used for
460  *                                              comparison.
461  *      @orig_waiter if != NULL                 @top_task is blocked on it
462  *      @top_task                               current, or in case of proxy
463  *                                              locking protected by calling
464  *                                              code
465  *      again:
466  *        loop_sanity_check();
467  *      retry:
468  * [1]    lock(task->pi_lock);                  [R] acquire [P]
469  * [2]    waiter = task->pi_blocked_on;         [P]
470  * [3]    check_exit_conditions_1();            [P]
471  * [4]    lock = waiter->lock;                  [P]
472  * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
473  *          unlock(task->pi_lock);              release [P]
474  *          goto retry;
475  *        }
476  * [6]    check_exit_conditions_2();            [P] + [L]
477  * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
478  * [8]    unlock(task->pi_lock);                release [P]
479  *        put_task_struct(task);                release [R]
480  * [9]    check_exit_conditions_3();            [L]
481  * [10]   task = owner(lock);                   [L]
482  *        get_task_struct(task);                [L] acquire [R]
483  *        lock(task->pi_lock);                  [L] acquire [P]
484  * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
485  * [12]   check_exit_conditions_4();            [P] + [L]
486  * [13]   unlock(task->pi_lock);                release [P]
487  *        unlock(lock->wait_lock);              release [L]
488  *        goto again;
489  */
490 static int rt_mutex_adjust_prio_chain(struct task_struct *task,
491                                       enum rtmutex_chainwalk chwalk,
492                                       struct rt_mutex *orig_lock,
493                                       struct rt_mutex *next_lock,
494                                       struct rt_mutex_waiter *orig_waiter,
495                                       struct task_struct *top_task)
496 {
497         struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
498         struct rt_mutex_waiter *prerequeue_top_waiter;
499         int ret = 0, depth = 0;
500         struct rt_mutex *lock;
501         bool detect_deadlock;
502         bool requeue = true;
503
504         detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
505
506         /*
507          * The (de)boosting is a step by step approach with a lot of
508          * pitfalls. We want this to be preemptible and we want hold a
509          * maximum of two locks per step. So we have to check
510          * carefully whether things change under us.
511          */
512  again:
513         /*
514          * We limit the lock chain length for each invocation.
515          */
516         if (++depth > max_lock_depth) {
517                 static int prev_max;
518
519                 /*
520                  * Print this only once. If the admin changes the limit,
521                  * print a new message when reaching the limit again.
522                  */
523                 if (prev_max != max_lock_depth) {
524                         prev_max = max_lock_depth;
525                         printk(KERN_WARNING "Maximum lock depth %d reached "
526                                "task: %s (%d)\n", max_lock_depth,
527                                top_task->comm, task_pid_nr(top_task));
528                 }
529                 put_task_struct(task);
530
531                 return -EDEADLK;
532         }
533
534         /*
535          * We are fully preemptible here and only hold the refcount on
536          * @task. So everything can have changed under us since the
537          * caller or our own code below (goto retry/again) dropped all
538          * locks.
539          */
540  retry:
541         /*
542          * [1] Task cannot go away as we did a get_task() before !
543          */
544         raw_spin_lock_irq(&task->pi_lock);
545
546         /*
547          * [2] Get the waiter on which @task is blocked on.
548          */
549         waiter = task->pi_blocked_on;
550
551         /*
552          * [3] check_exit_conditions_1() protected by task->pi_lock.
553          */
554
555         /*
556          * Check whether the end of the boosting chain has been
557          * reached or the state of the chain has changed while we
558          * dropped the locks.
559          */
560         if (!waiter)
561                 goto out_unlock_pi;
562
563         /*
564          * Check the orig_waiter state. After we dropped the locks,
565          * the previous owner of the lock might have released the lock.
566          */
567         if (orig_waiter && !rt_mutex_owner(orig_lock))
568                 goto out_unlock_pi;
569
570         /*
571          * We dropped all locks after taking a refcount on @task, so
572          * the task might have moved on in the lock chain or even left
573          * the chain completely and blocks now on an unrelated lock or
574          * on @orig_lock.
575          *
576          * We stored the lock on which @task was blocked in @next_lock,
577          * so we can detect the chain change.
578          */
579         if (next_lock != waiter->lock)
580                 goto out_unlock_pi;
581
582         /*
583          * Drop out, when the task has no waiters. Note,
584          * top_waiter can be NULL, when we are in the deboosting
585          * mode!
586          */
587         if (top_waiter) {
588                 if (!task_has_pi_waiters(task))
589                         goto out_unlock_pi;
590                 /*
591                  * If deadlock detection is off, we stop here if we
592                  * are not the top pi waiter of the task. If deadlock
593                  * detection is enabled we continue, but stop the
594                  * requeueing in the chain walk.
595                  */
596                 if (top_waiter != task_top_pi_waiter(task)) {
597                         if (!detect_deadlock)
598                                 goto out_unlock_pi;
599                         else
600                                 requeue = false;
601                 }
602         }
603
604         /*
605          * If the waiter priority is the same as the task priority
606          * then there is no further priority adjustment necessary.  If
607          * deadlock detection is off, we stop the chain walk. If its
608          * enabled we continue, but stop the requeueing in the chain
609          * walk.
610          */
611         if (waiter->prio == task->prio) {
612                 if (!detect_deadlock)
613                         goto out_unlock_pi;
614                 else
615                         requeue = false;
616         }
617
618         /*
619          * [4] Get the next lock
620          */
621         lock = waiter->lock;
622         /*
623          * [5] We need to trylock here as we are holding task->pi_lock,
624          * which is the reverse lock order versus the other rtmutex
625          * operations.
626          */
627         if (!raw_spin_trylock(&lock->wait_lock)) {
628                 raw_spin_unlock_irq(&task->pi_lock);
629                 cpu_relax();
630                 goto retry;
631         }
632
633         /*
634          * [6] check_exit_conditions_2() protected by task->pi_lock and
635          * lock->wait_lock.
636          *
637          * Deadlock detection. If the lock is the same as the original
638          * lock which caused us to walk the lock chain or if the
639          * current lock is owned by the task which initiated the chain
640          * walk, we detected a deadlock.
641          */
642         if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
643                 debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
644                 raw_spin_unlock(&lock->wait_lock);
645                 ret = -EDEADLK;
646                 goto out_unlock_pi;
647         }
648
649         /*
650          * If we just follow the lock chain for deadlock detection, no
651          * need to do all the requeue operations. To avoid a truckload
652          * of conditionals around the various places below, just do the
653          * minimum chain walk checks.
654          */
655         if (!requeue) {
656                 /*
657                  * No requeue[7] here. Just release @task [8]
658                  */
659                 raw_spin_unlock(&task->pi_lock);
660                 put_task_struct(task);
661
662                 /*
663                  * [9] check_exit_conditions_3 protected by lock->wait_lock.
664                  * If there is no owner of the lock, end of chain.
665                  */
666                 if (!rt_mutex_owner(lock)) {
667                         raw_spin_unlock_irq(&lock->wait_lock);
668                         return 0;
669                 }
670
671                 /* [10] Grab the next task, i.e. owner of @lock */
672                 task = rt_mutex_owner(lock);
673                 get_task_struct(task);
674                 raw_spin_lock(&task->pi_lock);
675
676                 /*
677                  * No requeue [11] here. We just do deadlock detection.
678                  *
679                  * [12] Store whether owner is blocked
680                  * itself. Decision is made after dropping the locks
681                  */
682                 next_lock = task_blocked_on_lock(task);
683                 /*
684                  * Get the top waiter for the next iteration
685                  */
686                 top_waiter = rt_mutex_top_waiter(lock);
687
688                 /* [13] Drop locks */
689                 raw_spin_unlock(&task->pi_lock);
690                 raw_spin_unlock_irq(&lock->wait_lock);
691
692                 /* If owner is not blocked, end of chain. */
693                 if (!next_lock)
694                         goto out_put_task;
695                 goto again;
696         }
697
698         /*
699          * Store the current top waiter before doing the requeue
700          * operation on @lock. We need it for the boost/deboost
701          * decision below.
702          */
703         prerequeue_top_waiter = rt_mutex_top_waiter(lock);
704
705         /* [7] Requeue the waiter in the lock waiter tree. */
706         rt_mutex_dequeue(lock, waiter);
707         waiter->prio = task->prio;
708         rt_mutex_enqueue(lock, waiter);
709
710         /* [8] Release the task */
711         raw_spin_unlock(&task->pi_lock);
712         put_task_struct(task);
713
714         /*
715          * [9] check_exit_conditions_3 protected by lock->wait_lock.
716          *
717          * We must abort the chain walk if there is no lock owner even
718          * in the dead lock detection case, as we have nothing to
719          * follow here. This is the end of the chain we are walking.
720          */
721         if (!rt_mutex_owner(lock)) {
722                 /*
723                  * If the requeue [7] above changed the top waiter,
724                  * then we need to wake the new top waiter up to try
725                  * to get the lock.
726                  */
727                 if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
728                         wake_up_process(rt_mutex_top_waiter(lock)->task);
729                 raw_spin_unlock_irq(&lock->wait_lock);
730                 return 0;
731         }
732
733         /* [10] Grab the next task, i.e. the owner of @lock */
734         task = rt_mutex_owner(lock);
735         get_task_struct(task);
736         raw_spin_lock(&task->pi_lock);
737
738         /* [11] requeue the pi waiters if necessary */
739         if (waiter == rt_mutex_top_waiter(lock)) {
740                 /*
741                  * The waiter became the new top (highest priority)
742                  * waiter on the lock. Replace the previous top waiter
743                  * in the owner tasks pi waiters tree with this waiter
744                  * and adjust the priority of the owner.
745                  */
746                 rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
747                 rt_mutex_enqueue_pi(task, waiter);
748                 __rt_mutex_adjust_prio(task);
749
750         } else if (prerequeue_top_waiter == waiter) {
751                 /*
752                  * The waiter was the top waiter on the lock, but is
753                  * no longer the top prority waiter. Replace waiter in
754                  * the owner tasks pi waiters tree with the new top
755                  * (highest priority) waiter and adjust the priority
756                  * of the owner.
757                  * The new top waiter is stored in @waiter so that
758                  * @waiter == @top_waiter evaluates to true below and
759                  * we continue to deboost the rest of the chain.
760                  */
761                 rt_mutex_dequeue_pi(task, waiter);
762                 waiter = rt_mutex_top_waiter(lock);
763                 rt_mutex_enqueue_pi(task, waiter);
764                 __rt_mutex_adjust_prio(task);
765         } else {
766                 /*
767                  * Nothing changed. No need to do any priority
768                  * adjustment.
769                  */
770         }
771
772         /*
773          * [12] check_exit_conditions_4() protected by task->pi_lock
774          * and lock->wait_lock. The actual decisions are made after we
775          * dropped the locks.
776          *
777          * Check whether the task which owns the current lock is pi
778          * blocked itself. If yes we store a pointer to the lock for
779          * the lock chain change detection above. After we dropped
780          * task->pi_lock next_lock cannot be dereferenced anymore.
781          */
782         next_lock = task_blocked_on_lock(task);
783         /*
784          * Store the top waiter of @lock for the end of chain walk
785          * decision below.
786          */
787         top_waiter = rt_mutex_top_waiter(lock);
788
789         /* [13] Drop the locks */
790         raw_spin_unlock(&task->pi_lock);
791         raw_spin_unlock_irq(&lock->wait_lock);
792
793         /*
794          * Make the actual exit decisions [12], based on the stored
795          * values.
796          *
797          * We reached the end of the lock chain. Stop right here. No
798          * point to go back just to figure that out.
799          */
800         if (!next_lock)
801                 goto out_put_task;
802
803         /*
804          * If the current waiter is not the top waiter on the lock,
805          * then we can stop the chain walk here if we are not in full
806          * deadlock detection mode.
807          */
808         if (!detect_deadlock && waiter != top_waiter)
809                 goto out_put_task;
810
811         goto again;
812
813  out_unlock_pi:
814         raw_spin_unlock_irq(&task->pi_lock);
815  out_put_task:
816         put_task_struct(task);
817
818         return ret;
819 }
820
821 /*
822  * Try to take an rt-mutex
823  *
824  * Must be called with lock->wait_lock held and interrupts disabled
825  *
826  * @lock:   The lock to be acquired.
827  * @task:   The task which wants to acquire the lock
828  * @waiter: The waiter that is queued to the lock's wait tree if the
829  *          callsite called task_blocked_on_lock(), otherwise NULL
830  */
831 static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
832                                 struct rt_mutex_waiter *waiter)
833 {
834         /*
835          * Before testing whether we can acquire @lock, we set the
836          * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
837          * other tasks which try to modify @lock into the slow path
838          * and they serialize on @lock->wait_lock.
839          *
840          * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
841          * as explained at the top of this file if and only if:
842          *
843          * - There is a lock owner. The caller must fixup the
844          *   transient state if it does a trylock or leaves the lock
845          *   function due to a signal or timeout.
846          *
847          * - @task acquires the lock and there are no other
848          *   waiters. This is undone in rt_mutex_set_owner(@task) at
849          *   the end of this function.
850          */
851         mark_rt_mutex_waiters(lock);
852
853         /*
854          * If @lock has an owner, give up.
855          */
856         if (rt_mutex_owner(lock))
857                 return 0;
858
859         /*
860          * If @waiter != NULL, @task has already enqueued the waiter
861          * into @lock waiter tree. If @waiter == NULL then this is a
862          * trylock attempt.
863          */
864         if (waiter) {
865                 /*
866                  * If waiter is not the highest priority waiter of
867                  * @lock, give up.
868                  */
869                 if (waiter != rt_mutex_top_waiter(lock))
870                         return 0;
871
872                 /*
873                  * We can acquire the lock. Remove the waiter from the
874                  * lock waiters tree.
875                  */
876                 rt_mutex_dequeue(lock, waiter);
877
878         } else {
879                 /*
880                  * If the lock has waiters already we check whether @task is
881                  * eligible to take over the lock.
882                  *
883                  * If there are no other waiters, @task can acquire
884                  * the lock.  @task->pi_blocked_on is NULL, so it does
885                  * not need to be dequeued.
886                  */
887                 if (rt_mutex_has_waiters(lock)) {
888                         /*
889                          * If @task->prio is greater than or equal to
890                          * the top waiter priority (kernel view),
891                          * @task lost.
892                          */
893                         if (task->prio >= rt_mutex_top_waiter(lock)->prio)
894                                 return 0;
895
896                         /*
897                          * The current top waiter stays enqueued. We
898                          * don't have to change anything in the lock
899                          * waiters order.
900                          */
901                 } else {
902                         /*
903                          * No waiters. Take the lock without the
904                          * pi_lock dance.@task->pi_blocked_on is NULL
905                          * and we have no waiters to enqueue in @task
906                          * pi waiters tree.
907                          */
908                         goto takeit;
909                 }
910         }
911
912         /*
913          * Clear @task->pi_blocked_on. Requires protection by
914          * @task->pi_lock. Redundant operation for the @waiter == NULL
915          * case, but conditionals are more expensive than a redundant
916          * store.
917          */
918         raw_spin_lock(&task->pi_lock);
919         task->pi_blocked_on = NULL;
920         /*
921          * Finish the lock acquisition. @task is the new owner. If
922          * other waiters exist we have to insert the highest priority
923          * waiter into @task->pi_waiters tree.
924          */
925         if (rt_mutex_has_waiters(lock))
926                 rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
927         raw_spin_unlock(&task->pi_lock);
928
929 takeit:
930         /* We got the lock. */
931         debug_rt_mutex_lock(lock);
932
933         /*
934          * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
935          * are still waiters or clears it.
936          */
937         rt_mutex_set_owner(lock, task);
938
939         rt_mutex_deadlock_account_lock(lock, task);
940
941         return 1;
942 }
943
944 /*
945  * Task blocks on lock.
946  *
947  * Prepare waiter and propagate pi chain
948  *
949  * This must be called with lock->wait_lock held and interrupts disabled
950  */
951 static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
952                                    struct rt_mutex_waiter *waiter,
953                                    struct task_struct *task,
954                                    enum rtmutex_chainwalk chwalk)
955 {
956         struct task_struct *owner = rt_mutex_owner(lock);
957         struct rt_mutex_waiter *top_waiter = waiter;
958         struct rt_mutex *next_lock;
959         int chain_walk = 0, res;
960
961         /*
962          * Early deadlock detection. We really don't want the task to
963          * enqueue on itself just to untangle the mess later. It's not
964          * only an optimization. We drop the locks, so another waiter
965          * can come in before the chain walk detects the deadlock. So
966          * the other will detect the deadlock and return -EDEADLOCK,
967          * which is wrong, as the other waiter is not in a deadlock
968          * situation.
969          */
970         if (owner == task)
971                 return -EDEADLK;
972
973         raw_spin_lock(&task->pi_lock);
974         __rt_mutex_adjust_prio(task);
975         waiter->task = task;
976         waiter->lock = lock;
977         waiter->prio = task->prio;
978
979         /* Get the top priority waiter on the lock */
980         if (rt_mutex_has_waiters(lock))
981                 top_waiter = rt_mutex_top_waiter(lock);
982         rt_mutex_enqueue(lock, waiter);
983
984         task->pi_blocked_on = waiter;
985
986         raw_spin_unlock(&task->pi_lock);
987
988         if (!owner)
989                 return 0;
990
991         raw_spin_lock(&owner->pi_lock);
992         if (waiter == rt_mutex_top_waiter(lock)) {
993                 rt_mutex_dequeue_pi(owner, top_waiter);
994                 rt_mutex_enqueue_pi(owner, waiter);
995
996                 __rt_mutex_adjust_prio(owner);
997                 if (owner->pi_blocked_on)
998                         chain_walk = 1;
999         } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
1000                 chain_walk = 1;
1001         }
1002
1003         /* Store the lock on which owner is blocked or NULL */
1004         next_lock = task_blocked_on_lock(owner);
1005
1006         raw_spin_unlock(&owner->pi_lock);
1007         /*
1008          * Even if full deadlock detection is on, if the owner is not
1009          * blocked itself, we can avoid finding this out in the chain
1010          * walk.
1011          */
1012         if (!chain_walk || !next_lock)
1013                 return 0;
1014
1015         /*
1016          * The owner can't disappear while holding a lock,
1017          * so the owner struct is protected by wait_lock.
1018          * Gets dropped in rt_mutex_adjust_prio_chain()!
1019          */
1020         get_task_struct(owner);
1021
1022         raw_spin_unlock_irq(&lock->wait_lock);
1023
1024         res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1025                                          next_lock, waiter, task);
1026
1027         raw_spin_lock_irq(&lock->wait_lock);
1028
1029         return res;
1030 }
1031
1032 /*
1033  * Remove the top waiter from the current tasks pi waiter tree and
1034  * queue it up.
1035  *
1036  * Called with lock->wait_lock held and interrupts disabled.
1037  */
1038 static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1039                                     struct rt_mutex *lock)
1040 {
1041         struct rt_mutex_waiter *waiter;
1042
1043         raw_spin_lock(&current->pi_lock);
1044
1045         waiter = rt_mutex_top_waiter(lock);
1046
1047         /*
1048          * Remove it from current->pi_waiters. We do not adjust a
1049          * possible priority boost right now. We execute wakeup in the
1050          * boosted mode and go back to normal after releasing
1051          * lock->wait_lock.
1052          */
1053         rt_mutex_dequeue_pi(current, waiter);
1054
1055         /*
1056          * As we are waking up the top waiter, and the waiter stays
1057          * queued on the lock until it gets the lock, this lock
1058          * obviously has waiters. Just set the bit here and this has
1059          * the added benefit of forcing all new tasks into the
1060          * slow path making sure no task of lower priority than
1061          * the top waiter can steal this lock.
1062          */
1063         lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1064
1065         raw_spin_unlock(&current->pi_lock);
1066
1067         wake_q_add(wake_q, waiter->task);
1068 }
1069
1070 /*
1071  * Remove a waiter from a lock and give up
1072  *
1073  * Must be called with lock->wait_lock held and interrupts disabled. I must
1074  * have just failed to try_to_take_rt_mutex().
1075  */
1076 static void remove_waiter(struct rt_mutex *lock,
1077                           struct rt_mutex_waiter *waiter)
1078 {
1079         bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1080         struct task_struct *owner = rt_mutex_owner(lock);
1081         struct rt_mutex *next_lock;
1082
1083         raw_spin_lock(&current->pi_lock);
1084         rt_mutex_dequeue(lock, waiter);
1085         current->pi_blocked_on = NULL;
1086         raw_spin_unlock(&current->pi_lock);
1087
1088         /*
1089          * Only update priority if the waiter was the highest priority
1090          * waiter of the lock and there is an owner to update.
1091          */
1092         if (!owner || !is_top_waiter)
1093                 return;
1094
1095         raw_spin_lock(&owner->pi_lock);
1096
1097         rt_mutex_dequeue_pi(owner, waiter);
1098
1099         if (rt_mutex_has_waiters(lock))
1100                 rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1101
1102         __rt_mutex_adjust_prio(owner);
1103
1104         /* Store the lock on which owner is blocked or NULL */
1105         next_lock = task_blocked_on_lock(owner);
1106
1107         raw_spin_unlock(&owner->pi_lock);
1108
1109         /*
1110          * Don't walk the chain, if the owner task is not blocked
1111          * itself.
1112          */
1113         if (!next_lock)
1114                 return;
1115
1116         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1117         get_task_struct(owner);
1118
1119         raw_spin_unlock_irq(&lock->wait_lock);
1120
1121         rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1122                                    next_lock, NULL, current);
1123
1124         raw_spin_lock_irq(&lock->wait_lock);
1125 }
1126
1127 /*
1128  * Recheck the pi chain, in case we got a priority setting
1129  *
1130  * Called from sched_setscheduler
1131  */
1132 void rt_mutex_adjust_pi(struct task_struct *task)
1133 {
1134         struct rt_mutex_waiter *waiter;
1135         struct rt_mutex *next_lock;
1136         unsigned long flags;
1137
1138         raw_spin_lock_irqsave(&task->pi_lock, flags);
1139
1140         waiter = task->pi_blocked_on;
1141         if (!waiter || (waiter->prio == task->prio &&
1142                         !dl_prio(task->prio))) {
1143                 raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1144                 return;
1145         }
1146         next_lock = waiter->lock;
1147         raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1148
1149         /* gets dropped in rt_mutex_adjust_prio_chain()! */
1150         get_task_struct(task);
1151
1152         rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1153                                    next_lock, NULL, task);
1154 }
1155
1156 /**
1157  * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1158  * @lock:                the rt_mutex to take
1159  * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1160  *                       or TASK_UNINTERRUPTIBLE)
1161  * @timeout:             the pre-initialized and started timer, or NULL for none
1162  * @waiter:              the pre-initialized rt_mutex_waiter
1163  *
1164  * Must be called with lock->wait_lock held and interrupts disabled
1165  */
1166 static int __sched
1167 __rt_mutex_slowlock(struct rt_mutex *lock, int state,
1168                     struct hrtimer_sleeper *timeout,
1169                     struct rt_mutex_waiter *waiter)
1170 {
1171         int ret = 0;
1172
1173         for (;;) {
1174                 /* Try to acquire the lock: */
1175                 if (try_to_take_rt_mutex(lock, current, waiter))
1176                         break;
1177
1178                 /*
1179                  * TASK_INTERRUPTIBLE checks for signals and
1180                  * timeout. Ignored otherwise.
1181                  */
1182                 if (unlikely(state == TASK_INTERRUPTIBLE)) {
1183                         /* Signal pending? */
1184                         if (signal_pending(current))
1185                                 ret = -EINTR;
1186                         if (timeout && !timeout->task)
1187                                 ret = -ETIMEDOUT;
1188                         if (ret)
1189                                 break;
1190                 }
1191
1192                 raw_spin_unlock_irq(&lock->wait_lock);
1193
1194                 debug_rt_mutex_print_deadlock(waiter);
1195
1196                 schedule();
1197
1198                 raw_spin_lock_irq(&lock->wait_lock);
1199                 set_current_state(state);
1200         }
1201
1202         __set_current_state(TASK_RUNNING);
1203         return ret;
1204 }
1205
1206 static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1207                                      struct rt_mutex_waiter *w)
1208 {
1209         /*
1210          * If the result is not -EDEADLOCK or the caller requested
1211          * deadlock detection, nothing to do here.
1212          */
1213         if (res != -EDEADLOCK || detect_deadlock)
1214                 return;
1215
1216         /*
1217          * Yell lowdly and stop the task right here.
1218          */
1219         rt_mutex_print_deadlock(w);
1220         while (1) {
1221                 set_current_state(TASK_INTERRUPTIBLE);
1222                 schedule();
1223         }
1224 }
1225
1226 /*
1227  * Slow path lock function:
1228  */
1229 static int __sched
1230 rt_mutex_slowlock(struct rt_mutex *lock, int state,
1231                   struct hrtimer_sleeper *timeout,
1232                   enum rtmutex_chainwalk chwalk)
1233 {
1234         struct rt_mutex_waiter waiter;
1235         unsigned long flags;
1236         int ret = 0;
1237
1238         debug_rt_mutex_init_waiter(&waiter);
1239         RB_CLEAR_NODE(&waiter.pi_tree_entry);
1240         RB_CLEAR_NODE(&waiter.tree_entry);
1241
1242         /*
1243          * Technically we could use raw_spin_[un]lock_irq() here, but this can
1244          * be called in early boot if the cmpxchg() fast path is disabled
1245          * (debug, no architecture support). In this case we will acquire the
1246          * rtmutex with lock->wait_lock held. But we cannot unconditionally
1247          * enable interrupts in that early boot case. So we need to use the
1248          * irqsave/restore variants.
1249          */
1250         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1251
1252         /* Try to acquire the lock again: */
1253         if (try_to_take_rt_mutex(lock, current, NULL)) {
1254                 raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1255                 return 0;
1256         }
1257
1258         set_current_state(state);
1259
1260         /* Setup the timer, when timeout != NULL */
1261         if (unlikely(timeout))
1262                 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1263
1264         ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1265
1266         if (likely(!ret))
1267                 /* sleep on the mutex */
1268                 ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1269
1270         if (unlikely(ret)) {
1271                 __set_current_state(TASK_RUNNING);
1272                 if (rt_mutex_has_waiters(lock))
1273                         remove_waiter(lock, &waiter);
1274                 rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1275         }
1276
1277         /*
1278          * try_to_take_rt_mutex() sets the waiter bit
1279          * unconditionally. We might have to fix that up.
1280          */
1281         fixup_rt_mutex_waiters(lock);
1282
1283         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1284
1285         /* Remove pending timer: */
1286         if (unlikely(timeout))
1287                 hrtimer_cancel(&timeout->timer);
1288
1289         debug_rt_mutex_free_waiter(&waiter);
1290
1291         return ret;
1292 }
1293
1294 /*
1295  * Slow path try-lock function:
1296  */
1297 static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1298 {
1299         unsigned long flags;
1300         int ret;
1301
1302         /*
1303          * If the lock already has an owner we fail to get the lock.
1304          * This can be done without taking the @lock->wait_lock as
1305          * it is only being read, and this is a trylock anyway.
1306          */
1307         if (rt_mutex_owner(lock))
1308                 return 0;
1309
1310         /*
1311          * The mutex has currently no owner. Lock the wait lock and try to
1312          * acquire the lock. We use irqsave here to support early boot calls.
1313          */
1314         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1315
1316         ret = try_to_take_rt_mutex(lock, current, NULL);
1317
1318         /*
1319          * try_to_take_rt_mutex() sets the lock waiters bit
1320          * unconditionally. Clean this up.
1321          */
1322         fixup_rt_mutex_waiters(lock);
1323
1324         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1325
1326         return ret;
1327 }
1328
1329 /*
1330  * Slow path to release a rt-mutex.
1331  * Return whether the current task needs to undo a potential priority boosting.
1332  */
1333 static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1334                                         struct wake_q_head *wake_q)
1335 {
1336         unsigned long flags;
1337
1338         /* irqsave required to support early boot calls */
1339         raw_spin_lock_irqsave(&lock->wait_lock, flags);
1340
1341         debug_rt_mutex_unlock(lock);
1342
1343         rt_mutex_deadlock_account_unlock(current);
1344
1345         /*
1346          * We must be careful here if the fast path is enabled. If we
1347          * have no waiters queued we cannot set owner to NULL here
1348          * because of:
1349          *
1350          * foo->lock->owner = NULL;
1351          *                      rtmutex_lock(foo->lock);   <- fast path
1352          *                      free = atomic_dec_and_test(foo->refcnt);
1353          *                      rtmutex_unlock(foo->lock); <- fast path
1354          *                      if (free)
1355          *                              kfree(foo);
1356          * raw_spin_unlock(foo->lock->wait_lock);
1357          *
1358          * So for the fastpath enabled kernel:
1359          *
1360          * Nothing can set the waiters bit as long as we hold
1361          * lock->wait_lock. So we do the following sequence:
1362          *
1363          *      owner = rt_mutex_owner(lock);
1364          *      clear_rt_mutex_waiters(lock);
1365          *      raw_spin_unlock(&lock->wait_lock);
1366          *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1367          *              return;
1368          *      goto retry;
1369          *
1370          * The fastpath disabled variant is simple as all access to
1371          * lock->owner is serialized by lock->wait_lock:
1372          *
1373          *      lock->owner = NULL;
1374          *      raw_spin_unlock(&lock->wait_lock);
1375          */
1376         while (!rt_mutex_has_waiters(lock)) {
1377                 /* Drops lock->wait_lock ! */
1378                 if (unlock_rt_mutex_safe(lock, flags) == true)
1379                         return false;
1380                 /* Relock the rtmutex and try again */
1381                 raw_spin_lock_irqsave(&lock->wait_lock, flags);
1382         }
1383
1384         /*
1385          * The wakeup next waiter path does not suffer from the above
1386          * race. See the comments there.
1387          *
1388          * Queue the next waiter for wakeup once we release the wait_lock.
1389          */
1390         mark_wakeup_next_waiter(wake_q, lock);
1391
1392         raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1393
1394         /* check PI boosting */
1395         return true;
1396 }
1397
1398 /*
1399  * debug aware fast / slowpath lock,trylock,unlock
1400  *
1401  * The atomic acquire/release ops are compiled away, when either the
1402  * architecture does not support cmpxchg or when debugging is enabled.
1403  */
1404 static inline int
1405 rt_mutex_fastlock(struct rt_mutex *lock, int state,
1406                   int (*slowfn)(struct rt_mutex *lock, int state,
1407                                 struct hrtimer_sleeper *timeout,
1408                                 enum rtmutex_chainwalk chwalk))
1409 {
1410         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1411                 rt_mutex_deadlock_account_lock(lock, current);
1412                 return 0;
1413         } else
1414                 return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1415 }
1416
1417 static inline int
1418 rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1419                         struct hrtimer_sleeper *timeout,
1420                         enum rtmutex_chainwalk chwalk,
1421                         int (*slowfn)(struct rt_mutex *lock, int state,
1422                                       struct hrtimer_sleeper *timeout,
1423                                       enum rtmutex_chainwalk chwalk))
1424 {
1425         if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1426             likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1427                 rt_mutex_deadlock_account_lock(lock, current);
1428                 return 0;
1429         } else
1430                 return slowfn(lock, state, timeout, chwalk);
1431 }
1432
1433 static inline int
1434 rt_mutex_fasttrylock(struct rt_mutex *lock,
1435                      int (*slowfn)(struct rt_mutex *lock))
1436 {
1437         if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current))) {
1438                 rt_mutex_deadlock_account_lock(lock, current);
1439                 return 1;
1440         }
1441         return slowfn(lock);
1442 }
1443
1444 static inline void
1445 rt_mutex_fastunlock(struct rt_mutex *lock,
1446                     bool (*slowfn)(struct rt_mutex *lock,
1447                                    struct wake_q_head *wqh))
1448 {
1449         WAKE_Q(wake_q);
1450
1451         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1452                 rt_mutex_deadlock_account_unlock(current);
1453
1454         } else {
1455                 bool deboost = slowfn(lock, &wake_q);
1456
1457                 wake_up_q(&wake_q);
1458
1459                 /* Undo pi boosting if necessary: */
1460                 if (deboost)
1461                         rt_mutex_adjust_prio(current);
1462         }
1463 }
1464
1465 /**
1466  * rt_mutex_lock - lock a rt_mutex
1467  *
1468  * @lock: the rt_mutex to be locked
1469  */
1470 void __sched rt_mutex_lock(struct rt_mutex *lock)
1471 {
1472         might_sleep();
1473
1474         rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1475 }
1476 EXPORT_SYMBOL_GPL(rt_mutex_lock);
1477
1478 /**
1479  * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1480  *
1481  * @lock:               the rt_mutex to be locked
1482  *
1483  * Returns:
1484  *  0           on success
1485  * -EINTR       when interrupted by a signal
1486  */
1487 int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1488 {
1489         might_sleep();
1490
1491         return rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1492 }
1493 EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1494
1495 /*
1496  * Futex variant with full deadlock detection.
1497  */
1498 int rt_mutex_timed_futex_lock(struct rt_mutex *lock,
1499                               struct hrtimer_sleeper *timeout)
1500 {
1501         might_sleep();
1502
1503         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1504                                        RT_MUTEX_FULL_CHAINWALK,
1505                                        rt_mutex_slowlock);
1506 }
1507
1508 /**
1509  * rt_mutex_timed_lock - lock a rt_mutex interruptible
1510  *                      the timeout structure is provided
1511  *                      by the caller
1512  *
1513  * @lock:               the rt_mutex to be locked
1514  * @timeout:            timeout structure or NULL (no timeout)
1515  *
1516  * Returns:
1517  *  0           on success
1518  * -EINTR       when interrupted by a signal
1519  * -ETIMEDOUT   when the timeout expired
1520  */
1521 int
1522 rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1523 {
1524         might_sleep();
1525
1526         return rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1527                                        RT_MUTEX_MIN_CHAINWALK,
1528                                        rt_mutex_slowlock);
1529 }
1530 EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1531
1532 /**
1533  * rt_mutex_trylock - try to lock a rt_mutex
1534  *
1535  * @lock:       the rt_mutex to be locked
1536  *
1537  * This function can only be called in thread context. It's safe to
1538  * call it from atomic regions, but not from hard interrupt or soft
1539  * interrupt context.
1540  *
1541  * Returns 1 on success and 0 on contention
1542  */
1543 int __sched rt_mutex_trylock(struct rt_mutex *lock)
1544 {
1545         if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1546                 return 0;
1547
1548         return rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1549 }
1550 EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1551
1552 /**
1553  * rt_mutex_unlock - unlock a rt_mutex
1554  *
1555  * @lock: the rt_mutex to be unlocked
1556  */
1557 void __sched rt_mutex_unlock(struct rt_mutex *lock)
1558 {
1559         rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1560 }
1561 EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1562
1563 /**
1564  * rt_mutex_futex_unlock - Futex variant of rt_mutex_unlock
1565  * @lock: the rt_mutex to be unlocked
1566  *
1567  * Returns: true/false indicating whether priority adjustment is
1568  * required or not.
1569  */
1570 bool __sched rt_mutex_futex_unlock(struct rt_mutex *lock,
1571                                    struct wake_q_head *wqh)
1572 {
1573         if (likely(rt_mutex_cmpxchg_release(lock, current, NULL))) {
1574                 rt_mutex_deadlock_account_unlock(current);
1575                 return false;
1576         }
1577         return rt_mutex_slowunlock(lock, wqh);
1578 }
1579
1580 /**
1581  * rt_mutex_destroy - mark a mutex unusable
1582  * @lock: the mutex to be destroyed
1583  *
1584  * This function marks the mutex uninitialized, and any subsequent
1585  * use of the mutex is forbidden. The mutex must not be locked when
1586  * this function is called.
1587  */
1588 void rt_mutex_destroy(struct rt_mutex *lock)
1589 {
1590         WARN_ON(rt_mutex_is_locked(lock));
1591 #ifdef CONFIG_DEBUG_RT_MUTEXES
1592         lock->magic = NULL;
1593 #endif
1594 }
1595
1596 EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1597
1598 /**
1599  * __rt_mutex_init - initialize the rt lock
1600  *
1601  * @lock: the rt lock to be initialized
1602  *
1603  * Initialize the rt lock to unlocked state.
1604  *
1605  * Initializing of a locked rt lock is not allowed
1606  */
1607 void __rt_mutex_init(struct rt_mutex *lock, const char *name)
1608 {
1609         lock->owner = NULL;
1610         raw_spin_lock_init(&lock->wait_lock);
1611         lock->waiters = RB_ROOT;
1612         lock->waiters_leftmost = NULL;
1613
1614         debug_rt_mutex_init(lock, name);
1615 }
1616 EXPORT_SYMBOL_GPL(__rt_mutex_init);
1617
1618 /**
1619  * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1620  *                              proxy owner
1621  *
1622  * @lock:       the rt_mutex to be locked
1623  * @proxy_owner:the task to set as owner
1624  *
1625  * No locking. Caller has to do serializing itself
1626  * Special API call for PI-futex support
1627  */
1628 void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1629                                 struct task_struct *proxy_owner)
1630 {
1631         __rt_mutex_init(lock, NULL);
1632         debug_rt_mutex_proxy_lock(lock, proxy_owner);
1633         rt_mutex_set_owner(lock, proxy_owner);
1634         rt_mutex_deadlock_account_lock(lock, proxy_owner);
1635 }
1636
1637 /**
1638  * rt_mutex_proxy_unlock - release a lock on behalf of owner
1639  *
1640  * @lock:       the rt_mutex to be locked
1641  *
1642  * No locking. Caller has to do serializing itself
1643  * Special API call for PI-futex support
1644  */
1645 void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1646                            struct task_struct *proxy_owner)
1647 {
1648         debug_rt_mutex_proxy_unlock(lock);
1649         rt_mutex_set_owner(lock, NULL);
1650         rt_mutex_deadlock_account_unlock(proxy_owner);
1651 }
1652
1653 /**
1654  * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1655  * @lock:               the rt_mutex to take
1656  * @waiter:             the pre-initialized rt_mutex_waiter
1657  * @task:               the task to prepare
1658  *
1659  * Returns:
1660  *  0 - task blocked on lock
1661  *  1 - acquired the lock for task, caller should wake it up
1662  * <0 - error
1663  *
1664  * Special API call for FUTEX_REQUEUE_PI support.
1665  */
1666 int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1667                               struct rt_mutex_waiter *waiter,
1668                               struct task_struct *task)
1669 {
1670         int ret;
1671
1672         raw_spin_lock_irq(&lock->wait_lock);
1673
1674         if (try_to_take_rt_mutex(lock, task, NULL)) {
1675                 raw_spin_unlock_irq(&lock->wait_lock);
1676                 return 1;
1677         }
1678
1679         /* We enforce deadlock detection for futexes */
1680         ret = task_blocks_on_rt_mutex(lock, waiter, task,
1681                                       RT_MUTEX_FULL_CHAINWALK);
1682
1683         if (ret && !rt_mutex_owner(lock)) {
1684                 /*
1685                  * Reset the return value. We might have
1686                  * returned with -EDEADLK and the owner
1687                  * released the lock while we were walking the
1688                  * pi chain.  Let the waiter sort it out.
1689                  */
1690                 ret = 0;
1691         }
1692
1693         if (unlikely(ret))
1694                 remove_waiter(lock, waiter);
1695
1696         raw_spin_unlock_irq(&lock->wait_lock);
1697
1698         debug_rt_mutex_print_deadlock(waiter);
1699
1700         return ret;
1701 }
1702
1703 /**
1704  * rt_mutex_next_owner - return the next owner of the lock
1705  *
1706  * @lock: the rt lock query
1707  *
1708  * Returns the next owner of the lock or NULL
1709  *
1710  * Caller has to serialize against other accessors to the lock
1711  * itself.
1712  *
1713  * Special API call for PI-futex support
1714  */
1715 struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1716 {
1717         if (!rt_mutex_has_waiters(lock))
1718                 return NULL;
1719
1720         return rt_mutex_top_waiter(lock)->task;
1721 }
1722
1723 /**
1724  * rt_mutex_finish_proxy_lock() - Complete lock acquisition
1725  * @lock:               the rt_mutex we were woken on
1726  * @to:                 the timeout, null if none. hrtimer should already have
1727  *                      been started.
1728  * @waiter:             the pre-initialized rt_mutex_waiter
1729  *
1730  * Complete the lock acquisition started our behalf by another thread.
1731  *
1732  * Returns:
1733  *  0 - success
1734  * <0 - error, one of -EINTR, -ETIMEDOUT
1735  *
1736  * Special API call for PI-futex requeue support
1737  */
1738 int rt_mutex_finish_proxy_lock(struct rt_mutex *lock,
1739                                struct hrtimer_sleeper *to,
1740                                struct rt_mutex_waiter *waiter)
1741 {
1742         int ret;
1743
1744         raw_spin_lock_irq(&lock->wait_lock);
1745
1746         set_current_state(TASK_INTERRUPTIBLE);
1747
1748         /* sleep on the mutex */
1749         ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1750
1751         if (unlikely(ret))
1752                 remove_waiter(lock, waiter);
1753
1754         /*
1755          * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1756          * have to fix that up.
1757          */
1758         fixup_rt_mutex_waiters(lock);
1759
1760         raw_spin_unlock_irq(&lock->wait_lock);
1761
1762         return ret;
1763 }